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Abstract

Forecasting oil price volatility is necessary in order to perform tasks such as portfolio
optimization, options and derivatives pricing, value-at-risk modeling and hedging.
In this paper volatility forecasting in the WTI futures market is approached with a
focus on identifying useful forecasting variables. A realized volatility (RV) time
series based on high frequency data is constructed and used in a long-memory model.
The predition model is expanded by including implied volatility (IV) and exogenous
market variables (EX) including volume, open interest, daily returns, bid-ask spread
and the slope of the futures curve. When testing different combinations of these
variables in out-of-sample predictions we find that IV significantly improves daily
and weekly volatility forecasts, and that the exogenous market variables significantly
improves daily, weekly and monthly volatility forecasts. Of the exogenous market
variables the daily returns contribute significant for all prediction horizons. The
returns also show a V-shaped relation to volatility.





Sammendrag

Prediksjon av volatilitet er nødvendig for å utføre oppgaver som porteføljeoptimering,
prising av opsjoner og derivater, value-at-risk-modellering og hedging. I denne
artikkelen blir volatilitetspreksjon for terminkontraktsmarkedet for WTI r̊aolje
tilnærmet med fokus p̊a hvilke variabler som inneholder nyttig informasjon. En
realisert volatilitet (RV) tidsserie blir konstruert ved bruk av høyfrekvent markeds-
data og brukt i en tilnærmet ”long-memory”-modell. Modellen utvides ved å
indkludere implisert volatilitet (IV) og eksogene markedsvariabler inkluderer volum,
open interest, daglig avkastning, bid-ask differansen og helningen p̊a terminkontrak-
tkurven. N̊ar forskjellige kombinasjoner av disse variablene testes ”out-of-sample”
finner vi at IV gir en signifikant forbedring av volatilitetsprediksjonene for daglige
og ukentlige tidshorisonter. De eksogene variablene gir en signifikant forbedring
av daglige, ukentlige og månedlige volatilitetsprediksjoner. Daglig avkastning
forbedrer prediksjonene over alle de tre tidshorisontene og viser et V-formet forhold
til volatiliteten.
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Chapter 1

Introduction

Over the last century, energy consumption has followed the exponential growth
of the world economy. Economic activity is now crucially dependent upon a large
supply of crude oil, accounting for 33 %1 of the world’s demand for energy. This
has positioned crude oil as the most important commodity in the world and its
price has a significant impact on the overall macroeconomy (Guo and Kliesen, 2005).

Since so many subjects are exposed to this market, understanding its volatil-
ity must be given attention. Particularly important are forecasts of the price
volatility. The accuracy of such forecasts will determine the precision of tasks such
as portfolio optimization, options and derivatives pricing, value-at-risk modeling
and hedging. Reliable forecasts of volatility will also be necessary for making
decisions about investments in production capital, directly affecting the supply side
of the market.

Forecasting volatility has traditionally been done using the generalized autoregres-
sive conditional heteroscedasticity (GARCH) approach introduced by Bollerslev
(1986) based on the work of Engle (1982). A vast number of volatility forecasting
models based on this concept already exist for energy commodity markets (see
e.g. Marzo and Zagaglia (2010) and Wei et al. (2010)). However, this approach
does not measure volatility very precisely. A breakthrough in volatility measuring
was provided when Andersen and Bollerslev (1998) introduced realized volatility
as the sum of squared intra-daily returns. Since this made volatility essentially
an observable variable, it can now be modeled more easily. However, this has not
alleviated the search for increasingly complex volatility forecasting models in the
literature.

1EIA numbers for 2008
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It has long been recognized that there are other sources of information about
future volatility than RV. A natural candidate is the market’s expectation of future
volatility, commonly referred to as implied volatility (IV). It has been found by
some (e.g. Lamoureux and Lastrapes (1993); Jorion (1995); Agnolucci (2009)) to
deliver both biased and inefficient forecasts of volatility. This is surprising because
IV can incorporate known future events likely to affect volatility. Evidence that IV
has a role in volatility forecasts has also been presented (e.g. Day and Lewis (1993);
Szakmary et al. (2003); Doran and Ronn (2005); Agnolucci (2009)). According to
Jorion (1995), a failure to unearth IV’s predictive power can only be interpreted
in two ways; inefficient information processing in options markets or misleading
test procedures. In highly liquid and transparent markets such as the WTI futures
market the former is unlikely. Left is the latter, and in particular the discussion
about the bias of the Black-Scholes (BS) formula (see e.g. Doran and Ronn (2005)).
A way to avoid this possible problem (and several others) is to use a volatility index
which is based on the market price of variance. Such an index was introduced for
the WTI futures market in 2008.

Volatility has also been linked to several other market variables. For instance,
the relationship between volume and volatility is widely documented (e.g. Clark
(1973) and Gallant et al. (1992)). In addition to possibly improving volatility
forecasts, including additional variables in the analysis can generate an improved
understanding of the market.

Relatively little work has been done investigating RV in the WTI futures mar-
ket. This is especially true when considering the market’s economic importance
(Sadorsky, 2006). Wang et al. (2008) studied the realized correlation between
oil and gas markets and found the use of RV in energy markets to be highly
appropriate, especially in areas such as volatility forecasting. Martens and Zein
(2004) compared RV with options-derived IV for the WTI futures market, finding
that the RV makes IV redundant. Little work has been done regarding the WTI IV
index, perhaps due to its recent inception. An exception is Padungsaksawasdi and
Daigler (2013) who studied the return-IV relation, and concluded that IV increases
with negative returns.

In this paper we deviate from the mainstream direction of volatility forecasting
and its focus on comparisons of model specifications. Instead, we look at whether
additional variables should be included when forecasting volatility for the WTI
futures market. We chose a long-memory model based on the realized measure of
volatility using high-frequency data. In addition, two fundamentally different types
of variables are used in the model, the forward looking IV index and other exogenous
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market variables including volume, open interest, daily returns and the slope of
the futures curve. The main findings can be summarized as follows. First, we find
that including information from the OVX significantly improves the day-ahead
and weekly volatility forecasts. Second, the exogenous market variables improve
volatility forecasts for daily, weekly and monthly horizons. Of the exogenous mar-
ket variables, especially the daily returns are found to improve volatility predictions.

The rest of the paper will unfold as follows. Chapter 2 presents the WTI crude
oil market and its implied volatility index together with other market variables.
Chapter 3 outlines the theoretical foundation for the RV and IV measures used in
this paper. Chapter 4 describes the market data. Chapter 5 describes the model
and evaluations of in- and out-of-sample predictions. Chapter 6 summarizes and
concludes.



Chapter 2

WTI crude oil futures market

Benchmark prices are crucial to a unified world oil market and makes formula
pricing possible. The most liquid and widely used petroelum benchmark price
is the West Texas Intermediate Light Sweet Crude Oil (WTI) futures contract
(Downey, 2009). The main assumtion behind formula pricing is that changes in
volatility for the petroleum market as a whole is bigger than specific products.
The price volatility of this contract therefore reaches far beyond its specific grade
of crude. The rest of this chapter gives an overview of WTI futures contract, its
main derivatives and a description of important market variables linked to volatility.

2.1 WTI crude oil futures contracts
The WTI futures contracts are primarily traded through the CME Globex electronic
trading platform, but also through the CME Clear Port and open outcry at the
New York Mercantile Exchange. A single WTI futures contract represents 1000
bbl of oil for physical delivery in Cushing Oklahoma. Front month trading ends
on the third business day prior to the 25th of the month prior to delivery. If the
contract is held until expiry physical delivery must be given or taken during the
following month according to the specifications in the contract.

The contracts’ expiration gives rise to monthly seasonality. Figure 4.1.3 (a) shows
how average volume for the first position changes throughout the month. The
volume traded on the second position is a mirror image because of traders rolling
their positions. The same mechanics seem to drive open interest as show in figure
4.1.3 (b). Yearly seasonality is usually not found in the crude oil prices even
though several petroleum products show distinct seasonality. The reason is that
the varying seasonality of all the petroleum products that exist, tend to even out

4
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(a) Volume (b) Open interest

Figure 2.1.1: Daily average values during each day of the month for volume and
open interest during the period 16/5/2007 to 15/5/2012

yearly seasonality in the crude oil markets (Downey, 2009).

Daily average total volume is 900,000 futures and options contracts and the largest
open interest for all contracts has reached 7.5 million lots.1 Trading starts 17:00
and ends 16:15 eastern time (ET) on weekdays, meaning that every day there
is a 45 minute break. The trading week starts Sunday evening and ends Friday
afternoon.

2.2 Options and the oil volatility index
CBOE began calculating the CBOE Crude Oil Volatility Index (OVX) in June
2008 (using data back to May 2007) according to the ”VIX methodology” which
will be discussed in detail in section 3.2. The index has become an important
instrument for trading oil price volatility (Whaley, 2008).

The options underlying the OVX are options on the United States Oil fund (USO),
an exchange traded fund (ETF) established to replicate the returns of the WTI
benchmark price. This investment vehicle reduces transaction costs for investors

1Numbers for 2013. See www.cmegroup.com/trading/energy/
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Figure 2.2.1: The price of one share of the USO and the price of the WTI futures
contracts rolling from 1. to 2. position the first business day prior to the 10. of
each month for the period 16/5/2007 to 15/5/2012

seeking exposure to the oil price. Since USO needs a management and it is exposed
to hedging risks it is unable to completely replicate the price of oil. This is obvious
by looking at figure 2.2.1 which shows that the price of one share has been unable
to keep up with the price of the front month contracts. It is also seen that the
short term variations are very similar. The daily returns of the USO have a 88 %
correlation to the first futures position and a 94 % correlation to the second futures
position. The difference is important since the OVX represents expectations of
the volatility of the USO which in practice it will means the expectations of the
volatility of the contracts held by the USO.

The USO has no exposure to the spot price of oil and only holds futures con-
tracts and other oil related derivatives. The main part of the fund’s exposure to
the oil market is contracts at the first and second position. The fund rolls these
contracts during a 4–day window starting approximately 14 days before expiry of
the first positions.2 The rolling window for each month is publicly announced on
the company website but further details about the rolling is not available to the
market. It is therefore impossible to know the exact composition of the USO’s
contract holdings during this window other than it is likely to be shifting towards
the second position. Over the course of one month the fund will therefore be mainly
be holding second position contracts about half of the days and first position
contracts the other half.

Because both the underlying and the options are traded side by side in a very liquid
market with minimal transaction costs, prices are likely to be highly synchronized.
Its therefore unlikely that the market will suffer from asymmetric information dis-
semination, which according to Jorion (1995) is a frequent source of measurement
errors when investigating implied volatility.

2See www.unitedstatesoilfund.com/uso-rolldates.php
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2.3 Market variables
Different market variables are found to have different links to volatility. Some of
these links are found across markets and other are market specific. In this section,
some very common market variables used in volatility analysis are introduced in
the context of the WTI futures market.

2.3.1 Volume
The ”Mixture of Distribution Model” originally proposed by Clark (1973) states
that both traded volume and volatility are driven by the same underlying ”news”-
variable and will therefore be positively correlated. According to this theory, it is
primarily the number of trades that will capture the content of this news variable, a
relation that has been widely documented for stock markets for instance by Gallant
et al. (1992) and Andersen (1996).

The contract specifications in the WTI futures market disturbs the information
content of the volume variable because of the previously mentioned monthly cycle.
Volume on first position will start to decline as the contract nears expiry and
volume on second position contract will increase as it closes in on first position
as shown in figure 2.1.1. Rolling the contracts further away from expiry such as
USO does, does little in removing this cycle. Therefore the volume traded is driven
mostly by the structure of the market.

An alternative description of the volume-volatility relation, based on the mi-
crostructure theory described by O’Hara (1995), is grounded in different types of
traders with asymmetric information. The theory states that informed traders will
prefer to trade larger quantities, therefore the trade size has information content
for prices (Kim and Verrecchia, 1991). However, this information can potentially
be ”hidden” by devising tactics of stealth trading, by simply breaking a large trade
into smaller parts which according to (Chakravarty, 2001) this is a widely used
tactic.

Either way, it is possible that number of trades and the size of trades provide
different information and are therefore linked differently to the volatility in the
WTI futures market. We therefore decompose volume into these two components.
Figure 2.3.1 plots number of trades and average size of trades calculated for each
day of the month for a synthetic futures contract designed to replicate the positions
held by USO. The figure shows that the cyclic variation in volume is mainly evident
in the number of trades component. Secondly, the very low average size of trades
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Figure 2.3.1: The average size of trades and the average number of trades for
each day of the month when rolling to second position the first business day prior
to the 10th every month. Numbers are for the period 16/5/2007 to 15/5/2012

(approximately 2 contracts) indicate that stealth trading is indeed widespread.

2.3.2 Open interest
Open interest is a variable which shows how many bets market participants already
have taken, indicating depth and size of the market. High open interest means that
a lot of subjects already have taken bets, and low open interest means that many
subjects are not in the market yet. Therefore, this market characteristic might be
relevant for volatility forecasting. Girma and Mougoue (2002) found that lagged
values of open interest affect volatility and can be used for short term predictions
of price movements in petroleum futures markets. Figlewski (1981) found evidence
that open interest is positively correlated with volatility in futures markets using a
monthly average of open interest.

Since taking physical delivery of the oil is certainly not the goal of many of
the subjects trading oil futures, open interest is a highly cyclical variable depending
on the days to maturity of the contract, as described in the previous section. This
means that in order for the measure of open interest to provide information the
cyclical component must be removed from this variable.

2.3.3 Daily returns
Doran and Ronn (2005) found a positive correlation between price returns and
volatility in energy markets, contrary to the ”leverage effect” found in equity
markets. Their explanation is it that higher commodity prices represents a threat
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to economic activity for energy importing countries. For oil markets this ”inverse
leverage effect” has been partially confirmed by for instance Wei et al. (2010)
and Cheong (2009) who found significant indications of its existence in the ICE
Brent market. However, together with Wang et al. (2008), Agnolucci (2009) and
Padungsaksawasdi and Daigler (2013) they failed to discover it in the WTI futures
market. Cheong (2009) consequently suggested that the WTI futures market
may have other forms of interrelationships to macroeconomic indicators and fi-
nancial derivatives prices. Padungsaksawasdi and Daigler (2013) also conclude
that although behavioral theories proved weak explanations for return-volatility
relations in commodity markets they make more sense than the leverage hypothesis.

At a more fundamental level Kilian (2006) argues that changes in the oil price are
primarily driven the demand side and makes the distinction between precautionary
demand and aggregate demand, pointing out their different effects on the US
economy. Precautionary demand with negative effects, and aggregate demand with
positive effects. The author concludes that the price build up since late 1990s is
mainly the result of aggregate demand while during instances of political instability
prices are driven by precautionary demand.

We do not have strong expectations about the sign of the leverage effect. However,
we expect that positive and negative returns might have different impact and we
allow this in our estimation.

2.3.4 Bid-ask spread
The bid-ask spread (BAS) has been found to have a positive correlation to price
volatility (e.g. Bollerslev and Melvin (1994); Roll (1984) and Wang and Yau (2000)).
According to Amihud and Mendelson (1986) it is a measure of market illiquidity as
the quoted ask offers a premium on immediate buying and the quoted bid offers a
premium on immediate selling.

The BAS is commonly divided into three components which it must cover. The
processing cost of orders, the cost for market makers of holding the futures (i.e. the
cost of hedging) and the cost of adverse information. The cost of processing orders
through the Globex electronic trading platform is minimal, and the instruments
available to market makers make hedging their portfolio efficient. The variation in
cost of hedging will therefore be driven by the cost of variance which is reflected in
the OVX. One would therefore suspect some correlation between the BAS and the
OVX.

Glosten and Milgrom (1985) identify adverse information as the main driver of
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BAS. The cost incurred to market makers through adverse information is caused by
trading with a superiorly informed customer. In order to protect them self to this
loss they must widen the BAS. This component would therefore represent excess
variation to the variation found in the OVX and could be interpreted as insecurity
about the direction of the market.

Our data set does not contain bid and ask quotes, therefore we have to cal-
culate the spread from actual trades. Schultz (2000) and Huang and Stoll (1996)
showed that the Roll-estimator (Roll, 1984) is an appropriate measure of spreads
when applied to intra-daily data for liquid markets. It is based on the recognition
that if trades fluctuate between spreads, returns will be negatively autocorrelated.
The bid-ask spread is defined as follows:

BAS = 2
√

−∑t
t=1 ∆Pt∆Pt−1

T − 1 , (2.1)

where ∆P is the price difference between two consecutive trades and T is the
number of trading pairs during the day.

This estimation is of the effective spread not the quoted spread. Meaning the
spread investors actually face in the market. The assumptions underlying estimator
are; that successive trades are independent, that the spread is constant during the
day, that trade types do not contain information about future changes in value and
that changes in true value do not contain information about futures trades (Roll,
1984).

2.3.5 Futures curve slope
According to Litzenberger and Rabinowitz (1995) the crude oil market is expected
to exhibit backwardation. The cause is that owning an extractive resource is equal
to owning a call option with a pay-off equal to the spot price and strike price
equal to the extraction cost. The producer will therefore evaluate the price of this
option against having oil out of the ground. Without backwardation, this option
would not be exercised (hence, no production), just as an option on a stock without
dividend would not be exercised before expiration. In times of high volatility this
option becomes more valuable which in turn requires stronger backwardation for the
option to be exercised. The price volatility should therefore positively correlated
with the degree of backwardation (Litzenberger and Rabinowitz, 1995).

Kogan et al. (2009) expands on this theory based on a production economy frame-
work. By observing that since capital investments for oil production are irreversible,
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the supply of oil would also be inelastic and futures prices volatile. Since spot
prices are affected by the degree of optimality of the production capital stock, the
absolute value of the slope will be larger when there is a large deviation from this
optimality. This leads to a V-shaped relationship between volatility and the shape
of the futures curve. In other words, an increasing degree of contango will also be
positively correlated to volatility. The measure of the slope of the futures curve
used by Kogan et al. (2009) is the following one:

SLt = ln
(Pt,6

Pt,3

)
, (2.2)

where Pt,6 is the latest price tick observable at day t for the 6th position and Pt,3
for the 3rd position. In order to allow for the V-shaped relationship to be captured
we will split the SLt variable into SL+

t and SL−t after demeaning it:

SL+
t = max(SLt, 0) (2.3)

SL−t = min(SLt, 0) (2.4)



Chapter 3

Theory of volatility

This chapter will introduce the two most important theoretical concepts of volatility
used in this paper. First is a description of the assumptions and calculation of
the RV measure. Second is a description of how the implied volatility variable is
calculated.

3.1 Realized volatility
First, let p(t) denote the price of some asset, which is governed by the following
process:

dpt = µ(t)dt+ σ(t) dW (t) + κ(t)dq(t), (3.1)

where µ(t) is the drift, σ(t) is the instantaneous volatility and W (t) is a standard
Brownian motion. q(t) is a Poisson counting process with the corresponding
time varying intensity function λ(t), adding to the unobserved quadratic variation
proportional to the number and sizes of the jumps. The theory of quadratic
variation allows for the decomposition of the total variation into its continuous and
jump parts which returns the following representation:

QV art =
t∫

0

σ2(s)ds+
q(t)∑
j=1

κ2(sj) (3.2)

In the absence of jumps the quadratic variation is equal to the integrated variance:

IV art =
t∫

0

σ2(s)ds (3.3)

12
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Andersen and Bollerslev (1998) proposed to use the realized variation as a proxy
for the integrated variance which can be written as:

lim
M→∞

RV art(M) =
t∫

0

σ2(s)ds (3.4)

where M is the frequency of intra-daily sampling, indicating that the accuracy of
the measure will increase as the sampling frequency increases. With equally spaced
intervals, intra-daily returns can be written as:

rt,j = pt,j − pt,j−1, j = 1, · · · ,M, t = 1, · · · , T (3.5)

for T days. Assuming sufficiently high sampling frequency the drift in the Browni-
nan motion, determining the price process, can be neglected. The result is that
realized variance can be written as the sum of squared intra-daily returns:

RV art(M) =
M∑

j=1
r2

t,j, t = 1, · · · , T. (3.6)

Throughout this paper the measure realized volatility (RV) will be used, defined as:

RVt(M) =
√
RV art(M) =

√√√√√ M∑
j=1

r2
t,j, t = 1, · · · , T. (3.7)

3.2 Implied volatility and volatility indices
The need for a robust measure of expected volatility and a demand to hedge changes
in volatility motivated the development of the Sigma Index (Brenner and Galai,
1989), fundamentally different from the BS-derived IV. The modified version of
this original index, coined the ”VIX methodology”, has since its inception become
the foundation for the most common volatility indices (Whaley, 2008). The core
idea of the index is to calculate the square root of the price of variance by the
construction of a portfolio of options which isolates the variance of the underlying.

The portfolio is centered around two strips of out-of the money calls and puts
and its exposure to the risk of price variations is eliminated by delta hedging
with a forward position in the underlying. A clean exposure to volatility risk,
independent of the value of the underlying, is obtained by calibrating the options
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to yield a constant sensitivity to variance. If each option is weighted proportionally
to the strikes on either side of the option’s price and is inversely proportionally
to the square of the option’s strike price, the sensitivity of the portfolio to total
variance is equal to one. Holding the portfolio to expiration therefore replicates the
total variance (Demeterfi et al., 1999). The price of the variance σ2 is defined as
the forward price of a particular strip of options shown in the following equation
(CBOE, 2003):

σ2 = 2
T

∑
i

∆Ki

K2
i

eRTQ(Ki) − 1
t

[
F

K0
− 1

]2

, (3.8)

where T is the time to expiration, F is the forward price level of variance defined
as the strike price at which the absolute difference between the call and put option
is smallest, plus the discounted difference between the put and the call, K0 is the
first strike below F , ∆Ki is half the difference of the strikes on either side of Ki, R
is the risk free interest rate to expiration and Q(Ki) is the midpoint of the bid-ask
spread for each option with strike Ki. i represents the selected out-of-the-money
puts and calls on the underlying centered around K0. Puts with Ki < K0 and calls
with Ki > K0 and only options with a non-zero bid quote are used.

Two such portfolios are calculated and a third synthetic portfolio with a con-
stant 30-days to expiry is constructed by linear interpolation of the near- and
next-term positions shown the following formula:

IV =

√√√√(T1σ2
1

[
T2 − 30
T2 − T1

]
+ T2σ2

2

[
30 − T1

T2 − T1

])
365
30 , (3.9)

where T1 and T2 is the time to expiry of the near- and next term options, re-
spectively. Maintaining a constant 30-days to expiry is preferred because the
implied volatility changes with the options’ time to expiry. When the near-term
option has less than one week to expiration the index rolls over to the next positions.

The possibility of arbitrage implies that the forward price of variance must be
equal to the forward price of the portfolio which replicates it. Observing that the
forward positions of the underlying in the portfolio contributes nothing to its value,
the forward price of variance reduces to the forward price of the strips of options.
In this measure, the risk premium of volatility described by Chernov (2001) will
be included. This is likely to cause implied volatility to be higher than realized
volatility. Given a liquid options market the OVX is expected to be an accurate
proxy of what investors’ expectations of future volatility including the risk premium
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of volatility. The index is calculated on a minute-to-minute basis is published by
the Chicago Board Options Exchange (CBOE).1

1When the index is published IV in equation 3.9is multiplied by 100.



Chapter 4

Data

The data used in this paper were purchased from the CME Group and contain
all trades of WTI futures contracts made through the CME Globex electronic
trading platform from 16/5/2007 to 15/5/2012, totaling 173.4 million ticks. From
this data only information involving the contract position held by USO is kept.1
Trades happening more than 24 hours before closing are also removed.2 In addition,
trading days with an early close (i.e before 16:15 ET) are removed. This leaves
a total of 1246 trading days in the sample. All variables are generated from this
data set, except the IV and open interest variables which were acquired through
EcoWin Reuters database.

4.1 Realized measures
In order to generate a realized measure, the inhomogeneous time series was made
homogeneous by extracting ticks closest to every minute-change. This leaves 1.51
million ticks over the 1246 trading days between 16/5/2007 and 15/5/2012. This pe-
riod has a total of 1.74 million trading minutes (based on a 23.25 hour trading day)
indicating that during the average trading hour in this sample, there are about 8
minutes without any contracts changing hands. The previous tick method described
by Wasserfallen and Zimmermann (1985) is chosen as was suggested by Hansen
and Lunde (2006), for time series where sampling may occur several times between
observations. Another important appeal of this method, contrary to the linear inter-
polation method, is that it only uses information available at the time of calculation.

1Since USO rolling is impossible to observe, rolling is set to happen on the business day prior
to the 9th every month.

2Extended trading days can happen under special circumstances, usually around holidays.

16
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The choice of sampling frequency has a direct effect on the accuracy of the RV
measure (which was defined in equation 3.7 as the square root of the realized vari-
ance). Equation 3.4 dictates that increasing the frequency is desirable and causes
more information about the volatility of the underlying process to be captured.
This can be seen in the last two columns of table 4.1; the realized measures based
on higher frequencies display a higher autocorrelation.

There are, however, upper boundaries for sampling frequencies. Microstructure
noise will increasingly disturb the calculated results as M increases. For instance, at
a sufficiently high M realized volatility will increase due to the oscillations in prices
caused by the bid-ask spread. When balancing the contradictory needs to capture
information and avoid microstructure noise, Andersen et al. (2001) concluded that
market liquidity is ultimately the deciding factor.

Andersen et al. (2001) argue that in a ”liquid marked” such a point of balance is
found at 5-minute sampling intervals, or 288 intra-daily observations. Admittedly,
the WTI futures market is not as liquid as the FX market, which was the market
studied by these authors, but that it is ”highly liquid” was explained in section
2.1. A frequency of 5-minutes is therefore chosen in this paper. (As was done
by for instance Bandi and Russell (2006), Andersen et al. (2007) and Patton (2011).)

Further justification of this choice is given on three accounts. First, microstructure
noise can according to both Bandi and Russell (2008) and Bollerslev et al. (2008) be
seen in a signature plot of average values for RV calculated at different frequencies.
The average values displayed in table 4.1 show that microstructure effect starts to
become significant at the 1-minute frequency, confirming that RV based on 5-minute
intervals is not highly affected. A second justification is given by the standard
deviations in table 4.1 showing minimum values for both 5 and 10 minute intervals.
The standard deviation becomes higher for both higher and lower frequencies again
probably because of microstructure noise. Third is that a very high kurtosis of
intra-day returns could indicate problems. Figure 4.1.1 shows that the kurtosis of
the returns increases with increasing frequencies and that it appears to level out at
around 5 minute intervals.

Next we provide some characteristics of the RV time series. Figure 4.1.1 shows the
slowly decaying autocorrelation of the 5-minute realized measure. This indicates
that treating the time series as a long memory process can be justified. Futhermore,
the RV time series over the period is stationary according to both the Dickey Fuller
test and the Phillips-Perron test. When splitting the sample into five subsamples,
however, the same tests can not reject the existence of a unit root for all parts of
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the time series.3. In other words, even though strictly speaking this time series does
not have a unit root, it is quite close to being an I(1) process. Therefore, we later
estimate a model for both levels of volatility and percentage changes in volatility.

Barndorff-Nielsen et al. (2008) found that for equity markets a decomposition
of the RV measure based on positive and negative intra-daily returns contained
different information. This was done in order to test if this was the case for the
WTI futures market. Figure 4.1.1 reveals that this effect is not evident and that the
regular RV measure will contain more information than any of these two measures.

Figure 4.1.3 (a) shows that the monthly cycles identified in section 2.1 are not
seen in the RV measure. Further, the closing of the market during the weekend
could cause additional volatility during for instance Mondays and Fridays, however
according to figure 4.1.3 (b) there are no signs of this effect.

Although the WTI futures market is studied at a daily frequency in this pa-
per, some additional information about the market can be given from the high
frequency data. Figure 4.1.3 (b) shows that early morning and mid-day has higher
activity and volatility than the hours from 17:00 to 01:00 ET. There is an increase
in volume and volatility at around 02:00 ET, which could represent markets opening
in Europe and as markets open in the US there is another, even more distinct,
rise in volatility and market activity. The drop at around 11:00 ET matches well
with both markets closing in Europe and lunchtime in the US. However, we do not
investigate intra-daily variations further.

4.2 Other variables
Figure 4.2.1 displays the main variables4 and the closing price of the front month
contract from 16/5/2007 to 15/7/2012. It is apparent from this figure that this
period was highly turbulent, as was the case in most markets during this period. In
2008 the price of oil reached record levels, only to be followed by a unprecedented
decline and then a long recovery. These price fluctuations reveals an incoherent
RV-price relation. At the beginning of the period they appear positively correlated
but during the decline in price, volatility rises even more steeply. Then, RV seems
to be negatively correlated to the price, but in a decreasing matter.

Comparing the graphs of the implied volatility measured by the OVX and the
3See appendix A
4For descriptive statistics see Appendix A
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Figure 4.1.1: Kurtosis of returns for sampling frequencies between 1 and 30
minutes.

Figure 4.1.2: Autocorrelation of RV based on 5-minute returns. Two additional
lines show the autocorrelation for RV time series constructed using only squared
negative returns and RV time series constructed using only squared positive returns.

Table 4.1: RV calculated for 1, 3, 5, 10, 15, and 30 minute intervals. DF is the
Dickey Fuller test and PP is the Phillips-Perron test for unit root. Values below
-3.430 means rejection at the 1% significans level for both series.AC(1) and AC(10)
are the autocorrelation for 1 and 10 lags respectively.

Descriptive statistics of realized volatility measures
Mean Min Max Kurt Skew SD DF PP AC1 AC10

RV1min 0.373 0.129 1.326 7.121 2.015 0.184 -7.379 -5.245 0.916 0.820
RV3min 0.363 0.110 1.313 7.233 1.994 0.180 -8.360 -5.470 0.894 0.791
RV5min 0.359 0.107 1.131 6.603 1.906 0.176 -8.500 -5.201 0.891 0.791
RV10min 0.354 0.111 1.158 6.532 1.881 0.175 -9.160 -6.148 0.874 0.782
RV15min 0.353 0.105 1.311 7.251 1.986 0.179 -10.179 -7.859 0.847 0.762
RV30min 0.346 0.104 1.313 7.510 1.999 0.181 -11.920 -7.806 0.796 0.725



20 CHAPTER 4. DATA

(a) Monthly (b) Weekly

(c) Daily

Figure 4.1.3: Seasonality of RV.

RV based on 5 minute intervals, it is obvious that they are highly correlated. Its
also apparent that the OVX measure is usually above the realized volatility. The
OVX measured as the price of variance, described in section 3.2, shows an average
implied volatility of 0.41 while the average RV is 0.36. The difference in values
could represent what Chernov (2001) described as the risk premium on variance.
The RV measure is also clearly noisier than the implied volatility measure. This
should be expected considering equation 3.9 which defines the OVX measure as
the 30-day expected volatility while the RV is the instantaneous daily volatility.

From the panel showing the slope of the futures curve it is apparent that over the
period, the market was mainly in contango. Since the values have been demeaned,
this graph has been shifted down and the dotted line shows the original zero-line.
The variable appear to be well correlated to the RV and IV measures. It also
indicates a positive correlation between the value of the slope and volatility, as was
suggested by Kogan et al. (2009). During and after the large price decline in the
second part of 2009 the steep slope of the futures curve would indicate that there
was a large discrepancy between the actual capital stock and the optimal capital
stock after the large decline in price.

The bid-ask spread appears to be correlated to the volatility variables from the
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beginning of the period until about the end of the first quarter of 2009 which can
be explained by the high OVX levels, as an indication of market makers’ cost of
hedging. At that point the bid-ask spread settles at a low and narrow band. It is
likely that this change is caused by a structural change in the market. For instance
the entry of a more sophisticated market maker. This would also to some extent
explain the simultaneous reduction in the size of the absolute returns as a better
informed market maker would be able to reduce returns.

Another possible explanation is based on the observation that the reduction in
bid-ask spreads happens at the beginning of the price recovery and when world
markets displayed less turmoil. At this point it could be that market participants
were less uncertain about the direction of the market and that the role of adverse
information was reduced. At the end of the period is seems that there is some
increase again in the BAS. At at that point in time prices had again reached
historically high levels and the direction of the market might have appeared more
certain.
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Figure 4.2.1: Time series for the period 16/5/2007 to 15/5/2012



Chapter 5

Results

This chapter first explains the HAR-RV model described by (Corsi, 2009). Then,
the model is expanded by adding implied volatility and exogenous variables. The
resulting models are fitted to the sample values of daily, weekly and monthly RV
using OLS regression. Each regression is performed for both the levels of RV and the
first difference of RV. The models are then evaluated for out-of-sample predictions,
again for the three different time-horizons and for levels and first differences.

5.1 Model framework
The heterogeneous market hypothesis, postulated by Müller et al. (1997), claims
that the asymmetric behavior of volatility is based on trader’s different time-
horizons. In brief, the short term trader will be influenced by both short term and
long term volatility while a long term trader is not easily influenced by short term
volatility. This gives rise to HAR-RV model, which is an approximate long-memory
cascading model of realized volatility (Corsi, 2009). According to Andersen et al.
(2007) the model has shown remarkably good forecasting performance comparable
to the much more complicated long-memory ARFIMA model and steadily outper-
forms short-memory models.

Latent realized volatilities over different time-horizons are defined as a simple
average of the daily quantities. Weekly realized volatility (with 5 trading days per
week) is defined as:

RV
(w)

t = 1
5
(
RV

(d)
t +RV

(d)
t−1d + · · · +RV

(d)
t−4d

)
, (5.1)

where RV is the realized volatility measure defined by equation 3.4. Monthly
volatility is defined analogously. The partial volatility process at each level of the

23
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cascade is assumed to be a function of past realized volatility at the same timescale
and the expectation of the next period values of the longer term partial volatilities
(except for the monthly timescale which only has the AR(1) structure). With latent
partial volatility defined as σ̃(.)

t the model is shown below:

σ̃
(m)
t+1m =c(m) + φRV

(m)
t + ω̃

(m)
t+1m,

σ̃
(w)
t+1w =c(w) + φRV

(w)
t + γ(w)Et[σ̃(m)

t+1m] + ω̃
(w)
t+1w,

σ̃
(d)
t+1d =c(d) + φRV

(d)
t + γ(d)Et[σ̃(w)

t+1w] + ω̃
(d)
t+1d,

where RV (d)
t , RV

(w)
t and RV

(m)
t are the daily, weekly and monthly volatilities, re-

spectively, as defined in equation 5.1.

By recursive substitution of the partial volatilities and setting σ̃
(d)
t = σ

(d)
t , the

model can be written as follows:

σ
(d)
t+1d = c+ βdRV d

t + βwRV w
t + βmRV

m
t + ω̃

(d)
t+1d (5.2)

From this process of latent volatility the time series model of realized volatility
becomes:

RV
(d)

t+1 = c+ βdRV d
t + βwRV w

t + βmRV
m

t + ωt+1d, (5.3)

where ωt+1d = ω̃
(d)
t+1d − ω

(d)
t+1d. Equation 5.3 is a a three factor stochastic volatility

model labeled HAR(3)-RV with a simple autoregressive structure enabling treat-
ment of volatilities realized over different intervals. A benefit of having such a
simple model is that it can easily be extended by adding additional regressors.

5.2 Implementation
The HAR-RV model is extended by adding additional regressors, similarly in prin-
ciple to what was done by Haugom et al. (2011) for the electricity market. Two
main extensions are made; one using the IV measure, and one using the exogenous
variables discussed in section 2.3. The specifications are shown in the following
equations:

HAR-RV-IV:

RVt+1 =β0 + β1RVt + β2RV
w

t + β3RV
m

t + β4IVt + εt+1 (5.4)
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HAR-RV-EX:

RVt+1 =β0 + β1RVt + β2RV
w

t + β3RV
m

t + β4SIZEt + β5NTRt+
β6OIt + β7RTN

+
t + β8RTN

−
t + β9BASt+

β10SL
+
t + β11SL

−
t + εt+1

(5.5)

HAR-RV-IV-EX:

RVt+1 =β0 + β1RVt + β2RV
w

t + β3RV
m

t + β4IVt + β5SIZEt + β6NTRt+
β7OIt + β8RTN

+
t + β9RTN

−
t + β10BASt+

β11SL
+
t + β12SL

−
t + εt+1

(5.6)

RTN+
t defined as max(RTNt, 0), and RTN−t as min(RTNt, 0) with RTN being

the percentage change in price from market close at t− 1 to market close at t
In equation 5.6 and 5.4, IVt is the implied volatility measured by the OVX. In
equation 5.4 and 5.6, SIZEt is the daily average size of trades, NTRt is the
average number of contracts traded during day t adjusted for monthly cycle, OIt is
in number of open interests at day t adjusted for monthly cycle, RTN+

t defined
as max(RTNt, 0), and RTN−t as min(RTNt, 0) with RTN being the percentage
change in price from market close at t−1 to market close at t, BASt is the measure
of average bid-ask spread during day t estimated using the Roll estimator, SL+

t

and SL−t represents the slope of the futures curve as was specified in equations 2.3
and 2.4.

The left hand side of these equations are also changed from the next day val-
ues of RV displayed above. Additionally, the models are used to predict weekly
and monthly RV. When doing so the same definition in equation 5.1 is used. In
other words the models are used to predict next week’s average volatility and next
month’s average volatility.

As was mentioned in section 4.1 the time series of realized volatility will par-
tially appear like an integrated process. From a practical perspective, predicting
the first difference of such time-series can be useful. All calculations done for the
level of RV are therefore also done for the first difference of RV. What this means in
practice for the daily horizon is simply the percentage change in RV from t to t+1.
For the weekly horizon it means the percentage change from the last week’s average
volatility written RV (w)

t and the average volatility for the next week written RV (w)
t+6 .

When having change over a monthly horizon on the left hand side of the equation
it means the percentage change between last month’s average RV, written RV

(m)
t ,
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and next month’s average RV, written RV
(m)

t+21.

5.3 In-sample modeling
The models described in the previous section, together with the original HAR-RV
model from equation 5.3, were estimated for the levels of RV and the first differences
of RV. This was done for three different horizons, next day, next week and next
month. The results are shown in three tables; Table 5.1, Table 5.2 and Table 5.3.

Table 5.1 shows the results for fitting the models to next-day values. Firstly,
it is clear that all three coefficients in the HAR-RV (1) model are highly significant.
More weight is put on the variables with a shorter time horizon and it appears that
one-day volatility has the strongest influence on the next day’s volatility level in the
WTI futures market. This would be expected according to the model’s underlying
assumption that short term traders are mainly concerned about short term volatility.

When adding the IV variable in model (2), it becomes the main explanatory
variable both in terms of statistical significance and in coefficient size. A sub-
stantial reduction is observed in all three RV-coefficients, but by far the largest
reduction is seen in the monthly measure. This variable goes from being highly
statistically significant to losing all explanatory power. Since the OVX measures the
market expectation of 30-day volatility the long horizon part of the RV measures
should be embedded. In other words it is a representation of what the long term
traders think about volatility.

Adding the exogenous variables in model (3) moderately decreases the estimated
coefficient of the short term component. The information content of the EX vari-
ables is therefore mainly overlapping the information in the daily RV measure. One
can also observe an increase in the R-squared values for both models (2) and (3)
which indicates that adding the variables improves the original model.

Model (3) shows that there are variations in the contributions of the different
EX-variables. The two return-variables show the highest statistical significance of
the EX variables. The two variables show a substantial difference in the size of their
coefficients with 1.8 times larger effect when the return is negative than positive.
This means that large returns (both positive and negative) increase volatility, but
the increase is larger for negative returns, indicating a leverage effect.

The BAS measure also shows statistical significance. However, as we can see
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from figure 4.2.1 there seems to be a structural change in the BAS at 1/5/2009.
We therefore split the sample into two subsamples.1 We find that the coefficient
is significant in the first subsample, but not in the second. This should not be
surprising since the behavior of the variable changed significantly at that time.
This supports our assumption that the market structure changed at 1/5/2009. One
possible explanation would be the entry of a new market maker.

When combining all the variables in model (4) the R-squared value indicates
that both the IV and the EX measures contain additional information to that
provided by the RV measures. By comparing the R-squared value for (2) and (3) it
seems evident that the EX variables contain more information than the IV about
next day volatility. Additionally, the increase in R-squared values induced by the
IV variable is similar regardless of whether the model contains EX variables or not,
implying that the IV variable contains separate information from the EX variables.

In general, the same effects from adding the IV and EX variables are seen in
the RV coefficients when the models are fitted to the first difference of RV. Slightly
different effects from adding the IV and EX variables can be inferred from the
R-squared values. They suggest that the information content of the IV variable is
larger when predicting change than levels. The same is seen for the EX variables
when looking at the R-squared values in model (7).

That the slope of the futures curve is unable to explain changes in volatility
in model (7) and (8), but is a highly significant explanatory variable for levels of
volatility seen in models (3) and (4).

Fitting the same four models to average RV over the next five days is presented in
table 5.2. It is clear from (1) that the weight of the coefficients and the statistical
significance is shifted towards the weekly measure of past volatility compared to
when the model was fitted to daily values. When adding the IV variable, seen in
model (2) the reduction of the RV coefficients is largest for the monthly measure
but also substantial for the weekly and daily measure. In contrary to the daily
horizon the effect of the monthly RV variable remains highly significant. It should
also be noted that the IV measure is again the most important explanatory variable
with the highest coefficient and significance.

In the case of estimating the model for weekly averages of RV, adding the EX
variables still reduces all the RV coefficient but to a lesser extent than the IV
variable. From the R-squared values it is seen that the increase from (1) to either

1See appendix B
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(2) or (3) is almost equal. This could indicate that the IV variable performs better
relative to the EX variables when it comes to next weekly average levels of RV. The
significance of the EX variables are largely similar to what was found for the daily
horizon, with returns, BAS and slope of futures curve being statistically significant.

When fitting the models to the first difference of weekly RV, model (5) in ta-
ble 5.2 shows that the weight has been shifted towards the weekly measure of RV.
Adding the IV measure induces the same effect as seen when fitted to RV values
and all thee RV-coefficients are reduced. Further, there is a slight improvement in
the statistical significance of the effects of the EX variables, particularly in the OI
variables.

The in-sample fittings of the models to monthly RV measures are presented in table
5.3. For the monthly time-horizon the effect of the long term component of the
time- series is the one with the highest significance and highest coefficient. This is
evident for both levels and the first difference of the monthly RV.

Adding the IV variables seen in model (2). This again reduces all coefficients
and it becomes the main explanatory variable. The biggest reduction is now seen
in the weekly RV measure but its statistical significance as well as the size of the
coefficient is lower than when fitting the model to daily and weekly measures of
RV.

The effect of adding the EX variables seen in model (3) of table 5.3. It reduces
the RV coefficients to a less extent than for the daily and weekly horizon. The
negative returns and the BAS variable are still highly significant. Additionally, the
number of trades is becomes a significant variable. Of the return variables only
the negative returns now have any explanatory power. In addition the number
of trades is significant when the models are estimated to a monthly measure of
volatility.

The model combining both IV and EX variables (4) displays a higher R-squared
value than models (1), (2) and (3). But the increase from adding the IV vari-
able, seen from (3) to (4), is much less than what was observed for the daily and
weekly horizon. This could indicate that when it comes to a monthly horizon the IV
variable has less additional information to that provided by the HAR-RV-EX model.

When it comes to the first difference of monthly volatility seen in models (5)–
(8) in table 5.3, the IV variable is no longer as significant as it was for the shorter
horizons. Additionally the EX variables are all, with the exception of open interest,



5.3. IN-SAMPLE MODELING 29

more statistically significant. This is again an indication that the IV variable
performs better for shorter horizons.
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Table 5.4: Mean squared errors of predictions using rolling windows of different
sizes. * indicates the best performing window.

RVt+1 ln(RVt+1/RVt)
HAR-RV HAR-RV-IV-EX HAR-RV HAR-RV-IV-EX

w=125 0.00608 0.00638 0.0363 0.0408
w=250 0.00610 0.00556 0.0353 0.0333
w=500* 0.00430 0.00364 0.0362 0.0332
w=750 0.00494 0.00400 0.0382 0.0338

5.4 Out-of-sample forecasting
Since the goal of this paper is to improve volatility forecasting, the models must be
tested for out-of-sample predictions. Out-of-sample predictions are used to make
direct comparisons of the performance of the models relative to the actual values
of the time series.

The choice of estimation-window for out-of-sample predictions will affect how
the models are performing. On the one hand a larger window will make the model
estimates more reliable as the underlying data sample increases and on the other
hand a large window make the model less adaptable to changes in the market.
Table 5.4 displays the mean squared error (MSE) for predictions made by two of
the model specifications when using four different rolling windows. The numbers
indicate that a two year window will produces the best results. Based on this
crude comparison, a two year window rolling window is chosen for subsequent
out-of-sample predictions.

In order to evaluate the relative performance of volatility models Mincer and
Zarnowitz (1969) suggested running a regression as described by the following
equation:

RVt+1 = β0 + β1v̂Model1,t + β2v̂Model2,t + εt+1 (5.7)

where RVt+1 is the observed realized volatility at t + 1, v̂Model1,t is the forecast
obtained from one of the models and v̂Model2,t is the forecast from a second model.
The main benefit with this procedure is that it will directly give an indication of
the differences between the models. The method is also applied to evaluations of
weekly and monthly volatility predictions by exchanging RVt+1 with RV

(w)
t+6 and

RV
(m)

t+21 respectively. The results from these comparisons are displayed in table 5.5.2

2Additional comparison statistics such as the mean square error (MSE) and the mean absolute
error (MAE) for RVt+1 predictions can be found in Appendix C.
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The regressions in table 5.5 show that when predicting RV one day ahead, adding
both IV and EX variables significantly improves forecasting. When comparing the
HAR-RV-IV model and the HAR-RV-EX the regression is inconclusive. This shows
that the performance of the two models is comparable in making predictions. The
coefficients indicate that the IV is slightly better at predicting the level of volatility,
while the EX variables are slightly better at predicting the one-day change in
volatility. When comparing the combined model to the other models the tests all
show that the combined model outperforms the other models.

In the comparisons of models’ predictions one week ahead, shown in panel B,
a slightly different dynamic is seen. It does improves the model significantly
when predicting the levels of RV, but when making predictions of the change in
volatility the IV variable no longer significantly improves the original HAR-RV
model. Adding the EX variables is clearly an improvement for predictions, and
there is evidence that the HAR-RV-EX model outperforms the HAR-RV-IV model
both in predictions of levels and in predictions of change. When comparing the
combined model to the rest of the models, it still performs better than the simpler
HAR-RV-EX model indicating that the IV variable does contain some information
about the future weekly volatility levels. When it comes to predictions of change,
adding the IV makes only a slight improvement significant at the 5 % level.

When comparing the monthly predictions seen in panel C of table 5.5 a simi-
lar pattern to the one in panel B is seen. The EX variables clearly contribute more
to the precision of the predictions than the IV variables. When comparing the
predictions of the HAR-RV-IV and the HAR-RV-EX it is clear that the latter is
performing better for both levels and differences. Nevertheless, the IV variable is
still an improvement to the HAR-RV-EX model when levels are predicted. When
predicting changes the combined model does not perform any better than the
simpler HAR-RV-EX model.
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Chapter 6

Conclusion

The aim of this paper has been to improve time series forecasting of realized
volatility (RV) in the WTI futures market by including additional explanatory
variables. The approach chosen was to combine realized volatility with implied
volatility (IV) and other exogenous market variables (EX) in a forecasting model
based on the HAR-RV model described by Corsi (2009). The realized measure
of volatility was calculated using high frequency data. As a proxy for IV the oil
volatility index published by the CBOE was used. Market variables added to the
model are volume, open interest, daily returns, the bid-ask spread and the slope of
the futures curve.

Our results show that the HAR-RV model fits the RV time series significantly
better when both the IV and EX variables are added to the model. The effect of
adding the IV variable was strongest when the model was fitted to next-day levels
and weakest when the model was fitted to next-month changes in RV levels. The
effect of adding the EX variables was more statistically significant for the longer
horizons than the short. Of the exogenous variables the daily return variables were
the only variables to be highly statistically significant effects for both RV levels and
differences for all time-horizons. The bid-ask spread and the slope of the futures
curve were also found to have significant effects.

Out-of-sample testing shows that time series predictions of volatility are improved
the most by adding both the IV and EX variables. Implied volatility improves
predictions most significantly for short-term predictions, whereas other market
variables (and particularly the bid-ask spread) had a more significant effect than
implied volatility for long-term forecasts.

This work shows that including implied volatility and other market variables
improves volatility forecasts for the WTI futures market. Additional finding in this
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paper is that leverage effects (the relationship between past returns and volatility)
is very different from the one found in equity markets. It has a V-shape, meaning
that large returns (both positive and negative) increase volatility in this market.
Therefore, we suggest the leverage effect for oil, as well as other commodities, to
be investigated further.
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frequency time-series forecasts vis-à-vis implied volatility’, Journal of Futures
Markets 24(11), 1005–1028.

Marzo, Massimiliano and Paolo Zagaglia (2010), ‘Volatility forecasting for crude
oil futures’, Applied Economics Letters 17(16), 1587–1599.

Mincer, Jacob A and Victor Zarnowitz (1969), The evaluation of economic forecasts,
in ‘Economic Forecasts and Expectations: Analysis of Forecasting Behavior and
Performance’, NBER, pp. 1–46.

Müller, Ulrich A, Michel M Dacorogna, Rakhal D Davé, Richard B Olsen, Olivier V
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Table A.1: Phillips-Perron test and autocorrelation for subsamples of RV based
on 5-minute intervals. Values below -3.430 means rejection of unit root at the
1% significans level. AC(1) and AC(10) are the autocorrelation for 1 and 10 lags
respectively.

PP AC1 AC10
RV1−200 -9.044 0.426 0.286
RV200−400 -2.480 0.873 0.723
RV401−600 -3.209 0.843 0.657
RV601−800 -6.183 0.656 0.333
RV801−1000 -6.299 0.662 0.087
RV1000−1200 -4.994 0.759 0.319

Table A.2: Descriptive statistics for regression variables. NTR and OI are
adjusted for monthly cycle and are divided by 10,000 and 100,000 respectively.

Variable Obs Mean Std. Dev. Min Max

ln(RVt+1
RVt

) 1246 0.000 0.208 -0.712 0.757
RVt 1246 0.360 0.176 0.115 1.256
RVt5 1246 0.360 0.166 0.138 1.018
RVt20 1246 0.360 0.160 0.173 0.960
IVOV X 1246 0.413 0.144 0.243 1.004
NTR 1246 11.098 0.689 9.063 13.39
SIZE 1246 2.142 0.441 1.202 3.537
OI 1246 3 0.405 0.479 4.143
RTN+ 1246 0.0090 0.0141 0.0000 0.0947
RTN− 1246 -0.0090 0.0156 -0.1267 0.0000
RG∗ 1246 0.021 0.013 0.005 0.126
BAS 1246 0.0141 0.008 0.007 0.129
SL− 1246 -0.0076 0.0109 -0.0488 0.0000
SL+ 1246 0.0077 0.0147 0.0000 0.1478
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50 APPENDIX B. IN-SAMPLE MODELING
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Table C.1: Test statistics for out-of sample predictions of next day levels and
differences. Mean squared errors (MAE) and mean absolute errors (MAE) compared
to acutal values are shown for the four different model specifications. * indicates
statistically significant difference in the MSE values of the marked model compared
to the MSE values for the basic HAR-RV model according to the Diebold and
Mariano (2002) test.

HAR-RV HAR-RV-IV HAR-RV-EX HAR-RV-IV-EX

RVt+1:
MSE 0.004113 0.00416 0.003914* 0.003461*
MAE 0.0450 0.0451 0.04296 0.044192

ln(RVt+1
RVt

):
MSE 0.03617 0.03511 0.03512 0.0332*
MAE 0.1460 0.145 0.1435 0.1387
* p<0.05, ** p<0.01, *** p<0.001

Table C.2: Weekly horizon

Table C.3: Test statistics for out-of sample predictions of next week levels and
differences. Mean squared errors (MAE) and mean absolute errors (MAE) compared
to acutal values are shown for the four different model specifications. * indicates
statistically significant difference in the MSE values of the marked model compared
to the MSE values for the basic HAR-RV model according to the Diebold and
Mariano (2002) test.

HAR-RV HAR-RV-IV HAR-RV-EX HAR-RV-IV-EX

RVt+1:

MSE 0.00406 0.004064 0.0038177* 0.003707*
MAE 0.04268 0.04269 0.03987 0.03908

ln(RVt+1
RVt

):

MSE 0.03622 0.0364 0.0348 0.03468
MAE 0.1389 0.1389 0.1337 0.1328
* p<0.05, ** p<0.01, *** p<0.001
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Table C.4: Test statistics for out-of sample predictions of next month levels
and differences. Mean squared errors (MAE) and mean absolute errors (MAE)
compared to acutal values are shown for the four different model specifications. *
indicates statistically significant difference in the MSE values of the marked model
compared to the MSE values for the basic HAR-RV model according to the Diebold
and Mariano (2002) test.

HAR-RV HAR-RV-IV HAR-RV-EX HAR-RV-IV-EX

RVt+1:

MSE 0.003521 0.003539 0.003189 0.003163
MAE 0.04227 0.04539 0.04040 0.04020

ln(RVt+1
RVt

):

MSE 0.03667 0.03679 0.03189 0.0320
MAE 0.1542 0.1541 0.1352 0.1352
* p<0.05, ** p<0.01, *** p<0.001
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