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Abstract

This thesis investigates the Linear Decision Rule (LDR) approach applied to the bid-
ding problem of a Nordic hydropower producer with reservoir capacity. A stochastic
programming model with piecewise LDR in the spot prices is developed. A compre-
hensive case study with uncertain spot prices conducted for the fall of 2012 shows
that the LDR model performs equally well as a scenario based model on expectation,
yet with a smaller standard deviation in the profits. The runtime of the LDR model
is substantially longer than the runtime of the scenario based model. Therefore,
promising techniques to reduce the runtime are developed and presented.
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Sammendrag

Denne avhandlingen undersøker om budgivningsproblemet til en nordisk vannkrafts-
produsent bør løses ved hjelp av lineære beslutningsregler (LDR). En stokastisk pro-
grammeringsmodell med stykkevis lineære beslutningsregler i spotprisene er utviklet.
En omfattende case-studie med usikre spotpriser viser at en LDR-modell og en
scenariobasert modell har tilnærmet lik forventet fortjeneste. Standardavviket fra
LDR-modellen er mindre, men kjøretiden er betydelig lengre sammenlignet med
den scenariobaserte modellen. Lovende teknikker for å redusere kjøretiden er derfor
utviklet og presentert.



IV



Preface

This dissertation is written as a Master’s thesis for the Master of Science degree
at the Norwegian University of Science and Technology (NTNU), department of
Industrial Economics and Technology Management within the field of Managerial
Economics and Operations Research.

First and foremost, we would like to thank our supervisor, Professor Stein-Erik
Fleten for helpful supervision, and PhD candidate Gro Klæboe at the Department of
Electric Power Engineering at NTNU for hours with valuable discussions. We would
also like to give sincere thanks to Dr. Daniel Kuhn at the Imperial College London
for guidance on the Linear Decision Rule models and helpful inputs throughout the
semester. We would further like to thank Lars Thore Wibe Aarrestad and the good
folks at Powel AS Smart Generation, and P̊al Otto Eide and Knut-Harald Bakke at
Norsk Hydro ASA for helpful comments and for providing us with data.

Trondheim, June 7, 2013

Anders Lund Eriksrud Jørgen Braathen



VI



Nomenclature

ait Bid volume at bid point i ∈ ISt at time t ∈ T B in the deterministic
equivalent.

bs(ξs) Right-hand side vector in stage s ∈ S.
cs(ξs) Coefficients in objective function in stage s ∈ S.
drt Spill from reservoir r ∈R at time t ∈ T .
e Vector of ones.
e1 Unit vector.
frt Reservoir level in reservoir r ∈R at the end of period t ∈ T .
h Used to describe the polyhedron Ξ̂.
ĥ Subvector of h.
h′ Used to describe the polyhedron Ξ̂′.
h̃ Used to describes the polyhedron containing Ξ̃.
k Dimension of ξ.
ks Dimension of ξs in stage s ∈ S.
ks Dimension of ξs in stage s ∈ S.
l Dimension of h.
l̃ Dimension of h̃.
m The total number of constraints in the original problem.
ms Dimension of bs(ξs), i.e., the number of constraints in stage s ∈ S.
n The total number of decision variables in the original problem.
ns Dimension of xs(ξs), i.e., the number of decision variables in stage

s ∈ S.
ogt Imposed start-up cost for generator g ∈ G at time t ∈ T .
qgt Water discharge for generator g ∈ G at time t ∈ T .
ri The number of line segments used for ξi, i ∈ {1, . . . ,k} in the piecewise

LDR model.
rsi Folding direction, used in the piecewise LDR model with general seg-

mentation, for i ∈ {1, . . . ,ks} and stage s ∈ S \{1}.
ss(ξs) Slack variables in stage s ∈ S.
st Stage corresponding to time period t ∈ T B .
ugt State variable, equal to 1 if generator g ∈ G is operation at time t ∈ T

and 0 otherwise.
v Value of stored water at the end of the planning horizon.
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wgt Production from generator g ∈ G at time t ∈ T .
w+
gt Increased production from generator g ∈ G at time t ∈ T , compared to

production at time t−1.
w−gt Decreased production from generator g ∈ G at time t ∈ T , compared to

production at time t−1.
∆w+

t Production surplus at time t ∈ T B .
∆w−t Production deficit at time t ∈ T B .
xs(ξs) Decision variables in stage s ∈ S.
yt Spot market volume commitment at time t ∈ T .

Asτ Parameters of xτ (ξτ ) for τ ∈ S in the constraints in stage s ∈ S.
Bs Right-hand side matrix for stage s ∈ S.
Cs Coefficient matrix in the objective function in stage s ∈ S.
Egh Constant in the production-discharge curve for generator g ∈ G and cut

h ∈H.
Êgh Constant in the production-discharge curve for generator g ∈ G and cut

h ∈H.
Frp Constant (reservoir filling) in water value cut p ∈P for reservoir r ∈R.
F r Lower bound on the reservoir level in reservoir r ∈R.
F r Upper bound on the reservoir level in reservoir r ∈R.
Kg Start-up cost for generator g ∈ G.
Lp Constant (future value) in the water value curve for cut p ∈ P.
M Moment matrix of the uncertain parameters.
M̃ Moment matrix of the principal components.
Ps Truncation operator in stage s ∈ S, i.e., ξs = Psξ.
Q
g

Lower bound on the discharge for generator g ∈ G.
Qg Upper bound on the discharge for generator g ∈ G.
Rs Matrix with columns equal to the eigenvectors of Σs in stage s ∈ S.
R?s Reduced coefficient matrix in stage s ∈ S, used in the principal compo-

nent reduction, submatrix of Rs.
Rs Coefficient matrix that converts ξ̃ into ξs in stage s ∈ S.
Ss Decision variables for slack variables in the LDR problem in stage s∈S.
Vrp Marginal water value for reservoir r ∈R and cut p ∈ P.
W Used to describe the polyhedron Ξ̂.
Ŵ Submatrix of W .
W ′i Used to describe the polyhedron Ξ̂′ for i ∈ {2, . . . ,k}.
W̃ Used to describe the polyhedron that contains Ξ̃.
W g Lower bound on the generation from generator g ∈ G.
W g Upper bound on the generation from generator g ∈ G.
∆W+

t Decision rule for ∆w+
t at time t ∈ T B .

∆W−t Decision rule for ∆w−t at time t ∈ T B .
Xs Decision variables in the LDR problem in stage s ∈ S.

G Set of generators.
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Gr Set of generators belonging to reservoir r ∈R, subset of G.
Hg Set of cuts in the production-discharge curve for generator g ∈ G.
It Set of break points (bid points) in the bid curve at time t ∈ T B in the

piecewise LDR model.
ISt Set of bid points in the bid curve at time t ∈ T B in the deterministic

equivalent.
M Set of macroperiods, used in the stage aggregation.
P Set of cuts in the water value curve.
R Set of reservoirs.
RAr Set of reservoirs immediately above reservoir r ∈R, subset of R.
S Set of stages in LDR model.
T Set of time periods in the planning horizon.
T B Set of time periods with spot market bidding (24 hours).
T T Set of time periods in the training period for the ARMA parameter

estimation.
Tm Set of time periods in macroperiod m ∈M, subset of M.

βs Share of the variance of ξs captured by the reduced vector of principal
components in stage s ∈ S.

γ−t Demanded volume in the balancing market for ramping down produc-
tion at time t ∈ T B .

γ+
t Demanded volume in the balancing market for ramping up production

at time t ∈ T B .
δ Small real number.
εt Forecast error for the spot price at time t ∈ T ∪T T .
ε̄m Average spot price forecast error in macroperiod m ∈M.
ζij Break point j ∈ {1, . . . , ri−1} in ξi, i ∈ {1, . . . ,k}, used in the piecewise

LDR.
ζsj Vector of break point j ∈ {1, . . . , ri} in ξs in stage s ∈ S.
ζ̃sj Vector of break point j ∈ {1, . . . , ri} in ξ̃s in stage s ∈ S.
ζ̃ij Break point j ∈ {1, . . . , r̃i−1} in ξi, i ∈ {1, . . . , k̃}, used in the piecewise

LDR with PCR.
κrt Inflow to reservoir r ∈R at time t ∈ T .
µs Expected values of ξs in stage s ∈ S, seen from the first stage.
νsi Eigenvalue i ∈ {1, . . . ,ks} of Σs in stage s ∈ S.
ξ Vector of all uncertain parameters.
ξs Vector of uncertain parameters observed in stage s ∈ S.
ξs Vector of uncertain parameters observed up to stage s ∈ S, i.e., ξs ,

(ξ>1 , . . . , ξ>s )>.
ξ
i

Lower bound on ξi for i ∈ {1, . . . ,k}.
ξi Upper bound on ξi for i ∈ {1, . . . ,k}.
ξ′ Uncertain parameters in the lifted space, i.e., the uncertain parameters

in the piecewise LDR problem.
ξ′i Lifted parameters of ξi for i ∈ {2, . . . ,k}.
ξ̃ Vector of all principal components.
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ξ̃s The principal components of ξs in stage s ∈ S.
ξ̃?s The reduced vector of principal components in stage s ∈ S.
ρt Spot price at time t ∈ T ∪T T .
ρDt Deterministic spot price forecast at time t ∈ T ∪T T .
σ−t The imbalance price of production deficit at time t ∈ T B .
σ+
t The imbalance price of production surplus at time t ∈ T B .
ωt Residual in the ARMA model for the spot forecast error at time t ∈

T ∪T T .

Θ1 AR1 coefficient in the ARMA model for the spot price forecast error.
Θ1 AR2 coefficient in the ARMA model for the spot price forecast error.
Λs Decision variables associated with the support description in the LDR

problem in stage s ∈ S.
Λ̃s Decision variables associated with the support description in the LDR

problem with PCR in stage s ∈ S.
Ξ The support of ξ.
Ξ′ The support of ξ′.
Ξ̃ The support of ξ̃.
Ξ̂ A bounded polyhedron containing the convex hull of Ξ.
Ξ̂′ A bounded polyhedron containing the convex hull of Ξ′.
Σs The covariance matrix of ξs in stage s ∈ S.
Φ1 MA1 coefficient in the ARMA model for the spot price forecast error.

B Retraction operator.
Bi Retraction operator, transforms ξ′ into ξi for i ∈ {1, . . . ,k}.
E Expected value operator.
Lij Lifting operator, transforms ξ into ξij for i ∈ {1, . . . ,k} and j ∈

{1, . . . , ri}.
Z+ Set of positive integers.
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1. Introduction

Electricity producers with portfolios consisting of reservoir hydropower must decide
in which time periods they should produce the energy stored in their reservoirs.
Each producer determines a value of the stored water and submits bids into whole-
sale electricity markets in order to maximize profits. We refer to the problem of
optimizing the bidding decisions in the day-ahead market as the bidding problem
of a hydropower producer. This thesis evaluates a new framework for solving the
bidding problem, using the Linear Decision Rules (LDR) approach.

The main marketplace for Nordic power producers is the day-ahead auction, Elspot,
organized by Nord Pool Spot (NPS) [1]. This is the largest physical electricity
market in the World, including Norway, Sweden, Finland, Denmark, Estonia and
Lithuania. In 2012, the total turnover in the Elspot market was 334 TWh, and 77 %
of all electricity in the Nordic region was traded in this market. Prior to 12:00 noon
producers and consumers submit bids for selling and purchasing electricity for the
next day, that is, for the next 12 to 36 hours. The Nordic exchange area is divided
into price zones and NPS calculates the zone prices for each hour and zone.

Single hourly bids represent the largest share of the trading in Elspot, in which the
participants specify the purchase and sales volumes for each hour. A single hourly
bid may consist of up to 64 price points. Furthermore, the bidding curve must be
nondecreasing1. A participant accepts that NPS will make a linear interpolation of
volumes between each adjacent pair of submitted price points.

The Transmission System Operators (TSOs) are responsible for the grid stability
and the power balance in the system. Imbalances caused by deviations from the
production plans and load forecasts must be leveled out in order to maintain the
instant balance in the system at any point of time. Hence, the TSOs need access to
balancing power, which is procured in the balancing markets. The Nordic tertiary
Balancing Market (BM)2 gives the producers the opportunity to ramp up production
at a price higher than the spot price, and ramp down production at a price lower

1 A nondecreasing bid curve consists of bids that yield nondecreasing bid volumes with increasing
bid prices.

2 NO: Regulerkraftmarkedet.
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Fig. 1.1: Trading routines in the Nordic electricity markets. Markets for primary and
secondary reserves are not included.

than the spot price3. Further, NPS organizes the continuous bilateral Elbas market,
which is active after the spot market has been cleared. Trading routines are shown
in Fig. 1.1.

Hydropower producers often base their bidding decisions on deterministic models,
such as the Short-term Hydro Optimization (SHOP) [2], which is commonly used in
the Nordic region. A deterministic model does not provide decision support for con-
structing a bid curve, the bidding decisions hence rely on the skills and experience of
the production planners. Furthermore, the level of uncertainty in the power system
is currently increasing as a result of a rapidly growing share of nonflexible renewable
power [3]. The increased uncertainty might result in more volatile prices in the elec-
tricity markets. Accounting for uncertainty in the bidding decisions using stochastic
optimization tools might therefore increase the profits of electricity producers sub-
stantially. Hydropower producers also face uncertainty associated with the inflows
to the reservoirs. In the literature, electricity producers are commonly modeled as
risk neutral in the bidding decisions, whereas risk management is conducted in the
financial markets [4].

The literature on solving the stochastic bidding problem using scenario based solu-
tion methods is extensive. A stochastic dynamic programming model was presented
in [5], solving a convex quadratic programming in each stage. In [6], a stochas-
tic integer programming model was suggested. The deterministic equivalent of the
bidding problem solved in [7], using mixed-integer linear programming. Bender’s
decomposition was used to solve the bidding problem in [8] and Approximate Dual
Dynamic Programming was used in [9]. Bidding in sequential markets has gained
some recent attention [10, 11, 12, 13, 14], in which the balancing market or intraday
trading has been taken into account in the spot bidding decisions. A review of the
literature on bidding strategy optimization in a general context can be found in [15].

Solving stochastic programming problems is computationally demanding. The gen-
eral two-stage problem is proven to be #P-hard [16], and the multi-stage problem

3 Note that there is an essential difference between offering volumes in the BM at a better price
than or equal to the spot price and “buying” balancing services from the TSO because of own
imbalances. In the latter case the price in the BM is always worse or equal to the spot price.
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is even harder to solve [17]. This indicates that stochastic programming problems
need to be simplified in order to obtain tractability. The classical approach is to
represent the underlying stochastic processes of the random parameters by a finite
scenario tree [18, 19]. The runtime of scenario based models is to a large extent
dependent on the size of the scenario tree, which grows rapidly with an increasing
number of time stages. This means that the number of scenarios should be limited
to a small number, while sufficiently representing the underlying uncertainty. The
performance of a scenario based model might be very sensitive with respect to the
construction of the scenario tree. That is, the modeler risks to “overfit” the solution
to the scenario tree, resulting in poor performance in an out-of-sample evaluation
[20].

The LDR approach provides an approximation of a stochastic programming problem.
This solution method allows for continuous probability distributions of the uncertain
parameters and yields a tractable linear programming problem. The concept of
LDR is old [21], but it has gained increased attention through recent developments
[22, 23, 24, 25, 26, 27, 28], mainly in the framework of Robust Optimization. There
is no need for state discretization or scenario generation in the LDR approach, as
opposed to scenario based solution methods. To our knowledge the LDR approach
has never been tested for the bidding problem. This thesis investigates the LDR
framework and the adaptability to the bidding problem of a Nordic hydropower
producer. The results are compared to results from a scenario based model and a
deterministic model.

The contribution of this thesis is threefold:

1. An LDR model of the bidding problem of a Nordic hydropower producer is
developed, taking into account uncertainty in inflows, spot prices and prices
in an intraday market.

2. The performance of the LDR model is compared to the performance of a
scenario based model and a deterministic model in a case study using stochastic
spot prices, deterministic inflows and deterministic intraday market prices.

3. Methods to reduce the runtime are investigated and tested. In addition, a new
methodology using Principal Component Analysis is developed and evaluated.

The outline of this thesis is the following. Chapter 2 provides a general presentation
of the LDR theory and develops a problem reduction method using Principal Com-
ponent Analysis. The bidding problem is presented in Chapter 3. A comprehensive
case study is performed in Chapter 4, in which methods that reduce the runtime
are investigated, and comparisons with a scenario based model and a deterministic
model are conducted. Finally, Chapter 5 concludes and suggests future work.

Notation We denote the trace of a square matrix A ∈ Rm×m by Tr(A). We use
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≥ and ≤ as componentwise inequalities for matrices and vectors. Moreover, conv Ξ
denotes the convex hull of the set Ξ, i.e., the smallest convex set that contains Ξ.

We will apply the cyclicity property of the trace operator, that is,

Tr(BC) =
m∑
i=1

n∑
j=1

BijCji = Tr(CB), (1.1)

for some matrices B ∈ Rm×n and C ∈ Rn×m.



2. Theory

The Linear Decision Rules (LDR) approximation of a stochastic programming prob-
lem provides a tractable Linear Programming problem (LP) at the cost of a potential
loss of optimality. The LDR approach does however not require discrete distribu-
tions of the uncertain parameters or state discretization, in contrast to scenario
based optimization models. This chapter derives the LDR approximation for lin-
ear stochastic programming problems with fixed recourse. An improvement of the
approximation using piecewise linear decision rules is presented later in this chap-
ter. We further suggest a method to reduce the problem size, called finite memory.
In addition, a new technique used to reduce the problem size applying principal
component analysis is developed.

We seek to solve the following multistage stochastic programming problem

min E

[∑
s∈S

cs(ξs)>xs(ξs)
]

(2.1)

s.t.
s∑

τ=1
Asτxτ (ξτ )≤ bs(ξs), ∀s ∈ S, ξ ∈ Ξ, (2.2)

where S denotes the set of time stages and Ξ denotes the support of the uncertain
parameters ξ ∈ Rk. Further, ξs ∈ Rk

s denotes the uncertain parameters that are
observed up to stage s ∈ S, xs(ξs) ∈ Rns denote the decision variables and cs(ξs) ∈
Rms , Asτ ∈ Rms×nτ and bs(ξs) ∈ Rms denote the problem parameters. Note that
Asτ is independent of ξ, that is, the problem has fixed recourse. Applying the LDR
approximation to a problem with random recourse is more intricate and results in a
semidefinite programming problem [22]. Moreover, xs is a function of ξs only, which
assures nonanticipativity.

We introduce slack variables ss(ξs) ∈ Rms in stage s ∈ S, and write problem (2.1)-
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(2.2) on the form

min E

[∑
s∈S

cs(ξs)>xs(ξs)
]

(2.3)

s.t.
t∑

τ=1
Asτxτ (ξτ ) +ss(ξs) = bs(ξs), ∀s ∈ S, ξ ∈ Ξ, (2.4)

ss(ξs)≥ 0, ∀s ∈ S, ξ ∈ Ξ. (2.5)

2.1 The Linear Decision Rules Approximation

This section derives the LDR approximation, based on the derivation in [26], yet
adjusted to the problem presented above.

First, we need some assumptions for the problem parameters. Without loss of gen-
erality, we let ξ1 = 1 almost surely for technical reasons. Furthermore, we assume
that the convex hull of Ξ is contained in a compact polyhedron Ξ̂ on the form

convΞ⊆ Ξ̂ ,
{
ξ ∈ Rk :Wξ ≥ h,W ∈ Rl×k,h ∈ Rl, l ∈ Z+

}
. (2.6)

The system Wξ ≥ h is assumed1 to be strictly feasible for ξi for all i ∈ {2, . . . ,k},
i.e., let

W =

 e>1
−e>1
Ŵ

 and h=

 1
−1
ĥ

 , (2.7)

for some Ŵ ∈R(l−2)×k and ĥ ∈Rl−2, where e1 , (1,0, . . . ,0)> ∈Rk is a unit vector.
Then,

∃δ ∈ R, ξ̂ ∈ Ξ̂ : δ > 0,Ŵ ξ̂ ≥ ĥ+ δe, (2.8)

where δ is any small positive number and e ∈ Rl−2 is a vector of ones. In essence,
the strict feasibility requirement ensures that none of the stochastic parameters are
deterministic. This requirement implies that the linear span of Ξ coincides with Rk.

For notational purposes we introduce the truncation operator Ps : Rk → Rk
s such

that
ξs = Psξ, ∀s ∈ S. (2.9)

We further assume2 that cs(ξs) and bs(ξs) can be written as

cs(ξs) = Csξ
s = CsPsξ and bs(ξs) =Bsξ

s =BsPsξ, ∀s ∈ S, (2.10)
1 This assumption is nonrestrictive, because we are free to reduce the dimension of ξ.
2 This assumption is also nonrestrictive because ξs can contain cs(ξs) and bs(ξs) as subvectors.
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(a) Scenario based model. (b) LDR model.

Fig. 2.1: Illustration of feasible decisions in scenario based models and in the LDR approx-
imation.

for some matrices Cs ∈ Rns×ks and Bs ∈ Rms×ks .

The approximation lies in the decision rules that we impose on xs(ξs). We restrict
the decisions such that the following linear dependency on the observed uncertain
parameters is satisfied

xs(ξs) =Xsξ
s =XsPsξ, ∀s ∈ S, (2.11)

for some matrices Xs ∈ Rns×ks . The Xs matrices are the new decision variables,
independent of ξs. These variables are hence deterministic. Imposing the above
decision rules on the problem is a restriction and might therefore result in a loss of
optimality. Fig. 2.1 illustrates how the LDR restrict the decisions to lie on a hyper-
plane imposed by the uncertain parameters, as opposed to scenario based solution
methods. However, the LDR approximation enables us to transform the stochastic
program into a finite, tractable LP without discretizing the support or the solution
space of the decision variables.

We substitute the decision rules into the original problem (2.3)-(2.5).

min E

[∑
s∈S

(CsPsξ)>XsPsξ

]
(2.12)

s.t.
s∑

τ=1
AsτXτPτ ξ+SsPsξ =BsPsξ, ∀s ∈ S, ξ ∈ Ξ, (2.13)

SsPsξ ≥ 0, ∀s ∈ S, ξ ∈ Ξ, (2.14)

where we have imposed the following decision rules on the slack variables

ss(ξs) = Ssξ
s = SsPsξ, ∀s ∈ S, (2.15)

for some matrices Ss ∈ Rms×ks .
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We define the moment matrix M ∈ Rk×k associated with the uncertain parameters
through

M , E
[
ξξ>

]
. (2.16)

Problem (2.12)-(2.14) can now be converted into

min
∑
s∈S

Tr
(
PsMP>s C

>
s Xs

)
(2.17)

s.t.
(

s∑
τ=1

AsτXτPτ +SsPs−BsPs

)
ξ = 0, ∀s ∈ S, ξ ∈ Ξ, (2.18)

SsPsξ ≥ 0, ∀s ∈ S, ξ ∈ Ξ, (2.19)

where we have used the cyclicity property of the trace operator in the objective
function3.

Proposition 1. For any support Ξ that satisfies assumption (2.8) and for any
A ∈ Rm×k and m ∈ Z+ we have that

Aξ = 0, ∀ξ ∈ Ξ
⇔ A= 0.

Proof. The linear span of Ξ belongs to the null space of A. The support Ξ spans
Rk, thus, null(A) = Rk and A= 0.

Proposition 2. For any support Ξ that satisfies assumption (2.6) and for any
a ∈ Rk we have that

∃λ ∈ Rl : h>λ≥ 0,W>λ= a,λ≥ 0
=⇒ a>ξ ≥ 0, ∀ξ ∈ Ξ.

Proof. We first prove that

∃λ ∈ Rl : h>λ≥ 0,W>λ= a,λ≥ 0
⇔ a>ξ ≥ 0, ∀ξ ∈ Ξ̂,

3 We have E
[
(CsPsξ)>XsPsξ

]
= Tr

(
E
[
(CsPsξ)>XsPsξ

])
since (CsPsξ)>XsPsξ ∈ R. Fur-

ther, Tr
(
E
[
(CsPsξ)>XsPsξ

])
= Tr

(
E
[
(ξ>P>s C>s )(XsPsξ)

])
= Tr

(
E
[
(XsPsξ)(ξ>P>s C>s )

])
=

Tr
(
XsPsMP>s C

>
s

)
= Tr

(
PsMP>s C

>
s Xs

)
.
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using strong duality in Linear Programming. That is,

a>ξ ≥ 0, ∀ξ :Wξ ≥ h

⇔ min
ξ∈Rk

{
a>ξ :Wξ ≥ h

}
≥ 0

⇔ max
λ∈Rl

{
h>λ :W>λ= a,λ≥ 0

}
≥ 0

⇔ ∃λ ∈ Rl : h>λ≥ 0,W>λ= a,λ≥ 0.

We have that

a>ξ ≥ 0, ∀ξ ∈ Ξ̂
=⇒ a>ξ ≥ 0, ∀ξ ∈ Ξ,

because the support Ξ is a subset of the polyhedron Ξ̂.

Applying Proposition 1 to the equality constraints (2.18) and Proposition 2 to the
inequality constraints (2.19) we are able to transform the problem into the finite,
tractable LP

min
∑
s∈S

Tr
(
PsMP>s C

>
s Xs

)
(2.20)

s.t.
s∑

τ=1
AsτXτPτ +SsPs =BsPs, ∀s ∈ S, (2.21)

ΛsW = SsPs, ∀s ∈ S, (2.22)
Λsh≥ 0, ∀s ∈ S, (2.23)
Λs ≥ 0, ∀s ∈ S, (2.24)

where Xs, Ss and Λs ∈ Rms×l are the decision variables.

We substitute SsPs = ΛsW into constraints (2.21) because the slack variables are
nonnegative on Ξ̂

SsPsξ = ΛsWξ = Λs(Wξ−h) + Λsh≥ 0, ∀ξ :Wξ ≥ h. (2.25)

Thus, we end up with the LDR approximation

min
∑
s∈S

Tr
(
PsMP>s C

>
s Xs

)
(2.26)

s.t.
s∑

τ=1
AsτXτPτ + ΛsW =BsPs, ∀s ∈ S, (2.27)

Λsh≥ 0, ∀s ∈ S, (2.28)
Λs ≥ 0, ∀s ∈ S. (2.29)
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(a) Uncertainty box. (b) Tight approximation.

Fig. 2.2: Illustration of a “uncertainty box”, i.e., a polyhedron that consists of upper and
lower bounds on the uncertain parameters, and a tight approximation of the
convex hull of Ξ for k = 3.

This problem is polynomial in k, l, m,
∑

s∈Sms and n,
∑

s∈S ns.

Note that if we use a compact polyhedron Ξ̂ on the form (2.6) which is not equal to
the convex hull of Ξ, i.e., Ξ̂ ) convΞ, we impose a restriction on the problem that
might result in a loss of optimality. However, the LDR approximation still provides
an upper bound for the original problem. Thus, we want a polyhedron that is a
tight approximation of the convex hull of Ξ, as illustrated in Fig. 2.2.

An optimistic bound on the optimal solution can be obtained by solving the LDR
approximation of the dual of the original problem, as pointed out in [28]. An alter-
native upper bound is developed in [26], using Lagrangian duality.

2.2 Piecewise Linear Decision Rules

Approximating a stochastic programming problem using the LDR approach might
result in a large approximation error. One way to improve the performance of the
LDR approximation is to augment the vector of uncertain parameters ξ, in order to
allow for higher flexibility in the decisions. The increased flexibility does however
come at a cost of an increased problem size. In this section we present piecewise
linear continuous decision rules with axial segmentation, as developed in [27].

The idea of piecewise linear decision rules is to expand the sample space of the
uncertain parameter ξi into ri line segments, with ri− 1 break points ζij for j ∈
{1, . . . , ri−1} and i ∈ {2, . . . ,k}, such that

ξ
i
< ζi1 < · · ·< ζi(ri−1) < ξi, ∀i ∈ {2, . . . ,k}, (2.30)

where ξi and ξ
i

are the upper and lower bounds on ξi, respectively.
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(a) Linear decision rules. (b) Piecewise Linear decision rules.

Fig. 2.3: Illustration of linear decision rules and piecewise linear decision rules when one
uncertain parameter is observed.

We introduce the lifted space Rk
′ of the piecewise linear parameters ξ′i ∈ Rri , in the

lifted support Ξ′, i.e., ξ′ ∈ Ξ′, where ξ′ , (1, ξ′>2 , . . . , ξ′>k )>. Further, we define the
lifting operator Lij : Rk→ R, such that

ξ′ij = Lij [ξ] ,


ξi if ri = 1,
min{ξi, ζi1} if ri > 1 and j = 1,
max{min{ξi, ζij}− ζi(j−1), 0} if ri > 1 and j ∈ {2, . . . , ri−1},
max{ξi− ζi(j−1), 0} if ri > 1 and j = ri,

(2.31)
for all i ∈ {2, . . . ,k} and j ∈ {1, . . . , ri}. Note that if ri equals 1, there are no break
points, which is equivalent to the pure LDR approach, as derived in Section 2.1.

Fig. 2.3 illustrates the decisions taken with LDR and piecewise LDR. The figure
shows that one or more break points may increase the flexibility of the decisions
substantially.

The retraction operator Bi : Rk′ →R converts the lifted parameters into the original
parameters, i.e.,

Bi[ξ′i] ,
ri∑
j=1

ξ′ij = ξi, ∀i ∈ {1, . . . ,k}. (2.32)

Proposition 3. Let Ξ̂′ be defined through

Ξ̂′ ,
{
ξ′ ∈ Rk

′
:WB[ξ′]≥ h,W ′i

(
1
ξ′i

)
≥ 0,∀i ∈ {2, . . . ,k}

}
,
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where B, (B1, . . . ,Bk) and W ′i ∈ R(ri+1)×(ri+1) is defined through

W ′i ,



ζi1
ζi1−ξi

− 1
ζi1−ξi

−
ξ
i

ζi1−ξi
1

ζi1−ξi
− 1
ζi2−ζ

i
1

1
ζi2−ζ

i
1

. . .

. . . − 1
ζi(ri−1)−ζ

i
(ri−2)

1
ζi(ri−1)−ζ

i
(ri−2)

− 1
ξi−ζi(ri−1)

1
ξi−ζi(ri−1)


.

Then
Ξ̂′ ⊇ convΞ′.

Proposition 3 is proven in [27].

The compact polyhedron Ξ̂′ contains the convex hull of the lifted support Ξ′. We
can thus apply the LDR approximation derived in Section 2.1 to the problem with
a lifted support.

2.3 Finite Memory

When expanding a problem using piecewise LDR, one might experience large prob-
lem sizes and long runtimes. Using a finite memory might yield substantially shorter
runtimes.

The decision variable xsj(ξs) is given as

xsj(ξs) =
ks∑
i=1

Xsjiξi, ∀s ∈ S, j ∈ {1, . . . ,ns}, (2.33)

when using the LDR approximation. The notation xsj(ξs) refers to element j of
xs(ξs) and Xsji refers to element (j, i) of Xs.

We introduce the information basis Isj of decision variable xsj(ξs). The information
basis contains the indices of the uncertain parameters on which the decision variable
should depend. Thus, Isj is a subset of {1, . . . ,ks}. We express the decision variables
as

xsj(ξs) =
∑
i∈Isj

Xsjiξi, ∀s ∈ S, j ∈ {1, . . . ,ns}. (2.34)

We remove some of the decision rules Xsji from the basis, and might therefore
experience a loss of optimality. However, the problem size is decreased, which might
reduce the runtime.
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2.4 Principal Component Reduction

Large stochastic programming problems with many uncertain parameters in each
stage give long runtimes. We will now develop a method to reduce the problem
size using Principal Component Analysis (PCA), and denote this method Principal
Component Reduction (PCR).

PCA theory gives that the vector of uncertain parameters ξs ∈Rks observed in stage
s ∈ S can be expressed through

ξs =Rsξ̃s, ∀s ∈ S, (2.35)

where ξ̃s ∈ Rks is a vector of the principal components of ξs and Rs ∈ Rks×ks is an
orthogonal matrix with columns equal to the eigenvectors of the covariance matrix
Σs of ξs in stage s ∈ S [29]. Moreover, the variance of the principal components are
given by the eigenvalues νsi of Σs for i ∈ {1, . . . ,ks} in stage s ∈ S.

By removing the least important components of ξ̃s, i.e., the elements correspond-
ing to the smallest eigenvalues, we obtain an approximation of ξs that keeps the
majority of the variability in the original parameters. We denote the reduced vec-
tor of principal components by ξ̃?s ∈ Rk̃s , with a corresponding coefficient matrix
R?s ∈ Rks×k̃s , where k̃s is the number of principal components used in stage s ∈ S.
We approximate ξs using

ξs ≈R?s ξ̃?s , ∀s ∈ S. (2.36)

The share βs of the variance that is captured by the principal components can now
be expressed through

βs =
∑k̃s
i=1 ν

s
i∑ks

i=1 ν
s
i

, ∀s ∈ S, (2.37)

where the eigenvalues are ordered such that νs1 > · · ·> νsks > 0, for all s ∈ S.

Further, we write the approximation of all observable uncertain parameters ξs =
(ξ1, . . . , ξs)> up to stage s ∈ S as

ξs ≈Rsξ̃, ∀s ∈ S, (2.38)

where ξ̃ ∈Rk̃ is defined as ξ̃ , (1, ξ̃?>2 , . . . , ξ̃?>|S|)
>, and Rs ∈Rks×k̃ is defined through

Rs ,



1 0 · · · · · · · · · 0

0 R?2
...

...
. . .

...
... R?s−1 0 0
0 · · · · · · 0 R?s 0


, ∀s ∈ S. (2.39)
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We want to express the LDR approximation through the principal components.
Still, the decision variables should depend on the original uncertain parameters4,
i.e., xs = xs(ξs). We therefore express the decision rules as

xs(ξs) =XsR
sξ̃, ∀s ∈ S. (2.40)

Notice that we do not reduce the size of the Xs matrices. Yet, the dimension of
the vector of uncertain parameters in each stage can now be reduced. Thus, the
dimensions of the matrices used in the description of the support, and hence the size
of the resulting LP, will be reduced.

We assume that the convex hull of the support Ξ̃ of ξ̃ can be expressed as a bounded
polyhedron on the form

convΞ̃⊆
{
ξ̃ ∈ Rk̃ : W̃ ξ̃ ≥ h̃,W̃ ∈ Rl̃×k̃, h̃ ∈ Rl̃, l̃ ∈ Z+

}
. (2.41)

By applying the theory presented in Section 2.1, we express the LDR approximation
using the principal components through

min
∑
s∈S

Tr
(
RsM̃Rs>C>s Xs

)
(2.42)

s.t.
s∑

τ=1
AsτXτR

τ + Λ̃sW̃ =BsR
s, ∀s ∈ S, (2.43)

Λ̃sh̃≥ 0, ∀s ∈ S, (2.44)
Λ̃s ≥ 0, ∀s ∈ S, (2.45)

in which Xs ∈ Rns×ks and Λ̃s ∈ Rms×l̃ are the decision variables.

Piecewise LDR can be applied to the PCR problem. The location of the break
points in the original formulation might however be of great importance. Thus, we
will choose break points in each of the original parameters ξi and convert a vector
of break points ζsj ∈ Rks into a vector of break points in the principal component
ζ̃sj ∈ Rk̃s . That is,

ζ̃sj =R?>s ζsj , ∀s ∈ S, j ∈ {1, . . . , rs}, (2.46)

where rs denotes the number of line segments in the decision variables in stage s∈S.

The theory presented in Section 2.2 can now be applied to the PCR problem with
piecewise LDR. However, the break points in the original uncertain parameters will
be located at locations approximately corresponding to the original break points,

4 We want the decision variables to be dependent on the original uncertain parameters because
then we will be able to express the bid curves as piecewise LDR, see Chapter 3.
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Fig. 2.4: Illustration of piecewise LDR with general segmentation in two dimensions and
with two break points in the folding direction rsi.

because the reduced coefficient matrix gives an approximation of the original pa-
rameters. Moreover, the location of the break points in the original parameters ζij
will become dependent on the realizations of the principal components, so the loca-
tions of these break points are no longer fixed. The lifting operators presented in
Section 2.2 might therefore perform poorly.

To remedy the latter shortcoming, break points that are fixed in the original uncer-
tain parameters ξ rather than the principal components ξ̃ can be used. This can
be obtained through piecewise LDR with general segmentation, developed in [27].
We define folding directions rsi ∈ Rk̃s as the rows in R?s for all i ∈ {1, . . . ,ks}, i.e.,
R?s = (rs1, . . . ,rsks)>, in each stage s ∈ S \{1}. Note that the folding directions are
not necessarily parallel to the original axis, thus, we have general segmentation.

We define break points in the folding directions, corresponding to ξ, which yields
kinks in the Rk̃ space that are perpendicular to the folding directions. Fig. 2.4
illustrates the kinks in the principal components with general segmentation in two
dimensions.

An outer approximation of the convex hull of the lifted support with general seg-
mentation, expressed as a bounded polyhedron, can be found in [27]. We are hence
able to express the PCR problem with general segmentation as a finite, tractable
LP, following the theory presented in Section 2.1.
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3. The Hydropower Bidding Problem

This chapter presents the stochastic programming formulation of a hydropower pro-
ducer and its piecewise LDR approximation. A scenario based approach to the
bidding problem is also discussed.

3.1 Hydropower Scheduling

The short-term hydropower scheduling problem is studied in detail in the literature,
e.g., the deterministic case is discussed in [30], and the stochastic case is discussed
in [31]. Below is a brief description of the hydropower scheduling problem.

The production-discharge relationship for each generator g in the set of generators
G is described by a set of linear cuts Hg, i.e.,

wgt ≤ Eghqgt+ Êgh, ∀g ∈ G,h ∈Hg, t ∈ T , (3.1)

where wgt is the production at time t in the set of time periods T , qgt is the discharge,
and Egh and Êgh denote the constants that describe cut h ∈Hg for generator g ∈ G.

The reservoir balance is given by

frt−fr(t−1) +
∑
g∈Gr

qgt+drt−
∑

y∈RAr

dyt+
∑
g∈Gy

qgt

= κrt, ∀r ∈R, t ∈ T , (3.2)

where frt, drt and κrt denote the discharge, spill and inflow, respectively, to reservoir
r in the set of reservoirsR at time t∈T . The set Gr denotes the generators belonging
to reservoir r ∈R and RAr denotes the set of reservoirs immediately above reservoir
r ∈R.

The value of the water stored in the reservoirs in the end of the planning horizon is
determined by a long-term scheduling model, and is dependent on the reservoir level
[32]. The relationship between the value of the reservoirs and the reservoir levels is
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described by a set P of linear cuts,

v ≤ Fp−
∑
r∈R

Vrp(Frp−fr|T |), ∀p ∈ P, (3.3)

where v denotes the value of the reservoirs, and Lp, Vrp and frp denote the constants
describing cut p ∈ P. These cuts are assumed exogenously given.

Starting a generator results in increased maintenance costs [33]. Start-up costs are
often modeled using binary variables, see e.g. [34]. The state variable ugt equals 1
if generator g ∈ G operates at time t ∈ T , i.e., if wgt > 0, and ugt equals 0 otherwise.
Let the cost of starting generator g ∈ G equal Kg, then the imposed start-up cost
ogt can be modeled in the following way

W gugt ≤ wgt ≤W gugt, ∀g ∈ G, t ∈ T , (3.4)
ogt ≥Kg

(
ugt−ug(t−1)

)
, ∀g ∈ G, t ∈ T , (3.5)

ogt ≥ 0, ∀g ∈ G, t ∈ T , (3.6)
ugt ∈ {0,1}, ∀g ∈ G, t ∈ T , (3.7)

and the sum
∑
g∈G

∑
t∈T ogt is subtracted from the objective function. Constraints

(3.4) forces ugt to be equal to 1 if generator g ∈ G is operating at time t ∈ T ,
and equal to 0 otherwise. Constraints (3.5) assign start-up costs to variable ogt if
generator g ∈ G is operating at time t ∈ T and is not operating at time t− 1. The
nonnegativity requirements (3.6) are needed in order to avoid negative start-up costs
in time periods without start-ups.

The modeling presented above requires binary variables in all time stages. This is
not compatible with the LDR approximation. Note that the minimum production
bound cannot be imposed on a generator without binary variables.

The simplest way to avoid binary requirements is to relax the integer requirement
(3.7) into

0≤ ugt ≤ 1, ∀g ∈ G, t ∈ T . (3.8)

This relaxation is a simplification that underestimates the imposed start-up costs
ogt.

An alternative relaxation of the binary requirement is suggested in [35], in which
ramping up production, i.e., increasing production, is penalized, rather than actual
start-ups. This can be modeled through

wgt = wg(t−1) +w+
gt−w

−
gt, ∀g ∈ G, t ∈ T , (3.9)

w+
gt,w

−
gt ≥ 0, ∀g ∈ G, t ∈ T , (3.10)

0≤ wgt ≤W g, ∀g ∈ G, t ∈ T , (3.11)
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where w+
gt and w−gt denote the increased and decreased production for generator

g ∈ G at time t ∈ T , respectively, compared to the production level at time t− 1.
The sum

∑
g∈G

∑
t∈T

Kg
w+
gt

W g
(3.12)

should be subtracted from the objective function. This modeling is suited for ther-
mal scheduling, because there is a cost of ramping up production. There is however
no large costs associated with ramping up production of a hydro turbine that is al-
ready operating. Penalizing increased production rates will restrict the advantageous
flexibility of hydropower, because a penalty is assigned to ramping up production
rather than start-ups.

Another way of dealing with binary variables in the LDR approach is moving these
variables to the first stage. First stage binary variables can be handled by the LDR
approximation [28]. This simplification implies that the model determines in which
time periods each generator should produce in the first stage, and then allows for
production rates on the interval

[
W g,W g

]
at time t ∈ T if ugt is set to 1. If ugt

is set to 0 in the first stage, generator g ∈ G will not be allowed to produce at
time t ∈ T . Hydropower is very flexible when it comes to starting and stopping
production, compared to thermal generation. Moreover, the start-up costs are small
for hydropower. Thus, deciding in which time periods to produce in the first stage
will restrict much of the advantageous flexibility of hydropower. We therefore do
not find this modeling suitable.

In the rest of this chapter we model start-up costs using the pure LP-relaxation, i.e.,
constraints (3.4)-(3.6) and (3.8), because it is the best approximation of start-up
costs while providing high flexibility.

Upper and lower bounds might constrain the discharges and the reservoir levels, i.e.,

Q
g
≤ qgt ≤Qg, ∀g ∈ G, t ∈ T , (3.13)

F r ≤ frt ≤ F r, ∀r ∈R, t ∈ T , (3.14)

where Qg and Q
g

are the upper and lower bounds on the discharge of generator
g ∈ G, respectively, and F r and F r are the upper and lower bounds on the reservoir
level in reservoir r ∈R, respectively.

3.2 Market Modeling

There is no evidence of significant systematic use of market power in the Nordic
spot market [36]. Moreover, market regulations forbid abuse of market power. The
producer is therefore modeled as a price taker.
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Fig. 3.1: Spot bid curve with linear interpolation.

The volume commitment in the Nordic spot market (Elspot) is determined by a
linear interpolation between the price points and bid volumes. The price points and
the bid volumes are set by the producer. The TSO requires unbiased bidding, i.e.,
a producer should not anticipate any deviations from the committed spot volumes.
We therefore add constraints that require that the expected deviations from the
committed spot volumes equal zero in each time period.

The linear interpolation in the spot market can be expressed through piecewise linear
decision rules, because the bidding decisions in the first day are taken in the first
stage. Fig. 4.14 illustrates the spot bidding curve with piecewise linear decision rules
Xit. The decision variable Xit is the slope of the bid curve between price points
ζ

(i−1)
t and ζit for break point i in the set of break points It at time t in the set of

time periods with bidding T B . The volume commitment yt can thus be expressed
through

yt =X1t+
∑
i∈It

ρ′itXit, ∀t ∈ T B , (3.15)

where ρt is the spot market clearing price at time t ∈ T B . The variable X1t is the
constant in the bid curve, i.e., the bid volume at ρt = 0. We only model the bidding
decisions in the first day (24 hours), whereas spot commitments in subsequent time
periods follow standard linear decision rules. Further, ρ′it refers to the piecewise
linear spot prices, defined through

ρ′it = Lit(ρt) ,


min{ρt, ζ1

t } if i= 1,
max{min{ρt, ζit}− ζ

(i−1)
t , 0} if i ∈ {2, . . . , |It|−1},

max{ρt− ζ|It|t , 0} if i= |It|,
(3.16)

for all t ∈ T B and i ∈ It.

In order to obtain a nondecreasing bid curve, we restrict the slopes Xit to be non-
negative for all i ∈ It and t ∈ T B . This will also prevent negative spot market
commitments.
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The unbiased spot market bidding requirement can be expressed mathematically as

E
[
∆w+

t −∆w−t
∣∣ξ1]= 0, ∀t ∈ T B , (3.17)

where ∆w+
t and ∆w−t denote the production surplus and production deficit, respec-

tively, at time t ∈ T B . The imbalances are nonnegative.

By introducing the decision rules ∆w+
t = ∆W+

st ξ
st and ∆w−t = ∆W−st ξ

st for some
matrices ∆W+

st ∈R
1×kst and ∆W−st ∈R

1×kst , where st denotes the stage correspond-
ing to time period t ∈ T B , i.e., st = t+2, we express the expected value constraints
as

E
[
∆W+

st ξ
st −∆W−st ξ

st |ξ1]=
(
∆W+

st −∆W−st
)
µst = 0, ∀t ∈ T B , (3.18)

where µst ∈ Rk
st denotes the expected value of the vector of uncertain parameters

ξst seen from the first stage, i.e.,

µst , E
[
ξst |ξ1] , ∀t ∈ T B . (3.19)

We only allow for imbalances in the bidding period. The relationship between the
spot market commitment and the production levels and imbalances are

yt =
∑
g∈G

wgt−∆w+
t + ∆w−t , ∀t ∈ T B (3.20)

in the bidding period, and

yt =
∑
g∈G

wgt, ∀t ∈ T \T B (3.21)

in the remaining period.

Accounting for intraday trading is possible in an LDR model. In the Nordics the
tertiary balancing market and the bilateral continuous intraday market Elbas are
both active after the spot market has been cleared. An LDR model supports a large
number of time stages, thus, intraday trading can be included in the stage following
the spot market clearing. The imbalances ∆w+

t and ∆w−t can be interpreted as
commitment in an intraday market. The imbalance price might for instance be set
to the price in the Elbas market.

The balancing market is more complicated. The system operator demands balancing
power in hours with imbalances in the system only. In Southern Norway, imbalances
occur in about fifty percent of all hours [1]. A producer might only be committed
to offered volumes if the system operator demands balancing power in the applica-
ble hour and direction (ramping up or down production or consumption). Hence,
whether the balancing market exists or not in a given hour is uncertain. This can
be modeled using a discrete Markov process as done in [37], or by determining the
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state of the system using a SARIMA model, as shown in [38]. The LDR approxi-
mation, however, requires a continuous support of the uncertain parameters. There
is therefore no straight forward way of modeling the uncertainty in the balancing
market using the LDR approach.

It is possible to design decision rules that make the volume commitment in the
balancing market dependent on all the uncertain parameters in a beneficial way.,
and at the same time restrict the volume commitment to be no larger than the
demanded volume in this market. Let γ+

t and γ−t be the demanded volume in
the balancing market in the upward and downward directions, respectively, at time
t ∈ T B . We add constraints that restrict the volume commitment in this market to
be no larger than the demanded volume, i.e.,

0≤∆w+
t ≤ γ

+
t , ∀t ∈ T

B , (3.22)
0≤∆w−t ≤ γ

−
t , ∀t ∈ T

B . (3.23)

We might still use the decision rules ∆w+
t = ∆W+

t ξ
st and ∆w−t = ∆W−t ξst for

the imbalances. However, these constraints will in most cases not allow for any
dependency on the uncertain parameters other than γ+

t and γ−t , because constraints
(3.22) and (3.23) will not be satisfied for γ+

t = 0 and γ−t = 0, respectively. Note that
the most common state in the Norwegian balancing market is no demanded volume.

The decision rules can be improved by creating a dependency on the product of
the demanded balancing volume times the other uncertain parameters, i.e., setting
∆w+

t = ∆W+
t (γ+

t ξ
st) and ∆w−t = ∆W−t (γ−t ξst) at time t ∈ T B . However, the

decision rules are no longer linear in the uncertain parameters. Thus, we have
polynomial decision rules, which requires us to solve a Semidefinite Programming
problem [39]. Applying polynomial decision rules to the bidding problem is beyond
the scope of this thesis.

In the remainder we will model the producer to act only as a purchaser of balancing
services. That is, the producer does not offer volumes into the balancing market, but
is able to buy balancing volumes at a price worse than the spot price if imbalances
occur.

3.3 The Stochastic Programming Problem Formulation

Fig. 3.2 shows the uncertainty structure of the bidding problem. Note that the spot
market bidding decisions are taken in the first stage, and not shown in the figure.
These decisions are modeled through piecewise linear decision rules, as explained in
the previous section. Furthermore, the bidding decisions for the days following the
first day are not modeled accurately. That is, the prices in our model are observed in
sequence for each hour, whereas all prices in the Elspot market for the next day are
revealed at the same time in reality. The bidding restrictions, i.e., the requirement
that the producer must submit a piecewise linear bid curve the day prior to real-
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Fig. 3.2: Uncertainty structure, showing revealed uncertain parameters and decision taken
in stage s∈ S. For notational convenience, indices for reservoirs and generators are
omitted, and κt,dt,ot, qt,ft,ut,wt represent vectors of all generators or reservoirs,
e.g., κt =

(
κ1t, ...,κ|R|t

)>. The vector ξs can be expressed as
(
ξ>1 , . . . , ξ

>
s

)>
.

time, are not modeled for the days following the first day. Relaxing these restrictions
yields increased flexibility in the decisions and the model is able to adapt perfectly
to the observed prices.

We now present the suggested stochastic programming problem formulation that can
be solved using the LDR approach. The objective is to maximize revenues minus
start-up costs plus revenues from imbalances (in the intraday market) plus the value
of the reservoirs in the end of the planning horizon. The resulting optimization
model yields
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max z = E

∑
t∈T

ρtyt−
∑
g∈G

∑
t∈T

ogt+
∑
t∈T B

(
σ+
t ∆w+

t −σ
−
t ∆w−t

)
+v

 (3.24)

s.t.

wgt ≤ Eghqgt+ Êgh, ∀g ∈ G,h ∈Hg, t ∈ T , (3.25)

frt−fr(t−1) +
∑
g∈Gr

qgt+drt

−
∑

y∈RAr

dyt+
∑
g∈Gy

qgt

= κrt, ∀r ∈R, t ∈ T , (3.26)

v ≤ Lp−
∑
r∈R

Vrp(Ffp−fr|T |), ∀p ∈ P, (3.27)

W gugt ≤ wgt ≤W gugt, ∀g ∈ G, t ∈ T , (3.28)
ogt ≥Kg

(
ugt−ug(t−1)

)
, ∀g ∈ G, t ∈ T , (3.29)

E
[
∆w+

t −∆w−t
∣∣ξ1]= 0, ∀t ∈ T B , (3.30)

yt =
∑
g∈G

wgt−∆w+
t + ∆w−t , ∀t ∈ T B , (3.31)

yt =
∑
g∈G

wgt, ∀t ∈ T \T B , (3.32)

ogt ≥ 0, ∀g ∈ G, t ∈ T , (3.33)
0≤ ugt ≤ 1, ∀g ∈ G, t ∈ T , (3.34)

drt ≥ 0, ∀r ∈R, t ∈ T , (3.35)
Q
g
≤ qgt ≤Qg, ∀g ∈ G, t ∈ T , (3.36)

F r ≤ frt ≤ F r, ∀r ∈R, t ∈ T , (3.37)
∆w+

t ,∆w
−
t ≥ 0, ∀t ∈ T B . (3.38)

All constraints must be valid for all realizations of the uncertain parameters1, i.e.,
for all ξ ∈ Ξ. Constraints (3.25)-(3.29) describe the short-term scheduling problem,
as presented in Section 3.1, constraints (3.30)-(3.32) describe the market modeling,
as presented in Section 3.2 and constraints (3.33)-(3.38) give the bounds on the
variables.

Note that the equality constraints (3.32) can be substituted directly into the objec-
tive function. The equality constraints (3.26) can be substituted into Constraints

1 Note that, for notational convenience, the decision variables and the uncertain parameters are
not written as functions of the vector of uncertain parameters ξ.
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(3.27) and (3.37) using

frt = fr0−
t∑

τ=1

∑
g∈Gr

qgτ −drτ +
∑
η∈RAr

dητ +
∑
g∈Gη

qgτ

+κrτ

 , (3.39)

in order to reduce the numbers of constraints and variables.

3.4 A Scenario Based Model

Scenario based models comprise a commonly used alternative solution method for
the bidding problem, particularly the deterministic equivalent [19]. In order to solve
the deterministic equivalent we generate a finite set of scenarios that represents
the uncertainty. A scenario tree must be constructed such that the information is
revealed gradually according to the information structure of the problem. The un-
derlying probability distributions of the uncertain parameters in the bidding problem
are continuous. Hence, representing the uncertainty by a scenario tree is a simplifi-
cation. A scenario based model thus gives an approximation of the bidding problem.

In order to model the bidding decisions, the following constraints must be added to
problem (3.24)-(3.38). An in-depth presentation of these constraints can be found
in [7]. The linear interpolation in the spot curve can be expressed through

yt = ρt− ζit
ζ

(i+1)
t − ζit

a
(i+1)
t + ζ

(i+1)
t −ρt
ζ

(i+1)
t − ζit

a(i+1)t,

if ζit ≤ ρt ≤ ζ
(i+1)
t , ∀i ∈ ISt \

{
|ISt |

}
, t ∈ T B , (3.40)

where ait is the bidding volume at price ζit for bid point i in the set of bid points
ISt at time t ∈ T B .

The bid volumes must be nondecreasing2, i.e.,

a(i−1)t ≤ ait, ∀i ∈ ISt \{1}, t ∈ T B . (3.41)

Solving a multistage stochastic programming problem using a deterministic equiva-
lent also requires nonanticipaticity constraints, see [19].

2 We order the bid points such that ζ1
t < · · ·< ζ

|IS
t |

t for all t ∈ T B .
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4. Case Study

This chapter presents a case study performed for a Norwegian watercourse during
the period October 4 through October 7 2012. The results from the LDR approxi-
mation is compared to the results from a scenario based model and a deterministic
model. Moreover, methods to reduce the runtime of the LDR model are tested.
The optimization models in this chapter are implemented in Mosel/Xpress MP [40].
The scenario generation is done in Matlab, and Matlab generates the relevant input
files for the models. The code can be found at http://folk.ntnu.no/andereri/. Ap-
pendix A provides details on the implementation. The different models presented in
this chapter are compared using an out-of-sample simulation.

4.1 Case Description

The modeled watercourse is located in the Norwegian price area NO2 and is oper-
ated by Norsk Hydro ASA. The model consists of two reservoirs in cascade, each
connected to a power station, as shown in Fig. 4.1. The upper reservoir is large
(178 ·106 m3), whereas the lower reservoir is small (1.6 ·106 m3) and has little flex-
ibility. The risk of spill is significant for the lower reservoir. The upper reservoir
is an aggregation of three reservoirs, as shown in the figure. The aggregation is
done because the reservoirs in reality are controlled such that the upper reservoirs
store an increasing amount of water if there is a risk of spill in the lower reservoir.
The aggregation does hence not represent any major simplification, whereas only
one variable for the upper three reservoirs is needed in the model. The marginal
water values for the upper reservoir are estimated as the volume weighted average
of the individual water values in the original three reservoirs. The differences in the
marginal water values are however small. Further, the two stations are parts of a
larger watercourse, but the discharges from the two stations are not affected by the
rest of the watercourse. There are no restrictions on the discharges and no time
delay between the reservoirs.

The head is assumed to be constant, which is a minor simplification in the short-
term scheduling process. The upper reservoir is kept at approximately constant
head by controlling the upper two reservoirs. Head changes in the lower reservoir
are small. Thus, the constant head assumption will not cause major errors. The

http://folk.ntnu.no/andereri/
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Fig. 4.1: Illustration of the watercourse in reality (left) and the simplified watercourse
(right).

production from each generator is modeled with three linear cuts, as shown in Eq.
(3.1). There is one generator (Fig. 4.2a) in the upper station, with a maximum
production of 45 MW. The lower station contains two generators (Fig 4.2b-c) with
a maximum production capacity of 80 MW and 70.5 MW, respectively. The cuts in
the production-discharge curve for each generator are chosen such that the curve
intersects the origin and the maximum production point, and such that there is
a break point at the point with the highest turbine efficiency. In order to reduce
the problem size, start-up costs are not accounted for in this case study. Start-up
costs are small for hydropower, and two variables for each generator are needed for
each hour to model start-up costs. Thus, almost half of the decision variables are
associated with the modeling of start-up cost, which yields a large problem size and
only a small improvement in the solution.

There are 18 water value cuts implemented in the model, valid for the end of October
7. The reservoir levels in the beginning of the period are high, and one should hence
anticipate high production rates. The currency used in the model is Euro (e).

In this case study we will assume that the producer is not participating in any other
physical electricity market than the spot market and the balancing market. We
further only model single hourly bids1.

4.2 Uncertainty Modeling

In order to simplify this analysis, deterministic inflow is used, shown in Fig. 4.3,
equal to the expectation of 50 given inflow scenarios provided by the producer Norsk
Hydro ASA.

1 The market operator Nord Pool Spot also accepts block bids, that is, bids that set an all-or-
nothing condition for a set of at least three consecutive hours. However, block bids do not provide
any advantage to single hourly bids when start-up costs are not taken into account.
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(a) Generator 1. (b) Generator 2. (c) Generator 3.

Fig. 4.2: Production-discharge curves with minimum production (Min), production at the
highest turbine efficiency (B.P.) and maximum production (Max). The dotted
red lines are the original production-discharge curves.

Fig. 4.3: Expected inflow in the planning horizon for the upper reservoir (red line) and the
lower reservoir (blue line).
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Θ1 Θ2 Φ1

Parameter value 0.8950 -0.0062 0.1237
Standard error 0.1827 0.1672 0.1805

Tab. 4.1: Parameters in the ARMA model for the spot forecast error.

The difference between the spot price and the imbalance price is modeled as de-
terministic in order to reduce the number of uncertain parameters and to focus
attention on the spot market. The imbalance price is set equal to the spot price
plus e6 for production deficits and equal to the spot price minus e6 for production
surpluses. This is done because the expected premium in the balancing market in
the price area NO2 is e6 for the eight weeks preceding the start of the modeled
period [1]. That is,

σ+
t = ρt−e6, ∀t ∈ T B , (4.1)
σ−t = ρt+e6, ∀t ∈ T B . (4.2)

The spot price is modeled as a stochastic parameter. The spot prices for the next
day (24 hours) are revealed at the same time, the hourly spot price is hence not
a time series. The autocorrelation in the forecast error is however large, and an
ARMA(2,1) model [41] is therefore found suitable to model the error term εt from
a deterministic forecast ρDt . The stochastic spot price can be expressed through

ρt = ρDt + Θ1εt−1 + Θ2εt−2 + Φ1ωt−1 +ωt, ∀t ∈ T T , (4.3)

where
εt , ρt−ρDt , ∀t ∈ T T , (4.4)

and ωt denotes the residual and Θ1, Θ2 and Φ1 denote the parameters in the ARMA
model. The set T T denotes the hours in the training period, consisting of eight
weeks, as found appropriate in [42]. The deterministic forecast ρDt is provided by
the producer Norsk Hydro ASA. The data source for historical spot prices is [1], and
R [43] is used in the parameter estimation, using the maximum likelihood method.
Fig. 4.4 shows the expected spot price with upper and lower bounds. The two last
days constitute a weekend, with lower expected prices than the first two days. Tab.
4.1 shows the parameters in the ARMA model.

A set of 3000 scenarios is generated using Eq. (4.3), in which one of the residuals
from the training period is drawn randomly in each hour in each scenario. The
matrices in the support description, i.e., W , h and M , are estimated empirically
from these scenarios. The resulting support description does not change much when
the simulation is repeated. The 3000 scenarios are therefore assumed to represent
the uncertainty sufficiently.
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Fig. 4.4: Spot price mean (solid line) and upper and lower bounds (dotted lines).

4.3 Stage Aggregation

The multistage stochastic programming model consists of one stage for the spot
market bidding, one stage for the spot market clearing, and one stage for each sub-
sequent hour in the planning horizon, as shown in Fig. 3.2. A planning horizon
of four days, i.e., 96 hours, thus comprises numerous time stages. One uncertain
parameter in each stage yields a large problem, because the problem size is depen-
dent on the dimension of the vector of uncertain parameters ξ ∈ Rk. It is however
possible to reduce the number of uncertain parameters, and thus the problem size,
as suggested in [44].

In order to reduce the dimension of ξ we aggregate a number of hours into one
macroperiod. The prices in the first day, i.e., stage two, are not aggregated. The
aggregation of spot prices ρt is done such that the same error term ε̄m is added to
all hours in macroperiod m in the set of macroperiods M, i.e.,

ρt = E[ρt] + ε̄m, ∀t ∈ Tm,m ∈M, (4.5)

where Tm denotes the set of time periods in macroperiod m ∈M. The error term
ε̄m denotes the average forecast error in macroperiod m ∈M, i.e.,

ε̄m ,

∑
t∈Tm εt

|M|
, ∀m ∈M. (4.6)

Fig. 4.5 illustrates the stage aggregation in a scenario tree.

The results from aggregating the information structure into three or more stages
are shown in Fig. 4.6a-b, when applying LDR to the bidding problem. Three time
stages represent the smallest obtainable problem size in our approach. The size
of the LDR problem depends on the number of stochastic parameters and not the
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Fig. 4.5: Illustration of the stage aggregation. The left figure illustrates the scenario tree
before the stage aggregation and the right figure illustrates the aggregated scenario
tree. Note that this figure is for illustration of the scenario generation only, since
scenarios are not used in the LDR model.

number of time stages. We keep all the spot prices in the first day as separate
stochastic parameters. Moreover, the forecast errors in the subsequent spot prices
are aggregated into one stochastic parameter in a three stage model, yielding the
smallest possible problem size.

Piecewise LDR is not used in this analysis. Note that the maximum number of
stages is 74 when the spot price is the only uncertain parameter, because there is
no information observed in the hours in the first day. The prices in the first day are
observed in stage two. The loss from aggregating the model into three time stages
is only 0.001 %, whereas the runtime for three time stages is 23.8 % of the runtime
with the maximum number of time stages.

A similar analysis is conducted with an extended planning horizon of eleven days,
in order to analyze whether three stages is sufficient for longer time horizons. The
results are shown in Fig. 4.6c-d. There is no substantial loss when aggregating
the problem into three time stages. This indicates that the bidding problem has a
three-stage structure, and that there is no need to use more stages.

Note that the LDR model gives an approximation of the objective function, and
that using more stages might give better results in a more accurate model, e.g., a
piecewise LDR model. However, we have no indication that there is a gain from
using more than three stages, and the runtime is significantly reduced compared to
a model with more stages. We will therefore use three time stages in the rest of this
case study. Note also that aggregating all hours within one day into one stage is not
a simplification in the information structure. The prices in the spot market for each
day (24 hours) are observed at the same time.
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(a) Objective function value, four days in
the planning horizon.

(b) Runtime, four days in the planning
horizon.

(c) Objective function value, eleven days
in the planning horizon

(d) Runtime, eleven days in the planning
horizon

Fig. 4.6: Results from the LDR model with stage aggregation for different number of time
stages.
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4.4 Piecewise Linear Decision Rules

The LDR model is implemented with piecewise linear spot prices in the first day
using three time stages. Fig. 4.7 shows the results for different number of line
segments. Using ri line segments corresponds to ri+1 price points in the bid curve,
because each break point (a total of ri− 1) gives one price point, and the upper
and lower bounds on the spot price give one price point each. The locations of the
break points are crucial, because a producer wants to start production when the
spot price exceeds the marginal water values, corresponding to the marginal cost of
production. Thus, the break points are centered around the marginal water values,
with a spacing of e2.

The results show that there is a significant gain from using three or more line seg-
ments. The model is able to start the majority of the production when the spot price
exceeds the marginal water values with three line segments. The runtime is however
very long for many line segments. Using three line segments results in a runtime of
about 60 hours, which is overly long for the model to be used as operational decision
support.

4.5 Finite Memory

The results from Section 4.4 show that the decisions mainly depend on the obser-
vations of a few characteristic spot prices in the first day, namely the spot prices in
hours with spikes and troughs. Using the method of finite memory might therefore
be useful for the bidding problem. Fig. 4.8 shows the results with three line segments
(four price points), and different sizes of the information basis. The figure shows
that it is possible to obtain a significant reduction in the runtime with a small loss
of optimality. Note that the information basis in these results was picked out using
the results from the full model. When running the model for operational decision
support, the modeler does not have access to the perfect solution, and the modeler
is therefore not able to pick out the information basis that gives the best solution.
However, since the solution is mainly dependent on the spikes and troughs, one can
pick the hours with the highest and lowest expected spot prices. An alternative, yet
simpler, information basis can be obtained by choosing a random selection of the
spot prices in the first day, or choosing every 24/|Ijs| hour in the first day as the
information basis of xjs(ξs).

4.6 Principal Component Reduction

Principal Component Reduction (PCR) is implemented with axial break points in
the principal components. There is only one uncertain parameter in each stage, ex-
cept stage two, hence the PCR is only used for the spot prices in the first day, that is
ξ2. The support description of the principal components are estimated by perform-
ing a principal component analysis on the 3000 scenarios generated as described in
Section 4.2. Fig. 4.9 shows the value of β2 with an increasing number of principal
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(a) Objective function value. (b) Runtime.

Fig. 4.7: Results from the piecewise LDR model for different number of line segments.

(a) Objective function value. (b) Runtime.

Fig. 4.8: Results from the piecewise LDR model with finite memory for four price points.

Fig. 4.9: The share β2 of the variance of ξ2 captured by the principal components.
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(a) Objective function value. (b) Runtime.

Fig. 4.10: Results from the piecewise LDR model with PCR.

(a) Objective function value, four bid
points, different number of scenarios.

(b) Runtime, four bid points, different
number of scenarios.

(c) Objective function value, 523 scenar-
ios, different number of bid points.

(d) Runtime, 523 scenarios, different
number of bid points.

Fig. 4.11: Results from the deterministic equivalent.
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components, that is, the share of the variance in ξ2 that is represented by the prin-
cipal components. The figure shows that four principal components capture 88 % of
the original variance, and that the additional gain is very small when increasing the
number of principal components. We therefore use four principal components in the
rest of this case study.

The results for different number of break points in the spot prices are shown in
Fig. 4.10. The figure shows that the runtime is greatly reduced, compared to the
original LDR model. On average, the runtime of the PCR model is only 1.4 % of the
runtime of the original LDR model. Note that the objective function values are not
representing the real objective function, because the principal components slightly
change the expected values of the spot prices. The performance of the PCR model
with axial segmentation is evaluated in Section 4.8.

The results presented in this section are derived from a piecewise LDR model with
axial segmentation in the principal components. Hence the price points in the spot
prices are not fixed. Applying piecewise LDR with general segmentation yields break
points in the spot prices, as explained in Section 2.4, and might therefore perform
better than the axial segmentation. However, implementing the PCR model with
general segmentation is left to future research.

4.7 Scenario Based Model

In order to determine whether the LDR approach is an appropriate solution method
for the bidding problem, the deterministic equivalent of the bidding problem is
also implemented. An alternative method to evaluate the performance of the LDR
approach is to solve the dual of the problem, see Appendix B.

The deterministic equivalent is a scenario based stochastic programming model.
Scenario based models represent the most common approach to the bidding problem
in the literature [8, 10, 11, 12, 13, 14]. The stochastic programming problem analyzed
in this case study is a three stage model. Hence, we use nonanticipativity constraints
for the first and second stage variables.

First, we determine an appropriate size of the set of scenarios used in the deter-
ministic equivalent. The 3000 scenarios generated as described in Section 4.2 are
reduced, using the methodology described in [45]. The results from the determin-
istic equivalent of the bidding problem with four bid points with different number
of scenarios are shown in Fig. 4.11a-b. The figures show that using 523 scenarios
results in a small loss of optimality, while keeping the solution time at an acceptable
level below one hour. We therefore use 523 scenarios in the rest of this case study.

Fig. 4.11c-d show the results from the deterministic equivalent using different num-
bers of price points. In contrast to the piecewise LDR model, the runtime does not
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(a) Number of constraints. (b) Number of variables.

Fig. 4.12: Number of constraints and variables in the presolved problems, showing the LDR
model (green lines), the scenario based model (red lines) and the PCR model
(purple lines).

increase with an increasing number of bid points. In particular, a model with two
price points gives substantially longer runtime than a model with three or more bid
points. The upper and lower bounds on ξ2 and the break points used in Section
4.4 are the price points used in the scenario based model. Thus, the deterministic
equivalent generates a bid curve with the same price points as the piecewise LDR
model.

4.8 Comparison

Fig. 4.12 shows the number of constraints and variables in the piecewise LDR model,
scenario based model and the PCR model, respectively. The figure shows the prob-
lem sizes after Xpress MP has conducted a presolve method that removes redundant
variables and constraints. The problem size of the LDR model is smaller than the
problem size of the scenario based model. Still, the solution time of the LDR model
is substantially longer. This indicates that the LDR model is harder to solve. More-
over, the problem size of the scenario based model does not increase notably when
increasing the number of bid points. This is however not the case for the piecewise
LDR model, whose problem size is largely dependent on the number of bid points.
The figure also shows that the PCR with axial segmentation reduces the size of the
LDR problem substantially.

In order to compare performance of the different models presented in this chapter,
we perform an out-of-sample simulation on each of the bid curves constructed by
the different models. The simulation is conducted in the following way:
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Fig. 4.13: Illustration of the simulation procedure.

Generate 3000 new scenarios based on the methodology presented in Section
4.2.
For each model do

Solve the optimization problem and generate a bid curve.
For each scenario do

Calculate the spot market volume commitment based on the bid
curve from the model.
Solve the deterministic version of problem (3.24)-(3.38) using fixed
yt ∈ T B as calculated above.

End for
End for.

The simulation procedure is illustrated in Fig. 4.13. The simulation estimates the
future profits in 3000 scenarios for each model. This number of scenarios is assumed
to represent the underlying probability distribution of the spot prices sufficiently.
Note that we do not evaluate the price model. Our model is assumed to be a perfect
representation of the uncertainty in the system. The focus in this case study is on
the solution methods.

The procedure presented above solves a two-stage problem, in which the spot market
bidding is performed in the first stage, and the simulation performs the second stage.
This is a simplification compared to the three-stage model that was originally solved,
because the information in stage three is now observed in stage two. That is, the
spot prices for all future time periods are observed prior to the first day. However,
this minor simplification should not cause any fundamental errors when comparing
the results from the different models using the same assumptions.

Fig. 4.14 shows the bid curves generated by the LDR model and the scenario based
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(a) Piecewise LDR model.

(b) Scenario based model.

Fig. 4.14: Bid curves using four price points.

model using four price points. The figure shows that the scenario based model yields
steeper kinks in the bid curve, compared to the LDR model. The bid curve from
the LDR model therefore yields higher volume commitments at low prices than the
bid curve from the scenario based model.

Fig. 4.15a shows the simulation results using the bid curves from the piecewise LDR
model and the deterministic equivalent. The results from the deterministic version
of the bidding problem are also shown, that is, problem (3.24)-(3.38) solved for the
expected values of the uncertain parameters. The bid curve for each hour in the
deterministic version consists of a price independent volume commitment, equal to
the production rate given in the solution of the deterministic model. The figure shows
that the expected profits in the scenario based model stabilize at about e510 150
for more than two price points. In fact, the scenario based model performs slightly
worse with four or more price points compared to the performance at three price
points. The piecewise LDR model performs monotonically better with an increasing
number of bid points. Both the scenario based model and the piecewise LDR model
performs better than the deterministic model for all price points.

Fig. 4.15b shows the standard deviations from the different models, using different
number of price points. The figure shows that the standard deviation is smaller
for the piecewise LDR model compared to the scenario based model for all number
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of price points. Moreover, Fig. 4.16 shows the cumulative distribution functions
for five price points. Both the scenario based model and the piecewise LDR model
dominate the deterministic model. The distributions of the scenario based model
and the piecewise LDR model are very similar. Yet, the range is smaller in the
results from the piecewise LDR model. The piecewise LDR model dominates the
scenario based model in the lower region of the realized profits, whereas the scenario
based model dominates the piecewise LDR model in the upper region of the realized
profits. These results are valid for all number of price points greater than three.
This indicates that the piecewise LDR model tends to provide the same expected
profits as the scenario based model, yet with a smaller standard deviation. Thus,
the piecewise LDR model reduces the short-term risk, compared to a scenario based
model.

Fig. 4.15c shows the simulation results from the finite memory model, and compares
these results to the results from the piecewise LDR model and the scenario based
model. The results show that there is no substantial loss of profits when using a
memory consisting of ten characteristic hours from the first day, rather than the
entire memory of 24 hours. The runtime when using ten hours in the memory
is only 6.6 % of the runtime of the original LDR model (see Fig. 4.8b). Thus, the
combination of stage aggregation and finite memory provides an LDR approximation
that is competitive with a scenario based model and with a smaller volatility in the
profits.

Fig. 4.15d shows the simulation results from the PCR model with axial segmentation,
and compares these results to the results from the piecewise LDR model and the
deterministic model. The figure shows that the PCR model performs better than the
deterministic model, yet substantially worse than the piecewise LDR model. For five
bid points the PCR model yields an expected increase of profits of e813 (0.16 %)
compared to the deterministic model and an expected decrease of e543 (0.11 %)
compared to the piecewise LDR model. Note that the percentwise differences in the
parentheses are expressed with all future profits as the reference. The differences are
small compared to the total future profits since we only model the bidding decisions
for one day. In order to increase the understanding of how much the total profits are
increased one should perform a simulation with rolling horizon, see e.g. [46]. That
is, one should model the bidding decisions each day for several weeks.

One characteristic that separates the solutions from one another is the use of imbal-
ances, i.e., the balancing market. Fig. 4.17 shows the distributions of the use of the
balancing market in the simulations, using five bid points. The figure shows that the
LDR model yields higher production deficits and lower production surpluses than
the scenario based model. Moreover, the LDR model gives more use of the balanc-
ing market, compared to the scenario based model. However, the balancing market
volumes are small, and remain less than 1 MWh in each hour on expectation in every
model. We anticipated small volumes in the balancing market, because there is no
rational reason for an extensive use of the balancing market when the price in this
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(a) Simulated expected future profits,
different number of bid points.

(b) Simulated standard deviation of prof-
its, different number of bid points.

(c) Simulated expected future profits,
four bid points, different sizes of the
memory (blue line).

(d) Simulated expected future profits,
different number of bid points, with
PCR (purple line).

Fig. 4.15: Results from the simulations for the piecewise LDR model (green lines), the
scenario based model (red lines), the finite memory model (blue line), PCR
(purple line) and the deterministic model (grey lines).
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Fig. 4.16: Cumulative distributions of profits for the piecewise LDR model (green line), the
scenario based model (red line) and the deterministic model (grey line).

(a) Piecewise LDR, production deficit. (b) Piecewise LDR, production surplus.

(c) Scenario based model, production
deficit.

(d) Scenario based model, production
surplus.

Fig. 4.17: Distributions of imbalances for five price points. The cases with no imbalances
are removed from the distributions. Note that the axes are different.
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market is worse than the spot price by construction.

4.9 Discussion

The simulations show that the scenario based model overestimates the expected
profits, as pointed out as a problem in [20]. The piecewise LDR model tends to
slightly underestimate the future profits from the bid curve. This result is expected
because some of the flexibility is lost in the LDR model due to the restrictive decision
rules that reduce the solution space of the decision variables. These restrictions are
removed in the simulation. The bid curve from the LDR model therefore performs
slightly better in the simulation than the objective function value predicts.

The main disadvantage of the piecewise LDR model is the runtime. The bidding
problem is found to have no more than three important time stages. When using
a three-stage LDR model, all of the uncertain parameters except one are revealed
in the second stage. Because there are no first stage decisions in the model, all the
decision variables are dependent on almost all of the uncertain parameters. Thus, the
problem size is large taking into account that we are using the LDR approach. Using
piecewise LDR on the spot prices in the first day enhances this effect, because the
number of uncertain parameters in the second stage is vastly increased. The result is
that the scenario based model is solved substantially faster than the piecewise LDR
model. This occurs although the problem size of the LDR model is smaller than the
size of the scenario based model. Hence, the LDR model is harder to solve.

The LDR approach provides a tractable approximation of the multistage stochastic
programming problem. In particular, the LDR approximation remains tractability
for a large number of time stages. This case study indicates that three time stages
are sufficient to model the bidding problem. In contrast, the problem size of a
scenario based model grows rapidly with an increasing number of time stages. The
LDR model does not gain any benefit from adapting to multiple time stages because
we only model three time stages. This effect contributes to the large difference in
the runtimes of the two models.

When using many bid points, the piecewise LDR model performs equally well as
the scenario based model on expectation. However, the range and the standard
deviation of the profits are smaller in the piecewise LDR model. The LDR model
hence provides more robust results, yielding lower short-term risk than a scenario
based model.

In order to cope with the long runtimes, using a finite memory in the piecewise LDR
model represents a promising methodology. By using a “smart” memory, we are able
to design a model that is both efficient in terms of runtime and performance. The
challenge lies in determining the information basis.
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The method of Principal Component Reduction (PCR) does not perform as well as
the piecewise LDR model or the scenario based model when using axial segmentation
in the principal components. The locations of the break points are crucial in the
bidding model, because the model should provide a bid curve that starts the majority
of the production when the price exceeds the marginal cost of production, in this
case the marginal water value. Thus, when the break points in the spot price are
not fixed, the model does not completely achieve this. However, by reducing the
dimension of the vector of uncertain parameters we reduce the runtime substantially.
Therefore, using fixed break points in the spot prices through piecewise LDR with
general segmentation, as proposed in Section 2.4, might be a promising technique
that gives a tractable problem that performs well.

This case study does not take start-up costs into account. Start-up costs might
impact the solution, because it might no longer be optimal to start and stop pro-
duction rapidly. Start-up costs can be accounted for using an LP-relaxation in the
LDR model, which will underestimate the real start-up costs. The deterministic
equivalent of the bidding problem is able to model start-up costs more accurately
using binary variables. However, solution methods that solve scenario based models
efficiently might not be compatible with integer decisions in stages following the first
stage, like the LDR approach. This is the case for Bender’s Decomposition [19], used
to solve the bidding problem in [8].

The simulations show that the piecewise LDR model and the scenario based model
use the intraday market opportunity differently. Moreover, using multiple price
points, the piecewise LDR model yields slightly higher expected profits and sig-
nificantly smaller volatility, compared to the scenario based model. One possible
explanation might be that the piecewise LDR model is able to adapt to the intraday
market in a more beneficial way. Investigating the performance of an LDR model
with an improved description of the intraday markets, such as uncertain intraday
prices, is left to future research.
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5. Conclusion

This thesis investigates the Linear Decision Rule (LDR) approach applied to the
bidding problem of a Nordic hydropower producer. A stochastic programming model
with piecewise LDR in the spot prices is developed. Furthermore, a comprehensive
case study is conducted, using uncertainty in the spot prices. Methods to reduce
the runtime are presented and tested. In particular, a new method named Principal
Component Reduction (PCR) is developed. Moreover, the performance of the LDR
model is compared to a scenario based model through an out-of-sample simulation.

We find that the LDR model performs equally well as a scenario based model on
expectation. The standard deviation and the range of the simulated profits from
the LDR model are substantially smaller. This implies that the LDR model yields
a more robust solution, and that the short-term risk is reduced. The runtime of the
piecewise LDR model using many price points is however overly long. Methods to
reduce the runtime are therefore needed. Computational results indicate that stage
aggregation and finite memory are promising techniques that reduce the runtime
without a major loss of optimality. The PCR method with axial segmentation yields
a short runtime and a small loss of optimality.

Taking into account that producers commonly perform risk management activities
in the financial markets, the results from this case study does not show that the
LDR approach are preferred over a scenario based model. Yet, this case study
only account for uncertainty in the spot prices. Constructing a scenario tree with
uncertain inflow and imbalance prices is more challenging and might require a larger
number of scenarios in order to represent the distributions sufficiently. Therefore,
future studies might show that the LDR approach outperforms a scenario based
model in certain cases.

5.1 Future Work

In order to determine whether the LDR approach is the most favorable solution
method for the bidding problem, more detailed studies should be conducted. These
studies should take effects such as start-up costs, stochastic inflow and stochastic
intraday prices into account. The results should be compared to the results from
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scenario based models solved using efficient solution methods. Moreover, simula-
tions with rolling time horizons should be performed for different cases, in order to
improve the understanding of the performance of the LDR model. Further investi-
gations of methods to reduce the runtime should be carried out, using the principal
component reduction in combination with piecewise LDR with general segmentation
will particularly be of great interest.
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Appendix A

Details on the Implementation

We will now briefly describe how the implementations of the LDR models were done
in Mosel/Xpress MP.

We divided the coefficient matrices Asτ into five submatrices, in order to remove
many empty elements (zeros) of the matrices, and hence reduce the preprocessing
time. The problem can be written as

minz = Eξ

[∑
s∈S

c>s (ξs)xs(ξs)
]

(A.1)

s.t.
s∑

τ=1
A1

sτxτ (ξτ )≤ b1
s(ξs), ∀s ∈ S, (A.2)

s∑
τ=s−1

A2
sτxτ (ξτ )≤ b2

s(ξs), ∀s ∈ S, (A.3)

A3
sxs(ξs)≤ b3

s(ξs), ∀s ∈ S, (A.4)
s∑

τ=1
AEqsτ xτ (ξτ ) = 0, ∀s ∈ S, (A.5)

Eξ
[
AEVs xs(ξs) |ξ1

]
= 0, ∀s ∈ S, (A.6)

where At
sτ ∈ Rm

t
s×nτ , where t refers to the constraint, i.e., t ∈ {1,2,3,Eq,EV }, and

where bts(ξs) ∈ Rm
t
s .

The new constraints (A.2) represent the reservoir bounds constraints (3.37) and
the water value cuts constraints (3.27). The new constraints (A.3) represent the
modeling of the start-up costs, i.e., constraints (3.29). Further, the new constraints
(A.4) represent the original constraints in stage s ∈ S that are only dependent on
the variables in stage s, i.e., constraints (3.25), (3.28), (3.33)-(3.36) and (3.38). The
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new constraints (A.5) represent the equality constraints (3.31) and finally constraints
(A.6) represent the expectation constraints (3.30).

The LDR approximation of this problem is

min
∑
s∈S

Tr
(
PsMP>s C

>
s Xs

)
(A.7)

s.t.
s∑

τ=1
A1

sτXτPτ + Λ1
sW =B1

sPs, ∀s ∈ S, (A.8)

s∑
τ=s−1

A2
sτXτPτ + Λ2

sW =B2
s , ∀s ∈ S, (A.9)

A3
sXsPs + Λ3

sW =B3
sPs, ∀s ∈ S, (A.10)

s∑
τ=1

AEqsτ XτPτ = 0, ∀s ∈ S, (A.11)

AEVs Xsµ
s = 0, ∀s ∈ S, (A.12)

Λ1
sh≥ 0, ∀s ∈ S, (A.13)

Λ2
sh≥ 0, ∀s ∈ S, (A.14)

Λ3
sh≥ 0, ∀s ∈ S, (A.15)

Λ1
s,Λ2

s,Λ3
s ≥ 0, ∀s ∈ S, (A.16)

where Xs ∈Rns×ks and Λt
s ∈Rm

t
s are the decision variables for s∈S and t∈ {1,2,3},

and where bts(ξs) is written as Bt
sPsξ for s ∈ S and t ∈ {1,3}.

In order to implement this problem in Mosel/Xpress MP, we write the problem on
summation form.

For notational convenience, we define the matrix Ds ∈ Rk
s×ns through

Ds , PsMP>s C
>
s , ∀s ∈ S, (A.17)

corresponding to the coefficients in the objective function of the LDR approximation.

The LDR approximation can now be written as

min
∑
s∈S

ks∑
i=1

ns∑
j=1

DsijXsji (A.18)
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s.t.
s∑

τ=1

nτ∑
j=1

At
sτrjXsji +

l∑
u=1

Λt
sluWui =Bt

sri,

∀s ∈ S, l ∈ {1, . . . ,mt
s}, i ∈ {1, . . . ,ks}, t ∈ {1, . . . ,3}, (A.19)

l∑
u=1

Λt
sluWui = 0, ∀s ∈ S, l ∈ {1, . . . ,mt

s}, i ∈ {ks + 1, . . . ,k}, t ∈ {1, . . . ,3},

(A.20)
s∑

τ=1

nτ∑
j=1

AEqsτrjXsji = 0, ∀s ∈ S, l ∈ {1, . . . ,mEq
s }, i ∈ {1, . . . ,ks}, (A.21)

ns∑
j=1

ks∑
i=1

AEVsrj Xsjiµi = 0, ∀s ∈ S, l ∈ {1, . . . ,mEV
s }, (A.22)

l∑
u=1

Λt
sluhu, ∀s ∈ S, l ∈ {1, . . . ,mt

s}, t ∈ {1, . . . ,3}, (A.23)

Λt
slu ≥ 0, ∀s ∈ S, l ∈ {1, . . . ,mt

s},u ∈ {1, . . . , l}, t ∈ {1, . . . ,3}. (A.24)

Note that constraints (A.8)-(A.10) are split into constraints (A.19) and (A.20), be-
cause Ps = (Iks 0).

We have implemented the above problem in the Mosel script LDR primal.mos. The
Matlab script matwriter.m generates the relevant input data to the Xpress model.

The PCR problem with axial segmentation is implemented in the script
LDR primal PCR.mos. The deterministic equivalent is implemented in the script
scenarioFormulation.mos. The simulation is performed by the script simulator.mos.

The deterministic model is implemented in two different ways, namely, in the script
matrix det.mos and in the script exp deterministic.mos.

http://folk.ntnu.no/andereri/LDR%20primal%20solver/
http://folk.ntnu.no/andereri/Matwriter/
http://folk.ntnu.no/andereri/PCR/
http://folk.ntnu.no/andereri/Scenario%20formulation/
http://folk.ntnu.no/andereri/Simulator/
http://folk.ntnu.no/andereri/Matrix%20deterministic/
http://folk.ntnu.no/andereri/Exp%20deterministic/
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Appendix B

The Dual Problem

As mentioned in Section 2.1 one can obtain an optimistic bound on the objective
function value by solving the dual approximation presented in [26]. The dual ap-
proximation of problem (A.1)-(A.6) is

minzD =
∑
s∈S

Tr
(
PsMP>s C

>
s Xs

)
(B.1)

s.t.
s∑

τ=1
A1

sτXτPτ +S1
sPs =B1

sPs, ∀s ∈ S, (B.2)

s∑
τ=s−1

A2
sτXτPτ +S2

sPs = 0, ∀s ∈ S, (B.3)

A3
sXsPs +S3

sPs =B3
sPs, ∀s ∈ S, (B.4)

t∑
τ=1

AEqsτ XτPτ = 0, ∀s ∈ S, (B.5)

AEVs XsPsMP>1 = 0, ∀s ∈ S, (B.6)
(W −he>1 )MP>s S

1>
s ≥ 0, ∀s ∈ S, (B.7)

(W −he>1 )MP>s S
2>
s ≥ 0, ∀s ∈ S, (B.8)

(W −he>1 )MP>s S
3>
s ≥ 0, ∀s ∈ S, (B.9)

where Xs ∈ Rns×ks and Ss ∈ Rms×ks for all s ∈ S are the decision variables.

The dual approximation is implemented in the file LDR dual.mos. The results are
however not presented in this thesis, because we wanted to compare the primal LDR
solution with a scenario based model. We also encountered some problems with ill-
conditioned moment matrices when using piecewise LDR. Using a moment matrix
that is close to singular yields an unbounded dual problem.

http://folk.ntnu.no/andereri/LDR%20dual%20solver/
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