
System Documentation Bachelor’s Thesis 086

System Documentation

“Fog of War”

Bachelor’s Thesis 086
Sindre Haugland Paulshus

Date Version Description

21.01.2020 0.1 Initial setup.

15.04.2020 0.2 Introduction added.
Definitions and references
added.

17.04.2020 0.3 Added class and
architecture diagrams.

21.04.2020 1.0 First full draft. Added link to
source code documentation,
wrote about testing, edited
the diagrams, added class
explanations.

1

System Documentation Bachelor’s Thesis 086

Table of Contents

Table of Contents 2

Introduction 3
Abbreviations, Acronyms and Definitions 3

Architecture 3

Class Diagram 4

Documentation of Source Code 5

Testing 5
Function testing 5
Performance testing 5

References 5

2

System Documentation Bachelor’s Thesis 086

1. Introduction
This document describes the “Fog of War” (herby “FOW”) solution created for the
game Dwarfheim, being developed by Pineleaf Studio[1]. The project itself is staffed
by a single bachelor student for his bachelor’s thesis during the first semester of
2020. This document includes the overarching architecture of the solution, its
classes, source code documentation and how testing were done.

1.1. Abbreviations, Acronyms and Definitions

Prefab A saved configuration of a GameObject. Can be
instantiated in a scene.

FOW or Fow Fog of War

Unity Profiler A tool within Unity which records cpu and gpu usage,
frame rate and various other data for the running game.
It also shows which components, classes and functions
are responsible for causing said data.

2. Architecture

The solution works in layers. Separate units communicate with the FowManager
when their view needs to update. This happens when either the unit is spawned or
the unit moves. The manager then requests the view for each unit that needs to
update using Fow Calculator Archetypes and the units’ spot (index) in the world grid.
Each archetype schedules one Unity Parallel For Job, where each index it works on
is a separate unit of that archetype. Therefore, each unit’s view is calculated on a
unique thread, which takes advantage of multiple CPU cores and boosts
performance.

3

System Documentation Bachelor’s Thesis 086

3. Class Diagram

The project consists of 5 classes:

SpatialGridSquareController A component class of the SpatialGridSquare prefab.
An amount of these prefabs are spawned in a
square grid and help with spatial indexing the units
in the game. Has two main functions,
OnTriggerEnter() and OnTriggerExit(). They are
called when collider enters and exits the collider
attached to the SpatialGridSquare prefab
respectively. It checks if the collider belongs to a
unit and then adds or removes the unit from its list.

UnitFowController This script is attached to the units in the game.
Each frame it checks if itself has moved from the
last frame. If it has, it tells the FowManager to
update. Contains an ID int of which
FowCalcArchetype it should use.

FowManager A singleton class. Controls the flow of information
for the fog of war. It checks on a configurable
interval if any units have told it to update. It
calculates the fow of the units that told it to update
by separating them into archetypes and using the
FowCalcArchetype class.

FowCalcArchetype A unique set of a view distance and a maximum
number of resources/walls it can see through. When
created, it calculates the edges of this archetype’s
view in relation to the unit. Its main function is
RunJobs, which initializes and schedules
FowCalcJob.

4

System Documentation Bachelor’s Thesis 086

FowCalcJob Not actually a class, but a struct inside
FowCalcArchetype. As such, it acts as a private
inner class of the aforementioned. This is a Unity
Parallel For Job, which means when scheduled,
threads allocated by the Unity Jobs system will work
on each index of an array separately using this
struct. Each index of the array is references a
unique unit of this archetype.

4. Documentation of Source Code
Source code documentation is written in markdown and available here:
https://github.com/Sindrex/Bachelor086-fow-doc

5. Testing
Testing was done manually through the Unity Editor. There were two types of tests
conducted during the development: Function testing and performance testing.

5.1. Function testing
Function testing is to check that the core functions of the system works, that
the fog of war is created correctly. This is done by using two test units of two
different archetype and moving one or both. The fog of war is observed as it
changes depending on unit location and obstacles.

5.2. Performance testing
Performance testing aims to test the performance of the system in a worst
case scenario. To do so, 120 test units (120 is the upper limit of units in the
game) split into 4 archetypes are used and moved around simultaneously for
a duration of 10-20 seconds. This forces the FowManager to update the fog of
war and update the view of each unit on each check it does. During this, the
Unity Profiler is recording the performance. Generally, a game frame rate of at
least 60 fps is considered good, but this needs to be compared to the frame
rate when the units are not moving to be able to see the impact of the fog of
war. The observer can then identify which parts of the solution that is causing
problems and set out to fix it.

6. References
[1] Pineleaf Studio. Dwarfheim [internet]. Pineleaf Studio; 07.02.2020 [updated
07.02.2020; 07.02.2020]. Available from: ​https://dwarfheim.com

5

https://github.com/Sindrex/Bachelor086-fow-doc
https://dwarfheim.com/

