
Investigation of High Accuracy Mixed-Signal
Time-to-Digital Converter

Ghassan Al-Omari

Master of Science

Department of Electronic Systems

Norwegian University of Science and Technology

February, 2020

Contents

Preface iv

Abstract vi

Acknowledgements vii

List of Figures ix

List of Tables x

Abbreviations xii

1 Introduction 1

2 Theory 3
2.1 Performance Metrics . 4

2.1.1 Resolution (LSB) . 4
2.1.2 Non-linearities . 5
2.1.3 The Linear Bits . 5
2.1.4 Conversion Speed . 6
2.1.5 Dynamic Range . 6
2.1.6 Area and Power . 6
2.1.7 Noise . 6

2.1.7.1 Jitter . 7
2.1.7.2 Process and Mismatch . 7
2.1.7.3 Supply Voltage Variation 7
2.1.7.4 Temperature Variation . 7

2.2 TDC Architectures . 8
2.2.1 Analog-type TDCs . 8

i

ii

2.2.2 Digital-Type TDCs . 10
2.2.2.1 Delay Line TDC . 10
2.2.2.2 Vernier Delay Line TDC 11
2.2.2.3 Ring Oscillator Vernier TDC 12
2.2.2.4 Two Dimensional TDC . 13
2.2.2.5 Stochastic TDCs . 14

2.3 TDC calibration . 16
2.4 Thermometer-to-Binary Encoder . 17
2.5 Motivation and Selection . 19

3 Design and Simulation Methodologies 20
3.1 Delay Segment . 21

3.1.1 Proposed Vernier Segment . 23
3.2 Less Complex Approach of Encoding . 26

3.2.1 Proposed method for encoding . 29
3.3 Test and Verification . 30

3.3.1 Simulation Assumptions . 31
3.3.2 Corners and Temperature . 31
3.3.3 Layout . 31
3.3.4 The Proposed Delay Segment . 31

4 Simulation Results 34
4.1 Proposed TDC Implementation . 35
4.2 Process and Mismatch Variations for Delay Segments 36
4.3 Encoding Circuit . 39
4.4 Nonlinearities (DNL and INL) . 40
4.5 Area . 46
4.6 TDC Speed . 46
4.7 Power Consumption . 47
4.8 TDC Survey . 48

5 Discussion 49
5.1 Proposed Implementation . 50
5.2 Process and Mismatch Variations . 50
5.3 Encoding Circuit . 52
5.4 Nonlinearities . 53

iii

5.5 Conversion Speed . 54
5.6 Area . 55
5.7 Power . 55
5.8 Summary . 56

6 Conclusion 58
6.1 Future Work . 59

Bibliography 63

Appendix A TDC Segments Parameters and Layouts 64

Appendix B Simulation Results for TDC Segments 68

Appendix C SystemVerilog Models 74

Preface

This thesis fulfills the requirements for the degree in Master of Science in Engineering for
Electronic Systems Design at the Norwegian University of Science and Technology (NTNU), at
the Department of Electronic Systems.

The subject of this master thesis is to measure the time between the rising edges of two separate
signals. The initial suggestion for this time measurement is a Vernier Delay Line (VDL) however,
other options are explored. A big concern with Vernier delay line is the consistency of the
accuracy, as delay lines will have production variations. A specification for the required accuracy
is established and used as the basis for the suggested solution. Even though it falls outside
the scope of the thesis, calibration of the delay line or other solutions can be used as a way of
further increasing the accuracy of the time measurement. The selected solution is only required
to produce an unsigned logic output representing the time difference between the two separate
input signals. The work done in this master thesis is not a continuation on a specialization
project from previous semester and was completed in the standard time period.

iv

Sammendrag

I denne masteroppgaven er hovedmålet å måle tiden mellom stigende flanker av to separate
signaler. Det ble foreslått å bruke en såkalt ”Vernier Delay Line” (VDL), men problemet med
dem er at nøyaktigheten er inkonsekvent på grunn av produksjonsvariasjoner. Derfor er det
motivasjon til å prøve ut andre løsninger for å måle tidsforskjell. Det blir utviklet et krav til
nøyaktigheten av målingen, som brukes som veiledning til den foreslåtte løsningen. Selvom
det er utenfor omfanget av oppgaven kan kalibrering av forsinkelseslinjen eller andre løsninger
øke nøyaktigheten ytterligere. Den valgte løsningen trenger kun å produsere en ”unsigned
logic” på utgangen for å representere tidsforskjellen mellom de to inngangsignalene. Denne
masteroppgaven er ikke en fortsettelse av en prosjektoppgave utført semesteret før, og den ble
fullført på normert tid.

Oppgaven tar for seg en TDC arkitektur som bruker flere VDLer i parallell for å måle tidsforskjell.
TDC arkitekturen oversetter ”thermometer”-kode til binærkode uten å bruke konvensjonelle
enkodere. I oppgaven brukes både digitale og analoge designmetoder. De analoge designene er
implementert med 28nm FDSOI CMOS teknologi, og de digitale designene er implementert ved
hjelp av SystemVerilog.

Den foreslåtte TDC arkitekturen er en 6-bits monotonisk TDC med 4.62 lineære bits. TDCen
sampler i en hastighet av 110 MS/s over et dynamisk område av 630ps. Prosess og ”mismatch”
variasjoner er ekstrahert fra det analoge designet, og ikke-lineæriteter er ekstrahert fra det
digitale designet. Den foreslåtte arkitekturen har en DNL av +1.4/-1.0 og INL av +1.6/-1.0 som
viser fordelen av å bruke parallelle forsinkelseslinjer. Arkitekturen forbruker 0.887 mW fra en
0.9V spenningskilde, og opptar 0.0039 mm2. Resultatene i denne oppgaven er fra målinger tatt
fra et ”pre-layout” design.

v

Abstract

A TDC architecture that uses a multiple VDLs operating in parallel to measure time is
discussed in this thesis. The TDC converts the thermometer code to a binary code without using
conventional encoders. The thesis took advantage of both analog and digital workspaces, the
analog workspace is implemented using 28nm FDSOI CMOS technology, while the digital
workspace is implemented in SystemVerilog.

The proposed TDC is 6 bits monotonic TDC, with 4.62 linear bits. The TDC samples at a rate
of 110MS/s over 630ps dynamic range. Process and mismatch variation are extracted from the
analog workspace, while nonlinearities are extracted from the digital workspace. The proposed
TDC has a DNL of +1.4/-1.0 and INL of +1.6/-1.0, which shows the benefit of using parallel
delay lines. The TDC consumes a 0.877 mW from a 0.9V voltage supply and occupies a 0.0039
mm2. The results in this thesis are reported from pre-layout measurements.

vi

Acknowledgements

I want to express my sincere gratitude to Professor Morten Olavsbråten, Engineer Svein
Henninen, and Engineer Carolina Velezmoro. Their motivation, support and technical insight
have guided me during my master thesis. I would like to take a moment of silence for my late
advisor professor Kjetil Arnt Svarstad, who has always been a source of motivation for me.

I wish to show my appreciation for the Norwegian University of Science and Technology
(NTNU), and for Nordic Semiconductor to give me the opportunity to use the available tools
and for their continuous support. I would like to thanks Aslak Holen, Khalil Gammoh, Somayeh
Zadeh, and Harri Kinnunen, whose assistance was a milestone in the completion of this thesis.
A special thanks to Yohan Sandvik for assisting me in writing the preface in Norwegian.

Thanks to my parents Ali and Khawla, my dear sisters Farah, Raghad, Duha, Shatha, Gheed,
and to my dearest friends Aaliyah, Elias, Giovanna, Khalid, Milla, Musa, Omar, and Saed, for
their support and encouragement. They have always been part of my life and part of this thesis.

In the end, I want to thanks everyone and every institution that helped and supported me. I could
not have completed my master’s degree successfully without it.

vii

List of Figures

2.1 Illustration for Simple TDC . 3
2.2 Quantization Curve for TDC . 4
2.3 Block Diagram of Basic Analog TDC . 8
2.4 Block Diagram of Dual Slope Analog TDC 9
2.5 Block Diagram of Basic DL TDC . 10
2.6 Block Diagram of Vernier Delay Line TDC 11
2.7 Block Diagram of RO Vernier Delay Line TDC 12
2.8 Block Diagram of 5x5 2-D GRO-VDL TDC [1] 13
2.9 Block Diagram of Stochastic TDC Based on Latches 14
2.10 Block Diagram of Stochastic TDC Based on DL 15
2.11 Block Diagram for Calibration of a DL TDC 16
2.12 3 Bit Wallace-Tree Encoder Block Diagram 17
2.13 3 Bit Mux-Based Encoder Block Diagram . 18

3.1 Typical Vernier TDC Segment . 21
3.2 Vernier TDC Segment Timing Diagram . 22
3.3 Block Diagram for the Proposed VDL TDC 23
3.4 Timing Diagram for the Proposed Delay Segment 24
3.5 Proposed Delay Segment Schematic . 24
3.6 Layout for the Proposed Delay Segment with 10ps LSB 25
3.7 Early Attempt Encoder Solution . 27
3.8 Modification for the Encoder Solution . 28
3.9 Proposed TDC Implementation . 29
3.10 Timing Diagram of the Proposed TDC Implementation 30
3.11 Proposed TDC Segment TestBench . 31
3.12 Verilog TestBench of the Proposed TDC . 32
3.13 SystemVerilog Top Level View . 33

viii

ix

4.1 Block Diagram for the Proposed TDC Architecture 35
4.2 Monte Carlo Histogram for 10ps Delay Segment 36
4.3 Histogram for Simulated 10ps LSB Segment 37
4.4 Grayscale Images for Random Functions . 40
4.5 Grayscale Images for Random Functions . 41
4.6 Proposed TDC DNL . 42
4.7 Proposed TDC INL . 42
4.8 Wallace TDC DNL . 42
4.9 Wallace TDC INL . 42
4.10 First Case Scenario DNL and INL . 42
4.11 Proposed TDC DNL . 43
4.12 Proposed TDC INL . 43
4.13 Wallace TDC DNL . 43
4.14 Wallace TDC INL . 43
4.15 Second Case Scenario DNL and INL . 43
4.16 Third Case Scenario . 44
4.17 Output From All Delay Lines . 45

A.1 Layout for the proposed delay segment with 20ps LSB 65
A.2 Layout for the proposed delay segment with 40ps LSB 65
A.3 Layout for the proposed delay segment with 80ps LSB 66
A.4 Layout for the proposed delay segment with 160ps LSB 66
A.5 Layout for the proposed delay segment with 320ps LSB 67

B.1 Monte Carlo Histogram for 20ps Delay Segment 68
B.2 Monte Carlo Histogram for 40ps Delay Segment 69
B.3 Monte Carlo Histogram for 80ps Delay Segment 69
B.4 Monte Carlo Histogram for 160ps Delay Segment 70
B.5 Monte Carlo Histogram for 320ps Delay Segment 70
B.6 Histogram for Simulated 20ps LSB Segment 71
B.7 Histogram for Simulated 40ps LSB Segment 71
B.8 Histogram for Simulated 80ps LSB Segment 72
B.9 Histogram for Simulated 160ps LSB Segment 72
B.10 Histogram for Simulated 320ps LSB Segment 73

List of Tables

2.1 Comparative Analysis of 5-bits Encoder Architectures 18

3.1 TDC Initial Specification . 20
3.2 Delay Segment Component Values and Sizes 26

4.1 Delay Segments Parameters . 36
4.2 Delay Segments Variations . 37
4.3 Segments Resolution Variations (with fixed seed) 38
4.4 Segments Resolution Variations (with different seed) 38
4.5 Proposed Encoding Circuit Gate Count . 39
4.6 Simulated Nonlinearities . 44
4.7 Number of Linear Bits (Nlinear) . 45
4.8 Vernier Delay Lines Area . 46
4.9 Vernier Delay Lines Power Consumption . 47
4.10 Performance Summary and Comparison . 48

5.1 Proposed Encoding Circuit Vs Wallace Encoder 52

A.1 Capacitor C1 Values for Different Resolutions 64

x

Abbreviations

ADC Analog to Digital Converter. 4, 8

AI Artificial Intelligence. 1

CMOS Complementary Metal Oxide Semiconductor. 1

CV Coefficient of Variation. 37

DL Delay Line. 3

DLL Digital Phase-Looked Loop. 1, 2

DNL Differential Nonlinearity. 5

DUT Design Under Test. 31

ENOB Effective Number of Bits. 5

FDSOI Fully Depleted Silicon on Insulator. 20, 49

GRO Gated Ring Oscillator. 12

INL Integral Nonlinearity. 5

LIDAR Light Detection and Ranging. 1

LSB Least Significant Bit. 4

MOM Metal Oxide Metal. 25

NMOS N-Channel MOSFET. 26, 31

xi

xii

PET Positron Emission Tomography. 2

PLL Phase Lock Loop. 2

PMOS P-Channel MOSFET. 26, 31

PVT Power, Voltage and Process Variation. 1

RO Ring Oscillator. 12

SR Set-Reset. 22

TDC Time to Digital Converter. 1, 2, 4

TOF Time of Flight. 2

VCO Voltage Controlled Oscillator. 8

VDL Vernier Delay Line. 11

Chapter 1

Introduction

The industry today is pushing for more tasks to be done autonomously (i.e. using robots and
Artificial Intelligence (AI)), such as Light Detection and Ranging (LIDAR) used in autonomous
cars, Digital Phase-Looked Loop (DLL), and various biomedical applications. Many of these
applications require a highly precise time measurement to achieve the expected performance.

Designing a circuit that can achieve a nanosecond or even a picosecond precision can elevate the
performance of these systems dramatically [1]. A circuit with such performance should also be
compact and power-efficient. Analog building blocks could achieve such a performance, but they
often have large area and high power consumption. Digital building block can overcome these
drawbacks and offers a more compact, and power-efficient design. Moreover, digital circuits
benefit substantially from the advancing of the Complementary Metal Oxide Semiconductor
(CMOS) technology.

Time to Digital Converters (TDC) are circuits that convert a time measurement into a digital
code. TDCs have become very popular in recent years due to their performance and scaling
of CMOS process. The latter one is important since the TDC can be designed using all-digital
blocks, which means that the TDC can have the advantages of digital circuits while being
tolerant to Power, Voltage and Process Variation (PVT).

1

2

The scaling down of CMOS technology combined with architectural improvements made TDC
a very attractive choice for systems that depend on time measurement. For example, in com-
munication and mixed-signal systems, recent works [2], [3] have shown a significant increase
in the performance by replacing the phase detector in the Phase Lock Loop (PLL)/Digital
Phase-Looked Loop (DLL) with a TDC because it is more accurate and area/power efficient.
Other applications have adopted TDC to take advantage of their superior performance, such as
biomedical imaging using Positron Emission Tomography (PET) technique [4]. Furthermore,
the automotive industry took these advantages as well by developing laser rangefinders using
Time of Flight (TOF) [5]. Measurement instruments implemented TDC to achieve state of the
art instrument accuracy, such as oscilloscopes, logic analyzers, and timing jitter measurement
[6] [7].

This work focuses on studying and comparing different TDC architectures and find a suitable
implementation for the given specifications. Moreover, study the effects of process variations
on the implemented TDC and overcome these variations. The rest of this work is organized as
follows; Chapter 2 gives a background on TDC, their classification, and a comparison between
different implementations. Based on that, Chapter 3 describes the TDC design and simulation
methods. Chapter 4 presents simulation results, Chapter 5 discusses these results and deliver
conclusions which are represented in chapter 6.

Chapter 2

Theory

(a) Delay line TDC Architecture Block Diagram (b) 100ps Measurement Timing Diagram

Figure 2.1: Illustration for Simple TDC

A simple TDC architecture consists of a Delay Line (DL) with a D-flip flop, as shown in
figure 2.1 (a). The TDC measures the time difference between start and stop signals (∆T) by
sampling the state of delayed start signal through flip-flops. The output of TDC is a digital
word in Unary coding (thermometer code), where the output is represented with n ones followed
by zeros. For example, 4 will be represented as (111100...). Figure 2.1 (b) shows the timing
diagrams of measuring a 100ps (∆T) using the previous TDC. The thermometer code output q is
(11000..), which is defined by the TDC metrics.

3

4

2.1 Performance Metrics

There are several numbers of TDC architectures, each of which has its advantages and
disadvantages. In order to study these architectures some performance metrics should be defined.
These metrics will allow a systematic comparison between TDC architectures since these metrics
can be applied to any TDC.

2.1.1 Resolution (LSB)

The smallest time difference that a TDC can detect is called the resolution. This difference
is converted to a digital output word defined by the term Least Significant Bit (LSB). Since
TDC operates similarly to Analog to Digital Converter (ADC), one can look at this metric as the
step width of the input-output transfer curve (quantization curve) of TDC shown in figure 2.2.
Ideally, step width is defined by the application and it should be constant along the curve. Each
step (1 LSB) represents a digital output word increment to a time input increment [8].

Figure 2.2: Quantization Curve for TDC

5

2.1.2 Non-linearities

Various noise sources affect the performance of TDC, causing the input-output transfer curve
to deviate from its ideal values, resulting in a non-linear curve. These errors can come from
delay time mismatch of delay cells and PVT variations. Mainly these nonlinearities can be
represented as two parameters, Differential Nonlinearity (DNL) and Integral Nonlinearity (INL).
Since different noise sources will cause a deviation on the ideal transfer curve, DNL parameter
represents the difference between actual and ideal curves. INL, on the other hand, represents the
integration of that difference along the transfer curve (DNL) up to the calculation position. In
other words, the INL represents the accumulations of nonlinearities along the time conversion.
There are multiple techniques to overcome these nonlinearities in TDC, such as architectural
manipulation or calibration circuits.

Nonlinearities are measured in LSB, and can predict the behavior of TDC output as in ADC
output [8]. Monotonicity means the output of TDC will always increase as input increases. To
guarantee that a TDC is monotonic, the maximum DNL has to less than 1 LSB, or the maximum
INL has to less than 0.5 LSB. In many cases, the TDC might have a DNL error greater than 1
LSB and still consider monotonic [8]. Monotonicity is essential to some applications where
TDC is used in a feedback loop, where a decrease in the digital output code could make the
system oscillate. Missing Codes is also an essential behavior for TDC, where if INL is larger or
equal to 1 LSB can indicate a missing digital output code from the TDC [8].

2.1.3 The Linear Bits

The Effective Number of Bits (ENOB) is a metric used in ADCs to represents the number
of linear bits. Since TDC and ADC are similar in performance metrics, the Nlinear is used to
represents the effective number of linear bits in a given TDC. This metric is introduced to TDC
since it is challenging to generate a pure sinusoidal signal for the inputs of TDC (start and stop
signals) [9] [10]. Nlinear can be calculated using equation 2.1, where N is the number of bits for
TDC.

Nlinear = N− log2(INL+1) (2.1)

6

2.1.4 Conversion Speed

The process of measuring time intervals and transform it into a digital word requires time;
this time is known as the Dead Time, in which TDC cannot perform another measurement during
it. In other words, the dead time measures how fast a TDC can perform one measurement. The
speed in which is usually called the conversion speed, and it is given as a sample per second
(S/s). This metric might be considered essential and that TDC should be designed to operate as
fast as possible. However, in reality, the conversion speed depends on the application utilizing
the TDC. Some architectures separate the sampling rate from the conversion speed to achieve
higher speeds. By separating both operations (i.e. pipelining), TDC could convert a measured
time interval into a digital word while sampling a new one at the same time [11].

2.1.5 Dynamic Range

Since TDC measure time, the maximum interval that can be measured is defined as the
dynamic range. This parameter depends on the LSB and TDC architecture. In basic concepts, a
higher dynamic range means that TDC can detect a broader range of measurements. This will
reflect, on the LSB and conversion speed for some architectures, thus causing TDC to become
slower since the measured signal has to propagate longer in TDC before it gets converted into
a digital code. As with conversion speed, the wight of this parameter in designing a TDC is
application dependent as well.

2.1.6 Area and Power

As for most CMOS designs, area and power consumption are considered essential parameters.
Especially with the advancing of technology and the need for more efficient chips in recent
years. Different architectures will have better performance metrics than others but at the cost
of area and power. In order to have a more compact design, the area and power for the desired
circuit must be considered before implementation because the architectural implementation has
a significant effect on them.

2.1.7 Noise

Noise sources in TDC come from transistors changing the signal delay time in each stage
due to jitter and PVT variations. This will cause the output of TDC to vary around the expected
value for the same input. The variations of TDC output generally follow Gaussian distribution
[1], which can be estimated by calculating the standard deviation (sigma) for each source.

7

2.1.7.1 Jitter

Jitter is a random noise added to signal from each stage by its transistors. This noise is
represented as Gaussian distribution. Usually, for TDC, the jitter is less than 1% of the nominal
delay; thus, it can be ignored.

2.1.7.2 Process and Mismatch

The delay times of different cells cannot be the same since no two transistors can be alike.
These changes are caused by process and mismatch variations, where process variations represent
changes between two transistors on different silicon wafers for the same circuit. Mismatch, on
the other hand, is the difference between transistors on the same silicon wafer. These variations
come from imperfections in transistors fabrications and can be modeled as Gaussian distribution
using Monte Carlo simulations [12]. These effects will be studied further in this work.

2.1.7.3 Supply Voltage Variation

Supply variations affect the speed of the transistors in the circuit, thus changing the overall
performance. These variations are ignored in this work by assuming a well designed band-gap
voltage supply is available.

2.1.7.4 Temperature Variation

The temperature change affects the threshold (Vth) of transistors, which will reflect on their
speed and the overall performance of TDC. However, in this work, the temperature is considered
fixed at 27◦

8

2.2 TDC Architectures

TDC measures time intervals between two different signals (i.e. START and STOP); for
some applications such as DLL/PLL, TDC is used to lock the loop by comparing the output
frequency with a reference frequency to use it as a control signal for the Voltage Controlled
Oscillator (VCO). However, in this work, the input signals (START and STOP) will be provided
from the same source. Since there are various architectures, there is no general operation for
TDCs, and every architecture performs the time measurement differently. These variations mean
that performance metrics of a TDC are defined by the time measurement technique (architecture
of the TDC). In other words, the overall performance of a system that uses time measurements
depends significantly on the TDC architecture. In the following section, popular architectures
will be presented along with how they operate and their pros and cons. Finally, a comparison
will be made to discuss and select a suitable architecture for this work.

2.2.1 Analog-type TDCs

Analog architectures are considered to be the first generation of TDCs. The most straight-
forward approach is to change the charge in a capacitor with respect to time differences (i.e.
convert the time to voltage level), as shown in figure 2.3. Then convert this voltage into a digital
code using either an ADC or a voltage comparator. Although this method is a straight forward,
the resolution and the dynamic range depends on the number of bits for the ADC (the resolution
of the ADC), which limits TDC performance [13].

Figure 2.3: Block Diagram of Basic Analog TDC

To improve the resolution, dual-slope (pulse stretching) architecture is developed, where a
voltage comparator and a second capacitor (C2) are introduced, as shown in figure 2.4. During
the measurement of the time interval, the voltage on the positive node of the comparator is
larger than the negative node. This difference will make the output of the comparator to be
+1. When the stop signal comes, the current source i2 will start to return the output voltage

9

Figure 2.4: Block Diagram of Dual Slope Analog TDC

of the comparator to zero. Using a counter with a known reference clock, the time needed to
compensate for the voltage difference on the node can be measured, which represents the time
interval. This method can achieve high time resolution and high dynamic range [14].

Time-Amplifier architecture (TA) is introduced to improve the resolution of TDC by having
coarse-fine measuring paths. TA TDC takes the residue of time measurement from the coarse
path and amplified it to be measured again. Architecture that uses TAs has an excellent resolu-
tion, such as [15]. However, the main disadvantage is that time-amplifiers have a small linear
region in which they can operate, which results in a very narrow dynamic range [1].

Although analog TDCs offer good metrics, they still suffer from PVT variations, high INL for
long-dynamic range, require careful design and take large area [1], which makes them unpopular
in modern CMOS design.

10

2.2.2 Digital-Type TDCs

Digitally implemented TDCs overcome the drawbacks of the analog implementations and
achieve the same or even better metrics as CMOS technology advances. There are many tech-
niques to implement digital TDC; the simplest is to count the number of ticks for a reference
clock during the time interval. However, to achieve high resolution, a very accurate Giga-Hz
reference clock and a compatible counter are needed, which is not practical in real-life applica-
tions.

2.2.2.1 Delay Line TDC

Figure 2.5: Block Diagram of Basic DL TDC

In order to obtain a high-resolution TDC without the need for an accurate clock signal, a delay
line can be placed in the start signal path with the output of every delay element is connected to
a flip-flop as shown in figure 2.5. To measure a time interval, the start signal has to propagate
through the delay line within a specific delay time (τ1) added by each delay cell, and when stop
signal toggles to one, it will latch all the outputs of the delay line. The final output word will
be a thermometer code with every one represents a single time measurement (LSB = τ1). For
example, if ∆T is 30ps, and the resolution (LSB) is 15ps, each delay cell will add 15ps delay to
the start signal until stop signal becomes one. The output q, in this case, will be (11000...). The
drawback of delay line TDCs is the limitation on their resolution (LSB), which is limited by the
minimum propagation delay of transistors. Moreover, it requires calibration against PVT, and it
is only suitable for a short dynamic range [1].

11

2.2.2.2 Vernier Delay Line TDC

The Vernier Delay Line (VDL) overcome technical limitations on the resolution by introduc-
ing a faster second delay line for the stop signal, as shown in figure 2.6. A sub-gate resolution is
now achievable through the difference between delay lines cells LSB = τ1− τ2, where τ1 and
τ2 are the delay for cells in the start line and stop line, respectively. For example, if ∆T is 15,
τ1 and τ2 are 20ps and 15ps, respectively. The resolution (LSB) will be 5ps; each signal will
experience different delay times while propagating. Since the stop signal will propagate faster,
it will catch up with the start signal at q2 and sample the outputs of the flip-flops. The output q,
in this case, will be (11100...).

Furthermore, since the resolution is the difference in the delay time, the VDL architecture can
compensate first order PVT variation if the two delay lines are well-matched [16]. Although the
VDL implementation solved the resolution issue, it still requires an exponential increment in the
number of stages to increase the dynamic range (2N).

Figure 2.6: Block Diagram of Vernier Delay Line TDC

12

2.2.2.3 Ring Oscillator Vernier TDC

Ring Oscillator (RO) VDL solves the dynamic range issue of the normal VDL while main-
taining a high resolution. By looping back the input signals (i.e start and stop) around and
connects the end of the loop to a counter, as shown in figure 2.7. The counter output will indicate
how many times the signals have passed, thus increasing the dynamic range dramatically, which
will depend on the counter output and the number of delay stages. However, this architecture
has worse nonlinearities, since noise and jitter will be accumulated throughout the ring [1].

Figure 2.7: Block Diagram of RO Vernier Delay Line TDC

Gated Ring Oscillator (GRO) VDL architecture [17] is introduced to eliminate the noise accu-
mulation problem, by adding an enable signal to the delay cells in the fast and slow delay lines
for the TDC in figure 2.7. The enable signal will be on at the beginning of measurement and will
make the delay lines work as regular oscillators. When stop signal catches up with start signal,
the enable will be off, thus saving the current values of delay cell nodes. Any new measurement
starting point to be the ending point of the previous one, which will make the residue at the
end of the previous measurement transfer to the new one. This transfer will provide first-order
noise shaping and reduce the mismatch between delay cells [1], [18]. The drawback of GRO is
the need for holding previous values until the next measurement starts. This means the need
for a capacitor with low leakage to keep old values valid, which is difficult to obtain in modern
CMOS process. Moreover, even if the first-order noise is eliminated, the GRO architecture still
requires calibration against PVT variations.

13

2.2.2.4 Two Dimensional TDC

Another method for improving the narrow dynamic range for VDL is 2-D architectures VDL
[19], which solves the dynamic range issue by constructing a two-dimensional matrix from the
output of GRO vernier delay lines as shown in figure 2.8. This architecture makes the growth
in the delay line elements to the

√
N instead of exponentially (2N) while maintaining a high

resolution (LSB). Figure 2.8 shows the output matrix of the 2-D GRO VDL, where the diagonal
line represents the output expected from the normal VDL (i.e.∆ = LSB) and the lower-half part
represents the extended delay using the slow chain. The upper-half part, however, represents
invalid measurements, where the stop signal will arrive before the start signal.

For example, if ∆T is 60ps, τx and τy are 50ps and 40ps, respectively. The resolution will be
10ps. In the beginning, for the time measurement, the control circuit will enable both GROs.
Both signals will circulate since ∆T is larger than 50ps; at X = 2, and Y = 2 stop signal will
pass start signal, which will set the enable to off. An encoding circuit will detect the signals
circulation and modify the coordinates with respect to the number of circulations, decrementing
Y by one in this example. The final coordinates for the Vernier plane are X = 2 and Y = 1, which
indicate 6 LSB (60 ps). Although this architecture improves the dynamic range, the overall
complexity of TDC increases, plus the need for advanced control and decoding circuitry.

Figure 2.8: Block Diagram of 5x5 2-D GRO-VDL TDC [1]

14

2.2.2.5 Stochastic TDCs

All TDCs will have mismatch and jitter between different stages, which affect the per-
formance of most TDCs. Nevertheless, stochastic architecture takes this drawback and uses
stochastic properties to achieve high resolution and stability. The stochastic TDC implemented
in [20] uses a set of latches known as arbiters (q0−qn) shown in figure 2.9, with different offset
voltages (Vth) which represents process variations. When the start signal crosses the voltage
(Vth) of a latch before the stop signal, the output of that latch will be +1; otherwise, it will be
-1. Since all latches are identical, their cumulative summation of input voltage offsets follows a
normal or Gaussian distribution. This will produce a resolution equal to

√
2π∗σvth
2N−1 , where σvth is

the standard deviation of the offset voltage (Vth) and the 2N−1 represents the number of latches.
Even though this TDC takes advantage of process variations, it stills suffers from PVT variations
and requires calibration to overcome it[21].

Figure 2.9: Block Diagram of Stochastic TDC Based on Latches

Recent developments in the stochastic TDC, such as [22], has overcome the PVT variations
without the need for calibration. Figure 2.10, shows the implementation of the architecture,
which counts the number of edges (dn) produced by a fast refrence clock (i.e. 850MHz) in the
delay line during the start and stop signals. Since the random mismatch and jitter will have a
Gaussian distribution across all edges and delay cells, the summation of the output from the
delay line will have a uniform distribution. Thus PVT variations will only change the delay for
delay cell, not the distribution of the edges. This ensures that the total number of edges will
stay the same across different corners. Furthermore, to achieve higher resolution and eliminate
irregularities, an LSB bits truncation circuit is also implemented since most PVT variations
will affect the lower bits of the TDC output code (the fine measurement). This architecture has
shown excellent performance and resilient to variations. However, to achieve high characteristic

15

Figure 2.10: Block Diagram of Stochastic TDC Based on DL

distributions of PVT variations and jitter, the delay line has to be extremely long. For this TDC to
achieve these characteristics, the delay line has to have 214 delay cells. Furthermore, the authors
of [22] did not prove the distribution of variations mathematically, and the LSB truncation
shows that they have designed a TDC with femtosecond resolution to obtain measurements in
picoseconds (i.e. using a stopwatch to count years).

16

2.3 TDC calibration

Since most TDC architectures suffer from PVT variations, which can degrade TDC perfor-
mance, calibration circuits or methods are necessary to maintain a consistent TDC performance
over PVT variations. The need for such circuitry is considered one of the most significant
drawbacks to TDC because calibration circuits are often complex and require a big area [23].

Calibration schemes vary widely depending on TDC architecture. Often, TDC is used along
PLL/DLL to replace the phase detector found in them. Since the clock signal of the PLL/DLL is
always running and experience the same PVT variations, it can be used to calibrate the TDC
using a control voltage delay cells, thus improve the overall accuracy. The feedback loop in [24]
uses a DLL to improved the overall resolution and linearity dramatically of TDC to become 60
ps with +/- 1 LSB accuracy.

PVT variations affect the delay time of each cell in TDC differently; authors in [18] uses a
different approach to calibrate TDC, as seen in figure 2.11. Using a circuit which can output the
difference between the ideal delay and actual delay of the cells, by measuring the differences
from outside the chip or by having a very accurate cell (ruler cell) to compare with, as in [25].
This difference is then used in a lookup table to get a digital calibration code that corresponds to
that difference. This code will be substituted to a capacitor bank connected to each delay cell,
which adjusts the total delay of the cell.

Figure 2.11: Block Diagram for Calibration of a DL TDC

17

2.4 Thermometer-to-Binary Encoder

Most TDC produces the output of the time measured as a thermometer code; an encoder is
necessary to convert the time measurement to a binary-weighted code. The method for encoding
the output of the TDC can affect the performance due to Bubble-Error, where some invalid
transitions in TDC could cause the thermometer code output to have unsystematic 1s or 0s.
For example, if a TDC measured a 40ps period with a resolution (LSB) of 10ps, the ideal
thermometer code output should be (111100000...). However, the realistic (actual) code will be
like (111100100...) or (11010000...) because of meta-stability errors, mismatch, and cross-talk
[26].

Figure 2.12: 3 Bit Wallace-Tree Encoder Block Diagram

The main contrasts between different encoders are speed, power consumption, and circuit com-
plexity. The most straightforward architecture is the Wallace tree encoder, which counts the
number of ones in the thermometer code using a [2N− (N +1)] full-adders, as shown in figure
2.12, where N is the number of encoded bits. This architecture is used widely in TDC due to its
ability to correct bubble-error [26].

Another approach for encoding thermometer codes is a multiplexer based encoder, which uses
2N−1th bit of the output code (pivot bit) to obtain binary-weighted code, as shown in figure
2.13. The number of multiplexers used in this approach is similar to the number of full-adders
used in Wallace-Tree encoder. The work is done in [27] shows that Mux-Based encoders are
less-complex and have lower power consumption than Wallace-Tree. However, it cannot correct
bubble-error.

18

Figure 2.13: 3 Bit Mux-Based Encoder Block Diagram

Fat-Tree encoder is also a simplified approach used in TDC, where NOR gates are used to
generate an intermediate code known as a one-hot code that contains no more than one logical
one. For example, if the thermometer code of a TDC is (1110000), the one-hot code will be
(000100), where the position of the logical one will be converter using NOR and NAND gates to
represent the binary word which is (0011) in this case. One advantage of using Fat-Tree encoder
is Bubble-Error correction but not to the level of Wallace-Tree [28].

Table 2.1 shows a detailed compression between different encoders architecture conducted by
[28]. From the table, it can be seen that even if some encoders offer error correction to the
output, using such a circuit will increase the size, power consummation while decreasing the
speed of a TDC.

Table 2.1: Comparative Analysis of 5-bits Encoder Architectures

Architecture Number Average dynamic current Maximum delay
of transistors current, µA time, ps

Wallace-Tree encoder 624 585 1276
Mux-Based encoder 114 261 817
Fat-Tree encoder 392 286 471

19

2.5 Motivation and Selection

The previous sections sum up the available architectures for TDC today. The selection
methodology is based on the nature of this work, which focuses on the higher-level imple-
mentation and investigates the existed TDC architectures. Furthermore, experimenting with
different ideas to reduce the overall complexity and improve the performance of TDC. From the
previous, the most applicable architecture for this work is Vernier Delay Line (VDL) TDC. The
VDL is a digital-based TDC with high resolution, usually in 10th ps and +/-1 LSB DNL [29].
Moreover, being a digital-based decreases development time, power consumption, and circuit
area. Nevertheless, VDL TDC uses complex components such as flip-flops and encoders, which
reduce its efficiency in measuring large time intervals.

Chapter 3

Design and Simulation Methodologies

The ongoing investigation in this work suggests in order to reduce the complexity of VDL
TDC, it is desirable to investigate further down from the higher-level implementation of the
TDC. This implies to explore various delay segments at transistor level and find a way to
reduce the overhead complexity added by the delay segments, encoders, and calibration circuits.
Specifications for the TDC are shown in table 3.1; these specifications are chosen arbitrarily to
have a start point for the design process and guide the workflow of the project. The design and
simulations for TDC at the transistor level are performed using a commercially available 28nm

Fully Depleted Silicon on Insulator (FDSOI) CMOS process, with 0.9V supply voltage.

Table 3.1: TDC Initial Specification

Property Goal

Architecture VDL
Resolution (LSB) 10ps
Conversion Speed 100MS/s
Dynamic Range 630
Number of Bits 6
DNL/INL +/- 1 LSB
Power Supply 0.9 V
Area & Power minimum

20

21

3.1 Delay Segment

Most implementations of VDL TDC use two delay cells and a D-flip flop to sample the time
difference as shown in figure 3.1. In general, all flip-flops have delay, setup, and hold times
known as timing parameters, [30] and [31] define these parameters as:

• Delay Time: (i.e. propagation time); the required time for a signal to propagate from the
input (D) to the output (q) when a leading edge of a clock triggers the (clk) terminal.

• Setup Time: the required time for a signal to be stable at the input (D) before a leading
edge of a clock triggers the (clk) terminal.

• Hold Time: the required time for a signal to be stable at the input (D) after a leading
edge of a clock triggers the (clk) terminal.

Figure 3.1: Typical Vernier TDC Segment

Using a D-flip-flop in the delay segment can cause drawbacks to TDC, such as increasing area
and power consumption while decreasing TDC speed. Nevertheless, violating setup and hold
times will make the flip-flop output to be in meta-stability status, where the output (q) will have
an undefined value (X). This can be very problematic for TDC design since setup times for
flip-flops are in hundreds of picoseconds. For example, the D-flip-flops reported in [32] have a
setup time of 137ps and 197ps, if a 10ps time interval to be measured using a Vernier TDC with
10ps resolution (LSB); which implies that the time difference between the start and stop delay
elements should be 10ps. When the time signals (i.e. start and stop) propagate through the TDC,
the output of the flip-flop in figure 3.1 will be zero instead of one after the time sampling.

22

This can be illustrated through the timing diagram shown in figure 3.2. Since the stop signal
propagates faster than the start signal, both signals will catch-up at the end of the time measure-
ment which can cause an error in the time reading as in this case or causing the flip-flop to enter
a meta-stability status if the start signal does not fulfill the setup and hold times. Thus using a
standard flip-flop can deteriorate TDC performance. The work done in [19] acknowledged the
limitation and utilized a Time-Comparator based on a Set-Reset (SR) latch to resolve this issue.
However, even with improved architectures, the setup and hold time of flip-flops will still vary
with PVT variations, which adds more varying parameters to consider for TDC.

Figure 3.2: Vernier TDC Segment Timing Diagram

23

3.1.1 Proposed Vernier Segment

The proposed vernier segment is based on work done in [33], which uses a standard 65nm
CMOS technology. The proposed segment consists of a latch integrated within the delay lines,
as shown in figure 3.3. The delay latch is modeled as a zero delay multiplexer and a delay cell
with the start signal directly connected to the input (a). When the select terminal (s) is low, the
latch is transparent (output y = a), and when (s) is high, the latch will hold its output value.

Figure 3.3: Block Diagram for the Proposed VDL TDC

Assuming (τ1 > τ2), in the begin of a time measurement cycle, both signals (start and stop) are
zeros, and all delay latches are transparent with zero outputs when the start signal begins to
propagate through the delay latch, it will increase the thermometer code (q). The stop signal
begins to propagate after time ∆T , catching up with the start signal and setting the delay latches
into their hold status. At the delay stage where the stop signal passes the start signal, it will set
that delay latch to non-transparent status, holding zero output value, thus holding the start signal
and finishing the time measurement. Therefore, the output thermometer code (q) is linearly
dependent on the time difference of ∆T (linear thermometer code versus delay).

The integration of the latch within the delay cells eliminates the metastability issue, since output
of latch and output of start delay cell will be one at the same time. Recall the previous example,
where ∆T is 10ps, the TDC has an LSB of 10ps, and that both delay cells have a propagation
delay of 210ps and 200ps delay time for (τ1 and τ2), respectively. Since the start signal is
connected directly to the multiplexer, the output (q0) will be set to high after 210ps (i.e. setup
time), which is within time stop signal propagates through the delay cell as shown in figure 3.4.
For the next stages, the stop signal will be ahead of the start signal causing the rest of latches
outputs to be zeros, thus terminating the time measurement.

24

Figure 3.4: Timing Diagram for the Proposed Delay Segment

The implementation of the proposed delay segment at the transistor level and its layout are
shown in figures 3.5 and 3.6, respectively.

Figure 3.5: Proposed Delay Segment Schematic

25

The delay cell is implemented by cascading two dynamic inverters plus connecting a Metal
Oxide Metal (MOM) capacitor to the output node; the purpose of the capacitor is to control the
delay time. The latching mechanism is performed by enable transistors, which are controlled by
the delayed stop signal. When stop signal is zero, gate voltages for the enable transistors (M6

and M3) are logical high and logical low, respectively. Hence, making the start delay latch works
as an ordinary non-inverting delay element. After stop signal becomes high and propagates
through the delay cell, gate voltages for the enable transistors in the delay latch toggles removing
the paths to supply and ground for the inverters. The output of the delay latch (q) becomes
a floating node, thus holding its current value. Note that the output thermometer code (q) in
the proposed delay segment is inverted, hence the pull-down circuit. Nevertheless, this can be
adjusted easily using an inverter.

Figure 3.6: Layout for the Proposed Delay Segment with 10ps LSB

The pull-down circuit in figure 3.5 acts as a buffer driving the thermometer-to-binary encoder
[33]. As for matching transistors (M6 and M3), their purpose is to assure that the two delay
line are well-matched, thus compensating for PVT variations [16]. The proposed delay latch
requires four transistors (two identical sets of M6 and M3) in delay cells, to perform the latching
mechanism of the thermometer output code, which is 18 transistors less than the D-flip-flop
used in [32], and eight transistors less than the Time Comparator implemented in [19]. This
results in a more power-efficient and smaller size TDC [33].

26

Transistors sizes for the proposed delay segment are summarized in table 3.2. Initially, they are
taken from [33] and modified to match the differences in technologies used. Throughout the
designing process, sizes is increased to reduce the effect of process variations. These increments
are based on, the square root of the transistor area (i.e. A =W ∗L) is inversely proportional to
the process variations [34], and personal observation of various simulation runs. The length (L)
of all transistors is set to 45nm (1.5 times the minimum length) to reduce the leakage current
[35], which necessary for this implementation since the output of the delay latch (q) becomes a
floating node and must maintain its value. Nevertheless, these increments will create a trade-off
between process variations and cell leakage against the area, power, and speed [34] [35]. The
values for capacitors (C1 and C2) are set to achieve the required resolution (LSB) of 10ps.

Table 3.2: Delay Segment Component Values and Sizes

Element Type W (µm)
M1 PMOS 0.3
M2,M3 PMOS 0.6
M4 NMOS 0.2
M5,M6 NMOS 0.4

C1 Capacitor 4.4 fF
C2 Capacitor 4.1 fF

3.2 Less Complex Approach of Encoding

An essential building block for any VDL TDC is the thermometer to binary encoder, but as
mentioned earlier, these encoders often add an overhead complexity and increase size and power
consumption. The authors of [33] reported that the multiplexer based encoder used in their TDC
accounts for approximately 50% and 60% of the total area and the dynamic power, respectively.
These figures raise an important question; is there any way to design a more efficient encoder?
Or is this block necessary for TDCs? Can it be replaced by a smarter design?

27

The original need for the encoder block in a TDC comes from the usage of delay lines with
sampling latches. These lines produce the output as a thermometer code with the weight of
the resolution (LSB) is represented for every logical one in the code, not as a binary-weighted
digital code. In other words, if a TDC has an LSB of 10ps and the measured time difference
(∆T) is 320ps, by using a thermometer code, the output will be a 32 bits code (111.....111) since
every bit represents a 10ps measurement. Whereas, if a binary-weighted code is used, it will
only require 6 bits code (100000) to represents the same measurement. From that, it is evident
that by modifying the architecture of the VDL TDC, one can overcome this issue. Three main
architectures are implemented using Verilog-A, where only one architecture proves prudent to
be implemented at the transistor level.

Figure 3.7 (a) shows a high-level implementation of an early attempt for solving the encoder
issue. It consists of a modified VDL segment with different resolutions running in parallel. The
segments have an enable pin (en), and a reset pin to control the start signal, a simple delay cell
for the stop signal, and a latch for sampling the measured time. The configuration in figure 3.7
(a) gives a 3 bits TDC with 10ps LSB using only 5 Vernier segments.

(a) TDC Architecture Block Diagram

(b) 50ps ∆T Measurement Timing diagram

Figure 3.7: Early Attempt Encoder Solution

28

The simplicity of this design comes from the ability to control the start signal propagation
(enabling and resetting), while the stop signal propagates. A 50ps time difference (∆T) measure-
ment timing diagram is shown in figure 3.7 (b), where the output of the qa0 segment (i.e. 10ps
LSB), is controlled by the output of qa1 segment (i.e. 20ps LSB) and so on. When qa1 becomes
high (which indicates a 20ps measurements), it will enable the qb0 segment to measure the last
10ps and reset qa0 segment. The output code can be extracted as a binary code by using simple
logic gates. However, it is found out that designing such a Vernier delay segment to produce an
accurate enable and reset signal is complicated at the transistor level. Furthermore, since TDC
has 10ps resolution, the Vernier segment must be capable of resetting within this time to be able
to measure the next 10ps.

Figure 3.8: Modification for the Encoder Solution

Since matching between the reset and enable signal is difficult, a modification to the previous
implementation is done by removing the reset pin for segments and adding two 10ps segments,
as shown in figure 3.8. These modifications result in a simpler design for the Vernier segment
and remove the requirement for resetting within 10ps. The implementation works in similar
way as figure 3.7 (a), but with a difference that the 40ps segment (qa2) will enable qb1 and qc0.
Another way to look at it, that the 40ps segment (qa0) will start the fine measurement using
the qb1, qc0 and qd0. Nevertheless, the main problem for this implementation on the transistor
level is relying on the enable signal to start the next measurement. For example, if the time
difference is 30ps, qa1 will become high indicating a 20ps measurement which will enable the
10ps (qb0) segment. However, qa1 will not be logic one until the start signal propagates through
it. This propagation delay will result in the start and stop losses of the time difference between
them (both of the signals will be high at the time the enable signal comes), thus losing time
information.

29

3.2.1 Proposed method for encoding

Figure 3.9 shows the proposed TDC implementation, which solves all of the previous
issues by implementing multiple (parallel) VDLs with different resolutions measuring the time
difference in parallel. The resolutions for the lines have to be in the power of [(2n)∗LSB]; this
will simplify the encoding producer for thermometer codes.

Figure 3.9: Proposed TDC Implementation

The TDC in figure 3.9 has a 3 bits binary output code, 40ps dynamic range with 10ps LSB. The 3
bits output can be encoded from 7 thermometer bits using standard logic gates, as demonstrated
in the boolean equations 3.1, where n and q represent the binary and thermometer codes,
respectively.

n0 = n̄2.n̄1.qa0 + n̄2.n1.qa2

n1 = n̄2.qb0.qa1

n2 = qc0.qb1 + qb1.qa3 + qc0.qa3

(3.1)

An example of measuring a 30ps time difference (∆T) is shown in the timing diagram shown
in figure 3.10, the parallel VDLs independently generate thermometer codes with different

30

resolutions. The thermometer code from the first delay line (qa0− qa3) is 1110, since it has
an LSB of 10ps. As for the second delay line (qb0− qb1) the thermometer code will be 10,
correspond to its 20ps LSB. The last line (qc0) thermometer code will be 0 since (∆T) is less
than its resolution (i.e. 40ps).

Figure 3.10: Timing Diagram of the Proposed TDC Implementation

Substituting the values of delay lines from figure 3.10 into equations 3.1 will produce the output
word as a binary-weighted code, which is in this example (011). Theoretically, adding more
lines to compute the final binary output should add more robustness to TDC output since every
delay line will experience different PVT variations, as the binary output code for TDC is a
combination of all lines. Moreover, the usage of simple logic gates can offer a new method for
encoding the thermometer code, thus reducing the complexity of TDC encoders. To the author’s
best knowledge, the proposed parallel Vernier delay lines architecture has not been implemented
in previous papers nor patents.

The proposed TDC architecture uses the delay segment shown in figure 3.5. The values for the
capacitors C1 used to achieve the different resolutions is shown in table A.1 in Appendix A.
Layout for different resolution segments are shown in Appendix A, the only difference between
figures is the capacitor size.

3.3 Test and Verification

Simulations performed in this work are divided into main sections; analog simulations at the
transistor level and digital simulations in SystemVerilog. The analog simulations are performed
to extract the behavior of the proposed delay cells before it is passed to the digital workspace to
implemented the TDC.

31

3.3.1 Simulation Assumptions

To simplify the designed procedure, start and stop signals are assumed to be independent
and jitter-free. Furthermore, the rise time is 20ps for both signals, and the pulse width is long
enough for transistors to pass values in the TDC.

3.3.2 Corners and Temperature

The proposed implementation is designed and simulated at 27◦ c, typical process corner.
Other corners and temperature simulations could be considered to analyze their impact on TDC
performance.

3.3.3 Layout

The layout for the Vernier-Delay segment is shown in 3.6. Multiple measures are performed
to have a uniform layout such as using the number of fingers with same widths (W) for all
transistors (NMOS and PMOS), and having the same lengths (L) for all transistors as well.
Unfortunately, mismatch and process variations are taken from the transistor level only (pre-
layout), since it is not possible to extract any post-layout results due to technical limitations on
the available workspace.

3.3.4 The Proposed Delay Segment

Figure 3.11: Proposed TDC Segment TestBench

For the proposed delay segment (fig.3.5), analog simulations are performed first to find the
propagation delay of each line and the resolution (LSB) for each segment in the TDC. The setup
in figure 3.11 shows that delay times for start and stop signals are extracted from the Design
Under Test (DUT) segment (i.e. seg.3). The usage of dummies gives more realistic behavior for
signals and takes into account loading effects. The extraction of the delay time for the start signal
is done by setting the stop signal to zero and measuring the time between when the input signal

32

becomes 0.8V and when the output signal becomes 0.8 since only positive edges of signals are
considered. Same procedure for measuring the delay time for the stop signal, expect to set the
start signal to zero.

Afterward, a Monte Carlo simulation is performed to find the effects of mismatch and process
variations and extract a realistic mean value and standard deviation (sigma) for delay times. The
proposed architecture in this work implies different delay lines with different resolutions (i.e.
10ps, 20ps, 40ps, 80ps, 160ps, 320ps), this is achieved by increasing the size of the capacitor for
the start delay line (c1) and implement previous procedures to find the delays, resolutions, and
variations (sigma). Finally, delay times mean values and variations (sigma) are substituted in the
SystemVerilog model along with logic gates, as shown in figure 3.12 (this figure is just a 3 bits
demonstration of what the actual 6 bits TDC will look like).

Figure 3.12: Verilog TestBench of the Proposed TDC

33

The top-level view of the SystemVerilog model is shown in figure 3.13. The variations in the de-
lay time are generated in the testbench using "dist_normal(seed, mean, standard_deviation)"
function, which produces random numbers that follow Gaussian distribution with a standard
deviation (sigma); these variations are sent to the Vernier segment in the DUT. The segment
is listed in C.1, Appendix C, which has a delay function with an ideal flip-flop to sample the
time (since the proposed segment does not has timing constraints). The TDC core listed in C.2,
Appendix C, which defines the corresponding delay lines by instantiating multiple segments
with different resolutions.

All of the previous, ensures the SystemVerilog model will have the transistor level behavior
for delay cells in the TDC implemented in SystemVerilog. The logic gates encode the time
measurement (n) as binary-weighted from the thermometer code (q) to generate the quantization
curve for TDC in the DUT. The non-linearities curves (DNL and INL) are obtained by generating
a fixed time sequence to produce the corresponded time measurements. These measurements are
subtracted from ideal measurements (ideal quantization curve) to plot DNL curve and integrated
to obtain the INL curve. Codes of the SystemVerilog models and testbench is shown in Appendix
C.

Figure 3.13: SystemVerilog Top Level View

Chapter 4

Simulation Results

The achieved simulation results and methods from both transistor model and SystemVerilog
model of the designed TDC are presented in this chapter. The proof of concept for the simplified
TDC designs is performed using Verilog-A models, but no simulation results from these designs
are reported, since the models reported timing diagrams similar to the illustration diagrams
in Chapter 3. Results of the final designed TDC are represented in this chapter, where all
simulations at the transistor models are performed in typical process corner at 27◦ C, unless it is
mentioned otherwise.

The transistor-level of the proposed delay segment is simulated several times in order to verify
a systematic behavior and meet up with the required specifications. Simulation of circuits is
performed using Spectre Circuit Simulator in Cadence Virtuoso. Tests are performed in ADE
L/XL using Transient Analysis with moderate accuracy, and calculations are performed by the
Visualization & Analysis XL calculator. Monte Carlo Analysis modeled the delay variations of
the segments with 300 points for each delay segment with different resolutions (LSB). These
variations are then implemented and simulated in a SystemVerilog model to obtain the output
curve for TDC using Questa Simulator in MentorGraphics. Finally, all of these results are
record and presented using Matlab.

34

35

4.1 Proposed TDC Implementation

The implementation of the proposed TDC in this work is shown in figure 4.1, which has
6 VDLs with different resolutions (LSB). The proposed TDC has a 6 bits (n) output binary-
weighted code (after the encoding circuit) with 10ps resolution (LSB). The dynamic range for
the VDL TDCs is (2n−1)∗LSB, which gives a 630 ps for this configuration.

Figure 4.1: Block Diagram for the Proposed TDC Architecture

36

Table 4.1 illustrates the total number of delay segments along with their resolutions (LSB)
and their corresponded thermometer output bits. Propagation delay times for the start cells
are illustrated as well, where the propagation delay for stop delay cells is 125ps for the entire
design.

Table 4.1: Delay Segments Parameters

Delay LSB Start Signal Thermometer Number of
Line (ps) Delay (ps) Output Delay Segments

1 10 135 63 bits, a0→ a63 67
2 20 145 31 bits, b0→ b30 35
3 40 165 15 bits, c0→ c14 19
4 80 205 7 bits, d0→ d6 11
5 160 285 3 bits, e0→ e2 7
6 320 445 1 bit, f0 5

4.2 Process and Mismatch Variations for Delay Segments

Monte Carlo simulation is performed on each delay cell for every delay line resolution.
Figure 4.2 predicts the how the start and stop delay cells (i.e. τ1 and τ2) will vary. Both delay
cells have a standard deviation (σ) less than 5% from the nominal value of the propagation delay.

(a) Start Delay cell Histogram (b) Stop Delay cell Histogram

Figure 4.2: Monte Carlo Histogram for 10ps Delay Segment

37

Table 4.2 shows variations for each each delay line based on Monte Carlo histograms in Appendix
B. The Coefficient of Variation (CV) is the ratio of the standard deviation to the mean value,
which represents the percentage of variations a data set has [36]. For example, delay segment one
will have lower probability (less variations) to deviate from its mean value than segment number
6. Since the stop delay cell in each segment is not modified to generate different resolutions, it
has a mean value of 125.01ps, a standard deviation(σ) 5.51ps, and a CV of 4.4%, for the entire
TDC.

Table 4.2: Delay Segments Variations

Delay Start Nominal Start Mean Standard Deviation Coefficient of
Segment Delay(ps) Delay(ps) σ (ps) Variation

1 135 135.03 5.33 3.9%
2 145 145.50 5.80 4.0%
3 165 165.10 6.79 4.1%
4 205 205.46 8.79 4.3%
5 285 284.97 12.8 4.5%
6 445 446.54 21.0 4.7%

Figure 4.3 (a) predicts the variations of the resolution (LSB) for the 10ps segment (LSB =
τ1− τ2) caused by process variations and transistors mismatch. The resolution has a mean value
of 10.02ps and standard deviation (σ) of 0.173ps, which a CV less than 2% from the LSB mean
value.

(a) Same seeding for the random function (b) Different seeding for the random function

Figure 4.3: Histogram for Simulated 10ps LSB Segment

38

Variation values are based on sets of data generated from the SystemVerilog Testbench using the
(dist_normal) function, which uses a seed to generate different random numbers. The usage of
the same seed number simulates the condition where both delay cells are well matched, which
can be seen in figure 4.3 (a). However, if a different seed number is used for both cells, the
standard deviation (σ) of the resolution is 7.50 with a CV of 75.3%, which indicates that both
cells are not matched, as shown in figure 4.3 (b).

Tables 4.3 and 4.4 shows variation differences for the rest of delay segments with fixed and
different seeds, respectively. These numbers are based on simulation histograms in Appendix B.

Table 4.3: Segments Resolution Variations (with fixed seed)

Delay Nominal LSB Mean LSB Standard Deviation Coefficient of
Segment Value(ps) Value(ps) σ (ps) Variation

1 10 10.02 0.17 1.7%
2 20 20.49 0.26 1.2%
3 40 40.09 1.18 2.9%
4 80 80.45 3.03 3.7%
5 160 159.9 6.73 4.2%
6 320 321.5 14.3 4.4%

Table 4.4: Segments Resolution Variations (with different seed)

Delay Nominal LSB Mean LSB Standard Deviation Coefficient of
Segment Value(ps) Value(ps) σ (ps) Variation

1 10 9.95 7.50 75.3%
2 20 20.42 7.78 38.1%
3 40 40.02 8.41 21.0%
4 80 80.38 9.84 12.2%
5 160 159.9 13.0 8.13%
6 320 321.5 20.1 6.25%

39

4.3 Encoding Circuit

The implementation of the encoding circuit is done using SystemVerilog code listed in C.2,
Appendix C, which is based on Boolean equations similar to the equations in Chapter 3. The
circuit takes the thermometer outputs from different delay lines and generates a binary code
using AND, OR, and NOT gates. Table 4.5 shows details for the standard logic gates used in the
encoding circuit, where the number in front of the gate name represents number of inputs. The
delay and power are measured on pre-layout standalone cells with no load effects.

The circuit uses 179 gates with 1564 transistors, with a maximum delay time of 433ps, which
is measured through the critical path of 22 gates depth. These numbers are an approximation,
derived directly from the Boolean Equations since no actual synthesizer data are available to
publish. Furthermore, since the output of the proposed delay segment in figure 3.5 is inverted,
an additional 120 inverters are required to correct the thermometer code before passing it to the
encoding circuit. These inverters will not affect the total area, power, or propagation time for the
encoding circuit and are not accounted in table 4.5, since their effects are insignificant and any
encoding circuit will share them.

Table 4.5: Proposed Encoding Circuit Gate Count

Gate Propagation Average Gates Transistors
Delay (ps) Power (nW) Count Count

Inverter 5 0.01 15 30
2_AND 19 0.19 43 258
3_AND 29 0.20 4 32
4_AND 42 0.21 8 80
6_AND 74 0.22 48 672
2_OR 12 0.23 25 150
3_OR 13 0.25 11 88
4_OR 14 0.27 23 230
5_OR 15 0.29 2 24

Total Count 179 1564

40

4.4 Nonlinearities (DNL and INL)

The nonlinearities are measured by implementing various delay cells using the (dist_normal)
function, recalling from previous subsection the effects of seed numbers on the resolution of
delay segments, which can change nonlinearities for TDC. Initially, the seeding for the function
is performed in a f or− loop with different but consecutive numbers, which deteriorated nonlin-
earities and added a constant offset to the DNL and INL over various runs. A further look at the
(dist_normal) function showed that the output is following a strangely skewed pattern for the
random numbers generated.

This pattern is confirmed by generating 65536 numbers and representing each number as a
pixel with brightness ranging between black (minimum value) and white (maximum value)
using matlab function imshow. The generated random numbers are displayed as a grayscale
image, which can indicate the quality of the random number generation. Figure 4.4 (a) shows
grayscale image obtain from numbers generated by (dist_normal) function, where a strange
pattern (stripes and waves) can be seen versus the ideal grayscale image for random numbers in
figure 4.4 (b).

(a) dist_normal Function with correlated seed (b) Ideal Random Function

Figure 4.4: Grayscale Images for Random Functions

41

The elimination of the pattern is done by seeding the dist_normal function with uncorrelated
random numbers, which produce an ideal behavior of the function, as seen in figure 4.5.

(a) dist_normal Function with Uncorrelated Seed (b) Ideal Random Function

Figure 4.5: Grayscale Images for Random Functions

The DNL and INL are then extracted from SystemVerilog TestBench using uncorrelated seeding
for both the proposed TDC and a conventional VDL with Wallace-Tree encoder. The Wallace
encoder is presented for comparison purposes, and it is connected to the thermometer output
code of the first delay line (i.e. 10ps line) since this line can work as a stand-alone TDC with
the same specifications as the proposed TDC. Three scenarios are taken into consideration,
a Well-Matched delay cells scenario (same uncorrelated seeds for both delay cells) for the
proposed TDC and Wallace TDC. Un-Matched delay cells scenario (different uncorrelated
seeds for both delay cells) for the proposed TDC and Wallace TDC. Small Variations scenario
(almost ideal) for the proposed TDC, where all delay lines have lower variation percentages
(mean values for LSBs are closer to nominal values).

Nonlinearities are measured by ramping an input time sequence from 0 to 639ps with 1ps time
step. The small timestep gives precise, realistic, and constant DNL and INL figures over multiple
runs. After removing the offset and gain errors, the DNL is measured using equation 4.1, which
expressed DNL in terms of LSB. equation 4.1 measure DNL from time transition points (Tn+1

and Tn) of the output code in the quantization curve through the entire time sequence from
0≤ n≤ 639.

DNL =
Tn+1−Tn

LSB
−1 (4.1)

42

The INL is measured by passing a straight line through the endpoints of TDC quantization curve
from zero output code to all ones output code. This method is known as End-Point, which gives
precise results for INL. Figure 4.10 shows DNL and INL of the first scenario (well-matched
cells) for both the proposed TDC and Wallace tree TDC. It can be noticed that both TDCs have
similar variations for the DNL but with lower amplitude for the Wallace TDC, thus causing the
proposed TDC to have higher INL than Wallace TDC.

Figure 4.6: Proposed TDC DNL Figure 4.7: Proposed TDC INL

Figure 4.8: Wallace TDC DNL Figure 4.9: Wallace TDC INL

Figure 4.10: First Case Scenario DNL and INL

43

The second case scenario (un-matched delay cells) is shown in figure 4.15, where it can be seen
that both TDCs have a significant variations with high amplitude in their DNL and INL, which
shows the effect of high CVs in table 4.4.

Figure 4.11: Proposed TDC DNL Figure 4.12: Proposed TDC INL

Figure 4.13: Wallace TDC DNL Figure 4.14: Wallace TDC INL

Figure 4.15: Second Case Scenario DNL and INL

44

The last case scenario is only related to the proposed TDC since assuming lower variations
in other delay lines (i.e. 20ps to 320ps lines) will not affect the Wallace TDC because it is
connected to the output of the first delay line (i.e. 10ps line). The DNL and INL show that the
proposed TDC noise performance got improved and, DNL figure does not have significant LSB
values at higher output codes.

(a) Proposed TDC DNL (b) Proposed TDC INL

Figure 4.16: Third Case Scenario

Table 4.6 lists all case scenarios for the different simulated TDCs with the maximum and
minimum nonlinearities.

Table 4.6: Simulated Nonlinearities

Case TDC DNL INL
Scenario Architecture (LSB) (LSB)

Well Matched Proposed +1.4/-1.0 +1.6/-0.2
Wallace +0.1/-0.1 +0.3/0.0

Un-Matched Proposed +7.8/-1.0 +5.1/-3.4
Wallace +3.4/-1.0 +7.7/-2.1

Small Variations Proposed +0.4/-0.4 +0.3/-0.3

45

A further investigation is conducted to find out what causes the nonlinearities to differ from
the almost ideal (well-match lines) and the first case scenario for the proposed TDC. Figure
4.17 shows the actual output code of all six Vernier lines in the proposed TDC versus the ideal
output code; it is clear that every line is behaving differently and produce a skewed output. For
example, at time 160ps, the ideal output code should be 16 for all lines, but instead, only two
lines are correspondent with ideal output (i.e. lines 3 and 5); the other lines are skewed to the
right by one measurement.

Figure 4.17: Output From All Delay Lines

Table 4.7 shows the effects of INL on the final output code for the TDC through the Nlinear

metric. The highest absolute value for INL is used in equation 2.1 for all case scenarios and
simulated architectures.

Table 4.7: Number of Linear Bits (Nlinear)

Case TDC Nlinear
Scenario Architecture

Well Matched Proposed 4.62
Wallace 5.62

Un-Matched Proposed 3.34
Wallace 2.87

Small Variation Proposed 5.51

46

4.5 Area

The total area of the TDC is divided between the area of VDLs and encoding circuit. Table
4.8 shows the total area of the Vernier lines, which is extracted from the layout of each delay
segment multiplied by the total number of segments.

Table 4.8: Vernier Delay Lines Area

Delay Area of Number of Total
Segment Seg. (µm2) Seg. area (µm2)

1 23.8 67 1594
2 23.8 35 833
3 23.8 19 452
4 25.2 11 277
5 33.6 7 235
6 48.4 5 242

The area occupied by the encoding circuit is 235 (µm2), which is an approximation based on
the total number of transistors multiplied by the area of a single transistor from a standard cell
reported in [37], which use a 28nm CMOS working in the near-threshold region. Combining the
two area figure provides an approximation area of 3868 (µm2), for the proposed TDC.

4.6 TDC Speed

The conversion speed for TDC is 110MS/s correspond to the total propagation delay time
of the longest Vernier line (i.e. the 10ps line) plus the propagation time of the critical path of the
encoding circuit. The 10ps VDL has 67 delay cells for the start signal, where each cell has a
135ps propagation delay. The total propagation time for these cells plus the encoding circuit
gives the period of the TDC, which is approximately equal 9.05ns.

47

4.7 Power Consumption

The total average power of TDC is divided between VDLs and the encoding circuit. The
power measurement is performed on the schematic level (pre-layout) of both the VDLs and for
the encoding circuit, by measuring the average current and multiplying it by the supply voltage.
Table 4.9 shows an average power of 876µW for the VDLs, calculated by multiplying the power
for each segment by the total number of segments in the specific line and adding the total power
for each line together.

Table 4.9: Vernier Delay Lines Power Consumption

Delay Power of Number of Total
Segment Seg. (µW) Seg. Power (µW)

1 5.8 67 392
2 6.1 35 211
3 6.2 19 118
4 6.5 11 72
5 6.8 7 48
6 7.1 5 35

The average power consumption for the encoding circuit is 0.037µW , which calculated from
table 4.5. In a similar approach, by multiplying the total number of each gate with the corre-
sponded power consumption and adding the power consumption of all gates together. Leakage
power is also considered, by setting all inputs to zero and observing the current through circuits.
The VDLs and the encoding circuit have a 0.017µW and 0.043µW leakage power, respectively.
Combining all the power figures of VDL and the encoding circuit gives an 877µW total power
consumption for the proposed TDC.

48

4.8 TDC Survey

The proposed TDC performance metrics are summarized in table 4.10 along with other
published Vernier TDCs for compression, as well the case where the Wallace Tree encoder is
used in this work. The proposed TDC uses custom-designed (not synthesized) delay segments
to construct a parallel VDL to achieve decent linearity, area, and power consumption.

Table 4.10: Performance Summary and Comparison

[19] [38] [33]∗ This Work∗∗ This Work∗∗

Technology 65nm 130nm 65nm 28nm 28nm
CMOS CMOS CMOS CMOS CMOS

Supply(V) 1.2 1.2 1.2 0.9 0.9

Architecture 2-D VGRO GVRO VDL VDL Parallel VDL

Encoder NA NA Multiplexer Wallace∗∗∗ Proposed

Resolution(ps) 4.8 7.3 5.7 10 10

Number of Bits 7 7 7 6 6

Conversion Speed(MS/s) 50 2.4 100 110 110

Dynamic Range(ns) 0.6 9 0.73 0.630 0.630

DNL(LSB)∗∗∗∗ 1 3.2 1.2 0.1 1.4

INL(LSB)∗∗∗∗ 3.3 1.2 9 0.3 1.6

N∗∗∗∗∗linear 4.89 5.86 3.67 5.62 4.62

Area (mm2) 0.02 0.03 0.004 0.0019 0.0039

Power(mW) 1.7 1.2 1.75 0.393 0.877

* Original Work **** Maximum absolute value
** Pre-layout results ***** Nlinear = N− log2(INL+1)
*** Connected to first delay line

Chapter 5

Discussion

This project aims to investigate different TDC architectures, choose an architecture, and
make improvements. The usage of both digital and analog workspaces gave the author more
flexibility to experiment with different ideas to improve on existing architectures while having a
more realistic behavior for the models. Furthermore, the author gained more knowledge about
both world analog and digital, which would be beneficial for future mixed-signal projects. The
Vernier Delay Line TDC is chosen because it showed the potential of improving the already
existing topology and simplifying it.

The work considers only typical conditions and normal operating temperatures for the transistors
since any other conditions will drag the project out from the main scope and will require more
time and calibration. The 0.9V supply voltage is considered to be ideal since other people in any
given project will handle it. A 20ps time is added to the start and stop signals to have a more
realistic behavior. No jitter is considered in the signals since the work in [21] and [22] reported
a 0.005 change in the measured delay by the jitter, which is insignificant.

This chapter will discuss the simulated results in the same order given in Chapter 4. Finally, a
performance summary for the designed TDC, along with a comparison between initial spec-
ifications versus final results. Due to technical difficulties, all results for mismatch/process
variations, area, power, and propagation delay are pre-layout results. Even though the layout
for the proposed VDL segments is drawn, no post-layout results are extracted because neither
DRC or LVS checks are available despite many attempts to get them running. The lack of
post-layout extraction is also applied to the encoding circuit results. It must be pointed out that
post layout results will different since 28nm FDSOI CMOS technology is used, which will affect
the performance metrics of the proposed TDC [37] [34].

49

50

5.1 Proposed Implementation

Initially, the proposed VDL TDC in figure 4.1 showed a significant improvement in the area
and power consumption. Furthermore, since multiple delay lines are used to generate the final
binary output code, it was thought it would add a significant robustness to the output code (i.e.
calibration) against process and mismatch variations.

The proposed TDC uses six parallel Vernier delay lines, as in figure 4.1. The TDC has a
total number of 144 delay segments, with different resolutions (LSB) for each line, as detailed
in table 4.1. The segments are constructed from the same delay segment in figure 3.5 with
different values for C1 to achieve different resolutions by changing the delay time for the start
signal, the values for the capacitors for different resolution are shown in Appendix A, table A.1.
As for the C2, it is kept the same to have the same variations and consistent behavior for seg-
ments. This made the design to be more time-efficient since one capacitor size has to be changed.

Dynamic range and resolution (LSB) of the proposed TDC are dominated by the first delay line
(i.e. 10ps line). The TDC cannot detect any resolution lower then 10ps since no line combination
can detect any time different (∆T) less than the first line. The dynamic range for the proposed
TDC is 630ps, which corresponds to 63 segments multiplied by the resolution. Table 4.1 shows
that the first line has 67 segments, since each line needs a two dummy segment at the beginning
and the at the end to make signals (i.e. start and stop) stable. To increase the dynamic range for
the proposed TDC, the designer must increase the lengths (number of segments) for all lines
with respect to the line resolution. For example, if the dynamic range to become 730ps, ten
segments must be added to the first line, four segments to the second line, two segments to
the third line, one segment to the fourth line and no changes for the last two lines, since their
resolution is higher than the dynamic range increment.

5.2 Process and Mismatch Variations

The process and mismatch variations for delay cells with the different resolutions are
simulated using Monte Carlo with 300 points as in [33]. The standard deviation (σ) and the
mean value for the propagation delay of the stop delay cell (τ2) are constant throughout the
entire design since only the start delay cell is modified to achieve different resolutions.

51

Standard deviations (σ) for the propagation delay of start and stop delay cells (τ1) in table 4.2,
shows CVs less than 5% for different resolutions, which results from increasing the sizes of the
transistors. The mean value, on the other hand, varies from 0.03ps to 1.54ps from the nominal
values, which affects the matching of the Vernier lines (i.e. start and stop delay cells must have
a small deviation from the nominal values), since stop delay cell is uniformed for all lines. As
seen from table 4.2, that first and fifth delay lines have the best match since the mean value for
start delay cells has the smallest deviations from nominal values. The other lines will vary more,
which affects the nonlinearities for the proposed TDC since the output binary code depends on
all of them.

Matching of the Vernier line is confirmed in the digital workspace, by generating the proposed
TDC model in SystemVerilog language and substitute the extracted transistor behavior from
the analog workspace. The function "dist_normal(seed, mean, standard_deviation)" returns a
probabilistic distributed number that is an average approach to the mean argument, and seed
controls the numbers that the function return. A well-matched VDL will have the same seed
for both start and stop delay cells since changing the seed will affect the resolution. Figure 4.3
shows the histograms for 300 point extracted from SystemVerilog to represents the 10ps delay
segment. The same seed for both delay cells will give a well-matched segment, which has a
mean value of 10.02ps and σ of 0.173ps, as shown in figure 4.3 (a). However, a different seed
will cause the VDL segment to have a similar mean value but a large σ of 7.5ps, as shown in
figure 4.3 (b), which deteriorate TDC performance.

Tables 4.3 and 4.4 illustrate the effects of seeding on the resolution of the segments for the enter
proposed design. Although the mean values for the LSB do not vary that much, the differences
will affect the performance of the proposed TDC as it will become clear in the next sections. It
is noticed that in order to well-matched Vernier lines, three conditions have to be met. First, the
delay cells must have an average value of the delay as close to the nominal. Second, the standard
deviation (σ) for cell delay has to as small as possible. Finally, both delay cells (i.e. start and
stop) have to experience the same variations, which in this work represented by the seed number,
that simulates the condition where both delay cells experienced the same variations on the chip.
However, if a different seed is used for both cells, the standard deviation (σ) of the resolution
will be much larger, which confirms that both cells experienced different variations, as shown in
table 4.4.

52

5.3 Encoding Circuit

Listing C.2, Appendix C shows the SystemVerilog TDC core, which includes the encoding
circuit at the end of the code. The circuit was assumed to be simpler to implement since it will be
expressed as a boolean equation and use standard gates. This assumption is valid for small TDC
(i.e. TDC with a small number of bits), but as TDC gets larger, the number of inputs increases,
and the complexity of the boolean equation increase dramatically as seen in the encoder code.
Table 4.5 lists all the number of all used gates along with their propagation delay and average
power consumption. The power and delay figures are an estimation since they are based on
schematic simulation with no loading effects (gates are tested as a stand-alone with no other
gates connected).

Table 5.1 shows a comparison between the proposed encoding circuit and Wallace Encoder.
Results for the Wallace encoder are estimated similarly to the proposed encoding circuit to have
a fair comparison. Gate counts for the Wallace encoder are estimated from the number of full
adders, by using [2N− (N +1)] and assuming every full adder consists of eight 2_input NAND
gate, and every NAND gate has four transistors. The average power, area, and propagation delay
for the NAND gate are estimated in a similar way to the proposed encoder as well. The total
propagation delay for the Wallace Tree encoder is calculated from the critical path, by estimating
the number of full adders the signal has to propagate through, [21] demonstrate a figure where a
critical path of 7 full adders is estimated.

Table 5.1: Proposed Encoding Circuit Vs Wallace Encoder

Encoding Propagation Average Area Gates Transistors
Circuit Delay (ps) Power (nW) Size (µm2) Count Count

Proposed 433 80 235 179 1564
Wallace Tree 420 28 275 456 1824

The Wallace encoder has a similar propagation delay to the proposed encoder. However, the
number of gates, transistors, and area are higher for the Wallace since the proposed encoder
use a multiple inputs standard gate, which helps reduce the total count. The proposed encoding
circuit did not offer any drastic improvements over Wallace as initially thought. The power for
both encode is consider to be small since loading effects are not considered; the real number
should be higher. Simplification of the proposed encoding circuit by reviewing the boolean
equations or by using a synthesizer is possible, which could benefit the proposed TDC.

53

5.4 Nonlinearities

The first time nonlinearities were measured, they showed unexpected bad results. Initially,
the TDC model and encoding circuit were considered to cause these results, but a further inves-
tigation through SystemVerilog models reveal the cause of this problem is the seeding for the
(dist_normal) function. The random function will generate a random number with a specific
pattern if the function is seeded with correlated numbers. Figure 4.4 confirms the observations.
While figure 4.5 shows the behavior of the random function if uncorrelated numbers are used,
this is used to have nonlinearities results for the TDC depended on other factors.

After fixing the pattern in the random function, nonlinearities are plotted for the proposed TDC
and VDL TDC using only the first delay line from the proposed TDC connected to a Wallace
Tree encoder. This is done to find out how good or bad the proposed TDC in comparison with
other popular encoders. The first scenario simulates both TDC with the same seed for delay
cells. Figure 4.10 showed DNL for the proposed TDC has a high value at the end of the output
code. This is caused by accumulations of variations from all different lines. The DNL for the
proposed TDC has a maximum value of +1.4 LSB and a minimum value of -1 LSB, which
indicates an uneven distribution of the noise. The INL figure reflected the DNL distributions
and shows big accumulations at higher output codes (i.e. bigger ∆T); the proposed TDC will
lose more code since the maximum INL is 1.6 LSB, which confirms noise accumulations. The
TDC is considered to be monotonic, even with these values of nonlinearities since the output is
always increasing with time.

On the other hand, DNL for the Wallace TDC has a maximum value of +0.1 LSB and a
minimum value of -0.1 LSB and shows an even distribution of the noise. The INL figure
shows a maximum of 0.3 LSB, which indicates no missing codes. Furthermore, since the
INL maximum value is less than 0.5 LSB, the TDC is guaranteed to be monotonic [8]. The
Wallace TDC showed better noise performance over the proposed TDC since it can suppress
bubble errors [26], and no noise from other Verier lines is added up through the encoding process.

The second scenario is performed to simulate the effects of changing the seed for the delay
cells to see the effects of unmatched cells on the TDC nonlinearities. The DNL and INL plots
confirmed the previous assumptions that unmatched delay cells would deteriorate TDC noise
performance. From figure 4.15, it is observed that multiple codes are missing from the TDC
output code, and both TDCs have a DNL and INL greater than 3 LSB.

54

The third scenario is simulated to check if nonlinearities errors for the proposed TDC comes
from other Vernier lines or not, by assuming well-matched segments for all Vernier lines. The
results for DNL and INL in figure 4.16 confirm the previous assumptions since the proposed
TDC shows a significant improvement in nonlinearities error. The DNL and INL have become
well distributed and went from +1.4/-1.0 LSB to +0.4/-0.4 LSB for the DNL, and +1.6/-0.2 LSB
to +0.3/-0.3 LSB, for the INL. Figure 4.17 shows the exact reason behind these improvements,
where outputs from all Vernier lines are plotted from the first scenario. It is evident that the out-
put from each delay line is skewed to the right and does not match the ideal output over various
output codes. The skewing affects higher output codes since it gets accumulated gradually from
previous stages through long time measurement (i.e. big ∆T). Furthermore, the skewing is the
reason behind the proposed TDC monotonicity since the output is always skewed to the right,
which indicates an increase in the time measurement. However, even without this skewing, the
proposed TDC in third scenarios is still monotonic, since the INL maximum value is less than
0.5 LSB.

Table 4.6 summarise the nonlinearities for all scenarios. The DNL and INL for the Wallace
case outperformed the proposed TDC in the first scenario. Table 4.7 shows the linearity of the
output code (Nlinear) for the simulated TDC based on their nonlinearities performance. The
Wallace Tree TDC shows better performance over the proposed TDC under normal conditions
(first scenario). However, if Vernier lines are designed to have better matched with respect to
other delay lines, the linearity of the output will be similar.

5.5 Conversion Speed

The proposed TDC achieves a conversion speed of 110MS/s, which is dominated by the total
propagation delay of the longest line. The speed indicates that the proposed TDC is considered
fast among other TDC designs according to the comparison table of recent published TDCs in
[1]. The conversion speed depends on the dynamic range in this architecture; a bigger dynamic
range means more delay lines, which means longer time for the signal to propagate. However,
this can be solved by decreasing the delay time for delay cells (i.e. τ1 and τ2). For example, the
proposed TDC has a propagation delay of 135ps and 125ps for start and stop cells, respectively,
in the longest delay line. If it is desired to double the dynamic range and maintaining the same
conversion speed, the delay time for the cells has to be decreased by half while maintaining the
difference between the delays to keep the LSB unchanged.

55

The encoding circuits will add an overhead delay and decrease the conversion speed of the
TDC. Table 5.1 shows that both encoding circuits have an average delay of 425ps, which is
significantly small compared with 9.05ns period time for the first delay line. Nevertheless, even
if the encoding circuits have larger propagation delay time, for example, 1ns as suggested in
[28], the conversion speed will become 100MS/s, which is not a drastic change. This issue can
be resolved by decreasing the propagation delay for the cells, as mentioned before.

5.6 Area

The area occupied by the proposed TDC is 3868 µm2 with the encoding circuit taking
just 235 µm2, which shows that the Vernier lines dominants the area unlike the work done in
[33]. Table 4.8 shows the total area for each delay line, where the first delay line has the most
significant contribution since it utilizes a large number of segments. The area for the proposed
TDC can be reduced by looking back at the layout for the proposed delay segment in figure 3.6.
The segment uses two relatively big capacitors, which utilized more than 40% of the total area
of the segment. These capacitors are used to achieve the required resolution (LSB) and stability
for the segments.

However, these capacitors can be omitted from the delay segments of the first and second lines in
the proposed TDC since 10ps, and 20ps LSB can be achieved through the intrinsic propagation
delay provided by the CMOS technology. This will have the potential to reduce the overall area
by 1000 µm2 since the first two lines have the highest contribution to the TDC area according to
table 4.8. Furthermore, since the layout in figure 3.6 is not drawn using minimum spacing, the
actual area should be smaller than approximated. Nevertheless, in order to eliminate the usage
for capacitors, a change to the architecture should be done, and the new lines should match the
other lines in variations behavior. The estimations for the encoding circuits are based on the
layout for standard cells in the near-threshold region, which have a bigger area than standard
cells operating at normal voltages [37].

5.7 Power

The average power consumption by TDC is 876µW , where the Vernier delay lines consume
most of this power. Each segment consumes a different power figure according to table 4.9,
which indicates the effects of using different capacitor sizes. The total power consumption will
decrease if the suggestion in the previous section is implemented (removing the capacitors in

56

first and second lines). Overall, the power consumption for VDL is higher than expected since
bigger capacitors are used to implements the delay cells with low variations. The post-layout
power consumption is expected to be more significant. The average power for the encoding
circuits in table 5.1 is minimal because the estimation is based at the schematic level, and the
logic gates are simulated without loading other gates. However, in reality, the average power
consumption will be higher than this in terms of hundreds of µW due to parasitic resistance and
capacitance [34], but it would still be insignificant compared with the power of Vernier lines.

5.8 Summary

The proposed TDC showed the potential to improve the performance of the work done in
[33] at the beginning of this work. Table 4.10 compares the proposed TDC with the work done in
[33], among other TDC implementations. The proposed TDC achieves high resolution and speed
among other TDCs due to the usage of the proposed delay segment. The dynamic range is sub-
jective and can be increased if the application requires so. The drawback of VDL dynamic range
is resolved through CMOS technology advancement, where even if a longer VDL is designed, it
will not utilize a significant area or power. Furthermore, longer line results in a better distribution
of PVT variations [22]. The segments resolution (LSB) behavior in table 4.3 is extracted from the
digital workspace and should be verified from the transistor behavior after post-layout extraction.

The proposed work has a better noise performance over the base design, and it is comparable to
the performance of other TDCs . However, the initial area reduction assumption turned out to
be not entirely valid since the area utilized by the capacitors in the delay cells will overcome
the saved area by not using the conventional encoders. Furthermore, using capacitors make this
TDC, not synthesizable, which takes an essential advantage from digital circuit design.

The proposed encoder has a similar number of transistors as a Wallace Tree encode; this means
that both encoding circuits will utilize the same area on-chip. Furthermore, Wallace encoder is
easier to design and parameterize over the proposed encoder and provide bubble error correction,
which improves noise performance. Table 4.10 does not illustrate that the proposed TDC uses
more area or power over [33] since different CMOS technology was used.

57

The first delay line in the TDC with Wallace encoder showed an excellent performance in overall
metrics, which indicates that a long, well-matched VDL line with Wallace Tree encoder, can
suppress first order variations [22] [16]. Furthermore, VDL can be synthesizable if standard
delay cells are used, and Wallace Tree encoder offers more advantages over its area and power
consumption.

Nonetheless, The proposed TDC has fulfilled nearly every initial specification in table 3.1, even
if nonlinearities, area, and power metrics are not as initially assumed.

Chapter 6

Conclusion

The proposed TDC uses a multiple Vernier Delay lines operating in parallel to measure
time and converted it to a thermometer code. This approach converts the thermometer code
to a binary code without using conventional encoders. The project took advantages from both
analog and digital workspaces to overcome the technical limitations. The analog workspace is
implemented using 28nm FDSOI CMOS technology, while the digital workspace is implemented
in SystemVerilog.

The proposed TDC is monotonic with 6 bits output code, a 630ps dynamic range, and 110MS/s
conversion speed, which considered good metrics compared with other TDCs. The nonlinearities
got improved over the original work, especially in the INL figure, which got improved by 7 LSB,
which shows the advantages of using the parallel VDLs. The proposed TDC has a DNL of +1.4/-
1.0 and INL of +1.6/-1.0, with 4.62 output linear bits (NLinear). However, the area and the power
consumption did not improve as initially thought due to unforeseen things. Overall, the current
performance of the proposed TDC is considered to be good over other implemented TDCs
metrics. The third scenario shows the possibility to improve noise performance dramatically
and make nonlinearities less than 1 LSB. Furthermore, this scenario proves that in order to have
well-match VDLs, both delay cells must have minimum CV percentage and small difference
between nominal and mean values for the delay times.

The comparison with Wallace Tree encoder showed by using it with a single VDL gives better
performance metrics, less complicated, and more design efficient TDC. However, in order to
have good metrics for any VDL TDC design, three main criteria should be considered. First, the
VDL has to be as long as possible to have a Gaussian distribution of noise. Second, the delay
cells must be well matched. Third, the encoding circuit should have Bubble-Error correction.

58

59

6.1 Future Work

Nonetheless, the results from the proposed TDC are considered for publishing after layout
extraction is done to verify the behavior of the TDC and implement the third scenario. Since this
architecture, according to the author’s best knowledge, is not mentioned anywhere and worth
looking more into it.

The encoding circuit could be simplified using boolean algebra or using a synthesizer. The
layouts for the proposed delay segments can be improved, as discussed earlier. Noise from jitter
can be considered to verify the initial assumptions. Other process corners and temperatures must
be considered to study the effects of them on the TDC performance; calibration circuits can be
considered if necessary.

Bibliography

[1] Zeng Cheng; Xiaoqing Zheng; M. Jamal Deen; Hao Peng. Recent developments and
design challenges of high-performance ring oscillator cmos time-to-digital converters.
IEEE Transactions on Electron Devices, 36(1):235 – 251, 2016.

[2] Amer Samarah; Anthony Chan Carusone. A digital phase-locked loop with calibrated
coarse and stochastic fine tdc. IEEE Journal of Solid-State Circuits, 48(8):1829 – 1841,
2013.

[3] Su Pin-en; P.Madoglio; W.Y. Li Kim Hyung Seok; e. Ornelas; K. Chandrashekar; D. Shi
and A Ravi. A digital fractional-n pll with a pvt and mismatch insensitive tdc utilizing
equivalent time sampling technique. IEEE Journal of Solid-State Circuits, 48(7):1721 –
1729, 2013.

[4] Abdel S. Yousif; James W. Haslett. A fine resolution tdc architecture for next generation
pet imaging. IEEE Transactions on Nuclear Science, 54(5):1574 – 1582, 2007.

[5] Jan Nissinen; Ilkka Nissinen; Juha Kostamovaara. Integrated receiver including both
receiver channel and tdc for a pulsed time-of-flight laser rangefinder with cm-level accuracy.
IEEE Journal of Solid-State Circuits, 44(5):1486 – 1497, 2009.

[6] Keunoh Park; Jaehong Park. 20 ps resolution time-to-digital converter for digital storage
oscilloscopes. IEEE Nuclear Science Symposium Conference Record, 1998.

[7] E. Raisanen-Ruotsalainen; T. Rahkonen; J. Kostamovaara. An integrated time-to-
digital converter with 30-ps single-shot precision. IEEE Journal of Solid-State Circuits,
41(12):2911–2920, 2006.

[8] Tony Chan Carusone; David Johns; Kenneth Martin. Analog Integrated Circuit Design.
Wiley & Sons, second edition, 2011.

60

61

[9] KwangSeok Kim; WonSik Yu; SeongHwan Cho. A 9b, 1.12ps resolution 2.5b/stage
pipelined time-to-digital converter in 65nm cmos using time-register. Symposium on VLSI

Circuits, 2013.

[10] Sung-Jin Kim; Taeik Kim; Hojin Park. A 0.63ps, 12b, synchronous cyclic tdc using a time
adder for on-chip jitter measurement of a soc in 28nm cmos technology. Symposium on

VLSI Circuits Digest of Technical Papers, 2014.

[11] Jun-Seok Kim; Young-Hun Seo; Yunjae Suh; Hong-June Park; Jae-Yoon Sim. A 300-ms/s,
1.76-ps-resolution, 10-b asynchronous pipelined time-to-digital converter with on-chip
digital background calibration in 0.13-µm cmos. IEEE Journal of Solid-State Circuits,
48(2):516–526, 2012.

[12] Asen Asenov. Advanced Monte Carlo Techniques in the Simulation of CMOS Devices and

Circuits. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[13] Stephan Henzler. Time-to-Digital Converters. Springer, Dordrecht, first edition, 2010.

[14] M. Kajita; M. Mizuno K. Nose. A 1-ps resolution jittermeasurement macro using inter-
polated jitter oversampling. IEEE Journal of Solid-State Circuits, 35(10):1507 – 1510,
2000.

[15] KwangSeok Kim; YoungHwa Kim; WonSik Yu; SeongHwan Cho. A 7b, 3.75ps reso-
lution two-step time-to-digital converter in 65nm cmos using pulse-train time amplifier.
Symposium on VLSI Circuits (VLSIC), 2012.

[16] Jianjun Yu; Fa Foster Dai; Richard C. Jaeger. A 12-bit vernier ring time-to-digital converter
in 0.13µm cmos technology. IEEE Journal of Solid-State Circuits, 45(4):830–842, 2010.

[17] Ping Lu; Antonio Liscidini; Pietro Andreani. A 3.6 mw, 90 nm cmos gated-vernier time-
to-digital converter with an equivalent resolution of 3.2 ps. IEEE Journal of Solid-State

Circuits, 47(7):1626–1635, 2012.

[18] Ping Lu; Ying Wu; Pietro Andreani. A 2.2-ps two-dimensional gated-vernier time-to-
digital converter with digital calibration. IEEE Transactions on Circuits and Systems II:

Express Briefs, 63(11):1019–1023, 2016.

[19] Luca Vercesi; Antonio Liscidini; Rinaldo Castello. Two-dimensions vernier time-to-digital
converter. IEEE Journal of Solid-State Circuits, 45(8):1504–1512, 2010.

62

[20] Volodymyr Kratyuk; avan Kumar Hanumolu; Kerem Ok; Un-Ku Moon; Kartikeya Ma-
yaram. A digital pll with a stochastic time-to-digital converter. IEEE Transactions on

Circuits and Systems I: Regular Papers, 56(8):1612–1621, 2009.

[21] Khalil Jacob Gammoh. Pvt-tolerant stochastic time-to-digital converters. Master’s thesis,
Brigham Young University, Utah, USA, 2018.

[22] Sung-Jin Kim; Wooseok Kim; Minyoung Song; Jihyun Kim; Taeik Kim; Hojin Park. 15.5 a
0.6v 1.17ps pvt-tolerant and synthesizable time-to-digital converter using stochastic phase
interpolation with 16x spatial redundancy in 14nm finfet technology. IEEE International

Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, 2015.

[23] Kentaroh Katoh; Kazuteru Namba. A low area calibration technique of tdc using variable
clock generator for accurate on-line delay measurement. Sixteenth International Symposium

on Quality Electronic Design, 2015.

[24] P. Dudek; S. Szczepanski; J.V. Hatfield. A high-resolution cmos time-to-digital converter
utilizing a vernier delay line. IEEE Journal of Solid-State Circuits, 35(2):240–247, 2000.

[25] Tingbing Ouyang; Bo Wang; Lizhao Gao; Jiangtao Gu; Chao Zhang. A high resolution
time-to-digital converter (tdc) based on self-calibrated digital-to-time converter (dtc). IEEE

60th International Midwest Symposium on Circuits and Systems, 2017.

[26] Sandeep Kumar; M. K. Suman; K. L. Baishnab. A novel approach to thermometer-to-
binary encoder of flash adcs-bubble error correction circuit. International Conference on

Devices, Circuits and Systems (ICDCS), 2, 2014.

[27] E. Säll. Implementation of flash analog-to-digital converters in silicon- insulator cmos
technology. Master’s thesis, Linköping Studies Sci. Technology, Linköping, Sweden, 2007.

[28] M. M. Pilipko; D. V. Morozov; D. O. Budanov. Comparative analysis of cmos circuits of a
thermometer-to-binary encoder for integrated flash analog-to-digital converters. Interna-

tional Conference on Devices, Circuits and Systems (ICDCS), 46(1):45–54, 2017.

[29] Robert Bogdan Staszewski; Sudheer Vemulapalli; Prasant Vallur; John Wallberg; Poras T.
Balsara. 1.3 v 20 ps time-to-digital converter for frequency synthesis in 90-nm cmos. IEEE

Transactions on Circuits and Systems II: Express Briefs, 53(3):220–224, 2006.

[30] STEPHEN H. UNGER; CHUNG-JEN TAN. Clocking schemes for high-speed digital
systems. IEEE Transactions on Computers, c-35(10):880–895, 1986.

63

[31] Vladimir Stojanovic; Vojin G. Oklobdzija. Comparative analysis of master-slave latches
and flip-flops for high-performance and low-power systems. IEEE Journal of Solid-State

Circuits, 34(4):536–548, 1999.

[32] Chen Kong Teh; Tetsuya Fujita; Hiroyuki Hara; Mototsugu Hamada. A 77% energy-saving
22-transistor single-phase-clocking d-flip-flop with adaptive-coupling configuration in
40nm cmos. IEEE International Solid-State Circuits Conference, 2011.

[33] Niklas U. Andersson; Mark Vesterbacka. A vernier time-to-digital converter with delay
latch chain architecture. IEEE Transactions on Circuits and Systems II: Express Briefs,
61(10):773–777, 2014.

[34] Somayeh Hossein Zadeh; Trond Ytterdal; Snorre Aunet. Comparison of ultra low power
full adder cells in 22 nm fdsoi technology. IEEE Nordic Circuits and Systems Conference

(NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC), 2018.

[35] Even Låte; Trond Ytterdal; Snorre Aunet. A loadless 6t sram cell for sub- & near- threshold
operation implemented in 28 nm fd-soi cmos technology. Integration, the VLSI jounral,
63:56–63, 2018.

[36] B. S. Everitt; Anders Skrondal. The Cambridge Dictionary of Statistics. Cambridge
University Press, Cambridge, United Kingdom, 2010.

[37] Aslak Lykre Holen. Implementation and comparison of digital arithmetics for low voltage
/ low energy operation. Master’s thesis, Norwegian University of Science and Technology,
Trondheim, Norway, 2015.

[38] Zeng Cheng; M. Jamal Deen; Hao Peng. A low-power gateable vernier ring oscillator
time-to-digital converter for biomedical imaging applications. IEEE Transactions on

Biomedical Circuits and Systems, 10(2):445–454, 2016.

Appendix A

TDC Segments Parameters and Layouts

Table A.1: Capacitor C1 Values for Different Resolutions

Delay Resolution C1
Segment LSB(ps) Value(fF)

1 10 4.4
2 20 5.0
3 40 6.2
4 80 9.2
5 160 15.0
6 320 27.4

64

65

Figure A.1: Layout for the proposed delay segment with 20ps LSB

Figure A.2: Layout for the proposed delay segment with 40ps LSB

66

Figure A.3: Layout for the proposed delay segment with 80ps LSB

Figure A.4: Layout for the proposed delay segment with 160ps LSB

67

Figure A.5: Layout for the proposed delay segment with 320ps LSB

Appendix B

Simulation Results for TDC Segments

(a) Start Delay cell Histogram (b) Stop Delay cell Histogram

Figure B.1: Monte Carlo Histogram for 20ps Delay Segment

68

69

(a) Start Delay cell Histogram (b) Stop Delay cell Histogram

Figure B.2: Monte Carlo Histogram for 40ps Delay Segment

(a) Start Delay cell Histogram (b) Stop Delay cell Histogram

Figure B.3: Monte Carlo Histogram for 80ps Delay Segment

70

(a) Start Delay cell Histogram (b) Stop Delay cell Histogram

Figure B.4: Monte Carlo Histogram for 160ps Delay Segment

(a) Start Delay cell Histogram (b) Stop Delay cell Histogram

Figure B.5: Monte Carlo Histogram for 320ps Delay Segment

71

(a) Same seeding for random function (b) Different seeding for random function

Figure B.6: Histogram for Simulated 20ps LSB Segment

(a) Same seeding for random function (b) Different seeding for random function

Figure B.7: Histogram for Simulated 40ps LSB Segment

72

(a) Same seeding for random function (b) Different seeding for random function

Figure B.8: Histogram for Simulated 80ps LSB Segment

(a) Same seeding for random function (b) Different seeding for random function

Figure B.9: Histogram for Simulated 160ps LSB Segment

73

(a) Same seeding for random function (b) Different seeding for random function

Figure B.10: Histogram for Simulated 320ps LSB Segment

Appendix C

SystemVerilog Models

Listing C.1: Vernier Delay Segment

1

2 module VDL_variations #(// The Vernier delay segment consist of a start delay

↪→ lien and at stop delay line with an ideal flip flop to hold the data

3

4)(

5

6 input wire start,

7 input wire stop,

8 input real start_delay,// the delay time for the start delay cell with

↪→ variations from the TestBecnh

9 input real stop_delay, //the delay time for the stop delay cell with

↪→ variations from the TestBecnh

10 input logic reset,

11

12 output wire start_d,

13 output wire stop_d,

14 output logic q_out

15);

16 wire start_temp ;

17 wire stop_temp ;

18

19 assign #(start_delay*1ps) start_temp = start ; // Moduling the varitions for

↪→ the star signal

20 assign start_d = start_temp;

74

75

21

22 assign #(stop_delay*1ps) stop_temp = stop; // Moduling the varitions for the

↪→ stop signal

23 assign stop_d = stop_temp;

24

25 always_ff @(posedge stop_temp or posedge reset) begin

26 if(reset) begin

27 q_out <= 0;

28 end else begin

29 q_out <= start_temp;

30 end

31 end

32

33 endmodule

Listing C.2: TDC Core Model

1 // The TDC core consist of 6 Vernier delay line + the encoding circuit

2

3 module MasterprjTDCCore #(

4)(

5 input logic ck,

6 input logic arst,

7 input logic start,

8 input logic stop,

9

10 input real start_chain_10ps[62:0],

11 input real stop_chain_10ps[62:0],

12

13 input real start_chain_20ps[30:0],

14 input real stop_chain_20ps[30:0],

15

16 input real start_chain_40ps[14:0],

17 input real stop_chain_40ps[14:0],

18

19 input real start_chain_80ps[6:0],

20 input real stop_chain_80ps[6:0],

21

76

22 input real start_chain_160ps[2:0],

23 input real stop_chain_160ps[2:0],

24

25 input real start_chain_320ps,

26 input real stop_chain_320ps,

27

28 output logic [5:0] q_out,

29 output logic [62:0] out_thermo

30);

31

32 logic [62:0] start_d_10 = ’0;

33 logic [62:0] stop_d_10 = ’0;

34 logic [62:0] q_a = ’0;

35

36 logic [30:0] start_d_20 = ’0;

37 logic [30:0] stop_d_20 = ’0;

38 logic [30:0] q_b = ’0;

39

40 logic [14:0] start_d_40 = ’0;

41 logic [14:0] stop_d_40 = ’0;

42 logic [14:0] q_c = ’0;

43

44 logic [6:0] start_d_80 = ’0;

45 logic [6:0] stop_d_80 = ’0;

46 logic [6:0] q_d = ’0;

47

48 logic [2:0] start_d_160 = ’0;

49 logic [2:0] stop_d_160 = ’0;

50 logic [2:0] q_e = ’0;

51

52 logic start_d_320 = ’0;

53 logic stop_d_320 = ’0;

54 logic q_f = ’0;

55

56 wire [5:0] binary_out;

57

58 // creating the Vernier Delay line with different resolutions

77

59

60 ///

61

62 VDL_variations #(// 10ps LSB Vernier delay line

63)

64 u_VDL_10_seg_0(

65 .start (start),

66 .stop (stop),

67 .start_delay (start_chain_10ps[0]),

68 .stop_delay (stop_chain_10ps[0]),

69 .reset (arst),

70 .start_d (start_d_10[0]),

71 .stop_d (stop_d_10[0]),

72 .q_out (q_a[0])

73);

74

75 genvar i;

76 generate

77 begin :la_VDL_10_segs

78 for (i=1 ; i<63 ; i++) begin :la_VDL_10_seg

79 VDL_variations #(

80)

81 u_VDL_10_seg(

82 .start (start_d_10[i-1]),

83 .stop (stop_d_10[i-1]),

84 .start_delay (start_chain_10ps[i]),

85 .stop_delay (stop_chain_10ps[i]),

86 .reset (arst),

87 .start_d (start_d_10[i]),

88 .stop_d (stop_d_10[i]),

89 .q_out (q_a[i])

90);

91 end

92 end

93 endgenerate

94 ///

95

78

96 VDL_variations #(// 20ps LSB Vernier delay line

97)

98 u_VDL_20_seg_0(

99 .start (start),

100 .stop (stop),

101 .start_delay (start_chain_20ps[0]),

102 .stop_delay (stop_chain_20ps[0]),

103 .reset (arst),

104 .start_d (start_d_20[0]),

105 .stop_d (stop_d_20[0]),

106 .q_out (q_b[0])

107);

108

109 genvar j;

110 generate

111 begin :la_VDL_20_segs

112 for (j=1 ; j<31 ; j++) begin :la_VDL_20_seg

113 VDL_variations #(

114)

115 u_VDL_20_seg(

116 .start (start_d_20[j-1]),

117 .stop (stop_d_20[j-1]),

118 .start_delay (start_chain_20ps[j]),

119 .stop_delay (stop_chain_20ps[j]),

120 .reset (arst),

121 .start_d (start_d_20[j]),

122 .stop_d (stop_d_20[j]),

123 .q_out (q_b[j])

124);

125 end

126 end

127 endgenerate

128 ///

129

130 VDL_variations #(// 40ps LSB Vernier delay line

131)

132 u_VDL_40_seg_0(

79

133 .start (start),

134 .stop (stop),

135 .start_delay (start_chain_40ps[0]),

136 .stop_delay (stop_chain_40ps[0]),

137 .reset (arst),

138 .start_d (start_d_40[0]),

139 .stop_d (stop_d_40[0]),

140 .q_out (q_c[0])

141);

142

143 genvar k;

144 generate

145 begin :la_VDL_40_segs

146 for (k=1 ; k<15 ; k++) begin :la_VDL_40_seg

147 VDL_variations #(

148)

149 u_VDL_40_seg(

150 .start (start_d_40[k-1]),

151 .stop (stop_d_40[k-1]),

152 .start_delay (start_chain_40ps[k]),

153 .stop_delay (stop_chain_40ps[k]),

154 .reset (arst),

155 .start_d (start_d_40[k]),

156 .stop_d (stop_d_40[k]),

157 .q_out (q_c[k])

158);

159 end

160 end

161 endgenerate

162 //

163

164 VDL_variations #(// 80ps LSB Vernier delay line

165)

166 u_VDL_80_seg_0(

167 .start (start),

168 .stop (stop),

169 .start_delay (start_chain_80ps[0]),

80

170 .stop_delay (stop_chain_80ps[0]),

171 .reset (arst),

172 .start_d (start_d_80[0]),

173 .stop_d (stop_d_80[0]),

174 .q_out (q_d[0])

175);

176

177 genvar w;

178 generate

179 begin :la_VDL_80_segs

180 for (w=1 ; w<7 ; w++) begin :la_VDL_80_seg

181 VDL_variations #(

182)

183 u_VDL_80_seg(

184 .start (start_d_80[w-1]),

185 .stop (stop_d_80[w-1]),

186 .start_delay (start_chain_80ps[w]),

187 .stop_delay (stop_chain_80ps[w]),

188 .reset (arst),

189 .start_d (start_d_80[w]),

190 .stop_d (stop_d_80[w]),

191 .q_out (q_d[w])

192);

193 end

194 end

195 endgenerate

196 //

197

198 VDL_variations #(// 160ps LSB Vernier delay line

199)

200 u_VDL_160_seg_0(

201 .start (start),

202 .stop (stop),

203 .start_delay (start_chain_160ps[0]),

204 .stop_delay (stop_chain_160ps[0]),

205 .reset (arst),

206 .start_d (start_d_160[0]),

81

207 .stop_d (stop_d_160[0]),

208 .q_out (q_e[0])

209);

210

211 genvar y;

212 generate

213 begin :la_VDL_160_segs

214 for (y=1 ; y<3 ; y++) begin :la_VDL_160_seg

215 VDL_variations #(

216)

217 u_VDL_160_seg(

218 .start (start_d_160[y-1]),

219 .stop (stop_d_160[y-1]),

220 .start_delay (start_chain_160ps[y]),

221 .stop_delay (stop_chain_160ps[y]),

222 .reset (arst),

223 .start_d (start_d_160[y]),

224 .stop_d (stop_d_160[y]),

225 .q_out (q_e[y])

226);

227 end

228 end

229 endgenerate

230 //

231

232 VDL_variations #(// 320ps LSB Vernier delay line

233)

234 u_VDL_320_seg_0(

235 .start (start),

236 .stop (stop),

237 .start_delay (start_chain_320ps),

238 .stop_delay (stop_chain_320ps),

239 .reset (arst),

240 .start_d (start_d_320),

241 .stop_d (stop_d_320),

242 .q_out (q_f)

243

82

244);

245

246

247 // Encoding Circuit

248

249 ///

250 ///

251

252 assign binary_out[5] =

253 (q_a[31] & (q_b[15] | q_c[7] | q_d[3] | q_e[1] | q_f)) |

254 (q_b[15] & (q_c[7] | q_d[3] | q_e[1] | q_f)) | (q_c[7] & (q_d[3] | q_e[1] | q_f

↪→))

255 | (q_d[3] & (q_e[1] | q_f)) | (q_e[1] & q_f);

256

257

258

259 assign binary_out[4] =

260 (!binary_out[5] & ((q_a[15] & (q_b[7] | q_c[3] | q_d[1] | q_e[0]))

261 | (q_b[7] & (q_c[3] | q_d[1] | q_e[0])) | (q_c[3] & (q_d[1] | q_e[0])) |

262 (q_d[1] & q_e[0]))) | (binary_out[5] & ((q_a[47] & (q_b[23] | q_c[11] |

↪→ q_d[5] | q_e[2]))

263 | (q_b[23] & (q_c[11] | q_d[5] | q_e[2])) | (q_c[11] & (q_d[5] | q_e[2])) | (q_d

↪→ [5] & q_e[2])));

264

265

266

267 assign binary_out[3] =

268 (!binary_out[5] & !binary_out[4] & ((q_a[7] & (q_b[3] | q_c[1] | q_d[0])) | (

↪→ q_b[3] & (q_c[1] | q_d[0])) | (q_c[1] | q_d[0])))

269 | (!binary_out[5] & binary_out[4] & ((q_a[23] & (q_b[11] | q_c[5] | q_d[2])) |

↪→ (q_b[11] & (q_c[5] | q_d[2])) | (q_c[5] | q_d[2])))

270 | (binary_out[5] & !binary_out[4] & ((q_a[39] & (q_b[19] | q_c[9] | q_d[4])) |

↪→ (q_b[19] & (q_c[9] | q_d[4])) | (q_c[9] | q_d[4])))

271 | (binary_out[5] & binary_out[4] & ((q_a[55] & (q_b[27] | q_c[13] | q_d[6])) |

↪→ (q_b[27] & (q_c[13] | q_d[6])) | (q_c[13] | q_d[6])));

272

273

83

274

275 assign binary_out[2] =

276 (!binary_out[5] & !binary_out[4] & !binary_out[3] & ((q_a[3] & (q_b[1] | q_c[

↪→ 0])) | (q_b[1] & q_c[0])))

277 | (!binary_out[5] & !binary_out[4] & binary_out[3] & ((q_a[11] & (q_b[5] |

↪→ q_c[2])) | (q_b[5] & q_c[2])))

278 | (!binary_out[5] & binary_out[4] & !binary_out[3] & ((q_a[19] & (q_b[9] |

↪→ q_c[4])) | (q_b[9] & q_c[4])))

279 | (!binary_out[5] & binary_out[4] & binary_out[3] & ((q_a[27] & (q_b[13] |

↪→ q_c[6])) | (q_b[13] & q_c[6])))

280 | (binary_out[5] & !binary_out[4] & !binary_out[3] & ((q_a[35] & (q_b[17] |

↪→ q_c[8])) | (q_b[17] & q_c[8])))

281 | (binary_out[5] & !binary_out[4] & binary_out[3] & ((q_a[43] & (q_b[21] |

↪→ q_c[10])) | (q_b[21] & q_c[10])))

282 | (binary_out[5] & binary_out[4] & !binary_out[3] & ((q_a[51] & (q_b[25] |

↪→ q_c[12])) | (q_b[25] & q_c[12])))

283 | (binary_out[5] & binary_out[4] & binary_out[3] & ((q_a[59] & (q_b[29] | q_c

↪→ [14])) | (q_b[29] & q_c[14])));

284

285

286

287 assign binary_out[1] =

288 (!binary_out[5] & !binary_out[4] & !binary_out[3] & !binary_out[2] & (q_a[1] &

↪→ q_b[0]))

289 | (!binary_out[5] & !binary_out[4] & !binary_out[3] & binary_out[2] & (q_a[5]

↪→ & q_b[2]))

290 | (!binary_out[5] & !binary_out[4] & binary_out[3] & !binary_out[2] & (q_a[9]

↪→ & q_b[4]))

291 | (!binary_out[5] & !binary_out[4] & binary_out[3] & binary_out[2] & (q_a[13]

↪→ & q_b[6]))

292 | (!binary_out[5] & binary_out[4] & !binary_out[3] & !binary_out[2] & (q_a[17]

↪→ & q_b[8]))

293 | (!binary_out[5] & binary_out[4] & !binary_out[3] & binary_out[2] & (q_a[21]

↪→ & q_b[10]))

294 | (!binary_out[5] & binary_out[4] & binary_out[3] & !binary_out[2] & (q_a[25]

↪→ & q_b[12]))

295 | (!binary_out[5] & binary_out[4] & binary_out[3] & binary_out[2] & (q_a[29] &

84

↪→ q_b[14]))

296 | (binary_out[5] & !binary_out[4] & !binary_out[3] & !binary_out[2] & (q_a[33]

↪→ & q_b[16]))

297 | (binary_out[5] & !binary_out[4] & !binary_out[3] & binary_out[2] & (q_a[37]

↪→ & q_b[18]))

298 | (binary_out[5] & !binary_out[4] & binary_out[3] & !binary_out[2] & (q_a[41]

↪→ & q_b[20]))

299 | (binary_out[5] & !binary_out[4] & binary_out[3] & binary_out[2] & (q_a[45] &

↪→ q_b[22]))

300 | (binary_out[5] & binary_out[4] & !binary_out[3] & !binary_out[2] & (q_a[49]

↪→ & q_b[24]))

301 | (binary_out[5] & binary_out[4] & !binary_out[3] & binary_out[2] & (q_a[53] &

↪→ q_b[26]))

302 | (binary_out[5] & binary_out[4] & binary_out[3] & !binary_out[2] & (q_a[57] &

↪→ q_b[28]))

303 | (binary_out[5] & binary_out[4] & binary_out[3] & binary_out[2] & (q_a[61] &

↪→ q_b[30]));

304

305

306

307 assign binary_out[0] =

308 (!binary_out[5] & !binary_out[4] & !binary_out[3] & !binary_out[2] & !

↪→ binary_out[1] & q_a[0])

309 | (!binary_out[5] & !binary_out[4] & !binary_out[3] & !binary_out[2] &

↪→ binary_out[1] & q_a[2])

310 | (!binary_out[5] & !binary_out[4] & !binary_out[3] & binary_out[2] & !

↪→ binary_out[1] & q_a[4])

311 | (!binary_out[5] & !binary_out[4] & !binary_out[3] & binary_out[2] &

↪→ binary_out[1] & q_a[6])

312 | (!binary_out[5] & !binary_out[4] & binary_out[3] & !binary_out[2] & !

↪→ binary_out[1] & q_a[8])

313 | (!binary_out[5] & !binary_out[4] & binary_out[3] & !binary_out[2] &

↪→ binary_out[1] & q_a[10])

314 | (!binary_out[5] & !binary_out[4] & binary_out[3] & binary_out[2] & !

↪→ binary_out[1] & q_a[12])

315 | (!binary_out[5] & !binary_out[4] & binary_out[3] & binary_out[2] & binary_out

↪→ [1] & q_a[14])

85

316 | (!binary_out[5] & binary_out[4] & !binary_out[3] & !binary_out[2] & !

↪→ binary_out[1] & q_a[16])

317 | (!binary_out[5] & binary_out[4] & !binary_out[3] & !binary_out[2] &

↪→ binary_out[1] & q_a[18])

318 | (!binary_out[5] & binary_out[4] & !binary_out[3] & binary_out[2] & !

↪→ binary_out[1] & q_a[20])

319 | (!binary_out[5] & binary_out[4] & !binary_out[3] & binary_out[2] & binary_out

↪→ [1] & q_a[22])

320 | (!binary_out[5] & binary_out[4] & binary_out[3] & !binary_out[2] & !

↪→ binary_out[1] & q_a[24])

321 | (!binary_out[5] & binary_out[4] & binary_out[3] & !binary_out[2] & binary_out

↪→ [1] & q_a[26])

322 | (!binary_out[5] & binary_out[4] & binary_out[3] & binary_out[2] & !binary_out

↪→ [1] & q_a[28])

323 | (!binary_out[5] & binary_out[4] & binary_out[3] & binary_out[2] & binary_out[

↪→ 1] & q_a[30])

324 | (binary_out[5] & !binary_out[4] & !binary_out[3] & !binary_out[2] & !

↪→ binary_out[1] & q_a[32])

325 | (binary_out[5] & !binary_out[4] & !binary_out[3] & !binary_out[2] &

↪→ binary_out[1] & q_a[34])

326 | (binary_out[5] & !binary_out[4] & !binary_out[3] & binary_out[2] & !

↪→ binary_out[1] & q_a[36])

327 | (binary_out[5] & !binary_out[4] & !binary_out[3] & binary_out[2] & binary_out

↪→ [1] & q_a[38])

328 | (binary_out[5] & !binary_out[4] & binary_out[3] & !binary_out[2] & !

↪→ binary_out[1] & q_a[40])

329 | (binary_out[5] & !binary_out[4] & binary_out[3] & !binary_out[2] & binary_out

↪→ [1] & q_a[42])

330 | (binary_out[5] & !binary_out[4] & binary_out[3] & binary_out[2] & !binary_out

↪→ [1] & q_a[44])

331 | (binary_out[5] & !binary_out[4] & binary_out[3] & binary_out[2] & binary_out[

↪→ 1] & q_a[46])

332 | (binary_out[5] & binary_out[4] & !binary_out[3] & !binary_out[2] & !

↪→ binary_out[1] & q_a[48])

333 | (binary_out[5] & binary_out[4] & !binary_out[3] & !binary_out[2] & binary_out

↪→ [1] & q_a[50])

334 | (binary_out[5] & binary_out[4] & !binary_out[3] & binary_out[2] & !binary_out

86

↪→ [1] & q_a[52])

335 | (binary_out[5] & binary_out[4] & !binary_out[3] & binary_out[2] & binary_out[

↪→ 1] & q_a[54])

336 | (binary_out[5] & binary_out[4] & binary_out[3] & !binary_out[2] & !binary_out

↪→ [1] & q_a[56])

337 | (binary_out[5] & binary_out[4] & binary_out[3] & !binary_out[2] & binary_out[

↪→ 1] & q_a[58])

338 | (binary_out[5] & binary_out[4] & binary_out[3] & binary_out[2] & !binary_out[

↪→ 1] & q_a[60])

339 | (binary_out[5] & binary_out[4] & binary_out[3] & binary_out[2] & binary_out[1

↪→] & q_a[62]);

340

341

342

343

344 assign q_out = binary_out; // Time measurment in binary

345

346 assign out_thermo = q_a; // thermomter code for the Wallce Tree encoder

347

348 endmodule

Listing C.3: TDC Top Model

1 module MasterprjTDC #(// top level for the project which initialize the TDC and

↪→ a Wallce tree encoder

2

3)(

4

5 input logic ck,

6 input logic arst,

7 input logic start,

8 input logic stop,

9

10 // These are real values of delay time plus variations for the delay

↪→ segments in the TDC generated in the TestBench

11 input real start_chain_10ps[62:0],

12 input real stop_chain_10ps[62:0],

13

87

14 input real start_chain_20ps[30:0],

15 input real stop_chain_20ps[30:0],

16

17 input real start_chain_40ps[14:0],

18 input real stop_chain_40ps[14:0],

19

20 input real start_chain_80ps[6:0],

21 input real stop_chain_80ps[6:0],

22

23 input real start_chain_160ps[2:0],

24 input real stop_chain_160ps[2:0],

25

26 input real start_chain_320ps,

27 input real stop_chain_320ps,

28

29 output logic [5:0] delay_10ps,

30 output logic [5:0] delay_10ps_wallce

31);

32

33 logic [5:0] q_out;

34 logic [62:0] out_thermo;

35 logic [5:0] out_wallce;

36

37 generate

38 if (1) begin

39

40 // --------------------------------

41 // -- MasterprjTDCCore

42 // --------------------------------

43

44 MasterprjTDCCore #(

45

46) u_Core(

47

48 // Inputs

49 .ck (ck),

50 .arst (arst),

88

51 .start (start),

52

53 .start_chain_10ps (start_chain_10ps),

54 .stop_chain_10ps (stop_chain_10ps),

55

56 .start_chain_20ps (start_chain_20ps),

57 .stop_chain_20ps (stop_chain_20ps),

58

59 .start_chain_40ps (start_chain_40ps),

60 .stop_chain_40ps (stop_chain_40ps),

61

62 .start_chain_80ps (start_chain_80ps),

63 .stop_chain_80ps (stop_chain_80ps),

64

65 .start_chain_160ps (start_chain_160ps),

66 .stop_chain_160ps (stop_chain_160ps),

67

68 .start_chain_320ps (start_chain_320ps),

69 .stop_chain_320ps (stop_chain_320ps),

70

71 .stop (stop),

72

73 // Outputs

74 .out_thermo (out_thermo),

75 .q_out (q_out)

76);

77

78 // flip flop for holding the final time measurement reading from the

↪→ proposed encoding circuit

79 always_ff @(posedge ck or posedge arst) begin

80 if(arst) begin

81 delay_10ps <= 0;

82 end else begin

83 delay_10ps <= q_out ;

84 end

85 end

86

89

87 WallaceEncoder #(// 6 bits Wallce Tree encode initializing for

↪→ comparison

88 .NOB (6),

89 .DK (62) // this is for the carry in bit for the output adders should be

↪→ (2**NOB)-2

90)

91 u_test(

92 .in_thermo(out_thermo),

93 .out_delay (out_wallce)

94);

95 // flip flop for holding the final time measurement reading from the

↪→ Wallce tree encoding circuit

96 always_ff @(posedge ck or posedge arst) begin

97 if(arst) begin

98 delay_10ps_wallce <= 0;

99 end else begin

100 delay_10ps_wallce <= out_wallce;

101 end

102 end

103

104 end

105

106 endgenerate

107

108

109

110 endmodule

Listing C.4: TDC TestBench

1 ‘timescale 1ps / 1ps

2 module test_MasterprjTDC (

3);

4 localparam T_CK16M = 62.5ns;

5

6 inTest_MasterprjTDC uin_MasterprjTDC(); // initializing a TDC DUT

7 logic start;

8 logic stop;

90

9

10 // ------------------------------

11 // -- Clock and Reset

12 // ------------------------------

13

14 initial begin

15 uin_MasterprjTDC.arst = 0;

16 uin_MasterprjTDC.ck16M = 0;

17 uin_MasterprjTDC.start = 0;

18 uin_MasterprjTDC.stop = 0;

19 uin_MasterprjTDC.Delay_10ps = ’0;

20 uin_MasterprjTDC.out_wallce = ’0;

21

22 fork

23 // generating a 16MHz clock just for refernce and handling data

24 //between DUT and TestBench

25 //(although the TDC can operate up to 100MHz this was done for

↪→ simplicity)

26 forever begin

27 #(T_CK16M/2);

28 uin_MasterprjTDC.ck16M = !uin_MasterprjTDC.ck16M;

29 end

30

31

32 join_any

33

34 end

35

36 initial

37 begin

38 $timeformat(-6, 3, "us", 0);

39 end

40

41

42 // ------------------------------

43 // -- DUT and assignments

44 // ------------------------------

91

45

46 MasterprjTDC #(// connecting the inputs and outputs of the DUT

47) u_MasterprjTDC (

48

49 .ck (uin_MasterprjTDC.ck16M),

50 .arst (uin_MasterprjTDC.arst),

51

52 .start_chain_10ps (uin_MasterprjTDC.start_chain_10ps),

53 .stop_chain_10ps (uin_MasterprjTDC.stop_chain_10ps),

54

55 .start_chain_20ps (uin_MasterprjTDC.start_chain_20ps),

56 .stop_chain_20ps (uin_MasterprjTDC.stop_chain_20ps),

57

58 .start_chain_40ps (uin_MasterprjTDC.start_chain_40ps),

59 .stop_chain_40ps (uin_MasterprjTDC.stop_chain_40ps),

60

61 .start_chain_80ps (uin_MasterprjTDC.start_chain_80ps),

62 .stop_chain_80ps (uin_MasterprjTDC.stop_chain_80ps),

63

64 .start_chain_160ps(uin_MasterprjTDC.start_chain_160ps),

65 .stop_chain_160ps (uin_MasterprjTDC.stop_chain_160ps),

66

67 .start_chain_320ps(uin_MasterprjTDC.start_chain_320ps),

68 .stop_chain_320ps (uin_MasterprjTDC.stop_chain_320ps),

69

70 .start (uin_MasterprjTDC.start),

71 .stop (uin_MasterprjTDC.stop),

72

73 .delay_10ps (uin_MasterprjTDC.Delay_10ps),

74 .delay_10ps_wallce(uin_MasterprjTDC.out_wallce)

75);

76

77 //--

78 // Main Stimulus

79 //--

80 initial begin

81 string testName;

92

82 testName = "";

83 $display("---␣Starting␣simulation␣---");

84 if($test$plusargs("TESTNAME")) begin

85 assert ($value$plusargs("TESTNAME=%s", testName)) else begin

86 $error("Wrong␣+TESTNAME");

87 $finish;

88 end

89 case(testName)

90 "Ideal_Test" :ta_Ideal_Test();

91 "Symmetrical_Test" :ta_Symmetrical_Test();

92 "Unsymmetrical_Test" :ta_Unsymmetrical_Test();

93 default :begin

94 $error("The␣test␣you␣selected␣(%s)␣does␣not␣exist!", testName);

95 $finish;

96 end

97 endcase // testName

98 end

99 else begin

100 // Run all tests

101 $display("No␣TESTNAME␣set;␣running␣all␣tests.");

102 ta_Ideal_Test();

103 ta_Symmetrical_Test();

104 ta_Unsymmetrical_Test();

105 end

106 fu_printEndStatus();

107 end

108

109 task ta_Reset(); // reset task

110 uin_MasterprjTDC.arst = 1’b1;

111 @(posedge uin_MasterprjTDC.ck16M);

112 uin_MasterprjTDC.arst = 1’b0;

113 endtask

114

115 task ta_Init();

116 // Intialize input signals

117 uin_MasterprjTDC.start = ’0;

118 uin_MasterprjTDC.stop = ’0;

93

119 // Reset

120 ta_Reset();

121 endtask

122

123 // Ideal task assume no variations in the delay segments

124

125 task ta_Ideal_Test();

126 real start_10ps[62:0];

127 real stop_10ps[62:0];

128

129 real start_20ps[30:0];

130 real stop_20ps[30:0];

131

132 real start_40ps[14:0];

133 real stop_40ps[14:0];

134

135 real start_80ps[6:0];

136 real stop_80ps[6:0];

137

138 real start_160ps[2:0];

139 real stop_160ps[2:0];

140

141 real start_320ps;

142 real stop_320ps;

143

144 $display("\n---");

145 $display("%t␣-␣%m␣starting␣IDEAL␣TEST", $time);

146 $display("---");

147 $display("");

148 ta_Init();

149

150

151 // The "uin_MasterprjTDC.start_chain_10ps[i] =

152 // start_10ps[i]/uin_MasterprjTDC.stop_chain_10ps[i] = stop_10ps[i]"

153 // sends the generated delay with variations from the testbench to the DUT

154

155

94

156 ///

157

158 for (int i = 0; i < 63; i++) begin // 10ps Start delay chain

159 start_10ps[i] = 135; // Ideal case

160 uin_MasterprjTDC.start_chain_10ps[i] = start_10ps[i];

161 end

162

163

164 for (int i = 0; i < 63; i++) begin // 10ps Stop delay chain

165 stop_10ps[i] = 125; // Ideal case

166 uin_MasterprjTDC.stop_chain_10ps[i] = stop_10ps[i];

167 end

168

169 ///

170

171 for (int i = 0; i < 31; i++) begin // 20ps Start delay chain

172 start_20ps[i] = 145; // Ideal case

173 uin_MasterprjTDC.start_chain_20ps[i] = start_20ps[i];

174 end

175

176 for (int i = 0; i < 31; i++) begin // 20ps Stop delay chain

177 stop_20ps[i] = 125; // Ideal case

178 uin_MasterprjTDC.stop_chain_20ps[i] = stop_20ps[i];

179 end

180

181 ///

182

183 for (int i = 0; i < 15; i++) begin // 40ps Start delay chain

184 start_40ps[i] = 165; // Ideal case

185 uin_MasterprjTDC.start_chain_40ps[i] = start_40ps[i];

186 end

187

188 for (int i = 0; i < 15; i++) begin // 40ps Stop delay chain

189 stop_40ps[i] = 125; // Ideal case

190 uin_MasterprjTDC.stop_chain_40ps[i] = stop_40ps[i];

191 end

192

95

193 ///

194

195 for (int i = 0; i < 7; i++) begin // 80ps Start delay chain

196 start_80ps[i] = 205; // Ideal case

197 uin_MasterprjTDC.start_chain_80ps[i] = start_80ps[i];

198 end

199

200 for (int i = 0; i < 7; i++) begin // 80ps Stop delay chain

201 stop_80ps[i] = 125; // Ideal case

202 uin_MasterprjTDC.stop_chain_80ps[i] = stop_80ps[i];

203 end

204

205 //

206

207 for (int i = 0; i < 3; i++) begin // 160ps Start delay chain

208 start_160ps[i] = 285; // Ideal case

209 uin_MasterprjTDC.start_chain_160ps[i] = start_160ps[i];

210 end

211

212 for (int i = 0; i < 3; i++) begin // 160ps Stop delay chain

213 stop_160ps[i] = 125; // Ideal case

214 uin_MasterprjTDC.stop_chain_160ps[i] = stop_160ps[i];

215 end

216

217 ///

218

219 start_320ps = 445; // Ideal case

220 uin_MasterprjTDC.start_chain_320ps = start_320ps;

221 stop_320ps = 125; // Ideal case

222 uin_MasterprjTDC.stop_chain_320ps = stop_320ps;

223

224 //

225 //

226 //

227

228 for (int i = 0; i < 640; i++) begin

229 @(posedge uin_MasterprjTDC.ck16M);

96

230 @(posedge uin_MasterprjTDC.ck16M);

231

232 // generating multipule time measurements by seting Start to one and

233 // waiting for i (ps) to Set stop to one, the time sequnce will be from 0 to 639

↪→ ps

234 fork

235 begin

236 uin_MasterprjTDC.start = 1’b1;

237 end

238

239 begin

240 #(i)

241 uin_MasterprjTDC.stop = 1’b1;

242 end

243 join_any

244

245 @(posedge uin_MasterprjTDC.ck16M);

246 @(posedge uin_MasterprjTDC.ck16M);

247

248 //ploting the output data

249 $display("Delay_ideal␣=␣%d",i);

250 $display("Delay_actual␣=␣␣␣␣%d",uin_MasterprjTDC.Delay_10ps);

251 $display("Delay_wallce␣=␣␣␣␣%d",uin_MasterprjTDC.out_wallce);

252

253 ta_Init();

254

255 end

256 $display("\n---");

257 $display("%t␣-␣%m␣complete\n", $time);

258 $display("---\n");

259

260 #600000

261 $stop;

262 endtask

263

264 // symmetrical task assume same variations in the delay segments

265 //(same random seeding for both delay line, start and stop)

97

266

267 task ta_Symmetrical_Test();

268

269 real start_10ps[62:0];

270 real stop_10ps[62:0];

271

272 real start_20ps[30:0];

273 real stop_20ps[30:0];

274

275 real start_40ps[14:0];

276 real stop_40ps[14:0];

277

278 real start_80ps[6:0];

279 real stop_80ps[6:0];

280

281 real start_160ps[2:0];

282 real stop_160ps[2:0];

283

284 real start_320ps;

285 real stop_320ps;

286

287 int seeed_fixed[62:0];

288 int seeed[62:0];

289

290 int test;

291

292 $display("\n---");

293 $display("%t␣-␣%m␣starting␣Symmetrical␣TEST", $time);

294 $display("--");

295 $display("");

296

297 ta_Init();

298 @(posedge uin_MasterprjTDC.ck16M);

299 @(posedge uin_MasterprjTDC.ck16M);

300

301 for (int i = 0; i < 63; i++) begin // create a Fixed seed numbers

302 seeed[i] = $urandom(i*231687);

98

303 seeed_fixed[i] = seeed[i];

304 end

305

306 ///

307

308 for (int i = 0; i < 63; i++) begin // 10ps Start delay chain

309 start_10ps[i] = $dist_normal(seeed[i],135030,5330);

310 start_10ps[i] = start_10ps[i]/1000;

311 uin_MasterprjTDC.start_chain_10ps[i] = start_10ps[i];

312 end

313

314 for (int i = 0; i < 63; i++) begin

315 seeed[i] = seeed_fixed[i];

316 end

317

318 for (int i = 0; i < 63; i++) begin // 10ps Stop delay chain

319 stop_10ps[i] = $dist_normal(seeed[i],125010,5510);

320 stop_10ps[i] = stop_10ps[i]/1000;

321 uin_MasterprjTDC.stop_chain_10ps[i] = stop_10ps[i];

322 end

323

324 for (int i = 0; i < 63; i++) begin

325 seeed[i] = seeed_fixed[i];

326 end

327

328 ///

329

330 for (int i = 0; i < 31; i++) begin // 20ps Start delay chain

331 start_20ps[i] = $dist_normal(seeed[i],145500,5800);

332 start_20ps[i] = start_20ps[i]/1000;

333 uin_MasterprjTDC.start_chain_20ps[i] = start_20ps[i];

334 end

335

336 for (int i = 0; i < 63; i++) begin

337 seeed[i] = seeed_fixed[i];

338 end

339

99

340 for (int i = 0; i < 31; i++) begin // 20ps Stop delay chain

341 stop_20ps[i] = $dist_normal(seeed[i],125010,5510);

342 stop_20ps[i] = stop_20ps[i]/1000;

343 uin_MasterprjTDC.stop_chain_20ps[i] = stop_20ps[i];

344 end

345

346 for (int i = 0; i < 63; i++) begin

347 seeed[i] = seeed_fixed[i];

348 end

349

350 ///

351

352 for (int i = 0; i < 15; i++) begin // 40ps Start delay chain

353 start_40ps[i] = $dist_normal(seeed[i],165100,6790);

354 start_40ps[i] = start_40ps[i]/1000;

355 uin_MasterprjTDC.start_chain_40ps[i] = start_40ps[i];

356 end

357

358 for (int i = 0; i < 63; i++) begin

359 seeed[i] = seeed_fixed[i];

360 end

361

362 for (int i = 0; i < 15; i++) begin // 40ps Stop delay chain

363 stop_40ps[i] = $dist_normal(seeed[i],125010,5510);

364 stop_40ps[i] = stop_40ps[i]/1000;

365 uin_MasterprjTDC.stop_chain_40ps[i] = stop_40ps[i];

366 end

367

368 for (int i = 0; i < 63; i++) begin

369 seeed[i] = seeed_fixed[i];

370 end

371

372 ///

373

374 for (int i = 0; i < 7; i++) begin // 80ps Start delay chain

375 start_80ps[i] = $dist_normal(seeed[i],205460,8790);

376 start_80ps[i] = start_80ps[i]/1000;

100

377 uin_MasterprjTDC.start_chain_80ps[i] = start_80ps[i];

378 end

379

380 for (int i = 0; i < 63; i++) begin

381 seeed[i] = seeed_fixed[i];

382 end

383

384 for (int i = 0; i < 7; i++) begin // 80ps Stop delay chain

385 stop_80ps[i] = $dist_normal(seeed[i],125010,5510);

386 stop_80ps[i] = stop_80ps[i]/1000;

387 uin_MasterprjTDC.stop_chain_80ps[i] = stop_80ps[i];

388 end

389

390 for (int i = 0; i < 63; i++) begin

391 seeed[i] = seeed_fixed[i];

392 end

393

394 ///

395

396 for (int i = 0; i < 3; i++) begin // 160ps Start delay chain

397 start_160ps[i] = $dist_normal(seeed[i],284970,12780);

398 start_160ps[i] = start_160ps[i]/1000;

399 uin_MasterprjTDC.start_chain_160ps[i] = start_160ps[i];

400 end

401

402 for (int i = 0; i < 63; i++) begin

403 seeed[i] = seeed_fixed[i];

404 end

405

406 for (int i = 0; i < 3; i++) begin // 160ps Stop delay chain

407 stop_160ps[i] = $dist_normal(seeed[i],125010,5510);

408 stop_160ps[i] = stop_160ps[i]/1000;

409 uin_MasterprjTDC.stop_chain_160ps[i] = stop_160ps[i];

410 end

411

412 for (int i = 0; i < 63; i++) begin

413 seeed[i] = seeed_fixed[i];

101

414 end

415

416 ///

417

418 start_320ps = $dist_normal(seeed[0],446540,21040); // 320ps Start delay chain

419 start_320ps = start_320ps/1000;

420 uin_MasterprjTDC.start_chain_320ps = start_320ps;

421

422 for (int i = 0; i < 63; i++) begin

423 seeed[i] = seeed_fixed[i];

424 end

425

426 stop_320ps = $dist_normal(seeed[0],125010,5510); // 320ps Stop delay chain

427 stop_320ps = stop_320ps/1000;

428 uin_MasterprjTDC.stop_chain_320ps = stop_320ps;

429

430 for (int i = 0; i < 63; i++) begin

431 seeed[i] = seeed_fixed[i];

432 end

433

434 ///

435 ///

436 ///

437

438 for (int i = 0; i < 640; i++) begin

439 @(posedge uin_MasterprjTDC.ck16M);

440 @(posedge uin_MasterprjTDC.ck16M);

441

442 // generating multipule time measurements by seting Start to one

443 // and waiting for i (ps) to Set stop to one, the time sequnce will be from 0 to

↪→ 639 ps

444

445 fork

446 begin

447 uin_MasterprjTDC.start = 1’b1;

448 end

449 begin

102

450 #(i)

451 uin_MasterprjTDC.stop = 1’b1;

452 end

453 join_any

454

455 @(posedge uin_MasterprjTDC.ck16M);

456 @(posedge uin_MasterprjTDC.ck16M);

457

458 //ploting the output data

459 $display("Delay_ideal␣=␣%d",i);

460 $display("Delay_actual␣=␣␣␣␣%d",uin_MasterprjTDC.Delay_10ps);

461 $display("Delay_wallce␣=␣␣␣␣%d",uin_MasterprjTDC.out_wallce);

462

463 ta_Init();

464 end

465

466 $display("\n---");

467 $display("%t␣-␣%m␣complete\n", $time);

468 $display("---\n");

469 #600000

470 $stop;

471 endtask

472

473 // unsymmetrical task assume different variations in the delay segments

474 //(different random seeding for both delay line, start and stop)

475

476 task ta_Unsymmetrical_Test();

477

478 real start_10ps[62:0];

479 real stop_10ps[62:0];

480

481 real start_20ps[30:0];

482 real stop_20ps[30:0];

483

484 real start_40ps[14:0];

485 real stop_40ps[14:0];

486

103

487 real start_80ps[6:0];

488 real stop_80ps[6:0];

489

490 real start_160ps[2:0];

491 real stop_160ps[2:0];

492

493 real start_320ps;

494 real stop_320ps;

495

496 int seeed[62:0];

497

498 int test;

499

500 $display("\n---");

501 $display("%t␣-␣%m␣starting␣Unsymmetrical␣TEST", $time);

502 $display("--");

503 $display("");

504

505 ta_Init();

506

507 @(posedge uin_MasterprjTDC.ck16M);

508 @(posedge uin_MasterprjTDC.ck16M);

509

510 for (int i = 0; i < 63; i++) begin // create a Fixed seed numbers

511 seeed[i] = $urandom(i*457);

512 end

513

514 ///

515

516 for (int i = 0; i < 63; i++) begin // 10ps Start delay chain

517 start_10ps[i] = $dist_normal(seeed[i],135030,5330);

518 start_10ps[i] = start_10ps[i]/1000;

519 uin_MasterprjTDC.start_chain_10ps[i] = start_10ps[i];

520 end

521

522 for (int i = 0; i < 63; i++) begin // 10ps Stop delay chain

523 stop_10ps[i] = $dist_normal(seeed[i],125010,5510);

104

524 stop_10ps[i] = stop_10ps[i]/1000;

525 uin_MasterprjTDC.stop_chain_10ps[i] = stop_10ps[i];

526 end

527

528 //

529

530

531 for (int i = 0; i < 31; i++) begin // 20ps Start delay chain

532 start_20ps[i] = $dist_normal(seeed[i],145500,5800);

533 start_20ps[i] = start_20ps[i]/1000;

534 uin_MasterprjTDC.start_chain_20ps[i] = start_20ps[i];

535 end

536

537 for (int i = 0; i < 31; i++) begin // 20ps Stop delay chain

538 stop_20ps[i] = $dist_normal(seeed[i],125010,5510);

539 stop_20ps[i] = stop_20ps[i]/1000;

540 uin_MasterprjTDC.stop_chain_20ps[i] = stop_20ps[i];

541 end

542

543 //

544

545 for (int i = 0; i < 15; i++) begin // 40ps Start delay chain

546 start_40ps[i] = $dist_normal(seeed[i],165100,6790);

547 start_40ps[i] = start_40ps[i]/1000;

548 uin_MasterprjTDC.start_chain_40ps[i] = start_40ps[i];

549 end

550

551 for (int i = 0; i < 15; i++) begin // 40ps Stop delay chain

552 stop_40ps[i] = $dist_normal(seeed[i],125010,5510);

553 stop_40ps[i] = stop_40ps[i]/1000;

554 uin_MasterprjTDC.stop_chain_40ps[i] = stop_40ps[i];

555 end

556

557 ///

558

559 for (int i = 0; i < 7; i++) begin // 80ps Start delay chain

560 start_80ps[i] = $dist_normal(seeed[i],205460,8790);

105

561 start_80ps[i] = start_80ps[i]/1000;

562 uin_MasterprjTDC.start_chain_80ps[i] = start_80ps[i];

563 end

564

565 for (int i = 0; i < 7; i++) begin // 80ps Stop delay chain

566 stop_80ps[i] = $dist_normal(seeed[i],125010,5510);

567 stop_80ps[i] = stop_80ps[i]/1000;

568 uin_MasterprjTDC.stop_chain_80ps[i] = stop_80ps[i];

569 end

570

571 //

572

573 for (int i = 0; i < 3; i++) begin // 160ps Start delay chain

574 start_160ps[i] = $dist_normal(seeed[i],284970,12780);

575 start_160ps[i] = start_160ps[i]/1000;

576 uin_MasterprjTDC.start_chain_160ps[i] = start_160ps[i];

577 end

578

579 for (int i = 0; i < 3; i++) begin // 160ps Stop delay chain

580 stop_160ps[i] = $dist_normal(seeed[i],125010,5510);

581 stop_160ps[i] = stop_160ps[i]/1000;

582 uin_MasterprjTDC.stop_chain_160ps[i] = stop_160ps[i];

583 end

584

585 //

586

587 start_320ps = $dist_normal(seeed[0],446540,21040); // 320ps Start delay chain

588 start_320ps = start_320ps/1000;

589 uin_MasterprjTDC.start_chain_320ps = start_320ps;

590

591 stop_320ps =$dist_normal(seeed[0],125010,5510); // 320ps Stop delay chain

592 stop_320ps = stop_320ps/1000;

593 uin_MasterprjTDC.stop_chain_320ps = stop_320ps;

594

595 ///

596 ///

597 ///

106

598

599 for (int i = 0; i < 640; i++) begin

600

601 @(posedge uin_MasterprjTDC.ck16M);

602 @(posedge uin_MasterprjTDC.ck16M);

603

604 // generating multipule time measurements by seting Start to one

605 // and waiting for i (ps) to Set stop to one, the time sequnce will be from 0 to

↪→ 639 ps

606

607 fork

608 begin

609 uin_MasterprjTDC.start = 1’b1;

610 end

611 begin

612 #(i)

613 uin_MasterprjTDC.stop = 1’b1;

614 end

615 join_any

616

617 @(posedge uin_MasterprjTDC.ck16M);

618 @(posedge uin_MasterprjTDC.ck16M);

619

620 //ploting the output data

621 $display("Delay_ideal␣=␣%d",i);

622 $display("Delay_actual␣=␣␣␣␣%d",uin_MasterprjTDC.Delay_10ps);

623 $display("Delay_wallce␣=␣␣␣␣%d",uin_MasterprjTDC.out_wallce);

624

625 ta_Init();

626 end

627

628 $display("\n---");

629 $display("%t␣-␣%m␣complete\n", $time);

630 $display("--\n");

631

632 #600000

633 $stop;

107

634 endtask

635

636 function void fu_printEndStatus;

637 $display("");

638 $display("");

639 $display($time, "␣ns:");

640 $display("---");

641 $display("--");

642 $display("");

643 $display("");

644 $display("");

645 $display("");

646 $display("--");

647 $display("---");

648 $display("");

649 $display("");

650 endfunction

651

652 endmodule

Listing C.5: Wallace Tree Encoder

1 module WallaceEncoder #(// A standard parameterizable Wallce tree encoder using

↪→ a standard fulladders and 7to3 Wallce tree encoder

2 //number of bits must be bigger than 3

3 parameter NOB,

4 parameter DK // remember this is for the carry in bit for the output adders

↪→ the first one should be (2**NOB)-2

5)(

6

7 input logic [(2**NOB)-2:0] in_thermo,

8 output logic [NOB-1:0] out_delay

9);

10

11 localparam NEW_NOB = NOB-1;

12

13 logic [(NOB-1):0] a = ’0;

14 logic [(NOB-1):0] b = ’0;

108

15 logic [(NEW_NOB-2):0] cout = ’0;

16

17 if (NOB > 3) begin

18

19 FullAdder #()

20 u_fulladder_0(

21 .a (a[0]),

22 .b (b[0]),

23 .ci (in_thermo[DK]),

24 .s (out_delay[0]),

25 .co (cout[0])

26);

27

28 for (genvar i=1 ; i<(NEW_NOB-1) ; i++) begin // using recursive function to

↪→ call the same code to generate an upper and lower branches for the

↪→ encoder

29 FullAdder #()

30 u_fulladder(

31 .a (a[i]),

32 .b (b[i]),

33 .ci (cout[i-1]),

34 .s (out_delay[i]),

35 .co (cout[i])

36);

37 end

38

39 FullAdder #()

40 u_fulladder_last(

41 .a (a[(NEW_NOB-1)]),

42 .b (b[(NEW_NOB-1)]),

43 .ci (cout[(NEW_NOB-2)]),

44 .s (out_delay[(NEW_NOB-1)]),

45 .co (out_delay[(NEW_NOB)])

46);

47

48 if (NEW_NOB > 3) begin

49 WallaceEncoder #(

109

50 .NOB(NEW_NOB),

51 .DK ((DK-2)/2)

52)

53 u_UpperTreeEncoder(// upper tree for the most significant bits in the

↪→ thermomter code

54 .in_thermo (in_thermo[DK-1:(2**NEW_NOB)-1]),

55 .out_delay (a)

56);

57 WallaceEncoder #(

58 .NOB(NEW_NOB),

59 .DK ((DK-2)/2)

60)

61 u_LowerTreeEncoder(// lower tree for the least significant bits in the

↪→ thermomter code

62 .in_thermo (in_thermo[(2**NEW_NOB)-2:0]),

63 .out_delay (b)

64);

65

66 end else if (NEW_NOB == 3) begin // generate a stander 7to3 bits Wallce tree

↪→ encoder

67

68 WallaceEncoder7to3 #()

69 u_UpperBlock(

70 .arst (0),

71 .enable (1),

72 .in (in_thermo[DK-1:(2**NEW_NOB)-1]),

73 .out (a)

74);

75

76 WallaceEncoder7to3 #()

77 u_LowerBlock(

78 .arst (0),

79 .enable (1),

80 .in (in_thermo[(2**NEW_NOB)-2:0]),

81 .out (b)

82);

83 end

110

84 end

85

86 endmodule

Listing C.6: 7to3 bits Wallace Tree Encoder

1 module WallaceEncoder7to3 #(// Simple 7to3 bits Wallce tree encoder using 4

↪→ standard full adders

2 // which is used to implement a parameterizable

↪→ Wallce tree encoder

3)(

4 input logic arst,

5 input logic enable,

6 input logic [6:0] in,

7 output logic [2:0] out

8);

9

10 logic [1:0] sum;

11 logic [3:0] carryout;

12

13 FullAdder #()

14 fulladder_1(

15 .a (in[0]),

16 .b (in[1]),

17 .ci (in[2]),

18 .s (sum[0]),

19 .co (carryout[0])

20);

21

22 FullAdder #()

23 fulladder_2(

24 .a (in[3]),

25 .b (in[4]),

26 .ci (in[5]),

27 .s (sum[1]),

28 .co (carryout[1])

29);

30

111

31 FullAdder #()

32 fulladder_3(

33 .a (sum[0]),

34 .b (sum[1]),

35 .ci (in[6]),

36 .s (out[0]),

37 .co (carryout[3])

38);

39

40 FullAdder #()

41 fulladder_4(

42 .a (carryout[0]),

43 .b (carryout[1]),

44 .ci (carryout[3]),

45 .s (out[1]),

46 .co (out[2])

47);

48

49 endmodule

	Preface
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Theory
	Performance Metrics
	Resolution (LSB)
	Non-linearities
	The Linear Bits
	Conversion Speed
	Dynamic Range
	Area and Power
	Noise
	Jitter
	Process and Mismatch
	Supply Voltage Variation
	Temperature Variation

	TDC Architectures
	Analog-type TDCs
	Digital-Type TDCs
	Delay Line TDC
	Vernier Delay Line TDC
	Ring Oscillator Vernier TDC
	Two Dimensional TDC
	Stochastic TDCs

	TDC calibration
	Thermometer-to-Binary Encoder
	Motivation and Selection

	Design and Simulation Methodologies
	Delay Segment
	Proposed Vernier Segment

	Less Complex Approach of Encoding
	Proposed method for encoding

	Test and Verification
	Simulation Assumptions
	Corners and Temperature
	Layout
	The Proposed Delay Segment

	Simulation Results
	Proposed TDC Implementation
	Process and Mismatch Variations for Delay Segments
	Encoding Circuit
	Nonlinearities (DNL and INL)
	Area
	TDC Speed
	Power Consumption
	TDC Survey

	Discussion
	Proposed Implementation
	Process and Mismatch Variations
	Encoding Circuit
	Nonlinearities
	Conversion Speed
	Area
	Power
	Summary

	Conclusion
	Future Work

	Bibliography
	Appendix TDC Segments Parameters and Layouts
	Appendix Simulation Results for TDC Segments
	Appendix SystemVerilog Models

