
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Ba
ch

el
or

’s
pr

oj
ec

t

Sindre Haugland Paulshus

Implementing Optimized Line of Sight
based Fog of War in Unity

For the RTS game DwarfHeim by Pineleaf Studio

Bachelor’s project in Software Engineering

Supervisor: Helge Hafting

May 2020

Sindre Haugland Paulshus

Implementing Optimized Line of Sight
based Fog of War in Unity

For the RTS game DwarfHeim by Pineleaf Studio

Bachelor’s project in Software Engineering
Supervisor: Helge Hafting
May 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Preface

The project was birthed in the need for a new Fog of War solution for Pineleaf Studio’s upcoming
Real Time Strategy game DwarfHeim, but became a bachelor project through reaching out to
them on my own. The goal was to be able to challenge myself working for a game development
studio and be able to produce something of quality in the process. I would like to thank Pineleaf
Studio as a whole, but also their CEO Hans-Andreas S. Kleven specifically for greenlighting the
project. I also want to thank their CTO Sigurd Mikal O. Murad and their Lead Programmer
Kenneth J. Kristensen. Their help has been proved invaluable to the final solution and the main
report, constantly suggesting new technologies and providing valuable feedback. I also want to
thank my supervisor Helge Hafting, for his feedback and discussions on various topics throughout
the project. Lastly, I want to thank my partner, my family, friends and fellow students for their
continued support.

i

Task

The task to be solved for this project is the development of one or more solutions for technical-
and design challenges around the game mechanic Fog of War, within the genre of Real Time Strat-
egy games for the game DwarfHeim by Pineleaf Studios [1]. Specific requirements can be seen in
Appendix D, Vision Document, and Appendix B, Requirements Document. Additional challenges
were performance and optimization, visual experience and clarity in gameplay. It was the perfor-
mance and optimization part of the task that was to be its secondary focus. The development was
to be done mainly in Unity with the programming language C#. See Appendix A for the original
task description.

ii

Abstract

This project explores how to implement the game mechanic Fog of War with Line of Sight in a
Real Time Strategy game, as well as optimizing it as much as possible. While Line of Sight based
Fog of War is nothing new to the genre, implementation and methodology for the mechanic is
mostly under wraps. This project hopes to rectify this and create stable ground for innovativeness
and research on the topic.

The project came about as Pineleaf Studio wanted to upgrade their current Fog of War solution
with a more sophisticated one with Line of Sight for their Real Time Strategy game DwarfHeim.
This can be implemented and optimized in various ways and this report’s theory gives a foundation
for this. It goes through line drawing algorithms, optimization methods and more general topics
such as Fog of War and Line of Sight.

Throughout the projects duration, various technologies and methodologies were explored and set-
tled on. Game engine was to be Unity, programming language C#. The development process was
iterative and innovative, but no specific framework was selected. The Line of Sight was imple-
mented using the line drawing algorithm Digital Differential Analyzer from the start point to the
edge cells of a unit’s vision. Optimization methods used were spatial indexing, parallelization and
Burst Compiler. Parallelization was implemented using C# Parallel.For and Unity Jobs. Using
Unity Jobs opened the opportunity to use their Burst Compiler, which automatically transforms
the code to highly optimized native code.

The final result was a performant Line of Sight based Fog of War. The employer was satisfied and
all needed requirements were fulfilled, while none of the optional additions were implemented.
The development of this result followed its plan broadly, with the exception of a drastic shortening
of visual development. This was due to the opportunity to reuse parts of the visual implementation
of DwarfHeim’s previous Fog of War implementation. Time management during the development
was shifted towards the logical development, documentation and research.

The final result is well functioning. One could make the argument for using Bresenham over
Digital Differential Analyzer. How much effect that would actually have though, that’s up to
debate as the solution is also utilizing Unity Jobs and the Burst Compiler. Unity Jobs is very
restrictive though, which causes a lot of overhead. Finding a solution for this overhead problem
could improve the performance significantly. Even though none of the optional requirements were
fulfilled, a way for possibly creating a grayscale of explored areas which could be integrated into
the solution was discovered.

In the end, the final result can be viewed as an answer to the research problem. By using DDA
between start and edge cells to create each unit’s vision, stitching those visions together and apply-
ing it as a texture to a plane overlapping the game area, which in turn masks another plan which
visualizes the Fog of War. This is optimized by utilizing spatial indexing, C# Parallel.For and
Unity Jobs with the Burst Compiler. Future work could include implementing the solution with
Bresenham, pre-baked LOS and developing LOS based FOW for other game engines.

iii

Table of Contents

Preface i

Task ii

Abstract iii

List of Figures vi

List of Tables vi

1 Introduction 1

1.1 Background . 1

1.2 Research Problem . 1

1.3 Report Structure . 1

1.4 Abbreviations, Acronyms and Definitions . 2

2 Theory 3

2.1 Real Time Strategy Game . 3

2.2 Fog of War . 3

2.3 Line of Sight . 4

2.4 Game Engine . 4

2.5 Digital Differential Analyzer . 6

2.6 Bresenham’s Line Algorithm . 7

2.7 Spatial Indexing . 8

2.8 Burst Compiler . 9

3 Choice of Technology and Methods 10

3.1 Game Engine and Programming Language . 10

3.2 Development Process . 10

3.3 Calculation of the Vision . 10

3.4 Drawing Lines . 11

iv

3.5 Iteration over Units and Cells . 12

3.6 Parallelization . 12

4 Results 13

4.1 Scientific . 13

4.2 Engineering . 17

4.2.1 Crucial functional properties . 17

4.2.2 Optional functional properties . 18

4.3 Administrative . 18

4.3.1 Project Plan . 18

4.3.2 Time Management . 19

5 Discussion 19

5.1 Scientific . 19

5.2 Engineering . 21

5.3 Administrative . 21

5.4 Own Effort and Learning . 22

5.5 Ethics . 22

6 Conclusion and Future Work 23

6.1 Conclusion . 23

6.2 Future Work . 23

6.3 Acknowledgements . 23

Bibliography 24

Appendix 27

A Original Task Description . 27

B Requirements Document . 29

C System Documentation . 34

D Vision Document . 40

v

E Project Plan . 50

F Timesheet . 55

List of Figures

1 An RTS: StarCraft 2 . 3

2 Line of Sight in StarCraft 2 . 5

3 Range of all possible game engines . 5

4 Digital Differential Analyzer Line Algorithm pseudocode 6

5 Bresenham’s Line Algorithm plot . 7

6 Bresenham’s Line Algorithm pseudocode . 8

7 Fixed grid index method spatial indexing . 9

8 Burst Compiler example . 10

9 Solution Architecture . 13

10 Unit vision edge cells algorithm pseudocode . 14

11 Solution DDA algorithm pseudocode . 16

12 Image of the solution’s vision plane . 17

13 MBR Spatial Indexing pseudocode . 18

14 Image of the solution’s performance . 18

15 Project Plan Gantt Chart . 19

List of Tables

1 The Report Structure . 2

2 Abbreviations, Acronyms and Definitions . 2

3 Required functional properties of the solution 17

4 Optional functional properties of the solution 18

5 Time management . 19

vi

1 Introduction

1.1 Background

Pineleaf Studio is currently developing the real time strategy (RTS) game DwarfHeim. An im-
portant feature for both gameplay and aesthetics in the game is the Fog of War (FOW), the area
of the map the player cannot see. The developers had implemented a simple circle-based FOW,
but as release was nearing they wanted to upgrade it to a more sophisticated solution with Line of
Sight (LOS). This would enhance both the visual experience and expand the gameplay options for
players of the game.

While many previous RTS games have employed this technique, the methodology behind its im-
plementation is very much a trade secret. Anecdotes from developers and some open source
projects exist, but step-by-step guides or articles on the subject are not available. The methods to
make it does exist however, so that will be the task of this thesis. Hopefully, when this report is
done, it may act as an entry point into the field of Fog of War in game development.

This thesis is written by a single student for his bachelor’s degree in Software Engineering at
NTNU, the Norwegian University of Science and Technology, during the first semester of 2020.

1.2 Research Problem

The main problem to solve in this project is to implement a LOS based FOW and document how
this is done. Additionally, there are many areas one could focus at during the development of such
a solution. There is fog aesthetics or how it affects gameplay, both valid focus points. However,
the most basic requirement for any solution to this task is that it runs well on targeted consumer
hardware. As such, the solution itself must have negligible impact on game performance. It is this
basic requirement which is the secondary focus of the thesis, as formulated below.

“How can a Line of Sight based Fog of War solution for a Real Time Strategy game that
maintains desired game performance be implemented in Unity?”

This research problem consists of two parts. Firstly implementing a line of sight based fog of
war, and then also optimizing it so it maintains desired game performance. These two parts are
undoubtedly connected however, as specific implementations may lead to better performance.

1.3 Report Structure

This report is structured after NTNU TDAT3001’s Bachelor’s Thesis main report template, last
updated 05.12.2018.

As seen in the project contents, the report is broken into six main parts. These can be seen in Table
1.

1

Introduction Introduces the project, its background, prob-
lem and report structure.

Theory Details the theory behind the project.
Choice of Technology and Methods Explains what choices were made and why in

relation to technology and methods used in
the project.

Results The scientific, engineering and administrative
results of project.

Discussion A discussion based on the results in relation
to the research problem, requirements and
choices made during the project’s course.

Conclusion and Future Work Conclusions drawn on the research problem
and the project’s requirements based on the
discussion and results. Includes recommen-
dations for future work.

Table 1: The Report Structure.

1.4 Abbreviations, Acronyms and Definitions

Abbreviation, Acronym or Definition Description
FOW Fog of War
DDA Digital Differential Analyzer
LOS Line of Sight
RTS Real Time Strategy
Cell or Tile The smallest discrete portion of the game

world. Usually square- or hexagon-shaped [2,
p. 280].

World The total area in which the game takes place.
Internally it is usually represented by a 2D ar-
ray of cells. Also called a map [2, p. 280].

Player A human or computer individual who controls
a set of units [2, p. 280].

Unit A game object controlled or owned by a
player. Can be movable or immovable [2,
p. 280].

Table 2: Abbreviations, Acronyms and Definitions.

2

2 Theory

2.1 Real Time Strategy Game

Real-time strategy games (RTS) is one of two subgenres of strategy games, the other being turn-
based strategy games. Moss defines RTS as a game genre that involves base building and/or man-
agement, resource gathering, unit production and semi-autonomous combat. All this conducted in
real time, with the game’s goal being gaining or maintaining control of strategic points of the map,
such as resources or command centers [3].

Some view RTS games as simplified military simulations, as by Buro in his 2003 poster. The
struggle for resources between players, building and maintaining an economy, raising and control-
ling armies and waging war against opponents in real time is reflected in real militaries and war
[4].

Incidentally, Buro calls for AI research into RTS. Today, RTS games have become a fertile ground
for AI and machine learning research [5]. Popular games like StarCraft 2 have garnered much
attention in the field recently [6][7].

Figure 1: Media from the popular RTS ”StarCraft 2” by Blizzard Entertainment [8].

2.2 Fog of War

Fog of War (FOW) is a game mechanic usually featured in RTS games where specific and dynamic
game space information, like enemy units’ positions and actions, is hidden when the player has no
units of their own in range. In other words, the player can only see parts of the game space where
they have friendly units. This is called the player’s vision [9].

3

“War is the realm of uncertainty; three quarters of the factors on
which action in war is based are wrapped in a fog of greater or lesser
uncertainty.”
-On War, Carl von Clausewitz [10, p. 101].

The term “Fog of War” has its roots in the military book On War by Carl von Clausewitz, written
in 1832. In it he describes among other things the unreliability of information, and the importance
of intelligence in war. While the true meaning behind his words and arguments are debated till this
day, it works well in this context [11]. It is important to note that term “fog” is used as a metaphor
for the hidden and uncertain in war.

This all parallels to RTS games in general being viewed by some as military simulations. In that
case, the FOW is a part of the simulation, an attribute of real war transferred to the game. It is
transferred in a literal sense, as the fog that envelops what the player cannot see, as well as in a
broader sense of information deprivation.

A related game mechanic to FOW is mirages. Mirages are static ghostly representations of enemy
units appearing inside the FOW. They represent enemy units as they were the last time they were
seen. In some implementations, these mirages remove themselves when their corresponding unit
reappear for the player [2, p. 286].

2.3 Line of Sight

Line of Sight (LOS) is the physical phenomena of having a direct and open line from a viewport,
like an eye or camera, to a given object. LOS between the viewport and any given object may be
blocked by the environment. In a broader sense, LOS is all that is viewable from the viewport [12,
Chapter 2].

Many genres of games adopt this logic as a game mechanic, also RTS games. In RTS games it is
generally implemented as a viewable area around the player’s units with a given radius, which then
may be blocked by terrain and other structures in the game. This is implemented in coordination
with the FOW [2, p. 280].

2.4 Game Engine

A game engine is not clearly defined concept, argues Gregory, but rather a blurry line between
the game itself and its core software components. He thinks all imaginable game engines falls
somewhere on the range between a game engine that can make any game and a game engine that
can only make one game. This is visualised in Figure 3 [13, Chapter 1.3].

Gregory argues that data-driven architecture is the real difference between a game and a game
engine. A game has specific and hard-coded data, that is to say models, images, logic or game
rules. On the other hand, a game engine is meant to be used as a foundation for many different
games without extensive modification and as such contains tools and components that can be used
and configured to each game’s needs [13, Chapter 1.3].

4

Figure 2: Fog of War with Line of Sight as seen in ”StarCraft 2” [8].

Figure 3: A range of all possible game engines [13, Chapter 1.3].

Inherent to this range of game engine possibilities there is a trade-off. A game engine tailored
to make a given genre of games, will invariably be less suited to making other genres of games
in. It is certainly not impossible, but it is not optimal. With different genres of games having
many different needs in terms of components and mechanics, there is a clear trade-off for general
purpose game engines. The more general purpose a game engine is, the less optimal it is for
making and running a particular game on a particular platform [13, Chapter 1.3].

Most modern game engines are somewhat genre specific. A fighting game will have different
needs than a massively multiplayer online role-playing game (MMORPG), and as such their game
engines will be very different. Even so, there are common denominators between most game
engines. All games, regardless of genre, require for example some form of user input, graphics
rendering, heads-up display (HUD) and GUI with text, and an audio system [13, Chapter 1.3].

In addition, some modern game engines feature a physics system. A physics system allows the
game to simulate physics, or more accurately rigid body dynamics, during gameplay. Collisions
detection, forces and torques are some usual features included in a physics system [13, Chap-
ter 1.3].

5

2.5 Digital Differential Analyzer

The digital differential analyzer algorithm, DDA for short, is the simplest line drawing algorithm
available. It has its roots back to analogue computers called Differential Analyzers, which aimed
at solving the differential equation y′ = m [14, p. 196].

DDA calculates pixel positions along a given line by using the equation y = mx+b for a straight
line. m is the slope and b is the y-axis intercept [15]. In computer graphics, this line may be given
as a vector with start and end points. That is where the DDA algorithm comes in to convert the
vector to a raster (called rasterization) [16, p. 232]. A raster is a grid of dots that form an image,
which can be stored in a bitmap or displayed as pixels [17]. Using the algorithm, we can draw a
raster line between the start and end points.

Figure 4 shows pseudocode of the DDA algorithm, based on an example by McKinney [15].
Example has been modified to resemble more modern programming. In the original sample
“trunc(x)” was used to truncate the values to integers, but that has been replaced with truncat-
ing them by casting to int. Both achieves the same purpose, which is removing the fractional part
of the value.

DDA (x1, y1, x2, y2)

int length

float x, y, xincrement, yincrement

length = abs(x2-x1)

if (abs(y2-y1) > length)

length = abs(y2-y1)

xincrement = (x2 - x1) / length

yincrement = (y2 - y1) / length

x = x1 + 0.5

y = y1 + 0.5

for (int i = 0; i < length; i++)

PutPixel ((int) x, (int) y)

x = x + xincrement

y = y + yincrement

PutPixel(x2, y2)

Figure 4: Digital Differential Analyzer Line Algorithm pseudocode.

It is clear there are two cases the program in Figure 4 can take. If the value of the slope is less than
1, it will increment the x value by 1 and the y value by the slope. If the value of the slope is more
than 1, it will increment the y value by 1 and the x value by the reciprocal of the slope. The pixel
is then selected by adding 0.5 to the values and casting them to int, which in essence is the same
as rounding to the closest integers [15].

Notice also that the algorithm uses floating-point calculations, absolutes and divisions which slows
down the algorithm. This makes it unsuitable for certain uses, like for computer graphics devices,
where there are thousands of lines that needs to be drawn every frame. However slow it is, it is

6

simple and accurate, selecting the pixel that is closest to the actual line [15].

2.6 Bresenham’s Line Algorithm

Bresenham’s Line Algorithm is one of the earliest algorithms used in computer graphics. First
written about by J. E. Bresenham in 1965, this algorithm circumvents the slowness of the DDA by
requiring no division and no floating point calculation [18]. Only employing integer values and
multiplication with 2, which can be done by left shifting the value [19].

Figure 5: Bresenham’s algorithm plotted explaining the values. y is the line, e is the error and m
is the slope [19].

It works by using an value e to control plotting, where e is the error between the real line y value
and the selected y value, as seen in Figure 5. This means the real y value is y = y+ e, and e will
range from −0.5 to just under +0.5. When incrementing x to x+ 1, the real y will increase by
the slope m to y = y+ e+m. We decide whether to plot (x+ 1,y) or (x+ 1,y+ 1) by looking at
difference between the new real y and y. If y+ e+m < y+0.5, we plot (x+1,y). Otherwise we
plot the other. Then we update the error accordingly, which will rise with m to e = e+m. If we
plot (x+1,y+1), the error will actually be e = e+m−1 to account for the increment in y. These
values can be seen in Figure 5 [19].

1) y+ e+m < y+0.5

2) e = e+m

3) e = e+m−1

Notice that this method still uses floating point values in the plotting test. To solve this, Bresenham
removes y and multiplies both sides of the test by ∆x and then by 2. Note that the slope m can be
written as m = ∆y/∆x [19].

1) y+ e+m < y+0.5

1) e+m < 0.5

7

1) e+∆y/∆x < 0.5

1) e∆x+∆y < 0.5∆x

1) 2e∆x+2∆y < ∆x

He then substitutes a new error value e′ for e∆x. The test then becomes 2(e′+∆y) < ∆x, which
is integer-only. The new error e′ will update based on x, so to find the new e′ update rules he just
multiplies them with ∆x. Note also here that m can be written as m = ∆y/∆x [19].

2) e = e+m

2) e∆x = e∆x+m∆x

3) e∆x = e∆x+m∆x−∆x

May be written as:

2) e∆x = e∆x+∆y

3) e∆x = e∆x+∆y−∆x

In e′ form:

2) e′ = e′+∆y

3) e′ = e′+∆y−∆x

With that Bresenham’s algorithm is complete. See pseudocode in Figure 6 based on example by
Flanagan. This example only applies to slope value of 0≤ m≤ 1 [19].

Bresenham (x1, y1, x2, y2)

dx = x2 - x1

dy = y2 - y1

e = 0

y = y1

for (x = x1; x < x2; x++)

PutPixel (x, y)

if (2(e + dy) < dx)

e = e + dy

else

y = y + 1

e = e + dy - dx

Figure 6: Bresenham’s Line Algorithm pseudocode.

2.7 Spatial Indexing

Spatial indexing is the technique of accessing spatial data efficiently using a data structure called
spatial index. This is in contrast to a sequential scan of the data, where worst case scenario is that

8

you have to check every data point. Using a spatial index, one may look for relevant information
within an area of interest, filtering out all redundant, outside data. Spatial data or spatial objects
are multidimensional data such as points in space, lines, polygons or circles, most notably used
within the field of Geographic Information Science [20].

An important concept in spatial data is the Minimum Bounding Rectangle (MBR). In a 2D space,
MBR is defined by two points (xmin,ymin) and (xmax,ymax) that envelop the data. When per-
forming an operation, we first use the MBR and filter everything outside it out. This way the
search area is reduced and operation speed increased. More complex methods for spatial indexing
do exist, such as Fixed grid index, R-tree, Quadtree, KD-Tree and Geohash, but they all use MBR
in one capacity or another [20].

Fixed grid index is one simple and common method that partitions the space into a 2D grid with
equal cell size. This is stored in an array where each index is associated with a list of spatial
objects that intersect or overlap a particular cell. The MBR is in this case used to determine which
cells an object overlaps or intersects [20].

Figure 7: Example of fixed grid index method in use [20].

2.8 Burst Compiler

The Burst Compiler, hereby Burst, is a technology developed by Unity for their game engine.
It takes Unity jobs, structs of a set interface created with multithreading in mind, as input and
generates highly optimized native code from Intermediate Language (IL) / .NET bytecode. It
optimizes the code for the targeted platform automatically. To use Burst, one only needs to add
the attribute ”[BurstCompile]” to the job, as seen in Figure 8. This way, developers can efficiently
create high-performance C# code [21].

Using Burst comes with some constraints however. It only supports primitive types such as bool,
byte, short, int etc. Most notably it does not support strings or regular arrays, though arrays can be
used with the native container NativeArray < T >. Burst does allows its own specialized vector

9

types however, such as float2 and float3, which holds 2 and 3 floating-point values respectively
[21].

[BurstCompile]

public struct MyJob : IJob

{

public void Execute()

{

//Behaviour here

}

}

Figure 8: Example of how the Burst Compiler is enabled.

3 Choice of Technology and Methods

3.1 Game Engine and Programming Language

As the FOW solution is to be integrated into an already existing game, which is currently under
development, there was no room for negotiation on game engine and programming language.
The solution was to be made in the version Unity used by the employer, version 2019.3.0f3, and
scripted using C#. This was neither a surprise nor inconvenient. I had ample experience in both
and was ready to tackle new problems using them.

3.2 Development Process

The development process was influenced by the development process of DwarfHeim. Weekly
standup meetings with the DwarfHeim team were had where progress and plans were laid out
briefly. The development process was also inherently iterative. This is because Unity features
a “play” option, which swiftly and easily lets the developer test play the game. This feature,
alongside writing to the console, was used extensively to ensure the quality and functionality of
the solution as it was developed.

3.3 Calculation of the Vision

When creating a FOW it is noteworthy that the visual fog itself is the inverse of what the player can
see, it is the inverse of a player’s vision. That vision is gained from the player’s units. Therefore,
a clever method of creating the FOW is by calculating its inverse, the player’s vision.

There is also the possibility of creating the FOW directly, by iterating over all the cells that make
up the world grid, and for each cell checking if one or more units’ view distance overlap with the
cell. To check for units efficiently, one could use spatial indexing. The problem with this solution
is that it does not lend itself to LOS very well. You would have to draw a line between the units
and the cell until at least one has a direct path and has vision to the cell. If there are several units

10

in range, but none have vision due to walls or other obstructions, another issue arises. The cell
will draw a line for each unit in range every update, even if it is behind some obstacle. However,
this solution does have the advantage that if multiple units see the same cell, which is common in
RTS games, as you only need one of the units to draw the line from them to the cell for it to light
up, which pulls down the average operation time.

Another issue with this solution is how to skip inactive units. A common occurrence during
gameplay is that only a few units have moved during a given time frame. The FOW needs to be
updated to account for that, but the impact of several units will be unchanged. This could possibly
be solved by having the cells know which units have vision to them, and having the units know
which cells they have vision to. Then that knowledge can be reset upon unit movement. When
iterating over the cells, each cell would first check their unit list. If it is not empty, this cell is
lit. If it is empty, search for nearby units as previously explained. In this case, the solution would
be better if all nearby units draws a line to the cell, even if another unit already has vision there.
However, this forgoes some of the advantages of the solution to begin with.

For this project, the FOW is not created directly. As hinted in the first paragraph, the solution is
based around calculating each unit’s vision separately. This is done by first calculating the edge
cells of a unit’s vision and then drawing lines from that unit’s starting cell to its edges. The line
stops if any obstacles are encountered. Once calculated, the unit knows which cells it has vision
to, and it only has to recalculate if it moves. All the units’ visions are then totalled and the FOW
is set accordingly.

Lastly, I just want to acknowledge that there is another method to create LOS based FOW. This is
done by raycasting to the corner endpoints of obstacle polygons. This method was not explored
during this project, but it may be the most prevalent one [22].

3.4 Drawing Lines

The way to simulate LOS used in this project is by drawing lines between the unit’s start cell and
the target edge cell. One of the easiest ways to do this is by employing raycasting. Firstly, cast
an amount of rays in all directions with length equal to the unit’s view distance, and each ray will
return its hits in order. Then iterate through the hits from start to finish and stop if an obstacle is
found. While this solution is simple, it is very performance heavy. Raycasting in itself may be an
optimized operation, but it does not scale well with the amount of units present. Each unit needs
to cast an amount of rays to cover their vision every time they move. In addition, each cell must
have a physical presence with a collider to be able to be hit by the ray. Raycasting also has another
major flaw. As each ray travel from the unit, there will be an increasing distance between a ray
and its neighbour rays. If this distance becomes too large, the rays may miss cells which should
be in the unit’s vision. This will be a problem with larger view distances, but can be offset by
casting even more tightly packed rays. This would unfortunately increase the performance load.
Therefore, it was decided that raycasting was not a good solution.

However, there are others way of finding out which cells a unit sees, namely drawing lines to their
vision’s edges using mathematical algorithms. As depicted in the report’s theory, there are, among
others, two simple algorithms for drawing raster lines: DDA and Bresenham. Note that there

11

are more modern line drawing algorithms which are far more popular than these two, like Wu’s
line algorithm which features antialiasing [23]. Antialiasing is, in short, the smoothing of jagged
features caused by discrete sampling [24]. For this project, however, only DDA and Bresenham
were considered. Of those, DDA was chosen, despite its use of floating point calculation and
division. This was mainly because it was easier to implement, but also because in this use case
the difference in performance impact is negligible. In a computer graphics device you would
choose Bresenham over DDA because of its inherent speed, but also because integer-only math is
easier to implement on an minuscule level. For high level usage like this, however, the impact was
considered to be insignificant. This is especially true when using the Burst Compiler. It would
drastically increase the performance of the line drawing algorithm to the point where optimizing
the algorithm itself would only give minor results.

3.5 Iteration over Units and Cells

An issue encountered when developing the solution is how to effectively iterate over units and
cells. When you have hundreds of units, it is best if you can narrow down which units that needs to
be updated at any given time. If a unit on one side of the map moves, the FOW on the other side of
the map does not need to be updated. Only the FOW within the MBR of the unit’s current position
and previous position needs to be updated. In the solution, spatial indexing is employed for that
very reason. Limiting the amount of units and cells that needs to be iterated over undeniably leads
to better performance in general.

3.6 Parallelization

When optimizing code, one common way to increase performance is to utilize parallelization, that
is running the code on several threads and taking advantage of multiple CPU cores. In C# this can
be done in a few ways. C# supports creating threads directly from classes’ static methods using
their System.Threading package [25]. However, this method was not explored during this project,
but is possibly the most common way to implement parallelization with C#.

Another way to implement parallelization in C# is through the use of Parallel.For and Paral-
lel.ForEach methods, available from the System.Threading.Tasks package. It allows the developer
to quickly parallelize a for- or foreach-loop, assuming the loop does not need to break or get can-
celed, and that each iteration of the loop is independent from other iterations [26] [27]. In the
project, both Parallel.For and Parallel.ForEach was experimented with, and in the final solution
several Parallel.ForEach are used. It is a simple and effective way to iterate through an array or
list.

Finally, Unity has created its own packages for parallelization. One of their key components is
the Jobs system. When using Unity Jobs you can use the interface IJobParallelFor, which is a
parallelized for-loop, similar to the Parallel.For. The advantage this has, compared to the latter, is
that by using a Unity Job, you also get access to the Burst Compiler [28].

12

4 Results

4.1 Scientific

The solution that has been created is a LOS based FOW for an RTS game, which is able to run
with relatively little impact on game performance. The solution’s overarching structure can be
seen in Figure 9.

Figure 9: The overarching architecture of the solution, as seen in Appendix C.

The FOW is created through a series of steps. When a unit spawns or moves, it will send an update
request to a central FOW manager, which adds the unit to its unit update list. This manager updates
the FOW on a given, configurable timer, as long as it has gotten a request to update. This timer
limits the amount of FOW updates that are done per second, and it also serves to batch together
several units’ update requests. The manager then aims to do two things: Set a Color32 array,
which represents the inverse of the FOW, with the appropriate colors and then create a texture
from that array to apply to a plane which overlaps the game area. This plane is invisible to the
player however, but is used to mask another plane, using a specialized shader, which is the actual
visible FOW.

Setting the Color32 array is where most of the heavy lifting is done. To do this, the FOW manager
needs a list of indexes corresponding to the units’ totalled vision. This is, as mentioned before,
done by calculating each unit’s vision. Each unit type has a corresponding archetype (also called
template) of how their vision is calculated, each with their own view distance and a maximum
amount of resources or walls their vision can penetrate. The manager groups the units in its unit
update list into these archetypes. Then each archetype runs a Unity parallel for job to calculate
their vision, where each index is a separate unit of that archetype. Each unit’s vision is calculated
by using the archetype’s edge deltas, the edge of the vision in relation to the unit, and using DDA to
draw a line to each edge from the unit’s starting point. The edge deltas are calculated on archetype
creation and are found using a simple algorithm using pythagoras on one octant and then x and y
values are shifted around for the other 7 octants. See pseudocode in Figure 10. It is also worth
noting here that while this algorithm was ”invented”, so to speak, for the project, there are other
algorithms that do this too. One of those is Brasenham’s own circle drawing algorithm, which
works in a similar way [29]. It is also possible to hardcode these edge deltas into the program per
view distance, but that was not done in this project.

13

StaticXY (viewDistance, tolerance)

int[] edgeArrayX, edgeArrayY

float viewDistSq = (viewDistance + tolerance) *

(viewDistance + tolerance)

int dy = viewDistance

int dx, index

//find up->right oct

while (dy >= dx)

if (dx*dx + dy*dy <= viewDistSq) //Pythagoras

edgeArrayX[index] = dx

edgeArrayY[index] = dy

dx++

index++

else

dy--

int octantLen = index

int[] newEdgeArrayX = new int[octantLen * 8]

int[] newEdgeArrayY = new int[octantLen * 8]

for (int i = 0; i < octantLen; i++)

newEdgeArrayX[i] = edgeArrayX[i]

newEdgeArrayY[i] = edgeArrayY[i]

//right->up oct with x&y shifting

for (int i = 0; i < octantLen; i++)

dx = newEdgeArrayX[i]

dy = newEdgeArrayY[i]

newEdgeArrayX[index] = dy

newEdgeArrayY[index] = dx

index++

/* Similarly for other octants (not shown)

* All octants values are:

* (nx, ny = new values, x, y = original)

* up->right: (x,y)

* right->up: nx = y, ny = x

* up->left: nx = -x, ny = y

* left->up: nx = -y, ny = x

* left->down: nx = -y, ny = -x

* right->down:nx = y, ny = -x

* down->left: nx = -x, ny = -y

* down->right:nx = x, ny = -y

*/

return newEdgeArrayX, newEdgeArrayY

Figure 10: Pseudocode to calculate the edge cells of a unit’s vision.

14

To ensure that there are no missed cells within the units vision, the DDA algorithm is not only
performed on the outermost layer of cells, but also the next outermost too. This is done by decre-
menting the edge coordinate and running another DDA on that. The decrementing works by
decrementing either x or y depending on whether dx or dy is bigger respectively. This makes it so
the coordinate is decremented the way that takes it the closest to the start point. The line stops if
it hits a wall or resource and the maximum amount of wall/resource penetration is reached. See
Figure 11 for pseudocode of the full DDA algorithm used.

With the results back, the manager then sets the vision of each unit in the update list to the newly
calculated ones. At the same time, units save their previous vision. Then all the units in the update
list, and units whom vision intercepts or overlaps the same spatial squares as the units in the update
list, are added to a new list which will be used to set the Color32 array. For each unit in this new
list, the Color32 array is set to black for each index in their previous vision. After this reset stage,
the Color32 array is set to white for each index in the units’ new vision.

Finally a square texture is created with the world height and width, and its pixels are set with the
Color32 array. The texture is then applied to the plane overlapping the game area, but invisible to
the player. See Figure 12. This plane is black and white, and is used to mask another plane, using
a shader and a Unity camera, which is the actual visual representation of the FOW.

In the solution, spatial indexing is employed to optimize iteration over a large number of units and
cells. There are two main methods used for this. The first one is to limit which units need to be
taken into account when updating the FOW. This is done by overlaying the world with a grid of
square Unity colliders and attaching a sphere collider, with radius equal to the view distance, to
each unit. These colliders are put in the same physics layer, which can only interact with itself.
Then, when a unit is within range of a given square, their colliders will collide and pick up the
collision event. It is through this event that the squares add the collided unit in their unit list, and
the unit adds the square to their squares list. Then, when spatial indexing, each square in every
unit that needs to update their FOW is accessed and all units within those squares are used when
updating the FOW. This ensures that the FOW is only updated within a square of influence around
the unit whom needs updates. This is an example of using the fixed grid index method.

The second way is to limit the amount of array indexing when we only need to index around a given
location. This is, among others, used when copying wall/resource placements into a NativeArray
for the Unity parallel for job. To minimize indexing, we create an MBR around the unit given its
view distance and start index in the array. From the start index we can create start x- and y-values
for the unit in the grid the array represents. Then, by using the start values, we can determine
minimum and maximum x- and y-values given the unit’s view distance. These form the MBR,
which is subsequently used to restrict the copy area as seen in Figure 13.

The solution’s performance is measured in the Unity Profiler, as written about in Appendix C. In
the example given in Figure 14, a worst-case scenario test is performed which can be seen as the
middle part where the average frames-per-second (fps) is between 100 and 60. Given that the fps
is close to 150 when the game is running without any FOW updates, it means that in the worst
case scenario the solution results in a ca. 100 fps drop.

15

FullDDA (x0, y0, dx, dy, indexArray)

int x1 = x0 + dx //Precalculated edge deltas

int y1 = y0 + dy

int seenThroughCount

float x = x0

float y = y0

if (dx == 0) //straight up or down

while (y != y1)

y += Sign(dy)

int newIndex = MakeIndex

indexArray[newIndex] = 1

if (!ContinueLine(newIndex, ref seenThroughCount))

break

else

float a = 0

if(dx != 0)

a = Abs(dy/dx)

if (a > 1) //steep slope

float rev = 1 / a

while (y != y1)

x += rev * Sign(dx)

y += Sign(dy)

int newIndex = MakeIndex

indexArray[newIndex] = 1

if (!ContinueLine(newIndex, ref seenThroughCount))

break

else //a<=1, slow slope

while (x != x1)

x += Sign(dx)

y += a * Sign(dy)

int newIndex = MakeIndex

indexArray[newIndex] = 1

if (!ContinueLine(newIndex, ref seenThroughCount))

break

//Notes:

//seenThroughCount is a reference value.

//ContinueLine method checks if the line should continue

//based on if it hits an obstacle and the

//seenThroughCount versus a maximum.

//It increments seenThroughCount if it is lower than

//maximum.

//Sign(value) gives 1 or -1 based on whether or not the

//value is positive or negative.

//Abs(value) gives the absolute of the value.

Figure 11: Pseudocode which details the algorithm of DDA used in the final solution.

16

Figure 12: An image of the solution’s vision plane, which would be invisible to the player. It
shows how a unit’s vision interacts with the environment with Line of Sight.

4.2 Engineering

In the Vision Document, Appendix D, required and optional functional properties of the solution
is listed under 5.1 and 5.2. Also note these are directly linked to the user stories in Appendix B,
the Requirements Document.

4.2.1 Crucial functional properties

Property Status in solution
Lighting up area around friendly units This works as intended.
Blocking view through terrain Vision or view is blocked by terrain in the so-

lution. This works well.
Blocking view through buildings This works well too and is incorporated into

the same system as the previous point.
Only being able to see X cells into the rocks
in the mine

This is in and implemented by counting up to-
wards a maximum limit each time the algo-
rithm hits a resource/wall.

Performance The solution’s performance is good enough
on its own when tested in worst case scenar-
ios.

Table 3: Required functional properties of the solution.

17

SpatialIndex (startIndex, viewDistance, worldWidth)

int x0 = startIndex % worldWidth

int y0 = startIndex / worldWidth

int minX = x0 - viewDistance

int minY = y0 - viewDistance

int maxX = x0 + viewDistance

int maxY = y0 + viewDistance

for (int x1 = minX; x1 < maxX; x1++)

for (int y1 = minY; y1 < maxY; y1++)

int index = y1 * worldWidth + x1

CopyValue(index)

Figure 13: Pseudocode of the Spatial Indexing method MRB as used in the solution when copying
spatial data.

Figure 14: An example of the performance as viewed in the Unity Profiler.

4.2.2 Optional functional properties

Property Status in solution
Grayscale of static objects map Not implemented.
Grayscale of explored map Not implemented, but the way the Color32

FOW array is set could be used to implement
this.

Height based Line of Sight Not implemented.
High ground sight Not implemented.
Delayed vision loss Not implemented.

Table 4: Optional functional properties of the solution.

4.3 Administrative

4.3.1 Project Plan

The project followed its plan in general, with only a handful changes. The requirements document
was finished a week early, leaving more time for the logic development. However, the most major
deviation from the plan was the almost complete lack of visual development, which gave room
to more logic development and documentation writing. The system document was also written
a week early, which in turn gave more time for the main report. This can be seen visualised in
Figure 15.

18

Figure 15: Gantt chart like the one in Appendix E, Project Plan. Blue is where the original plan
and the actual execution lines up, red is the deviation in the actual execution and gray is where the
plan was not executed. “Duration” and “Start” displays the planned duration of the activity and its
planned start date.

4.3.2 Time Management

In general, most of the project’s time was used on developing the solution and writing various
documentation, including the main report. It has also been invested a fair amount of time into
research of various relevant topics. See Appendix F, Timesheet for more thorough information on
time management during the project.

Activity Amount of time (hours)
Documentation 233,5
Programming 144,5
Research 58
Meetings 8
Emails 5,5
Other 10
Total 459,5

Table 5: Time used in the project.

5 Discussion

5.1 Scientific

The end product is a LOS based FOW with significant optimization, built primarily for the RTS
genre. Even if RTS is its birthplace, it should work well for any game that has a grid-based world.
The solution can be understood as an answer to the research problem, as a recipe for an optimized
LOS based FOW. While the solution is created specifically in Unity and taking advantage of

19

Unity’s packages and architecture, the overarching structure and how the units’ vision is calculated
remains universal.

Functionally, the solution works very well. It calculates each unit’s vision perfectly in regards
to their LOS and stitches all the visions together into the reverse of the FOW. The unit vision
algorithm, using DDA to draw lines to edge cells, has been tested to work on multiple different
view distances between 2 and 25. Multiple optimization methods are in use, including spatial
indexing, parallelization and Unity Burst. These serve to speed up the solution. The employer
was also impressed by the results, though there remains some work to incorporate it into the larger
game.

One of the choices made were to use DDA over Bresenham. This was, as said, due to DDA being
easier to implement at the time. However, Bresenham should theoretically have less impact on
performance. This might not be very much in modern computers, but it might make an impact
when you take into consideration the pure amount of line drawings necessary. Let us consider the
worst case scenarios the solution was tested in. Calculating the vision of 120 units, each with a
maximum view distance of 15. This means that the circumference of their vision is C = 2πr =
2 ∗π ∗ 15 = 94.25, that is to say a maximum of 95 cells. That means the line drawing algorithm
has to run a maximum of 95 ∗ 2 = 190 times per unit, as per edge cell the DDA algorithm is run
twice. Take that times 120 units is equal to a maximum of 22 800 times per update. This is a high
number of operations needed per FOW update, which is why using Bresenham over DDA might
give larger benefit than expected.

Still, that is not taking in to account that calculating the units’ visions is one of the least per-
formance heavy operations when creating the FOW. This is, for better and worse, due to the
implementation with Unity Jobs and the usage of the Burst Compiler. The Burst Compiler heavily
optimizes the parallelized job, which makes it insanely fast. This lessens the potential benefit of
implementing Bresenham over DDA in the first place.

The Unity Jobs and Burst implementation does have its drawbacks though. Unity Jobs are, in
general, very restrictive. This restrictiveness leads to a lot of overhead when copying lists and
arrays into NativeArrays and when untangling the results afterwards. However, the overhead
of copying is somewhat offset by spatial indexing the arrays based on unit start position and
view distance. In this case, the pros of parallelized jobs and Burst outweigh their drawbacks, but
being able to further diminish the drawbacks would certainly improve the performance. One way
to potentially save some overhead is by using NativeArrays consistently throughout the solution
instead of regular arrays, though that might backfire if NativeArray is generally slower than a
regular array.

Lastly, there is one method not explored in this project which might solve the performance prob-
lems of the final solution. That is the method of pre-baking the LOS. This is, similar to how the
unit edge cells deltas are handled, the idea of preemptively calculating the LOS once and storing
it. This could be done by hardcoding or calculating at game start each cell’s LOS for given view
distances. Then when a unit’s LOS needs to be updated, it just copies the LOS for the correct
cell it is in. This would eliminate the need to calculate the LOS using algorithms during runtime,
which would increase the solution’s performance. This method does have some drawbacks as well
though. It requires the game world to be known before loading, which means it would not work as

20

well for randomly generated worlds. However, one could do the calculations during the loading of
the world, assuming the world is not generated during runtime. In RTS games though, the world is
almost always made beforehand. Therefore, it would seem it could lend itself well for RTS games.
However, during runtime in most RTS games, resources are depleted and buildings raised. This
would change the LOS of nearby tiles. Which means a solution would have to recalculate nearby
tile’s LOS during runtime, which reduces some of the initial advantages of the method.

5.2 Engineering

In terms of the requirements, all the crucial requirements were filled. The only point that might
need reevaluation is the performance. While the solution performs well in worst-case scenarios,
that is only on its own. The solution has not been tested in tandem with the larger game during
a game match. There is the possibility that during gameplay the performance of the larger game
itself is worse, which in turn would mean that adding the new FOW solution could be detrimental
to the game’s performance and framerate. Even so, during normal gameplay, it is unlikely that
120 units needs their vision updated at once. Good documentation of the testing and performance
could also be a point of contention, as that is not available for this project.

None of the optional requirements were added, though the solution has revealed a way the “Grayscale
of explored map” could be implemented. When setting the units’ vision plane, white is their vision
and black is the FOW. Incidentally though, the plane starts out as transparent. Which means that
since the plane is set black only after a unit has already been there, the black areas act as the “ex-
pored, but not currently visible” map. Using this trio of colors, transparent as unexplored, black
as explored, but not visible and white as visible, it should be possible to implement a grayscale of
the explored areas that are currently not in your units’ vision. Which colors are in use is arbitrary,
as long as it is 3 separate ones.

In Appendix B, Requirements document, one user story mentions a “wiki”. Internally, the em-
ployer uses wikis to document certain classes and directories. The idea was that as part of the
project, such a wiki was to be made so that developers could familiarise themselves with the code.
However, the wiki was not written in favour of Appendix C, System Documentation. It does much
the same, including detailed architecture, class descriptions and API.

5.3 Administrative

The development process itself was not very set in stone. It was a free flowing approach to devel-
oping a solution, with both positives and negatives. In the end it worked mainly because the team
consisted of one person, which could have a plan and tasks assigned without physically writing
them down anywhere. This gave way to rapid development and innovation though. The solution
was iterated on constantly and new technologies implemented. However, this has a major draw-
back as well. Documenting such a development process is next to impossible. In addition, there
are no documented test results either. Being able to document the development process and test
results is part for the course of any report. With this in mind I would suggest putting more effort
into planning how to do this early on in any similar projects.

21

Even with a free flowing process, there was an overarching plan. Though there were a few points
where the project deviated from this plan. This was mainly the drastic shortening of the visual
development, and subsequent extension of logical development and main report writing. This was
due to being able to use parts of the employer’s previous implementation of the FOW for this
purpose. The employer’s previous solution was a simple white circle around each unit, which,
by using a camera and a shader, masked a plane which was the actual FOW. By using the same
camera, shader and actual FOW plane, the only thing needed to do was setting a plane white
according to unit’s vision.

Lastly, there was fewer meetings and less general involvement than recommended with the su-
pervisor. Which means less feedback on various aspects of the project. This is partly due to the
situation that found place during most of the project, which would be hard not to mention, the
COVID-19 pandemic. While digital tools alleviated the impact of the social distancing, the in-
herent stress of the situation caused problems nonetheless. This was in no part helped by the fact
that the supervisor had a habit of not responding to emails, even repeated ones. This resulted in
general apathy from my side, preferring to just continue on with the project.

5.4 Own Effort and Learning

While COVID-19 was undoubtedly stressful, it did not affect my own effort too much. Digital
tools such as Git and Discord helped bridge the digital gap, but the main reason I remained unaf-
fected was due to the fact that the project was very self contained. This meant that working from
home posed little threat to the project’s course.

In addition, the project was quite interesting and educational to work on. I had no prior experience
with line algorithms, which I found out is a broad field. While I only focused on DDA and
Bresenham in this report, a few others were encountered as well. No doubt there are other, more
modern line algorithms in widespread use as well.

I also had to learn about various forms of optimizations that could be applied to the solution,
including spatial indexing, C# Parallel.ForEach, Unity Jobs and Burst Compiler. These were all
invaluable for the final solution and the experience gained will no doubt be of use in the future.

All in all the project has been a great experience. I will not hide that most of the effort, at least
in calendar time, went into developing a fit solution for the employer. As such, the surrounding
documentation may feel a little ad-hoc. Even so, I am overall happy with the project and the effort
I put into it.

5.5 Ethics

When working in any field you have to think about ethical concerns surrounding the project and its
execution. Usually in software development most ethical problems arise from handling sensitive
user data, which this project did not do. Even so, there are a few relevant ethical problems.

While the project would not include handling sensitive user data, it still entailed getting access

22

to the game’s source code and plans. This information is private however, which means it should
be handled with care. This was solved by the employer first issuing a Non-Disclosure Agreement
(NDA). This legally binding document prohibits the disclosure of said sensitive data. Even without
the document I would have handled the data with care and respect, but for the employer getting a
written agreement is no doubt reassuring.

COVID-19 also becomes relevant once again. During such a pandemic it is crucial to work in
a different manner than usual. It would not be ethical to work in an environment with multiple
people, due to the risks of getting sick and spreading the disease. Getting sick can lead to spreading
to strangers or loved ones. In severe cases, it might lead to one’s own premature death. Early on
it was therefore decided to work on the project from home. Not long after, the employer applied
this to all employees.

Lastly, when developing the solution, I have made an effort to design the solution in an non-
intrusive way. This means not editing their source code, but using it as expected when needed.
This was done by making the solution as modular and self-contained as possible. In the final
iteration it only depends on a few references from their source code.

6 Conclusion and Future Work

6.1 Conclusion

The final solution can be viewed as an answer to the research problem, as detailed in chapter 4.1.
In short, one way to implement an optimized LOS based FOW solution in Unity is to draw lines
using DDA between start and edge of vision cells on a per unit basis, then stitching the separate
units’ vision together, applying it as a black and white texture to a plane overlapping the game
area, which then masks another plane which visualizes the FOW. To optimize this, use a central
manager to batch together unit vision update on a timer, use spatial indexing to avoid unnecessary
indexing of various arrays and use parallelization in the form of Parallel.ForEach and Unity Jobs
with the Burst Compiler enabled.

6.2 Future Work

For future work, performance is what needs the most improvement. I imagine this could be im-
proved through implementing Bresenham’s line algorithm or perhaps structuring the whole im-
plementation in a new way, maybe through data oriented design or pre-baking the LOS. It would
also be interesting to implement LOS based FOW in other popular game engines, such as Unreal,
Gamemaker and Godot.

6.3 Acknowledgements

While the problem to solve for this project was to create a FOW, there are no images of a final
complete FOW. That is because, while this did work at a time, it encountered a shader error down

23

the line which I was unable to solve. This should be an easy fix for the employer though, who has
the required knowledge of this.

Bibliography

[1] Pineleaf Studio. DwarfHeim; 2020. [Online; accessed 13-May-2020]. Available from:
https://dwarfheim.com/.

[2] DeLoura MA. Game Programming Gems 2. Cengage Learning; 2001. [Online; accessed
13-May-2020]. Available from: https://books.google.no/books?id=1-NfBElV97IC.

[3] Moss R. Build, gather, brawl, repeat: The history of real-time
strategy games. Ars Technica. 2017;[Online; accessed 13-May-
2020]. Available from: https://arstechnica.com/gaming/2017/09/

build-gather-brawl-repeat-the-history-of-real-time-strategy-games/.

[4] Buro M. Real-Time Strategy Games: A New AI Research Challenge; 2020. [Online; ac-
cessed 13-May-2020]. Available from: https://pdfs.semanticscholar.org/2c32/

d813d58872c081a3ede56fe2439a2a30b793.pdf.

[5] Hsieh JL, Sun CT. Building a Player Strategy Model by Analyzing Replays of Real-
Time Strategy Games. Taiwan; 2008. [Online; accessed 13-May-2020]. Available
from: https://www.researchgate.net/profile/Ji-lung_Hsieh/publication/

221533756_Building_a_Player_Strategy_Model_by_Analyzing_Replays_of_

Real-Time_Strategy_Games/links/547342730cf2d67fc0360f1a.pdf.

[6] Micić A, Arnarsson D, Jónsson V. Developing Game AI for the Real-Time
Strategy Game Starcraft. Reykjavik University. Iceland; 2011. [Online; ac-
cessed 13-May-2020]. Available from: https://pdfs.semanticscholar.org/05f9/

07b964ea0fa4a3b12c411cd86d23da5d2b93.pdf.

[7] Peng P, Wen Y, Yang Y, Quan Y, Tang Z, Long H, et al.. Multiagent Bidirectionally-
Coordinated Nets. England; 2017. [Online; accessed 13-May-2020]. Available from:
https://arxiv.org/pdf/1703.10069.pdf.

[8] Blizzard Entertainment. StarCraft 2; 2020. [Online; accessed 13-May-2020]. Available from:
https://starcraft2.com/en-us/media.

[9] Dahlskog S, Kamstrup A, Aarseth E. Mapping the game landscape: Locating gen-
res using functional classification; 2009. [Online; accessed 13-May-2020]. Avail-
able from: https://www.researchgate.net/publication/236178139_Mapping_

the_game_landscape_Locating_genres_using_functional_classification.

[10] von Clausewitz C. On War. English ed. Princeton University Press; 1976. [On-
line; accessed 13-May-2020]. Available from: http://slantchev.ucsd.edu/courses/
ps143a/readings/Clausewitz%20-%20On%20War,%20Books%201%20and%208.pdf.

24

https://dwarfheim.com/
https://books.google.no/books?id=1-NfBElV97IC
https://arstechnica.com/gaming/2017/09/build-gather-brawl-repeat-the-history-of-real-time-strategy-games/
https://arstechnica.com/gaming/2017/09/build-gather-brawl-repeat-the-history-of-real-time-strategy-games/
https://pdfs.semanticscholar.org/2c32/d813d58872c081a3ede56fe2439a2a30b793.pdf
https://pdfs.semanticscholar.org/2c32/d813d58872c081a3ede56fe2439a2a30b793.pdf
https://www.researchgate.net/profile/Ji-lung_Hsieh/publication/221533756_Building_a_Player_Strategy_Model_by_Analyzing_Replays_of_Real-Time_Strategy_Games/links/547342730cf2d67fc0360f1a.pdf
https://www.researchgate.net/profile/Ji-lung_Hsieh/publication/221533756_Building_a_Player_Strategy_Model_by_Analyzing_Replays_of_Real-Time_Strategy_Games/links/547342730cf2d67fc0360f1a.pdf
https://www.researchgate.net/profile/Ji-lung_Hsieh/publication/221533756_Building_a_Player_Strategy_Model_by_Analyzing_Replays_of_Real-Time_Strategy_Games/links/547342730cf2d67fc0360f1a.pdf
https://pdfs.semanticscholar.org/05f9/07b964ea0fa4a3b12c411cd86d23da5d2b93.pdf
https://pdfs.semanticscholar.org/05f9/07b964ea0fa4a3b12c411cd86d23da5d2b93.pdf
https://arxiv.org/pdf/1703.10069.pdf
https://starcraft2.com/en-us/media
https://www.researchgate.net/publication/236178139_Mapping_the_game_landscape_Locating_genres_using_functional_classification
https://www.researchgate.net/publication/236178139_Mapping_the_game_landscape_Locating_genres_using_functional_classification
http://slantchev.ucsd.edu/courses/ps143a/readings/Clausewitz%20-%20On%20War,%20Books%201%20and%208.pdf
http://slantchev.ucsd.edu/courses/ps143a/readings/Clausewitz%20-%20On%20War,%20Books%201%20and%208.pdf

[11] Kiesling EC. On War Without the Fog. Military Review. 2001;[Online; accessed 13-May-
2020]. Available from: http://www.clausewitz.com/bibl/Kiesling-OnFog.pdf.

[12] Heinz T. Location-based Game Design Pattern Exploration Through Agent-Based
Simulation. Germany; 2017. [Online; accessed 13-May-2020]. Available
from: https://www.researchgate.net/publication/236178139_Mapping_the_

game_landscape_Locating_genres_using_functional_classification.

[13] Gregory J. Game Engine Architecture. 3rd ed. CRC Press; 2018. [Online; accessed 13-May-
2020]. Available from: https://books.google.no/books?id=EwlpDwAAQBAJ.

[14] Gomes J, Velho L, Sousa MC. Computer Graphics: Theory and Practice. CRC Press; 2012.
[Online; accessed 13-May-2020]. Available from: https://books.google.no/books?

id=ID1tP9DfKgEC.

[15] McKinney AL. Development of the bresenham line algorithm for a first course in computer
science. Consortium of Computer Sciences in Colleges. 1992;[Online; accessed 13-May-
2020]. Available from: http://www.ccscjournal.willmitchell.info/Vol8-92/

No4/Alfred%20L%20McKinney.pdf.

[16] Worboys MF. GIS: A Computer Science Perspective. CRC Press; 1995. [Online; accessed
13-May-2020]. Available from: https://books.google.no/books?id=duT2fcnQeJMC.

[17] Merriam-Webster. raster; 2020. [Online; accessed 13-May-2020]. Available from: https:
//www.merriam-webster.com/dictionary/raster.

[18] Bresenham JE. Algorithm for computer control of a digital plotter. IBM Sys-
tems Journal. 1965;4(1). [Online; accessed 13-May-2020]. Available from:
https://web.archive.org/web/20080528040104/http://www.research.ibm.

com/journal/sj/041/ibmsjIVRIC.pdf.

[19] Flanagan C. The Bresenham Line-Drawing Algorithm; 2020. Available from: https://

www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html".

[20] Zhang X, Du Z. Spatial Indexing; 2017. [Online; accessed 13-May-2020]. Available from:
https://gistbok.ucgis.org/bok-topics/spatial-indexing.

[21] Borufka R. Performance Testing Suite for Unity DOTS. Charles Univer-
sity. Czech Republic; 2020. [Online; accessed 13-May-2020]. Available from:
https://dspace.cuni.cz/bitstream/handle/20.500.11956/116800/120352992.

pdf?sequence=1&isAllowed=y.

[22] Ramaswamy S. Efficient Field of View and Line of Sight for strategy games.
Gamasutra. 2016;[Online; accessed 13-May-2020]. Available from: https:

//www.gamasutra.com/blogs/SundaramRamaswamy/20161117/285708/Efficient_

Field_of_View_and_Line_of_Sight_for_strategy_games.php.

[23] Wu X. An Efficient Antialiasing Technique. Computer Graphics. 1991;25(4). [Online;
accessed 13-May-2020]. Available from: https://dl.acm.org/doi/pdf/10.1145/

127719.122734.

25

http://www.clausewitz.com/bibl/Kiesling-OnFog.pdf
https://www.researchgate.net/publication/236178139_Mapping_the_game_landscape_Locating_genres_using_functional_classification
https://www.researchgate.net/publication/236178139_Mapping_the_game_landscape_Locating_genres_using_functional_classification
https://books.google.no/books?id=EwlpDwAAQBAJ
https://books.google.no/books?id=ID1tP9DfKgEC
https://books.google.no/books?id=ID1tP9DfKgEC
http://www.ccscjournal.willmitchell.info/Vol8-92/No4/Alfred%20L%20McKinney.pdf
http://www.ccscjournal.willmitchell.info/Vol8-92/No4/Alfred%20L%20McKinney.pdf
https://books.google.no/books?id=duT2fcnQeJMC
https://www.merriam-webster.com/dictionary/raster
https://www.merriam-webster.com/dictionary/raster
https://web.archive.org/web/20080528040104/http://www.research.ibm.com/journal/sj/041/ibmsjIVRIC.pdf
https://web.archive.org/web/20080528040104/http://www.research.ibm.com/journal/sj/041/ibmsjIVRIC.pdf
https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html"
https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html"
https://gistbok.ucgis.org/bok-topics/spatial-indexing
https://dspace.cuni.cz/bitstream/handle/20.500.11956/116800/120352992.pdf?sequence=1&isAllowed=y
https://dspace.cuni.cz/bitstream/handle/20.500.11956/116800/120352992.pdf?sequence=1&isAllowed=y
https://www.gamasutra.com/blogs/SundaramRamaswamy/20161117/285708/Efficient_Field_of_View_and_Line_of_Sight_for_strategy_games.php
https://www.gamasutra.com/blogs/SundaramRamaswamy/20161117/285708/Efficient_Field_of_View_and_Line_of_Sight_for_strategy_games.php
https://www.gamasutra.com/blogs/SundaramRamaswamy/20161117/285708/Efficient_Field_of_View_and_Line_of_Sight_for_strategy_games.php
https://dl.acm.org/doi/pdf/10.1145/127719.122734
https://dl.acm.org/doi/pdf/10.1145/127719.122734

[24] Leler WJ. Human Vision, Anti-aliasing, and the Cheap 4000 Line Display. Computer Graph-
ics. 1980;[Online; accessed 13-May-2020]. Available from: https://dl.acm.org/doi/
pdf/10.1145/965105.807509.

[25] Microsoft. Thread Class; 2020. [Online; accessed 13-May-2020]. Avail-
able from: https://docs.microsoft.com/en-us/dotnet/api/system.threading.

thread?view=netcore-3.1.

[26] Microsoft. Parallel.For Method; 2020. [Online; accessed 13-May-2020]. Avail-
able from: https://docs.microsoft.com/en-us/dotnet/api/system.threading.

tasks.parallel.for?view=netcore-3.1.

[27] Microsoft. Parallel.ForEach Method; 2020. [Online; accessed 13-May-2020]. Avail-
able from: https://docs.microsoft.com/en-us/dotnet/api/system.threading.

tasks.parallel.foreach?view=netcore-3.1.

[28] Unity. C# Job System; 2020. [Online; accessed 13-May-2020]. Available from: https:

//docs.unity3d.com/Manual/JobSystem.html.

[29] Cao M, Liu S, Cao F. Midpoint Distance Circle Generation Algorithm based on Midpoint
Circle Algorithm and Bresenham Circle Algorithm. Journal of Physics: Conference Series.
2020;1438. [Online; accessed 13-May-2020]. Available from: https://iopscience.

iop.org/article/10.1088/1742-6596/1438/1/012017/pdf.

26

https://dl.acm.org/doi/pdf/10.1145/965105.807509
https://dl.acm.org/doi/pdf/10.1145/965105.807509
https://docs.microsoft.com/en-us/dotnet/api/system.threading.thread?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.threading.thread?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.parallel.for?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.parallel.for?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.parallel.foreach?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.parallel.foreach?view=netcore-3.1
https://docs.unity3d.com/Manual/JobSystem.html
https://docs.unity3d.com/Manual/JobSystem.html
https://iopscience.iop.org/article/10.1088/1742-6596/1438/1/012017/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/1438/1/012017/pdf

Appendix

A Original Task Description

27

Arbeidstittel: Spillutvikler for Pineleaf Studio

Hensikten med oppgaven:
Utvikle en bedre løsning for ''Fog of War'' for RTS-spill, med utgangspunkt i DwarfHeim.

Kort beskrivelse av oppgaveforslag:
Studenten skal utvikle løsninger på tekniske og designmessige utfordringer for ''Fog of War'' for RTS-spill. Ekstra
utfordringer med oppgaven er blant annet ytelse, optimalisering, tydelighet og visuell opplevelse. Utviklingen skal
hovedsaklig foregå i Unity3D med C#.

''Fog of War'' er kort forklart synsfeltet til spilleren basert på vennlige enheter og bygninger.

What is DwarfHeim? https://store.steampowered.com/app/977650/DwarfHeim/

Oppgaven passer for (kryss av de(t) som
passer og skriv evt. en kommentar til
oss):

- Bacheloroppgave
- Sindre Haugland Paulshus <sindrhpa@stud.ntnu.no>

Kan oppgavestiller stille arbeidsplass med
nødvendig utstyr og programvare:

Ja.

Begrensninger i tilgjenglighet av
opplysninger o.l:

Kildekode til spillet kan ikke publiseres uten sensureres.

Oppgaven passer best for, antall
studenter:

- 1

Opplysninger om oppgavestiller

Navn på bedrift eller organisasjon: Pineleaf Studio

Addresse Munkegata 58

Postnummer 7011

Poststed TRONDHEIM

Navn på kontaktperson/veileder: Sigurd Murad

Telefon: 90027573

Epost: sigurd.murad@pineleafstudio.com

Navn på kontaktperson 2/veileder 2: Kenneth Kristensen

Telefon kontaktperson 2/veileder 2: 99644566

Epost kontaktperson 2/veileder 2: kenneth.kristensen@pineleafstudio.com

Utfyllende kommentarer til hva oppgaven gjelder:
Oppgaven er utviklet i samarbeid med Sindre H. Paulshus knyttet til Bacheloroppgaven hans. Handler om å finne en
god løsning på problemer knyttet rundt synsfelt i strategispill.

B Requirements Document

29

Requirements Document Bachelor’s Thesis 086

Requirements Document

“Fog of War”

Bachelor’s Thesis 086
Sindre Haugland Paulshus

Date Version Description

21.01.2020 0.1 Initial setup.

03.02.2020 1.0 First and final draft.

1

Requirements Document Bachelor’s Thesis 086

Table of Contents

Table of Contents 2

Introduction 3

User stories 3
The Player 3
The Developer 3

2

Requirements Document Bachelor’s Thesis 086

1. Introduction
This document details the specific requirements to be met by the solution for Fog of
War (hereby “FOW”) for the game Dwarfheim, being developed by Pineleaf. The
solution will be worked on by a single bachelor student for his bachelor’s thesis
during the first semester of 2020.

2. User stories
2.1. The Player

As a Player.

I want To see the area around friendly units and buildings.

So that I can make meaningful choices and execute on my strategy.

Acceptance
Criteria

● If I am a player, I have vision with a certain radius around
friendly units and buildings.

● I do not have vision around enemy units.
● If friendly units or buildings are destroyed, their vision will

linger for a little while before fading out.

As a Player.

I want To have my vision be blocked by natural obstacles like trees,
mountains, terrain.

So that I can be immersed in the game, do special maneuvers and use
the blocked vision of my enemies to my advantage.

Acceptance
Criteria

● If I am a player, my vision is blocked by trees,
mountains, higher terrain, walls and enemy buildings.

● In the mine, my vision will penetrate X layer(s) of stone.

2.2. The Developer

As a Developer.

I want To be able to use the FOW solution easily.

So that I can implement FOW without having to use much time or effort.

Acceptance
Criteria

● If I am a developer, I can skim over the source code and
its comments to get an idea of how it works.

3

Requirements Document Bachelor’s Thesis 086

● I can read the wiki to learn how to implement the FOW in
the game.

As a Developer.

I want To be able to edit the FOW solution easily.

So that I can edit parameters or change its behaviour if needed.

Acceptance
Criteria

● If I am a developer, I can skim over the source code and
its comments to get an idea of how it works.

● I can read the wiki to learn how all the various parts of
the solution coexist and where to find specific
parameters so that I can edit them.

4

C System Documentation

34

System Documentation Bachelor’s Thesis 086

System Documentation

“Fog of War”

Bachelor’s Thesis 086
Sindre Haugland Paulshus

Date Version Description

21.01.2020 0.1 Initial setup.

15.04.2020 0.2 Introduction added.
Definitions and references
added.

17.04.2020 0.3 Added class and
architecture diagrams.

21.04.2020 1.0 First full draft. Added link to
source code documentation,
wrote about testing, edited
the diagrams, added class
explanations.

1

System Documentation Bachelor’s Thesis 086

Table of Contents

Table of Contents 2

Introduction 3
Abbreviations, Acronyms and Definitions 3

Architecture 3

Class Diagram 4

Documentation of Source Code 5

Testing 5
Function testing 5
Performance testing 5

References 5

2

System Documentation Bachelor’s Thesis 086

1. Introduction
This document describes the “Fog of War” (herby “FOW”) solution created for the
game Dwarfheim, being developed by Pineleaf Studio[1]. The project itself is staffed
by a single bachelor student for his bachelor’s thesis during the first semester of
2020. This document includes the overarching architecture of the solution, its
classes, source code documentation and how testing were done.

1.1. Abbreviations, Acronyms and Definitions

Prefab A saved configuration of a GameObject. Can be
instantiated in a scene.

FOW or Fow Fog of War

Unity Profiler A tool within Unity which records cpu and gpu usage,
frame rate and various other data for the running game.
It also shows which components, classes and functions
are responsible for causing said data.

2. Architecture

The solution works in layers. Separate units communicate with the FowManager
when their view needs to update. This happens when either the unit is spawned or
the unit moves. The manager then requests the view for each unit that needs to
update using Fow Calculator Archetypes and the units’ spot (index) in the world grid.
Each archetype schedules one Unity Parallel For Job, where each index it works on
is a separate unit of that archetype. Therefore, each unit’s view is calculated on a
unique thread, which takes advantage of multiple CPU cores and boosts
performance.

3

System Documentation Bachelor’s Thesis 086

3. Class Diagram

The project consists of 5 classes:

SpatialGridSquareController A component class of the SpatialGridSquare prefab.
An amount of these prefabs are spawned in a
square grid and help with spatial indexing the units
in the game. Has two main functions,
OnTriggerEnter() and OnTriggerExit(). They are
called when collider enters and exits the collider
attached to the SpatialGridSquare prefab
respectively. It checks if the collider belongs to a
unit and then adds or removes the unit from its list.

UnitFowController This script is attached to the units in the game.
Each frame it checks if itself has moved from the
last frame. If it has, it tells the FowManager to
update. Contains an ID int of which
FowCalcArchetype it should use.

FowManager A singleton class. Controls the flow of information
for the fog of war. It checks on a configurable
interval if any units have told it to update. It
calculates the fow of the units that told it to update
by separating them into archetypes and using the
FowCalcArchetype class.

FowCalcArchetype A unique set of a view distance and a maximum
number of resources/walls it can see through. When
created, it calculates the edges of this archetype’s
view in relation to the unit. Its main function is
RunJobs, which initializes and schedules
FowCalcJob.

4

System Documentation Bachelor’s Thesis 086

FowCalcJob Not actually a class, but a struct inside
FowCalcArchetype. As such, it acts as a private
inner class of the aforementioned. This is a Unity
Parallel For Job, which means when scheduled,
threads allocated by the Unity Jobs system will work
on each index of an array separately using this
struct. Each index of the array is references a
unique unit of this archetype.

4. Documentation of Source Code
Source code documentation is written in markdown and available here:
https://github.com/Sindrex/Bachelor086-fow-doc

5. Testing
Testing was done manually through the Unity Editor. There were two types of tests
conducted during the development: Function testing and performance testing.

5.1. Function testing
Function testing is to check that the core functions of the system works, that
the fog of war is created correctly. This is done by using two test units of two
different archetype and moving one or both. The fog of war is observed as it
changes depending on unit location and obstacles.

5.2. Performance testing
Performance testing aims to test the performance of the system in a worst
case scenario. To do so, 120 test units (120 is the upper limit of units in the
game) split into 4 archetypes are used and moved around simultaneously for
a duration of 10-20 seconds. This forces the FowManager to update the fog of
war and update the view of each unit on each check it does. During this, the
Unity Profiler is recording the performance. Generally, a game frame rate of at
least 60 fps is considered good, but this needs to be compared to the frame
rate when the units are not moving to be able to see the impact of the fog of
war. The observer can then identify which parts of the solution that is causing
problems and set out to fix it.

6. References
[1] Pineleaf Studio. Dwarfheim [internet]. Pineleaf Studio; 07.02.2020 [updated
07.02.2020; 07.02.2020]. Available from: ​https://dwarfheim.com

5

D Vision Document

40

Vision Document Bachelor’s Thesis 086

Vision Document

“Fog of War”

Bachelor’s Thesis 086
Sindre Haugland Paulshus

Date Version Description

21.01.2020 0.1 Initial setup.

24.01.2020 0.2 First draft.

31.01.2020 0.3 Edited product properties after a meeting with the customer.
Added “options for additions” as 5.2.

03.02.2020 0.4 Added a descriptive line in 3.5 alternatives.

07.02.2020 1.0 Tidied up the references with Vancouver style. Added a
description to the 4.1 sketch. Final draft.

1

Vision Document Bachelor’s Thesis 086

Table of Contents
Table of Contents 2

Introduction 3
References 3

Summary of Problem and Product 3
Problem Summary 3
Product Summary 4

Description of Stakeholders and Users 4
Summary of Stakeholders 4
Summary of Users 5
User Environment 5
Summary of Users’ Needs 5
Alternatives to Our Product 6

Product Overview 6
Role in the User Environment 6
Dependencies 7

Functional Properties of the Product 7
Crucial Properties 7
Options for Additions 8

Non-functional Properties and other Requirements 9
Documentation 9
Tools 9
Other 9

2

Vision Document Bachelor’s Thesis 086

1. Introduction
This document describes the overarching vision for the project. This includes
overviews of the problem, product, stakeholders, users and requirements. In short,
the project consists of making a “Fog of War” (herby “FOW”) solution for the game
Dwarfheim, which is being developed by Pineleaf Studio[1]. The FOW will be
integrated into a larger project, the game itself. The project will be worked on by a
single bachelor student for his bachelor’s thesis during the first semester of 2020.

1.1. References
[1] Pineleaf Studio. Dwarfheim [internet]. Pineleaf Studio; 07.02.2020
[updated 07.02.2020; 07.02.2020]. Available from: ​https://dwarfheim.com
[2] Unity Technology. Unity [internet]. Unity Technology; 07.02.2020 [updated
07.02.2020; 07.02.2020]. Available from: ​https://unity.com/
[3] Max Proude. Ultimate Fog of War [internet]. Max Proude; 02.12.2016
[updated 20.06.2018; 07.02.2020]. Available from:
https://assetstore.unity.com/packages/tools/utilities/ultimate-fog-of-war-76011
[4] Hukha. Lumbra [internet]. Hukha; 02.10.2018 [updated 07.01.2019;
07.02.2020]. Available from:
https://assetstore.unity.com/packages/tools/particles-effects/lumbra-2d-dynam
ic-lights-and-field-of-view-128759
[5] Brendan L.K. Fog Of War [internet]. Brendan L.K. 17.12.2015 [updated
09.12.2019; 07.02.2020]. Available from:
https://assetstore.unity.com/packages/tools/particles-effects/fog-of-war-51344

2. Summary of Problem and Product
2.1. Problem Summary

Problem with The FOW solution for the game Dwarfheim. It
is a simple circle and does not feature line of
sight.

Affects The players who play the game, and game
developers.

And as a result Game immersion may be spoiled and
developers have to design around the fact.

A successful solution will Seem natural to the players and offer the
developers new opportunities within the
game’s design.

3

Vision Document Bachelor’s Thesis 086

2.2. Product Summary

For Pineleaf Studio.

That Wants a new FOW solution.

The new FOW Is a better FOW solution.

That Features line-of-sight, is modular and easily used by
other developers.

In contrast to the current FOW that is only a simple circle, and other
solutions you can buy which are hard to integrate into
the game.

Our product Features line-of-sight and is created specifically for
Dwarfheim, and as such integrated with the game from
the start.

3. Description of Stakeholders and Users
3.1. Summary of Stakeholders

Name Description Role during development

Pineleaf Studio The client. Represented
by the Lead
Programmer and the
CTO. Their livelihood
are dependent on the
game’s success.

Through representatives,
Pineleaf Studio will guide
the development and offer
valuable feedback.

Developers The other developers of
the game. Their
livelihood are
dependent on the
game’s success.

May offer valuable
feedback, knowledge and
insight into various aspects
of the game, design and
programming.

Sindre H. Paulshus The creator of the FOW
solution. Dependent on
the solution’s success
for his grade.

Will be developing the
solution.

4

Vision Document Bachelor’s Thesis 086

3.2. Summary of Users

Name Description Role in
development

Represented by

Players The ones that play
the game when it is
finished. Wants the
game to be as good
as possible.

May offer
feedback on the
product during
development.

Themselves.

Developers Developers of the
game. Will be using,
maintaining and
possibly editing the
source code after the
product is finished.

Same as in 3.1. Themselves.

3.3. User Environment
The solution must fit into their existing architecture for the game, using Unity
[2] and C# to create it. It must fit into the game’s aesthetic and work
seamlessly. Source code will be reviewed and distributed using Git. The
solution should be modular and not affect code of the larger project. It should
also be well documented and tidy, so it can be used, modified and maintained
by other developers after its completion.

3.4. Summary of Users’ Needs

Need Priority Affects Current
Solution

Recommended
Solution

Being able to see
within a radius of
friendly troops and
buildings

High Gameplay Shader and
a simple
circle that
unmasks
the map

Shader and
dynamic area
object that
unmasks the
map

Line-of-sight:
Terrain. Not being
able to see
through trees,
walls etc.

High Gameplay None Dynamic area
object that
stops if it meets
terrain

5

Vision Document Bachelor’s Thesis 086

Line-of-sight:
Buildings. Not
being able to see
through enemy
buildings

Medium Gameplay None Dynamic area
object that
stops if it meets
buildings

Visual
representation of
the Fog of War

Medium Gameplay A shown
area and
fadeout at
borders

Same as
current.

Grayscale of
explored map

Low Gameplay Only of the
static game
pieces.

Grayscale map
of the explored
map with static
and dynamic
game pieces
(enemies
where last
seen).

3.5. Alternatives to Our Product
A common thread between all alternatives is that it is a generic package
solution, and would not be tailor-made for the game. As such, it could be hard
to make it work as you want or expand or edit it if needed.

Alternatives Description

Ultimate Fog of War [3] A FOW solution sold privately on the
Unity Asset Store.

Lumbra [4] A FOW solution sold privately on the
Unity Asset Store.

Fog Of War [5] A FOW solution sold privately on the
Unity Asset Store.

4. Product Overview
4.1. Role in the User Environment

The product will limit the visibility and information available to the players. It
will play a role in how the players interact with, view and play the game. See
sketch below for how it is imagined the product will work.

6

Vision Document Bachelor’s Thesis 086

The sketch shows the player’s view in white and the fog in dark gray. Note
that the view is actually a circle with a given radius. The middle icon is a
player’s unit and the mountain icons are terrain the unit cannot see through.
As such, the terrain casts a shadow which limits the player’s view.

4.2. Dependencies

Dependency Description

Dwarfheim The solution will be created
specifically for Dwarfheim and as
such be dependent on it to function.

Unity The solution will be created in Unity
for a Unity game. It can only be
used with Unity.

5. Functional Properties of the Product
5.1. Crucial Properties

These are the main and most crucial properties of the product. These are
expected to be fulfilled for the product to be finished.

Property Description

Lighting up area around friendly As a part of the Fog of War, areas

7

Vision Document Bachelor’s Thesis 086

units around friendly units will have to
light up to give the player sight.

Blocking view through terrain The player’s sight will be limited by
terrain of higher height (walls, cliffs,
mountains, trees, etc).

Blocking view through buildings The player’s sight will be limited by
buildings, especially enemy
buildings.

Only being able to see X tiles into
the rocks in the mine

The game has a mine world with its
own map and there is squared stone
and ore as walls. The player should
initially only be able to see the outer
layer of the rock. This should be
customizable, so for example after
an upgrade they might be able to
see 2 or 3 tiles.

Performance The product should have little or no
impact on the game’s performance
(frames per second).

5.2. Options for Additions
In the case of all the main properties being finished with ample time left, these
are options for additions that would enhance the product further.

Property Description

Grayscale of static objects map Areas the player has no sight in will
be grayscale, but still show static
objects such as terrain, trees and
rocks.

Grayscale of explored map Areas the player has no sight in will
be grayscale. If the player has been
there at one point during the
gameplay and there was enemy
buildings there, those will remain in
grayscale. Note that the grayscale
image will not update even if the
building changes. To update the
player has to explore it again.

Height based Line of Sight The player cannot see playable
areas of higher height than their
own. Contrary, the player can see

8

Vision Document Bachelor’s Thesis 086

playable areas of lower height than
their own.

High ground sight The player’s sight is extended when
viewing lower areas than their own.

Delayed vision loss Upon losing vision (ie. a unit or
building is destroyed), the vision will
linger for a time before fading out.

6. Non-functional Properties and other
Requirements

6.1. Documentation
● Vision document
● Requirements Document
● System Documentation

○ Wiki
○ Commented source code

6.2. Tools
● The development of the solution must happen in Unity 2019.3.0f3 with

C#.
● Code and file distribution will be done with Git and Azure devops.
● Coding will be done with Visual Studio Code.
● Visual Studio Code will need the extensions “C# XML Documentation

Comments” and “Azure Repos”.

6.3. Other
● Aesthetically pleasing visual representation.
● Submission of Main Report and all linked documentation.

9

E Project Plan

50

Project Plan Bachelor’s Thesis 086

Project Plan

“Fog of War”

Bachelor’s Thesis 086
Sindre Haugland Paulshus

Date Version Description

21.01.2020 0.1 Initial draft.

24.01.2020 1.0 Removed the prestudy, as client did not want a prestudy to be
done. Edited gantt chart to reflect the change. Added system
doc to milestones.

1

Project Plan Bachelor’s Thesis 086

1. Project Description
I am tasked with developing a “Fog of War” (hereby “FOW”) solution for the game
Dwarfheim, being developed by Pineleaf Studio. The solution is supposed to be an
upgrade from their current one and feature line-of-sight for certain objects and terrain.
It also has to be visually appealing and have a low or non-existent impact on the
performance of the game. It is preferred if the solution is modular as to not impact
code for other parts of the game and be easily maintainable.

2. Goals
Effect goals:

● Create a good user experience for the game when it comes to FOW.
● Have users play the game for longer.
● Get more users to play the game.

Process goals:

● Get an understanding of how FOW can be developed.
● Get an understanding of how Unity shaders work and can be used to develop

FOW.
● Get insight into game development.

Result goals:

● Create a FOW solution that features terrain/height blocking, line of sight and
has a very low impact on performance.

● Create a FOW solution that is modular, easily used by other programmers
and has no impact on already developed code for the game.

3. Milestones
Milestones for the project:

● Planning done.
● Science Theory and Method course completed.
● Vision document and requirements document done.
● Logical backbone of the FOW done.
● Visual representation of the FOW done.
● System documentation done.
● Main Report done.
● Presentation done.

2

Project Plan Bachelor’s Thesis 086

4. Gantt Chart

ID Task Name Duration Start

Month Jan Feb Mar Apr May

Week 04 05 06 07 08 09 10
1
1 12 13 14 15 16 17 18 19 20 21

1 Project Plan 0,5 days 21.01.2020

2 Meeting Plan 0,5 days 21.01.2020

3
Science Theory and
Method 2 days 27.01.2020

4 Vision Doc 1 days 27.01.2020

5 Req Doc 1 days 03.02.2020

6 Logic Development 17 days 03.02.2020

7 Visual Development 15 days 23.03.2020

8 System Doc 1 days 27.04.2020

9 Main Report 16 days 27.04.2020

10 Presentation 1 days 18.05.2020

5. Gantt Chart in text

ID Task Week(s) Description

1 Project Plan 4 Break the whole project up in discrete
parts. Set a plan for when to work on
the different parts.

2 Meeting Plan 4 Make a plan for when to meet with the
supervisor.

3 Science Theory
and Method

5, 7 A few obligatory days to learn about
scientific theory and the scientific
method.

4 Vision Document 7, 8 A document outlining the overarching
requirements of the project. Should
include features, risk analysis, cost
analysis and description of the users
of the system.

5 Requirements
Document

8 Functional requirements of the
project. Contains at least user stories.

6 Logic
Development

9, 10, 11, 12,
13

Development of the underlying logic
of FOW. Iteration based.

7 Visual 13, 14, 15, 16, Development of the visual

3

Project Plan Bachelor’s Thesis 086

Development 17 representation of the underlying logic
of FOW. Iteration based.

8 System
Document

18 A document outlining the system, its
architecture, class diagrams etc.

9 Main Report 18, 19, 20, 21 Write and finalize the main report.

10 Presentation 21 Create and finalize the presentation
that is to be held of the project.

6. Quality Assurance
6.1. Testing

Code and functions developed will be continuously tested using Unity’s built in
features to play the game and Unity’s console to print interesting data. Playing
the game will act as integration testing, as it will show how the new features
act in tandem with other parts of the game.

6.2. Code Review
As part of the game development of Dwarfheim, any finished code will have to
get reviewed by two other staff members (peer review), one being the lead
programmer, before it is allowed onto the development branch of the game.
This will secure code quality and functionality.

7. Timesheet
As part of the project, a timesheet is to be used. It will be made using Google Sheets.

Link to the timesheet:
https://docs.google.com/spreadsheets/d/1JEzQuY3GiJ9b8ucb5ttH1dcnu6xxqOKKVa
W12PprQWY/edit?usp=sharing

4

F Timesheet

55

116.05.2020

Date Documentation Programming Meetings Emails Research Other Note Total day Total Week Total acc Total percent Planned acc Dif
10.01.2020 1 Emails 1 1 1 0,2 3,8 −2,8
13.01.2020 2 Google Drive setup 2 3 3 0,6 7,7 −4,7
14.01.2020 1 1 Emails + timesheet setup 2 5 5 1 11,5 −6,5
15.01.2020 0 5 5 1 15,4 −10,4
16.01.2020 0,5 Meeting summons 0,5 5,5 5,5 1,1 19,2 −13,7

17.01.2020 2 2 2 2

Startup with Pineleaf, startup
meeting w/ supervisor, meeting
report, translation to english,
setup git and repositories,
research while waiting 8 13,5 13,5 2,7 23,1 −9,6

18.01.2020 0 13,5 13,5 2,7 26,9 −13,4
19.01.2020 0 13,5 13,5 2,7 30,8 −17,3
20.01.2020 0 0 13,5 2,7 34,6 −21,1

21.01.2020 5 1 1

9-16, finding out what needs to
be done (docs), gantt chart,
project plan, meeting plan,
setup other docs 7 7 20,5 4,1 38,5 −18,0

22.01.2020 0 7 20,5 4,1 42,3 −21,8
23.01.2020 0 7 20,5 4,1 46,2 −25,7

24.01.2020 7

Revisions to project plan,
finished first draft vision
document, weekly report,
meeting summons 2 7 14 27,5 5,5 50,0 −22,5

25.01.2020 0 14 27,5 5,5 53,8 −26,3
26.01.2020 0 14 27,5 5,5 57,7 −30,2
27.01.2020 5 Science day 5 5 32,5 6,5 61,5 −29,0
28.01.2020 Sick 0 5 32,5 6,5 65,4 −32,9
29.01.2020 3 Science day 3 8 35,5 7,1 69,2 −33,7
30.01.2020 1 Workshop presentation 1 9 36,5 7,3 73,1 −36,6

31.01.2020 1,5 0,5 2

Workshop 9:30-11:15, work 12-
14, Requirements meeting,
edited vision doc 4 13 40,5 8,1 76,9 −36,4

01.02.2020 0 13 40,5 8,1 80,8 −40,3
02.02.2020 0 13 40,5 8,1 84,6 −44,1

03.02.2020 2 5

Weekly report, meeting
summons, req doc,
experimentation (calculation
based) 7 7 47,5 9,5 88,5 −41,0

04.02.2020 5
Experimentation (raycasting,
Bresenham lines) 5 12 52,5 10,5 92,3 −39,8

05.02.2020 1 1

Meeting supervisor (whom did
not show up), setup git repo for
experiment 2 14 54,5 10,9 96,2 −41,7

06.02.2020 2 1
Programming, meeting
supervisor 3 17 57,5 11,5 100,0 −42,5

07.02.2020 1 6 1

Experimentation (DDA +
DDAMine, circle edges), edited
vision doc, demo 8 25 65,5 13,1 103,8 −38,3

08.02.2020 0 25 65,5 13,1 107,7 −42,2
09.02.2020 0 25 65,5 13,1 111,5 −46,0
10.02.2020 0,5 innovation camp, 8:30-16 0,5 0,5 66 13,2 115,4 −49,4
11.02.2020 innovation camp 8:30-16 0 0,5 66 13,2 119,2 −53,2
12.02.2020 innovation camp 9-15 0 0,5 66 13,2 123,1 −57,1
13.02.2020 0 0,5 66 13,2 126,9 −60,9

14.02.2020 1,5 5 0,5

9-16, meeting summons 3,
weekly report 4, circle edge
work (2 thick) and grid edge
fixes 7 7,5 73 14,6 130,8 −57,8

15.02.2020 0 7,5 73 14,6 134,6 −61,6
16.02.2020 0 7,5 73 14,6 138,5 −65,5

17.02.2020 5

9-14, tiles array -> bit/view
arrays, experiment with
Dwarfheim integration 5 5 78 15,6 142,3 −64,3

18.02.2020 0,5 6,5

9-16, solution into Dwarfheim,
visualising solution in
Dwarfheim, weekly report 5 7 12 85 17 146,2 −61,2

19.02.2020 1,5 meeting supervisor 1,5 13,5 86,5 17,3 150,0 −63,5

20.02.2020 2
work home, get repository on
desktop pc 2 15,5 88,5 17,7 153,8 −65,3

21.02.2020 7
9-16, edge tile calculation
optimization using octants 7 22,5 95,5 19,1 157,7 −62,2

22.02.2020 0 22,5 95,5 19,1 161,5 −66,0
23.02.2020 0 22,5 95,5 19,1 165,4 −69,9

24.02.2020 1 4

9-14, weekly report 6, iterating
on solution in Dwarfheim using
Singleton & unit scripts 5 5 100,5 20,1 169,2 −68,7

25.02.2020 5

work home 10-15,
optimalization of delete/spawn
visualiser (how to place fow
efficiently) 5 10 105,5 21,1 173,1 −67,6

26.02.2020 5,5

work home 9:30-15, bitarray to
plane material/image
(png/color) with transparancy 5,5 15,5 111 22,2 176,9 −65,9

27.02.2020 1
work home: implement prev in
Dwarfheim / CCD prep 1 16,5 112 22,4 180,8 −68,8

28.02.2020 CCD 0 16,5 112 22,4 184,6 −72,6
29.02.2020 0 16,5 112 22,4 188,5 −76,5
01.03.2020 0 16,5 112 22,4 192,3 −80,3

02.03.2020 0,5 5,5

9-15, weekly report 7, improve
new fow visualizer, optimalize
fow refresh 6 6 118 23,6 196,2 −78,2

216.05.2020

Date Documentation Programming Meetings Emails Research Other Note Total day Total Week Total acc Total percent Planned acc Dif

03.03.2020 3
10:30-13:30, setup new pc,
optimalize fow refresh/update 3 9 121 24,2 200,0 −79,0

04.03.2020 6,5 0,5
9-16, spatial indexing for who to
update fow of 7 16 128 25,6 203,8 −75,8

05.03.2020 0,5 Lecture, planning 0,5 16,5 128,5 25,7 207,7 −79,2
06.03.2020 home 0 16,5 128,5 25,7 211,5 −83,0
07.03.2020 0 16,5 128,5 25,7 215,4 −86,9
08.03.2020 0 16,5 128,5 25,7 219,2 −90,7

09.03.2020 6

9-15, optimizing DDA &
FowMan, bitarray to bytearray,
timer on fowupdate, list ->
hashSet 6 6 134,5 26,9 223,1 −88,6

10.03.2020 6,5
9:30-16:00, optimizing, Parallell
ForEach, profiling 6,5 12,5 141 28,2 226,9 −85,9

11.03.2020 6,5 0,5

9-16, optimizing, profiling,
remove excess code,
FowByteArr -> index List ->
color array directly 7 19,5 148 29,6 230,8 −82,8

12.03.2020 3 4
9-16, minor optimals, research
ESC + Unity Jobs 7 26,5 155 31 234,6 −79,6

13.03.2020 0,5 home 0,5 27 155,5 31,1 238,5 −83,0
14.03.2020 0 27 155,5 31,1 242,3 −86,8
15.03.2020 0 27 155,5 31,1 246,2 −90,7
16.03.2020 home, study 0 0 155,5 31,1 250,0 −94,5
17.03.2020 home, study 0 0 155,5 31,1 253,8 −98,3
18.03.2020 Exam economics 0 0 155,5 31,1 257,7 −102,2
19.03.2020 3 3 work home, setup, ECS 6 6 161,5 32,3 261,5 −100,0
20.03.2020 5 work home, ECS errors 5 11 166,5 33,3 265,4 −98,9
21.03.2020 0 11 166,5 33,3 269,2 −102,7
22.03.2020 0 11 166,5 33,3 273,1 −106,6
23.03.2020 6 work home, 10-16, Entity errors 6 6 172,5 34,5 276,9 −104,4

24.03.2020 6
work home, 10-16, importing
entities still 6 12 178,5 35,7 280,8 −102,3

25.03.2020 6 work home, jobs/entities 6 18 184,5 36,9 284,6 −100,1

26.03.2020 4 2
work home, parallel jobs
experiment 6 24 190,5 38,1 288,5 −98,0

27.03.2020 5 work home, minor optimizations 5 29 195,5 39,1 292,3 −96,8
28.03.2020 0 29 195,5 39,1 296,2 −100,7
29.03.2020 0 29 195,5 39,1 300,0 −104,5

30.03.2020 3 3 1

work home, 9-16, list->array,
spatial indexing (getFOW), find
edges -> make line directly,
main report setup, 2 emails 7 7 202,5 40,5 303,8 −101,3

31.03.2020 1 2 1 3

work home, 9-16, ESC testing,
meeting summons & report 4,
meeting 4, 1 central DDA bank 7 14 209,5 41,9 307,7 −98,2

01.04.2020 7
work home, 9-16, DDA job
testing 7 21 216,5 43,3 311,5 −95,0

02.04.2020 7
work home, 9-16, DDA job
working, optimizing 7 28 223,5 44,7 315,4 −91,9

03.04.2020 7
work home, 10-17, DDA job
optimizing (spatial indexing) 7 35 230,5 46,1 319,2 −88,7

04.04.2020 Easter start 0 35 230,5 46,1 323,1 −92,6
05.04.2020 0 35 230,5 46,1 326,9 −96,4

06.04.2020 4

Working on the side, (un)
Concatinator job / Parallel.For
(parallelizing de-construction of
RunJobs results array 4 4 234,5 46,9 330,8 −96,3

07.04.2020 4
Parallelize setting color-array
(thread safe) 4 8 238,5 47,7 334,6 −96,1

08.04.2020 2 2 Main report work / research 4 12 242,5 48,5 338,5 −96,0

09.04.2020 2 2

Main report titles according to
template, research other
thesises 4 16 246,5 49,3 342,3 −95,8

10.04.2020 0 16 246,5 49,3 346,2 −99,7
11.04.2020 0 16 246,5 49,3 350,0 −103,5
12.04.2020 0 16 246,5 49,3 353,8 −107,3
13.04.2020 Easter end 0 0 246,5 49,3 357,7 −111,2

14.04.2020 7,5 0,5

work home 9-15 & a little on the
evening, write weekly reports 8-
13, disposition, email
supervisor, clean and comment
code 8 8 254,5 50,9 361,5 −107,0

15.04.2020 8

work home, clean and comment
code, system documentation,
sketch class diagram 8 16 262,5 52,5 365,4 −102,9

16.04.2020 6 2

work home, system document,
research testing in visual studio,
class diagram, architecture
sketch 8 24 270,5 54,1 369,2 −98,7

17.04.2020 8

work home, class diagram,
architecture diagram, system
doc 8 32 278,5 55,7 373,1 −94,6

18.04.2020 0 32 278,5 55,7 376,9 −98,4
19.04.2020 0 32 278,5 55,7 380,8 −102,3

20.04.2020 4 0,5 3 0,5

Work home, research generate
api, sent mail system doc,
planning, main report
introduction, research theory 8 8 286,5 57,3 384,6 −98,1

316.05.2020

Date Documentation Programming Meetings Emails Research Other Note Total day Total Week Total acc Total percent Planned acc Dif

21.04.2020 8

System doc: classes
description, diagrams touchup,
testing, start API documentation 8 16 294,5 58,9 388,5 −94,0

22.04.2020 8
Finish system doc, finished API
doc. 8 24 302,5 60,5 392,3 −89,8

23.04.2020 8 Theory: DDA+Bresenham 8 32 310,5 62,1 396,2 −85,7

24.04.2020 7,5 0,5
Theory: Bresenham + Spatial
Index + Burst, send mail 8 40 318,5 63,7 400,0 −81,5

25.04.2020 0 40 318,5 63,7 403,8 −85,3
26.04.2020 0 40 318,5 63,7 407,7 −89,2
27.04.2020 8 Theory: Game engine, RTS 8 8 326,5 65,3 411,5 −85,0

28.04.2020 8
Theory: Fog of War, Line of
Sight, Burst Compile 8 16 334,5 66,9 415,4 −80,9

29.04.2020 7,5 0,5

Cleanup theory / intro, send
mail, figures, begun tech:
Unity+C#+Dev process 8 24 342,5 68,5 419,2 −76,7

30.04.2020 8
Tech: Vision, drawing lines,
iteration 8 32 350,5 70,1 423,1 −72,6

01.05.2020 8
Intro + theory done! Tech:
Parallelization 8 40 358,5 71,7 426,9 −68,4

02.05.2020 0 40 358,5 71,7 430,8 −72,3
03.05.2020 0 40 358,5 71,7 434,6 −76,1
04.05.2020 8 Results: Scientific, Engineering 8 8 366,5 73,3 438,5 −72,0

05.05.2020 8
Results: Administrative, bullet
points dicussion 8 16 374,5 74,9 442,3 −67,8

06.05.2020 8
Discussion: Scientific,
Engineering, Admin 8 24 382,5 76,5 446,2 −63,7

07.05.2020 8 Discussion: Effort, Ethics 8 32 390,5 78,1 450,0 −59,5

08.05.2020 8
Tech + Results + Discussion
done 8 40 398,5 79,7 453,8 −55,3

09.05.2020 1 DDA pseudocode 1 41 399,5 79,9 457,7 −58,2
10.05.2020 0 41 399,5 79,9 461,5 −62,0

11.05.2020 8
Clean up results, discussion,
start conclusion 8 8 407,5 81,5 465,4 −57,9

12.05.2020 6 2

LaTeX Overleaf start, preface +
task + abstract, weekly reports
14-17 8 16 415,5 83,1 469,2 −53,7

13.05.2020 8
Main report to Latex overleaf
conversion 8 24 423,5 84,7 473,1 −49,6

14.05.2020 8

Conclusion + abstract + task +
preface + references done,
finishing touches 8 32 431,5 86,3 476,9 −45,4

15.05.2020 8
attach appendices, finishing
touches 2, finish report 8 40 439,5 87,9 480,8 −41,3

16.05.2020 0 40 439,5 87,9 484,6 −45,1
17.05.2020 Weekly report 18 0 40 439,5 87,9 488,5 −49,0
18.05.2020 8 presentation 8 8 447,5 89,5 492,3 −44,8
19.05.2020 8 presentation finish 8 16 455,5 91,1 496,2 −40,7
20.05.2020 4 DEADLINE, weekly report 19 4 20 459,5 91,9 500,0 −40,5

SUM 233,5 144,5 8 5,5 58 10 459,5 min
500 .+-50

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Ba
ch

el
or

’s
pr

oj
ec

t

Sindre Haugland Paulshus

Implementing Optimized Line of Sight
based Fog of War in Unity

For the RTS game DwarfHeim by Pineleaf Studio

Bachelor’s project in Software Engineering

Supervisor: Helge Hafting

May 2020

	Preface
	Task
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background
	Research Problem
	Report Structure
	Abbreviations, Acronyms and Definitions

	Theory
	Real Time Strategy Game
	Fog of War
	Line of Sight
	Game Engine
	Digital Differential Analyzer
	Bresenham’s Line Algorithm
	Spatial Indexing
	Burst Compiler

	Choice of Technology and Methods
	Game Engine and Programming Language
	Development Process
	Calculation of the Vision
	Drawing Lines
	Iteration over Units and Cells
	Parallelization

	Results
	Scientific
	Engineering
	Crucial functional properties
	Optional functional properties

	Administrative
	Project Plan
	Time Management

	Discussion
	Scientific
	Engineering
	Administrative
	Own Effort and Learning
	Ethics

	Conclusion and Future Work
	Conclusion
	Future Work
	Acknowledgements

	Bibliography
	Appendix
	Original Task Description
	Requirements Document
	System Documentation
	Vision Document
	Project Plan
	Timesheet

