
Investments in the EU Power System: A
Stress Test Analysis on the Effectiveness
of Decarbonisation Policies

Pedro Crespo del Granado, Christian Skar, Haris Doukas,
and Georgios P. Trachanas

Abstract Ambitious emission reduction targets are challenging the status quo on
designing effective strategies for electricity generation portfolios. In this chapter, we
consider the role of low-carbon technologies and determine the cost-benefits of
policy strategies to mitigate greenhouse gas emissions in the EU. In particular, we
look into how long-term scenarios for transmission expansion and decarbonisation
policies influence the evolution of the EU power system infrastructure. We use an
EU electricity investment model to determine the optimal portfolio of electricity
generation technologies and compute their respective costs and emissions achieved
towards 2050. Based on the investment model’s results (strategies and suggested
portfolios), we investigate how these portfolios perform under divergent policy or
geopolitical developments. For this purpose, we apply a robust optimisation tool
based on the min-max and the min-max regret criteria, which selects ideal portfolios
by stress testing a particular scenario or policy choice under uncertainty of input
parameters.

Results show that pursuing a strong transmission expansion strategy under the
EU PRIMES reference case leads to the maximum regret, while relying on EU
scenarios with strong prospects for decarbonisation, either with possibilities or with
limitation on transmission expansion, leads to portfolios that exhibit the least
variance. However, applying regret analysis on investment costs and total emissions
indicates a limited transmission investment case as the more robust one, also noting
that a high carbon price will accelerate the energy transition.
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1 Introduction

Population growth and economic development constitute the primary factors of the
increase in global carbon emissions (Raupach et al. 2007) in the last decades.
Anthropogenic greenhouse gas (GHG) emissions have contributed to the increase
in annual average global temperature. According to the Intergovernmental Panel on
Climate Change, the range of climate change projections for global warming from
1900 to 2100 is from 1.4 �C to 5.8 �C (IPCC 2014). In order to limit GHG emissions,
the electricity sector is facing the challenge to undertake a major transformational
phase towards a low-carbon system by substituting the existing carbon-intensive
technologies with climate-friendly ones. In this regard, energy analysts and
policymakers face a future that is technologically, institutionally and politically
complex and uncertain (Nikas et al. 2017); furthermore, assessments of the energy
transition must take into account different perspectives to reflect the interests of
numerous stakeholder groups (Papapostolou et al. 2017). On this matter, portfolio-
based approaches are one of the established methods to evaluate national energy
strategies and climate policies. They provide an analytical basis to devise generation
mixes that take into account security of supply, climate targets, technological
progression and costs.

Standard portfolio-based techniques usually provide an optimisation-based
model to determine the mix of power generation technologies. To name but a few,
McLoughlin and Bazilian (2006) apply a mean-variance portfolio (MVP) optimisa-
tion to analyse the Irish electricity generation mix. A similar approach is developed
in White (2007) for California’s electric utility resource planning, recommending an
optimal generating portfolio for the inclusion of greater shares of renewable tech-
nologies. Awerbuch and Berger (2003) apply MVP analysis for the European Union
by reflecting the risk of fuel, operation and maintenance, and construction period
costs. By applying portfolio theory, Zhu and Fan (2010) evaluate China’s 2020
midterm plans for generating technologies, while reflecting the risk of relevant
generating cost streams and including CO2 emission scenarios. Also, Fuss et al.
(2012) derive portfolios across various socio-economic scenarios for a range of
stabilisation targets by including alternative risk measures.

All in all, uncertainty in portfolio optimisation techniques might be considered in
the form of risk. However, another form of uncertainty in the model are its inputs and
assumptions, which typically induces the formulation of different cases and scenario
analyses. These scenarios are strongly related to different socio-economic, supply
and/or stabilisation targets and assumptions. To cope with this kind of uncertainty, it
is imperative to stress test the obtained solutions across different scenarios. In this
direction, various robust decision support tools have been developed to provide
solutions that perform well, independently of any scenario’s realisation. The present
study applies the min-max and the min-max regret criteria,1 both lying in the core of

1The robust decision under min-max criterion is that for which the lowest (highest) level of benefit
(cost) taken across all possible input scenarios is as high (low) as possible. Regret is defined as the
difference between the resulting benefit (cost) and the benefit (cost) from the decisions that would
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the so-called robustness analysis, to examine the performance of optimal technology
portfolios by considering energy transition scenarios of the power system. The main
goal is to identify a solution that performs well against the worst and/or the best case
performance. Pure min-max criterion is appropriate for conservative decision
makers, since it is associated with the worst-case scenario. Since hedging against
uncertainty within energy planning is complex and fraught with multiple forms of
uncertainties, robustness approaches have received increasing attention over the last
years. For instance, in power systems planning, the uncertainties across the pro-
cesses of transmission, conversion or distribution are treated with the adoption of
interval programming in conjunction with regret analysis (see Dong et al. 2011 and
the references therein). Furthermore, we refer to van der Weijde and Hobbs (2012)
and Munoz et al. (2014, 2017) concerning transmission planning, and to Fan et al.
(2010) and Morris et al. (2018) regarding investment decisions under policy uncer-
tainty, and risk aversion and CO2 regulatory uncertainty in generation investments,
respectively.

In this chapter, to analyse the decarbonisation of the EU power system, we apply
a stochastic power investment model to determine the optimal technology portfolios
under certain scenarios. Namely, we use the EMPIRE (European Model for Power
System Investment with Renewable Energy) model, developed by Skar et al. (2016a,
b). EMPIRE, formulated as a multi-horizon stochastic programme, incorporates
long- and short-term system dynamics while optimising investments under opera-
tional uncertainty. It is well known that the consideration of renewable technology in
the generation mix, in particular wind and solar power, impacts the supply and
demand balance, due to the intermittent and uncontrollable nature of these technol-
ogies. EMPIRE is designed to handle these challenges. In contrast to other power
sector models, the major contribution of EMPIRE is that it simultaneously incorpo-
rates short- and long-term dynamics, in conjunction with short-term uncertainty.
Dynamics refer to multiple investment periods coexisting with multiple sequential
operational decision periods, while uncertainty is enhanced through multiple input
scenarios that describe operating conditions. That is, EMPIRE is a capacity and
transmission expansion model, designed to determine optimal capacity investments
and system operation over long-term planning horizons, extended in a 40–50-year
basis. A central planner’s perspective is adopted, minimising a system’s cost while
serving a price inelastic demand. Regarding the effect of short-term uncertainty on
investment decisions, the methodology used is based on the principles of multi-
horizon stochastic programming, as proposed by Kaut et al. (2014). Related expan-
sion models in the literature are, for example, the DIMENSION (Richter 2011)
model used by Jägemann et al. (2013), who analyse the costs for the decarbonisation
of the European power sector. Similarly, another dynamic investment model, the
LIMES-EU+, was adopted by Haller et al. (2012), where carbon capture and storage

have been taken knowing prior to the decision time which particular input scenario would occur.
Applying the min-max criterion to the regret values, we obtain the robust min-max regret decisions
(Kouvelis and Yu 1997).
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(CCS) and nuclear power are excluded. Both optimisation models are deterministic,
in contrast to EMPIRE’s stochastic features. In the multi-stage stochastic model
E2M2 (Swider and Weber 2007), short-term wind uncertainty is analysed for the
German power system. Another similar model is the two-stage stochastic model
TIMES (Seljom and Tomasgard 2015), which also includes short-term uncertainty.

In our stress testing framework assessment, EMPIRE determines the optimal
portfolio of electricity generation technologies and calculates their respective costs
and emissions achieved for the 2015–2050 period. Each long-term strategy obtained
by EMPIRE assumes the realisation (model inputs) of a future technological pro-
gression or geopolitical scenario assumptions. For instance, technology evolution
differentiation represents the variability of the scenarios. To hedge against the
possible realisation of certain technological or geopolitical scenarios, we apply
robust optimisation through the min-max and min-max regret criteria. In the first
case, a safe performance is guaranteed, independently of any selection within the
input parameter dataset. In the regret analysis case, the stress test of input data means
that the decision maker measures the deviation from optimality as long as input
varies within the scenario set, and then the min-max criterion is applied to guarantee
a safe “distance” from that optimality.

We chose to implement robust optimisation, since we refer to risk-averse decision
makers, either concerning the best or the worst case. The literature with applications
of min-max regret analysis in the energy sector is quite extensive. For example, in
Dong et al. (2011), min-max regret analysis is incorporated in combination with
interval linear programming for the study of power management systems under
multiple supply and demand scenarios. In Li et al. (2016), electrical power genera-
tion planning is studied while considering discrete scenarios of possible climate
change outcomes. In Kazakci et al. (2007), energy crop supply is measured through a
linear mathematical programme. In the framework of climate change mitigation
policy, we refer to Loulou and Kanudia (1999), where a min-max regret formulation
is proposed to determine strategies for GHG emission reduction. In Li et al. (2011),
an interval model is developed to support planning of GHG mitigation within an
uncertain energy system. In addition, these approaches are also applied to solid
waste management by combining tools for interval and robust optimisation (Li and
Huang 2006; Chang and Davila 2007). However, we should mention that
minimising maximum cost or regret is a rather extreme form of risk aversion and
that there exist other alternatives to model it, such as using utility functions (pre-
ferred by economists) or Conditional Value at Risk (preferred by engineers). To
summarise, the objective of this study is to (1) analyse the robustness of different
pathways for the energy transition of the power sector by stress testing their out-
comes across individual scenarios and (2) propose a multidisciplinary method to
complement a power system capacity expansion model with a robustness-based
approach (min-max regret analysis).

The next section presents the main features of the EMPIRE model. This is
followed by Sect. 3, which describes the implementation of four distinct cases and
their respective results. Then, Sect. 4 presents the two robustness tools that apply the
stress test analysis on optimal investment portfolios across the different cases.
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2 Modelling Investments in Electricity Generation
and Transmission

2.1 Short-Term vs. Long-Term Considerations for Optimal
Portfolio

There is a multitude of energy models looking at different dimensions of the power
system. Main difference among models is the level of technical detail, representation
of uncertainty (e.g. RES or demand variations), temporal considerations, spatial
aggregation and planning horizons (for a review, see Crespo del Granado et al.
2018). Typically, the fundamental problem is to decide the short-term scheduling of
power plants (e.g. coal, gas, hydro or nuclear) based on generation costs, plants’
operational limitations and RES-load interactions. This model, in the literature, is
known as the “unit commitment problem”, the “optimal economic dispatch” or
simply the generation dispatch. To decide the power dispatching of a determined
number of coal or gas power plants, nuclear reactors or oil generators, the model
determines an optimal supply portfolio based on functions representing economic
decisions and energy generation physics. While this kind of model represents the
supply-demand balance in detail with a high time resolution (hourly decisions), it
usually does not consider long-term decisions for capacity planning. In contrast,
models for long-term capacity planning leave behind detail engineering aspects of
operations. Raising a causality dilemma since the short-term decisions require an
adequate generation capacity to satisfy demand, while long-term investment deci-
sions are a consequence on how much adequacy is required in the short term. As
both planning horizons are nonmutually exclusive (see Fig. 1), investment models
have come up with different assumptions to represent operational decisions and
features of the power system. For the EMPIRE model, these assumptions are as
follows:

• Operations and investment horizon: As hourly operations in 1 year compromise
8760 periods, repeating them for multiple years increases the dimensionality of
the problem. Long-term planning problems typically analysed years to decades
ahead and simulating short-term problems for large time spans might create an
intractable problem. A common approach is to sample representative weeks. In
EMPIRE, we sample typical weeks per season along with 2 weeks representing
extreme cases (e.g. high peak demand and low RES availability). These weeks’
parameters are updated for incoming investment periods. EMPIRE considers a
planning horizon from 2015 to 2050. Investment windows are every 5 years in
which the representative operational weeks are scaled up to resemble the 5 years
in operation. That is, all investment periods are in a single optimisation along with
operation snapshots (see similar approach in Haller et al. 2012).

• Spatial aggregations: EMPIRE model covers the European Economic Area
countries (see Fig. 2, 31 European countries along with 55 interconnectors).
EMPIRE models each country as a single node together with existing capacity
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and estimated demand. The net transmission capacity defines the country
connection capacity to neighbouring regions. That is, the interconnection
among nodes in the model resembles a transportation problem.

• Technical engineering aspects: EMPIRE short-term operational aspects represent
hourly decisions of the generators and transmission exchange between countries.
Generators are aggregated by type, for example, nuclear generators have a single
variable per country. As an energy system model, EMPIRE does not consider
power flows and voltage relationships. As the main interest is the long-term
expansion of the system, the model also assumes linear production cost profiles
for all generators.

• Policy and economic perspectives: EMPIRE can set RES targets and calculates
CO2 emissions per country. Main model outputs are the usage factor of power
plants, load shedding, RES curtailments, transmission infrastructure investments
and cooperation among countries to meet policy objectives. Hence various
policies can be tested by changing the model parameters (technology costs,
demand or RES targets), including the prospects of development of technologies
(e.g. CCS) and considering assumptions on transmission expansion possibilities.

In summary, EMPIRE intends to combine as much as it can from both worlds:
short-term (operational) and long-term (strategic) decisions. In addition, the model
provides enough rich technological details to provide rational insights for the long-
term planning of the power system. Figure 1 epitomises this discussion in which the
modelling approach might take a technical engineering perspective or an economic
viewpoint mainly focuses on the empirical understandings of impacts in
policymaking. The EMPIRE model intends to encompass a compromise of this
vision since its formulation convenes as much as it can from different perspectives.
For a further discussion on tools for integrated assessments, combining models and
strength-weaknesses of different modelling approaches, refer to Crespo del Granado
et al. (2018).

Fig. 2 EMPIRE model EU spatial coverage combining short (operations)- and long-term (invest-
ments) decisions to determine optimal portfolios for the power system
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2.2 EMPIRE Model Formulation

Modelling a portfolio of energy units, as an hourly coordinated supply-demand
system, is typically formulated as a multiperiod optimisation model. This takes
into consideration the cost of running the generation units, ramp-up time and the
unit input-output capacity (power rates). As a result, the optimisation model objec-
tive is to minimise the investment and operational costs. The main decision variables
are the investment decisions and which generation units to use and when: peak time,
base load, smoothing renewables and the usage of transmission capacity. EMPIRE
perspective is an economic social surplus maximisation that assumes perfectly
competitive markets under predetermined consumer decisions. As noted earlier, a
central feature in EMPIRE is the representation of two timescales, the long term
(strategic) and the short term (operational). Operational decisions are associated with
a strategic stage in order to co-optimise long-term investment decisions and the
short-term operational decisions. That is, strategic decisions face supply-demand
balancing decisions under uncertainty. For example, in Fig. 2, observe the structure
of the 5-year investment windows subjected to operational uncertainty. Investment
variables (generation and transmission expansion) in 2020 have specific hourly load
profiles per country and must determine the operations of the units and hence decide
the optimal portfolio from 2025 onwards. The model includes a discount rate to
calculate the net present value (NPV) of investments. This structure follows a multi-
horizon stochastic framework in which the operational uncertainty is in the load
profiles and wind and solar power generation. For a more comprehensive discussion
on setting up the EMPIRE model, refer to Skar et al. (2016a, b).

EMPIRE Objective Function
As aforementioned, to take into account long-term and short-term decisions,
EMPIRE minimises the NPV of investments based on operational decisions.
On one hand, the objective function contains the investment decisions for generation
(xgengi , capacity investment in generator g at year i) and transmission (x tranlj , investing

in transmission line l at year i) under costs cgengi and c tranli , respectively. On the other
hand, the presentation of the operation decisions comes from the production of
generator g and ygenghiω for operational hour h in year i under stochastic scenario ω.

In addition, the operations consider load shedding (yLLnhiω) at node n (country), under
operational hour h in year i and stochastic scenario ω. Both ygenghiω and yLLnhiω face costs

of producing electricity (qgen
gi ) and the cost of using load shedding (qVoLL

ni ). In short,
EMPIRE objective function is as follows:

min
x, y

z ¼
X
i2I

δi �
X
g2G

cgengi xgengi þ
X
l2L

c tranli x tranli þ
X
ω2Ω

pω �
X
h2H

αh

(

�
X
n2N

X
g2Gn

qgen
gi ygenghiω

h i
þ qVoLL

ni yLLnhiω

 !) : ð1Þ
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To compute the NPV in Eq. (1), we set a discount factor δi per year i. For the
operations, we apply a factor αh to scale up and match the total number of hours of
the investment period. Recall that the time span of the investments is 5 years for
which we use representative weeks of the year and hence the scale up factor accounts
for the remaining hours. Note that since we consider stochastic scenarios for renew-
ables and demand, we assign the respective probabilities pω for operations of that
scenario.

EMPIRE Constraints
Since it would be unrealistic to invest in certain generators for certain countries
(e.g. wind offshore for Switzerland) or allow sudden large investments on each
period, Eq. (1) is subjected to investment constraints (period-wise and cumulative),
that is, a restriction by an upper bound ( �x gen

tn∗ ) on investments in new capacity for
generator g along with the cumulative installed generation over the planning hori-
zon. This also considers the retirement of power plants based on the retired share
(ρgi) of generator g’s initial capacity by year i. These constraints are

X
g2Gnt

xgengj � �xgen,Periodnti , n 2 N , t 2 T , i 2 I :

Xi
j¼1

X
g2Gnt

xgengj � �xgen,Cumulative
nt � 1� ρgi

� �
�x gen
g0 , n 2 N , t 2 T , i 2 I :

ð2Þ

Likewise, investment constraints for transmission (exchange) capacity are also
set up:

x tranli � �x tran,Periodli , l 2 L, i 2 I : ð3Þ

As for the equations to represent the operations, these are based on the usage of
generators g at node n, the interaction (flow) with neighbouring nodes, the capacity
and usage characteristics of the generators, hydro or alike storage technologies and
the emission standards per country. The details of these operational constraints are as
follows:

1. Supply-demand balance (production + losses*import�exports�pumping + load
shedding ¼ load)

X
g2Gn

ygenghiω þ
X
a2A in

n

1� η linea

� �
y flowahiω �

X
a2A out

n

y flowahiω � ypump
nhiω þ yLLnhiω ¼ ξ loadnhiω, n

2 N , h 2 H,ω 2 Ω, i 2 I : ð4Þ

2. Generation capacity constraint based on existing a prior capacity plus the invested
capacity for year i under
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ygenghiω � ξgenghiω � 1� ρgi
� �

�x gen
g0 þ

Xi
j¼1

xgengj

 !
, g 2 G, h 2 H, i 2 I ,ω 2 Ω: ð5Þ

3. Upward ramping constraints to simulate appropriate load following of the
generators:

ygenghiω � ygeng h�1ð Þiω � γ geng � 1� ρgi
� �

�x gen
g0 þ

Xi
j¼1

xgengj

 !
, g 2 GThermal,

s 2 S, h 2 H�
s , i 2 I ,ω 2 Ω,

ð6Þ

4. Flow constraint—limit flow on arcs (directional arcs and lines are symmetric). It
also considers a prior line capacity plus the capacity expansion investment for
year i:

y flowahiω � �x tran
l0 þ

Xi
j¼1

x tranlj , l 2 Ln, a 2 Al, h 2 H, i 2 I ,ω 2 Ω: ð7Þ

5. Hydro energy constraint—limit total hydropower production within a season (due
to water availability)

X
h2Hs

ygenghiω � ξRegHydroLimgsiω , g 2 GRegHydro, s 2 S, i 2 I ,ω 2 Ω: ð8Þ

6. Pump-storage upper reservoir capacity and inter-temporal balance for storage:

wupper
n h�1ð Þiω þ ηpumpn ypump

nhiω � ygen,pump
nhiω ¼ wupper

nhiω

wupper
nhiω � �w upper

n

, n 2 N , h 2 Hs, i 2 I ,ω 2 Ω: ð9Þ

Appendix 1 notes the nomenclature description of the sets, parameters and vari-
ables used in the above formulation. Note that EMPIRE has been used in other
studies which present a more comprehensive model formulation, data sources and
other details (see, for example, Skar et al. (2014, 2016a, b) and ZEP (2013, 2014)).
Note that exogenous drivers of investments in the EMPIRE model are changes in
demand, retirement of the existing generation fleet, changes in fuel prices and a price
of carbon. Technological advancement, such as investment cost reductions and
efficiency improvements for thermal generation, plays an important role in the
design of the optimal generation portfolio and is included in the model (see Appen-
dix 2 for data inputs). EMPIRE computational dimension includes approximately
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15 million variables and 22 million constraints, and it takes from an hour to 5 hours
to solve (depending on scenario, technology choice and solver configurations).

3 Energy Transition: Cases and EMPIRE Model Results

3.1 Defining Cases

The EU Energy Roadmap 2050 and various stakeholders’ discussions with the
European commission outlined four main decarbonisation routes for the energy
sector; these are energy efficiency, RES, nuclear and CCS. These decarbonisation
options have the premise that European integration will be one of the driving forces
in its success. Cooperation among countries and political determination will generate
measures for the integration of European electricity markets, viability of infrastruc-
ture projects of common interest (PCI), common climate targets (e.g. the Paris
agreement) and joint policies to accommodate higher shares of RES in the system.
The cooperation among different EU actors and countries towards 2050 is assumed
to be one of the cornerstones of the energy transition. As a result, some scenario-
building studies (Bauer et al. 2017) have discussed the degree of cooperation
achievable in the long term as a measure to weigh-in and to formulate different
scenarios towards 2050.

In this spirit, to understand the consequences of assuming different evolutions of
the generation portfolio of the electricity system, we define four cases2 that are in line
with the scenarios developed by the PRIMES model (National Technical University
of Athens 2010) for the EU Low Carbon Roadmap 2050 (European Commission
2011). That is, we use the following two EU scenarios:

• The “PRIMES Reference scenario” projects energy trends to 2050 based on
policies already adopted by March 2010. It includes policies agreed in the EU
climate and energy package of 2009.

• The “PRIMES Decarbonisation scenario”. We use the EUCO 27 variant, which
assumes international agreement on an effective global action plan complemented
with policies for carbon pricing across all sectors. It positions the adoption of
major low-carbon technologies in the energy sector, e.g. energy efficiency and
RES, CCS, nuclear and electrification of transport.

Since the energy transition is affected by technological development, climate
change commitments, energy security and international agreements, both PRIMES
scenarios might evolve differently under different contexts. For example, if cooper-
ation among nations does not occur as expected, this might limit the integration of
EU electricity markets and the creation of PCI. We can reflect this hypothetical

2Note that we refer to cases as the instances in which we perform an analysis and model
implementation, while scenarios are the input assumptions to the modelling exercise.
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situation by limiting the expansion of transmission capacity in EMPIRE. Limiting
transmission expansion could reflect the view that EU nations find difficult to
develop stronger cooperation. In short, this argument defines four cases:

• PRIMES reference case, transmission options available or optimised (OTR)
• PRIMES decarbonisation case, transmission options available or optimised

(OTD)
• PRIMES reference case, transmission expansion limited (LTR)
• PRIMES decarbonisation case, transmission expansion limited (LTD)

The overall results illustrated in Fig. 3 show the developments of the energy mix
for these four cases. For the years 2010 and 2015, historic data are used for all
generation and transmission capacities; however, the economic dispatch comes from
the model. The year 2020 is the first investment period for generation capacities. As
for the transmission investment cases (LTR and LTP), this is set to the reference
capacities in ENTSO-E’s 10-year network development plan (TYNDP) 2016 (see
ENTSO-E (2015) for more information). The major differences between the
decarbonisation and the reference cases are as follows: The demand for electricity
is higher, and the price of carbon is higher in the decarbonisation cases. The main
effect on EMPIRE is that the need for investments is higher and that the generation
mix is forced to be cleaner.

3.2 Results for 2020–2030 Period: All Cases

As expected, there are similarities in all scenarios in 2020 and 2030—regardless of
input data used (reference or decarbonisation scenario) and whether transmission
investments are restricted beyond 2020. This is because all the cases share similar
features for these periods since transmission expansion is the same and difference
between reference and decarbonisation is not significant for demand projections. The
first effect that stands out is the expansion of the share of coal generation in 2020 for
all scenarios. On one hand, this is because of the retirement of ageing nuclear power
capacity with zero emission that is not replaced by new capacity. On the other hand,
due to moderate carbon prices (15 EUR/tCO2) and a high price ratio of gas to coal
(at about 3.4), new coal generation is the lowest cost option to replace the retired
capacity. Hence, this new coal capacity takes over the share of the existing natural
gas installed in the system, leading to a small increase in power sector emissions
from 2015 which is not necessarily in line with the European Union’s climate goals
set for 2020 (a 20% emission reduction compared to 1990s level). In reality the
power sector emissions, subject to the EU Emissions Trading System, would not be
allowed to increase, and the economic advantage of coal compared to lower emission
technologies such as renewables, natural gas and nuclear would be counteracted by
an increase in the ETS price. However, as the ETS price increases in the period
beyond 2020, this becomes less of an issue as the emissions reduction from EMPIRE
approach levels is in line with EU’s climate policy.
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Fig. 3 Reference and decarbonisation cases under transmission capacity available (a) or
restricted (b)
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As for renewables, most of the investments in the period until 2030 are in onshore
wind power. Only moderate investments are in solar PV—of around 25 GW for the
reference cases and 75 GW in the decarbonisation cases.

3.3 Results for Reference Cases 2030–2050

For the reference scenario cases, unabated coal generation remains the main fossil
fuel technology in the generation mix until 2040, in both with and without trans-
mission expansion cases. In 2040 coal with CCS is deployed achieving a high share
of the generation mix than unabated coal towards 2050. For renewables, mainly
onshore wind and solar PV, there is a massive deployment for both technologies in
the 2030–2050 period. When allowing for transmission expansion, more than 50%
of the electricity produced comes from these sources. One of the most significant
effects of not expanding capacity in the transmission system is that less onshore wind
generation is deployed. This shows that cost-optimal wind deployment relies heavily
on the ability to effectively share wind resources using the grid.

In the case with limited transmission expansion, nuclear power sees reinvest-
ments (at a cost of 4500 EUR/kW), and this capacity is largely what is used to make
up the reduction in wind generation compared to the alternative transmission case.
As can be seen in the EU grid maps of Fig. 3a, there is a significant increase of
capacity on the interconnectors between countries. For example, the cross-border
connections between France, Germany, Spain, the UK and neighbouring countries
are reinforced heavily.

3.4 Results for Decarbonisation Cases 2030–2050

The main differences between exogenous inputs between the decarbonisation case
and the reference case are that the former has a steeper increase of the ETS price and
a higher electricity demand. In comparison with the results of the reference cases,
there are effects worth mentioning:

• Deployment of CCS occurs a full decade earlier in the decarbonisation cases than
the reference cases, in 2030 rather than 2040.

• Nuclear power sees reinvestment in both decarbonisation cases.
• Solar and onshore wind expansion is more aggressive in these cases than the

reference case, reaching a level of around 65% of the generation mix in the
transmission expansion cases. By 2050 all unabated fossil generation has been
completely phased out.

• As in the reference case, we observe that less wind onshore is installed when there
are no investments in the transmission capacity beyond 2020. This is made up by
fossil fuel with CCS, most notably gas CCS. But a small amount of offshore wind
is deployed in the restricted transmission case.
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For the cases with investments in transmission capacity, the overall picture is
alike to the reference case, although with a few distinctions. There are significant
investments in Central Europe, but some connections see different investments in the
decarbonisation case than the reference. For instance, the interconnector between
France and Germany has less capacity in the decarbonisation case, whereas the links
from France to Switzerland and Switzerland to Germany are reinforced. Another
notable difference is the increased investments from the Baltic countries in the north
to the Balkans in the south in the decarbonisation case. This is a result of the
increased penetration of variable renewable resources in the decarbonisation case,
which has a strong effect on the optimal design of the transmission system for
balancing supply and demand throughout the continent.

4 Robustness Tool and Stress Testing the Optimal
Portfolios

In this section, we present the mathematical formulation and the structure of the
min-max and min-max regret criteria. Uncertainty is represented deterministically
through the concept of scenario (see also Kouvelis and Yu 1997). Potential future
realisation of the model is represented through a particular scenario, which occurs
with a positive but unknown probability.

Our aim is to identify robust strategies corresponding to a plausible objective
performance, along all scenarios of our decision model. First, we apply the min-max
criterion, pointing out that the robust decision is that having the best worst-case
performance across all future scenarios. Let us explain this in the discrete scenario case.

Consider the following optimisation problem:

minx2X f c; xð Þ, ð10Þ

where x ¼ (x1, . . ., xN) 2 X � ℝN and c ¼ (c1, . . ., cN) 2 ℝN. The feasible set
X contains the admissible decision variables (x1, . . ., xN) satisfying some prespecified
constraints of the model. The input parameters (c1, . . ., cN), inserted exogenously,
define the uncertainty of the model in the following sense: if S¼ {s1, . . ., sp} denotes
the finite set of all potentially realisable input data scenarios, then realisation of a
certain scenario s 2 S means that

c ¼ cs ¼ cs1; . . . ; c
s
N

� �
:

While S is not identically a singleton, uncertainty is then inherent. Let X and S be
the feasible set and the discrete scenario set, respectively, for the minimisation
problem (10). The corresponding min-max decision is exactly

xminimax ¼ argminxEX maxsES f cs; xð Þ:
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Subsequently, consider the optimal solution for scenario’s s 2 S realisation,
which is

xopts ¼ argminxEX f cs; xð Þ,

and the corresponding optimal performance:

f opts ≔f cs; xopts

� �
:

Given an admissible decision x 2 X, its regret R(x, s), under scenario’s s 2 S
realisation, is defined as its deviation from scenario’s s 2 S optimal performance, that
is,

R x; sð Þ≔ f cs; xð Þ � f opts

�� ��:
For any decision, we are interested in identifying the worst deviation from

optimality across the whole range of uncertainty. Therefore, it is reasonable to obtain
information on the worst regret. For any decision x 2 X, its maximum regret is
defined as

Rmax≔max
sES

R x; sð Þ:

Then, the min-max regret criterion aims at identifying the solution presenting the
best worst-case deviation from optimality, independently of the input data realisa-
tion. The corresponding min-max regret decision is exactly

xregret ¼ argminx2X maxs2S Rmax ¼ argminx2X maxs2S f cs; xð Þ � f opts

�� ��: ð11Þ

Subsequently, we carry out a stress testing for the investments in electricity
generation and transmission with respect to their performance across different
scenarios. More precisely, we measure the variation of the cumulative 2010–2050
investment costs and cumulative 2010–2050 emissions across different scenarios on
transmission and decarbonisation. Regarding scenarios, we apply the four cases
previously described: the two PRIMES scenarios (reference and decarbonisation)
with assumptions on transmission expansion (either optimised investments or lim-
ited to just the 10-year development plan by ENTSO-E).

First, we consider the objective referring to the cumulative 2010–2050 costs in
billion € (2010) as they are presented in Table 1. In the first column, we consider the
optimal portfolio investments per scenario, and we examine their performance across
the remaining investment scenarios. Then, we carry out min-max and min-max
regret analysis to obtain the most robust state. According to the min-max criterion,
the best worst performance across all scenarios is located at the LTD case. In
particular, the cumulative capacity costs do not exceed 2224.7 billion €, for any
scenario’s realisation. This is the risk-averse case decision-making.
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To apply the min-max regret criterion, we need the regret values for the costs
across all scenarios (Table 2). In this case, the two approaches coincide, i.e. the more
robust strategy is still located at the LTD-optimal portfolio.

Regarding the second objective, that is, the cumulative emissions for the
2010–2050 period, these are presented in Table 3. The corresponding regret values
in terms of emissions are presented in Table 4. The min-max strategy corresponds to
the LTD case, bounding the total emissions at the level of 30.6 GtCO2, indepen-
dently of any scenario’s realisation. On the contrary, min-max regret analysis points
to the OTD strategy. This is the classical case between the risk-averse and the risk-
seeking decision maker. More precisely, the OTD portfolio contains better perfor-
mances (28.2 GtCO2) from the LTD portfolio. On the other hand, based on the

Table 1 Cumulative 2010–2050 investment capacity costs of the optimal portfolios across differ-
ent scenarios (in billion € (2010))

Portfolios/scenarios Scenario OTR Scenario OTD Scenario LTR Scenario LTD

OTR-optimal 1995.1 2507.3 9248.1 13,079.3

OTD-optimal 2065.0 2157.2 6678.4 7890.4

LTR-optimal 2027.0 2448.6 2039.1 2641.8

LTD-optimal 2097.3 2206.5 2112.9 2224.7

Table 2 Regret values for the investment costs

Portfolios/scenarios Scenario OTR Scenario OTD Scenario LTR Scenario LTD

OTR-optimal 0.0 350.1 7209.0 10,854.6

OTD-optimal 69.9 0.0 4639.3 5665.7

LTR-optimal 31.9 291.4 0.0 417.1

LTD-optimal 102.2 49.3 73.8 0.0

Table 3 Cumulative 2010–2050 emissions (in GtCO2)

Portfolios/scenarios Scenario OTR Scenario OTD Scenario LTR Scenario LTD

OTR-optimal 41.0 42.5 43.1 44.3

OTD-optimal 28.2 28.2 31.0 31.4

LTR-optimal 42.3 42.6 42.5 43.2

LTD-optimal 30.6 29.7 30.4 29.9

Table 4 Emissions regret values

Portfolios/scenarios Scenario OTR Scenario OTD Scenario LTR Scenario LTD

OTR-optimal 12.8 14.3 12.7 14.4

OTD-optimal 0.0 0.0 0.6 1.5

LTR-optimal 14.1 14.4 12.1 13.3

LTD-optimal 2.4 1.5 0.0 0.0
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min-max regret criterion, the LTD scenario results in higher emissions (29.9
GtCO2). A visual representation reflecting the robustness structure of the two
different objectives (investment costs and emissions) is presented in Fig. 4.

If we consider simultaneously the two objective functions (costs and emissions),
we notice that a conflict occurs. Following the min-max regret analysis, the cost-
oriented robust strategy is located in LTD optimality, while in the emissions case,
regret robustness corresponds to the OTD-optimal portfolio. Coping with this
conflict, we apply the min-max regret criterion for the joint objective
Es ¼ Es

1;E
s
2

� �
, where E s

1 and E s
2 represent the cumulative costs and emissions,

respectively, across scenarios s 2 {OTR, OTD, LTR, LTD}. First, we identify the
optimal state per scenario, represented by E s

1∗;E
s
2∗

� �
. Next, to avoid the curse of

non-homogeneity, we consider the relative performance (RP) per scenario, with
respect to the corresponding optimal situation, that is,

RP sð Þ≔ Es
1

Es
1∗

;
E s
2

Es
2∗

� �
, s 2 OTR;OTD;LTR;LTDf g:

Then, we obtain the relative joint performances in Table 5. Note that, in terms of
relative performances, optimal situations correspond to the unit values. This means
that, for each scenario, the optimal situation corresponds to (1,1). To identify the
more robust joint strategy, we will apply the min-max regret criterion for the relative
joint objectives. In this case, since the elements belong to ℝ2

þ, we measure the
deviation from optimality in terms of the Euclidean norm, that is,
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Fig. 4 Cumulative emissions and investment capacity costs of the optimal portfolios across
different scenarios

Table 5 Relative joint objectives

Portfolios/scenarios Scenario OTR Scenario OTD Scenario LTR Scenario LTD

OTR-optimal (1.00,1.45) (1.16,1.49) (3.53,1.41) (5.87,1.48)

OTD-optimal (1.03,1.00) (1.00,1.00) (2.27,1.01) (3.54,1.05)

LTR-optimal (1.01,1.50) (1.13,1.51) (1.00,1.39) (1.18,1.44)

LTD-optimal (1.05,1.08) (1.02,1.05) (1.03,1.00) (1.00,1.00)
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dist x; yð Þ ¼ x1 � x2ð Þ2 þ y1 � y2ð Þ2
� �1=2

,

for any x1; y1ð Þ, x2; y2ð Þ 2 ℝ2
þ. Then, the min-max regret criterion for the relative

case is expressed as follows:

MMR ¼ arg minPmaxs dist RP sð Þ; 1; 1ð Þð Þð Þ,

where P refers to the set of the four examined optimal investment portfolios. The
regret values, in terms of the relative objective functions, are presented in Table 6.
Applying the min-max regret criterion to the relative regret values, we conclude that
the joint robust strategy is LTD, being in accordance with the distinguished appli-
cation of the pure min-max criterion.

Based on the above analysis, we highlight the following observations:

• In the min-max setting, the LTD strategy is the optimal, expressing the desire of
the conservative decision maker in any of the examined future development.

• With the min-max regret approach, the LTD strategy for cost and the OTD
strategy for emissions create the least regret for the decision maker. If, however,
joint relative regret analysis is applied to the future optimal development, then
LTD strategy is established to be the robust one.

To provide some policy recommendations emerging from the above analysis, it is
observed that:

• Portfolios for decarbonisation scenarios are more robust. This is due to the fact
that nuclear remains in the mix until 2050, while the introduction of CCS
technologies in the mix comes much earlier than in the reference scenario.

• In the optimised transmission portfolios, even though an important priority is
considered, if the new generation built is based on this scenario and not realised in
terms of infrastructure and investments, then the resulting regret could be enor-
mous. From a technical point of view, this situation is realistic, considering, for
example, that balancing issues will be far more challenging.

5 Conclusions

In this study, different emissions reduction technologies are considered for the
identification of optimal policy mixes towards mitigating GHG emissions. Optimal
electricity generation portfolios are determined through an EU electricity investment

Table 6 Relative regret values

Portfolios/scenarios Scenario OTR Scenario OTD Scenario LTR Scenario LTD

OTR-optimal 0.44 0.52 0.4 4.89

OTD-optimal 0.03 0.00 1.27 2.54

LTR-optimal 0.50 0.52 0.38 0.47

LTD-optimal 0.09 0.05 0.03 0.00
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model, by considering different scenarios on transmission expansion and
decarbonisation. Then, the performance of portfolios’ long-term strategies is stress
tested on the basis of investment costs and cumulative emissions. In this regard, we
notice that technologies such as nuclear and CCS are found to be crucial, in the sense
that forming portfolios with optimised transmission expansion proves to be incon-
sistent with the stress test analysis results. To this end, robustness tools such as the
min-max regret criterion contributed to explore a posteriori more insight into the
scenarios’ assumptions, showing that combining modelling approaches provide a
new dimension on assessing pathways of the energy transition.

Concluding, we found that decarbonisation scenarios are the preferred strategy
for all cases. However, the limited decarbonisation strategy is the more robust,
resulting in the least regret.

In this study, the limitations primarily involve the selection of the four scenarios;
furthermore, future research may be directed to the investigation of the impact of
additional objective functions to apply the min-max and the min-max regret criteria.
Also, future research should consider analysing the evolution of CCS technologies
and the respective risks of investing in CCS. The technology is still not commer-
cially viable and perhaps does not become a reality. It is thus important to calculate
the costs (regret), if pathways consider this development.

Acknowledgement The current paper was primarily based on the research conducted within the
framework of the Horizon 2020 European Commission projects “Navigating the Roadmap for
Clean, Secure and Efficient Energy Innovation (SET-Nav)” grant agreement No 691843 and
“Transitions pathways and risk analysis for climate change mitigation and adaptation strategies
(TRANSrisk)” grant agreement No. 642260. The content of the paper is the sole responsibility of its
authors and does not necessary reflect the views of the European Commission.

Appendices

Appendix 1 Nomenclature Used in the EMPIRE Model
Formulation

Sets

N Nodes (one per country)

G Generators. The set Gn is the set of all generators at node n

L Transmission lines (exchange corridors) between neighbouring nodes in the trans-
mission system

Ain=out
n

Arcs to/from neighbouring nodes in the transmission system. Note that for every
line connecting two nodes in the transmission system, there exist two arcs. These
are used to represent directional flow

H Operational hours. The setHs is the set of all operational hours in season s. TheH�
s

is the set of all operational hours except the first hour in season s

S Seasons: 1 representative week per season and 2 weeks with extreme load and RES
situations

Ω Stochastic scenarios ω 2 Ω
T Aggregate generation technologies (e.g. coal, gas, wind, solar, etc.)

(continued)
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Decision variables (all non-negative)

xgengi Investment in capacity for generator g in year i

x tranlj Investment in capacity for transmission line l in year i

ygenghiω Production on generator g, operational hour h, year i, stochastic scenario ω

y flowahiω
Flow on arc a, operational hour h, year i, stochastic scenario ω

ypump
nhiω Energy used for pumping on pump p, operational hour h, year i, stochastic

scenario ω

yLLnhiω Load shedding at node n, operational hour h, year i, stochastic scenario ω

wupper
nhiω Water-level upper reservoir for pump storage in node n, op. hour h, year i,

scenario ω

Parameters

δi Discount factor year i (at rate interest rate r, this is δi ¼ (1 + r)�5i)

αh Operational hour scale factor. This factor represents the total number of hours in a
year represented by the operational hour h. Summing a variable/parameter scaled

by αh for all h 2 H yields a yearly total, e.g.
X

h2Hαhξ
load
nhiω is the total electric

energy consumption for node n in year i, scenario ω

pω Probability of scenario ω for the stochastic parameters

cgengi Total cost (fixed and capital costs) incurred by investing in 1 MW new capacity for
generator g

c tranli Total cost (fixed and capital costs) incurred by investing in 1 MW new exchange
capacity for line l

qgen
gi Variable costs (fuel + emission + O&M) incurred by producing 1 MWh of electric

energy on generator g in year i

qVoLL
ni Cost of using load-shedding variable yLLnhiω

ξ loadnhiω
Load at node n in operational hour h, year i and stochastic scenario ω

ξgenghiω Available share of generation capacity for generator g in operational hour h, year i,
stochastic scenario ω. Note that for thermal generation technologies and regulated
hydropower the availability parameters are constant across all ω 2 Ω

ξRegHydroLimgsiω
Total energy available for production in season s

ρgi Retired share of generator g’s initial capacity by year i

γ geng Limit on total upward ramping as a fraction of total installed capacity for generator
g

�x gen
g0 Initial installed capacity generator g

�x tran
l0 Initial exchange capacity line l

�x gen
tn∗ Upper bound on (period-wise/cumulative) investments in new capacity for gener-

ator g

�x tran
l∗ Upper bound on (period-wise) investments in new exchange capacity line l

η linea
Exchange losses on arc a (given as a share of the total flow)

ηpumpn Pump efficiency for pump storage in node n

hrgi Heat rate generator g, year i

ef Carbon content fuel f
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Appendix 2 Technological Assumptions for EMPIRE
Implementation

Table 7 Investment costs of generation technologies in EMPIRE

Technology 2020 2025 2030 2035 2040 2045 2050 Unit

Lignite 1600 1600 1600 1600 1600 1600 1600 €2010/kW

Lignite CCS adv 2600 2530 2470 2400 2330 2250 €2010/kW

Coal 1500 1500 1500 1500 1500 1500 1500 €2010/kW

Coal CCS adv 2500 2430 2370 2300 2230 2150 €2010/kW

Gas OCGT 400 400 400 400 400 400 400 €2010/kW

Gas CCGT 800 800 800 800 800 800 800 €2010/kW

Gas CCS adv 1350 1330 1310 1290 1270 1250 €2010/kW

Bio 2250 2250 2250 2250 2250 2250 2250 €2010/kW

Nuclear 4500 4500 4500 4500 4500 4500 4500 €2010/kW

Hydro regulated 3000 3000 3000 3000 3000 3000 3000 €2010/kW

Hydro RoR 4000 4000 4000 4000 4000 4000 4000 €2010/kW

Wind onshore 1033 1002 972 942 912 881 851 €2010/kW

Wind offshore 3205 2770 2510 2375 2290 2222 2172 €2010/kW

Solar 826 653 481 463 445 427 409 €2010/kW

Note: Data for fossil fuel technologies (incl. advanced CCS) come from ZEP (2013). Source of
wind onshore and offshore (Gerbaulet and Lorenz 2017). Solar PV costs are based on the medium
scenario in Fraunhofer ISE (2015)

Table 8 Efficiency of thermal power plants in EMPIRE

Technology 2015 2020 2025 2030 2035 2040 2045 2050 Unit

Lignite exist 35 36 36 36 36 36 37 37 %

Lignite 44 45 45 46 47 48 48 49 %

Lignite CCS adv 37 39 40 41 42 43 %

Coal exist 38 38 38 38 38 39 39 39 %

Coal 46 46 47 47 48 48 49 49 %

Coal CCS adv 39 40 41 41 42 43 %

Gas exist 49 50 51 52 52 53 54 55 %

Gas OCGT 40 41 41 41 41 42 42 42 %

Gas CCGT 60 60 60 61 63 64 65 66 %

Gas CCS adv 52 54 56 57 58 60 %

Oil exist 38 38 38 38 38 38 38 38 %

Bio exist 35 35 35 35 35 35 35 35 %

Bio 36 36 37 38 38 39 39 40 %

Nuclear 36 36 36 37 37 37 37 37 %

Source: ZEP (2013)
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Table 9 Fixed operation and maintenance costs in EMPIRE

2020 2025 2030 2035 2040 2045 2050 Unit

Lignite 32.4 32.4 32.4 32.4 32.4 32.4 32.4 €2010/kW/an

Lignite CCS 51.4 50.0 48.7 47.4 46.1 44.7 €2010/kW/an

Coal 31.1 31.1 31.1 31.1 31.1 31.1 31.1 €2010/kW/an

Coal CCS 47.0 45.9 44.7 43.6 42.5 41.4 €2010/kW/an

Gas OCGT 19.5 19.5 19.5 19.5 19.5 19.5 19.5 €2010/kW/an

Gas CCGT 30.4 30.4 30.4 30.4 30.4 30.4 30.4 €2010/kW/an

Gas CCS 46.9 46.9 46.9 46.9 46.9 46.9 €2010/kW/an

Nuclear 127.0 123.3 119.5 115.8 112.1 108.3 104.6 €2010/kW/an

Wave 153.8 153.8 153.8 153.8 153.8 153.8 153.8 €2010/kW/an

Geo 92.3 92.3 92.3 92.3 92.3 92.3 92.3 €2010/kW/an

Hydro regulated 125.0 125.0 125.0 125.0 125.0 125.0 125.0 €2010/kW/an

Hydro RoR 125.0 125.0 125.0 125.0 125.0 125.0 125.0 €2010/kW/an

Bio 46.3 45.3 44.3 43.3 42.3 41.3 40.3 €2010/kW/an

Wind onshore 52.6 51.7 50.9 50.0 49.1 48.2 47.3 €2010/kW/an

Wind offshore 127.6 122.4 117.2 112.0 106.8 101.6 96.4 €2010/kW/an

Solar 18.6 17.1 15.7 14.3 12.9 11.4 10.0 €2010/kW/an

Source: ZEP (2013). Solar PV costs from Fraunhofer ISE (2015)

Table 10 Variable operation and maintenance costs in EMPIRE

2020 2025 2030 2035 2040 2045 2050 Unit

Lignite 0.5 0.5 0.5 0.5 0.5 0.5 0.5 €2010/MWh

Lignite CCS 0.0 3.3 3.3 3.3 3.3 3.3 3.3 €2010/MWh

Coal 0.5 0.5 0.5 0.5 0.5 0.5 0.5 €2010/MWh

Coal CCS 0.0 2.5 2.5 2.5 2.5 2.5 2.5 €2010/MWh

Gas OCGT 0.5 0.5 0.5 0.5 0.5 0.5 0.5 €2010/MWh

Gas CCGT 0.5 0.5 0.5 0.5 0.5 0.5 0.5 €2010/MWh

Gas CCS 0.0 1.9 1.9 1.9 1.9 1.9 1.9 €2010/MWh

Nuclear 1.7 1.7 1.6 1.6 1.5 1.5 1.4 €2010/MWh

Source: ZEP (2013). Variable costs and operation and maintenance costs of other technologies
assumed to be included in the fixed operation and maintenance costs. For CCS technologies there is
an additional cost component of 20 €2010/tCO2 stored to account for transport and storage costs (this
cost is flat for all years)

Table 11 Investment costs of storage technologies in EMPIRE

Technology 2020 2025 2030 2035 2040 2045 2050 Unit

Pump storage (power) 1000 1000 1000 1000 1000 1000 1000 €2010/kW

Pump storage (energy) 100 100 100 100 100 100 100 €2010/kWh

Li-ion utility battery 246 198 198 198 198 198 198 €2010/kWh

Source: Pump-storage costs are based on own assumption. Lithium-ion battery costs are based on an
adapted version of the medium cost scenario in Cole et al. (2016). For pump storage the power and
energy capacity investments are decoupled. Li-ion batteries are assumed to be 0.5 C (i.e. capable to
discharge from full to empty in 2 h)
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