
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Erlend Løkken, Endre Waatevik

Location prediction using neural
networks

Master’s thesis in Computer Science
Supervisor: Heri Ramampiaro

June 2019

Erlend Løkken, Endre Waatevik

Location prediction using neural
networks

Master’s thesis in Computer Science
Supervisor: Heri Ramampiaro
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Preface

The process of this master theses started in late January 2019 with an initial
meeting with Heri. Erlend and Endre were introduced to the subject, and
the content of the project was discussed. We are grateful for the opportunity
to write our master thesis on the subject of text-based location prediction
and would like to thank the following persons for their involvement

• Heri Ramampiaro, NTNU. For supervising and guidance.

Date: 11th June 2019
Place: Trondheim

Endre Waatevik Erlend Løkken

ii

Abstract

Identifying the tweet location is crucial in order to utilize the content in
studies of regional user behavior. Such information can be used in numerous
applications depending on geographical information such as event detection
and location-based recommendation. In terms of Twitter, such geographi-
cal information is reported to be present in just 1-3 % of all tweets. Thus,
the inference of location on non-geotagged tweets is an active research area
in geographical information retrieval. In this project we explore the use of
deep learning to issue the geolocation problem, and propose a method using
recurrent neural networks. The proposed method predicts tweet locations
based on information given in a single tweet, where we explore both mod-
els based solely on tweet text and models exploiting additional contextual
metadata. In this work the geographical area of interest is divided into
grid cells, where a neural network is trained to predict the grid cell with
highest probability of containing a given tweet. A comparison of uniform
and adaptive grid cells is conducted with ambiguous results in terms of the
preferable approach for geographical modelling. The evaluation on three
different datasets indicates that the proposed method yields a significant
improvement compared to state of the art approaches. In terms of exploit-
ing contextual metadata features in combination with text the evaluation
yields significantly better accuracy than utilizing text only.

iii

Sammendrag

For å kunne studere brukeres bevegelser og handlinger er det viktig å iden-
tifisere lokasjonen en tweet er skrevet fra eller omhandler. Denne typen
informasjon kan brukes i en rekke applikasjoner som avhenger av geografisk
informasjon, som for eksempel event deteksjon og lokasjons-basert rekom-
mendering. P̊a Twitter rapporteres det at geografisk informasjon bare er
tilgjengelig p̊a 1-3 % av alle tweets. Dette har gjort at predikering av
lokasjon p̊a tweets uten geografisk merking har blitt et aktivt forskning-
somr̊ade innen geografisk informasjonsgjenfinning. I dette prosjektet ut-
forsker vi bruken av deep learning for å løse dette problemet, og presenterer
en metode som baserer seg p̊a bruk av nevrale nettverk. Metoden som pre-
senteres predikerer lokasjonen basert p̊a innholdet i en enkelt tweet, hvor
vi ser p̊a modeller som kun baserer seg p̊a tekst, og modeller som benytter
tekst i kombinasjon med annen kontekstuell metadata. I dette arbeidet de-
les det geografiske omr̊adet inn i celler, der et nevralt nettverk benyttes for
å finne den cellen med høyest sannsynlighet for å inneholde en gitt tweet.
For å finne optimal inndeling av det aktuelle geografiske omr̊adet utforsker
vi, og sammenligner b̊ade uniforme og adaptive celler. Evalueringen som
er foretatt p̊a tre forskjellige datasett indikerer at den presenterte metoden
gir en signifikant forbedring sammenlignet med moderne tilnærminger for
samme problem. N̊ar det gjelder utnyttelse av metadata viser evaluerin-
gen at bruk av ekstra data som opprettingstidspunkt, brukerens spr̊ak og
brukerens profilbeskrivelse gir mer presise predikeringer.

iv

Contents

Preface ii

Abstract iii

Sammendrag iv

1 Introduction 1

2 Problem Overview 3
2.1 The Twitter platform . 3
2.2 Geolocation problems on Twitter 5
2.3 Problem specification . 6

3 Background Theory 7
3.1 Artificial Neural Networks . 7

3.1.1 Architecture . 7
3.1.2 Learning . 9

3.2 Convolutional Neural Networks 10
3.2.1 Architecture . 10
3.2.2 Convolution . 10
3.2.3 Pooling . 13

3.3 Recurrent Neural Networks 15
3.3.1 Exploding and vanishing gradients 16
3.3.2 Long short-term memory 17

3.4 Kernel Density Estimation . 20
3.5 Naive Bayes classifier . 22
3.6 Kullback-Leibler Divergence 24
3.7 Multidimensional binary search tree 25
3.8 Evaluation metrics . 27

4 Related work 28

5 Location prediction using neural networks 31
5.1 Approach . 31
5.2 Text-based approach . 32
5.3 Text and metadata approach 33
5.4 Baseline methods . 34
5.5 Geographical modelling . 35

5.5.1 Uniform grid . 35
5.5.2 Adaptive grid . 37
5.5.3 Partition location method 38

6 Evaluation 39

v

6.1 Dataset . 39
6.1.1 Manhattan . 39
6.1.2 Los Angeles . 40
6.1.3 Paris . 40
6.1.4 London . 40

6.2 Experiment . 41
6.3 Tuning . 44
6.4 Evaluation Results . 47

6.4.1 The Manhattan dataset 47
6.4.2 The Los Angeles dataset 50
6.4.3 The Paris dataset . 52
6.4.4 The London dataset 54

6.5 Evaluation Discussion . 56
6.5.1 Grid partitioning method 56
6.5.2 Partition location method 58
6.5.3 Metadata . 59

7 Conclusion and further work 61

References 62

vi

List of Figures

1 A model of a simple neural network 8
2 The structure of a simple CNN 10
3 Simple recurrent network with one input unit, one output

unit and one hidden layer with a recurrent edge. 16
4 Simple recurrent network unfolded across multiple time steps.

Note that the hidden state is passed from one hidden layer to
the next one, this is the recurrent step. 17

5 Architectural overview of the LSTM cell. 19
6 KDE with different bandwidths; grey is the true density, red,

black and green has h equal to 0.05, 0.337 and 2 respectively.
The sample is 100 random points from a standard normal dis-
tribution (from en.wikipedia.org/wiki/Kernel density estimation). 20

7 Balanced kd-tree with discriminator keys for each level. In-
ternal nodes are marked as circles and leaf nodes as squares. . 25

8 Network architectures exploiting tweet text only 32
9 Network architectures exploiting text and metadata 33
10 Uniform grid with 5× 5 number of cells. 36
11 Adaptive grid approach for partitioning data points based on

the density. 38
12 Heatmap of tweet locations in four different cities, where

green is low density of tweets and red is high. 40
13 Threshold test of bucket size and tweets limit. All datasets fa-

vor smaller bucket sizes, but there seems to be no clear choice
regarding tweets limit. There are some difference between the
test-parameters, Manhattan was tested with slightly higher
tweet limit and Paris has additional bucket size tests at lower
range. 44

14 Threshold test of cell size. Clear advantage for smaller cells,
especially for Manhattan and Paris. Paris also had one addi-
tional cell size test due to large area and number of tweets. . 45

15 Geographical modelling of Manhattan 48
16 Geographical modelling of Los Angeles 50
17 Geographical modelling of Paris 52
18 Adaptive grid representation of London with contained tweets 54
19 Difference between uniform and adaptive grid partitioning for

the area surrounding the Eiffel Tower. Blue squares repre-
sents grid cells and red ’dot’ indicates that the cell is one
single point. The high concentration of tweets can not be
represented by (a) and it encapsulates the Eiffel Tower area
in four big cells compared to (b). 57

vii

20 Two test sets, one for each partition method, containing 20
tweets located inside the Grand Palais. Tweets are marked
as purple points on the map, darker color indicates multiple
points at the same location. (a) partition the palace into
one single grid cell, including adjacent locations outside the
palace. (b) splits the palace into numerous smaller grid cells,
even separating cells that are essentially on top of each other. 59

viii

List of Tables

1 List of contextual features for location inference 5
2 Example of content in grid file 41
3 Example of content in tweets file with dummy text. 41
4 Comparing centroid vs center for partition location method.

Best result in bold. 46
5 Results for the Manhattan dataset 49
6 Results for the Los Angeles dataset 51
7 Results for the Paris dataset 53
8 Results for the London dataset 55
9 Results for the Grand Palais in Paris, running a small test

set containing 20 tweets. 58

ix

1 Introduction

Determining explicit location information of social media users and associ-
ated messages provides a valuable resource for a wide range of applications.
Such applications includes location-based recommendation, event detection
and targeted advertisement. There exists numerous social media platforms,
and one of the most popular ones is Twitter. As of the fourth quarter of
2018 this micro-blogging platform averaged 321 million active users monthly.
Twitter enables users to post ”tweets” of 280 characters, up from 140 the
recent years, and share them with their followers. The availability of twitter
data through the official Twitter API’s makes twitter a great source for aca-
demic research. Due to the increasing popularity of GPS-enabled devices,
more and more tweets have explicit location information such as latitude-
longitude attached. However, such tweets are reported to constitute only
1-3 % percent of all tweets (Li, Eickhoff, & de Vries, 2014). In addition to
metadata based locations, is it important to determine the location a tweet
relates to.

For this reason it is necessary to infer locations for Twitter users and tweets
in order to improve the quality of the location based applications mentioned
above. Inferring such information based on tweet text is a research area that
has received a considerable amount of attention, with various approaches
being used. Among the most researched approaches are statistical methods
based on Multinomial Naive Bayes and Kullback-Leibler (KL) divergence,
while deep learning methods like neural networks have received increasing
attention the recent years.

Crucial for location inference methods is the modelling of the geographical
region. A widely used technique for statistical text-based approaches is to
model the region of interest into a grid, and apply document classification
methods to estimate the grid cell most probable of containing a given tweet.
This technique for geographical modelling has not been widely adopted in
studies exploiting neural networks, where the geographical modelling mainly
focuses on city or country level targets. Considering the recent growth in
popularity, and the fairly limited amount of research adopting neural net-
works in geolocation problems, this definitely deserves further attention.
Utilizing deep learning on the geolocation problem enables the task to ei-
ther be handled as a classification problem, or as a multi-target regression
problem.

The goal of this project is to further investigate the use of deep learning
for the geolocation problem, and investigate its performance compared to
state of the art statistical approaches. We propose a method using recur-

1

rent neural networks for predicting the geolocation of tweets. Specifically,
we are developing neural models able to predict geographical coordinates
on a tweet-by-tweet basis utilizing the grid based approach for modelling.
Developed models will be based both on tweet text and tweet text combined
with contained meta data, and tested on plural different geographical areas.

The main contribution of this thesis are summarized as follows: (1) we inves-
tigate the use of neural networks to issue the geolocation problem of tweets
using grid cells for geographical modelling, and compare the performance
against state of the art statistical methods. (2) We explore the use of con-
textual features in combination with text and investigate the performance in
comparison with neural models utilizing text only. (3) we examine both the
uniform and adaptive grid approach for geographical modelling, and com-
pare the performance on multiple geographical regions. (4) we investigate
the performance of two methods for coordinate deduction based on a pre-
dicted grid cell, where we compare geographical center against the centroid
of contained data points.

The remainder of this project is organized by presenting the problem overview
in section 2 and the necessary background theory in section 3. In section
4 we provide an overview of related work for Twitter location prediction.
In section 5 we describe details about the proposed method. Evaluation of
the method and useful comparisons are described in section 6. Finally, we
conclude the paper and describe further work in section 7.

2

2 Problem Overview

In this chapter we give an overview of the problems discussed in this project.
This includes an introduction to the Twitter platform and the information
available in terms of tweet content, tweet context, twitter network, and an
introduction to geolocation problems on Twitter.

2.1 The Twitter platform

Twitter is a micro-blogging platform and one of the most popular online so-
cial networks. It was launched in 2006 and has more than 300 million active
users monthly around the world. The popularity of Twitter, together with
frequent user updates generates a large volume of data at a high velocity.
This data is accessible at different grants and levels through The Twitter
API delivered on the Twitter Developer Platform. The short and noisy na-
ture of tweets, the availability of data, the rich contextual information and
the broad Twitter network makes Twitter a great source for a wide range
of studies including geolocation problems.

A tweet is a user-generated piece of text limited by a certain length of
characters. The short nature of tweets is related to the max-length originally
being set to 140 characters. This was doubled and raised to 280 characters
in late 2017, but according to Twitter this has not dramatically changed
the length of Twitter posts. When posting tweets a user may include links,
images, videos, hashtags which are words starting with #, and mentions,
which is another user’s or business name by a preceding @. A user may also
retweet posts written by other users. These hashtags, mentions, retweets
and common Twitter slang vocabulary composes the noisy nature of tweets.

Twitter posts contains rich contextual information, and is more than just
a short piece of text. Attached to a tweet are information like posting
timestamp, user information, and optionally GPS coordinates supported by
the current grow of mobile devices. The attached user information depends
on the completeness of the current user profile, which is optional for a user
to submit. A profile may contain information like timezone, home cities and
country. All this contextual information is crucial in further understanding
the content of tweets. An example tweet is shown in listing 1.

3

https://developer.twitter.com/

Listing 1: Example tweet
{

” c r e a t ed a t ” : ” Fr i Feb 15 10 : 25 : 56 +0000 2019” ,
” id ” : 1096354919274078209 ,
” text ” : ”Stop s t a r i n g at the c l ock every day . It ’ s time f o r a new ca r e e r ” ,
” user ” : {

” id ” : 23263441 ,
”name” : ”TMJ− LON Acct . Jobs ” ,
” screen name” : ” tm j l on ac c t ” ,
” l o c a t i on ” : ”London” ,
” u r l ” : ” http :// b i t . l y /2I6YXx9” ,
” d e s c r i p t i o n ” : ”Follow th i s account f o r geo−ta rge ted Accounting job tweets in London . ” ,
” t r an s l a t o r t yp e ” : ”none ” ,
” f o l l owe r s c oun t ” : 372 ,
” f r i e nd s c oun t ” : 312 ,
” s t a tu s e s c oun t ” : 234 ,
” c r e a t ed a t ” : ”Sun Mar 08 02 : 00 : 23 +0000 2009” ,
” u t c o f f s e t ” : ”None” ,
” t ime zone ” : ”None” ,
” geo enabled ” : ”True ” ,
” lang ” : ”en ” ,

} ,
” geo” : { ” type ” : ”Point ” , ” coo rd ina t e s ” : [51 . 5073509 , −0.1277583] } ,
” coo rd ina t e s ” : { ” type ” : ”Point ” , ” coo rd ina t e s ” : [−0.1277583 , 51 .5073509] } ,
” re tweet count ” : 0 ,
” f a v o r i t e c oun t ” : 0 ,
” e n t i t i e s ” : {

” hashtags ” : [] ,
” u r l s ” : [] ,
” user ment ions ” : [] ,
” symbols ” : []

} ,
” f a v o r i t e d ” : ” False ” ,
” retweeted ” : ” False ” ,
” lang ” : ”en ” ,
” timestamp ms” : ”1550226356701”

}

Another part of Twitter that makes the foundation for multiple studies is
the Twitter community. Twitter user ua has both a list of followers who
are notified by the posts of ua, and a list of followees who is followed by
ua. Unlike Facebook, where relationships are bidirectional, relationships on
Twitter is unidirectional. This means that if user ua follows user ub, it
does not necessarily mean ub is following ua. The Twitter network, context
and tweet contents itself are sources of information that can be utilized in
inference studies on Twitter.

4

2.2 Geolocation problems on Twitter

The focus of this project will be on geolocation prediction on Twitter. Lo-
cations on Twitter can be divided into three main categories, namely Home
location, Mentioned location and Tweet location. All three categories have
been widely studied in previous research, and the targeted category for this
project will be the Tweet location. This is the task of inferring the geo-
graphical origin of where a tweet is posted from.

The ground truths for tweet locations are collected from the optional con-
textual information of GPS coordinates as mentioned in chapter 2.1. Due
to the ground truth being represented by coordinates, this is the most com-
mon representations of tweet locations, instead of country, administrative
region or city, that are widely adopted representations used in studies for
Home and Mentioned location prediction. Inference of tweet location draws
a more complete picture of a user’s movements, and may extend the avail-
able contextual information. Such information may be utilized in a number
of location based applications.

A list of typical contextual features that may contain useful information in
terms of location inference are provided in table 1

Contextual feature Type

Tweet text Text

User description Text

User name Text

User profile location Text

Tweet text language Categorical

User Language Categorical

Timezone Categorical

Posting Time Timestamp

Table 1: List of contextual features for location inference

5

2.3 Problem specification

The main objective of this project is to examine the use of deep learning
to extract spatial information from text. More specifically, we will explore
the use of neural networks to infer location of tweets using Twitter datasets.
The main hypothesis we want to investigate is if neural models will perform
better than well studied state of the art methods like Multinomial Naive
Bayes and Locality-adapted Kernel Densities. In further investigation of
geolocation problems we will look into limitations of previous studies. This
includes different approaches for geographical modelling and inference of
coordinates. Regarding geographical modelling we explore the differences in
terms of most accurate predictions between uniform and adaptive grid cells.
Due to the rich amount of available metadata on Twitter we also examine
the use of various contextual features in combination with text, and explore
if such features significantly improves the prediction accuracy. The research
questions we want to answer are as follows:

• How to exploit deep learning to further improve the inference of tweet
locations?

• How will the geographical modelling effect the performance of the lo-
cation inference?

• How to derive coordinates from geographical space partitioned into
grid cells?

• How to incorporate metadata features into the model, and how will
this effect the performance?

6

3 Background Theory

This chapter introduces literary studies and background theory on deep
learning topics and approaches for issuing the geolocation problem. Previous
studies on the research area covers a broad range of different methods, but
some of them obsolete and therefore unrelated in terms of the intention of
this thesis. The topics presented in this chapter will cover only the most
relevant deep learning techniques and state of the art statistical approaches
regarding the research goals.

3.1 Artificial Neural Networks

Artificial Neural Networks (ANN) is a Machine Learning architecture that
has gained a lot of attention in recent years. ANNs have become one of the
most efficient and powerful methods to solve complex problems in computer
vision, NLP, speech recognition, image, audio, and video generation which
have made ANNs the state of the art technology that drives the AI revolution
(Goltsman, 2017).

An ANN can be thought of as a computational model that is inspired by
biological neural networks in the brain. They commonly consist of hundreds
of simple processing units (neuron) wired together in a complex layer struc-
tured communication network. Each processing unit is a simplified version
of a real neuron which sends off new signals and fires if strong input signals
from connected neurons are received.

3.1.1 Architecture

A model of a simple neural network can be seen in figure 1. In this figure
neurons are connected by weights (input signals) in a typical layer structure.
The input layer passes the information to the next layer without doing any
computation. In the output layer an activation function is used to map data
to the desired output format. In addition, a neural network can consist of
none or multiple layers in between the input and output layer. This is where
intermediate processing and computation is done. These layers are referred
to as hidden layers because we don’t observe the values computed in these
layers.

7

Figure 1: A model of a simple neural network

The activation of a given neuron is given by

ai = g((
n∑
j=1

wijaj) + b)

where g denotes the activation function, b denotes the bias, w denotes the
weight and aj denotes the activation of the incoming neuron. To calculate
activations in the different layers we calculate the activation functions based
on the input values. From figure 1 the activations in the hidden layer is given
as

a4 = g(w41x1 + w42x2 + w43x3 + b4)
a5 = g(w51x1 + w52x2 + w53x3 + b5)
a6 = g(w61x1 + w62x2 + w63x3 + b6)
a7 = g(w71x1 + w72x2 + w73x3 + b7)

An activation function is a function that defines the output of a node given
a set of inputs. Examples of activation functions are ReLU and Sigmoid.
This can be seen as a digital network of activation functions in a computer
chip circuit that can be ON (1) or OFF (0). The bias is a value that allows
shifting the activation function to the left or right to indicate a neuron’s
activity.

8

Similarly as in the hidden layer, the activations for the output layer is cal-
culated as

y1 = g(w84a4 + w85a5 + w86a6 + w87a7 + b8)
y2 = g(w94a4 + w95a5 + w96a6 + w97a7 + b9)

3.1.2 Learning

The standard way of training an ANN is to use supervised learning, this re-
quires a set of inputs together with a set of corresponding outputs (targets).
The learning process is about finding the correct weights and biases, and
consist of three subtasks

• Make a forward pass (Calculate activations for all neurons)

• Calculate the error (Calculate the difference between the given output
and the desired output)

• Make a backward pass (Backpropagation)

After each forward pass through the network the output layer contains a set
of activations. Based on these output values a ”cost” function is used to
calculate the difference between the given output and the desired output.
This function yield the cost of a single training example. This sum (cost) is
small when the network confidently classifies the output correctly and large
when the output differs considerably from the desired output.

Gradient decent is the technique of minimizing the cost function. This is
done by using the negative gradient of the cost function calculated by using
the Backpropagation algorithm (Dabel E. Rumelhart, 1988). Based on the
average cost of all training examples the weights and biases are changed to
most efficiently decrease the cost (Schmidhuber, 2014).

By using these techniques an ANN is able to learn how to classify input data
correctly.

9

3.2 Convolutional Neural Networks

As mentioned in chapter 3.1, neural networks has become the state of the art
technology for solving complex problems in many fields, including computer
vision. Convolutional Neural Networks (CNNs) is a class of feed-forward
neural networks composed of one or multiple convolutional layers. CNNs
have shown superior results in image and speech applications because of its
architecture and ability to process visual and other two-dimensional data
(Wu, 2017).

3.2.1 Architecture

A CNN usually takes a tensor of order 3 as input, e.g., an image with H
row and W columns, and 3 channels of RGB colors (Dimensions D) (Wu,
2017). A tensor can be generalized to higher-order matrices. The input
sequentially goes through a series of processing, where each processing step
is a layer as described in chapter 3.1.

The layers in a typical CNN can be seen in figure 2. The standard archi-
tecture for a CNN is to do a series of Convolution + Pooling operations,
followed by a number of Fully-Connected layers.

Figure 2: The structure of a simple CNN

3.2.2 Convolution

The Convolution layer is used to extract features from an input image by
learning the features using small squares of input data (filters/kernels). This

10

is a mathematical operation with two inputs such as image matrix and filter
matrix.

• Image matrix of dimension (HxWxD)

• Filter matrix of dimension (wHxwWxD)

The operation is given by the following equation

Y (j, k) = (X ∗ w)(j, k) =
c∑

γ=−c

d∑
δ=−d

X(j + γ, k + δ)w(γ, δ)

where X denotes the upstream layer or image matrix, w denotes the kernel
or filter and Y denotes the downstream layer or feature map.

The convolution is performed by a series of filtering operations. Filtering
is the operation of lining up the filter with a position of the image matrix
(image patch), starting in the upper left corner of X. The result of the
mathematical operation yields the upper left entry of Y. The filter is then
moved horizontally along X, one stride at a time, producing a new entry
of Y each time it is applied. After completing a row, the filter is shifted
down one stride and applied at the start of the row. This operation can be
performed using different strides, which is the number of pixels to shift over
the filter matrix. If the filter and the chosen stride does not fit perfectly to
the image, there are two alternatives

• Pad the image matrix with zeros so that the filter fits

• Drop the part of the image where the filter does not fit, which results
in shrinked size.

An example of this mathematical operation is shown with the following
matrices

11

XHWD =

-1 -1 -1 -1 -1 -1 -1 -1 -1

-1 1 -1 -1 -1 -1 -1 1 -1

-1 -1 1 -1 -1 -1 1 -1 -1

-1 -1 -1 1 -1 1 -1 -1 -1

-1 -1 -1 -1 1 -1 -1 -1 -1

-1 -1 -1 1 -1 1 -1 -1 -1

-1 -1 1 -1 -1 -1 1 -1 -1

-1 1 -1 -1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1

wHWD =

1 -1 -1

-1 1 -1

-1 -1 1

An element-wise multiplication is applied to the filter and image patch, the
results are added up and divided by the total number of pixels (Wu, 2017).

By applying the filter in the top left corner we get

-1 -1 -1

-1 1 -1

-1 -1 1

•
1 -1 -1

-1 1 -1

-1 -1 1

=
(−1) + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

9
= 0.77

This value is a measure of how well the filter is represented at the given
position. Convolution is the repeated process of applying this filter on every
possible position of the image matrix. By performing convolution on the
given image and filter matrix using a stride of 1 results in the following
feature map

12

A Convolution layer in a CNN consist of performing the described operation
for multiple filters, resulting in multiple feature maps. By convolving an
image, one image becomes a stack of filtered images.

3.2.3 Pooling

The convolution operation is usually followed by a pooling operation. This
is an operation used to shrink the image stack and is performed by

1. Pick a window size

2. Pick a stride

3. Apply the window across the filtered images

4. From each window, pick a value (max, average, sum).

By performing a max pooling (most common) operation on the feature map
from the convolution example, using a window size of 2x2 and a stride of 2,
we get the following result

13

The result from this operation is a shrinked image map where patterns are
conserved.

To sum up, a CNN is a class of neural networks where convolution and
pooling layers are stacked, together with other techniques used in ANNs to
get the desired output.

14

3.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a type of feed-forward neural net-
works with the ability to retain a state that can represent information from
an arbitrarily long context window. They are designed to recognize pat-
terns in sequences of data that are related in time or space, such as text,
snippets of audio, numerical time series etc. Data is sequentially processed
one element at a time, with the ability to selectively pass information across
sequence steps (Lipton & Berkowitz, 2015).

Training data for RNNs is typically a set that consists of a 〈input sequence,
target sequence〉 pair, although commonly either the input or the output may
be a single data point. An input sequence is, like the name suggests, the
input to an RNN, where the sequence can be denoted as (x(1),x(2), ...,x(T)).
Similarly, the target vector can be denoted as (y(1),y(2), ...,y(T)). Sequences
may be of either finite or countably infinite length, where the maximum
time index of the sequence is called T if finite. While sequences are often
referred to as time-sequences, RNNs are applicable to non-temporal as well
as to temporal tasks. Several domains have a defined order sequence with
no explicit notion of time, like natural language. Consider the following
example from Lipton et al.

”John Coltrane plays the saxophone”, x(1) = John, x(2) = Coltrane, etc..

Word sequence with no temporal aspect.

The most fundamental architectural difference between a standard multi-
layer perceptron (MLP) and a RNN is the recurrent connections in the
hidden layer allowing information to persist through multiple states. Figure
3 shows a simple schematic model of such networks with an input node,
hidden layer with recurrent connection and output node. These recurrent
connections enables the possibility of discovering temporal correlations be-
tween data points far away from each other (Pascanu, Mikolov, & Bengio,
2013).

All calculations necessary for a simple RNN (3) to compute the output ŷ(t)

at each time step on the forward pass, can specified by two equations (Lipton
& Berkowitz, 2015)

h(t) = σ(W hxx(t) +W hhh(t−1) + bh) (1)

15

Figure 3: Simple recurrent network with one input unit, one output unit
and one hidden layer with a recurrent edge.

ŷ(t) = softmax(W yhh(t) + by) (2)

where x(t), h(t) and ŷ(t) is the input, hidden state and output respectively.
Whx is the matrix of conventional weights between the input and the hidden
layer and Whh is the matrix of recurrent weights between the hidden layer
and itself. Bias parameters which allow each node to learn an offset is
represented by the vectors bh and by.

The recurrent behaviour across time steps can be visualized by unfolding it
as in figure 4. Then the network can be interpreted as a deep network with
one layer per time step and shared weights across time steps. It is clear that
backpropagation through time (BPTT) can now be applied to the unfolded
network and train it across many time steps. This is the de facto standard
how common RNNs apply it (Lipton & Berkowitz, 2015).

3.3.1 Exploding and vanishing gradients

While figure 3 and 4 describe a simple and in principle a very powerful
model, there are some common issues with RNNs which makes them hard
to train properly. The vanishing gradient and exploding gradient problems
are among the main reasons why this model tend to be so unwieldy, and
occurs when errors are backpropagated across many time steps (Pascanu
et al., 2013). The vanishing gradient problem refers to long term compo-
nents moving exponentially fast to norm zero, making it hard for the model
to update weights significantly enough for further training. Contrary, the
exploding gradient problem refers to the large increase in the norm of the
gradient during training. Large updates from gradients to weights can cause
an unstable network, and in extreme cases lead to overflowing weights and

16

Figure 4: Simple recurrent network unfolded across multiple time steps.
Note that the hidden state is passed from one hidden layer to the next one,
this is the recurrent step.

result in NaN values.

3.3.2 Long short-term memory

Long short-term memory (LSTM) is a special architecture of RNN, and
unlike other feedforward networks, LSTM has feedback connections enabling
it to more efficiently memorize longer sequences and it remembers values over
an arbitrary time interval. LSTM’s are well suited for tasks like classifying,
processing and making predictions based on time series.

LSTM was introduced in 1997 by Hochreiter and Schmidhuber as an attempt
to solve the exploding and vanishing gradient problem. RNNs have been
proven not to be as efficiently trainable by gradient descent when long-
term context is required (Bengio, Simard, & Frasconi, 1994). Error signals
from backprogation through time tends to either blow up or vanish, the
evolution of the temporal backpropagated error exponentially depends on
the size of the weights. In theory, researchers could adjust and carefully
pick parameters for the network to better learn long-term dependencies,
but in practice RNNs seem unable to learn them properly (Hochreiter &
Schmidhuber, 1997).

LSTM share a similare structure with the traditional RNN, but each ordi-

17

nary node in the hidden layer is replaced by a memory cell. It consists of
three different gates; input gate, forget gate, and output gate. Additionally
the memory cell has an input node and an internal state, all of these ele-
ments are illustrated in figure 5 and described below (Lipton & Berkowitz,
2015).

(a) Input node: Takes input from layer x(t) at the current time step
and from the hidden layer at previous time step h(t−1). An activation
function, typically tanh, is applied on the summed weighted input.

(b) Input gate: Sigmoidal unit which also takes activation from the cur-
rent data point x(t) as well as from the hidden layer at the previous
time step. It is a gate in the sense that if the value is zero, none of
the values from other nodes are flowing through. If the value is one
on the other hand, the values are passed through.

(c) Internal state: Heart of the memory cell, with self-connected recur-
rent edge of fixed unit weight and linear activation. This edge with
constant weight allows error to flow across time steps without van-
ishing nor exploding, and is therefore commonly referred to as the
constant error carousel.

(d) Forget gate: Not part of the original LSTM design described in
Hochreiter et al (Hochreiter & Schmidhuber, 1997), but introduced
in 2000 by Gers et al (Gers, Schmidhuber, & Cummins, 2000). These
gates give the network a possibility to flush the contents of the internal
state, and thus forget previous learned weights.

(e) Output gate: Multiplying internal state with the output gate yields
the ultimate produced value by a memory cell. Internal state is often
first run through a tanh activation function, this gives the output of
each cell the same dynamic range as an ordinary tanh hidden unit.

The following equations describe formally how the LSTM model works. All
calculations are done at each time step.

g(t) = φ(W gxx(t) +W ghh(t−1) + bg

i(t) = σ(W ixx(t) +W ihh(t−1) + bi

f (t) = σ(W fxx(t) +W fhh(t−1) + bf

18

Figure 5: Architectural overview of the LSTM cell.

o(t) = σ(W oxx(t) +W ohh(t−1) + bo

s(t) = g(t)�i(t) + s(t−1)�f (t)

h(t) = φ(s(t))�o(t)

where g, i, f , o, s, and h is, in the following order, input gate, input node,
forget gate, output gate, internal state, and hidden state.

19

3.4 Kernel Density Estimation

Kernel density estimation (KDE) is a nonparametric estimator that will
learn the shape of the density from the data itself. Sometimes referred to
as the Parzen’s window, the KDE is a widely used approach to estimate
the underlying probability density function of a dataset. KDE solves the
fundamental data smoothing problem from a set of random variables where
the smoothness is depending on a given bandwidth h, as seen in figure 6. Any
assumption that the underlying density function is from a parametric family
is not required, which makes KDE a very popular approach for complicated
data distributions (Chen, 2017).

Figure 6: KDE with different bandwidths; grey is the true density, red,
black and green has h equal to 0.05, 0.337 and 2 respectively. The
sample is 100 random points from a standard normal distribution (from
en.wikipedia.org/wiki/Kernel density estimation).

20

Method

Chen states that if we let X1, ..., Xn ∈ Rd be an independent, identically
distributed random sample from an unknown distribution P with density
function p, KDE can be expressed as

p̂n(x) =
1

nhd

n∑
i=1

K(
x−Xi

h
), (3)

where K is the kernel (smoothing) function and h is the bandwidth which
controls the amount of smoothing. Different kernel functions would yield
different estimates. Below is two common examples of K(x) outlined

(Gaussian kernel) K(x) = exp(−||x||2/2)
v1,d

, v1,d =
∫
exp(−||x||2/2)dx,

(Spherical kernel) K(x) = I(||x||≤1)
v2,d

, v2,d =
∫
I(||x|| ≤ 1)dx.

21

3.5 Naive Bayes classifier

The Naive Bayes classifier is a probabilistic classifier, known for its simplic-
ity and ease of use. Other state of the art classifiers, such as Support Vector
Machine, k-nearest neighbor, and Linear Least Squares, significantly out-
performs Naive Bayes (Yang & Liu, 1999). Still, Naive Bayes is frequently
used for text classification tasks and it often serves as a baseline method
because speed and ease of implementation compared to other algorithms,
which tend to be slower and more complex.

Naive Bayes assume features are independent given a class and they con-
tributes evidence individually even when features depend on each other
(Teevan, 2003). This can be expressed with the following equation

P (X|C) =
n∏
i=1

P (Xi|C) (4)

where X = (X1, ..., Xn) is a feature vector and C is a class. Despite the fact
that independence is an unrealistic assumption, Naive Bayes has proven to
be competitive in many practical applications also beyond text classification,
including medical diagnosis and system performance management (Rish,
2001).

From Bayes’ theorem we have this equation

P (A|B) =
P (B|A)P (A)

P (B)
(5)

By combining equation 4 and 5 we have the approach used by the Naive
Bayes

P (C|X) =
P (C)

∏n
i=1 P (Xi|C)

P (X)
(6)

where P (X) is identical for all classes, and therefor can be ignored. This
yields the Naive Bayes classifier

P (C|X) ∝ P (C)

n∏
i=1

P (Xi|C) (7)

22

Multinomial Naive Bayes

A Naive Bayes classifier variant using multinomially distributed data, often
encountered in text classification, is called multinomial Naive Bayes. A
Multinomial distribution models the probability for n independent trials
which have k different categories, opposed to binomial where k = 2.

Equation 8 shows the multinomial Naive Bayes model (Su, Sayyad Shirab,
& Matwin, 2011)

P (C|X) =
P (C)

∏n
i=1 P (Xi|C)fi

P (X)
(8)

where fi is the number of occurrences of a feature Xi in a feature vector X.

A common problem with both the traditional and multinomial Naive Bayes
occurs when a feature has not been associated with a given class in the
training phase, which leads to a zero probability for P (Xi|C). This scenario
will wipe out all information from this feature vector and return a zero
probability, although the rest of the features being strongly classified in
one class. Laplace smoothing is a popular way to estimate P (Xi|C) and
eliminates the zero probability by adding a small fraction to all probabilities
(Dai, Xue, Yang, & Yu, 2007). The Laplace smoothing is given by

P (Xi|C) =
1 + n(Xi, C)

|F |+ n(C)
(9)

where n(Xi, C) is the number of occurrences of the feature Xi in our training
set whose class value is C. n(C) is the total number of training examples
whose class value is C, and finally |F | represents the total number of distinct
features.

23

3.6 Kullback-Leibler Divergence

Solomon Kullback and Richard A. Leibler introduced the concept of the
Kullback-Leibler (KL) divergence in 1951 (Kullback & Leibler, 1951). KL
measures the similarity (or dissimilarity) between two different probability
distributions by calculating the cross-entropy minus the entropy given by

DKL(P ||Q) = H(P,Q)−H(P) (10)

which can be expressed in a discrete summation form for distributions P,Q
on a finite set χ as follows (Bigi, 2003)

DKL(P ||Q) =
∑
x∈χ

P (x)log
P (x)

Q(x)
(11)

The KL divergence is a non-symmetric measure of distance from P to Q,
and therefore does not satisfy the triangle inequality (Lifang, Sijun, & Huan,
2017)

DKL(P ||Q) 6= DKL(Q||P)

KL divergence value is always greater than or equal to zero. If and only
if the two probability distributions are exactly the same, the value of KL
divergence is zero

DKL(P ||Q) ≥ 0

Similar distribution will have smaller relative entropy.

Since KL is an asymmetric measure it can not be denoted as a strictly
distance metric, although Bigi describes a symmetric KL divergence variant
i.e. the Kullback-Leibler Distance (KLD) metric as

DKLD(P ||Q) =
∑
x∈χ

(
(P (x)−Q(x))log

P (x)

Q(x)

)
(12)

24

3.7 Multidimensional binary search tree

A multidimensional binary search tree, from now on known as a k-d tree
(k stands for the dimensionality of the search space), is a data structure
optimized for the storage of k-dimensional data. Each record in a file is
represented by a node, with pointers to other nodes. If both pointers is
null, the associated node is considered a leaf node of the tree. All nodes
also have a discriminator key, these keys are in the range of 0 to k − 1,
inclusive. The discriminator key decides which dimension to split, in a two
dimensional space this would alternate between the x and y plane. The root
node always has the discriminator 0 and the first two children have 1 as
discriminator. This key value continues to increase for each level down the
tree, until the kth level whom has discriminator k − 1. The (k + 1)th level
has discriminator 0 and the cycle repeats. As a rule, the next discriminator
denoted as NEXTDISC is a function defined as (Bentley, 1975)

NEXTDISC(i) = (i+ 1) mod k

where i is the level. Figure 7 gives an example of records in 2-d space stored
as nodes in a 2-d tree with discrimination key. All nodes on a given level in
the tree has the same discriminator.

Figure 7: Balanced kd-tree with discriminator keys for each level. Internal
nodes are marked as circles and leaf nodes as squares.

The leaf nodes, marked as squares in figure 7, are often called buckets. They
have a threshold that limits the maximum number of data points allowed in
each bucket. This threshold is known as the bucket size of the tree. Data
points are partitioned to different buckets based on the split value of the
internal nodes. Each internal node (a node with pointers) has a split value

25

where lesser values goes to the left branch and higher or equal values to the
right (Egas, Huijsmans, Lew, & Sebe, 1999).

There exists several different methods for choosing the appropriate split
value. Two of the most common approaches are the Friedman and Midpoint
method. The first method splits at the median of all the points, creating
two equaled sized buckets on both sides. This results in a perfectly balanced
kd-tree, which usually leads to a more compact tree and less sparsity. The
latter splits on the midpoint between the furthest points, opening up for
greater differences in number of points in each bucket. This would likely
draw more geographically desirable boundaries than the Friedman method
(Roller, Speriosu, Rallapalli, Wing, & Baldridge, 2012).

26

3.8 Evaluation metrics

Depending on the representations of ground truth and prediction different
evaluation metrics are used.

Distance-Based evaluation metrics

Distance-based metrics are used for locations represented by their geograph-
ical coordinates. For a tweet t, and a location L, a system is aiming at pre-
dicting a location L(t). The predicted location L(t) is expected to be close
to the ground truth L

′
(t). The Error Distance (ED) between prediction and

ground truth is defined by the Euclidean distance between the coordinates.
For a single tweet the ED is given by

ED(t) = dist(L(t), L
′
(t))

Evaluations are calculated on a collection of tweets, let T be the set of all
tweets. For metrics on collection level, we define Mean Error Distance (ED)

and Median Error Distance (ẼD). These are given by

ED =
1

|T |
∑
tεT

dist(L(t), L
′
(t))

ẼD = Median
tεT

dist(L(t), L
′
(t))

Another widely adopted distance based metric for collection level evaluation
is Distance-based Accuracy (Acc@d). For a predefined distance threshold d,
any prediction with error distance not exceeding d is considered a correct
prediction. Acc@d is given by

Acc@d =
|tεT : ED(t) ≤ d|

|T |

27

4 Related work

Predicting demographic information of Twitter users is a widely studied
research area, which includes studies of inferring users’ age, gender, person-
alities and profession (Xin Chen, 2015).

Another category of inference studies there has been an increasing interest
of is the prediction of location of both Twitter users and individual tweets,
primarily driven by the lack of sufficient geotagged data. Only 1-3 % of
tweets globally are tagged with geographical information such as latitude
and longitude (Li et al., 2014). The problem of location prediction associated
with objects have been widely studied in several different contexts including
Wikipedia articles (Benjamin P. Wing, 2011), web pages (Amitay, Har’El,
Sivan, & Soffer, 2004) and general text documents (Allison Gyle Woodruff,
1994). A significant difference of location prediction on Twitter compared
to other objects is the new challenges in the noisy and short nature of
tweets, but also opportunities in terms of the rich context a tweet contains.
Location prediction on Twitter can be divided into three main categories of
Twitter related locations, namely User home location, Mentioned location,
Tweet location (Zheng, Han, & Sun, 2018). User home location refers to the
task of predicting a users’ long-term residential address, often divided into
different types of location granularities. These location granularities includes
administrative regions like countries, states or citites, geographical grid cells
and geographical coordinates representing the finest granularity. In tweet
contents, users may mention the names of locations. The task of identifying
and predicting the locations of those mentions is referred to as Mentioned
location prediction. This task may provide a better understanding of tweet
contents and benefit applications like location recommendation and disaster
detection. The final category of Twitter related locations is tweet location,
and will be the focus of this project. This is the task of estimating the
geographical origin of where a tweet is posted from. By inferring tweet
location we may better understand a user’s mobility, and further exploit the
tweets content in applications for local event detection (Paul S. Earle, 2011),
location-based recommendation and targeted advertisement.

As this has been a widely studied and explored research area in recent years,
several approaches and techniques have been examined. Typical differences
in previous studies is the focus and representations of geographical areas,
and varying information exploited for inferring tweet locations. The ma-
jority of previous works focus on limited geographical areas like a coun-
try (Berggren, Karlgren, Ostling, & Parkvall, 2016) or city (Özdikis, Ra-
mampiaro, & Nørv̊ag, 2018b), while only a small amount of previous research
focus on location prediction world wide (Huang & Carley, 2017). There are

28

multiple types of location representation methods used in previous studies.
One common method for fine grained location prediction is to divide the
geographical area of interest into small grid cells, and use document classifi-
cation methods to predict which cell a tweet belongs to (Benjamin P. Wing,
2011). A limitation of this approach is that grid cells in rural areas tends to
contain very few tweets compared to grid cells in urban areas. To accommo-
date this limitation Roller et al (Roller et al., 2012) proposed an extension
to this method by using an adaptive grid representation where grid cells
contain approximately an equal amount of data.

Inference of tweet location can be based on different types of information.
A common way suited for real time processing is to base the prediction on
content from a single tweet (Özdikis et al., 2018b), e.g, word-centric and
location-centric methods. Due to the short and noisy nature of tweets there
exists methods to enrich the available information. This includes methods
for inference based on twitter network, tweet history or tweet context. Ex-
amples of using such enriched information is to use information like a certain
number of tweets from a users’ timeline (Pengfei Li & Pan, 2018), or the use
of social relationships (Jurgens, 2013). In terms of tweet context there has
been proposed methods for exploiting posting times or time zones for tweet
location prediction (Dredze, Osborne, & Kambadur, 2016).

Various techniques from several areas have been proposed to make accurate
predictions, including the areas of information retrieval, machine learning
and natural language processing (Zheng et al., 2018). Multinomial Naive
Bayes (MNB) and Kullback-Leibler (KL) divergence with varying enhance-
ments are among the most widely applied methods. Ozdikis et al proposed
a location prediction method using the grid-based approach for tweets based
on the geographical probability distribution of their terms over a region. In
this method the probabilities are calculated using Kernel Density Estima-
tion (KDE), with term-specific bandwidth selection (Özdikis, Ramampiaro,
& Nørv̊ag, 2018a). Another grid-based method proposed by Ozdikis et al
used term co-occurrences in tweets that exhibit a spatial clustering or dis-
persion tendency with significant deviation from the underlying single-term
patterns. Ripley’s K-function is used to analyze the geographical distribu-
tion of terms and term pairs, where terms yielding a significant clustering
or dispersion tendency are used to extend the feature space in probabilistic
language models (Özdikis et al., 2018b).

In addition to the widely proposed range of statistical methods, neural net-
works is another technique that has gained recent interest to issue the prob-
lem of location prediction of tweets (Zheng et al., 2018). The use of neural
networks on geolocation problems seems to be a relatively new approach, and
results states that this technique deserves further research. Examples of pre-

29

vious studies exploiting neural networks includes the work of Iso et al (Iso,
Wakamiya, & Aramaki, 2017), which use a convolutional mixture density
model fed by tweet content, to estimate parameters of the mixture model.
The mode value of estimated density is treated as the predicted coordinates
for tweets. Other works applying neural network models are the works of
Miura et al (Miura, Taniguch, Taniguchi, & Ohkuma, 2017), which uses a
complex network that unifies text, metadata and user network representa-
tions, and Rahimi et al (Rahimi, Cohn, & Baldwin, 2017) which proposes
a simple text-based geolocation model with one hidden layer. Huang et al
propose a method of using convolutional neural networks to predict the ge-
olocation based on information in a single tweet (Huang & Carley, 2017).
Another method of combining tweet text with metadata (user description,
user location, user name, timezone) for training a Long Short-Term Memory
based classifier is proposed by (Thomas & Hennig, 2017).

To best of our knowledge the proposed method differs from the latter deep
learning studies by exploiting the grid based approach for modelling ge-
ographical space, where we examine both the uniform and adaptive dis-
tribution. Due to the problem of reproducing AI research (Gundersen &
Kjensmo, 2018), the results will mainly be compared to state of the art
statistical methods for the geolocation problem.

30

5 Location prediction using neural networks

In a grid-based approach the geographical region of interest is discretized
into smaller grid cells. Our approach for geolocation assigns the grid cell
most probable of containing a given tweet. In this section we describe the
details of our proposed location prediction method and give a brief overview
of baseline methods used for comparison. The proposed method is tested on
several different datasets using two approaches for geographical modelling,
namely uniform and adaptive grid, both described in this section.

5.1 Approach

To explore the use of deep learning to issue the geolocation problem de-
scribed in section 2.2, our proposed method is based on neural networks
where we train a model to predict the grid cell most probable of contain-
ing a given tweet. As mentioned in section 2.2, Twitter data contains a
lot of interesting contextual information that may be utilized. Therefore
we propose models based solely on tweet text, but also models using addi-
tional contextual information. The proposed network architectures benefits
mainly from the power of Recurrent Neural Networks 3.3, where we use two
different architectures.

• The first one is based on RNN and utilizes the sequence processing
ability of LSTMs (3.3.2), and is referred to as LSTM in the result
section.

• The second one is based on a combination of recurrent and convolu-
tional (3.2) neural networks, and is referred to as LSCN in the result
section. The idea is that the CNN calculates a higher-level represen-
tation of the data, and has shown good results for text classification
(Zhou, Sun, Liu, & Lau, 2015).

31

5.2 Text-based approach

The most general and simple model to infer geolocation is based on tweet
text only. This is due to the availability of contextual metadata being differ-
ent from data source to data source, e.g, the metadata available on Twitter
is different from Facebook or Newspaper articles. The development of a
model exploiting tweet text only will enable the approach to be tested on
other domains. The tweet text is tokenized and converted into word embed-
dings before being forwarded to LSTM / Convolutional layers. The proposed
network architectures for the text-based approach are presented in figure 8.

(a) LSTM

(b) LSCN

Figure 8: Network architectures exploiting tweet text only

32

5.3 Text and metadata approach

To investigate the impact of contextual information in terms of more ac-
curate location prediction, we develop a model exploiting Twitter specific
metadata. This includes the textual features of text, username, user de-
scription and the categorical features of user language and posting time.
Individual models are created for each feature. These individual models are
merged after initial encoding and forwarded to the output layer. The textual
features are tokenized, converted into word embeddings, and forwarded to
LSTM / Convolutional layers, whereas the categorical features are one hot
encoded and forwarded to Dense (Fully connected) layers. The proposed
network architectures for the metadata approach are presented in figure 9.

(a) LSTM

(b) LSCN

Figure 9: Network architectures exploiting text and metadata

33

5.4 Baseline methods

As the baseline for comparison we used the state of the art method of
Locality-adapted Kernel Densities (Özdikis et al., 2018a). The results pre-
sented in the LocKDE paper states that the method significantly outper-
forms previous work, including methods based on Multinomial Naive Bayes
and Kullback-Leibler. Due to these strong results LocKDE is chosen as the
baseline method.

The LocKDE method is based on Kernel density estimation 3.4, and is a
method for the geolocation problem based on the geographical probability
distribution of tweet terms over a region. For this particular method the
locality-adapted bandwidths is based on the information gain ratio (IGR),
which is an information theoretic metric used to obtain location indicative
terms. After estimating the probability density functions for each term,
these functions are used to assign probability masses to grid cells. This is
done by calculating the probability of observing term t in a specific grid
cell. After training, prediction for a new tweet is performed by selecting the
grid cell maximising the cumulative probability based on the the probability
distributions of the tweet terms.

In our case this method was implemented by using the github repository
tweet-localization-LocKDE provided by Özer Özdikis.

34

https://github.com/oozdikis/tweet-localization-LocKDE

5.5 Geographical modelling

Except from exact coordinates, city level is the finest granularity we can
obtain directly from the twitter dataset. For large cities with millions of
tweets it might be desirable to partition it even further, into sub-areas. One
way to accomplish such results is to create a grid-based system overlaying
the city, defining nearby tweets as one logical area.

The most trivial solution to this problem would be to construct a grid with
equal sized grid-cells within a defined boundary. This approach is called a
uniform grid and it is a widely used method due to its simplicity. An obvious
limitation is the number of data points in each cell. Grid-cells are purely
created based on their location and not the density of the data points. This
results in sparse and overly dense regions, and it is complicated to ensure
roughly equal number of points in each cell. Adaptive grids tries to solve
this problem by dividing a geographical area into grid-cells based on the
density of data. Sparse regions get larger cells, and similarly dense regions
get divided into smaller cells. Below are both methods outlined in further
detail and their implementation explained.

5.5.1 Uniform grid

A uniform grid consists of a m× n matrix with columns of equal width and
rows of equal height. Thus, all grid-cells are equal in size and defined inside
a fixed boundary. Figure 10 shows an example of a 5× 5 grid over an area
with data points.

To create a uniform grid overlaying a city, we have to define the boundaries.
Coordinates bounds are collected through the Nominatim Api. A query
specifying the city is issued and a list of results are returned in relevant
order, the most likely result as the first item. A query for Manhattan NY
might look like this

q=manhattan,new+york,us

where manhattan is the place name, new+york is the name of the state, and
us is the country. The above query would return a result similar to this in
listing 2 (the first element is chosen).

35

https://nominatim.openstreetmap.org/

Figure 10: Uniform grid with 5× 5 number of cells.

Listing 2: Result of a Nominatim Api search for Manhattan NY

{
” p l a c e i d ” : 199324647 ,
” l i c e n c e ” : ”Data OpenStreetMap cont r ibuto r s , . . . ” ,
” osm type ” : ” r e l a t i o n ” ,
” osm id ” : 8398124 ,
”boundingbox” : [

” 40.6996823 ” ,
” 40.8777963 ” ,
”−74.0194416” ,
”−73.9101872”

] ,
” l a t ” : ”40 .7900869” ,
” lon ” : ”−73.9598295” ,
” display name ” : ”Manhattan , New York County , . . . ” ,
” c l a s s ” : ”boundary ” ,
” type ” : ” a d m i n i s t r a t i v e ” ,
” importance ” : 1 .09014193609354 ,
” i con ” : ” https : // nominatim . openstreetmap . org / images / . . . ”

}

The most interesting part here is the boundingbox field. From this the
north-east and south-west bound is created, boxing in the region of inter-
est. Number of rows and columns are determined from a density constraint,

36

given in kilometres. To convert degrees into kilometres a very simple con-
version is used. At equator each latitude is 110.567 kilometers apart and
at each poles the distance is 111.699 kilometres. This gives us an approx-
imation of 111 kilometres between latitudes, regardless of where the tweet
is located. However, longitudes starts out with 111.321 kilometres between
each degree at equator, but this gradually shrinks to zero as they meet at
the poles. Following function outputs the length of the longitude distance
given a latitude

longkm = L× cos(φ)× d

where L is the distance constant (111 kilometres), φ is the latitude in radians,
and d is the distance in degrees.

The actual grid-cells may differ some in length from the given density. Since
the boundary is already fixed, the cell length has to be rounded off to fit a
whole number of cells inside the grid.

5.5.2 Adaptive grid

The adaptive is adjusting each cell depending on the density and thus tries
to overcome the shortcomings of the uniform grid. An alternative way of
splitting the points in figure 10 is shown in figure 11. There exists several
methods to partition data points in an adaptive manner, one of them is
called k-d tree. When partitioning geolocation data, we consider the surface
of the earth to be a 2-dimensional space (k=2), consisting of latitude and
longitude pairs. By partitioning geolocated data points with k-d tree, dense
regions gets finer granularity opposed to sparse regions which have coarser
granularity.

All points starts out in the root node and gets split into two nodes if the
total number exceeds the bucket size. The same procedure happens over
and over with all leaf nodes until all buckets have points below a given
threshold. When splitting an overflowing node, the midpoint method is
used, resulting in an unbalanced tree. Additionally there is a tweets limit
parameter, effectively filtering away nodes with a very low count of data
points.

37

Figure 11: Adaptive grid approach for partitioning data points based on the
density.

5.5.3 Partition location method

For each grid cell a point of center has to be chosen. The most trivial so-
lution would be the geographically center, determined by the height and
width of the rectangle. Although this approach is just fine for smaller cells,
it ignores the fact that a great number of cells have an imbalance in the
dispersion of data points. Larger cells may have data points grouped to-
gether in one corner and the geographical center does not represent these
points sufficiently. As an alternative to the traditional center, we select the
centroid of the locations of all the data points located in that cell. The
centorid represents the arithmetic mean position of all points present, and
effectively moves the center to the ’center of mass’. As mentioned, this will
affect larger cells in a greater extent and small cells will have an insignificant
difference in absolute distance between a center or centroid prediction.

It is especially important for the k-d tree to use the centroid method, regions
with very low density results in cells spanning over large areas. With centroid
it is possible for these large leaves to still be in the mix, predicting locations
within them that have the greatest data density.

38

6 Evaluation

For the evaluation of this project we introduce four different datasets from
the geographical regions of Manhattan, Los Angeles, Paris and London. The
three former is used for the baseline comparison, and the latter is used for
the metadata comparison. The experiment is presented by describing the
structure and preprocessing steps of the training data, and how to feed the
data to the neural classifier. This includes an outline of the results section
and how the results are presented regarding baseline and metadata compar-
isons, and the evaluation metrics used. To present the accurate comparison
of the uniform and adaptive grid approach it is crucial to find the best set-
tings for both approaches respectively. For the uniform grid this involves
finding the optimal size of grid cells in terms of prediction accuracy for each
dataset, and the optimal bucket size on the same terms for the adaptive
grid. These grid settings are developed in a tuning section before the results
are presented using the prepared grid values. After presentation, the results
are discussed on the basis of the research goals of this project.

6.1 Dataset

In order to train neural network models and compare to results published
by other researchers, several different datasets have been acquired. All sets
consists of geotagged tweets from different geographical regions. In addition
to latitude and longitude values, it is crucial to have the tweet text available.
All other types of metadata provided by twitter is optional, and there is
some differences across the datasets regarding how much information they
contain beyond tweet text and coordinates. The datasets are collected using
the Twitter Streaming API, following common practice for tweet filtering.
This includes the exclusion of duplicate tweets, tweets from users with more
than 1000 friends or followers, and tweets from users posting more than two
times daily.

6.1.1 Manhattan

The Manhattan dataset consists of 51 529 tweets from 19 124 unique users.
46 432 tweets are tagged with ’en’, denoting tweets written in English. Dis-
tribution of tweets are seen in figure 12a.

39

(a) Manhattan, NY (b) Los Angeles, CA

(c) Paris (d) London

Figure 12: Heatmap of tweet locations in four different cities, where green
is low density of tweets and red is high.

6.1.2 Los Angeles

The Los Angeles dataset is the smallest dataset with 39 870 tweets, includ-
ing 14 667 unique users and 35 884 English tweets. Distribution of tweets
are seen in figure 12b.

6.1.3 Paris

The Paris dataset is roughly three times bigger than Manhattan, with 152
123 tweets. Limited metadata available, where only latitude, longitude, and
tweet text are included within each tweet.

6.1.4 London

The London dataset consists of 69852 tweets and is collected between
February and April 2019. In addition to latitude, longitude, and tweet text,
all features listed in table 1 is present in this dataset.

40

6.2 Experiment

The geographical area of interest is divided into uniform or adaptive grid
cells as described in section 5.5, and shown by example in figure 15a. Each
grid cell is assigned an id (GCID), stored together with bottom left and top
right corner in a grid file. A chunk of a grid file is shown in table 2.

Table 2: Example of content in grid file

GCID Lat-min Lon-min Lat-max Lon-max

0 40.6996823 -74.0194416 40.719472745 -73.992128

1 40.719472745 -74.0194416 40.739263189 -73.992128

2 40.739263189 -74.0194416 40.75905363 -73.992128

3 40.75905363 -74.0194416 40.778844078 -73.992128

Each tweet is assigned to a grid cell based on the associated GPS coordinates
resulting in a tweets file containing tweet data and assigned cell id.

Table 3: Example of content in tweets file with dummy text.

GCID Latitude Longitude Tweet text

0 40.7142 -74.0064 Aliquam eleifend est quis mauris.

1 40.7203431 -74.01383173 Quisque tempor consequat risus.

2 40.7395058 -74.008293 Donec eu posuere libero.

The text is tokenized using the TweetTokenizer from nltk. To reduce data
sparsity we also exclude single characters, tokens that appear in less than 5
tweets, and twitter shortened hyperlinks as they carry no meaningful con-
textual information. The datasets are split into training and validations sets
using a randomly selected share of 95% for the training set, and 5% for the
validation set. No restriction in tweet language is applied.

To feed the data through a feed forward neural network we convert the tex-
tual data into sequences using the Tokenizer from the Keras library, and
apply zero padding to ensure equal length input vectors. In the training
phase of our neural network these sequences are passed as training data,
together with one hot encoded vectors of target data built from the associ-
ated grid cell ids. A softmax distribution is used to select the grid cell with

41

highest probability from a series of n different outcomes. The training phase
results in a neural model trained to predict probable grid cells for a given
tweet. In the prediction phase the validation data is preprocessed equally
as in the training phase, and is fed to the pretrained neural model. Based
on the output we select the grid cell with highest probability of containing a
given tweet, resulting in a predicted grid cell. To derive a set of coordinates
from the predicted grid cell we calculate the centroid as described in section
5.5.3. This centroid represents the predicted tweet location and is used as
basis to calculate the error distance, representing the distance between pre-
dicted and true tweet location. In the results section we present results for
both the LSTM and LSCN model described in section 5.1.

For comparison we implemented the baseline method of LocKDE as de-
scribed in section 5.4. This baseline is selected due to its ability to yield
strong results and high accuracy compared to other widely-used techniques
in the literature like MNB and KL-divergence. Based on the results ob-
tained in (Özdikis et al., 2018a), we implement the LocKDE under the
locality adapted bandwidth enhancement, and the enhanced weighing of
probabilities based on IGR.

In additon to the baseline comparison utilizing tweet text only, we present a
section comparing models built using tweet text only against models utilizing
text and metadata. In terms of twitter, various metadata is available using
the Twitter streaming API as described in section 2.2. The London dataset
contains such metadata information where we exploit the contextual features
of user language, posting time, username and user description. The textual
features of username and user description are tokenized equally as tweet
text. The categorical features of user language and posting time are one hot
encoded, where the former is given as ISO 639-1 codes (two-letter country
codes), and the latter is converted from a UTC timestamp to a categorical
hour of day value (24 hour clock). These features are used to build a neural
model as described in section 5.3. The results for the metadata combinations
are conducted on the LSTM based model, presenting the results in table 8.

42

To compare the results of different methods datesets, we are following pre-
vious work of tweet geolocation prediction by using the following evaluation
metrics:

• Median: The median error distance between the predicted location
and the true tweet location.

• Accuracy : The percentage of tweets assigned to the correct grid cell.

• Acc@d : The percentage of tweets assigned coordinates within a dis-
tance d of the true coordinates. Using d = 0.5km, d = 1.0km and
d = 2.0km.

The results are divided into different sections, where we present the geo-
graphical modelling and evaluation metrics for Manhattan in section 6.4.1,
Los Angeles in section 6.4.2 and Paris in section 6.4.3. These sections con-
tains baseline comparisons under the evaluation metrics presented above,
together with uniform against adaptive grid modelling. In section 6.4.4 we
present results for our proposed method comparing the text only approach
against the text and metadata approach.

43

6.3 Tuning

Specific parameters were tuned for optimal results; (1) bucket size and tweets
limit, (2) uniform grid size of each cell, (3) the partition location method.
All results are tuned with respect to median error distance.

Bucket size and tweets limit. For the bucket size there is a golden
middle way between large and small buckets. Too large buckets tend to
produce vast areas with higher average distance to the center or centroid.
This will affect the precision even when the correct leaf is chosen. There
is also a greater risk for contextual separated areas to be mashed together
with larger bucket sizes.

On the other hand, too small bucket sizes should also be avoided due to fewer
documents available for training. Very small leafs could potentially split up
areas with the same location keywords attached to them (eg. street name),
and hence the model has an almost impossible task distinguishing different
areas. One way of enforcing a minimum number of tweets in each leaf is by
introducing a threshold variable. Leaves with a tweet count below a specific
tweets limit should be discarded, leading to fewer coarse areas. Here, there
is also a trade off between discarding too few or too many tweets. A lower
limit could possibly not solve the beforehand mentioned problem, whereas
a high limit would probably take out far too many areas.

(a) Manhattan (b) Los Angeles (c) Paris

Figure 13: Threshold test of bucket size and tweets limit. All datasets favor
smaller bucket sizes, but there seems to be no clear choice regarding tweets
limit. There are some difference between the test-parameters, Manhattan
was tested with slightly higher tweet limit and Paris has additional bucket
size tests at lower range.

Figure 13 presents different tests with varying bucket and tweets limit sizes.
Three different tweets limits and a span from 50 to 800 with increments of
50 as bucket size were tested. Additionally, bucket size 20, 30 and 40 was
tested for the Paris dataset, as initial runs indicated that we needed further
investigation of optimal bucket size. For the Manhattan dataset, as seen

44

in figure 13a, we found optimal bucket size of 150 and tweets limit of 10.
Similar results for the Los Angeles dataset in figure 13b, best performing
parameters are bucket size of 50 and tweets limit of 15. Finally, we have
Paris (13c) with exactly the same parameters as Los Angeles, bucket size of
50 and tweets limit of 15.

Cell size. Threhshold tests of optimal cell size for the uniform grid parti-
tioning. Following tests was conducted; cell sizes of 1.0, 1.5, 2.0 and 3.0 km.
Paris also had one test run at 0.707 km. According to the results in figure
14, we choose a cell size of 1 km for the Manhattan dataset, 1.5 km for
the Los Angeles dataset, and 0.707 km for the Paris dataset.

Figure 14: Threshold test of cell size. Clear advantage for smaller cells,
especially for Manhattan and Paris. Paris also had one additional cell size
test due to large area and number of tweets.

Partition location method. Table 4 shows that the centroid method
always performs better than center, although the difference is quite low.
All three datasets have considerably small areas with very high density of
tweets. In practice generating a majority of tiny cells which have an almost
insignificant difference between center and centroid. Datasets spanning over
greater areas would most certainly have even more superior results with the
centroid method compared to the center method.

45

Table 4: Comparing centroid vs center for partition location method. Best
result in bold.

Grid City Centroid Center

Manhattan 512 565

Uniform Los Angeles 910 1052

Paris 277 353

Manhattan 259 289

Adaptive Los Angeles 1013 1039

Paris 315 355

46

6.4 Evaluation Results

This section contains results for the different methods and datasets. We
compare the baseline method LocKDE against our two proposed methods;
LSTM and LSCN. The comparison includes both uniform and adpative grid
measured against the evaluation metrics described in section 3.8.

6.4.1 The Manhattan dataset

The Manhattan dataset is described in section 6.1.1. The distribution of
tweets for both the uniform and adaptive approach is shown below in figure
15.

47

(a) The uniform grid representation of Manhattan using grid cells
of 1x1 kilometers.

(b) The adaptive grid representation of Manhattan

Figure 15: Geographical modelling of Manhattan

The evaluation metrics for the different methods are given in table 5. For
the uniform approach, LSTM achieves better results for all metrics, with
LSCN as a close number two. The adaptive grid produces superior results
regarding median error distance and Acc@0.5km. However, LSTM with
uniform grid has the best overall performance with highest score in three
out of five metrics.

48

Table 5: Results for the Manhattan dataset

Grid Evaluation metric LSTM LSCN LocKDE

Median (m) 512 514 543

Accuracy 0.573 0.569 0.547

Uniform Acc@0.5km 0.489 0.488 0.472

Acc@1.0km 0.619 0.616 0.610

Acc@2.0km 0.745 0.721 0.732

Median (m) 271 280 -

Accuracy 0.494 0.492 -

Adaptive Acc@0.5km 0.536 0.534 -

Acc@1.0km 0.589 0.585 -

Acc@2.0km 0.699 0.683 -

49

6.4.2 The Los Angeles dataset

The Los Angeles dataset is described in section 6.1.2. The distribution of
tweets for both the uniform and adaptive approach is shown below in figure
16.

(a) The uniform grid representation of Los Angeles using grid cells
of 2x2 kilometers.

(b) The adaptive grid representation of Los Angeles

Figure 16: Geographical modelling of Los Angeles

50

The evaluation metrics for the different methods are given in table 6. This
yields fairly similar results for all models in terms of the uniform grid, but
again the LSTM model is superior. Comparing the uniform and adaptive
grid approach for this dataset shows best overall performance for the uniform
grid, however, the adaptive grid yields an increase of approximately 10 %
for the Acc@0.5km metric.

Table 6: Results for the Los Angeles dataset

Grid Evaluation metric LSTM LSCN LocKDE

Median (m) 910 982 933

Accuracy 0.519 0.510 0.506

Uniform Acc@0.5km 0.357 0.348 0.341

Acc@1.0km 0.523 0.511 0.512

Acc@2.0km 0.614 0.599 0.603

Median (m) 1002 934 -

Accuracy 0.496 0.502 -

Adaptive Acc@0.5km 0.462 0.473 -

Acc@1.0km 0.492 0.506 -

Acc@2.0km 0.567 0.576 -

51

6.4.3 The Paris dataset

The Paris dataset is described in section 6.1.3. The distribution of tweets
for both the uniform and adaptive approach is shown below in figure 17.

(a) The uniform grid representation of Paris using grid cells of 1x1
kilometers.

(b) The adaptive grid representation of Paris

Figure 17: Geographical modelling of Paris

The evaluation metrics for the different methods are given in table 7. This
yields impressive results for the LSTM model, beating LSCN and LocKDE
by a substantial margin. Also noteworthy is the median error distance value

52

of LSTM for adaptive grid.

Table 7: Results for the Paris dataset

Grid Evaluation metric LSTM LSCN LocKDE

Median (m) 277 625 624

Accuracy 0.641 0.471 0.435

Uniform Acc@0.5km 0.646 0.487 0.477

Acc@1.0km 0.681 0.523 0.532

Acc@2.0km 0.715 0.584 0.589

Median (m) 58 681 -

Accuracy 0.534 0.428 -

Adaptive Acc@0.5km 0.610 0.496 -

Acc@1.0km 0.634 0.536 -

Acc@2.0km 0.684 0.587 -

53

6.4.4 The London dataset

The London dataset is described in section 6.1.4 and is divided into adaptive
grid cells as shown in figure 18.

Figure 18: Adaptive grid representation of London with contained tweets

The evaluation metrics for the different metadata combinations are given in
table 8. This yields an increasing prediction performance the more metadata
features incorporated into the model. Thus, the best results are given by the
model exploiting the features of text, posting time, username, user language
and user description.

54

Table 8: Results for the London dataset

Evaluation metric Text Text
Posting time

Username
User language

Text
Posting time

Username
User language

User description

Median (m) 798 626 427

Accuracy 0.466 0.488 0.517

Acc@0.5km 0.464 0.486 0.515

Acc@1.0km 0.514 0.535 0.571

Acc@2.0km 0.572 0.592 0.638

55

6.5 Evaluation Discussion

For our geographical modelling and baseline comparison given for the dif-
ferent datasets in table 5, table 6 and table 7, the best results are written in
bold. The Median metric has been chosen as our primary comparison basis,
and all models are selected based on their median performance. Although,
Accuracy within a certain distance would indeed serve as a satisfactory base-
line and there seem to be a strong correlation between Median and Acc@n.
All further discussion with reference to performance will be in regard to
these metrices, if not otherwise stated. This yields that our proposed meth-
ods using the LSTM based network significantly outperforms the baseline
of LocKDE and the LSCN network for all datasets.

To investigate the differences in tweet prediction we examined each model us-
ing a small test set in order to identify which tweets were classified correcly,
and which ones were not. This examination indicates that the LocKDE
method relies heavily on location indicative terms like place and street
names, and classifies multiple tweets to the correct area, but to neighbour-
ing cells instead of the correct grid cell. For the neural models it is hard
to identify a pattern as both tweets with and without location indicative
terms are correctly classified. Overall the accuracy difference comparing the
models is relatively limited, but there is a great difference in which tweets
each approach classified correctly. The neural models have the ability to
learn more complex patterns automatically, resulting in correct prediction
of a greater variety of tweets. However, the neural models seems to misclas-
sify a small fraction of tweets by a substantial margin, which is an event
occurring less frequently for the LocKDE method. In terms of the LSCN
compared to the LSTM model the results indicates that the LSCN model
does not benefit from the feature extraction in the convolutional layer, and
thus resulting in slightly worse performance than the pure LSTM model.

6.5.1 Grid partitioning method

There are some differences in terms of best results comparing the uniform
and adaptive grid approach. The Accuracy metric is not directly comparable
due to a various number of grid cells and size. All runs are performed at
city level, in small defined areas with high density of data points. This
precondition allows small partitioned grids to be designed, as seen in figure
19. Both approaches favor smaller cell size as we can see from figure 14 and
13, producing a preponderance of tiny grid cells. Nonetheless, the adaptive
grid has potential to partition even further and create a finer grid layout.

56

(a) Uniform grid (b) Adaptive grid

Figure 19: Difference between uniform and adaptive grid partitioning for the
area surrounding the Eiffel Tower. Blue squares represents grid cells and red
’dot’ indicates that the cell is one single point. The high concentration of
tweets can not be represented by (a) and it encapsulates the Eiffel Tower
area in four big cells compared to (b).

Still, there are no clear advantage to either methods and they perform quite
similar on the Paris dataset. However, uniform grid partitioning for Paris
at 0.707 km requires substantial computing power to be generated, and this
will grow exponentially with respect to the grid size. In case of the adaptive
method, increase in grid size would not penalize the performance as much
due to grid cells adjusting size based on density and ignoring spaces where
no tweets are located, making adaptive grids more scalable and robust to
vast areas.

Considering the Grand Palais in figure 20, a large historic site, exhibition
hall and museum located at the Champs-Élysées. The uniform grid locates
the whole palace and some additional nearby area into one grid cell, as
opposed to the adaptive method which partition it into multiple cells. A
test set of 20 tweets located in the Grand Palais was classified by both
models and the results are listed in table 9. As expected, all tweets are
classified correct by the uniform model, but with a median error distance
of 155 meters. This indicates that the centroid is approximately 150 meters
away from the Grand Palais, and all predictions belonging to this place
would suffer a penalty regarding the median error distance metric.

The adaptive grid does in practice the opposite, splitting a contextual iden-
tical area into multiple smaller grid cells. Effectively initiating a system
where distinguishing between the different grid cells are in fact an almost
impossible task. The accuracy tells us that only 14 out of 20 tweets got
classified correct, but since the cells are all mashed together, the overall
performance does match the uniform model. This small example illustrates
some of the advantages and shortcomings for both methods. A more optimal

57

Table 9: Results for the Grand Palais in Paris, running a small test set
containing 20 tweets.

Evaluation metric Grid

Uniform Adaptive

Median (m) 155 0

Accuracy 1.0 0.7

Acc@0.5km 1.0 0.95

Acc@1.0km 1.0 0.95

Acc@2.0km 1.0 0.95

solution is probably something in between, an assembly where small nearby
cells are merged together, creating a single cell representation of smaller
areas belonging to the same location. Certainly, there is an option to en-
large the bucket size for the kd-tree, uniting some of the smaller cells, but
this would also without question raise the average cell size and potentially
create huge cells in less dense areas. An approach where large buckets are
allowed and the average cell size is still below an acceptable limit, should be
desirable. At this point, the kd-tree implementation is not capable of such
requirements, and necessary modifications are required.

6.5.2 Partition location method

Results from table 4 indicates a clear advantage for the centroid over the
center method for partition location. Centroid outperforms the latter for
all datasets and grid partition types. Still, there is no major difference in
the resulting median error distances among the two methods, nevertheless,
all have been beaten by a substantial margin. Center predicts on average
18% longer median error distances for uniform grid partition than centroid,
and 9% longer for adaptive grid partitioning.

Interestingly, uniform grids seem to benefit greater from the centroid method.
The adaptive approach will create grid cells covering just one single coordi-
nate in areas with the most extensive number of tweets. Take figure 19 as
an example, The Eiffel Tower is an tremendously popular tourist attraction
located in Paris, and vast amounts of people will tweet from the exact same
location and nearby. This phenomena would force adaptive grids to create
single point or immensely small cells, as seen sin figure 19b, which implies
that the partition location method used is almost irrelevant. Obviously,

58

(a) Uniform grid (b) Adaptive grid

Figure 20: Two test sets, one for each partition method, containing 20
tweets located inside the Grand Palais. Tweets are marked as purple points
on the map, darker color indicates multiple points at the same location. (a)
partition the palace into one single grid cell, including adjacent locations
outside the palace. (b) splits the palace into numerous smaller grid cells,
even separating cells that are essentially on top of each other.

there will always be larger cells present, but the chunk of tweets contained
in these are modest in comparison. From figure 17 showing tweets distri-
bution in Paris, it is easy to spot an abundance of tweets in the city center
compared to the surrounding cells. Uniform grids on the other hand, does
not get influenced by tweet density, and all cells will in some sense have an
positive effect of the centroid method.

6.5.3 Metadata

In terms of our method exploring the effect of incorporating metadata fea-
tures into the neural models, the results are presented in table 8 for the
London dataset. The leading results are presented in bold. This shows that
the more contextual features utilized in combination with text the better re-
sults. Comparing the pure text model against the model exploiting posting
time, username and user language yields an improved median error distance
of 178 meters, and an improvement in accuracy metrics of approximaterly
2 %. Ragarding the posting time feature this may indicate that Twitter
users are active at different hours of the day for various geographical re-
gions. This feature is similar to the Timezone feature, but is used to explore
temporal differences within the same timezone. If the test was conducted

59

for datasets covering a larger geographical area spanning plural timezones,
the Timezone feature could provide valuable spatial information. The user
language feature represents the user’s preferred language, which may give
information about the geographical origin of the user. An improvement in
accuracy by exploiting this feature may imply that users with the same pre-
ferred language or geographical origin tweets from the same geographical
areas. This makes sense by for example the demographics of London where
people with the same ethnicity tend to settle down in particular geographi-
cal regions. The username feature mostly consists of random names which
may not provide any spatial information beyond mapping the same user to
the same location for different tweets. However, some usernames contains
geo-indicative terms which may increase the prediction accuracy.

By expanding the previous metadata model by including the user descrip-
tion feature, we obtain an improvement in median error distance of 371
meters, and an improvement of 5-6 % for the different accuracy metrics
compared to the pure text model. This yields an additional improvement
of approximately 200 meters in median error distance and 4 % in the accu-
racy metrics just by adding the user description. The user description is a
summary describing the user and expressing current interests in maximum
160 characters. By exploiting this feature we provide a considerable amount
of contextual information to each tweet, and by reviewing the dataset we
observe that most descriptions contain clear location indicative terms. This
yields a significant improvement in prediction accuracy.

Twitter data contains an extensive amount of contextual metadata which
may not be the case for all relevant domains or platforms considering the
geolocation problem. However, if such metadata is available, these results
states that it should be incorporated into the models to improve prediction
accuracy.

60

7 Conclusion and further work

In this project we have investigated the use of deep learning to issue the
geolocation problem, where we proposed a method using recurrent neural
networks in combination with a grid based approach for geographical mod-
elling. Based on information in a single tweet we predict the grid cell most
probable of containing the given tweet. The inferred location is derived from
the grid cell using the centroid of all data points present in the predicted
cell. The evaluations conducted on three datasets representing different ge-
ographical regions yields a significant improvement in accuracy compared
to state of the art methods. Our experiments comparing pure text models
against models exploiting contextual metadata yields a significant improve-
ment in prediction accuracy by extending the feature space with features
like posting time, user language and user description. Due to the strong
results obtain in this project it is obvious that deep learning deserves fur-
ther investigation regarding the geolocation problem. The implementation
is available at Github.

In future work the proposed method can be applied to infer fine-grained
locations on a larger scale than relatively small urban areas like Paris and
London. On a global scale the whole world map can be used as the geograph-
ical area of interest, which may set higher requirements to the geographical
modelling. Other methods for grid partitioning will be explored, and cluster-
ing of data seems like a very interesting approach to investigate more closely.
In terms of the metadata models we plan to exploit features like images and
content behind linked URI’s to strive for more accurate predictions.

61

https://github.com/erlenlo/neural-location-prediction

References

Allison Gyle Woodruff, C. P. (1994). Automated geographic indexing of text
documents.

Amitay, E., Har’El, N., Sivan, R., & Soffer, A. (2004). Web-a-where: geotag-
ging web content. In Proceedings of the 27th annual international acm
sigir conference on research and development in information retrieval.
SIGIR.

Bengio, Y., Simard, P., & Frasconi, P. (1994, March). Learning long-
term dependencies with gradient descent is difficult. Trans. Neur.
Netw., 5 (2), 157–166. Retrieved from http://dx.doi.org/10.1109/

72.279181 doi: 10.1109/72.279181
Benjamin P. Wing, J. B. (2011). Simple supervised document geolocation

with geodesic grids.
Bentley, J. L. (1975). Multidimensional binary search trees used for asso-

ciative searching. Communications of the ACM , 18 (9), 509–517.
Berggren, M., Karlgren, J., Ostling, R., & Parkvall, M. (2016). Inferring

the location of authors from words in their texts.
Bigi, B. (2003). Using kullback-leibler distance for text categorization. In

Proceedings of the 25th european conference on ir research (pp. 305–
319). Berlin, Heidelberg: Springer-Verlag. Retrieved from http://

dl.acm.org/citation.cfm?id=1757788.1757818

Chen, Y.-C. (2017, 04). A tutorial on kernel density estimation and recent
advances. Biostatistics & Epidemiology , 1 . doi: 10.1080/24709360
.2017.1396742

Dabel E. Rumelhart, R. J. W., Geoffrey E. Hinton. (1988). Learning repre-
sentations by back-propagating errors.

Dai, W., Xue, G.-R., Yang, Q., & Yu, Y. (2007). Transferring naive
bayes classifiers for text classification. In Proceedings of the 22nd na-
tional conference on artificial intelligence - volume 1 (pp. 540–545).
AAAI Press. Retrieved from http://dl.acm.org/citation.cfm?id=

1619645.1619732

Dredze, M., Osborne, M., & Kambadur, P. (2016). Geolocation for twitter:
Timing matters.

Egas, R., Huijsmans, N., Lew, M., & Sebe, N. (1999). Adapting kd trees
to visual retrieval. In International conference on advances in visual
information systems (pp. 533–541).

Gers, F. A., Schmidhuber, J. A., & Cummins, F. A. (2000, October).
Learning to forget: Continual prediction with lstm. Neural Comput.,
12 (10), 2451–2471. Retrieved from http://dx.doi.org/10.1162/

089976600300015015 doi: 10.1162/089976600300015015
Goltsman, K. (2017). Introduction to artificial neural networks.

62

http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1109/72.279181
http://dl.acm.org/citation.cfm?id=1757788.1757818
http://dl.acm.org/citation.cfm?id=1757788.1757818
http://dl.acm.org/citation.cfm?id=1619645.1619732
http://dl.acm.org/citation.cfm?id=1619645.1619732
http://dx.doi.org/10.1162/089976600300015015
http://dx.doi.org/10.1162/089976600300015015

Gundersen, O. E., & Kjensmo, S. (2018). State of the art: Reproducibility
in artificial intelligence. In Thirty-second aaai conference on artificial
intelligence.

Hochreiter, S., & Schmidhuber, J. (1997, November). Long short-term
memory. Neural Comput., 9 (8), 1735–1780. Retrieved from http://

dx.doi.org/10.1162/neco.1997.9.8.1735 doi: 10.1162/neco.1997
.9.8.1735

Huang, B., & Carley, K. M. (2017). On predicting geolocation of tweets using
convolutional neural networks. In International conference on social
computing, behavioral-cultural modeling and prediction and behavior
representation in modeling and simulation. Springer.

Iso, H., Wakamiya, S., & Aramaki, E. (2017). Density estimation for geolo-
cation via convolutional mixture density network.

Jurgens, D. (2013). That’s what friends are for: Inferring location in online
social media platforms based on social relationships. AAAI.

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Ann.
Math. Statist., 22 (1), 79-86.

Li, w., Eickhoff, C., & de Vries, A. (2014). Geo-spatial domain expertise in
microblogs.

Lifang, Y., Sijun, Q., & Huan, Z. (2017). Feature selection algorithm for
hierarchical text classification using kullback-leibler divergence. 2017
IEEE 2nd International Conference on Cloud Computing and Big Data
Analysis (ICCCBDA), 421-424.

Lipton, Z. C., & Berkowitz, J. (2015). A critical review of recurrent neural
networks for sequence learning. CoRR, abs/1506.00019 .

Miura, Y., Taniguch, M., Taniguchi, T., & Ohkuma, T. (2017). Unifying
text, metadata, and user network representations with a neural network
for geolocation prediction.

Özdikis, O., Ramampiaro, H., & Nørv̊ag. (2018a). Locality-adapted ker-
nel densities for tweet localization. In Proceedings of t he 41st In-
ternational ACM SIGIR Conference on Research & Development in
Information Retrieval (SIGIR 2018) (pp. 1149–1152). ACM. Re-
trieved from http://doi.acm.org/10.1145/3209978.3210109 doi:
10.1145/3209978.3210109

Özdikis, O., Ramampiaro, H., & Nørv̊ag. (2018b). Spatial statistics of term
co-occurrences for location prediction of tweets. In Proceedings of ecir
2018. Springer.

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training
recurrent neural networks. In International conference on machine
learning (pp. 1310–1318).

Paul S. Earle, M. G., Daniel C. Bowden. (2011). Twitter earthquake detec-
tion: earthquake monitoring in a social world..

Pengfei Li, N. K. S. Z., Hua Lu, & Pan, G. (2018). Location inference
for non-geotagged tweets in user timelines. In Ieee transactions on

63

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://doi.acm.org/10.1145/3209978.3210109

knowledge and data engineering. IEEE.
Rahimi, A., Cohn, T., & Baldwin, T. (2017). A neural model for user

geolocation and lexical dialectology.
Rish, I. (2001). An empirical study of the naive bayes classifier. In Ijcai

2001 workshop on empirical methods in artificial intelligence (Vol. 3,
pp. 41–46).

Roller, S., Speriosu, M., Rallapalli, S., Wing, B., & Baldridge, J. (2012). Su-
pervised text-based geolocation using language models on an adaptive
grid. In Proceedings of the 2012 joint conference on empirical meth-
ods in natural language processing and computational natural language
learning. EMNLP-CoNLL ’12.

Schmidhuber, J. (2014). Deep learning in neural networks: An overview.
Su, J., Sayyad Shirab, J., & Matwin, S. (2011, 01). Large scale text classifi-

cation using semisupervised multinomial naive bayes. In (p. 97-104).
Teevan, J. (2003). Tackling the poor assumptions of naive bayes text clas-

sifiers. In (pp. 616–623). Retrieved from http://citeseer.ist.psu

.edu/viewdoc/summary?doi=10.1.1.13.8572

Thomas, P., & Hennig, L. (2017). Twitter geolocation prediction using
neural networks. In International conference of the german society for
computational linguistics and language technology. Springer.

Wu, J. (2017). Introduction to convolutional neural networks.
Xin Chen, E. A. F. W., Yu Wang. (2015). A comparative study of de-

mographic attribute inference in twitter. In Ninth international aaai
conference on web and social media. AAAI.

Yang, Y., & Liu, X. (1999). A re-examination of text categorization meth-
ods. In Proceedings of the 22nd annual international acm sigir confer-
ence on research and development in information retrieval (pp. 42–49).
New York, NY, USA: ACM. Retrieved from http://doi.acm.org/

10.1145/312624.312647 doi: 10.1145/312624.312647
Zheng, X., Han, J., & Sun, A. (2018). A survey of location prediction

on twitter. In Ieee transactions on knowledge and data engineering.
IEEE.

Zhou, C., Sun, C., Liu, Z., & Lau, F. (2015). A c-lstm neural network for
text classification. arXiv preprint arXiv:1511.08630 .

64

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.8572
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.8572
http://doi.acm.org/10.1145/312624.312647
http://doi.acm.org/10.1145/312624.312647

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Erlend Løkken, Endre Waatevik

Location prediction using neural
networks

Master’s thesis in Computer Science
Supervisor: Heri Ramampiaro

June 2019

	Preface
	Abstract
	Sammendrag
	Introduction
	Problem Overview
	The Twitter platform
	Geolocation problems on Twitter
	Problem specification

	Background Theory
	Artificial Neural Networks
	Architecture
	Learning

	Convolutional Neural Networks
	Architecture
	Convolution
	Pooling

	Recurrent Neural Networks
	Exploding and vanishing gradients
	Long short-term memory

	Kernel Density Estimation
	Naive Bayes classifier
	Kullback-Leibler Divergence
	Multidimensional binary search tree
	Evaluation metrics

	Related work
	Location prediction using neural networks
	Approach
	Text-based approach
	Text and metadata approach
	Baseline methods
	Geographical modelling
	Uniform grid
	Adaptive grid
	Partition location method

	Evaluation
	Dataset
	Manhattan
	Los Angeles
	Paris
	London

	Experiment
	Tuning
	Evaluation Results
	The Manhattan dataset
	The Los Angeles dataset
	The Paris dataset
	The London dataset

	Evaluation Discussion
	Grid partitioning method
	Partition location method
	Metadata

	Conclusion and further work
	References

