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Executive Summary

The industry standard among renewable energy companies is to value projects
using the traditional discounted cash flow method. Unfortunately, dis-
counted cash flows do not incorporate the value of flexibility. This makes the
technique unsuitable for valuing investment opportunities related to wind
farm development. Such investments are often highly uncertain, making
flexibility valuable.

In this thesis we demonstrate the difference between some selected val-
uation methods, and discuss their suitability for valuing an investment op-
portunity in a wind power project. The focus is on real options analysis,
and our hypothesis is that the use of real options valuation methods will im-
prove the quality of the information available for decision makers, ultimately
improving the quality of investment decisions in wind power.

The specific wind power project that we value is owned by TrønderEnergi
AS, a renewable energy company based in Sør-Trønderlag county in Norway.
The project is called Stokkfjellet Wind Farm, and the site is located in Selbu,
a municipality in Sør-Trøndelag. TrønderEnergi has applied for a concession
to build, and is expecting a decision by the Norwegian Water Resources and
Energy Directorate (NVE) by the end of the summer of 2014.

To investigate this investment opportunity, we first consider the prac-
tical conditions affecting the investment decision. We move on to briefly
present some theory of discounted cash flow analysis and the contingent
net present value (NPV) approach. Then, a thorough introduction to real
options theory and our assumptions is given, before we explain in detail
the application of the binomial lattice and Monte Carlo valuation methods,
which take a real options perspective. We next perform the actual valua-
tions, and analyse the results from these as well as the methods used. The
conclusions to be drawn are at last discussed.

For the development of the Stokkfjellet project, we assume there is un-
certainty about events and markets. With events, we mean for example
the outcome of the licence application processing by NVE. By market un-
certainty we refer to the future development of the prices of power and
tradable green certificates. Both prices influence the income from a wind
farm directly.

For the real options valuations, we have modelled the power price as a
mean-reverting process, and the price of tradable green certificates as a geo-
metric Brownian motion. Modelling the electricity price as a mean-reverting
process is an advantage as compared to modelling it as a geometric Brown-
ian motion, since electricity prices show a clear tendency to revert back to
a long-term level, rather than wander far away from its mean like a random
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walk. The parameters of the stochastic processes have been estimated from
historical electricity price data from January 1 2001 to December 31 2013 for
the NO3 Elspot Market available at Nord Pool Spot, and historical prices
of tradable green certificates from February 19 2003 to March 5 2014 as
listed by NVE. The code developed for the real options valuations has been
written in Visual Basic for Applications (VBA) for Excel, and is included
in Appendices A-D in this thesis.

Throughout the report, we carefully present all the theory needed in
order to perform the calculations for the valuations. For the most intricate
mathematical discussions, is assumed that the reader is familiar with calcu-
lus, some basic statistics and stochastic processes. We have included a brief
introduction to the concept of stochastic calculus in Appendix F.

Other than discuss each method theoretically, we also compare the meth-
ods for practical applications. We find that the most severe problem with
discounted cash flows is that the method cannot handle the value of flexibil-
ity incorporated in wind projects, which could cause us to grossly undervalue
a project when we use this method. The contingent NPV method succeeds
in handling the uncertainty related to events, but is not by itself a suffi-
cient tool for solving real options because of problems related to calculating
the appropriate discount rate in every stage of the project. The binomial
lattice approach avoids this problem by using so-called risk-neutral prob-
abilities, which is a more accurate fashion than choosing a discount rate.
The binomial lattice permits us to value the project as a compound option,
which is beneficial considering that investments in the Stokkfjellet project
are done in stages. This method handles both event and market uncer-
tainty. The Monte Carlo valuation is a simple and flexible method that
also exploits risk-neutral pricing. However, it is not straightforward to use
Monte Carlo simulations to value compound options. This is a drawback
with this method and we have to model the investment opportunity as a sin-
gle European call option when using this method. In addition, this method
does not cope well with event uncertainty. There will always be benefits and
drawbacks with every method, thus it is in general better to refer to more
than one valuation method when making important investment decisions.

The real option we decide to value is the option to invest. We model the
real option as a European compound call option and a single European call
option for the binomial lattice and Monte Carlo methods, respectively. The
investment opportunity is valued at 29 MNOK with the binomial lattice
approach, and 47 MNOK with the Monte Carlo method. The difference in
the values assigned can be explained by the different option types used to
model the project, among other factors. The value of the project has in-
creased from a negative value of −21 MNOK for the contingent NPV. Thus,
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we demonstrate that valuing the investment opportunity while accounting
for flexibility assigns the project a positive value whereas a contingent net
present value approach assigns the investment opportunity a negative value.
This is critical information that should be considered before making a deci-
sion about investing. We therefore recommend that a real options approach
to valuing wind projects is adopted by TrønderEnergi.

In addition to our conclusions and the recommendations that we suggest
in this thesis, we have created a program that is meant to be used by
TrønderEnergi for valuing Stokkfjellet Wind Farm as well as other projects
that are subject to similar risks and flexibility. The program is easy to use,
flexible and effective, and constitutes an important part of the work done in
relation to this thesis. This program is to be handed over to TrønderEnergi
at the time when this thesis is submitted.
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Sammendrag

Det er i dag vanlig blant fornybare energiselskaper å verdsette prosjekter
ved hjelp av den tradisjonelle diskonterte kontantstrømsmetoden. Dessverre
inkluderer ikke diskonterte kontantstrømmer verdien av fleksibilitet. Denne
teknikken er derfor å anse som uegnet ved verdsettelse av investeringsmu-
ligheter knyttet til utvikling av vindkraftverk. Dette er prosjekter som
typisk har mye usikkerhet knyttet til seg, noe som gjør fleksibilitet verdi-
fullt.

I denne masteroppgaven vil vi demonstrere forskjeller mellom noen ut-
valgte verdsettelsesmetoder, og diskutere hvorvidt hver enkelt metode er
egnet for å verdsette en investeringsmulighet i et vindkraftprosjekt. Hov-
edfokuset vil være p̊a realopsjonsanalyse. V̊ar hypotese er at man ved å ta
i bruk realopsjonsanalyse som et verktøy i verdsettelsen kan bedre beslut-
ningsgrunnlaget, noe som igjen vil føre til at kvaliteten p̊a beslutninger
forbedres.

Prosjektet som blir studert i denne oppgaven eies av TrønderEnergi AS.
TrønderEnergi er et fornybart energiselskap med hovedkontor i Trondheim.
Det aktuelle vindkraftverket er lokalisert i Selbu kommune i Sør-Trøndelag
og heter Stokkfjellet vindpark. TrønderEnergi har søkt Norges Vassdrag- og
Energidirektorat (NVE) om konsesjon til å bygge, og det er ventet at svar
vil foreligge i løpet av sommeren 2014.

Vi starter v̊ar vurdering av investeringsmuligheten med å se p̊a økonomiske,
politiske og tekniske forhold knyttet til prosjektet. Deretter gjennomg̊ar vi
teori knyttet til de to tradisjonelle verdsettelsesmetodene diskontert kon-
tantstrømsanalyse og beslutningstreanalyse. Vi g̊ar s̊a nøye til verks med å
introdusere realopsjonsteori og forklare v̊are antakelser. Vi forklarer deretter
metodene for binomisk opsjonstre og opsjonsprising ved hjelp av Monte
Carlo-simuleringer i et realopsjonsperspektiv. Selve verdivurderingen utføres
systematisk for hver metode. Dette blir etterfulgt av en undersøkelse av re-
sultatene, en sammenligning av metodene samt en generell analyse av arbei-
det. Rapporten avsluttes med at vi drar de konklusjoner vi finner passende
ut ifra v̊are funn.

Vi har antatt at Stokkfjellet vindpark under utvikling er eksponert for
b̊ade hendelsesusikkerhet og markedsusikkerhet. Med hendelsesusikkerhet
menes for eksempel usikkerheten knyttet til utfallet av konsesjonssøknaden
som for tiden behandles av NVE. Markedsusikkerhet er knyttet til usikker-
heten rundt fremtidig utvikling i kraftprisen og prisen p̊a grønne sertifikater.
Begge disse prisene p̊avirker inntektene til et vindkraftverk direkte.

I realopsjonsverdsettelsene har vi lagt til grunn en stokastisk kraftpris
som reverterer mot et langsiktig likevektsniv̊a, og en stokastisk pris p̊a de
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grønne sertifikatene som er antatt å følge en geometrisk Brownsk bevegelse.
Det å modellere strømprisen som snittreverterende heller enn en geometrisk
Brownsk bevegelse er en klar fordel. Grunnen er at prisen p̊a elektrisitet har
en tydelig tendens til å falle tilbake til et langsiktig snittniv̊a, i motsetning til
geometrisk Brownske bevegelser som kan vandre langt bort fra sin forventede
verdi som en s̊akalt tilfeldig gang (random walk). Inngangsparameterne til
prosessene er estimert fra historiske prisdata. Prisene for elektrisitet gjelder
fra 1. januar 2001 til 31. desember 2013 for NO3 Elspot Marked tilgjengelig
fra Nord Pool Spot, mens vi for grønne sertifikater anvender prisdata fra 19.
februar 2003 til 5. mars 2014, som oppført av NVE. Programkoden som er
utviklet for verdsettelsene er skrevet i Visual Basic for Applications (VBA)
for Excel, og er inkludert i vedlegg A-D i denne avhandlingen.

Gjennom hele rapporten vil vi nøye presentere all teori som trengs for
å utføre beregningene for de ulike verdsettelsene. For de mest intrikate
matematiske diskusjonene forutsettes det at leseren er kjent med kalkulus,
noe grunnleggende statistikk samt stokastiske prosesser. Vi har lagt ved en
kort innføring i stokastisk kalkulus i vedlegg F.

I tillegg til å diskutere de ulike metodene p̊a et teoretisk niv̊a, sammen-
ligner vi ogs̊a metodenes egnethet for praktiske anvendelser. Den største
nedsiden til den statiske n̊averdimetoden er at fleksibiliteten innlemmet i
vindkraftprosjekter ikke blir h̊andtert. Dette kan føre til grove feil som
gjør at man undervurderer verdien til prosjektet. I beslutningstreanalysen
tar man hensyn til hendelsesusikkerheten, men dette er ikke i seg selv et
tilstrekkelig verktøy for å regne p̊a realopsjoner. Grunnen er at man vil
støte p̊a alvorlige problemer knyttet til beregning av diskonteringsraten i
alle faser av prosjektet.

Binomisk opsjonstre er en praktisk metode for å løse sekvensielle sam-
mensatte opsjoner, og ved bruk av denne metoden f̊ar vi tatt hensyn til
b̊ade hendelsesusikkerhet og markedsusikkerhet. Opsjonsprising ved hjelp
av Monte Carlo-simuleringer er derimot ikke velegnet for sammensatte op-
sjoner. Metodens styrke for denne anvendelsen er at den er enkel og fleksibel,
og den tillater inkludering av flere stokastiske prosesser. Derfor behandler
vi investeringsmuligheten som en enkel europeisk kjøpsopsjon i denne verd-
settelsen. Monte Carlo-metoden tar kun hensyn til markedsusikkerheten.

Man vil kunne finne positive og negative sider ved alle verdsettelsesme-
toder, og vi mener derfor at det p̊a generell basis er fordelaktig å benytte
seg av flere metoder for å sikre et solid beslutningsgrunnlag for viktige in-
vesteringsbeslutninger.

Realopsjonen vi velger å verdsette er opsjonen til å investere stegvis, alts̊a
muligheten til å revidere investeringsbeslutningen ved flere anledninger og
eventuelt forlate prosjektet underveis. Dette modelleres ved hjelp av en
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europeisk sammensatt kjøpsopsjon i et binomisk tre, men forenkles til en
enkel europeisk kjøpsopsjon i Monte Carlo-simuleringen. Opsjonsverdien vi
finner er 29 MNOK med binomisk opsjontre-metoden, mens verdien settes
til 47 MNOK n̊ar vi verdsetter opsjonen med Monte Carlo-simuleringer.
Forskjellen i beregnet verdi skyldes blant annet at den sammensatte op-
sjonen alltid vil f̊a en lavere verdi siden man trekker fra flere mindre in-
vesteringskostnader i utviklingsfasen av prosjektet. Beslutningstreanalysen
som bruker diskonterte kontantstrømmer verdsetter prosjektet til den be-
tydelig lavere summen −21 MNOK. Vi illustrerer dermed at å verdsette
dette prosjektet med og uten fleksibilitet resulterer i to ulike anbefalinger
for investeringsbeslutningen: Den tradisjonelle metoden konkluderer med
å forlate prosjektet, mens metodene som inkluderer fleksibilitet antyder at
man bør investere. Dette er viktig informasjon som burde foreligge n̊ar in-
vesteringsbeslutninger skal tas, og vi anbefaler derfor at TrønderEnergi tar
i bruk realopsjonsmetoder ved verdsettelse av vindprosjekter.

I tillegg til selve oppgaven og det den har å tilby av konklusjoner og
anbefalinger, har vi ogs̊a utviklet et program som er ment å brukes til å
verdsette prosjekter med tilsvarende egenskaper som Stokkfjellet vindpark.
Programmet er lett å bruke, fleksibelt og effektivt, og utgjør en viktig del
av arbeidet som er lagt ned som del av denne oppgaven. Programmet over-
leveres til TrønderEnergi p̊a det tidspunktet denne oppgaven leveres inn.
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1 Introduction

With the growing international awareness to the development of more sus-
tainable societies and the protection of the environment, the transition to
renewable sources of energy is happening in many corners of the world.
Furthermore, the high variability in fossil fuel prices and the pressure from
governments to reduce dependence on conventional energy sources has con-
tributed to increase the share of renewable energy sources in the global
energy mix. In many countries, onshore wind power has established itself
as the most mature and commercially viable renewable technology.

1.1 Background

Through the European Economic Area (EEA) cooperation, Norway is com-
mitted to increase its share of renewable energy production from 59.9 per
cent in 2005 to 67.5 per cent in 2020. Norway is to achieve this goal by
investing in new renewable electricity production, ultimately increasing the
annual production of renewable power to the goal of 26.4 TWh. Due to low
power prices, the government stimulates increased investment in renewable
energy through a common tradable green certificates market with Sweden.
The technology neutral market for tradable green certificates (TGC’s) is a
means of reaching the goal of 26.4 TWh of renewable power production by
2020.

1.2 Motivation

Wind power producers must account for long-term uncertainty in electricity
prices, TGC prices and other volatile factors that affect the decision to
invest. Due to the long lifetimes of such projects and the high degree of
uncertainty, there is flexibility in managerial decisions as new information
evolves. Flexibility allows managers to delay, rush or cancel investments and
is thus of value to a project owner. Traditional net present value (NPV)
methods that rely on discounted cash flows do not capture this value and
are consequently not suitable for these investment decisions. In order to
capture the value of such flexibility, it can be argued that a real options
perspective is appropriate.

This thesis evaluates the applicability of different valuation methods for
valuing an investment opportunity such as one TrønderEnergi AS currently
holds with Stokkfjellet Wind Farm. TrønderEnergi have expressed that they
wish to broaden their understanding for project valuation methods that
could serve as an alternative to traditional discounted cash flow methods,
with emphasis on real options analysis. This thesis demonstrates how these
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1.2 Motivation

methods can be performed in practice, and assesses the suitability of two real
options valuation methods as compared to two more traditional methods.
We also create a program that is meant to be used by TrønderEnergi for
valuing projects with similar risk characteristics as the project evaluated
here.

To investigate the nature of the different valuation methods, we will ap-
ply them to the case of Stokkfjellet Wind Farm, an investment opportunity
that TrønderEnergi currently holds in Sør-Trøndelag, Norway. This project
is fully owned by TrønderEnergi, and the application to build is currently
being processed by NVE.

The purpose of our work is to illustrate how real options analysis can
be a useful tool in estimating the value of a certain wind project, and to
highlight the differences between the traditional discounted cash flow ap-
proach and real options methods that incorporate the value of managerial
flexibility. There is an extensive amount of literature available that treats
the theoretical aspect of real options analysis; however, there seems to be
a lack of studies demonstrating how this can be done in practice. Our
contribution to the literature is thus that we illustrate through an actual
case study how real options methods can be used to value a wind project,
and what advantages and disadvantages are associated with the various
approaches. One important contribution is a discussion on what character-
istics make different valuation methods convenient for which purposes. We
address practitioners who are in the position of analysing these investment
opportunities in TrønderEnergi.

It is imporant to note that our goal is not to estimate the parameters
needed for the valuations as accurately as possible. Rather, we discuss
how these can be determined and assess the project value’s sensitivity to
some of the most important input parameters. Instead of going through the
work of estimating parameters without the use of confidencial information,
we develop a flexible valuation program where users can input their own
parameter estimates.

Our hypothesis is that the use of real options valuation methods will
increase the quality of the basis for decision making, when considering in-
vestment opportunities in onshore wind projects under development. This
work was requested by TrønderEnergi, and the research has been shaped
according to their preferences. Accordingly, relevant discussions will take
their perspective.
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1.3 Overview of chapters

The specific case study that we consider in this work is presented in Chap-
ter 2. This is meant to provide a context and financial environment for the
valuation. We briefly cover the theory of the traditional valuation meth-
ods that use discounted cash flows in Chapter 3. In Chapter 4, general
real options theory is covered, and we discuss some important assumptions
needed for the valuations. We then get more specific in Chapter 5, and
describe carefully relevant theory and literature of the binomial lattice and
Monte Carlo methods. The actual valuations of the project are carried
out in Chapter 6. We start the chapter with determining the static NPV
of the operational phase of the park, which is used as input for the other
valuation methods. We then move on to the contingent NPV method, the
binomial lattice approach and the real options valuation by Monte Carlo
simulations, before the results are discussed. In Chapter 7 we analyse the
results and compare and evaluate the methods used. This discussion will
substantiate the conclusions drawn in Chapter 8. We focus on discussing
the applicability, usefulness and precision of the methods as a practical
tool for TrønderEnergi. We do provide some advice, but it is left up to
TrønderEnergi to decide which methods they wish to adopt, if any.

2 Case Study Conditions

In order to make an informed investment decision, all important aspects of
the relevant project must be considered. This chapter contains a discussion
of different factors that together form the characteristics of the project and
the investment decision. The Nordic power market, the subsidy scheme, the
conditions for developing onshore wind power, company characteristics of
TrønderEnergi AS and the details of Stokkfjellet Wind Farm are presented
in detail below. This information forms the basis for the choice of methods
selected for the valuation of the project.

2.1 The Nordic power market

Norway is part of a common Nordic power market. The electricity spot price
is determined through trading on this Nordic power market, called Nord
Pool Spot AS. Standardised financial contracts on future power prices are
also traded on the exchange. Such financial contracts are offset by the spot
price on Nord Pool Spot. Financial and physical contracts can also be traded
on the OTC (over-the-counter) market, meaning that the participants trade
directly between each other irrespective of any standardised marketplace.

3



2.2 The tradable green certificates system

Figure 1: Daily historical real prices of power on the NO3 Elspot Market
from January 1 2001 to December 31 2013. Data source: Nord Pool Spot
(2014).

Forces of supply and demand establish the price on the exchange. The
more power available, the lower the price will be, while a power shortage
will put an upward pressure on the price. In the short-term, supply and
demand are a result of the anticipated spot price, precipitation, tempera-
ture, reservoir levels, the marginal price of different production technologies,
bottlenecks in the power grid, etc. In the long-term, expectations and ulti-
mately power prices are determined by how much power generating capacity
and transmission lines are built relative to the growth in consumer demand.
The development of the regulatory conditions may also play an important
role in the long-term. The historical daily electricity prices for this market
is displayed in Fig. 1.

2.2 The tradable green certificates system

In 2012, Norway joined the already existing Swedish market for tradable
green certificates. The Swedish market has existed since 2003, and has
contributed to the building of renewable electricity generation at a relatively
low cost compared to other subsidy regimes. Producers of renewable energy
receive one certificate per MWh of power produced. The consumers then
buy the green certificates at a rate determined by the government, while
the price of a certificate is determined in the competitive market. The

4



2.2 The tradable green certificates system

Figure 2: Daily historical real prices from the Swedish market for tradable
green certificates from February 19 2003 to March 5 2014. In 2012, Norway
joined the market to create a common certificate market for Sweden and
Norway. Data source: NVE (2014).

sum of the price of electricity and green certificates is a means to make
marginal renewable energy solutions profitable and increase investments.
Daily historical prices are shown on the chart in Fig. 2.

The government makes regulations and issues certificates. There exists
both a spot and forward market for tradable green certificates. The produc-
ers can speculate and save their certificates, but not lend them. A producer
of renewable energy receives certificates for the power they generate over a
period of 15 years. In Norway, the plant must be in operation by 2020 in
order to receive green certificates, while in Sweden the producer can start
operation any time before 2035. However, the certificates market will only
be active until 2035. Currently, there is a surplus of certificates in the mar-
ket due to a rapid development of renewable power generation in Sweden
combined with a lower growth in power consumption than expected.

The certificates market is substantially different from the power market
due to the absence of a marginal cost of production. Rather, the price for-
mation is determined by factors such as the cost of investing in renewables,
the power price, the size of the stock of certificates, expectations about the
development of the stock of certificates, as well as political uncertainty.

In the coming years, the level of investment in renewable energy will
continue to directly influence the prices in the certificate market. Invest-
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ments in Sweden after 2020 will also affect the price of the certificates, since
certificates will be issued to these producers. Uncontrollable factors such as
weather will influence the production from several renewable energy sources,
e.g. wind and hydro power, and thus the surplus or deficit of certificates.
Looking beyond 2020, there is substantial uncertainty associated with the
subsidy scheme. It might be that the system is expanded, modified, or it
could be permanently shut down as planned. It is expected that the price
will become either very low or very high as we approach the year 2035 in
time (TrønderEnergi Kraft AS avd. Handel, 2014).

The recent trend of volatile and falling certificate prices in addition to
decreasing power prices, has resulted in a lower sales price per MWh for
renewable energy producers (TrønderEnergi Kraft AS avd. Handel, 2014).

2.3 Onshore wind power

Globally, wind power is the fastest growing energy technology (Wind Energy
Foundation, 2014). The industry has evolved from being dominated by
smaller local businesses to large corporations with a combined turnover of
hundreds of millions of Euros (Sintef, 2012). By the end of 2012, the total
installed capacity in Norway was 704 MW spread over 315 turbines. During
that same year, 195.3 MW of new capacity was installed, which is a new
domestic record. The average size of a turbine is currently 2.2 MW in
Norway (fornybar.no, 2014).

The cost of onshore wind power technology has decreased over time
due to a growing market and technological advances. From 1985 to 2004,
the cost of production was more than halved. However, the last couple of
years the total cost of a wind power plant has increased due to a higher
demand for turbines and a general increase in the cost of raw materials,
such as steel (OED, 2014). As for other renewable energy technologies, the
investment cost represents the vast majority of the cost of developing a
plant, particularly the cost of the turbines (fornybar.no, 2014).

The Norwegian Water Resources and Energy Directorate (NVE) has
done a feasibility study and concluded that the potential for new wind
power development in Norway is between 5800 MW and 7150 MW by 2025.
Political conditions will be an important factor in terms of which projects
will actually be realised (Waagaard et al., 2008).

2.4 TrønderEnergi AS

TrønderEnergi is organised as a group where TrønderEnergi AS is the par-
ent company of a number of subsidiaries. The Group has three business
areas: Energy, Networks, and Markets. The Group generates annual sales

6



2.5 Stokkfjellet wind park

of approximately NOK 1.7 billion and has around 450 employees. 24 munic-
ipalities in Sør-Trøndelag and Nordmøre Energiverk AS own TrønderEnergi.
TrønderEnergi Kraft is responsible for power generation and power sales to
the wholesale market and produces around 2.1 TWh each year, of which
200 GWh originates from wind power (TrønderEnergi AS, 2014).

TrønderEnergi Kraft has the ambition to increase their production of
renewable energy with 1 TWh by 2020. With the approval and construction
of Stokkfjellet Wind Farm, a contribution of 243 MWh annually will help to
achieve that goal. With an installed capacity of 80 MW, the final investment
cost of the project is estimated at a cost of 890 MNOK (TrønderEnergi AS,
2013).

TrønderEnergi Kraft produces 2 TWh of renewable power annually, and
13 per cent of this arises from wind power. This makes TrønderEnergi the
second largest wind power producer in Norway (TrønderEnergi AS, 2014).

2.5 Stokkfjellet wind park

TrønderEnergi considers the Stokkfjellet wind site to be feasible due to its
wind conditions, topography and grid connection. The area is located in
the municipality of Selbu in Sør-Trøndelag and covers approximately 5.8
km2 as illustrated in Fig. 3. TrønderEnergi has applied for a concession to
build up to 100 MW. The number of megawatts that will be granted will
depend on the status of the ongoing applications for the nearby wind parks
Eggjafjellet and Brungfjellet (TrønderEnergi AS, 2013). If these parks are
also given concessions, an upgrade in the local power grid is necessary, and
Stokkfjellet will be granted a capacity of 100 MW. Should one of these other
applications not go through, then a new grid connection is not considered
necessary by NVE. The current grid connection has limited capacity, thus
Stokkfjellet will only get a concession for 80 MW if the grid is not upgraded.
We will assume throughout this report that a concession for 80 MW is
granted, if any. Key statistics for the project are shown in Table 1.

2.5.1 Project progress

In September 2013, TrønderEnergi submitted a licence application for Stokkf-
jellet Wind Farm including an environmental impact assessment. The ap-
plication processing, which is done by NVE, is estimated to take about one
year. However, recent events have indicated that it is very likely that NVE
will grant a licence during the summer of 2014. The reason is that the
county, Sør-Trøndelag, has unexpectedly expressed that they support the
project.
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After the licence has been granted, the procurement phase and further
development of the project can commence. However, concessions for 9 out
of 10 wind parks are appealed to the Oil and Energy Department (OED),
usually by nature conservation associations. There is no reason to believe
otherwise will be the case for Stokkfjellet. This will prolong the application
processing time with at least one year. Nonetheless, only approximately 1
out of 5 appealed licences are withdrawn. Considering this, the planning of
a project normally continues during appeal processing. These statistics are

kj
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Figure 3: Map of the Stokkfjellet site. Source: TrønderEnergi (2014).
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Table 1: Key statistics of the Stokkfjellet Wind Farm project.
Source: TrønderEnergi AS (2013)

Statistic Value

Hub height 70-120 m

Wing diameter 70-120 m

Nominal effect 2-5 MW

Number of turbines 20-43

Estimated production (80 MW) 250 GWh

Investment cost (80 MW) 890 MNOK

Average wind speed 7.8 m/s

a result of discussions with TrønderEnergi and NVE.
The final investment decision will not be made until the appeal has been

undisputedly declined and entrepreneurs have been selected. Only after
this can the construction of the park begin. With the county’s support, an
optimistic estimate is that the final investment decision can be made by the
end of 2015. This would give TrønderEnergi two years of flexibility with
regards to timing the construction of the park before the issuing of tradable
green certificates ends in 2020. Two summers will be required to complete
the building of the park. The reason for the season specific timing is that
the turbines must be installed during summertime.

Fig. 4 illustrates the projected timeline for the Stokkfjellet project,
and also some other important characteristics of the investment decision.
TrønderEnergi has performed all cost estimates. The costs listed in the
three first stages are related to wind measurements and development costs,
whereas the cost of the last stage is related to the building of the wind
farm. The probabilities have been set in discussions with TrønderEnergi.
The costs will be studied in more detail later.

2.5.2 Flexibility in decisions

In the case of Stokkfjellet Wind Farm, the owners have flexibility up until
building starts. The most important flexibility is summarised below, and
it is assumed that any decisions are revised only at the end of every stage.
TrønderEnergi has confirmed that the decision to move on to the next stage
is usually only considered after the last stage is completed.

• At the end of every stage, they can abandon the project.

9



2.5 Stokkfjellet wind park

Figure 4: Illustration of decision gates that are left for the Stokkfjellet
project, along with the time, nominal cost, and probability of success associ-
ated with each activity. All numbers are estimations done by TrønderEnergi.
The time schedule is tentative. The valuations in this thesis will use May 1
2014 as the starting point. Source: TrønderEnergi (2014).

• At the end of every stage, the project can be shelved in anticipation of
new information. However, two elements limit the time span for how
long it may be shelved. First, launching the park is required within five
years of getting a final concession from NVE. Second, green certificates
will only be given to wind producers who start production before the
year 2020, which in practice means that producers will not want to
delay the launch beyond this point.

• After the planning process, the rights to the wind park can be sold.
This could create liquidity for the owners, but will in general not
increase the value of the isolated project because the market price
should equal the net present value (NPV) of the expected future cash
flows.

• The process of planning the wind park can be started even though
the appeal has not yet been processed in order to rush the launching
of the plant (this is indeed something that TrønderEnergi currently
does).
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• The size of the wind park can be downscaled.

After discussions with TrønderEnergi, it has become clear that the most
valuable flexibility is assumably that related to the option to abandon the
project at the end of every stage. This flexibility will be valued in the real
options valuations in Sections 6.3 and 6.4.

The case study conditions form the basis for our valuation. The flexibil-
ity presented, the timeline and the two markets’ properties are important
determinants when valuing the investment opportunity. In the next section,
we give an introduction on how to think about uncertainty, flexibility and
the appropriateness of valuation methods.

2.6 Selecting valuation methods to apply

For wind parks, as much as 75 per cent of the capital expenditure can
be scheduled up-front of launching the plant (Krohn et al., 2009). With
such a cost structure, a careful analysis of the project becomes essential
in order to avoid failures, which could potentially cause large losses. The
flexibility incorporated in investment opportunities in wind farms typically
includes flexibility in the timing of investments in different stages of building
the park, supplier flexibility, option to extend the lifetime of the park and
sometimes site flexibility. Typically, there is commercial, technological, and
political risk associated with these projects.

In order to decide what risks impose the largest uncertainty on a project,
we need to consider the risk profile of the investor. The question is which
particular risk or group of risks could affect a project’s cash flow to such an
extent that it would alter management’s future decisions.

As mentioned, an investment opportunity in onshore wind is exposed
to commercial, political, and technological risk. Let us look more closely
into this. There is uncertainty regarding the competitiveness of the marginal
price of production for a power plant, and there is uncertainty about whether
or not the project will receive the licences to operate. Furthermore, the
technological performance of the park may deviate from the expected. That
means there will be two types of underlying risk: Non-diversifiable and
diversifiable risk. If commodity prices, such as the electricity price, are
keys to future investment decisions, then the key underlying risk is not
diversifiable because it is merely a result of market conditions. Alternatively,
we are dealing with diversifiable risk if the key to future investment decisions
is political or technological (Koller et al., 2010).

Managerial flexibility is not the same as uncertainty. Flexibility refers
to choices between alternative plans that managers may make in response
of new events. For cases where managers can freely respond to events that
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may occur as time passes, we need a special, contingent valuation approach
that appreciates this flexibility (Koller et al., 2010). Valuing flexibility is
typically most relevant when valuing individual businesses and projects,
because there is flexibility in specific decisions such as investment timing,
choice of technology, or commitment to the project that is to be valued.
Koller et al. (2010) present two contingent valuation approaches: Real op-
tions valuation and decision tree analysis. These methods differ on some
technical points, but both boil down to forecasting, implicitly or explicitly,
the future free cash flows contingent on the future states of the world and
management decision. What is left is then simply to discount these cash
flows back to today.

Valuing flexibility does not always require sophisticated, formal option-
pricing models. Koller et al. (2010) note that a decision tree analysis ap-
proach is an effective alternative for valuing flexibility related to e.g. techno-
logical risk, but not commodity risk. As will be discussed, electricity prices
follow the typical commodity price pattern and are exposed to commodity
risk. As a result, decision tree analysis can be useful for valuations where
decisions are made in response to technological and political events. If we
possess reliable estimates on the value and variance of the cash flows under-
lying the investment decision, then using sophisticated real option valuation
approaches can be justified (Koller et al., 2010).

Theoretically, real options valuation is superior to decision tree analy-
sis, but it cannot fully replace traditional discounted cash flow valuation,
because valuing an option using real options still depends on knowing the
value of the underlying assets. Unless the assets in question have an ob-
servable market price, the value will have to be estimated using traditional
discounted cash flows (Koller et al., 2010). This will be discussed in Section
4.5.

The value of flexibility is related to the degree of uncertainty and the
room for managerial reaction, as shown in Fig. 5. The value is largest when
uncertainty is high and managers can react when new information evolves.
The value is low when managers cannot react to new information, or when
it is unlikely that new information that may become available will alter
future decisions. It is worth noting that the decision to include flexibility in
a project valuation is most important when the project’s standard NPV is
close to zero, i.e. the decision to invest is a close call. For renewable energy
technology investments, we know that such margins are often small.

This thesis will evaluate different valuation methods’ suitability for valu-
ing a wind park. Starting with the discounted cash flow methods that
TrønderEnergi currently uses, we move to the slightly more advanced con-
tingent NPV approach, sometimes called decision tree analysis. We then
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Figure 5: When is flexibility valuable? Source: Koller et al. (2010).

get more advanced and demonstrate the application of two different real
options methods. First we do a binomial lattice valuation, then a valuation
using Monte Carlo simulations. The two real options approaches are se-
lected because of their ability to take into account important characteristics
of the project. We have a real option that is similar to a European com-
pound option, which can be valued conveniently using the binomial lattice
approach with a single stochastic variable. Since we wish also to consider
the uncertainty in the price of tradable green certificates, we have used
the Monte Carlo method for simulating two different stochastic processes,
this time valued as a single European call option. Relevant theory for the
traditional valuation methods is presented next.

3 Traditional Valuation Methods

We will now present the theory behind the valuation methods that will be
applied in this thesis to value Stokkfjellet Wind Farm. We will start with the
traditional valuation methods in this chapter. We start by describing the
discounted cash flow method, before we present the contingent net present
value (NPV) approach, sometimes called decision tree analysis (DTA).
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3.1 Static net present value

While pioneering the theory of interest and the value of time, Fisher (1907,
1930) developed the discounted cash flow (DCF) method, which is exten-
sively adopted to evaluate financial investments and real asset investment
decisions. The DCF method is based on the net present value method, which
is characterised by its simple calculation and easily grasped logic. However,
its analytical framework and assumptions are based on irreversible and non-
deferrable investment. The method is thus applicable only for evaluating
short-term investment projects with low uncertainty. Additionally, it can-
not properly reflect managerial flexibility in decisions, and results often lead
to underestimations of the opportunity value of an investment (Trigeorgis
and Mason, 2003; Dixit and Pindyck, 1995). The DCF method is not the
best choice for investments in renewable energy technology because it does
not model high volatility and fails to include managerial flexibility (Deng
and Oren, 1995).

Indeed, if we assume that a simple project follows a certain stochastic
process and that decisions are at least partially irreversible, then it can be
proven that the simple NPV rule is incorrect (unless, of course, if σ = 0).
The proof can be found in the book by Dixit and Pindyck (1994) (pp. 140-
142). The proof is derived for a project that follows a so-called geometric
Brownian motion, but its validity is general. We will get back to geometric
Brownian motions later in this thesis.

The simplest statement of the NPV rule is that one should undertake all
projects with a positive NPV and discard all projects with a negative NPV.
Also, a positive recommendation to take a project should only be made if
the project does not prevent one from undertaking another more valuable
project. The simple formula that works as the basis for the DCF methods
is

NPV = I0 +

∞∑
t=1

FCFt
(1 + r)t

, (3.1)

where I0 is the initial investment, FCFt is the free cash flow in period t,
r is the appropriate discount rate and t is the period. Eq. 3.1 assumes an
infinite stream of cash flows, i.e. infinite operation. Wind farms are typically
assumed to have an economic lifetime of 20 years. Of the factors that go
into the equation, the investment cost and time horizon are typically given,
while the cash flows must be forecasted and the discount rate estimated.

The cash flows should be discounted at the rate that reflects what in-
vestors expect to earn from investing in the project (Koller et al., 2010).
The rate a certain investor demands on her capital is called the cost of
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capital. This rate may also be called the opportunity cost of capital, the
required rate of return, or even expected return. The cost of capital can be
defined as the expected rate of return forgone by not undertaking another
potential investment activity for a given capital. It is a rate of return that
investors expect to earn in financial markets while undertaking the same
amount of risk for the same expected return. In other words, the investor
will not accept a lower expected return than the cost of capital given the
investment circumstances.

Since a project is typically financed with many different capital sources
(e.g. common stock, preferred stock, bonds and other long-term debt) it
is common to employ the weighted average cost of capital (WACC) for dis-
counting the cash flows from a project, i.e. the rate that results from pro-
portionally weighting each category of capital. It can thus be argued that
the WACC should be used for the above calculation. This discount rate
will be different for every company or even project, because the risk profile
differs. This parameter can best be estimated internally in a company, be-
cause the company will best know its capital structure and investors’ risk
preferences.

The value of operations (which we will call often call the NPV of the
operational phase in this thesis), is the discounted value of the future free
cash flow. The free cash flow equals the cash generated by the company’s
operations, less any reinvestment back into the business. In other words,
it is the cash flow available to all investors (equity holders, debt holders,
and any other non-equity holding investor), and is thus independent of
capital structure. Consistent with this definition, the free cash flow should
be discounted at the weighted average cost of capital. The reason is that
the WACC represents the rates of return required by the company’s debt
and equity holders blended together, essentially making it the company’s
opportunity cost of funds (Koller et al., 2010).

For each time period, we can calculate the free cash flow as [earnings
before interest and tax]∗[1-tax rate] + [depreciation and amortisation] -
[change in net working capital] - [capital expenditure]. We will use this to
calculate the value of operations in Section 6.1.

3.2 Decision tree analysis

The contingent NPV approach, commonly known as decision tree analysis
(DTA), is on many points similar to the DCF method, but includes also
the option to abandon an investment as information evolves. The key idea
in decision tree analysis is that the decision maker, in each decision stage,
can choose either to undergo the investment, or to abandon the investment
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opportunity, resulting in an NPV of 0. All previous costs are treated as
sunk costs. The only case where the investor will choose abandonment is if
the expected NPV of moving forward with the investment is negative. It is
important to apply the correct cost of capital for this valuation.

Koller et al. (2010) recommend a DTA approach that uses different dis-
count rates for the two components of the contingent cash flows, namely
the development phase (the phase before operation commences) and the
operational phase. In practice, this means that the operational phase of the
project is discounted at the cost of capital, while the development phase is
discounted at the risk-free interest rate. The reason is that the two phases
are exposed to different kinds of risk. In the operational phase the project

Figure 6: Decision tree for the investment opportunity of Stokkfjellet wind
park. Failure in any phase will give a NPV equal to zero. The scenarios in
grey have passed and are no longer possible outcomes, and will thus not be
included in the calculations.
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is exposed to commodity risk, and the cash flow should thus be discounted
at the cost of capital. In the development phase, however, where the possi-
ble outcomes are reflected by the probabilities of success in each stage and
cash flows are independent of market risk, we discount the cash flow at the
risk-free rate.

The way we incorporate flexibility into a contingent NPV approach is
by including the probability of success in each stage of development in the
calculations. That is, for each stage, we must estimate the probability that
we will move on to the subsequent phase of development. Moving on to the
next phase is done by undertaking the cost of this stage. All future free
cash flows must then be multiplied with this probability. In this thesis,
we assume that TrønderEnergi’s own estimates are the best probability
estimates available.

Suppose we want to calculate the contingent NPV of a project with n
stages that could launch at time N and terminate at time T . Then, the
expression for the contingent NPV is

NPVcontingent =

[
pN

FCFOP
(1 + rc)T−N

−
N∑
n=0

pn
FCFn

(1 + rf )tn

]
, (3.2)

where FCFOP is the future value of operation at the time that production
commences, FCFn is the free cash flow in stage n, pn is the accumulated
probability of succeeding in all stages up to and including stage n, rc is
the cost of capital, and rf is the risk-free interest rate. See Fig. 6 for an
illustration of the decision tree from Eq. (3.2) for the investment decision
at hand.

4 Real Options Theory and Assumptions

The following chapter provides an introduction to real options and some
of the mathematics and assumptions that are needed to perform the real
options valuation of the wind farm.

4.1 Introduction to real options theory

As discussed in Section 2.6, the degree of flexibility and the risk profile
of a project determine which valuation approach fits best. If a project’s
net present value (NPV) is large, so that the option to invest is deep in
the money, and there is not much flexibility in decisions, it might not be
worthwhile to perform a real options analysis. When an option is at the
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money or even slightly out of the money, if there is uncertainty and man-
agerial flexibility, then a real options analysis can add enough value to the
valuation that it could change a decision. It is still important to consider
what type of real options analysis is appropriate. In this section we will
introduce real options and explain some important assumptions. We will
then introduce the two real options valuation methods that we have chosen
for the valuations in this thesis.

When including the value of flexibility through real options analysis, the
calculated market value of the project may increase. According to Copeland
and Antikarov (2003), the value of the project is equal to the traditional
NPV plus the value of any real options. Since the value of an option is
always nonnegative, a real options analysis should never lead to a lower
value than discounted cash flow methods when performed correctly.

The value of flexibility is always positive, but the value can vary a lot
depending on how the uncertainty is related to the project value as well as
decision makers’ ability to respond as new information evolves.

The history of real options

Real options theory was introduced as a new research area in the late 1970’s
due to growing discontent with the traditional methods for assessing projects
under uncertainty, like the discounted cash flows method. Around the same
time there were significant innovations in options pricing techniques such
as the Black-Scholes formula (Black and Scholes, 1973), and later on the
binomial lattice approach (Cox et al., 1979). In order to improve available
methods, it was necessary to model flexibility as options to adjust projects
in response to uncertainty. The introduction of the Black-Scholes formula
provided a technique for valuing options, and soon followed the development
of several techniques for the assessment of real options (Dixit and Pindyck,
1994; Trigeorgis, 1996). The identification and proper use of real options
such as rushing, delaying, abandoning, or adjusting investment decisions,
provides flexibility to projects and potentially increases their expected value
and decreases their risk (Dixit and Pindyck, 1994).

The analogy to financial options

Real options analysis has been accepted as a suitable tool to analyse invest-
ment decisions for renewable energy technology. Lee (2011) showed that the
value of developing renewable energy technology increases with an increase
in the underlying price, volatility, time to maturity and risk-free rate. Con-
versely, the value decreases with an increasing exercise price or investment
cost. This is analogous to financial options.
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A firm’s investment opportunity is equivalent to a European call option:
The right but not the obligation to buy a share of stock at a prescribed
price (Dixit and Pindyck, 1994). Thus, the decision to invest corresponds
to deciding whether or not to exercise such an option. More specifically,
the investment opportunity is analogous to a perpetual call option on a
dividend-paying stock, considering the pay out stream from the completed
project equivalent to the dividend on the stock.

Real options in relation to investments in wind

Important factors to take into account when valuing the option to invest in
a wind farm is the policy uncertainty, and the significance of any subsidies
that accrue to the project. Lee and Shih (2010) indicate through analytical
results that the traditional NPV model underestimates the policy value
of wind power, and that real options analysis more accurately reflects the
actual policy value.

The uncertainty factors that will be taken into consideration in this
thesis are the uncertainty in electricity price, uncertainty in success in the
different stages of development and the unceratinty in the price of tradable
green certificates.

Given the nature of our decision problem, we have selected two appropri-
ate real option methods to evaluate the investment opportunity. First, the
binomial lattice approach, which is suitable for pricing compound options.
Second, a Monte Carlo simulation approach that is good for considering two
stochastic, correlated processes.

Sequential compound options valuation

Firms that are investing in new projects are in practice often considering a
sequence of decisions and incurring a series of cash outflows. To improve the
accuracy of an analysis, one should in such cases try to divide the lifetime
of an option into smaller time steps.

Suppose we want to determine the value of holding the option to invest.
The crucial aspect will be whether or not the decision maker can abandon
the investment program once it begins (Guthrie, 2009). Suppose also that
decisions of whether or not to pursue the investment series are only made
at the end of each stage. This can be modelled as a series of European call
options where each option is created when the previous option is exercised.
The order in which the stages occur is fixed, while the timing is influenced
by the decision maker and the project itself. The decision to move from one
stage to another is completely irreversible. We are interested in determining
the value added by the real options embedded in the project rights.
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The development of the Stokkfjellet project can be treated as a sequen-
tial investment opportunity with a series of smaller investments in the de-
veloping phase, and a larger final investment cost for the option to build.
The problem can be described as a series of European call options, with the
timing of the exercise dates according to the information presented in Table
3. However, in the Monte Carlo valuation we must simplify the project to
a single European call option in order to be able to take into account two
stochastic prosesses.

4.2 No-arbitrage prices

The real options valuation models described in Chapter 5 rest on one im-
portant assumption: Assets are priced in such a way that arbitrage oppor-
tunities do not exist. The most important implication of this assumption,
often called the law of one price, is that the price of any two portfolios that
generate identical future cash flows must always be equal.

Say we are trying to estimate the market value of a cash flow that will
be received after one period. This cash flow equals Yu in the up state and
Yd in the down state. To do this, we suppose the existence of two assets:
A one-period risk-free bond with a current price of 1 and a certain payoff
of Rf after one period, and a so-called spanning asset with a current price
of Z. The spanning asset is a risky asset generating a payoff after one
period equal to Xu in the up state and Xd in the down state. We use the
information incorporated in Z and Rf to value the cash flow described by
(Yu, Yd). What we want to do is build a portfolio of just enough units of the
risk-free bond and the spanning asset that the portfolio generates a cash
flow of Yu in the up state and Yd in the down state. This is known as the
cash flow’s replicating portfolio. Guthrie (2009) shows that the replicating
portfolio costs

V =
πuYu + πdYd

Rf
, (4.1)

where

πu =
ZRf −Xd

Xu −Xd
and πd =

Xu − ZRf
Xu −Xd

. (4.2)

When there are no arbitrage opportunities, the market value of the asset
we are valuing must equal the cost of its replicating portfolio—i.e. the law
of one price must hold. Therefore our estimate of the market value of the
cash flow (Yu, Yd) must be given by Eq. (4.1).

The law of one price assumption allows us to work as if we lived in a
world where all investors are risk-neutral. Because risk-neutral investors
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are indifferent between receiving a risk-free cash flow and a risky one with
the same expected value, all investors in this new world attach the same
value to a risky cash flow (Yu, Yd) as they would to a risk-free cash-flow of
πuYu+πdYd. Since the latter flow is risk-free, its market value can be found
by discounting the cash flow using the one-period risk-free interest rate,
resulting in the expression in Eq. (4.1), which is known as the risk-neutral
pricing formula. πu and πd are the risk-neutral probabilities of up and down
moves.

It is worth noting that we have not hereby assumed that all investors
are risk-neutral, merely that there are no arbitrage opportunities. The asset
pricing formula in Eq. (4.1) still adjusts for risk, even though the risk-free
interest rate (rather than the risk-adjusted discount rate) is used to discount
the cash flows. The difference is that the risk adjustment happens in the
numerator of Eq. (4.1), via the risk-neutral probabilities, rather than in the
denominator, via the discount rate.

This result will be needed when we introduce the binomial lattice ap-
proach in Section 5.1.

4.3 Mean-reversion in prices

When valuing a power plant, the price of electricity is a critical variable,
directly influencing the level of income for the producer. A realistic model
for the price process will make the valuation more accurate, as it aims to
capture some of the value of the inherent flexibility of the project. The
trigger level of the electricity price to initiate investment has been found to
be highly dependent on which stochastic price model one chooses to employ
(Dixit and Pindyck, 1994).

There have been several proposals in the literature on how to model the
electricity price. The statistical approaches model the electricity spot price
process directly and parameters of the price processes are estimated from
the available historical market data. Smith and Schwartz (2000) develop a
two factor model consisting of short-term uncertainty about the deviations
from the mean, and long-term uncertainty about the equilibrium price level
to which commodity prices tend to revert. Lucia and Schwartz (2002) ex-
tend this model to capture seasonal variations in the Nordic power market,
accounting for short-term mean-reversion, and an equilibrium price level
in the long-run as well as seasonal price variations. This model is specifi-
cally built to capture the characteristics of the Nordic power market with
its strong seasonality pattern in electricity prices. Davison et al. (2002)
develop a hybrid, mean-reverting switching model, while Barlow (2002) in-
troduce a non-linear Ornstein-Uhlenbeck model for spot power prices. Deng
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(2000) models the electricity price as a mean-reverting process with jumps
and spikes.

An extended lot of the literature has elaborated on the standard finance
tool of geometric Brownian motion. A geometric Brownian motion, often
referred to as a random walk, is an example of a diffusion process, with the
diffusion coefficient being the volatility. Dixit and Pindyck (1994) apply a
model first proposed by McDonald and Siegel (1984) to value the option
to invest when the value of the firm follows a geometric Brownian motion.
However, Brownian motion does not capture the commodity price pattern of
mean-reversion, and for this reason it is not suitable for modelling electricity
prices.

Rather than fluctuate far from the mean like a Brownian motion, a
sudden increase in a commodity spot price will typically result in a supply
increase, forcing the price to decrease as the price moves back towards the
commodity’s long-run marginal cost of production. Equivalently, a drop
in the spot price of a commodity will typically cause some firms to shut
down unprofitable production and other to exit the industry altogether,
eventually resulting in an upwards pressure on the price as supply decreases
(Guthrie, 2009). Another salient feature of energy commodity prices is the
presence of price jumps and spikes. Since the supply and demand shocks
cannot be smoothed by inventories, electricity spot prices are volatile (Deng,
2000). The profitability of a wind power plant is directly related to the
relationship between electricity price and wind inflow, because neither wind
nor electricity can be stored.

We will assume that the log of the power price follows a first-order au-
toregressive process (commonly referred to as an AR(1) process). According
to Guthrie (2009) that is, if pj denotes the jth observation of the log price,
then

pj+1 − pj = α0 + α1pj + uj+1, uj+1 ∼ N(0, φ2), (4.3)

for some constants α0, α1, and φ, where α1 is negative. This process exhibits
mean-reversion. Suppose for example that pj is sufficiently large that α0 +
α1pj is negative. Then the expected value of pj+1 − pj is also negative,
such that the log price is expected to decrease in the short-term. Similarly,
suppose that pj is so small that α0 + α1pj is positive. Then, we expect the
log price to rise in the short-term. In either case, the log price tends to
move towards a long-run level where α0 + α1pj equals zero, and pj equals
α0/(−α1). As a result, if the log price follows an AR(1) process, sudden
shocks to the price do not last: The price is gradually pulled back towards
its long-run level.

The so-called Ornstein-Uhlenbeck process with rate of mean-reversion
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a, long-run level b, and volatility σ generalises the AR(1) process to the
situation where the log price is observed with arbitrary frequency. When
viewed from date t, the change in the log price over the next ∆t units of time
is normally distributed with a mean of (1 − e−a∆t)(b − pt) and a variance
of σ2(1− e−2a∆t)/2a, where a, b, and σ are constants. That is,

pt+∆t − pt ∼ N((1− e−a∆t)(b− pt), σ2(1− e−2a∆t)/2a). (4.4)

That is, if pt > b, then the expected change in the log price is negative,
while if pt < b the expected change is positive. In other words, the log price
tends back towards b, indicating that b is indeed the long-run level. If a
is large (so that 1 − e−a∆t approaches unity), then the expected value of
pt+∆t − pt is close to b− pt, so that the expected value of pt+∆t is close to
b. That means that large values of a indicate that the log price is strongly
mean-reverting.

As Guthrie (2009) points out, two other things are worth noting. First,
the variance term can be shown to be a decreasing function of the parameter
a. This means that when the mean-reverting force is strong, the variance
of changes in the log price is relatively low. When mean reversion is strong,
the price has little opportunity to wander away. Second, when ∆t is very
large, both e−a∆t and e−2a∆t approach zero, such that pt+∆t is normally
distributed with mean b and variance σ2/2a. In other words, as we look
further and further into the future, the distribution of the log price is well
defined such that the distribution of the log price 50 years from now is
practically identical to that 100 years ahead in time. This is perhaps the
key difference between a mean-reverting process and a random walk: The
variance of the geometric Brownian motion increases linearly with the time
horizon, whereas that of a mean-reverting process levels off.

Under the process described by Eq. (4.3), changes in p are normally
distributed with mean α0 + α1pj and variance φ2. Thus, the parameters
α0 α1, and φ are related to the Ornstein-Uhlenbeck parameters by the
equations

α0 = (1− e−a∆t)b, α1 = −(1− e−a∆t), φ2 =
σ2

2a
(1− e−2a∆t).

This result will be useful for building a binomial tree in Section 5.1 and for
the theory on Monte Carlo valuation in Section 5.2.

4.4 Estimating volatility

The precise definition of the volatility of an asset is an annualised mea-
sure of dispersion in the stochastic process that is used to model the log
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returns (Alexander, 2008). That is, volatility is a measure for capturing the
variation in the price of an underlying financial instrument over time. The
traditional measure for dispersion from the mean is the standard deviation
statistic, which is simply defined as the square root of the average squared
deviation from the mean. Thus, the standard deviation of N observed prices
P1, P2, ..., PN with mean P̄ is calculated as

σ =

√√√√ 1

N

N∑
i=1

(Pi − P̄ )2. (4.5)

For the standard deviation to be an accurate measure of volatility, one has
to assume that investment performance data is normally distributed. It is
a common assumption that stock prices are log normally distributed, such
that their log returns will follow the normal distribution.

Assume that one-period log returns are generated by a stationary iden-
tically and independently distributed (i.i.d.) process with mean µ and stan-
dard deviation σ. We denote by pjt the log return over the next j periods
observed at time t, i.e.

Pjt = ∆j lnPt = lnPt+j − lnPt. (4.6)

In the case where one-period returns are believed to have some positive (or
negative) correlation, the assumption that they are generated by an i.i.d.
process is no longer valid. In particular, we assume returns are generated
by a stationary AR(1) autoregressive process, i.e.

Pj = α0 + α1Pj−1 + uj , uj+1 ∼ N(0, σ2) , |α1| < 1, (4.7)

where α1 is the autocorrelation, i.e. the correlation between the adjacent
returns. Alexander (2008) demonstrates that a positive autocorrelation be-
tween the returns will lead to a larger volatility estimate, and a negative
autocorrelation will lead to a lower volatility estimate, compared to the i.i.d.
case. Indeed, we will model the mean-reverting behaviour of power prices
as an AR(1) process in Chapter 6.

Alexander (2008) makes a remark about volatility and the fact that it
is unobservable. We can only ever estimate and forecast volatility, and this
only within the context of an assumed statistical model. Even if we knew for
certain that our model was a correct representation of the data generating
process, we could never measure the true volatility directly because it is not
traded in the market.

The volatility estimate will be more precise the higher the number of
data points, n, but true volatility may change over time, so that the distant
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past might not be good for predicting the future. Thus, the number of data
points to be used is a matter of judgment.

For the Stokkfjellet project’s volatility we will assume that the volatility
of the commodity that it produces reflects well the volatility of the project.
Obviously, this would be the volatility of the electricity price, but one can
also consider the project to ”produce” tradable green certificates, and thus
this price process will be included when we perform a Monte Carlo valuation
in Section 6.4. The project’s volatility might slightly differ from the com-
modity price volatility, but this method is accepted and used by academia
for real options analysis of commodity products. Certainly, Miller and Park
(2002) argue that projects based on commodity products can utilise the
commodity price pattern to estimate the project volatility, pointing out
that this is the most important variable to evaluate when valuing projects
of this nature. Fleten et al. (2007) and Bøckman et al. (2008) also apply this
method for evaluating renewable energy projects using real options analysis.

4.5 Marketed asset disclaimer

Traditional options theory suggests the use of a twin-security for pricing an
option, and by this essentially assumes that markets are complete. However,
in practice, it is impossible to create a replicating portfolio with the exact
risk profile as the underlying, and many believe that markets are incomplete
(Dyer and Brãndao, 2005). In light of this, Copeland and Antikarov (2003)
suggest another method for estimating the market value of the project. They
make the assumption that the present value of the cash flows of the project
without flexibility (i.e. the traditional NPV) is the best unbiased estimate
of the market value of the project, had it been a traded asset. Assuming
that the traditional NPV of the project can be used as the twin security
is called the marketed asset disclaimer. As Copeland and Antikarov (2003)
indicate, no portfolio is better correlated with the project than the project
itself. This assumption makes it easy to value real options for which we
have enough data to estimate the NPV without flexibility.

It is worth noting that the marketed asset disclaimer assumption is no
stronger than assumptions used to estimate a project’s NPV in the first
place. By this reasoning, there is no reason why a decision maker cur-
rently using NPV to value a project without flexibility should use a dif-
ferent set of assumptions for real options analysis. The marketed asset
disclaimer assumption simply comprises that the present value of the un-
derlying risky asset without flexibility can be used as if it were a marketed
security (Copeland and Antikarov, 2003). This assumption will be made in
the real options valuation models described in Chapter 5.
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We will now thoroughly describe the two real options approaches we have
chosen to use for our valuation. The binomial lattice approach will be
covered first, and the option pricing technique of Monte Carlo valuation
will be explained afterwards.

5.1 Binomial lattice approach

The binomial lattice method takes the risk-neutral valuation approach as
done by Cox et al. (1979). Their key insight was that because the value of
an option is independent of an investor’s risk preferences, the result from
a valuation would be the same even when everyone is assumed to be risk-
neutral. This critical assumption simplifies the calculations by eliminating
the need to estimate the risk premium in the discount rate, as was discussed
in Section 4.2.

Knowledge of some stochastic mathematics and Martingale processes is
required in order to fully understand the complexities involved even in a
simple binomial lattice. However, the more important aspect here is to
understand intuitively how a lattice works. In this case, the underlying
is assumed to follow the same process as its commodity price, which is
expected to follow a mean reverting process. This is a reasonable assumption
for electricity prices, as discussed in Section 4.3.

We construct a binomial tree using the logarithm of the price. The
motivation for this is that the volatility of a price will tend to be higher
when the price is high than when it is low (Mun, 2006). We can model
such behaviour through building a model in which the logarithm of the
price has constant volatility. Since changes in the log price correspond to
continuously compounded rates of return, this assumption implies that rates
of return have a constant standard deviation over time. The price will be
more volatile when it is high than when it is low because the same rate of
return is being applied to a higher base price.

The realism of our models and the accuracy of our results will be im-
proved if the time steps in our binomial tree are small (Guthrie, 2009). Of
course, it is not realistic for the price of a commodity to take one of exactly
two possible values one year from now, as would be the case if our binomial
tree had annual steps. It is preferable to have a large number of smaller
steps. If we break the year into 12 monthly steps, then the price will take
one of 13 possible values one year from now. Similarly, had we used 52
weekly time steps then the price has 53 possible values.

We want to avoid that the tree becomes too large, and at the same
time have appropriately short time steps. Thus it seems reasonable to use
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monthly time steps. The time step of our raw electricity price data is daily,
so we need to normalise the estimates from our data in order to use it for
calibrating our binomial tree with monthly time steps.

As discussed in Section 4.3, we will assume that the log of the power
price follows a first-order autoregressive process. Recall that Eq. (4.3) said
that if pj denotes the jth observation of the log price, then

pj+1 − pj = α0 + α1pj + uj+1, uj+1 ∼ N (0, φ2),

for some constants α0, α1, and φ, where α1 is negative. This is a first-order
autoregressive process, often called an AR(1) process.

Guthrie (2009) presents a procedure for constructing a binomial tree for
the price and finding the risk neutral probabilities that we will now follow.

5.1.1 Obtaining normalised estimates for the parameters

If the data-generating process for the log price is described by Eq. (4.4),
then the true values of α0, α1, and φ are related to the Ornstein-Uhlenbeck
parameters by the equations

α0 = (1− e−a∆t)b, α1 = −(1− e−a∆t), φ2 =
σ2

2a
(1− e−2a∆t).

If a regression gives us estimates α̂0, α̂1, and φ̂, then sensible estimates of
the parameters a, b, and σ are the numbers â, b̂, and σ̂ that satisfy

α̂0 = (1− e−â∆td)b̂, α̂1 = −(1− e−â∆td), φ̂2 =
σ̂2

2â
(1− e−2â∆td).

Solving these equations for â, b̂, and σ̂ gives us our normalised parameter
estimates:

â =
− ln(1 + α̂1)

∆td
, b̂ =

−α̂0

α̂1
, σ̂ = φ̂

(
2 ln(1 + α̂1)

α̂1(2 + α̂1)∆td

)1/2

. (5.1)

Running a regression in Eq. (4.3) and substituting the parameter estimates
into Eq. (5.1) will thus yield the normalised parameter estimates needed to
describe the particular price process.

5.1.2 Building the tree for the price

The normalised estimates are used to build the binomial tree for the price.
We let each period in our binomial tree represent ∆tm years. The tree for
the log price starts at x(0, 0) = logP0, which is the log price equal to the
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level it takes at the date that the real options analysis is carried out. We
use the log price since it is commonly assumed that commodity prices are
log normally distributed. An example of a tree of four periods is shown in
Fig. 7. An increment in n represents a step in time, while an increment in
i signals a down move in the price. In each subsequent period the log price
increases or decreases by σ̂

√
∆tm depending on whether an up or a down

move occurs. Then, at node (i, n) there have been n − i up moves and i
down moves, so that the log price at this node is calculated as

logP0︸ ︷︷ ︸
starting value

+ (n− i)(σ̂
√

∆tm)︸ ︷︷ ︸
effect of up moves

+ i(−σ̂
√

∆tm)︸ ︷︷ ︸
effect of down moves

.

This simplifies to

x(i, n) = logP0 + (n− 2i)σ̂
√

∆tm, (5.2)

where x(i, n) = logX(i, n). Taking exponentials on both sides of this equa-
tion shows that the level of the price at node (i, n) is

X(i, n) = ex(i,n) = P0e
(n−2i)σ̂

√
∆tm . (5.3)

This formula gives us a closed-form expression for the price at any node of
our binomial tree. That means we can use it to calculate the price at any

Figure 7: Binomial tree with n = 4 periods. An up move in the tree is
characterised by keeping i constant, whereas a down move is identified by
an increment in i. The starting point of the tree is node (0, 0), marked in
red.
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given node, without having to iterate through the tree from the first node
and to the respective node.

To calculate the size of the up and down moves, consider that the price
at node (i, n) is given by Eq. (5.3), and that an up move will give a price of

X(i, n+ 1) = P0e
((n+1)−2i)σ̂

√
∆tm = X(i, n)eσ̂

√
∆tm . (5.4)

Thus, the size of an up move at this node must equal

U =
X(i, n+ 1)

X(i, n)
= eσ̂

√
∆tm . (5.5)

By the same line of reasoning, the size of a down move equals

D =
X(i+ 1, n+ 1)

X(i, n)
= e−σ̂

√
∆tm . (5.6)

This means that the sizes of the up and down moves are constant throughout
the tree.

5.1.3 Calculating the probabilities of up and down moves

We need also to calculate the probability of an up move in the tree at each
node. We choose the probabilities of up and down moves in such a way that
the expected value of the change in the log price over the next period is
equal to the value that is implied by our normalised parameter estimates as
given by Eq. (5.1). If the probability of an up move at node (i, n) equals

θu(i, n) =
1

2
+

(1− e−â∆tm)(b̂− x(i, n))

2σ̂
√

∆tm
, (5.7)

then the expected change in the log price is

(1− e−â∆tm)(b̂− x(i, n)),

which is the same as the expected value for the Ornstein-Uhlenbeck process
presented in Eq. (4.4). A proof of this can be found in the book by Guthrie
(2009) (pp. 275). The mean-reverting nature of the spot price is reflected
in the formula for the probability of an up move: If the log price is currently
higher than its long-run level (i.e. x(i, n) > b) then an up move is less likely
than a down move (i.e. θu(i, n) < 1

2 ). Should the log price grow larger,
then a down move becomes even more likely. Conversely, a log price that
is currently lower than its long-run mean will have a greater probability of
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an up move. In this way the log price is drawn back towards its long-run
average by our choice of a probability structure.

There are, however, some complications: θu(i, n) will become negative
for sufficiently large values of x(i, n), which is not compatible with θu(i, n)
being a probability. This can be solved by resetting θu(i, n) to zero if the
expression in Eq. (5.7) is negative and reset it to one should it be greater
than unity. That is, we set the probability of an up move at node (i, n)
equal to

θu(i, n) =


0 if 1

2 + (1−e−â∆tm )(b̂−x(i,n))

2σ̂
√

∆tm
≤ 0,

1
2 + (1−e−â∆tm )(b̂−x(i,n))

2σ̂
√

∆tm
if 0 < 1

2 + (1−e−â∆tm )(b̂−x(i,n))

2σ̂
√

∆tm
< 1,

1 if 1
2 + (1−e−â∆tm )(b̂−x(i,n))

2σ̂
√

∆tm
≥ 1.

(5.8)

Thus, at some nodes in the tree, we will know for certain that the price will
go up or down in the next move. Some nodes in the tree will in this way be
unreachable, because the price will never arrive at those nodes. However, it
is important that we specify the probabilities throughout the tree in order
to make the backwards induction procedure straightforward.

5.1.4 Calculating the risk-neutral probabilities

Up until this point we have been working with actual probabilities. We
now wish to calculate risk-neutral probabilities of up and down moves at
each node in the tree. An introduction to risk-neutral probabilities and the
assumptions associated with this technique was given in Section 4.2. Recall
from Eq. (4.2) that the risk-neutral probability of an up move is

πu =
ZRf −Xd

Xu −Xd
, (5.9)

where Z is the current price of the spanning asset. The asset will be worth
Xd if the price goes up and Xd if a down move occurs. The risk-neutral
probabilities may not be constant across the binomial tree due to the mean
reversion effect of the prices. We calculate the risk-neutral probability of
an up move at node (i, n) of the tree according to

πu =
Z(i, n)Rf −X(i+ 1, n+ 1)

X(i, n+ 1)−X(i+ 1, n+ 1)
,

which is just the same expression as in Eq. (5.9), but with Xd replaced by
X(i+ 1, n+ 1), Xu replaced by X(i, n+ 1), and Z replaced by Z(i, n). The
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5.1 Binomial lattice approach

risk-neutral probability of a down move is then

πd(i, n) = 1− πu(i, n).

A few complications may arise when we allow the price to be mean-
reverting. When the actual probability of an up move is zero or one, there
is in fact no risk associated with the price development at the corresponding
node. The risk-neutral probability should reflect this. Thus, the formula
for the risk-neutral probability of an up move that will be used is

πu(i, n) =


0 if θu(i, n) = 0,
Z(i,n)Rf−X(i+1,n+1)
X(i,n+1)−X(i+1,n+1) if 0 < θu(i, n) < 1,

1 if θu(i, n) = 1.

(5.10)

Using this equation, we will follow a standard valuation approach. First, we
need to estimate the risk-neutral probabilities. To ensure simplicity, we will
use the famous CAPM for this purpose. Alternative approaches proposed by
Guthrie (2009) include matching the relationship between spot and futures
prices and matching the current term structure of futures prices.

In estimating the risk-neutral probabilities we use the same set of his-
torical data as before. As demonstrated by Guthrie (2009), the risk-neutral
probability of an up move at node (i, n) is equal to

πu(i, n) = θu(i, n)− (E[R̃m]−Rf )βx
U −D

. (5.11)

Then, the only additional information we need in order to estimate πu(i, n)
is the market risk premium (E[R̃m]−Rf ) and the price beta (βx). The task
of estimating the market risk premium is not unique to real options analysis.
It is a controversial issue, and describing this in detail is not the scope of
our thesis. However, the market risk premium is not project specific, and
there are many competing estimates available, so that it should not be too
difficult to find a realistic estimate of the market risk premium.

The price beta is determined by the variance of the market return and
the covariance between the project’s return and the market return. Thus,
an estimation of beta for an asset that is not traded, such as a wind power
project, can be difficult.

An attempt at estimating these two parameters is not done in this thesis,
and we merely discuss appropriate values qualitatively in Section 6.3. The
reason is that we assume that TrønderEnergi possesses better estimates
of these parameters than we will be able to easily derive here, keeping in
mind that the estimation of these parameters is not unique to real options
analysis.

31



5.1 Binomial lattice approach

Having completed the steps presented by Guthrie (2009), we now move
on to building the tree for the underlying and describing how to derive the
real option value.

5.1.5 Building the tree for the underlying

Before we can price the options, the tree for the value of the underlying,
V (i, n), must be computed. We assume that the underlying follows the
same process as the commodity price, as argued in Section 4.4. Also, we
will make the assumption that the ratio of the current power price to the
average power price is the same as the ratio of the current net present value
(NPV) of the operational phase to the average value of operation. This
assumption is necessary since there is no market from which we can observe
an average value of operation.

The development of the underlying is computed by starting in the first
node, taking the present value of the underlying, V (0, 0), and multiplying it
with the size of an up move, U . This will give the value of the underlying in
node (0, 1). Consider also that a down move would indicate that the value
at node (1, 1) is equal to V (0, 0)D. We can generalise these observations to
an equation for the value of the underlying at node (n, i),

V (i, n) = V (0, 0)Un−iDi. (5.12)

When the tree has been constructed, the pricing of the compounded real
option can commence.

5.1.6 Finding the option value

We have now described all the steps needed to build a tree for the underlying
and how to find the risk-neutral probabilities associated with each node in
the tree. In order to value the compound option, we will need to work
backwards through the tree, using option pricing theory to derive the value
of flexibility embedded in the project.

European compound options are valued by subtracting the respective
exercise prices from the present value of the underlying at the relevant
times of exercise. If this the intrinsic value is bigger than zero it will be
valuable to exercise the option; otherwise, the project will be abandoned
and the option to invest dies.

Suppose we have a set of possible exercise dates T = {t1 < t2 < ... <
tN−1}, as well as a set of investment costs I = {I1, I2, ..., IN−1}, where N is
the number of possible exercise dates, and hence also the number of stages
of investments. The very last possible exercise date is tN and represents a
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cost IN . Note that tN must essentially be the final period included in the
valuation. For convenience, we will keep the values corresponding to the
final stage out of their respective sets, as the calculations differ depending
on whether or not we are in the final stage. When we are in the final column
of the tree, which is the last point where we have the option to exercise,
the option value C(i, n) is equal to the maximum of zero and the options
intrinsic value, i.e.

C(i, n) = max{V (i, tN )− IN , 0}.

We now move to the column to the left, and iterate backwards through the
tree. At all nodes (i, n /∈ T ), i.e. nodes corresponding to time steps that
are not associated with an exercise date, we find the option value as

C(i, n) =
πu(i, n)C(i, n+ 1) + πd(i, n)C(i+ 1, n+ 1)

Rf
, n /∈ T.

At nodes corresponding to an exercise date, n ∈ T , the value of the option
is given by

C(i, n) = max

{
πu(i, n)C(i, n+ 1) + πd(i, n)C(i+ 1, n+ 1)

Rf
− In, 0

}
, n ∈ T.

(5.13)

We can summarised the above conclusions as

C(i, n) =


max{V (i, tN )− IN , 0} if n = tN
πu(i,n)C(i,n+1)+πd(i,n)C(i+1,n+1)

Rf
if n /∈ T.

max
{
πu(i,n)C(i,n+1)+πd(i,n)C(i+1,n+1)

Rf
− In, 0

}
if n ∈ T,

(5.14)

This will be our risk-neutral option pricing formula. Starting in the final
column of the binomial tree for the project’s market value, we work our way
through the tree using this formula, going from right to left. We have to be
careful so that we implement this procedure correctly: Different calculations
apply depending on whether or not we have reached a point of exercise as
we iterate through the binomial lattice. Finally, when we reach the first
node in the tree, (0, 0), we have determined the present option value of our
investment opportunity and thus arrived at the end point of the valuation.

5.1.7 Including the probability of success in each stage

Commodity risk is accounted for in the binomial lattice model that we have
just described. Now, we want to include also diversifiable risk, such as the
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5.1 Binomial lattice approach

Figure 8: Quadranomial values of the underlying and the call option.
Source: Copeland and Antikarov (2003).

event uncertainty that was considered in the decision tree analysis in Section
3.2. We will present a solution for including both the non-diversifiable
commodity risk and the diversifiable political risk. To to this, we assume
that the two uncertainties must be uncorrelated, which seems reasonable.

If the value of the underlying is affected by two sources of uncertainty,
then there will be four possible outcomes from each relevant node in a tree
instead of two. Copeland and Antikarov (2003) call this method the quad-
ranomial approach, and suggest a solution for how to do such a valuation.
Recall that we value the project as a European compound option, so that
the exercise nodes are the ones that will be affected by the second source of
uncertainty. Indeed, it is only at the end of every stage that you will know
how the uncertain event turned out. At the exercise nodes, there will be
four possible outcomes, as illustrated by Fig. 8. We modify Eq. (5.13) in
order to account for the new possible outcomes. Let j and k indicate two
new directions. j will refer to the column number, while k will indicate the
row. The modified equation for the option value at a node associated with
a date of exercise is then

C(i, n, j, k) = max{pn πu(i,n)C(i,n+1,j,k+1)+πd(i,n)C(i+1,n+1,j+1,k+1)
Rf

+(1− pn)πu(i,n)C(i,n+1,j+1,k+1)+πd(i,n)C(i+1,n+1,j+1,k+1)
Rf

−In, 0}.
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However, since the project will have zero value if one stage fails, the second
term is equal to zero. This leaves us with the expression

C(i, n, j, k) = max{pn πu(i,n)C(i,n+1,j,k+1)+πd(i,n)C(i+1,n+1,j+1,k+1)
Rf

−In, 0}.

The modified version of Eq. (5.14) is then

C(i, n, j, k) =


max{V (i, tN )− IN , 0} if n = tN ,

πu(i,n)C(i,n+1)+πd(i,n)C(i+1,n+1)
Rf

if n /∈ T,

max{pn πu(i,n)C(i,n+1,j,k+1)+πd(i,n)C(i+1,n+1,j+1,k+1)
Rf

−In, 0} if n ∈ T.
(5.15)

This will be our expression for the risk-neutral option pricing formula for
our quadranomial valuation. We will apply the procedure described in this
last section to the case of Stokkfjellet Wind Farm in Section 6.3.

5.2 The Monte Carlo method

The past two decades, much has been written on the benefits of using the
contingent claims method to value real assets. However, limitations on
solving procedures and computing power have forced academics to simplify
such real option methods to an extent where they lose relevance for real-
world decision making (Cortazar et al., 2008).

The binomial lattice approach considers two sources of uncertainty, but
does not include the uncertainty in the price development of tradable green
certificates (TGC’s). Another real options valuation method using Monte
Carlo simulations is proposed in the following. This framework considers a
European call option, as before, but the project will no longer be valued as
a compound option. We have to simplify the option in order to simulate
and value two stochastic processes.

Real options models will often be more challenging so solve than their
financial option counterparts. This is mainly so for two reasons. First, many
real options have a longer maturity, which makes risk modelling critical and
may demand the use of several risk factors. Recall that the well-known
option pricing model by Black and Scholes (1973) considers only one risk
factor. Second, real options often consist of a complex set of nested and
interacting American or Bermudan options. The introduction of multifactor
price models into real options models with many interacting flexibilities,
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such as shutting down production, delay investments, or expanding capacity,
complicates the solving process.

Schwartz (1997) shows that multifactor models perform significantly bet-
ter than one factor models for commodity prices. Including several risk
factors will allow for capturing observed behaviour of commodity prices,
like mean-reversion and a declining volatility term-structure (Cortazar and
Schwartz, 2003; Black and Scholes, 1973).

In Monte Carlo valuation we simulate future prices and use these sim-
ulated prices to compute the discounted future payoff of the real option.
Risk-neutral pricing is a cornerstone of Monte Carlo valuation. Using the
actual distribution instead of the risk-neutral distribution would create a
complicated discounting problem (McDonald, 2013).

In this case, we will use two underlying stochastic processes to simulate
the project value and ultimately obtain an option value for the investment
opportunity. As before, the price of power is expected to follow a mean-
reverting process. Now, the price of TGC’s will also be taken into account,
and we will assume that the price of TGC’s follows a geometric Brownian
motion, as was also done by Fleten and Ringen (2009). Considering the
discussion in Section 2.2, the price formation of TGC’s is difficult to un-
derstand because it is dependent on many factors, and it is believed that
the price may increase or decrease significantly towards the end of the sub-
sidy scheme period. This makes geometric Brownian motion an appropriate
process for modelling this price development.

5.2.1 Computing the option price as a discounted expected value

The concept of risk-neutral valuation should be familiar from the discussion
in Section 4.2 and the application in Section 5.1. We have seen that option
valuation can be performed as if the underlying earned the risk-free rate of
return and investors performed all discounting at this rate. Specifically, we
compute the time price of a claim running from time 0 to time T as

VT = e−rTE∗0 [VT ], (5.16)

where E∗0 is the expectation computed at time 0 using the risk-neutral dis-
tribution. Monte Carlo valuation exploits this procedure. We assume that
the project will earn the risk-free rate of return and simulate its returns.
For the project value 25 periods (months) from now, we can compute the
payoff of the call option on the project’s cash flows. We can then simu-
late the process many times and average the outcomes, which will give us
an estimate of E∗0 [VT ]. Since we are using risk-neutral valuation, we then
discount the average payoff at the risk-free rate in order to arrive at the
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price. When we simulate such a process, we add a random element to the
computation of the price one period ahead. We then create a path that is in
part a result of chance. To do this, we need to draw random numbers from
a suitable distribution, which would in this case be the normal distribution.

5.2.2 Drawing random numbers

Let us discuss how we can compute the normally distributed random num-
bers required for Monte Carlo valuation. The uniform distribution is defined
on a specified range, over which probability is 1, and assigns equal proba-
bilities to every interval of equal length in that range. A random variable,
u, that is uniformly distributed on the interval (a, b), has the distribution
U(a, b). The uniform probability density function, f(x; a, b), is defined as

f(x; a, b) =
1

b− a
; a ≤ x ≤ b (5.17)

and is 0 otherwise. We want to use a random number drawn from the
uniform probability density function to draw random numbers from the
normal distribution (recall our normality assumption discussed in Section
4.2). Suppose that u ∼ U(0, 1), and z ∼ N (0, 1). The cumulative distri-
bution function, denoted U(w) for the uniform and N(y) for the normal
distribution, is the probability that u < w or z < y, i.e.

U(w) = Pr(u ≤ w),

N(y) = Pr(z ≤ y).

We can interpret the randomly drawn number from the uniform distribution
as a quantile for the normal distribution. Using the inverse distribution
function and taking N−1(u) will yield the value from the normal distribution
corresponding to that quantile. Now, to simulate a log-normal random
variable, we can simulate a normal random variable and exponentiate the
draws.

5.2.3 Simulating price processes

Simulating a price process involves calibrating the parameters of the process
from historical data, and letting the actual development of the price be in
part determined by a random variable, i.e. by a randomly drawn number
such as one described in the above section. Soon, we will describe how
the actual simulation of prices can be performed. First, it is necessary to
explain how normalised estimates for the parameters of the price process of
the TGC’s can be obtained. Recall that we demonstrated how this could
be done for a price that is mean-reverting in Section 5.1.
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Obtaining normalised estimates for the parameters

In order to simulate the price development of TGC’s, we need to estimate
the normalised parameters of the process. If pj denotes the jth observation
of the log price, then the data-generating process for the log price is

pj+1 − pj = νpj + uj+1pj , uj+1 ∼ N (0, φ2), (5.18)

where ν and φ are constants and uj+1 is a noise term. In other words,
over each period the log price changes by an amount that is the product of
the last log price and the sum of a constant (ν) and a random term that
is normally distributed with mean equal to zero and a standard deviation
equal to another constant (φ). Some points are worth noticing: First, the
log price is more volatile when the price is high than when the price is
low. Second, shocks to the log price are permanent, i.e. the process has no
memory.

A stochastic process known as geometric Brownian motion with drift
µ and volatility σ generalises the process described by Eq. (5.18) to the
situation where the log price is observed with arbitrary frequency. That is,
we have

dp = µ p dt+ σ p dz, (5.19)

where dz is the increment of a Wiener process. Eq. (5.19) implies that
the current price of TGC’s is known, whereas future prices are uncertain
and log normally distributed with a volatility that grows linearly with the
time horizon. For an introduction to geometric Brownian motion and the
concept of stochastic processes, we refer to Appendix F.

When viewed from date t, the change in p over the next ∆t units of time
is normally distributed with mean (µ− 0.5σ2)∆t and variance σ2∆t, where
µ and σ are constants. That is,

pt+∆t − pt ∼ N ((µ− 1

2
σ2)∆t, σ2∆t).

The most distinctive feature of this process is that the variance of the change
in the log price continues to grow as we look further and further into the
future. While the expected change equals µ − 1

2σ
2 per unit of time, there

is no force keeping the log price from wandering far away from its expected
path.

Under the process described by Eq. (5.18), changes in p are normally
distributed with mean ν − 0.5φ2 and variance φ2. Thus, the parameters ν
and φ in Eq. (5.18) are related to the drift and volatility of the geometric
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Brownian motion by the equations

ν = (µ− 1

2
σ2)∆t and φ2 = σ2∆t.

Now, to ensure consistency with the binomial model, we will continue
to use historical price data which has one observation every month, ∆td.
Suppose also that changes in the log price have sample mean ν̂ and standard
deviation φ̂. We can estimate these parameters directly from the data. If
the data-generating process for the log price is geometric Brownian motion
with drift µ and volatility σ, then the population variance of changes in the
log price is σ2∆td. Therefore, a sensible estimate of the volatility parameter
σ is the number σ̂ that satisfies

φ̂2 = σ̂2∆td,

so that the population variance equals the sample variance. This implies
that

σ̂ =
φ̂√
∆td

. (5.20)

Likewise, the population mean of changes in the log price is (µ−0.5σ2)∆td.
Therefore, a sensible estimate of the drift parameter µ is the number µ̂ that
makes the population mean equal to the sample mean. That is, we choose
µ̂ so that it satisfies

ν̂ = (µ̂− 1

2
σ̂2)∆td,

which implies that

µ̂ =
ν̂

∆t
+

1

2
σ̂2. (5.21)

This procedure will be employed in order to estimate the parameters of the
price process of TGC’s in Section 6.4.

Simulating lognormal prices

In the Monte Carlo valuation in Section 6.4, we will assume that the price of
TGC’s follows the process of geometric Brownian motion. If Z is a random
normal variable, the lognormal certificate price can be written in discrete-
time as

Pt = P0e
(µ̂−0.5σ̂2)∆t+σ̂Z

√
∆t, (5.22)
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assuming that the green certificate pays no dividends, where the parameters
µ̂ and σ̂ are estimated from historical data. This means that, over a finite
time interval t, the change in the logarithm of Pt is an i.i.d. process with a
mean return of (µ̂− 0.5σ̂2)t and a variance of σ̂2t. This result will be used
to generate price paths for the valuation.

Simulating mean-reverting prices

Just as we did in Section 5.1, we will assume that the power price follows
an Ornstein-Uhlenbeck process. If Z is still a random normal variable, the
power price can be written in discrete-time as

Pt = P0e
−â∆t + P̄ (1− e−â∆t) + σ̂Z

√
1− e−2â∆t

2â
, (5.23)

where P̄ is the exponentiated version of the long-run log price level b̂ as
determined in a regression along with the parameters â and σ̂. The steps for
how to determine the parameters of a mean-reverting process were described
in Section 5.1.

Simulating a correlation in the price of two different underlying
processes

When two or more random variables are demonstrated not to be indepen-
dent, one has to consider this when simultaneously simulating their pro-
cesses. Let us first introduce The Pearson correlation coefficient, ρ, which
measures the degree of correlation between random variables. The popu-
lation correlation coefficient ρX,Y between two random variables X and Y
with expected values µX and µY and standard deviations σX and σY is
defined as

ρX,Y =
cov(X,Y )

σXσY
=
E [(X − µX)(Y − µY )]

σXσY
, (5.24)

where, as before, E is the expected value operator and cov means covariance.
For simulating systems with correlated variables, Cholesky decompo-

sition can be used. Specifically, one needs to decompose the correlation
matrix, which will yield the lower-triangular matrix L which contains real
and positive diagonal entries. Applying this to a vector of uncorrelated
samples, u, produces a sample vector Lu with the covariance properties of
the system being modelled. The goal here is not to give a full introduction
to the concept of Cholesky decomposition, but rather to give an idea of the
underlying mathematics applied for the Monte Carlo valuation.
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Suppose we want to generate two correlated normal variables x1 and x2.
In order to do this, generate two uncorrelated Gaussian random variables
z1 and z2. Then, set

x1 = z1,

x2 = ρz1 +
√

1− ρ2 z2.
(5.25)

This result can be used to ensure a correlation between two random pro-
cesses, where the strength of the correlation is set by the parameter ρ.

5.2.4 Simulating the process for the underlying

In accordance with the marketed asset disclaimer assumption, we still as-
sume that the value of the underlying is the value of operation without
flexibility (i.e. the NPV of the operational phase). In addition, the earlier
assumption that the projects volatility is equal to the price of electricity
will be expanded to include the TGC’s as well. The key idea is that we in
each time step generate two correlated random variables that are used for
determining the price in the subsequent time period of both processes. We
will weight an average of the two simulated paths of the value of operation,
and use this average value as the value of the underlying at exercise.

Suppose we are currently in time step t. Then, the NPV of the opera-
tional phase, Vt, is in time period t determined as

VGBM,t = VGBM,t−1 e
(µ̂−0.5σ̂2)∆t+σ̂x1

√
∆t,

for the value of operation that follows the geometric Brownian motion, and

VOU,t = VOU,t−1 e
−â∆t + V̄OU (1− e−â∆t) + σ̂x2

√
1− e−2â∆t

2â
,

for the Ornstein-Uhlenbeck process. Note that Z has been replaced with x1

and x2 in the respective above equations. These equations will be used to
perform the Monte Carlo simulations.

5.2.5 Finding the option value

It is the points where the simulated paths end, i.e. the set of all the different
values of operation after 25 periods that we need for determining the option
value. Suppose we run S simulations through T time periods. Let the value
of operation resulting from simulation s be denoted VT,s. Then, the average
option value resulting from simulating both processes can be found as

CT =
1

S

S∑
s=1

VGBM,T,s + VOU,T,s
2

− IT , (5.26)
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where IT is the investment cost incurring in period T . This is our estimate
of the future value of the option. All that is left is then to find the current
option value, C0, which is done by discounting this value back to today, i.e.
by taking

C0 = e−rTCT ,

where r is the risk-free rate. The reasoning behind taking the average of the
two end point values of operation in each simulation as done in Eq. (5.26) is
that the price of power and the price of TGC’s are both listed for 1 MWh,
so that an equal weighting of the two processes can be justified.

The valuation in Section 6.4 will make use of the theory that has been
presented in this section.

6 Valuation and Results

Our starting point for the valuation of Stokkfjellet Wind Farm is the dis-
counted cash flow (DCF) method, performed in the same manner that
TrønderEnergi currently does. From there on we want to perform the valu-
ation using more advanced methods that include the value of the flexibility
incorporated in the project. First, we compute the value of operation with-
out flexibility from the static net present value (NPV) method. This will
be used as input for the valuations performed. Second, we do a decision
tree analysis, where we employ the statistical probabilities of success in
the remaining stages of the development process. The first real options
model takes the binomial lattice approach. The binomial model considers
the power price as a stochastic variable, and uses a real options framework
to find the path of possible scenarios and the value of the option. The
two factor binomial lattice model will, in addition to the price uncertainty,
take into account the probability of success in each stage, just as we did
in the decision tree analysis. In order to consider the price development of
tradable green certificates (TGC’s), we end the chapter with a Monte Carlo
valuation that takes into account the price process of electricity and TGC’s,
as well as their correlation.

May 2014 will be the starting point for the valuations that take a
monthly perspective.

6.1 Discounted cash flow valuation

Currently, TrønderEnergi is applying the traditional discounted cash flow
(DCF) method to find the NPV when evaluating their investment oppor-
tunities. We will use this method to determine the value of operation of
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Stokkfjellet Wind Park, and this value will be used as input for the other
valuation models. The future free cash flows are calculated by estimating
the future income, costs and taxes. These free cash flows are then discounted
at the projects rate of return to today’s value.

Income from operation

In this case study, the income from production will depend on three impor-
tant factors: The amount of power produced, the spot price of electricity,
and the market price of TGC’s.

Kjeller Vindteknikk AS has measured the wind resources at the site of
Stokkfjellet at 80 meters and 100 meters over a period of eight months.
The data is corrected for long-term effects, and Kjeller Vindteknikk AS
estimated a gross annual energy production of 338 GWh in the case of 43
Siemens SWT-2.3-93 2.3 MW turbines. Assuming that the total losses will
average 28 per cent annually, the net annual energy production is calculated
to 243 GWh and assumed constant throughout the lifetime of the plant.

The future development of the power price in the Nordic market must
be estimated in order to find an expression for the income. The trading
department of TrønderEnergi has provided a deterministic price path that
has been applied in the DCF model, with one estimated value for each
time step, which will here be yearly. Since our target is to illustrate the
differences between valuation approaches, the price path provided has been
accepted without further investigations.

As for the price of electricity, the price development of TGC’s has
been provided as a deterministic price path by the trading department of
TrønderEnergi. As already mentioned in Section 2.2, the market for TGC’s
is a complicated market since there is no marginal cost of production.

Costs

The actual size of costs are uncertain parameters until TrønderEnergi enters
the procurement stage and receives actual tenders. Historical data from
similar wind projects has been used to estimate the costs of operation as
well as the investment cost. With the assumption of constant production
over the lifetime of the plant, operational costs are also constant.

Depreciation, amortisation, taxes, rate of return and inflation rate

Assets expected to have a lifetime of more than three years and a price of
more than NOK 15,000 excluding taxes must by Norwegian law be depre-
ciated. This implies that the investment cost is spread over several years
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(Skatteetaten, 2014). Depreciation is done by the declining balance method,
and the investment costs are divided into two depreciation groups, D and
G. Depreciation group D is expenditure related to the turbines and related
project management, and is discounted at 20 per cent over the lifetime of
the plant, except the first year, where it is depreciated with 30 per cent.
This is in accordance with guidelines set by Finansdepartementet (2014).
Depreciation group G is depreciated at a rate of 5 per cent, which is the
expenditure of the equipment for transmitting and distribution of electricity
(Finansdepartementet, 2014). In the last year of production, the book val-
ues of the different depreciation groups are amortised to zero. This results
in no taxes in the last year of operation and in principle negative tax for
transfer. We do not take this into account because we are evaluating the
isolated case of Stokkfjellet.

According to Finansdepartementet (2014), the tax rate on general in-
come in Norway is 27 per cent. Property tax is treated as a fixed cost in
the model. It is defined to be 0.7 per cent of the nominal investment cost
over the lifetime of the project (Thema Consulting Group, 2012).

The real rate of return before taxes, pr, is normally 8 per cent. This is
a standard given by Enova for renewable energy investments (Gjølberg and
Johnsen, 2007). Eq. (6.1) gives the expression for converting the real rate
to nominal, after-tax values as

rn = [pr(1 + j) + j] (1− s), (6.1)

where j is the inflation rate and s is the taxation rate. This gives a nominal,
after-tax required rate of return, rn, of 7.8 per cent, which is rounded to 8
per cent in our model. The inflation rate used is 2.5 per cent, according to
the Norwegian Governments monetary policy (Norges Bank, 2013).

It lies outside the scope of this thesis to accurately estimate the required
rate of return for the wind park. Since we wish to illustrate the applica-
tion of different valuation methods, we have not included derivation of the
required rate of return, but rather applied the rate suggested by Gjølberg
and Johnsen (2007). Also, we think TrønderEnergi is more qualified than
us when it comes to estimating this parameter, given the confidential in-
formation they hold. Thus, we assume that the investment is funded by
equity, and we have not evaluated the influence of the projects funding on
its value.

6.1.1 Results

The value of the operational phase, hence excluding the initial investment
costs, is found to be 873.8 MNOK. This value is the calculated DCF value
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Table 2: Sensitivity analysis of the NPV of the operational phase of Stokk-
fjellet Wind Park. Values are listed in KNOK.

Rate of return

Deviation −20 % −10 % - 10 % 20 %
Rate of return 6,40 % 7,20 % 8,00 % 8,80 % 9,60 %
Contingent NPV 1 018 554 942 568 873 816 811 488 754 878
Relative change 17 % 8 % - −7 % −14 %

Production

Deviation −20 % −10 % - 10 % 20 %
Production 194 400 218 700 243 000 267 300 291 600
Contingent NPV 688 917 783 690 873 816 953 794 1 032 272
Relative change −21 % −10 % - % 9 % 18 %

Power prices

Deviation −20 % −10 % - 10 % 20 %
Contingent NPV 736 700 807 582 873 816 933 368 922 038
Relative change −16 % −8 % - 7 % 6 %

of operation, and will be used in the other valuation models as the value
of the underlying. Take into account that the value is merely an estimate,
due to possible inaccuracies in the input parameters. The most sensitive
parameters are analysed in the following sensitivity analysis.

6.1.2 Sensitivity analysis of the static DCF results

One problem of the DCF model lies with the many economic factors that
are input as assumptions. The motivation for performing the sensitivity
analysis is to identify the most sensitive inputs to the model and this way
evaluate the validity of the results given the estimated inputs. First, we
vary all the relevant parameters to identify the most sensitive inputs, then
we analyse them in detail. The relevant inputs were first varied by one per
cent. This revealed that production, rate of return and the power price are
the most sensitive parameters of the valuation. In Table 2 these inputs are
analysed with 10 per cent and 20 per cent deviations. As can be seen, this
greatly affects the value of operation.

Deviations in production will have the biggest impact on the NPV. A 20
per cent decrease in production will cause a negative change in the NPV of
21 per cent. This should be expected, given the natural correlation between
these two factors.
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Nevertheless, the rate of return is probably the most important input
parameter, considering that the choice of the magnitude of this parameter
is quite subjective. According to TrønderEnergi, the choice of the required
rate of return is dependent on the different investors and their perception
of which rate is appropriate. The rate of return is determined according
to what type of project is considered in terms of risk and project lifetime.
Hence, it is important to be aware that this is a parameter to which the
NPV is very sensitive, so that an investment decision is not made on the
wrong basis.

Power prices must be treated slightly differently than the two above
parameters in the sensitivity analysis. The reason is that we have a whole
price path as a starting point and not one single value. We have chosen
to change each annual price estimate with a constant deviation. The effect
will thus not be directly comparable to that of the above factors. Table 2
illustrates that small changes in the electricity price will have a significant
impact on the NPV.

6.2 Contingent NPV − decision tree analysis

Decision makers do not know for certain if Stokkfjellet Wind Farm will
reach its operational phase. The project can fail due to event outcomes,
e.g. if the licence is withdrawn as a result of the appeal processing. Also,
the market can go down such that the power price becomes too low for the
investors to undergo the investment. This is important to take into account
when valuing the project, and the static NPV fails to reflect the actual value
embedded in the project. Since decision makers can revise their decisions at
the arrival of new information, the static NPV is an unqualified valuation
method for this purpose.

The contingent NPV approach, sometimes called decision tree analysis
(DTA), is a method that includes diversifiable risk and allows for the use
of two different discount rates. This model is thus more accurate than
the static DCF method. However, DTA employs discounted cash flows to
find the value of the project. The method weights every possible outcome
with the related probability and discounts the value back to year 0 to find
the present value of the wind farm under development. The information
underlying the DTA is shown in Table 3.

Risks

The diversifiable risk present in the Stokkfjellet project is the policy un-
certainty, i.e. the probability of success in each stage. The uncertainty is
related to the probability of success in the remaining stages of development
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Table 3: Overview of the information associated with what is left of the
development of Stokkfjellet Wind Farm. Here the stages as displayed in
Fig. 4 have been divided into smaller steps, allowing for a more accurate
valuation. All costs in KNOK.

Action
Cost

associated
w/ action

Months
from
start

Prob. of
success

Accumul.
prob.

Identify potential
project

1 1

Plan and prepare
licence application

1 1

Processing of licence
application (NVE)

544 3 1 1

Complaint processing
(NVE)

5 241 15 0.8 0.8

Prepare tender
enquiry, part 1

2 507 20 1 0.8

Prepare tender
enquiry, part 2

1 563 25 1 0.8

Builing, phase 1 468 491 36 1 0.8

Builing, phase 2 479 216 38 1 0.8

only. Estimating the probabilities of success for each stage is not an accu-
rate science and a difficult task. There is not a sufficient amount of data
available to allow us to accurately calculate the probabilities associated with
success in each step of the decision tree for wind farm development. Fig.
6 shows the decision stages used by TrønderEnergi after a site has been
identified as a potential project. A project currently in phase i moves to
the next phase of development i + 1 with probability 1 − ρi. Probabilities
supplied by TrønderEnergi and NVE will be used for the valuation. The
probabilities are assumed independent of the development in the market,
i.e. they are not exposed to commodity risk. This means that the outcome
of events is independent of whether the price moves up or down (Méndez
et al., 2009).
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Applying different discount rates

Due to the different risk profiles for the project’s development phase and op-
erational phase, we apply different discount rates for these two phases. The
development phase is not exposed to market risk and the costs associated
with this phase should therefore be discounted at the risk-free rate of re-
turn. The operational phase is exposed to commodity risk, and is therefore
dependent on the market. This phase must be discounted at the required
rate of return. Recall that we in Section 6.1 defined the required rate of
return to be 8 per cent. The ability to use two different discount rates is
one of the benefits of DTA.

Risk-free rate

The risk-free interest rate over the lifetime of the project is assumed to
be equal to the rate of 10-year treasury notes. We have taken the annual
average of daily notations, which is 2.58 per cent (Norges Bank, 2014).

6.2.1 Determining the value of the park

We assume that the cost of each stage has to be paid on the day that the
stage starts, while the decision to invest in the next stage and the outcome of
any event fall on the last day of each stage. TrønderEnergi must pay ∼ 0.5
MNOK to further develop the project in the phase of license processing,
while the cost related to the complaint processing is ∼ 5 MNOK. The cost
of issuing tenders and making the final investment decision is ∼ 4 MNOK,
while the capital expenditure related to the building of the plant is estimated
to be 890 MNOK. Cost estimates for each stage have been provided by
TrønderEnergi, and include wind measurements as well as development costs
until the building stage starts.

The probabilities of moving to the next phase of development have also
been provided by TrønderEnergi, and rely on empirical observations. The
tast of estimating such probabilities is a difficult one as each investment
situation differs from another, but investigating the process behind these
estimates lies outside the scope of this thesis.

Originally, the probability of success in the stage of the licence appli-
cation was given to be 0.6. However, recently it became clear that Sør-
Trøndelag County supports the project, and as a result it is now considered
extremely likely that the concession will be given. However, the licence has
not been officially granted, and the stage is not completed. We have cho-
sen to take this information into account by adjusting the probability to
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1. Support from the county can normally not be expected. Rather, power
companies usually meet a lot of opposition when developing similar projects.

The probability that the appeal is declined by OED is set to 0.8. This
too is based on empirical observations. Past events have indicated that
there is a very good chance that the licence is granted after the appeal.

At last, the probability of reaching the operational phase for Stokkfjellet
Wind Farm is set to 1. This means that if TrønderEnergi decides to build,
we assume that they will reach the phase of operation. The accumulated
probability of getting to the building stage is therefore 0.8 (1 × 0.8 × 1).
This model assumes that TrønderEnergi proceeds to the next stage if the
previous stage is successful.

The cost associated with each stage of the project is discounted back to
today at the risk-free rate and multiplied with the accumulated probability
of success up to that stage. These costs are then summarised, and the sum
of the costs for the development phase is subtracted from the present value
of the operational phase, which is discounted at the required rate of return.

6.2.2 Results

The model returns a negative value for the project of −20.8 MNOK. This
valuation approach would thus advise the decision makers not to go through
with the investment in Stokkfjellet Wind Farm.

6.2.3 Scenarios for the performance of the park after launch

TrønderEnergi has emphasised that there is uncertainty related to whether
the park will operate as expected after it has been set in operation. The
technological uncertainty related to performance could also be considered
in a decision tree. We have done an analysis of parks currently in operation
in Norway, and compared the estimated production to the actual produced
amount of power. The results are shown in Appendix E. Our analysis shows
that the biggest deviations in production come from the parks that were set
in operation before the year 2000. Parks that launched after the year 2000
show a significantly better performance, so we consider these parks obsolete
for comparison. The grand average deviation is only −1.46 per cent, so it
does not seem meaningful to perform a scenario analysis on this matter.

6.2.4 Sensitivity analysis of the decision tree analysis

The probability of success in each stage might change during the project
development, and the sensitivity of the model to potential changes to this
factor is shown in Table 4.
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Table 4: Sensitivity analysis of important factors going into the contingent
NPV valuation. Values are listed in KNOK.

Probability of success in licence application to NVE

Probability 60 % 70 % 80 % 90 % 100 %
Contingent NPV −12 490 −14 571 −16 653 −18 735 −20 816
Relative change 40 % 30 % 20 % 10 % -

Probability of success in processing of appeal to OED

Probability 56 % 64 % 72 % 80 % 88 %
Contingent NPV −14 734 −16 762 −18 789 −20 816 −22 843
Relative change 29 % 19 % 10 % − −10 %

The change from 0.6 to 1 in the probability of success for the first stage
causes a relative change in the contingent NPV of 40 per cent. The con-
tingent NPV increases in value when the probability of success decreases.
Nonetheless, since the result will be negative for all probabilities, the project
would be rejected in all cases.

6.3 Binomial lattice valuation

This method finds the project value of Stokkfjellet Wind Farm by modelling
the investment opportunity as a sequential compound option. We explained
why this way of modelling the investment opportunity was appropriate in
Section 2.6. The model described in the following takes into account both
commodity risk and policy risk.

At the end of every stage of the project, a decision about whether or not
to move forward with the project has to be made. Since there are several
stages, this investment pattern is analogous to a compound European call
option. The exercise price of each single option is then the cost associated
with the phase that we could proceed to. The cost of building the wind
park is the final exercise price we would need to pay in order to be able to
enter into the operational phase and receive the cash flows from the project.
This cost constitutes the majority of the investment cost. When the largest
cost comes last, the option value will be larger because we have the chance
to avoid this cost in the case that the investment environment becomes
more hostile so that we wish to abandon the investment opportunity. By
exercising the last option, TrønderEnergi agrees to pay the strike price (cost
of building the park) for the rights to receive the future cash flows generated
by the project (net income of operational phase). We will value this real

50



6.3 Binomial lattice valuation

option using the binomial lattice approach that was presented in Section
5.1.

We first build a tree for the development of the electricity price. Based
on this, we can calculate the risk-neutral probability of an up move in the
price at each node in the tree. The next step is to compute the tree for the
underlying, which we assume, is the NPV of the operational phase without
flexibility. After generating the NPV tree, we take the intrinsic value of the
NPV in the last column of the tree. From here we work our way backwards
in the tree to find the real option value, treating the investment opportunity
as a European compound call option. The option value reflects the market
value of the project under development including the value of the flexibility
associated with being able to revise the investment decision in stages.

We emphasise that our goal is to evaluate the project in the current
phase of development, i.e. we consider past investments as sunk costs that
do not affect our decision to invest. At this point, TrønderEnergi still has
the possibility to make informed decisions as the market evolves.

As discussed in Section 4.3, we assume that the electricity price follows
a mean-reverting process. The procedure for finding the real option value
for a compound option with an underlying asset following a mean-reverting
process can be reduced to seven steps:

1. Estimate the AR(1) model using historical log price data.

2. Find the Ornstein-Uhlenbeck parameters by substituting the AR(1)
estimated parameters into Eq. (5.1).

3. Build the binomial tree for the price using Eq. (5.3).

4. Estimate the probability of an up move at each node in the tree using
Eq. (5.8).

5. Find realistic estimations for the β and the market price of risk and
compute the risk neutral probabilities.

6. Compute the binomial tree for the underlying with the similar ap-
proach as for the price.

7. Find the intrinsic value of the option and from there on use backward
induction and the option pricing formulas to find the present value of
the real option.

After describing the data resources applied, we will present the steps in
the procedure for finding the real option value.
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6.3.1 Collecting the data

Daily electricity price data for the NO3 Elspot area from January 1 2001 to
December 31 2013, available at Nord Pool Spot, is used for calibrating the
price process. The real price data has been normalised to monthly prices.
From Fig. 1, it can be seen that mean-reversion is evident in the electricity
price data.

Deciding on the size of the steps in the binomial lattice is a trade-off
between accuracy and simplicity. Increasing the number of time steps (∆t→
0) will make the model close to continuous; however, if the tree becomes too
large the computations will take longer, and at a certain point the benefit
of using more steps becomes small. For this valuation, ∆t chosen to be one
month (∼0.833 years).

6.3.2 Computing the power price tree and the risk-neutral prob-
abilitites

We start by running a regression in Eq. (4.3). The results are

ln pj+1 − ln pj = 0.14703
(0.00057)

− 0.04144
(0.00058)

ln pj , s = 0.05181, (6.2)

where the numbers in parenthesis are the P values. A P value lower than
0.05 is generally accepted as the point where we reject the null hypothesis,
i.e. the hypothesis that the coefficient is equal to zero (has no effect). As can
be seen, we cannot reject the null hypothesis here, and we hereby assume
that the coefficients are meaningful additions to our model because changes
in the predictor’s value are explained by changes in the response variable.
Notice that α1 is indeed negative, which is a necessary condition by the
discussion in Section 5.1. Generally, the coefficients in an AR(1) regression
do not have causal interpretations.

Table 5: Relevant regression statistics. Data source: Log price data from
Nord Pool Spot (2014).

Regression statistics

R Square 0.0747

Significance F 0.0006

Standard error 0.0518

Observations 155
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Table 6: Normalised estimates of the parameters. Data source: Log price
data from Nord Pool Spot (2014).

Parameter Estimated value

â, rate of mean reversion 0.50784

b̂, long-run mean 3.54839

σ̂, standard deviation 0.18138

The key regression statistics are given in Table 5. R2 takes on a value in
the interval [0, 1] and is a global measure of the fit of the model because it
indicates how well the observed sample values are replicated by the model.
The regression statistics indicate that the trajectory line is a poor fit for
the sample, with R2 = 0.07. In general, a low R2 is not a problem unless
the model is to be used for predicting values that are out of sample. The
standard error s of the estimate is the standard deviation of the residuals.
The standard error is typically low for a large sample as it is inversely
proportional to the sample size. The larger the sample size, the smaller the
error because the statistic will approach the true value.

Substituting the regression coefficients and the standard error into Eq.
(5.1) then yields the normalised parameter estimates needed to describe the
particular price process. The normalised parameter estimates are given in
Table 6.

The code for computing the tree for the price of power has been written
in Visual Basic for Applications (VBA), and is included in Appendix A.
Besides the normalised parameter estimates that describe the particular
price process (â, b̂, σ̂), we need also to input some other values to do the
necessary calculations. The key inputs to the binomial tree for the power
price and the risk neutral probabilities are the

• Current asset value, p0

• Risk-free rate, Rf

• Company beta, β

• Market risk premium, E[R̃m]−Rf

• Time to maturity, T

Each input parameter will be discussed briefly.
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Current asset value, p0

For the price tree, the current asset value should in theory be the power
price on the day that the valuation is performed. Nord Pool Spot lists
the average power price in the Elspot area NO3 on May 1 2014 as 26.78
EUR/MWh. However, this is very low relative to the average price that
has been observed in the not too distant past. In their own estimates,
TrønderEnergi has assumed an average power price of 33 EUR/MWh for
the year 2014. This is closer to the average price for the first 4 months of
2014. It is thus considered more appropriate to use this power price as the
starting point for our valuation. This way we avoid that the NPV of the
operational phase is treated to be as low relative to its long-run level as
the current power price is to its long-run level. Recall that the value of the
underlying, the NPV of operational phase, is assumed to follow the same
process as the power price.

Risk-free rate, Rf

As discussed in Section 6.2, the risk-free rate of return is assumed to be 2.58
per cent.

Company beta, β

The parameters necessary for applying the CAPM were found in dialog
with TrønderEnergi. Determining the company beta is not an exact sci-
ence when the company is not listed, and there are actually few comparable
observations in the market. The project beta will change internally in the
company, depending on what technology the relevant project under consid-
eration utilises. Hydropower projects will typically have a lower beta than
wind power projects, and the company beta will be a weighted average of
the different betas from the various business areas. Considering the relative
risks between the business areas and the required rate of return, the beta
for TrønderEnergi’s onshore wind power projects will be set to 0.6. There is
uncertainty related to this estimate due to little market data for wind power
projects and few market transactions that can be used for comparison.

Market risk premium, E[R̃m]−Rf
The market risk premium is assumed to be 5 per cent, based on the report
by PwC (2013) on the Norwegian market in 2013-14.
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Time to maturity, T

The time to maturity of each of the options that together make up the com-
pound real option is equal to the length of each stage in the development
phase, i.e. 3, 12 and 10 months for the concession application, processing
of the appeal and issuing of tenders and the final planning of the park, re-
spectively. We therefore want to compute a tree for the price that consists
of 25 time steps (months). Each individual option is purchased in the be-
ginning of its stage and expires at the end of that stage, and on the date
of expiration TrønderEnergi can choose to exercise that option in order to
receive the next option.

6.3.3 Computing the risk-neutral probabilities of an up move

One important characteristic of the mean-reverting binomial tree is that
the risk-neutral probabilities in each node are not necessarily constant. We
therefore have to work through each node when computing the risk-neutral
probabilities using Eq. (4.2). We use these probabilities to find the real
option value that appreciates the flexibility embedded in the project.

6.3.4 Building the tree for the underlying

There are two important assumptions we must recall from Chapter 4 when
we are to build the tree for the underlying. First, we have the marketed
asset disclaimer assumption, i.e. the assumption that the value of the un-
derlying is equal to the NPV of the operational phase without flexibility.
The second assumption is that this underlying asset is assumed to follow the
same process as the price process driving the value of the asset, namely the
price of electricity. In accordance with this assumption, we can apply the
same method as when we computing the price tree for computing the tree
for the underlying. We are only changing the start value, taking as input
the net present value of the operational phase, V (0, 0), which was estimated
in Section 6.1.1 to be approximately 873.8 MNOK.

6.3.5 Finding the real option value

We have arrived at the last stage in the process of finding the value of the
project using the binomial lattice approach. After computing the respective
NPV values, we work backwards in the tree in order to find the optimal
decision for each outcome given the development of the underlying. In the
last column of the tree we find the intrinsic value of the real option, and
from here on we work our way backwards in the tree using the option pricing
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formula given in Eq. (5.15). The VBA code written for this procedure is
found in Appendix B.

In order to do these calculations we need two more inputs, namely the

• Exercise price and dates, In and Tn

• Probability of proceeding to the next stage, pn.

Exercise price and dates, In and Tn

The size and timing of the exercise prices, or the investment costs, are based
on estimates given by TrønderEnergi, and all costs are assumed to be paid
on the day that the stage it corresponds to starts. There is uncertainty
related to both the timing and the size of the costs, but the estimates
given by TrønderEnergi are considered deterministic in this thesis. The
sensitivity analysis for the NPV valuation in Section 6.1 pointed out that
the investment cost is a factor that the NPV is very sensitive to, so it is
important to have realistic cost estimates to ensure accuracy in results.

The exercise dates are determined by the length of the stages, which are
provided by TrønderEnergi based on their experience with similar projects.
As mentioned, the first stage will is assumed to last for 3 months, stage
number two for 12 months, while the third stage is assumed to last for 10
months. The final investment decision can therefore be made in 25 months,
assuming that the other decisions stages have been completed on time and
not abandoned.

Probability of proceeding to the next stage, pn.

Earlier, we argued that the static NPV does not reflect the true value of the
project because it does not take into account the uncertainty about events.
By the same reasoning, it can be argued that the value of the real option
without including event probabilities is not the most accurate. We should
thus include the probabilities of moving on to the next stage in our binomial
lattice model.

From Section 6.2, recall that the probabilities for the three next stages
were set to 1, 0.8 and 1, respectively. The way to include this in the binomial
lattice option valuation is by multiplying the option value at the exercise
nodes with the probability of success in the relevant stage, i.e. by using
Eq. (5.15). Note that we will be using the probability of success in each
individual stage for the calculations, and not the accumulated probability,
as we did in the DTA.
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6.3.6 Results

The value of the investment opportunity is estimated at 28.7 MNOK. This
can be seen as the green value furthest to the left in Fig. 9. This value
reflects the market value of Stokkfjellet Wind Farm under development in-
cluding the value of the flexibility of having the ability to revise the invest-
ment decision in stages.

This value is positive, in contrast to the result from the DTA. Thus
the result from this valuation method would advise the decision makers at
TrønderEnergi to undergo the investment. It is interesting to note that if
the probability of success in the licence application stage would be set to 0.6
as it was in the original estimate by TrønderEnergi, the real option value
would be reduced to 17.2 MNOK. That is, adjusting the probability from
0.6 to 1 resulted in a 67 per cent increase in the option value.

6.3.7 Sensitivity analysis of the binomial lattice model

According to Hartmann and Hassan (2006), volatility represents the key
value driver in options pricing. It is therefore important to perform a sensi-
tivity analysis of this factor in order to investigate the effect on the option
value relative to the volatility. Table 7 displayes the changes in option
value relative to changes in the volatility, and should be clear that a good
estimation of the volatility is of great importance.

These values are positively correlated: If there is a higher chance that
the stage is successful, the investor is more likely to receive the future cash
flows from the project. This suggests that both commodity and political

Table 7: Sensitivity analysis for the volatility in the binomial lattice valu-
ation. Values are listed in KNOK.

Sensitivity analysis of volatility

Deviation -20 % -10 % - 10 % 20 %
Volatility 14 % 16 % 18 % 20 % 22 %
Value of real option 17 516 23 025 28 698 34 702 40 874
Relative change -39 % -20 % - 21 % 42 %

Sensitivity analysis of final investment cost

Deviation -20 % -10 % - 10 % 20 %
Investment cost 908 875 1 022 485 1 136 094 1 249 703 1 363 313
Value of real option 126 317 66 523 28 698 9 681 2 276
Relative change 77 % 57 % - -196 % -1161 %
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0 1 2 3 4 14 15 16 23 24 25

873816 920475 969625 1021401 1075940 … 1810128 1906784 2008601 … 2890935 3045303 3207913

28698 34549 41817 50840 62028 … 425284 500376 590814 … 1668822 1940068 2261168

829522 873816 920475 969625 … 1631267 1718372 1810128 … 2605279 2744393 2890935

23037 28079 34429 42422 … 340505 406826 487438 … 1431645 1666766 1944190

787473 829522 873816 … 1470080 1548578 1631267 … 2347848 2473216 2605279

17725 21923 27298 … 261976 319549 390981 … 1215930 1419365 1658534

NPV 747556 787473 … 1324819 1395561 1470080 … 2115854 2228835 2347848

Option value 12909 16249 … 191085 239262 301362 … 1019740 1195357 1401103

Option value at decision point 709662 … 1193912 1257664 1324819 … 1906784 2008601 2115854

8733 … 129911 167826 219644 … 841316 992537 1169109

… 1075940 1133393 1193912 … 1718372 1810128 1906784

… 80474 107822 148335 … 679056 808903 960039
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Figure 9: Screenshot of selected columns of the NPV tree generated by
the code presented in Appendix B. The green values represent the present
value of the operational phase, while the blue are the option values for the
periods not available for exercise. The purple values represent the option
values in the exercise nodes.
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risk should be included in the valuation.
Varying the size of the volatility results in the biggest relative change

in the real option value compared to other factors, and it can be seen that
a 20 per cent increase in the volatility results in a 42 per cent increase in
option value. The higher the volatility, the more upside potential exists in
the project, since volatility is the value driver in options. Recall that the
potential downside of the option is reduced to the price of the option, since
we are hedged towards a fall in the value of the underlying until the option
expires. These effects are shown in Table 7.

The second factor we consider is the sensitivity of the option value to
the gross investment cost. The analysis shows that a change in the capital
expenditure causes large changes in the option value. The investment cost
has such a significant effect on the option value because it is absolute, and
not relative to the size of the option. Thus, when we increase this value and
it is many times the size of the option value, the effect will be strong.

6.4 Valuation by Monte Carlo simulation

This Monte Carlo valuation will determine the real option value of the in-
vestment opportunity modelled as a single European call option. The option
is the investment opportunity TrønderEnergi currently holds in Stokkfjellet
Wind Farm. The option to invest, or the final investment decision, can be
exercised 25 months from May 2014, which will be our starting point for
this valuation as well. Compound options are hard to value with the use
of simulations, but we are willing to make this simplification in order to be
able to include two stochastic processes. In the valuation, we make use of
the parameters that were estimated for the price of power in Section 6.3.2,
where we assumed that the price follows an Ornstein-Uhlenbeck process.
The estimated parameters were listed in Table 6. For the valuation in Sec-
tion 6.3, recall that we assumed that the volatility of the power price was
representative for the volatility of the project. In addition, we applied the
marketed asset disclaimer assumption, taking the value of the underlying as
representative for the value of operations. This assumption was discussed
in Section 4.5. We will continue to make use of these assumptions for the
following valuation.

To value the real option, we want to simulate the development of the
value of operation (NPV of operational phase) as a weighted sum of two un-
derlying processes, namely the processes for the price of power and TGC’s.
We implicitly assume that the value of operations, i.e. the underlying asset
in this real options valuation, should follow the same development as the
average of the two separate price processes. We justify this assumption by
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pointing out that 1 MWh of produced electricity will yield the exact prices
listed for both power and TGC’s, i.e. the weighting is given by the size of
the prices themselves. We will here expand the assumption that the project
follows the price process of electricity to include also the price process of
TGC’s.

As before, we begin our analysis on May 1 2014, and we will let the
simulations run for 25 periods. This is the number of periods left before
the final investment decision needs to be made, or the time to maturity of
the real option. Once again, the goal is to value the investment decision in
its current condition, i.e. past investments are treated as sunk costs and do
not affect our decision to invest in the future.

The procedure for finding the option value for the investment decision
at hand can be reduced to eight steps:

1. Estimate the AR(1) model using historical log price data.

2. Find the Ornstein-Uhlenbeck parameters by substituting the AR(1)
estimated parameters into Eq. (5.1).

3. Estimate the parameters of the geometric Brownian motion (GBM)
directly from the data using Eq. (5.21) and (5.20).

4. Estimate the correlation between the two processes using Eq. (5.24).

5. Establish a procedure to draw random numbers from the normal dis-
tribution and transform them using Eq. (5.25).

6. Perform many simulations. In each simulation, do the following:

• Simulate the development of the underlying in two dimensions,
one dimension where it follows the Ornstein-Uhlenbeck process,
and one in which it follows the geometric Brownian motion. In
each time step, collect the random normal variables for each pro-
cess pairwise using the drawing procedure created in point 5.

• In the end point of the simulated path, take the average price of
the two dimensions.

• Find the intrinsic value of the option by subtracting the invest-
ment cost from the average price resulting from the simulation
in two dimensions.

7. Find the average option value resulting from the simulations.

8. Discount the option value back to today to get the present value of
the option.
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The number of simulations one should perform is a matter of judgment.
In general, the more simulations, the better. However, since an infinite
amount of time or computing power is not available, we must set a certain
limit. These simulations are quite fast, so we will perform 10 000 simulations
in order to determine the option value of the investment opportunity at
hand.

Recall that we performed steps 1 and 2 in the valuation in Section 6.3,
so we will not show these steps here.

6.4.1 Collecting the data

In Section 6.3, daily electricity price data from Nord Pool Spot in the NO3
Elspot area from January 1 2001 to December 31 2013 was used for cali-
brating the parameters of the process for the power price. The price data
was normalised to monthly prices. In this section, daily prices of TGC’s as
listed by NVE from February 19 2003 up to March 5 2014 will be used for
calibrating the parameters of the process for the TGC price. Afterwards,
this data will be normalised to monthly time steps as well. For the corre-
lation estimation, we use data corresponding to the same period for which
we have collected electricity price data.

6.4.2 Computing the parameters

We estimate the parameters of the geometric Brownian motion directly
from the data sample, and obtain the normalised parameter estimates by
substituting the sample mean and sample variance of the data into Eq.
(5.20) and Eq. (5.21). The results are shown in Table 8.

Table 8: Normalised estimates of the parameters. Data source: Log of
historical TGC prices from NVE (2014).

Parameter Estimated value

σ̂, sample standard deviation 0.20883

µ̂, sample mean 0.02116
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6.4.3 Determining the correlation between the two price pro-
cesses

Analysing monthly prices of the two underlying processes reveal a corre-
lation coefficient of -0.1, i.e. a weak, negative correlation. This is a very
superficial investigation of the correlation coefficient, and is clearly not a sat-
isfactory method of determination of the correlation between the two price
processes. However, the scope of this thesis is not to determine the exact
relationship between the electricity price and the price of TGC’s. Deter-
mining this relationship in an exact manner would demand great attention
to this question.

It is still interesting to discuss this relationship briefly. Many argue that
the correlation between the power price and the price of TGC’s is indeed
negative, but that it is stronger than what we found here. In this case, the
option value would be lower.

Suppose that the price of both power and TGC’s were at some time very
high. Soon, new power generation would become available. Then, after
some time, the price of power would go down because of high availability.
That is, a high TGC price should be associated with a low power price.
Accordingly, if the price of both power and TGC’s were at some point in
time low, this would cause unprofitable production to shut down. After a
while, the power price would then increase because of a lower availability.
Then, a low TGC price should be associated with a high power price.

By this reasoning, the price of TGC’s and power should not be very high
or very low at the same time, i.e. there is a negative correlation between
them. As established in Sections 2.1 and 2.2, there are many factors besides
supply and demand that contribute to the formation of prices of power and
TGC’s, respectively. This could explain why only a weak correlation is
evident on a monthly basis.

As mentioned, we will not put much effort into determining the strength
of the correlation between the two price processes in this work. We under-
stand from TrønderEnergi that they have an opinion on this price relation-
ship, thus we leave it to the user of our simulation program to determine
the most suitable correlation coefficient to apply.

6.4.4 Simulating the development of prices

For the simulations, we will need the normalised estimates for the param-
eters of the price processes, which we have already obtained. Almost all
remaining parameters that are needed for the Monte Carlo valuation have
already been discussed in Section 6.3, and we will not repeat the discussion
of these parameters here. We will merely mention that the key inputs to
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the simulations for the price are:

• Current asset value (price of power/TGC’s)

• Risk-free rate, Rf

• Company beta, β

• Market risk premium, E[R̃m]−Rf
• Time to maturity, T

• Correlation coefficient, ρ (new)

• Number of simulations (new)

The new parameters that are needed for these calculations are then ρ
as well as the number of simulations that we will perform. The correlation
coefficient was discussed in Section 6.4.3, and the question about the number
of simulations was briefly discussed at the start of this chapter. The way that
we generate correlated random variables in each time step of the simulation
is illustrated in Fig. 10.

With our approach, it is not necessary to simulate the development of
the price processes as a separate step in order to arrive at an estimated
price for the underlying. Therefore, we will move directly to the simulation
of the underlying for the purpose of this report, but we have included some
VBA code for simulating the development of the actual prices of power and
TGC’s in Appendix C for anyone interested in understanding how the actual
prices can develop. We will now move on to build the simulation for the
value of operation.

Figure 10: Illustration of how normal random numbers are drawn and
used to generate two correlated normal variables, which are then used in
the Monte Carlo simulation.
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Figure 11: One possible simulation outcome when charting the values
written out by the code in Appendix D.

6.4.5 Simulating the development of the value of operation

We now have all the parameters needed for the simulation, and are ready
to simulate the development of the underlying, i.e. the NPV of the opera-
tional phase. In addition to the actual option value, we want to write out
information about the average of all simulated values in each time step with
each process, as well as the average of the two processes. This information
can be used for charting the development of the processes.

In each time step, we find the price for the subsequent period by using
Eq. (5.22) and (5.23), generating correlated normal variables with the help
of Eq. (5.24). VBA code for generating and writing out the simulated paths
of the NPV of the operational phase can be found in Appendix D. Running
the model once using 10,000 simulations gives the results shown in Fig. 11.

6.4.6 Results

The value of the wind park resulting from the simulation displayed in Fig.
11 is estimated at 914.2 MNOK, which yields an option value of 46.6 MNOK.
That is, there is a significant positive value connected to the option to invest.

The value calculated here is higher than the option value resulting from
the valuation using the binomial lattice approach in Section 6.3. This should
be expected for three reasons. First, the binomial model takes in event
probabilities that directly decrease the value of the option by the same
amount that the event probability deviates from 1. Second, the option
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is not valued as a compound option, as was done in the binomial lattice
approach. Using compound option valuation decreases the value of the
option because several options have to be exercised in order to receive the
cash flows from the project. Third, additional uncertainty is incorporated in
the project valuation when there are two stochastic processes. Uncertainty
increases the value of an option. For these reasons, it was expected there
would be an increase in the value of the option value found using Monte
Carlo simulations as compared to the binomial lattice valuation.

6.4.7 Sensitivity analysis of the Monte Carlo valuation

A sensitivity analysis of the volatilities of the two processes that are simu-
lated in the Monte Carlo valuation is shown in Table 9. The analysis shows
that the value of the option is more heavily dependent on the volatility of
the TGC price (GBM process) than the power price (OU process). This is
reasonable since a GBM will have a tendency to wander far from its mean,
while an OU process reverts back to its mean after sudden shocks to the
price.

Nonetheless, the observation is interesting, because the volatility con-
nected to the TGC price is expected to go up in phases where political
action is expected, which would indicate that the option value is positively
correlated with political uncertainty. We will discuss this more closely in
Chapter 7.

In addition to the analysis of the effect of volatility, we have analysed the
effect that changes in the investment cost and the average NPV level have on

Table 9: Sensitivity analysis of the two volatilities going into the Monte
Carlo simulations. Values are listed in KNOK.

Sensitivity analysis for GBM sigma

Deviation −20 % −10 % - 10 % 20 %
Volatility 16,71 % 18,79 % 20,88 % 22,97 % 25,06 %
Value of real option 37506 43114 46607 51335 56520
Relative change −24 % −8 % - 9 % 18 %

Sensitivity analysis for OU sigma

Deviation −20 % −10 % - 10 % 20 %
Volatility 14,42 % 16,22 % 18,02 % 19,82 % 21,62 %
Value of real option 44093 45716 46607 47509 49999
Relative change −6 % −2 % - 2 % 7 %
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the option value. The sensitivity analysis of these parameters is displayed
in Table 10. It can be seen that the investment cost has a significant effect
on the option value, but it is not as significant as for the binomial approach.
The reason is simple. The effect of the investment cost is absolute, and not
relative to the size of the option. Thus, when we increase this value and it
is many times the size of the option value, the effect will be stronger for a
smaller option value, and the calculated binomial option value was indeed
smaller.

The average NPV level is a parameter of the OU process, and since this
parameter determines the level to which the NPV will tend to revert, it
should be expected that the option value is very sensitive to this factor.
This effect is evident in the sensitivity analysis, and we see that a 20 per
cent reduction in the size of this factor results in a 73 per cent decrease in
the option value. Recall our discussion about the assumption needed to find
the average NPV level in Section 5.1.5. The average NPV level has a very
significant effect on the option value that should not be underestimated;
thus, attention should be given to the estimation of this parameter.

Table 10: Sensitivity analysis of the investment cost and the long-term
NPV level of the Ornstein-Uhlenbeck process in the Monte Carlo simula-
tions. Values are listed in KNOK.

Sensitivity analysis of investment cost

Deviation −20 % −10 % - 10 % 20 %
Investment cost 757 396 852 070 946 745 1 041 419 1 136 094
Value of real option 166 361 94 264 46 607 21 436 8 561
Relative change 72 % 51 % - −117 % −444 %

Sensitivity analysis for avg. NPV level

Deviation −20 % −10 % - 10 % 20 %
Avg. NPV level 699 052 786 434 873 816 961 197 1 048 579
Value of real option 876 7 637 28 439 69 293 126 655
Relative change 97 % 73 % - −144 % −345 %

6.5 Comparing the results of the different approaches

Table 11 summarises the results obtained from the valuations performed.
The contingent NPV approach yielded a value of investment of approxi-
mately −21 MNOK, the two factor binomial lattice approach resulted in a
value of approximately 29 MNOK, while the Monte Carlo simulation esti-

66



6.5 Comparing the results of the different approaches

Table 11: Valuation results.

Valuation methods Uncertainty Value [MNOK]

Contingent NPV Events −21

Binomial tree (quadranomial) Events and market 29

Monte Carlo valuation Market 47

mated the value of the wind park at approximately 47 MNOK. The most
important take-away is that the value of the wind farm accounting for flex-
ibility advices decision makers to proceed with the project, whereas the
negative NPV from the DTA signals that the project is not profitable.

It is natural to question the validity of the numbers resulting from these
valuations. The results are quite different due to the characteristics of the
methods applied and the degree of flexibility and uncertainty included. The
contingent NPV method assumes that all decisions about the future are
already made when the project owner enters into the development phase
of the wind park. Comparing the contingent NPV to the Monte Carlo
valuation shows an added value of 68 MNOK. This is the calculated value
of having the chance to revise decisions after information has been revealed
in the future. When considering the magnitude of the final investment cost
of the park, 890 MNOK, it seems reasonable that 68 MNOK could be the
value of having the opportunity to avoid this huge cost in the case that the
market conditions turn unfavourable.

The added value of flexibility as calculated by the binomial lattice ap-
proach is 50 MNOK. The framework for interpreting this value is the same
as for the Monte Carlo valuation. The reason for the result being 18 MNOK
lower is important to notice. First, the binomial lattice approach considers
only an OU process, while the Monte Carlo valuation takes into account
both an OU process and a GBM. As discussed in Section 4.3, a GBM will
return a higher option value because its volatility is proportional to the
time horizon, while the volatility of the OU process will level off. Second,
the Monte Carlo valuation considers a single European call option, while
the compounded binomial lattice evaluates three sequential call options.
The two investment costs related to the first exercise dates in the com-
pounded option are thus at no point subtracted from the option value in
the Monte Carlo valuation because this method is not very compatible with
compounded options. The third reason is that the event uncertainty, i.e. the
probability of success in each stage of development, is not considered in the
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Monte Carlo simulations, something that also contributes to a higher option
value compared to the binomial option. As mentioned before, the Monte
Carlo method is unsuited for these calculations. These arguments can to-
gether explain why the option value is calculated to be somewhat higher in
the Monte Carlo valuation than the quadranomial lattice valuation.

7 Analysis

This thesis has applied the following three different valuation techniques
to assess the investment opportunity that TrønderEnergi currently holds at
Stokkfjellet: Decision tree analysis (DTA), the binomial lattice approach,
and Monte Carlo valuation. As will always be the case, each method has
its benefits and drawbacks. In general, it will almost always be better to
use many different valuation methods rather than just one when making
an investment decision. In this section, we will try to give an idea of the
strengths and weaknesses of each of the methods applied, and thus how a
decision maker can address these.

7.1 A general comparison of the methods

The results, as discussed in Section 6.5, suggest that using a real options
approach for the valuation of Stokkfjellet Wind Farm is appropriate. This
is in accordance with the literature that has been discussed in this thesis.
First, because the value of the project is found to be a relatively close call in
the DTA when comparing it to the magnitude of the investment cost. This
could cause the value of flexibility to be decisive for this investment decision.
Second, a real options approach is appropriate because of the commodity
risk that the project is exposed to. The third reason is the fashion in
which TrønderEnergi develop the wind farm, which can be modelled as a
compound option.

Let us now compare the methods we have applied. We start with the
discounted cash flow (DCF) method. This is the valuation method that
TrønderEnergi currently uses, and we have thus used this method solely to
determine the value of operation, often called the net present value (NPV) of
the operational phase in this report. It should be clear from the discussions
in this report that we do not recommend that decision makers use the sign
of a traditional NPV alone when making a decision to invest in a wind farm.
The reason is that flexibility incorporated in the investment opportunity is
not captured by the DCF method. Let us still mention some advantages of
the DCF method as pointed out by (Mun, 2006):
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• Clear, consistent decision criteria for all projects.

• Results do not depend on investors’ risk preferences.

• Quantitative, quite accurate, and economically rational.

• Not very vulnerable to accounting conventions (depreciation, inven-
tory valuation, etc.)

• Considers the time value of money and risk structures.

• Simple, well-known, and widely accepted.

• Explaining it to management is straight-forward, if benefits outweigh
the costs; invest.

Looking beyond these advantages, there are unfortunately several issues
connected to using DCF methods. The most severe problem is the fact
that there is risk and uncertainty associated with decision making, and that
management has the strategic flexibility to make and revise decisions as
these uncertainties become known over time (Mun, 2006). In the real world,
using deterministic models like the DCF method could potentially grossly
undervalue a particular project. A deterministic DCF model assumes that
all future cash flows are known. Had this been the case, such that there were
no fluctuations in business conditions, then the DCF model would correctly
estimate the value of the project. Essentially, there would be no value to
having flexibility. However, the real world is stochastic and the business
environment is highly variable. If management has the flexibility to adapt
their plans when conditions change, then flexibility is indeed valuable; a
value that a DCF model does not attempt to capture.

We have now established that static DCF analysis should not be ap-
plied to situations involving dynamic decision making. In light of this,
another relatively simple technique that appears somewhat more suitable is
the contingent NPV approach, sometimes called decision tree analysis. The
technique digs a little deeper than static DCF analysis when calculating
future cash flows in that it views future cash flows as dependent on future
actions and potentially information that may evolve. At each branch point
in the decision tree the decision makers’ future optimal actions, conditional
on outcome, have already been established and have been incorporated in
the future cash flow calculations (Mun, 2006). The market value is usually
estimated with the use of a constant discount rate, but it is recommended
that one uses different discount rates for different phases of the project when
such is appropriate (Koller et al., 2010).
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A decision tree analysis is not by itself a sufficient tool for solving real
options (Mun, 2006). If such an analysis is used, then one must estimate
different discount rates at each decision node at different times because dif-
ferent projects at different times have different risk properties. This will
lead to estimation errors to be compounded on a large decision tree analy-
sis. Binomial lattices, which use risk-neutral probabilities, avoid this error.
In addition, risk-neutral probabilities are objective and easy to obtain, and
the volatility can be estimated using commodity prices or Monte Carlo sim-
ulation. The imputed risk-neutral probabilities will thus be more accurate
as compared to estimating a discount rate. The use of discount rates is
further complicated as it requires a market benchmark that may or may
not exist when we work with real options (Mun, 2006). Such a benchmark
has been demonstrated in this work to be difficult to find in the Norwe-
gian stock market. In fact, only one company that works with renewable
electricity generation alone is publicly traded. This company was still not
found to be a good match for the Stokkfjellet project as it deals largely with
hydropower, which is still significantly less risky than wind power.

As Mun (2006) points out, the most important conclusion to be drawn
from the binomial lattice approach is that risk-adjusting cash flows provides
the exact same results as risk-adjusting the probabilities leading to those
cash flows. Thus the results from a DCF analysis are identical to those
generated using a binomial lattice in the case when we assume that the
volatility of the cash flows is zero, i.e. the cash flows are assumed to be
known with certainty. When zero uncertainty exists, there is no flexibility
in decisions and zero strategic option value, meaning that we have calculated
the static NPV. When we input a volatility of zero into our binomial lattice
valuation, the value of the option becomes zero as well. This is in line with
our results from the contingent NPV valuation, which gave a negative value,
hence a project value of zero. In the option pricing model of the binomial
tree, the model will return a value of zero for all negative project values.
Intuitively, there will always be uncertainty about future cash flows. Indeed,
the world and the market conditions are stochastic. By itself, this should
justify the need for other methods besides the DCF method.

We use a Monte Carlo valuation approach for Stokkfjellet in order to
take into account the uncertainty in the development of TGC prices in
addition to the uncertainty about the power price, indicating that we are
dealing with a two factor model. According to Hahn and James (2008),
discrete time modelling of mean-reverting stochastic processes is problem-
atic, and they suggest Monte Carlo simulation as a primary solution to this
problem. Monte Carlo methods are able to accommodate many types of
stochastic processes, and can used also for valuing early-exercise options,
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a shortcoming of traditional simulation-based methods. Nonetheless, a sig-
nificant drawback of this valuation approach is that it is computationally
intensive, and particularly so for problems with multiple concurrent options
(Hahn and James, 2008).

Monte Carlo methods are straightforward to apply for European options.
However, they can be difficult to apply to many complex real problems,
such as a compound option. Different types of tree-building procedures,
such as trinomial trees or time-dependent drift and volatility specifications,
commonly result in trees that are computationally complex and/or path-
dependent (Hahn and James, 2008).

7.2 Modelling the price processes

We have chosen to model the electricity price as an Ornstein-Uhlenbeck
(OU) process, which is a so-called mean-reverting process. Compared to
the common practice of using a geometric Brownian motion (GBM) for
modelling the power price, a mean-reverting price process captures the clear
tendency of electricity prices to revert towards a long-term level.

Even though modelling the power price as a mean-reverting process is
considered more realistic compared to a price that follows a GBM, there are
complications associated with this model. For instance, we need to estimate
more parameters in order to describe the OU process. While we need only
to estimate the volatility for a GBM (the mean is directly observable from
the sample), we must estimate a long-term price level as well as a rate of
mean reversion in order to capture the characteristics of an OU process.

In addition, a mean-reverting process does not capture all properties of
electricity prices. For example, it is not successful in capturing the jumps
that are often seen in electricity prices (this is evident in Fig. 1), and
Blanco and Soronow (2001) point out that the rate of mean-reversion is not
constant, but changes according to how large a particular jump is, in which
direction it was and why it occurred. In modelling these processes the choice
between accuracy and applicability will work in opposite directions. In
order to create a binomial tree for the option in a relatively straightforward
fashion, the price must follow a simple process. This is a goal in itself in
this thesis, as we aim to make the models useful for practitioners who are
not experts in the field. It would, however, be very interesting to try and
model the rate of mean-reversion as parameter that can vary with time.

We model the price of tradable green certificates (TGC’s) as a GBM.
The reasoning was that there is no marginal cost of production for TGC’s,
so it does not tend to revert back to a mean like the price of power (this
can be seen in Fig. 2). Additionally, a demand for renewable power is
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created artificially, and the demand is based on a quota defined by the
government rather than by the individual consumer’s desire for electricity
from renewable sources. Given this, the price might become very high or
very low at a certain point in time, e.g. when we approach the end of some
period for which there exists a set goal for new renewable production. It
is then very likely that the government will step in and prevent this price
from becoming way too high or low. In that case, it can be hard to justify
using a GBM, since in practice there would be a roof and a floor for the
price.

Independently of high or low prices, political actions that will affect
the subsidy scheme of TGC’s are likely to occur from time to time. This
possibility of political action aimed at building more renewable electricity
production likely affects the volatility of the TGC price. The sensitivity
analysis of volatility for the Monte Carlo valuation was shown in Table 9,
and this analysis showed that the value of the real option is more dependent
on changes in the volatility of the TGC price than that of the power price.
Thus, if we assume that volatility of the TGC price is positively correlated
with political intervention, then we can state that the option value will be
higher in times where political action is expected or has just occurred and
the market is still absorbing the implications of the amendments to the
scheme.

It is important to be aware that the historical TGC price data used in
this thesis does not fully represent the common market between Norway
and Sweden that exists now. The common market was introduced in 2012,
and the data from earlier years is from the Swedish TGC market that was
in operation from 2003 throughout 2011. One can only speculate about how
the market will evolve in the future compared to the past. Nonetheless, in
this thesis we have assumed that the historical data will be representative
of the future.

When we are already describing the underlying stochastic processes, it
is natural also to discuss the correlation between them. As mentioned in
Section 6.4.3, the correlation estimation done here is not one that can be
trusted, as it was investigated only superficially. This is justified as this
report aims to demonstrate the differences between valuation models, not
to determine parameters as accurately as possible (except the parameters
for the price processes). It is worth noting that TrønderEnergi is believed to
have a broad understanding for the relationship between TGC and power
prices, so we do not think that this is where we can make our biggest
contribution.
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7.3 The MAD assumption and choice of volatility

7.3 The MAD assumption and choice of volatility

In contrast to financial options, historical data for the underlying value of a
real option is often impossible to derive since real options are normally not
traded in the marketplace. This complicates the estimation of the volatility
for real options, and Shockley (2007) argues that this is one of the main rea-
sons why the real options methodology is not applied more often in practice.

The marketed asset disclaimer (MAD) assumption is a means of solv-
ing the problem of incomplete markets. We assume that the value of the
underlying is equal to the value of operation without flexibility. A problem
with this assumption is that it may lead to errors in the valuation since the
assumption cannot be tested in the market. For example, the appropriate
choice of the discount rate for the project without flexibility is left to the dis-
cretion of the analyst, and the use of WACC may not be appropriate for all
projects. Therefore, it is important to realise that the issue of determining
the value of the underlying is not completely resolved by this methodology
(Dyer and Brãndao, 2005).

For commodity based products, such as electricity, we have argued that
the volatility of the project can be assumed equal to that of the price of
the commodity on which it is based, namely electricity in the binomial tree
and both electricity and TGC’s in the Monte Carlo simulation. This might
lead to errors in estimation of the project value. Copeland and Antikarov
(2003) suggest that one can do better by using Monte Carlo simulations to
estimate the projects volatility and build an event tree.

An alternative way to treat the value of the underlying and the stochastic
process it follows would be to separate the operational income and expen-
diture. Instead of letting costs and production vary along with the income
as a stochastic process, we could assume constant production and a fixed
cost of operation per MWh produced. Then, only the operational income
would follow the same process as the electricity price. However, neither
costs nor production are in reality deterministic. Thus, a better extension
to the models proposed in this thesis would be to perform a thorough anal-
ysis of the development of costs and production, and model these inputs as
variables following their own appropriate processes.

7.4 The wind is stochastic

There are several uncertain factors going into the valuations that have been
treated to be deterministic, but are in reality not so. One of these is the
wind inflow, which directly influences the production and thereby the profit
from a wind farm. Indeed, the weather is stochastic, and the variation in
the wind speed at a certain site is typically assumed to follow the Weibull
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distribution (Sorokin et al., 2012). This variation is not treated in our
models with respect to the goal of this thesis. It is, however, important to
note that the wind variation is a crucial element that should be accounted
for in a wind project valuation that tries to estimate the value of the wind
farm in an accurate manner. As could be seen in Table 2 of the sensitivity
analysis of the value of operation, this parameter was almost proportional
to the production, as seems reasonable.

7.5 The investor’s risk preferences

There exists no single right answer to the question of what is the correct
required rate of return for a project, nor the project beta. The investor
must have an opinion on what rate is preferred, and the total portfolio of
investments and risks should also be taken into consideration. The division
between the risk-free rate, market risk premium and beta is not crucial,
but it is a way of arguing for the chosen required rate of return. We have
applied values for which the CAPM does not hold. Rather, we have given
solid arguments for the choice of all input parameters. Methods for deter-
mining the risk-neutral probabilities in the binomial lattice without using
the CAPM were mentioned in Section 5.1.4. We emphasise once again that
the scope of our thesis is not to evaluate the choice of the required rate of
return, or any other parameter. However, TrønderEnergi treats the required
rate of return as a confidential parameter, so we encourage the users of our
program to utilise their own estimates to perform valuations.

7.6 Possible extensions

The volatility of the electricity price rises in some periods of our data sample.
This may be in response to financial crises or other macroeconomic factors.
When the volatility is higher in some periods, it could be that the demand is
shifted to a steeper part of the convex supply curve, so that more volatility
is realised from a given change in the power price. Whatever the cause,
there is a clear tendency of volatility clustering, which indicates that the
use of regime-switching volatility could lead to more accurate results. In
addition to displaying mean-reverting behaviour, the Norwegian electricity
price tends to have spikes, and it can be argued that the price process should
also incorporate a jump process to be more realistic. Thus, we suggest that
any work building onto this should consider the possibility of such extensions
to the mean-reverting model for the electricity price that has been proposed
in this thesis.

In order to obtain an even more accurate valuation, there are some other
key points that should be paid attention to. In particular, the accuracy of a
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real options valuation would be significantly improved if the seasonal pattern
of wind, the evolution in capital costs and other important but uncertain
factors that are going into the valuation had been included as stochastic
variables rather than being treated as deterministic. Investment costs have
increased in the recent years, but are expected to fall over the next decade
in response to the EU goals for renewable energy production set for 2020.
The capital cost is by far the most significant cost going into the model,
and a factor to which uncertainty is connected. Currently, the opportunity
value of decreasing capital costs is not captured. Had we valued the option
to delay investments in this work, then it would be a shortcoming that
the model would not be able to weigh this opportunity value versus the
decreasing value of the subsidies.

8 Conclusion

The goal for this thesis has been to demonstrate the difference between some
selected valuation methods, and discuss their suitability for valuing the in-
vestment opportunity that TrønderEnergi currently holds in the Stokkfjellet
Wind Farm project. TrønderEnergi has applied for a licence to build, and
is expecting a decision by the end of the summer of 2014. TrønderEnergi
currently uses the discounted cash flows method to value this and similar
projects. Unfortunately, discounted cash flows do not incorporate the value
of flexibility. This makes the technique unsuitable for valuing investment
opportunities related to wind farm development, which are indeed highly un-
certain. Particularly, there is uncertainty about events and markets. With
events, we mean for example the outcome of the licence application process-
ing. Also, the market prices of power and tradable green certificates directly
influence the income from a wind farm. With this in mind, our hypothesis
is that the use of real options valuation methods will improve the quality
of the information available for decision makers, ultimately improving the
quality of their investment decisions in wind power.

We have performed valuations using decision tree analysis, the binomial
lattice approach and Monte Carlo simulations. The first method considers
uncertainty about events, the second uncertainty about events and the mar-
ket, and the third investigates solely market uncertainty. We have modelled
the power price as a mean-reverting process, and the price of tradable green
certificates as a geometric Brownian motion. Indeed, we have found that the
literature supports our hypothesis that real options analysis is appropriate
for investment decisions such as the one at hand, and also that flexibility
generally adds a significant amount of value to the valuation of a wind park.

The real option we have valued is the option to invest, and the option
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has been valued at 29 MNOK and 47 MNOK, dependent on the real options
method applied. We also saw that the contingent NPV returned a negative
value of −21 MNOK. Even if real options methods add value, it is not
always worthwhile to perform a time consuming real options analysis. In
particular, if the NPV of a project has been found to be very high or very
low, real options analysis will not affect the decision to invest. However,
for investments in onshore wind in Norway, these decisions are often a close
call, and a real options perspective will be useful. This was found to be the
case for the Stokkfjellet project, and we have demonstrated that valuing
the project with flexibility assigns the project a positive value whereas a
contingent NPV approach assigns the investment opportunity a negative
value. We therefore recommend that a real options approach to valuing
wind projects be adopted by TrønderEnergi.

There is a number of other ways in which we could have evaluated the
investment opportunity. Possible extensions to the model could consider a
more complex electricity price process such as mean-reversion with jumps
with regime-switching volatility. It would also be interesting to take into
account the uncertainty about factors that are treated deterministically in
these valuations, such as the wind inflow and the development of the capital
costs.

In addition to the above findings, an important part of our work has
been to create an effective, simple and flexible program that can be used
for valuing Stokkfjellet as well as other projects that are subject to similar
risks. The program also conveniently visualises the development of prices
and project value. The program consists of four different Excel files, one for
each type of valuation. The code has been written in Visual Basic for Appli-
cations (VBA) for Excel. This program was handed over to TrønderEnergi
at the time when this thesis was submitted.

This thesis has offered a detailed introduction to three valuation meth-
ods that to a varying extent consider flexibility, as opposed to the discounted
cash flow method. In particular, the report has given a thorough introduc-
tion to the concept of real options, and demonstrated why these methods
are a better fit for wind projects. In doing this, the Stokkfjellet project has
been analysed and valued. We provide academic insight and offer a math-
ematical framework for valuing the project, and we also create a program
to complement this thesis. We expect that the discussions in this report
and the program we have created will be of high value to decision makers
at TrønderEnergi. We hope that decision makers have acquired an interest
and basic understanding for the concept of real options analysis and the
value associated with adopting these methods.
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A A binomial tree for the price (VBA code)

This code generates a tree for the development of the power price and lists
the risk-neutral probability of an up move at each node. The resulting
output is displayed after the code.

Cell referrals and output formatting is not included in the code.

Sub OneFactorBinomialTree ( )
Worksheets ( ” Star tSheet ” ) . Act ivate

. . . l oad ing c e l l va lue s . . .

Worksheets ( ”Pr iceTree ” ) . Ce l l s .Clear
Worksheets ( ”Pr iceTree ” ) . Act ivate

Dim p r i c e ( ) , priceNew ( ) As Double

ReDim p r i c e (0 To n)
ReDim priceNew (0 To n)

’ Ca l cu la t e r e a l p r o b a b i l i t i e s
up = Exp( s i g ∗ Sqr ( dt ) )
down = 1 / up

Dim i , j As In t eg e r

’Adds an in format i ve row at the top o f the output shee t
For i = 0 To n

Ce l l s (1 , i + 1 ) . Value = i
Next i

’ Ca l cu la t e the pr i c e at the end nodes ( column n + 1)
For i = 0 To n

p r i c e ( i ) = s t a r t p r i c e ∗ Exp( ( n − 2 ∗ i ) ∗ s i g ∗ Sqr ( dt ) )
Ce l l s (2 ∗ i + 2 , n + 1 ) . Value = p r i c e ( i )

Next i

’Work backwards in the t r e e to f i nd p r i c e s
For j = (n − 1) To 0 Step −1

For i = 0 To j
priceNew ( i ) = p r i c e ( i ) / up
Prob = theta up ( i , j , a , b , dt , s t a r t p r i c e , s i g , up ,

down , beta , mr)

’ Inputs the c a l c u l a t e d va lue s in to the shee t
Ce l l s (2 ∗ i + 2 , j + 1 ) . Value = priceNew ( i )
Ce l l s (2 ∗ i + 3 , j + 1 ) . Value = Prob

Next i



For i = 0 To j
p r i c e ( i ) = priceNew ( i )

Next i
Next j

End Sub

’Get r i s k−neu t ra l p r o b a b i l i t y o f an up−move at s p e c i f i e d node
Function theta up ( i , j , a , b , dt , s t a r t p r i c e , s i g , u , d , beta , mr)

’Get the ac tua l p r o b a b i l i t y o f an up move
theta up = 0 .5 + (1 − Exp(−a ∗ dt ) ) ∗ (b − (Log ( ( s t a r t p r i c e ) ∗
Exp( ( j − 2 ∗ i ) ∗ s i g ∗ Sqr ( dt ) ) ) ) ) / (2 ∗ s i g ∗ Sqr ( dt ) )

’Get the r i s k−neu t ra l p r o b a b i l i t y o f an up−move
I f theta up < 0 Then

theta up = 0
E l s e I f theta up > 1 Then

theta up = 1
Else

theta up = theta up − ( (mr ∗ beta ) / (u − d ) )
I f theta up < 0 Then

theta up = 0
End I f

End I f
End Function
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B A binomial tree for the NPV (VBA code)

This code generates a tree for the development of the NPV of the operational
phase and lists the corresponding option price at each node.

Cell referrals and output formatting is not included in the code.

Sub NPVtree ( )
Worksheets ( ” Star tSheet ” ) . Act ivate

. . . l oad ing c e l l va lue s . . .

Dim aNpv ( ) , npvNew ( ) , opt ionValue ( ) , optionVNew ( ) , t imes ( ) ,
Inv ( ) , succe s sprob ( ) As Double

ReDim aNpv(0 To n)
ReDim npvNew(0 To n)
ReDim optionValue (0 To n)
ReDim optionVNew(0 To n)
ReDim t imes (0 To s t ag e s + 1)
ReDim Inv (0 To s tag e s + 1)
ReDim succe s sprob (0 To s tag e s + 1)

’ Ca l cu la t e r e a l p r o b a b i l i t i e s
up = Exp( s i g ∗ Sqr ( dt ) )
down = 1 / up

’ Loads the investment co s t s in to the Inv ( . ) array
Inv (0 ) = 0
For i = 1 To s tag e s

Inv ( i ) = Ce l l s (13 + i , 5 ) . Value
Next i

’ Loads the t imes o f inves tments in to the t imes ( . ) array
t imes (0 ) = −1
For i = 1 To s tag e s

t imes ( i ) = Ce l l s (13 + i , 6 ) . Value
Next i

’ Loads the prob . o f succes s in to the successprob ( . ) array
succe s sprob (0 ) = 1
For i = 1 To s tag e s

succe s sprob ( i ) = Ce l l s (13 + i , 7 ) . Value
Next i

Worksheets ( ”NPVtree” ) . C e l l s .Clear
Worksheets ( ”NPVtree” ) . Act ivate

’Adds an in format i ve row at the top o f the output shee t
For i = 0 To n

Ce l l s (1 , i + 1 ) . Value = i
Next i



Dim j , k As In t eg e r

For i = 0 To n
’ Ca l cu la t e p r i c e l e v e l a t node ( i , n)
aNpv( i ) = s ta r t npv ∗ Exp( ( n − 2 ∗ i ) ∗ s i g ∗ Sqr ( dt ) )

’Take the max o f i n t r i n s i c va lue and zero
optionValue ( i ) = WorksheetFunction .Max(aNpv( i ) − Inv (k ) ∗

succe s sprob (k ) , 0)

Ce l l s (2 ∗ i + 2 , n + 1 ) . Value = aNpv( i )
Ce l l s (2 ∗ i + 3 , n + 1 ) . Value = optionValue ( i )

Next i

k = k − 1

For j = (n − 1) To 0 Step −1 ’ S t a r t in second to l a s t column

’While we have not ye t reached the next po in t o f e x e r c i s e
I f j > t imes (k ) Then

’Work backwards in the t r e e to f i nd NPV va lue s
For i = 0 To j

npvNew( i ) = aNpv( i ) / up
Prob = theta up ( i , j , a , b , dt , s t a r t p r i c e , s i g , up ,
down , beta , mr)
optionVNew ( i ) = ( ( Prob ∗ optionValue ( i ) +
(1 − Prob ) ∗ optionValue ( i + 1) ) / r f )

’ Inputs the va lue s in to the shee t
Ce l l s (2 ∗ i + 2 , j + 1 ) . Value = npvNew( i )
Ce l l s (2 ∗ i + 3 , j + 1 ) . Value = optionVNew ( i )

Next i

’ Saves c a l c u l a t e d va lue s to array
For i = 0 To j

aNpv( i ) = npvNew( i )
optionValue ( i ) = optionVNew ( i )

Next i

’When we have reached a po in t o f e x e r c i s e
E l s e I f k > 0 Then

’Go to the next po in t o f exe rc i s e , t imes ( k − 1)
k = k − 1

’ Find NPV va lue and take max of i n t r i n s i c va lue and zero
For i = 0 To j

npvNew( i ) = aNpv( i ) / up
Prob = theta up ( i , j , a , b , dt , s t a r t p r i c e , s i g , up ,
down , beta , mr)



optionVNew ( i ) = WorksheetFunction .Max( ( ( ( ( Prob ∗
optionValue ( i ) + (1 − Prob ) ∗ optionValue ( i + 1) )
/ r f ) − Inv (k ) ) ) ∗ succe s sprob (k ) , 0)

Ce l l s (2 ∗ i + 2 , j + 1 ) . Value = npvNew( i )
Ce l l s (2 ∗ i + 3 , j + 1 ) . Value = optionVNew ( i )

Next i

’ Save c a l c u l a t e d va lue s to arrays
For i = 0 To j

aNpv( i ) = npvNew( i )
optionValue ( i ) = optionVNew ( i )

Next i
End I f

Next j

’Write out the opt ion va lue .
MsgBox ( ”The value o f ho ld ing the opt ion to i nv e s t i s ”
& Round( optionValue ( 0 ) ) & ” KNOK. ” )

End Sub

’Get r i s k−neu t ra l p r o b a b i l i t y o f an up−move at s p e c i f i e d node
Function theta up ( i , j , a , b , dt , s t a r t p r i c e , s i g , up , down ,
beta , mr)

’ Obtaining the ac tua l p r o b a b i l i t y o f an up move
theta up = 0 .5 + (1 − Exp(−a ∗ dt ) ) ∗ (b − (Log ( ( s t a r t p r i c e )
∗ Exp( ( j − 2 ∗ i ) ∗ s i g ∗ Sqr ( dt ) ) ) ) ) / (2 ∗ s i g ∗ Sqr ( dt ) )

’Get the r i s k−neu t ra l p r o b a b i l i t y
I f theta up < 0 Then

theta up = 0
E l s e I f theta up > 1 Then

theta up = 1
Else

theta up = theta up − ( (mr ∗ beta ) / (up − down ) )
I f theta up < 0 Then

theta up = 0
End I f

End I f

End Function
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C Monte Carlo simulation of prices (VBA code)

This code simulates the price development of power and TGC’s, and writes
out the simulated price at each time step of the Monte Carlo simulation of
both prices as well as the average of the two at each time step of the Monte
Carlo simulation.

Cell referrals and output formatting is not included in the code.

Sub s imu la t i on ( )
Worksheets ( ” Star tSheet ” ) . Act ivate

. . . l oad ing c e l l va lue s . . .

Dim GBMprices ( ) , GBMpriceNew ( ) , OUprices ( ) , OUpriceNew ( ) ,
sum( ) , avgGBMprice ( ) , avgOUprice ( ) As Double

ReDim GBMprices (0 To N)
ReDim GBMpriceNew(0 To N)
ReDim OUprices (0 To N)
ReDim OUpriceNew(0 To N)
ReDim avgGBMprice (0 To sims , 0 To N)
ReDim avgOUprice (0 To sims , 0 To N)

Dim i , j As In t eg e r

’ Ac t i va t e s c e l l s
Worksheets ( ”AvgCalculat ions ” ) . Ce l l s .Clear
Worksheets ( ”AvgCalculat ions ” ) . Act ivate

’Adds an in format i ve row at the top
For i = 0 To N

Ce l l s (1 , i + 1 ) . Value = i
Next i

For j = 1 To sims
’ Input s t a r t va lue s to arrays
GBMprices (0 ) = TGCstartprice
OUprices (0 ) = s t a r t p r i c e

For i = 1 To N
’Draw two random numbers from the normal d i s t r i b u t i o n
e1 = WorksheetFunction . NormInv (Rnd( ) , 0 , 1)
Z = rho ∗ e1 + WorksheetFunction . NormInv (Rnd( ) , 0 , 1)
∗ Sqr (1 − rho ˆ 2)

’Get the next p r i c e o f TGC’ s
GBMprices ( i ) = GBMprice next (GBMprices ( i − 1) , mu,
GBMsigma , dT, e1 )
avgGBMprice ( j , i ) = GBMprices ( i )



’Get the next p r i c e o f e l e c t r i c i t y
OUprices ( i ) = OUprice next ( OUprices ( i − 1) , a , b ,
dT, OUsigma , Z)
avgOUprice ( j , i ) = OUprices ( i )

Next i

GBMsum = GBMsum + GBMprices (N)
OUsum = OUsum + OUprices (N)

Next j

’ Print average p r i c e s generated above
For i = 1 To N

GBMtemp = 0
OUtemp = 0

For j = 1 To sims
GBMtemp = GBMtemp + avgGBMprice ( j , i )
OUtemp = OUtemp + avgOUprice ( j , i )

Next j

GBMtemp = GBMtemp / sims
OUtemp = OUtemp / sims

Ce l l s (2 , i ) . Value = GBMtemp
Ce l l s (3 , i ) . Value = OUtemp

Next i

GBMsum = GBMsum / sims ’Get the average va lue
OUsum = OUsum / sims ’Get the average va lue
Totsum = GBMsum + OUsum ’Get the average t o t a l sum
Totsum = Totsum ∗ Exp(− r f ∗ N) ’ Discount the opt ion va lue
Totsum = Round(Totsum , 0) ’ Rounding to no decimals

MsgBox ( ”The avg . p r o f i t a f t e r ” & N & ” per i od s and ” & s ims
& ” s imu la t i on s i s ” & Totsum)

End Sub

’Get the next NPV l e v e l when the NPV f o l l ow s a GBM
Function GBMprice next ( l a s t p r i c e , mu, sigma , dT, e1 )

GBMprice next = l a s t p r i c e ∗ Exp( (mu − 0 .5 ∗ sigma ˆ 2) ∗ dT
+ sigma ∗ Sqr (dT) ∗ e1 )

End Function

’Get the next NPV l e v e l when the NPV f o l l ow s an OU process
Function OUprice next ( l a s t p r i c e , a , b , dT, sigma , Z)

OUprice next = WorksheetFunction . Ln( l a s t p r i c e ) ∗ Exp(−a ∗dT)
+ b ∗ (1 − Exp(−a ∗ dT) ) + sigma ∗ Sqr ( (1 − Exp(−2 ∗ a ∗ dT) )
/ (2 ∗ a ) ) ∗ Z
OUprice next = Exp( OUprice next )

End Function



D Monte Carlo simulation of NPV (VBA code)

This code simulates the development of the value of operation as a two-
dimensional process that follows the processes of the power price and the
price of TGC’s, respectively, and writes out the value of the NPV for both
price processes as well as the average of the two at each time step of the
Monte Carlo simulation.

Cell referrals and output formatting is not included in the code.

Sub NPVsimulation ( )
Worksheets ( ” Star tSheet ” ) . Act ivate

. . . l oad ing c e l l va lue s . . .

Dim GBMnpv( ) , OUnpv( ) , TOTnpv( ) , avgGBMnpv( ) , avgOUnpv ( ) ,
avgnpv ( ) As Double

ReDim GBMnpv(0 To N)
ReDim OUnpv(0 To N)
ReDim TOTnpv(0 To N)
ReDim avgGBMnpv(0 To sims , 0 To N)
ReDim avgOUnpv(0 To sims , 0 To N)
ReDim avgnpv (0 To sims , 0 To N)

Dim i , j As In t eg e r

Worksheets ( ”NPVcalculat ions ” ) . Ce l l s .Clear
Worksheets ( ”NPVcalculat ions ” ) . Act ivate

’Adds an in format i ve row at the top
For i = 0 To N

Ce l l s (1 , i + 1 ) . Value = i
Next i

’ Input i n i t i a l NPV va lue in to the f i r s t column
Ce l l s (2 , 1 ) . Value = startnpv
Ce l l s (3 , 1 ) . Value = startnpv
Ce l l s (4 , 1 ) . Value = startnpv

’ Estimate average NPV
avg npv = r a t i o ∗ s tar tnpv
avg npv = WorksheetFunction . Ln( avg npv )

For j = 0 To sims
’ Input s t a r t va lue s to arrays
GBMnpv(0) = startnpv
OUnpv(0) = startnpv
TOTnpv(0) = startnpv



For i = 1 To N
’Draw two random numbers from the normal d i s t r i b u t i o n
e1 = WorksheetFunction . NormInv (Rnd( ) , 0 , 1)
Z = rho ∗ e1 + WorksheetFunction . NormInv (Rnd( ) , 0 , 1)
∗ Sqr (1 − rho ˆ 2)

’Get the next p r i c e o f TGC’ s
GBMnpv( i ) = GBMnpv next (GBMnpv( i − 1) , mu, GBMsigma ,
dT, e1 )
avgGBMnpv( j , i ) = GBMnpv( i )

’Get the next p r i c e o f e l e c t r i c i t y
OUnpv( i ) = OUnpv next (OUnpv( i − 1) , a , avg npv , dT,
OUsigma , Z)
avgOUnpv( j , i ) = OUnpv( i )

’Avg . NPV ca l c u l a t i o n s f o r s imu la t ion j
TOTnpv( i ) = (GBMnpv( i ) + OUnpv( i ) ) / 2
avgnpv ( j , i ) = TOTnpv( i )

Next i

’ Saving NPV l e v e l s at the end o f the j t h s imu la t ion
GBMsum = GBMsum + GBMnpv(N)
OUsum = OUsum + OUnpv(N)

’ Find NPV va lue and take max of i n t r i n s i c va lue and zero
TOToption = TOToption + WorksheetFunction .Max(TOTnpv(N) −
inv , 0)

Next j

’ Save va lue s in to r e l e v an t v a r i a b l e s
GBMsum = GBMsum / sims
OUsum = OUsum / sims
TOToption = TOToption / sims
TOToption = Round(TOToption , 0) ’ Rounding to no decimals

’Get the t o t a l average NPV va lue
Totsum = (GBMsum + OUsum) / 2

’ Discount the opt ion va lue back to today
Totsum = Totsum ∗ Exp(− r f ∗ N)
Totsum = Round(Totsum , 0) ’ Rounding to no decimals

’ Print average va lue s to c e l l s
For i = 1 To N

GBMtemp = 0
OUtemp = 0
TOTtemp = 0



’ Save a l l l e v e l s o f the NPV generated at a c e r t a in time
For j = 1 To sims

GBMtemp = GBMtemp + avgGBMnpv( j , i )
OUtemp = OUtemp + avgOUnpv( j , i )
TOTtemp = TOTtemp + avgnpv ( j , i )

Next j

’Get the avg . o f a l l the NPV l e v e l s at a c e r t a in time
GBMtemp = GBMtemp / sims
OUtemp = OUtemp / sims
TOTtemp = TOTtemp / sims
TOTtemp = Round(TOTtemp, 0) ’ Rounding to no decimals

’ Print average p r i c e s in each time s t ep n
Ce l l s (2 , i + 1 ) . Value = GBMtemp
Ce l l s (3 , i + 1 ) . Value = OUtemp
Ce l l s (4 , i + 1 ) . Value = TOTtemp

Next i

MsgBox ( ”The avg . NPV a f t e r ” & N & ” per i od s and ” & sims &
” s imu la t i on s i s ” & Totsum &
” . The corre spond ing opt ion value i s ” & TOToption & ” . ” )

End Sub

’Get the next NPV l e v e l when the NPV f o l l ow s a GBM
Function GBMnpv next ( la s t npv , mu, sigma , dT, e1 )

GBMnpv next = la s t npv ∗ Exp( (mu − 0 .5 ∗ sigma ˆ 2) ∗ dT +
sigma ∗ Sqr (dT) ∗ e1 )

End Function

’Get the next NPV l e v e l when the NPV f o l l ow s an OU process
Function OUnpv next ( la s t npv , a , avg npv , dT, sigma , Z)

OUnpv next = WorksheetFunction . Ln( l a s t npv ) ∗ Exp(−a ∗ dT) +
avg npv ∗ (1 − Exp(−a ∗ dT) ) + sigma ∗ Sqr ( (1 − Exp(−2 ∗ a ∗
dT) ) / (2 ∗ a ) ) ∗ Z
OUnpv next = Exp(OUnpv next )

End Function



E Analysis of production from Norwegian wind
farms

An analysis of the performance of Norwegian wind farms built between
1991 and 2012 is shown in Table E.1. As can be seen, the deviation in real
production from estimated production is significantly larger for wind farms
built before the year 2000. This is assumably so because the technology has
improved and because the oldest wind farms have only one or a few turbines,
so that the standard deviation in production will typically be higher.

The grand average deviation calculation does not include the deviations
from the oldest wind farms because these numbers are considered to be out
of date. The result indicates that there is only a small negative deviation
from estimated production for the wind farms. As a result, no scenario
analysis is performed in this thesis because, in any case, there are other
parameters going into the valuations to which a lot more uncertainty is
connected.
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F A brief introduction to stochastic calculus

For the convenience of readers interested in a brief introduction to the mathe-
matical concepts used in this thesis, we have included an introduction to relevant
stochastic calculus below.

Stochastic processes

Due to the inherent uncertainty of the parameters involved in the estimation of
the NPV of a project, it is recommended to reproduce its behavior by means of
a stochastic process (Muñoz et al., 2011). A stochastic process is a variable that
evolves over time in a way that is at least partially random.

The Wiener process

A Wiener process, sometimes called Brownian Motion (BM), is a continuous-time
stochastic process. It is well suited for modelling fluctuations in any real-life pro-
cess that has some special characteristics (Dixit and Pindyck, 1994). Three im-
portant properties of the process are:

1. The Markov property

2. Independent increments

3. Normally distributed changes in the process over any finite interval of time

The Markov property implies that the probability distribution for all future values
are dependent only on the current value, and is thus unaffected by past values of
the process. Independent increments means that the change in the process over
any time interval is independent of any other (non-overlapping) time interval. We
need the changes to be normally distributed over any finite interval of time, so
lastly we must be dealing with a standard normal random variable (µ = 0, σ = 1).

The increment of a Wiener process, dz, is represented in continuous time by

dz = εt
√
dt (F.1)

where εt is a standard normal random variable that is serially uncorrelated, such
that E [εtεs] = 0 for t 6= s. It is worth noting that since εt has zero mean and
unit standard deviation, E(dz) = 0 and V(dz) = E [(dz)2] = dt. Evidently, the
variance of the change in a Wiener process grows linearly with the time horizon.
Accordingly, the standard deviation of the process grows as the square root of
time passing. The Wiener process can easily be generalized into more complex
processes, such as the Brownian motion with drift.

Brownian Motion with drift

The simplest generalisation of Eq. (F.1) is the Brownian motion with drift:

dx = αdt+ σ dz (F.2)



where dz is the increment of a Wiener process as defined above. Here, α is called
the drift parameter, and σ is the variance parameter. The change in x, ∆x, over
any time interval ∆t, is normally distributed and has expectation E(∆x) = α∆t
and V(∆x) = σ2∆t. The changes being normally distributed can be demonstrated
by allowing a BM process to be represented as a random walk and letting the
number of steps become very large.

Generalised Brownian Motion-Itō processes

Now, we wish to use the Wiener process as a building block to model more stochas-
tic variables. Let now the simple BM be represented by

dx = a (x, t) dt+ b (x, t) dz (F.3)

where dz is defined as before and a (x, t) and b (x, t) are known functions. Note
that the drift and variance terms are now dependent on the current state and time.
The continuous-time stochastic process x(t) represented by Eq. (F.3) is called an
Itō process.

Consider the mean and variance of the increments of this process. Since E [dz] =
0, E [dx] = a (x, t) dt. The variance of dx is E [dx2] − (E [dx]2). Terms including
(dt)2 and (dt)(dz) = (dt)3/2 are very small and can be ignored, leaving us with
V[dx] = b2 (x, t) dt. Let us call a (x, t) the expected instantaneous drift rate of the
Itō process, and b2 (x, t) the instantaneous variance rate.

Geometric Brownian motion

An important special case of Eq. (F.3) is the geometric Brownian motion (GBM)
with drift (Dixit and Pindyck, 1994). Here a (x, t) = αx and b (x, t) = σx, α and
σ being constants. That gives us

dx = αxdt+ σx dz. (F.4)

We know from the section about the Brownian motion with drift that percentage
changes in x, ∆x/x, are normally distributed. Since these are changes in the nat-
ural logarithm of x, we know that absolute changes in x, ∆x, must be lognormally
distributed. It can be shown that if x(t) is given by Eq. (F.4), then F (x) = log x
is the following simple BM with drift:

dF = (α− 1

2
σ2) dt+ σx dz (F.5)

so that over a finite time interval t, the change in the logarithm of x is normally
distributed with mean (α− 1

2σ
2)t and variance σ2t. Considering x itself, it can be

shown that if the current value of x(0) = x0, the expectation of x(t) is given by

E [x(t)] = x0e
αt, (F.6)

and the variance of x(t) is given by

V[x(t)] = x2
0 e

2αt(eσ
2t − 1). (F.7)



This result for the expected value of a geometric Brownian motion can be used to
calculate the expected present discounted value of x(t) over some time interval. It
is interesting to note that

E
[∫ ∞

0

x(t) e−rt dt

]
= E

∫ ∞
0

x0 e
−(r−α)t dt = x0/(r − α) (F.8)

assuming that the discount rate r is larger that the growth rate α.

Mean-reverting processes

The simplest mean-reverting process, called the Ornstein-Uhlenbeck process, is
given by

dx = η (x̄− x) dt+ σ dz, (F.9)

where η is the speed of reversion towards the mean and x̄ is the ’normal’ level of
x, i.e. the level to which x tends to revert (e.g. the marginal production cost of
a commodity for which x is the price). We note that the expected change in x
depends on the current difference between x and x̄. This means that, depending
on the current position of x relative to x̄, the price is more likely to rise (if x < x̄)
or fall (if x > x̄) over the next short interval of time.

If the value of x(0) = x0 and x follows Eq. (F.9), then its expected value at
any future time t is equal to

E [x(t)] = x̄+ (x0 − x̄) e−ηt, (F.10)

and the variance of x(t)− x̄ is given by

V[x(t)− x̄] =
σ2

2η
(1− e−2ηt). (F.11)

For the derivation of Eq. (F.10) and (F.11), we refer to Dixit and Pindyck (1994)
(pp. 90-92). From these equations, we can observe that the expectation of x(t)
converges to x̄ as t goes to infinity, while the variance converges to σ/2η. On the
other hand, in the special case where we let the speed of reversion, η, become
sufficiently large, the variance goes to zero, so that x̄ can never deviate from x.
Finally, as η goes to zero, x becomes a simple Brownian motion, and the variance
converges towards σ2t.


