
Ba
ch

el
or

’s
 th

es
is Voxelizer: an Open Source Voxelization

Engine

May 2020

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

André Storhaug

Bachelor’s thesis
2020

Bachelor’s thesis

Voxelizer: an Open Source Voxelization
Engine

May 2020

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of ICT and Natural Sciences

André Storhaug

Obligatorisk egenerklæring/gruppeerklæring

Den enkelte student er selv ansvarlig for å sette seg inn i hva som er lovlige hjelpemidler, retningslinjer

for bruk av disse og regler om kildebruk. Erklæringen skal bevisstgjøre studentene på deres ansvar og

hvilke konsekvenser fusk kan medføre. Manglende erklæring fritar ikke studentene fra sitt ansvar.

Du/dere fyller ut erklæringen ved å klikke i ruten til høyre for den enkelte del 1-6:

1. Jeg/vi erklærer herved at min/vår besvarelse er mitt/vårt eget arbeid,

og at jeg/vi ikke har brukt andre kilder eller har mottatt annen hjelp

enn det som er nevnt i besvarelsen.

2. Jeg/vi erklærer videre at denne besvarelsen:

• ikke har vært brukt til annen eksamen ved annen

avdeling/universitet/høgskole innenlands eller utenlands.

• ikke refererer til andres arbeid uten at det er oppgitt.

• ikke refererer til eget tidligere arbeid uten at det er oppgitt.

• har alle referansene oppgitt i litteraturlisten.

• ikke er en kopi, duplikat eller avskrift av andres arbeid eller

besvarelse.

3. Jeg/vi er kjent med at brudd på ovennevnte er å betrakte som fusk og

kan medføre annullering av eksamen og utestengelse fra universiteter

og høgskoler i Norge, jf. Universitets- og høgskoleloven §§4-7 og 4-8 og

Forskrift om eksamen §§14 og 15.

4. Jeg/vi er kjent med at alle innleverte oppgaver kan bli plagiatkontrollert

i Ephorus, se Retningslinjer for elektronisk innlevering og publisering av

studiepoenggivende studentoppgaver

5. Jeg/vi er kjent med at høgskolen vil behandle alle saker hvor det

forligger mistanke om fusk etter høgskolens studieforskrift §31

6. Jeg/vi har satt oss inn i regler og retningslinjer i bruk av kilder og

referanser på biblioteket sine nettsider

v

vi

Abstract

Voxelization is the process of converting 3D models into volumetric data. The main goal of

this thesis is to improve the open-source Voxelizer engine, which is written in JavaScript. To

make voxelization easy and available, a complementary cross-platform desktop application

is also developed, making use of the Voxelizer engine. Further, to make the software secure

and easy to maintain, this thesis also focus on automation. A GitHub Action named JSDoc

Action is developed for the purpose of automating the generation of JSDoc documentation.

The result of this thesis includes a maintainable and easy to use collection of high-quality

voxelization software, in addition to several automation tools.

vii

Sammendrag

Voxelisering er prosessen å konvertere 3D-modeller til volumetrisk data. Hovedmålet med

denne oppgaven er å forbedre open-source Voxelizer-motoren, som er skrevet i JavaScript.

For å gjøre voxelisering enkelt og tilgjengelig, er det også utviklet en plattformuavhengig

skrivebordsapplikasjon som benytter seg av Voxelizer-motoren. For å gjøre programvaren

sikker og enkel å vedlikeholde, fokuserer denne rapporten også på automatisering. En GitHub

Action kalt JSDoc Action er utviklet for å automatisere genereringen av JSDoc dokumen-

tasjon. Resultatet av denne oppgaven inkluderer en vedlikeholdbar og brukervennlig sam-

ling av høykvalitets voxeliserings-programvare, i tillegg til flere automatiseringsverktøy.

viii

Acknowledgement

I wish to express my deepest gratitude to my supervisor, Professor Ricardo da Silva Torres,

for all the help and guidance throughout the entire project. I also want to acknowledge all

the love and support from my family - my parents, Synnøve and Ove; and my sisters, Maria,

Viktoria and Helene. This work would not have been possible without them.

André Storhaug, Ålesund 20.05.2020

Contents

List of Figures xvi

List of Tables xvii

Listings xviii

Terminology xix

1 Introduction 1

1.1 Background . 1

1.2 Problem Formulation . 2

1.3 Objectives . 2

1.4 Scope . 3

1.5 Systems overview . 3

1.5.1 Voxel systems . 3

1.5.2 Automation systems . 4

1.6 Outline . 4

2 Theory 6

2.1 Agile methods . 6

2.1.1 Scrum . 6

2.1.2 Kanban . 8

2.2 Git . 8

2.2.1 GitFlow . 9

2.3 GitHub . 10

2.3.1 GitHub Actions . 10

2.3.2 GitHub Pages . 10

ix

CONTENTS x

2.4 HyperText Markup Language (HTML) . 10

2.5 Cascading Style Sheets (CSS) . 11

2.6 JavaScript . 11

2.6.1 Module systems . 12

2.6.2 Transpilation . 12

2.6.3 Bundling . 12

2.7 TypeScript . 13

2.8 JavaScript Object Notation (JSON) . 13

2.9 JSDoc . 14

2.10 Tools and libraries . 15

2.10.1 WebGL . 15

2.10.2 three.js . 15

2.10.3 ndarray . 15

2.10.4 Electron . 16

2.10.5 React . 17

2.10.6 Semmle LGTM . 17

2.10.7 Coveralls . 17

2.11 3D computer graphics . 17

2.11.1 Texture maps . 18

2.11.2 Ray casting . 19

2.12 Acceleration data structures . 20

2.12.1 Octrees . 20

2.12.2 Bounding volume hierarchy . 20

2.13 Voxel . 21

2.14 Voxelizer v0.1.3 . 22

3 Method 25

3.1 Tools and libraries . 25

3.1.1 JavaScript . 25

3.1.2 npm package manager . 25

3.1.3 GitHub Actions . 26

3.1.4 Build tools . 26

3.1.5 Third-party libraries and frameworks . 26

CONTENTS xi

3.2 Working methodology . 26

3.2.1 Scrum . 27

3.2.2 GitFlow . 27

3.2.3 Semantic versioning . 27

3.3 three-voxel-loader . 27

3.3.1 Internal data structure . 28

3.3.2 Loading voxel data . 29

3.3.3 Visualization . 30

3.3.4 Debugging . 30

3.3.5 Building . 31

3.4 Voxelizer . 31

3.4.1 Systems overview . 31

3.4.2 Algorithm system . 32

3.4.3 Raycasting algorithm . 33

3.4.4 three.js optimization . 34

3.4.5 Color system . 35

3.4.6 Loading . 36

3.4.7 Exporting . 36

3.4.8 Testing . 36

3.4.9 Migration . 37

3.4.10 Debugging and Profiling . 37

3.4.11 Building . 37

3.5 BINVOX . 38

3.6 Voxelizer Desktop . 39

3.6.1 Design . 39

3.6.2 Implementation . 41

3.6.3 Releases . 42

3.7 JSDoc Action . 42

3.7.1 Implementation . 42

3.7.2 Usage . 44

3.7.3 Feedback . 44

3.8 Automation . 44

CONTENTS xii

3.8.1 JavaScript package workflows . 44

3.8.2 GitHub Action version tagging . 48

3.9 file-existence-action . 48

3.10 file-reader-action . 49

3.11 3D models . 49

4 Result 51

4.1 three-voxel-loader . 51

4.1.1 Level Of Detail . 51

4.1.2 Loading support . 53

4.1.3 Example . 54

4.2 Voxelizer . 54

4.2.1 Voxelization . 55

4.2.2 Visual assesment . 58

4.2.3 Performance . 62

4.2.4 Exporting . 66

4.2.5 Code quality . 66

4.2.6 Example . 67

4.2.7 Usage example . 69

4.3 BINVOX . 71

4.4 Voxelizer Desktop . 71

4.4.1 Features . 71

4.4.2 GUI . 72

4.5 JSDoc Action . 78

4.5.1 Example usage . 79

4.6 file-existence-action . 81

4.7 file-reader-action . 82

4.8 Automation . 82

4.9 Popularity and achievements . 84

5 Discussion 86

5.1 Requirements specification completeness . 86

5.2 Working methodology . 87

CONTENTS xiii

5.3 Voxelizer . 87

5.4 Voxelizer Desktop . 87

5.5 Automation . 88

5.6 Supportive projects . 88

5.7 Future work . 88

5.7.1 three-voxel-loader . 88

5.7.2 Voxelizer . 89

6 Conclusion 90

Appendices 97

A Preliminary report 98

B Progress reports 123

C Sprint cumulative flow diagram 134

D Backlog 135

List of Figures

1.1 Voxel systems overview. 4

1.2 Automation systems overview. 4

2.1 Scrum workflow. 8

2.2 GitFlow branching model example. 9

2.3 Electron architecture. 16

2.4 Triangular mesh. 18

2.5 Texture mapping illustration. 19

2.6 Raycasting intersections example. 19

2.7 Example of an octree with three levels. 20

2.8 Example of an BVH. Replica of figure from MacDonald [48]. 21

2.9 Three voxels. 21

2.10 Voxelization of a torus with Voxelizer v0.1.3. The voxelization is done with a

resolution of 40. 23

2.11 Voxelization of a monkey with Voxelizer v0.1.3. The voxelization is done with a

resolution of 100. 23

2.12 Voxelization of an anvil with Voxelizer v0.1.3. The voxelization is done with a

resolution of 27. 24

3.1 UML class diagram of the three-voxel-loader. 28

3.2 UML class diagram of the improved Voxelizer engine v1.0.0. 32

3.3 Merging of voxel samplings. 33

3.4 Solid (voxelization) filling of 3D model cross section. 34

3.5 Visualization of BVH applied to 3D model of a monkey face. 35

3.6 Screenshot of performance profiling with Google Chrome Developer Tools. . . 38

3.7 Wireframe diagram of drag and drop start screen. 40

xiv

LIST OF FIGURES xv

3.8 Wireframe diagram of loading screen. 40

3.9 Wireframe diagram of the main screen. 41

3.10 JSDoc Action flowchart diagram. 43

3.11 CI/CD pipelines . 46

3.12 Automation of release publishing process. 47

3.13 Automatic updating of major version tag. 48

3.14 Procedurally generation of rusty metal texture. 50

3.15 Baked rusty metal texture. 50

4.1 Screenshot of Chicken stored in VOX file format loaded with the three-voxel-

loader plugin. 52

4.2 Generated meshes of different voxel sizes with the three-voxel-loader plugin. . 52

4.3 Torus meshes with diffrent LOD levels. 53

4.4 Screenshot of the three-voxel-loader example page at GitHub Pages. 54

4.5 Logo for the Voxelizer engine v1.0.0. 55

4.6 Render of textured anvil 3D model. 56

4.7 Colored voxelization (resolution of 29) of anvil 3D model. 56

4.8 Colored voxelization (resolution of 27) of anvil 3D model. 57

4.9 Colored voxelization (resolution of 27) of anvil 3D model cut in half. 57

4.10 Voxelization of a torus with Voxelizer v0.1.3 and v1.0.0. The voxelization is done

with a resolution of 40. 58

4.11 Voxelization of a monkey with Voxelizer v0.1.3 and v1.0.0. The voxelization is

done with a resolution of 100. 59

4.12 Voxelization of an anvil with Voxelizer v0.1.3 and v1.0.0. The voxelization is

done with a resolution of 27. 61

4.13 Plot over execution time and memory footprint for voxelization of a low-detailed

mesh with the old and new Voxelizer engine. 63

4.14 Plot over execution time and memory footprint for voxelization of a high-detailed

mesh with the old and new Voxelizer engine. 65

4.15 Public documentation for the Voxelizer engine. 67

4.16 Screenshot of the Voxelizer engine example page at GitHub Pages. 68

4.17 Voxelizer Desktop drag and drop start screen. 72

4.18 Voxelizer Desktop drag and drop start screen filetype error. 73

LIST OF FIGURES xvi

4.19 Voxelizer Desktop loading 3D model. 73

4.20 Voxelizer Desktop main interface. 74

4.21 Voxelizer Desktop with dark mode and Norwegian language. 75

4.22 Voxelizer Desktop voxel warning. 76

4.23 Voxelizer Desktop displaying voxelized result. 77

4.24 Voxelizer Desktop OS file dialog for saving voxel data. 78

4.25 Graphics from the GitHub Marketplace for the JSDoc Action. 79

4.26 Screenshot of automation checks for a pull request on GitHub. 83

4.27 Screenshot of JSDoc README.md file. 85

4.28 Screenshot of response from JSDoc lead maintainer. 85

List of Tables

2.1 Roles in Scrum. 7

2.2 Scrum processes. 7

4.1 Execution times and memory footprints for voxelization of low-detailed mesh

with Voxelizer v0.1.3. 63

4.2 Execution times and memory footprints for voxelization of low-detailed mesh

with Voxelizer v1.0.0. 63

4.3 Execution times and memory footprints for voxelization of high-detailed mesh

with Voxelizer v0.1.3. 65

4.4 Execution times and memory footprints for voxelization of high-detailed mesh

with Voxelizer v1.0.0. 65

4.5 Repositories statistics as of May 17th, 2020. 84

xvii

Listings

2.1 Example JSON data . 14

2.2 JSDoc example code . 14

3.1 Example BINVOX data in JSON format . 39

4.1 JS code for generating low-detailed torus mesh. 62

4.2 JS code for generating high-detailed torus mesh. 64

4.3 Voxelizer engine v1.0.0 example usage. 70

4.4 Basic JSDoc Action workflow step . 79

4.5 Example documentation workflow file . 81

xviii

Terminology

Glossary

Cross-platform software Computer software that can be run on multiple computing plat-

forms.

Library A collection of data and programming code that is used to develop software.

Open-Source Software Software that is available to the public and can be freely used or

modified.

Polyfill Code for providing modern functionality on older browsers that do not support it

natively.

SemVer Versioning scheme.

Voxel Three-dimensional analogue of a pixel, representing a value on a regular grid in three-

dimensional space.

Voxelization Process for transforming a polygon mesh into voxels.

Notation

GB Gigabyte

MB Megabyte

sec System International unit for Second

xix

LISTINGS xx

Abbreviations

AMD Asynchronous Module Definition

API Application Programming Interface

BVH Bounding Volume Hierarchy

CD Continous Development

CG Computer Graphics

CI Continous Integration

CLI Command Line Interface

CPU Central Processing Unit

CSS Cascading Style Sheets

ES ECMAScript

ES5 ECMAScript 5

ES6 ECMAScript 2015

GC Garbage Collector

GUI Graphical User Interface

HTML HyperText Markup Language

IO Input Output

IPC Inter-process Communication

JIT Just In Time

JS JavaScript

JSX JavaScript XML

JSON JavaScript Object Notation

LISTINGS xxi

NPM Node Package Manager

OS Operating

OSS Open-Source software

RTF Rich Text Format

UML Unified Modeling Language

UUID Universally unique identifier

VCS Version Control System

WebGl Web Graphics Library

Chapter 1

Introduction

1.1 Background

Computer graphics (CG) studies methods for digitally synthesizing and manipulating vi-

sual content. An important part of CG is the study of algorithms. This forms the basis for

many of the powerful graphics technologies available. One of these technologies is WebGL,

a relatively new technology for displaying graphics in web browsers. Since its introduction,

the graphical user-experience for the large user mass of the web has been significantly ex-

panded. It allows for almost desktop like graphics performance.

WebGl has especially expanded the abilities regarding the creation of web browser games

and simulations. Creating high performance graphics applications in the browser has never

been easier. It has opened up for a sea of possibilities where only one’s imagination is the

limit.

In a lot of simulation software, and even some games, volumetric information plays a

crucial part. With everything from fluid dynamics to voxel games like Minecraft, volumet-

ric information is often a key component [1]. One way to acquire such volumetric data is

through voxelizing a 3D model (polygon mesh). Voxelization is the process of converting 3D

models into a volumetric data. However, to the best of my knowledge, it does not exist any

easy-to-use open-source voxelization software written in JavaScript. In order to obtain such

volumetric data, developers are therefore forced to go through tedious preprocessing steps,

often involving old and complex, hard to use, platform specific tools (for example binvox

[2]).

1

CHAPTER 1. INTRODUCTION 2

This was a problem I encountered myself a year ago in 2019. In connection with an as-

signment in a simulation course at the Norwegian University of Science and Technology

(NTNU), I needed to be able to easily generate some volumetric data based on 3D mod-

els. I was using web-technologies, so I was looking for a simple solution in plain JavaScript.

However, I was not able to find such a solution. I therefore decided to make one myself. The

result was an open-source voxelization engine, written entirely in JavaScript. It was named

Voxelizer. The engine is able to load a 3D model and voxelize it.

However, the Voxelizer engine carries strong signs of the limited amount of time allo-

cated for creating the software. By improving and expanding the capabilities of the project,

it could serve to be a valuable open-source asset to the web based game- and simulation-

development ecosystem, providing easy access to voxelization.

1.2 Problem Formulation

There exists an open-source JavaScript voxelization engine for voxelizing 3D models, named

Voxelizer. The software faces several issues and is lacking important features. It does not

produce accurate and representative results. The output sometimes contains holes and a

lot of artifacts. Importing and exporting support is extremely limited. Documentation is

lacking, and the coding is of poor quality. The project needs to be professionalized, and

made easy to both use and maintain. A more complete description of the problems Voxelizer

v0.1.3 faces are described in Section 2.14.

Packaging and publication of new releases, as well as documentation, are tedious and

manual procedures. This workflow is prone to human errors, potentially introducing crit-

ical bugs. These processes could be automated with modern continuous integration and

continuous deployment tools, effectively eliminating these vulnerabilities.

1.3 Objectives

The main goal of this thesis is to improve and extend the open-source JavaScript Voxelizer

engine, turning it into a maintainable and high-quality open-source project. A second goal

is to develop complimentary software for the Voxelizer project. This will be in the form of a

cross platform desktop application and command line interface (CLI), based on the Voxelizer

engine, making it easy to voxelize 3D models.

CHAPTER 1. INTRODUCTION 3

In order to ensure the maintainability of the various software projects, automation is a

critical component. Therefore a third goal is to automate the various software projects as

much as possible. This also includes the development of a GitHub Action, for automating

the API documentation generation process.

1.4 Scope

The main purpose of this project is to make it easy to conduct high quality voxelization of

3D models. Its scope is limited by the requirements specification defined in the Preliminary

report, available in Appendix A. Complementary to these requirements, a backlog with user-

stories has been created. See Appendix D.

It is important to note that the project does not primarily focus on the speed of the vox-

elization algorithm. The targeted systems often run in an environment where resources are

scarce. Performance is therefore of course important. However, usability is also extremely

important. This thesis will mainly focus on providing easy access to high-quality voxeliza-

tion, with reasonable performance. If speed is of the main concerns, it would be better to

do the extra work of setting up a native solution (for example binvox [2]), often written in

C/C++.

1.5 Systems overview

This section provides an overview of the different repositories developed in connection with

this thesis.

1.5.1 Voxel systems

The diagram in Figure 1.1 shows how the different software repositories regarding voxeliza-

tion interconnects. The green boxes represents the main software projects developed in con-

junction with this thesis. During development, some components were generalized and ex-

tracted into a separate repository. This side project is represented by the blue box. The white

box represents a third party library.

CHAPTER 1. INTRODUCTION 4

Voxelizer Voxelizer Desktop three-voxel-loader

three.js

BINVOX

Figure 1.1: Voxel systems overview.

1.5.2 Automation systems

Figure 1.2 shows a diagram of the various automation repositories. This is mainly GitHub

Actions, published to the GitHub Marketplace. The yellow box represents a main project.

Throughout the project, it also became clear that some supportive actions needed to be cre-

ated. These side projects are represented by the blue boxes. The white box represents third

party software.

File Existence ActionJSDoc Action File Reader Action

JSDoc

Marketplace

Figure 1.2: Automation systems overview.

1.6 Outline

The rest of the report is structured as follows.

Chapter 2 - Theory: Gives an introduction to the theoretical background that lies the foun-

dation of this thesis.

Chapter 3 - Method: Contains a description of the methodology and materials used through-

CHAPTER 1. INTRODUCTION 5

out the project.

Chapter 4 - Result: Contains a description of the completed works.

Chapter 5 - Discussion: Discusses the achieved results, the execution of methodologies, and

how the projects could be further improved.

Chapter 6 - Conclusions: An overall conclusion of the project is presented, reviewing the

objectives and the progress made.

Chapter 2

Theory

This chapter includes the theory that lies the foundation of this thesis. The chapter consists

of several parts. First, working methodologies are presented, followed by various program-

ming tools and languages. Then, a section about 3D computer graphics is included. Acceler-

ation data structures are then explained. Lastly, a through description of the Voxelizer engine

version v0.1.3 is presented.

2.1 Agile methods

2.1.1 Scrum

Scrum [3] is an agile methodology. It is a lightweight, iterative and incremental framework

for managing complex work. Scrum is one of the most popular agile methodologies used in

the software business. The framework is mainly intended for developing information sys-

tems. Scrum defines several roles and different processes. Table 2.1 lists the various roles.

An illustration of the Scrum process is shown in Figure 2.1.

At the hart of Scrum, there is a development team. This team is comprised of around

three to nine people. The team collectively breaks down project tasks (user-stories) from the

backlog into projects. These are then to be completed within a given time frame, so-called

"sprints". A sprint usually lasts for about two weeks, to a month. Scrum is also highly fo-

cused in the communication between the involved persons, defining several short planning-

and review-meetings. Table 2.2 lists a more detailed description of the various processes in

Scrum.

6

CHAPTER 2. THEORY 7

Table 2.1: Roles in Scrum.

Role Description

Product owner Responsible for representing the stakeholders interests, and ensur-

ing the product success.

Development team The persons actually implementing the project tasks. They are also

responsible for setting up the sprints and having daily stand up

meetings.

Scrum Master Person within the agile development team. The Scrum Master is

to serve as a facilitator for the development team. A good Scrum

Master should make himself/herself superfluous.

Table 2.2: Scrum processes.

Process Description

Sprint planning The team selects user-stories from the product backlog. Normally,

story points are assigned to the user stories, based on the effort

needed to implement it.

Sprint The actual implementation of the selected user stories. This should

result in the next increment (or version) of the product.

Stand-up meeting Each day, the team then has a 10-15 minute long "stand-up" meet-

ing. This gives the team an opportunity to plan for the day, as well as

catching up on the progress done by the other team members.

Sprint review An evaluation process of what was and what was not finished in the

last sprint. The results of the sprint are also presented to the product

owner and the various stakeholders.

Sprint retrospect The team will have a meeting for assessing the completed sprint. This

is an important step, as this presents an opportunity to find out how

to improve the process of the next sprint.

CHAPTER 2. THEORY 8

SPRINT
Re

vie
w

R
e

tr
o

sp
e

ct

Im
p

lem
e

n
ta

tio
n

Planning

Daily Scrum

Product Backlog Product Increment

Figure 2.1: Scrum workflow.

2.1.2 Kanban

Kanban [4] is a lean software development methodology, based on the lean methodologies.

These have been highly successfully in manufacturing processes. At the center of Kanban

is a just-in-time (JIT) process. No new tasks are to be started unless there is a need for it.

Further, once a capacity limit has been reached, no further tasks can be started on. When a

task has been resolved, a new one can be started. This can simply be described as a pulling

workflow. Kanban also often focuses on the visualization of tasks. This is normally done with

a Kanban Board. In contrast to Scrum, Kanban allows for the software to be developed in one

large development cycle. It is much more flexible, and does not define any roles.

2.2 Git

Git [5] is a type of distributed version control system (VCS), originally created by Linus Tor-

valds in 2005. Git is free and open-source, and is today the most popularly used VCS. It is

fast and efficient, able to handle everything from small hobby projects to giant projects like

the Linux kernel. Every Git directory is a complete repository with history and full version-

tracking abilities. It does not need access to internet, nor a central server in order to work.

CHAPTER 2. THEORY 9

2.2.1 GitFlow

GitFlow is a popular branching model for Git, created by Vincent Driessen [6]. Figure 2.2

displays an example of git history, adhering to the GitFlow branching style. GitFlow truly ex-

cels in parallel development of software features. It is extremely well suited for collaboration

and scales well. It also provide an efficient and predictable merging flow, making it easy to

customize workflows for various needs.

Development of new features are done in feature branches. These branch off from the

development branch, often named develop, reflecting the current state of "development".

When a feature is done, it is merged back into the development branch. When it is time

for a new release, a release branch is created based on the development branch. In this

branch, finishing touches can be made, like bumping up the version numbers, etc. When

approved, the release branch is then merged into a master branch, and also back into the

development branch. The master branch only contains released code. In the event of an

emergency, a hotfix branch can be used. This provides a shortcut for implementing critical

fixes. A hotfix branch branches directly from master. When finished, the hotfix is merged

into both master and develop.

v1.1.0 v1.2.0v1.0.0

hotfix

develop

feature

release

master

v1.1.1

Figure 2.2: GitFlow branching model example.

CHAPTER 2. THEORY 10

2.3 GitHub

GitHub is primarily a hosting service for Git repositories. In addition to repository hosting,

GitHub provides a range of different services through it’s web-based GUI. This includes both

wikis, access controls, simple task management tools, statistics, automation capabilities and

websites hosting.

2.3.1 GitHub Actions

GitHub Actions [7] is a fairly very new service provided by GitHub. It enables users to au-

tomate software workflows, effectively providing a high quality CI/CD for free 1. It is also

possible to set up self-hosted runners. GitHub Actions makes it possible to build, test and

deploy code directly from within GitHub.

To setup and configure an automated process, so-called workflows needs to be defined.

These are made up of one or more jobs. The actual workflow has to be defined in a YAML file.

This file needs to be created and placed in a repository hosted on GitHub. The reader may

consult the documentation available at GitHub for being aware of the appropriate workflow

syntax for creating such YAML files [8].

2.3.2 GitHub Pages

Github provides its users with a public webpage hosting service. This is named GitHub Pages

[9]. User are able to serve static websites directly from their repository hosted on GitHub.

Normally, a GitHub Pages site is published by pushing static files to a specific branch named

gh-pages.

2.4 HyperText Markup Language (HTML)

HTML is a markup language, originally defined by Tim Berners-Lee and Robert Caillau in

1989. It is primarily used for documents on the web, intended to be displayed in a web-

browser. It is used for structuring and formatting information. HTML can be used in con-

junction with other web technologies such as Cascading Style Sheets (CSS) and scripting lan-

1GitHub Actions usage is completely free for public repositories. For private repositories, depending on the
subscription plan, some thousand minutes of free usage is provided each month.

CHAPTER 2. THEORY 11

guages like JavaScript, in order to either style, or dynamically change and alter the contents

of a web page. The currently latest release of the language is HTML5.

2.5 Cascading Style Sheets (CSS)

CSS is short for Cascading Style Sheets. CSS is a programming language in order to describe

how HTML elements in a HTML file are to be rendered. Everything from the boldness of a

headline, to the background of the entire page.

2.6 JavaScript

JavaScript is a lightweight interpreted programming language. The language is prototype-

based, a type of object-oriented programming where properties and methods are added to

an instance of an implicitly defined class [10]. JavaScript does not provide any type-checking.

JavaScript was developed by Brendan Eichand and released in 1995 [11]. Initially, it was

designed to be a small scripting language for enabling interaction with web pages. A stan-

dardization effort of JavaScript, led by Ecma International [12], lead to the ECMAScript spec-

ification that the modern JavaScript language conforms to. Since then, the language has

evolved rapidly and gained massive in popularity. It has become the de-facto language for

adding dynamic behavior to HTML. As of may 2020, JavaScript is among the top ten pro-

gramming languages according to the TIOBE index [13].

Originally, JavaScript engines were mainly used in browser environments. However, with

the development of Node.js in early 2009, this was dramatically changed. Node.js provides

a runtime environment for executing JavaScript outside of a web browser. It set the stage

for server-side JavaScript programs. In January 2010, a package manager named npm [14]

(originally short for Node Package Manager) was released for Node.js. This made it easy for

developers to share and reuse source code.

The size of JavaScript programs has increased massively in size. With increased size, so

does the complexity of the code. However, JavaScript had very limited functionality in terms

of splitting a program up in smaller modules for use with the browser. Maintaining large

codebases was a nightmare. It therefore became apparent that a way of breaking down a

JavaScript program into smaller modules was needed. Several open-source module systems

were therefore developed by the community in order to tackle this problem.

CHAPTER 2. THEORY 12

2.6.1 Module systems

• CommonJS is a module specification meant for JavaScript outside the browser. It is

mainly used in Node.js, and hence it is one of the most popularly used module defi-

nitions. The modules are mainly imported and exported with the keywords "require"

and "module.exports".

• Asynchronous module definition, or more commonly known as AMD, is a JavaScript

module definition intended for the browser. It defines an API for defining code as mod-

ules, including their dependencies. AMD also has the capability of loading modules

asynchronously. The most popular AMD module loader is named RequireJS [15].

• Universal Module Definition, abbreviated UMD, is a module definition wrapper to

be able to use various module systems [16]. Be it in the browser or in Node.js. It is

compatible with both CommonJS and AMD.

• JavaScript modules, or ES Modules, are a language native module system, introduced

with ECMAScript 2015 (ES6) in 2015. The implementation is relatively new, so a lot of

libraries, frameworks and packages does not support this yet. Still, most browsers have

already implemented support for this [17].

2.6.2 Transpilation

Due to the many versions of JavaScript, or more specifically ECMAScript, like ES5, ES6 and

ES7, compatibility is an issue. Not all browsers and environments support the latest EC-

MAScript versions. Tools like Babel [18] has been developed in order to transpile JavaScript

to a specific version. The most common transpilation target, supported by all the major

browsers is ECMAScript 5 (ES5).

2.6.3 Bundling

JavaScript bundling is an optimization technique to combine separate resource files into one

file. This is done in order to reduce the number of HTTP requests required for a page to load.

Several bundlers are able to do so called tree-shaking, dramatically reducing the size of the

finished bundle. In addition to the performance gain, bundling is also often done in order

to develop a JavaScript application in separate files, effectively employing a form of module

CHAPTER 2. THEORY 13

system. The bundlers often use one or more of the popular module systems like UMD and

ES modules. There are three main actors in terms of bundling JavaScript.

• Webpack [19] is a module bundler for JavaScript. However, it is also able to transform

front-end assets like HTML, CSS, and images. Webpack is mostly used for bundling JS

applications, and is highly extendible. It also provides a way to bundle an application

for Node.js to be used in the Browser 2. However, as of may 2020, it does not support

exporting ES Modules.

• Rollup [20] is a module bundler primarily focusing on JavaScript libraries. It has a lot

of similarities with Webpack. However, it is a bit lighter and provides exporting support

for ES Modules.

• Browserify [21] is a lightweight module bundler for enabling the use of CommonJS

syntax in the Browser.

2.7 TypeScript

TypeScript [22] is a typed superset of JavaScript that compiles to plain JavaScript. It is open

source, and primarily developed and maintained by Microsoft [23]. TypeScript provides op-

tional static typing to the JavaScript language. The TypeScript compile also includes support

for the latest ECMAScript features.

2.8 JavaScript Object Notation (JSON)

JavaScript Object Notation, better known as JSON, is a lightweight data interchange for-

mat. It is easy for both humans and machines to read and write. The data is stored as at-

tribute–value pairs. An example is shown in Listing 2.1. Here, the the first key is "name", and

the corresponding value is "A. Storhaug".

2This requires that no Node.js specific APIs are used. Alternatively, polyfills could be supplied.

CHAPTER 2. THEORY 14

Listing 2.1: Example JSON data

1 {

2 "name": "A. Storhaug",

3 "age": 22,

4 "email": "andr3.storhaug@gmail.com",

5 "url": "https://github.com/andstor"

6 }

2.9 JSDoc

JSDoc is markup language for annotating JavaScript source code files. The JSDoc specifi-

cation was released in 1999. Today it has become the de-facto JavaScript documentation

language. It is for example used in projects like the Google Closure Compiler [24] by Google.

Since JavaScript has no type-checking, JSDoc is able to patch some of this inconvenience.

Figure 2.2 shows an example of JSDoc code, describing a soda bottle class implementation.

By using various tools, one is able to generate documentation in formats like HTML and RTF.

JSDoc 3 is the current version of the original companion documentation generation tool for

JSDoc. JSDoc 3 [25], also referred to as just JSDoc, is the most used tool for programmatically

generating JavaScript documentation. It has a wast feature set, even allowing users to create

customized themes, known as templates. As of May 2020, JSDoc is used by more than 39.300

public projects [26], and has over 10.600 stars on GitHub [27].

Listing 2.2: JSDoc example code

1 /**

2 * Represents a soda bottle.

3 * @constructor

4 * @param {string} brand The brand of the soda.

5 * @param {number} size The size of the soda in deciliters.

6 */

7 function SodaBottle(brand, size) {

8 }

CHAPTER 2. THEORY 15

2.10 Tools and libraries

2.10.1 WebGL

WebGL (Web Graphics Library) [28] is a JavaScript API for rendering interactive high-performance

3D and 2D graphics in a web browser. WebGL uses OpenGl ES [29], a subset of OpenGL. We-

bGL makes it possible to take advantage of hardware graphics acceleration provided by the

user’s device. For actually displaying the graphics in the browser, HTML5 <canvas> elements

are used.

2.10.2 three.js

three.js[30] is a cross-browser JavaScript library for creating and displaying 3D computer

graphics in a web browser. It is open-source and licensed under the MIT license. three.js

uses WebGL under the hood. The library abstracts away a lot of tedious manual labour, like

the setup of WebGL, construction of vertices, faces, etc. three.js provides the user with an

easy API for directly constructing three-dimensional objects like boxes, spheres and toruses,

as well as easy camera controls. The library also includes a vast set of shaders, making it very

simple to make use of high quality materials. three.js is one of the most popular 3D graphics

JavaScript library for use in the browser, as can be seen on its GitHub repo [30].

2.10.3 ndarray

ndarray [31] is an open-source JavaScript package providing modular multidimensional ar-

rays, written by Mikola Lysenko in 2013. In short, ndarray implements higher dimensional

views of 1D arrays. The 1D array can either be a normal JavaScript Array, or a JavaScript typed

array. MDN defines typed arrays as “array-like objects that provide a mechanism for reading

and writing raw binary data in memory buffers.” (Mozilla Developer Network [32]). Mainly,

they are used for maximizing efficiency and reducing memory footprint. However, typed ar-

rays are normally quite difficult to work with in JavaScript. Multidimensional typed arrays

even more so. ndarray provides a simple but powerful API, making use of multidimensional

typed arrays easy.

CHAPTER 2. THEORY 16

2.10.4 Electron

Electron [33] is an open-source framework developed and maintained by GitHub [34]. It

is used for building cross-platform desktop applications with JavaScript, HTML and CSS.

Electron is used by thousands of people, and apps like Visual Studio Code [35], Facebook

Messenger [36] and Microsoft Teams [37] are all made with Electron.

In short, the Electron Application architecture is as follows. An Electron application starts

by running a package.json’s main script. As shown in Figure 2.3, this creates a process that is

called the main process. From within this process, a GUI can be displayed by creating web

pages. Electron uses Chromium for creating web pages [38]. This means that Chromiums

multi-process architecture is also available. Every generated web page is therefore run in its

own process. These processes are called renderer processes. Communication between the

main process and a rendering process is done using inter-process communication, or IPC.

Electron also makes it possible to use Node.js APIs, effectively allowing lower level operating

system interactions.

Start

App

Start

Start

IPC

Main process

Render Process

IPC Render Process

Native UI Node.js

Operating System

Figure 2.3: Electron architecture.

CHAPTER 2. THEORY 17

2.10.5 React

React [39] is a JavaScript library for building user interfaces, created by Facebook [40]. It is

based around components, where each component manage its own state. These are then

composed together, enabling the creation of intricate and complex UIs. The library also im-

plements its own syntax extension to JavaScript. It is named JavaScript XML, or the more

popular used term - JSX. In addition to this, there exists a vast ecosystem of plugins for Re-

act, greatly simplifying the implementation of everything from localization to state manage-

ment.

2.10.6 Semmle LGTM

LGTM (Looks Good To Me) by Semmle [41] is a web service providing code security analysis.

The service is free for open-source projects. LGTM integrates with sites like GitHub and

Bitbucket, and is able to analyze projects written in Java, Python, JavaScript, TypeScript, C#,

Go, C and C++. It seeks out to combat the manual process of finding vulnerabilities. By

catching them at an early stage, one can prevent vulnerabilities from reaching production.

LGTM is based on large community of top security researchers, making it possible to help

developers ship secure code [42].

2.10.7 Coveralls

Coveralls [43] is a web service for code testing coverage. It enables one to track a projects

code coverage over time, providing valuable insight in a projects testing suite. Coveralls also

features close integration with GitHub, enabling pull request coverage reviews.

2.11 3D computer graphics

3D computer graphics refers to three-dimensional representation of geometric data in com-

puters, normally to be rendered into a two-dimensional image. The finalized render may be

saved or displayed on a screen in realtime. The geometric data is usually a 3D model, stored

in an appropriate file format. The most basic polygon primitives in computer graphics in-

cludes vertices, edges and faces. A vertex is simply a point in space. An edge is a connection

between two vertices. A face is a closed set of edges. Figure 2.4 shows a yellow triangle with

CHAPTER 2. THEORY 18

the appropriate vertex, edge and face labels. These primitives together defines a polyhedral.

Polyhedrons can then be further grouped together into a mesh. The most common type of

polygon mesh is a triangular mesh. This is a mesh comprised of only triangles. Figure 2.4

shows an illustration of a section of a triangular mesh.

Face

Edge
Vertex

Figure 2.4: Triangular mesh.

2.11.1 Texture maps

A texture map is an image which is applied, or mapped, onto the surface of a geometry. The

images is often in the form of a bitmap image or a procedural texture. Texture mapping, or

UV mapping, is the process of projecting an actual 2D image onto a 3D model. The technique

was initially developed by Edwin Catmull in 1974 [44]. UVs are two-dimensional texture

coordinates, assigned to every vertex in a polygon. They are essential in terms of describing

how an image gets applied onto a geometry. Figure 2.5 shows an illustrative example of how

a 2D image gets "wrapped" around a 3D model. A lot of 3D modeling software are able to

do the UV unwrapping automatically, for example Blender [45]. It is also possible to map a

finalized render into a surface texture, a process known as baking [46]. This is primarily used

as an optimization technique.

CHAPTER 2. THEORY 19

Figure 2.5: Texture mapping illustration.

2.11.2 Ray casting

Ray casting is the concept of use of ray–surface intersection tests to solve a variety of prob-

lems in 3D computer graphics and computational geometry. The first use of the term ray

casting was made by Scott Roth, in a paper from 1982 titled "Ray casting for modeling solids"

[47]. Raycasting is demonstrated in Figure 2.6. A ray is directed towards an object. If it crosses

a face, an intersection is registered.

Figure 2.6: Raycasting intersections example.

CHAPTER 2. THEORY 20

2.12 Acceleration data structures

2.12.1 Octrees

An octree is a type of tree structure. Each internal node of an octree has exactly eight chil-

dren. An octree is most commonly used for partitioning three-dimensional space. This is

done by recursively subdividing the space into eight octants. Note that depending on the

number of recursive subdivisions, an octree may contain multiple objects in its leaf nodes.

Figure 2.7 shows an example of an octree with three levels. Octrees are very commonly used

in 3D computer graphics. Another common use case of octrees is for storing voxel data.

Figure 2.7: Example of an octree with three levels.

2.12.2 Bounding volume hierarchy

A bounding volume hierarchy, abbreviated BVH, is a tree structure on a set of geometric ob-

jects. A BVH construction algorithm partitions the actual objects. The objects are wrapped

in a so-called bounding volume, forming the leaves of the tree. These are then grouped to-

gether into a larger bounding volume. This process is then repeated in a recursive manner.

The result is a tree structure with one single bounding volume as the root node. An example

of a BVH is shown in Figure 2.8. BVHs are often used for accelerating collision detection and

raytracing.

CHAPTER 2. THEORY 21

1

e

d

g

f

b

a

c

2

3

5

4

1

2

4 5

a

b

c

gfed

3

Figure 2.8: Example of an BVH. Replica of figure from MacDonald [48].

2.13 Voxel

A voxel is the three-dimensional analogue of a pixel [49]. It represents a single data point in

a regularly spaced three-dimensional grid. Figure 2.9 shows an illustration of three voxels,

where one of the voxels are marked with blue color. A very common use of voxels are in

medical imaging, for example datasets produced by a CT scan. Other areas where voxels are

commonly used includes simulations and for representing terrain in games.

Voxel

Figure 2.9: Three voxels.

CHAPTER 2. THEORY 22

2.14 Voxelizer v0.1.3

Voxelizer v0.1.3 [50] is a JavaScript engine (or library) for conducting voxelization of 3D mod-

els. It was written by me, André Storhaug, in 2019. Version 0.1.3 features a relatively simple

voxelization algorithm which is based on raycasting. The sampling algorithm tries to pro-

duce a filled volume-representation of a supplied 3D model. It samples the front and the

back of the model, combines the two results together and tries to fill the in-between gap.

The 3D model loading capabilities of the program is limited to plain OBJ files. In terms of

exporting, the software is able to output a 3D JavaScript array (nested arrays).

The engine is using ES6 features, hence it is transpiled with Babel (see Section 2.6.2).

However, is not bundled. It is therefore not possible to use the program out of the box in a

browser. One is limited to Node.js, or setting up a build system involving a module bundler

like Webpack or Rollup, as described in Section 2.6.3. The source code is messy, and it is very

hard to extend functionality. Especially due to a severe lack of documentation.

Voxelizer v0.1.3 produces unsatisfactory voxelization results. Firstly, several of the vox-

elizations contains holes. This can be clearly seen in Figure 2.10. A voxelization with holes of-

ten renders the voxelization useless. Secondly, a lot of artifacts are often generated, severely

degrading the results. This is shown in Figure 2.11, where long strains of voxels appear in the

front of the model. This is especially pronounced around the ears of the monkey. Thirdly,

the software is only able to produce a filled voxelization result. This is mainly because the

model is only sampled from the front and back. The other sides of the model are not taken

into account. This means that shell voxelization is not an option, and details may be lost.

Lastly, the algorithm used is unstable, often failing in the filling prosess. This problem can

be seen in Figure 2.12.

CHAPTER 2. THEORY 23

(a) Original torus mesh. (b) Voxelized result.

Figure 2.10: Voxelization of a torus with Voxelizer v0.1.3. The voxelization is done with a
resolution of 40.

(a) Original monkey mesh. (b) Voxelized result.

Figure 2.11: Voxelization of a monkey with Voxelizer v0.1.3. The voxelization is done with a
resolution of 100.

CHAPTER 2. THEORY 24

(a) Voxelized result.

(b) Original anvil 3D model.

Figure 2.12: Voxelization of an anvil with Voxelizer v0.1.3. The voxelization is done with a
resolution of 27.

Chapter 3

Materials and methods

This chapter presents the materials and methods used in this thesis. The chapter is orga-

nized as follows. Section 3.1 lists the various tools used in this project. Section 3.2 describes

the working methodology used. Then, the following five sections presents how the differ-

ent main projects are implemented. This includes the three-voxel-loader plugin, the Vox-

elizer engine, the BINVOX package, the Voxelizer Desktop application and the JSDoc Action.

Section 3.8 presents how automation for the projects is implemented. Section 3.9 and 3.10

presents two additional GitHub Actions needed in connection with the automation. Finally,

Section 3.11 provides a description of how the 3D models used in this thesis are created.

3.1 Tools and libraries

This section provides a describes the various tools, libraries and services used.

3.1.1 JavaScript

JavaScript has mainly been chosen as the base implementation language for all the projects

because of its cross platform compatibility and popularity.

3.1.2 npm package manager

npm is used as the main package tool. Also, all published packages are published to the

npm package registry. Alternatively, the new GitHub package registry could be used instead.

However, npm is both the most stable and popular JavaScript package registry available.

25

CHAPTER 3. METHOD 26

3.1.3 GitHub Actions

For automation, several platforms are available. One of the more popular is Travis CI [51].

However, GitHub Actions is used instead. This is because GitHub Actions are deeply inte-

grated into GitHub. It also has a unique concept of Actions, as described in Section 2.3.1.

3.1.4 Build tools

Several build tools are used. This includes:

• Rollup for bundling the three-voxel-loader and BINVOX projects.

• Webpack for bundling the Voxelizer engine.

• Babel for transpiring JavaScript to ES5.

• electron-builder for building and preparing Electron apps for distribution.

3.1.5 Third-party libraries and frameworks

Several third-party libraries and frameworks are used. Following is a short summary:

• three.js provides a simple and powerful 3D graphics library. It also includes raycasting

functionality.

• sparse-octree is used for generating octrees.

• three-bvh-mesh is used for improving the raycasting functionality of three.js.

• format-vox provides tools for parsing VOX files.

• dat.gui makes it easy to create input controls.

• ndarray provides multidimensional views of 1D typed arrays.

• Jest is used as testing framework.

• Electron provides a framevork for building cross-platform desktop applications.

3.2 Working methodology

This section presents the working methodology used throughout the project.

CHAPTER 3. METHOD 27

3.2.1 Scrum

Even though this is a one-man project, I have tried to adapt the scrum methodology. Alter-

natively, the much more flexible Kanban methodology could also be a good fit. However,

Scrum is chosen for its very good framework and supporting tools like Jira and Confluence.

Scrum helps to keep the pace up, and stay on track with progress.

The main adaptations made are mainly regarding the various meetings defined by Scrum,

as described in Section 2.1.1. Sprint planning is done as normal. User stories are selected

from the backlog, and story points are assigned. The sprint is then started, and lasts for two

weeks. Instead of daily stand-up meetings with a team, I have have set aside 10-15 minutes

for planning every day. After a sprint is finished, a sprint review is done. Then, a sprint retro-

spect is conducted, in order to be able to improve the next sprint. This includes investigating

both sprint burn-down charts and other statistics generated with Jira.

3.2.2 GitFlow

The branching strategy used during development is GitFlow, as described in Section 2.2.1.

This creates a consistent development and merging flow, making it easy to implement au-

tomation in the various project. Since GitFlow is very popular, a lot of potential contributors

are already familiar with the strategy. Providing familiar guidelines helps to keep the projects

tidy and secure.

3.2.3 Semantic versioning

All the created projects are enforcing Semantic Versioning. This makes the use of the soft-

ware predictable in terms of compatibility and potential breaking changes.

3.3 three-voxel-loader

The main goal for the three-voxel-loader is to generate a 3D mesh based on voxel data. The

next subsections will present a walkthrough of how the plugin is implemented, including the

various design choices made. Figure 3.1 shows a simplified UML diagram of the three-voxel-

loader.

CHAPTER 3. METHOD 28

three.js

VoxelLoader

Loader

«create»

«create»

«create»

«create»

LoaderFactory

«create»

XMLLoader

BINVOXLoader

ArrayLoader

VOXLoader

OctreeLoader

«mixin»
levelOfDetail

Figure 3.1: UML class diagram of the three-voxel-loader.

3.3.1 Internal data structure

For the plugin to be able support loading of various voxel data formats, an internal data

structure is used. This serves as an interface for the processing of various voxel data inter-

nally in the plugin. The chosen data structure is an octree, as described in Section 2.12.1.

The actual implementation of the octree is done with the sparse-octree library by Raoul van

Rüschen [52]. There are several reasons behind the choice of using an octree.

Voxel data normally consists of very large amounts of data. One of the main limitations

for how big a dataset can be, is the amount of available computer memory (RAM). The mem-

ory footprint of the plugin is therefore a big concern, especially since the targeted runtime

environments are often placing further restrictions on the available memory resources. Voxel

data normally contains very large amounts of empty space, or "air". This data is not needed

CHAPTER 3. METHOD 29

for generating the polygon mesh. Only the data about the actual voxels and their locations

are of interest. The location of the voxels are normally not stored explicitly, but rather de-

rived by their relative location to neighboring voxel cells. An octree is especially well suited

for this purpose. Since an octree is based on partitioning of space, large amounts of this

empty space in the voxel data can be discarded. This works especially well if the voxel data

is clustered.

Octrees also makes it easy to implement a Level of Detail (LOD) mechanism. By deter-

mining the desired depth of the octree, one are able to simplify the detail of the voxel data.

This is very valuable, as generating mesh geometry for every voxel is placing high stress on

the available hardware resources. Being able to control the LOD, this can be very effective in

terms of simplifying the resulting mesh.

3.3.2 Loading voxel data

In order to actually load the voxel data (by generating an octree), several loader classes have

been created. These classes all extend the loader class defined in three.js, providing both

consistency and tight integration with library. It also ensures that extending the support for

more file loaders in the future is easy. Finally, a factory pattern has been implemented for

getting and instantiating the desired voxel loader. This makes it able to define an easy-to-

use API, where the user only needs to supply the actual voxel data and the corresponding

format.

The currently implemented loaders supports several file formats, including XML, VOX

and BINVOX. It is also possible to import plain 3D arrays. Several of the loaders also supports

color of the voxels. Following is a brief description of these loaders.

• XML is a versatile file format, which is easy to manipulate and customize. For im-

plementing the XML loading, the native JavaScript DOM parser is used for the actual

parsing of the XML data. The format supports color data. The required format of the

XML document structure is described on the GitHub wiki page for the plugin.

• VOX file format is provided by MagicaVoxel, a popular voxel graphics editor. The file

format also supports color data. VOX files are loaded with a third party package named

format-vox [53].

• BINVOX [54] is one of the more popular voxel data file formats. BINVOX is the file

https://github.com/andstor/three-voxel-loader/wiki/XML-format

CHAPTER 3. METHOD 30

format used by the binvox [2] voxelization software. A separate repository named bin-

vox [55] has been created for handling BINVOX files. See Section 3.5

• Arrays are normal datatypes in JavaScript. For plain voxel data, a 3D array needs to

be supplied. This is simply several nested arrays. A filled voxel is represented with a

truthy value, whereas a void/empty voxel is a falsy value. For loading color data, a 4D

array with RGB values has to be supplied along with the 3D array. The array loading

support is implemented by simply iterating the multidimensional array(s).

• octrees are used as the internal data structure for the three-voxel-loader, as discussed

in Section 3.3.1. The three-voxel-loader support loading an octree of this type. This

makes it simple to save and load the internal octree data.

3.3.3 Visualization

The most intuitive way to visualize a voxel is in the form of a cube. BoxBufferGeometry from

three.js has therefore been used to generate the individual 3D visualization of the voxels.

However, one BoxBuffer geometry consists of no less than twelve triangles. The number of

triangles generated for visualizing the mesh is therefore twelve times the number of voxels.

One of the more time-consuming operations in terms of actually displaying the 3D graphics,

is the number of draw calls made to the graphics API. In order to limit this, all the generated

box meshes are merged into one big mesh. For actually coloring the voxels, color is applied

to the vertices of the generated box meshes.

3.3.4 Debugging

For actually developing and testing the plugin, a HTML page was created. The page includes

basic setup of three.js, alongside various input controls for inspecting and testing the three-

voxel-loader plugin. The input controls are provided by a lightweight JavaScript controller

library named dat.gui [56]. In the end, the debugging solution was polished and deployed to

GitHub Pages, serving as an example for the various functionality the plugin provides.

CHAPTER 3. METHOD 31

3.3.5 Building

The plugin is bundled with Rollup. This produces excellent bundles, with support for both

UMD and ES Modules. See Section 2.6.3 for more details on Rollup, and Section 2.6.1 for

UMD and ES Modules. three-voxel-loader makes use of ES6 features. All source files are

therefore transpiled to ES5 with babel.

3.4 Voxelizer

The Voxelizer engine version v0.1.3 needs to be improved. The next subsections will present

a walkthrough of how the engine is reimplemented and improved, including the various de-

sign choices made.

3.4.1 Systems overview

The system is broken down in several modules/systems (folders). Figure 3.2 displays a UML

diagram of the Voxelizer engine v1.0.0. The white box is a core system class. Blue is the

algorithms system, and the exporters system is colored green. The color system is purple.

Finally, the pink box is a volume system class. Following is a short description of the various

modules:

• core - The core module contains core APIs. This provides the user with the main API

for conducting the voxelization.

• algorithms - The algorithm module defines the algorithm system. This is in charge for

the actual sampling of the 3D models.

• color - The coloring system is found in the color module. This manages the color ex-

traction for supporting color voxelization.

• volume - The volume module mainly contains a wrapper class for providing a consis-

tent interface for interacting with volumes throughout the application.

• exporters - The exporters module is made up of various exporter classes. These en-

ables the engine to export the voxel data into many different formats.

• utils - This module contains various utility functions.

CHAPTER 3. METHOD 32

Algorithm

Sampler

Exporter

AlgorithmFactory

«use»

ColorableAlgorithm

RaycastAlgorithm Volume

XMLExporter

BINVOXExporter

ArrayExporter

ColorExtractor

«use»

TextureHandler«use»

«use»

«create» «use»

Figure 3.2: UML class diagram of the improved Voxelizer engine v1.0.0.

3.4.2 Algorithm system

Voxelizer implements an algorithm system that makes it easy to extend the voxelization sup-

port for new algorithm types, or adding new options. The system mainly consists of two

base abstract algorithm classes: one for plain voxelization, and another which is colorable.

By simply extending the appropriate base class, a new algorithm can be defined. Further, a

factory pattern has been implemented for retrieving the appropriate algorithm.

Since the generated voxel data can be huge, an efficient internal data structure needs

to be used. Two main concerns need to be taken into account. The first is the memory

footprint. In order to be able to do high resolution voxelizations, a limiting factor is the

amount of available system memory. A second concern is speed. The JavaScript engines are

able to do quite a lot of optimization. By using the JavaScript language in clever ways, quite

CHAPTER 3. METHOD 33

high processing speeds can be achieved.

The old Voxelizer v0.1.3 used normal JavaScript arrays which was nested. These arrays

grows and shrink dynamically, potentially resulting in slow performance. Although, the

JavaScript engines are often able to optimize the execution quite a bit, resulting in decent

speeds. However, in order to comply with both the memory and performance requirements,

typed arrays have been used instead. More specifically, only one large one-dimensional

typed array is used. This is a more low level data type than normal arrays, providing mech-

anism for reading and writing raw binary data in memory buffers. In order to support mul-

tidimensionality, the efficient third party library ndarray is used. See Section 2.10.3 for more

details on ndarray.

3.4.3 Raycasting algorithm

The new and upgraded voxelization algorithm is mainly based on raycasting (see Section

2.11.2). Next, a description of how the algorithm works is provided.

Several preparations are made on the mesh. Firstly, the mesh is centered at the origin.

Then the mesh is manipulated to include both front and back faces. This ensures that ray-

casting against the mesh will result in a hit against both front and back sides of the model.

This means that it is not needed to raycast from all 6 sides of the mesh. Hence, the algorithm

samples the mesh from the front, left and top sides. Previously, this was only done from the

front and back. These results are then merged together. Further, the result is wrapped inside

a Volume class and returned to the user. Figure 3.3 illustrates how these three results are

merged, resulting in a complete surface shell representation.

(a) Front side sample. (b) Front and left side samples
merged together.

(c) Front, left and top side
samples merged together.

Figure 3.3: Merging of voxel samplings.

The algorithm also has an option for producing filled, or solid, results. This is achieved

CHAPTER 3. METHOD 34

by interpreting the first raycast intersect as the surface of the object. From this point on,

everything will be considered "inside" the object. When a second intersect is detected, the

state is changed to be "outside" the object. A new hit would indicate "inside", and so on.

This works very well with a watertight 3D model, as can be seen from Figure 3.4a. However,

when trying to fill an object which is not watertight, this can result in severe inaccuracies.

This can be seen in Figure 3.4b, where no boundary is provided for the rays exiting after a

third hit.

(a) Non-watertight 3D model cross section. (b) Watertight 3D model cross section.

Figure 3.4: Solid (voxelization) filling of 3D model cross section.

3.4.4 three.js optimization

The raycasting functionality, used by the raycasting algorithm described in Section 3.4.3, is

supplied by the three.js library. The library provides a throughly tested and accurate ray-

casting solution. However, it is CPU bound and iterates every face of the mesh. This gives

each raycasting operation a time complexity of O (n), where n is the number of triangles in

the mesh. If the 3D mesh is highly detailed, containing a large amount of polygons, the ray-

casting will take a long time to perform. After a careful assessment of potential solutions,

the three.js plugin named three-bvh-mesh [57] is used to improve this problem. This plugin

provides a BVH implementation in order to speed up the raycasting against three.js meshes.

See Section 2.12.2 for details on BVHs. By using this plugin, the time complexity for a single

raycasting operation decreases from O (n) to O (logn), where n is the number of triangles in

the mesh. The plugin’s dynamic tree generation is also used. This means that the BVH tree

is gradually built. The voxelization of large resolutions would be faster if the entire tree is

generate at the beginning. However, the time taken to generate the tree would outweigh the

benefits if the resolution is to low. Dynamically generating the tree is therefore a good trade-

off. Figure 3.5 shows an example visualization of a BVH tree applied to a 3D model, which is

CHAPTER 3. METHOD 35

generated by the three-bvh-mesh plugin.

Figure 3.5: Visualization of BVH applied to 3D model of a monkey face.

3.4.5 Color system

The color system of Voxelizer handles the storing and extraction of color from polygon meshes.

This enables the engine to extract color information from the 3D mesh, and apply it to the

voxels. The system mainly comprises of a ColorExtractor class and a TextureHandler class.

The TextureHandler class stores a reference to all the texture maps associated with a 3D ob-

ject. These are stored in a hashmap. The key used for each hashmap entry is a universally

unique identifier (UUID), generated by three.js for all three.js objects. Further, it is able to

look up a UV coordinate of a texture map in its store, and retrieve the color. See Section 2.11.1

for more details on texture maps and UV coordinates. The ColorExtractor class provides var-

ious methods for extracting colors from from an raycast intersect. It uses the TextureHandler

as internally texture storage, for fast lookup of texture colors.

During raycasting with the raycasting algorithm described in Section 3.4.3, each intersect

produces an UV coordinate of the associated texture map, along with its UUID. This info

is then fed to a ColorExtractor class, returning the appropriate RGB color of the intersect.

This color data is then stored in a four-dimensional view of a large ndarray. For maximum

efficiency and safety, the actual datatype supplied to ndarray is an Uint8ClampedArray [58]

(typed array).

CHAPTER 3. METHOD 36

3.4.6 Loading

The Voxelizer engine previously made use of a wrapper OBJ loader. This resulted in very

limiting compatibility with other file formats. This support has been dropped in favor of

the new ES6 JS loader modules introduced by three.js. three.js supports around 40 different

file formats for loading 3D models. All three.js objects inherits from a base class named

Object3D. This includes meshes. By ensuring compatibility with three.js meshes, any loader

compatible with three.js can be used.

3.4.7 Exporting

As described in the Sections above, the engine normally outputs ndarrays with color and

voxel information, wrapped in a Volume class. However, the engine also comes with several

exporter classes. This includes:

• XML provides a versatile and flexible file format. The native JavaScript DOM parser is

used for the actual parsing of the XML data. The outputted format of the XML docu-

ment structure is described on the GitHub wiki page for the engine.

• BINVOX BINVOX [54] is one of the more popular voxel data file formats. BINVOX is the

file format used by the binvox [2] voxelization software. A separate repository named

binvox [55] has been created for handling BINVOX files. See Section 3.5.

• Arrays - An array exporter is implemented for exporting the voxel data as several nested

JavaScript arrays (3D array). If the export includes color data, this is exported as a 4D

JavaScript array.

3.4.8 Testing

Several unit tests are created for testing the different parts of the voxelization system. This

ensures correct operation of the voxelization process, and protect against introducing new

bugs. Jest [59] has been chosen as the testing framework provider. Jest also provides coverage

reports. These are very valuable in terms of analyzing what parts of the system is and is not

tested.

https://github.com/andstor/voxelizer/wiki/XML-format

CHAPTER 3. METHOD 37

3.4.9 Migration

The previous version of Voxelizer was version v0.1.3. Following Semantic Versioning [60],

or SemVer, the old version of Voxelizer is defined as still in Beta. Introducing a new Major

version of the library with breaking functionality is therefore no problem. Still, a very simple

migration guide is provided on the Wiki of the Voxelizer engine repository on GitHub.

3.4.10 Debugging and Profiling

During development, the three-voxel-loader plugin was used to visualize the actual voxel

outputs. This made it easy to visually inspect the results of the voxelization algorithm. A

similar solution to the debugging setup used for the three-voxel-loader plugin was used.

Likewise, this also resulted in an example usage of the engine, and is deployed to GitHub

Pages.

For assessing the memory consumption and speed of the engine, the performance tool [61]

in the Google Chrome Developer Tools is used. This helped removing some CPU-heavy bugs,

memory issues and other performance bottlenecks. Figure 3.6 shows a screenshot of the per-

formance tool in action. In the middle section of the image, the execution time for the vari-

ous methods in the main thread are displayed. In the lower part of the screenshot, a memory

consumption graph is displayed.

3.4.11 Building

The engine is bundled and built with Webpack. This gives great control over the building

process. See Section 2.6.3 for more details on Webpack. Voxelizer also makes use of ES6

features, so all source files are also transpiled to ES5 with babel. The main output of the

library is UMD, as described in Section 2.6.1. This makes the engine compatible with a range

of other module systems. However, since Webpack does not support ES Modules right out

of the box, a better alternative would be to use Rollup 2.6.3. Unfortunately, this was not

possible due to a circular dependency in one of the dependencies of Voxelizer. Therefore, in

order to use Voxelizer as a native ES Module, a project also needs to use a module loader like

Webpack.

https://github.com/andstor/voxelizer/wiki/Migration

CHAPTER 3. METHOD 38

Figure 3.6: Screenshot of performance profiling with Google Chrome Developer Tools.

3.5 BINVOX

A separate open-source repo for building and parsing BINVOX file formats were created dur-

ing refactoring of the Voxelizer engine and the three-voxel-loader plugin. It is named BIN-

VOX and licensed under the MIT license. The BINVOX file format consists of a header in

plain ASCII, followed by binary data. The binary data is compressed using run-length en-

coding. From the BINVOX specification: “The binary data consists of pairs of bytes. The first

byte of each pair is the value byte and is either 0 or 1 (1 signifies the presence of a voxel).

The second byte is the count byte and specifies how many times the preceding voxel value

should be repeated (so obviously the minimum count is 1, and the maximum is 255).” (Min

[54]).

The new binvox package provides tools to both parse and construct files according to the

BINVOX file specification [54]. Parsing is done on the individual set of two bits; the data is

uncompressed and stored in a JSON format. An example of the parsed JSON result can be

seen in Listing 3.1. Similarly, a user can supply the same JSON data structure for constructing

a BINVOX file resource. Hence, parsing and building commute.

CHAPTER 3. METHOD 39

Listing 3.1: Example BINVOX data in JSON format

1 {

2 "dimension": {

3 "depth": 32, "width": 32, "height": 32

4 },

5 "translate": {

6 "depth": 11.81, "width": 21.39, "height": -1.69

7 },

8 "scale": 30.206,

9 "voxels": [

10 { "x": 0, "y": 2, "z": 3 },

11 { "x": 0, "y": 3, "z": 3 },

12 { "x": 0, "y": 4, "z": 3 },

13 ...,

14]

15 }

3.6 Voxelizer Desktop

Voxelizer Desktop is a desktop application for voxelizing 3D models. The next few sections

goes through how the application is developed.

3.6.1 Design

Wireframes diagrams are created for planning the application’s GUI. Figure 3.7 shows a wire-

frame diagram over the start screen. Here, a drag and drop interface is presented. The user

should be able to just drag and drop the files he/she wants to voxelize into the application.

Then, the application will need to load the 3D file(s). Figure 3.8 shows how this should be

conveyed to the user, by using some form of loading graphic. Finally, Figure 3.9 shows the

main screen. This interface is divided in two parts. In the lower half of the application win-

dow, various controls are presented. This is further divided into a Settings section, and a

Exporting section. The settings section provides controls for the actual voxelization settings.

This includes settings for resolution, coloring and solid/shell voxelization. The exporting

section provides a UI for selecting the exporting file format, and saving it as a file. In the

upper half, an interactive widow should display the voxelized result of the voxelization.

CHAPTER 3. METHOD 40

Voxelizer

Drop file here

Figure 3.7: Wireframe diagram of drag and drop start screen.

Voxelizer

Loading...

Figure 3.8: Wireframe diagram of loading screen.

CHAPTER 3. METHOD 41

Voxelizer

3D

Resoluion:

Fill volume:

50

Color:

Settings

Voxelize

Exporting

DropdownFile format:

Export

Voxels: 00000000

Figure 3.9: Wireframe diagram of the main screen.

3.6.2 Implementation

The Voxelizer Desktop application is built with the Electron framework, described in Sec-

tion 2.10.4. Alongside the bare Electron framework, the electron-builder [62] package is

used. This package provides a complete solution for packaging and building a distribution

ready Electron app for macOS, Windows and Linux. It also provides "auto update" out of the

box. For creating the actual GUI, the React library is used. The create-react-app [63] is used

for bootstrapping the react project.

For providing the voxelization, the Voxelizer engine is used. For visualization of the vox-

elized result, the three-voxel-loader plugin is used to generate a 3D mesh. This is then passed

on to three.js.

In order to make the application user-friendly, a translation system is also implemented.

This system is mainly backed by the react-intl package [64]. During application startup, the

language setting (locale) on the users computer is read in the application’s main process.

This is then passed on to the instantiated renderer process through IPC. Based on this locale,

the GUI is displayed in the appropriate language is presented.

For presenting warning or error messages to the users, modal windows are used. How-

ever, these can only be generated from the main process. An IPC system for generating

modals from a renderer process is therefore implemented.

CHAPTER 3. METHOD 42

3.6.3 Releases

When it is time for a new release, application builds for both macOS, Windows and Linux

are generated with the help of the electron-builder package 1. These are then uploaded to

GitHub as "release assets". This enables the auto updating functionality to check for new

versions. If there exists a newer version than currently installed, the application will down-

load the newest version from GitHub. Then, the next time the application starts up, the

downloaded update will be installed.

3.7 JSDoc Action

In the next couple of subsections, the implementation and design decisions of the JSDoc

Action are presented.

3.7.1 Implementation

For creating a GitHub Action, several mandatory files and configurations has to be created.

This documentation is available at GitHub. GitHub Actions provides two main types of ac-

tion. One is JavaScript based. The other is based on Docker. They both have their advantages

and disadvantages. A Docker container action provides an isolated environment, providing

extremely flexible and stabile solutions. However, GitHub only supports running docker ac-

tions on Linux. On the other hand, a JavaScript GitHub Action can be run directly on a runner

machine. This makes it a lot faster than a Docker based Action. This is because of latency

due to retrieve and build the container. A JavaScript action is also cross platform compatible,

meaning it can run on both a Linux, Windows or MacOS operating system. In order to pro-

vide a fast and cross compatible solution, the JavaScript action type is chosen for the JSDoc

Action.

The JSDoc Action is made up of mainly two parts. One is the template installation system,

and the other is the actual execution of the JSDoc tool. For providing maximum flexibility, all

functions of the JSDoc tool is made available as input configurations through the GitHub Ac-

tions Workflow API. The action is also able to use a JSDoc configuration file [65]. The reader

can consult JSDoc Action’s README.md file for further details on the available input vari-

ables. If a user provides a template to be installed, the action will first install this. This is

1Some build targets can only be generated on specific platforms.

https://github.com/andstor/jsdoc-action/blob/master/README.md

CHAPTER 3. METHOD 43

done with the help of the node package manager (npm). The supplied template can be ev-

erything from a GitHub repository, to an npm package. The installed template files are then

processed. The action does all of its input/output (IO) operations asynchronously, ensuring

fast execution speed of the action. When finished, a JSDoc CLI command is then formed

based on the various user inputs and (if provided) config file. This command is then exe-

cuted, effectively telling JSDoc to generate the documentation. The result is a user-defined

output folder with the generated API documentation. The entire flow of the action can be

seen in Figure 3.10 which provides a flowchart diagram of the JSDoc Action.

No

Command

Source files

JSDoc

Command

Yes

Install template
$ npm install

Start

Input variables

Yes

Config Src Front Page

Documentation

Stop

Is template
installed ?

Use template ?

No

Trigger error

Figure 3.10: JSDoc Action flowchart diagram.

CHAPTER 3. METHOD 44

3.7.2 Usage

For actually using the action in a Workflow, the action makes a couple of assumptions. Firstly,

the actual source files to generate documentation from, needs to be supplied. This is nor-

mally solved by using the Checkout Action [66] made by GitHub. Secondly, the JSDoc Action

simply generates an output directory with files. This means that nearly any deployment ac-

tion can be used for upload the files the desired service, for example GitHub pages. The

deployment action supplied as example in the README.md file of the repository, is named

GitHub Pages action [67].

3.7.3 Feedback

The JSDoc Action generated quite a lot of feedback from eager users of GitHub Actions. Sev-

eral wanted to test the action, and multiple issues were filed in the issue tracker on GitHub [68].

See for example issue #20 [69]. Since maintenance is essential to the success of an open-

source project, all feedback were responded to and handled accordingly. Alongside the de-

velopment of the other main projects, many bug-fixes were made to the JSDoc Action. Even-

tually, all issues were resolved, resulting in several happy users.

3.8 Automation

Automation is an important part for ensuring both efficiency and security. The next sub-

sections will contain a description of how the various open-source systems developed in

connection with this thesis have been automated.

3.8.1 JavaScript package workflows

GitHub provides continuous integration (CI) and continuous development (CD) as a part of

its GitHub Actions system. This system is heavily used in this thesis. Several workflows are

created in order to automate various tasks like testing, building, documentation generation

and publishing. The workflows have been made so that they should work out of the box

for similar projects. See Section 2.3.1 for a description of GitHub Actions. Do note that the

default behavior of Workflows is to terminate if any errors are encountered.

Figure 3.11 shows a simplified diagram of the CI/CD automation pipelines created for

CHAPTER 3. METHOD 45

the JavaScript packages which are to run on new contributions to the codebase. This sys-

tem mainly consists of two workflows. One for building the package, and one for generating

and publishing API documentation. A simple step by step walkthrough of the system is now

presented.

1. Pull request - The pipelines are mainly triggered by a pull request. This starts up both

a security analysis by LGTM and a build workflow.

2. Security analysis - As described in Section 2.10.6, LGTM provides a security analysis.

(a) Checkout - First, the repository in which the automation is done on is cloned.

(b) Build - Then, the JavaScript project is built.

(c) Test - If the project provides tests, these are also run.

(d) Coverage - Coverage reports are created with Jest.

3. Coveralls - The coverage report is then published to Coveralls.io. See Section 2.10.7 for

details on Coveralls.

If the workflow finishes, the security analysis comes out clear, and the coverage percent-

age is not decreased, the pull request is approved for merging. When a user with the ap-

propriate privileges approves the pull request, the code is merged into the base branch. If

the base branch is the master branch, a second workflow is started. This is a workflow for

generating/updating the API documentation.

1. Checkout - The source repo is cloned once again.

2. JSDoc Action - The JSDoc Action is then used for generating JSDoc API documentation.

3. GitHub Pages - The outputted documentation is then finally deployed to GitHub Pages

with an action called GitHub Pages action [67].

In order to automate the release process of a JavaScript package, a third workflow is used.

This is shown in Figure 3.12. It mainly involves packaging and publication of the software to

the npm registry [70]. The workflow functions like this:

1. Trigger release - First, a user with the appropriate privileges needs to create a release

manually on GitHub. This generates a git tag. Further, the release starts up the package

workflow.

CHAPTER 3. METHOD 46

Coverage

Feature

Base

No

Pass?
Yes

Pull request

Fork

Merge

Merge
blocked

GitHub Actions

Checkout

Build

Test

Coverage

Build workflow

Feature

Repo
Owner(s)

Feature

External
Developer(s)

Security analysis

U
pl

oa
d

co
ve

ra
ge

Tr
ig

ge
r p

ip
el

in
es

Te
st

 re
su

lts

A
na

ly
si

s
re

su
lts

JSDoc Action

JSDoc

Pages

JS documentationGitHub Actions

Checkout

Build docs

Deploy

Docs workflow

m
as

te
r:

 tr
ig

ge
r w

or
kfl

ow

R
un

 a
ct

io
n

Deploy docsJS
 d

oc
um

en
ta

tio
n

Figure 3.11: CI/CD pipelines

CHAPTER 3. METHOD 47

2. Package workflow - The package workflow has four steps.

3. (a) Checkout - The source repo is cloned once again.

(b) Build - The JavaScript project is then built.

(c) Test - If the project provides tests, these are also run.

(d) Package - If all the above tests are completed without errors, the project is then

packaged.

4. Publish package - If the package workflow completes, the new package is then pub-

lished to the npm registry.

GitHub Actions

Checkout

Build

Test

Package workflow

Yes

Pass?

Test results

Error

No

Package

Module

master

Tag

Release

Release

Trigger pipeline

Actor

Repo
Owner(s)

Pu
bl

is
h

m
od

ul
e

Tr
ig

ge
r r

el
ea

se

Figure 3.12: Automation of release publishing process.

CHAPTER 3. METHOD 48

3.8.2 GitHub Action version tagging

GitHub provides guidelines in terms of versioning and tagging of a GitHub Actions [71]. Ac-

cording to Github, releases should be following Semantic Versioning. When a new release

is made, the major tag (v1, v2, etc.) should be moved to point on the Git ref of the current

release. Figure 3.13 provides an illustration of the moving of Git tags. This process is tedious.

An action named actions-tagger [72] already provides support for this tagging scheme. A

workflow based on the actions-tagger action is therefore created, automating this release

process.

v1.1.0 v1.2.0

v1v1

v1.0.0

master

v1

Figure 3.13: Automatic updating of major version tag.

3.9 file-existence-action

In order to be able to produce the general purpose workflows described in Section 3.8.1, it

became apparent that it is needed to be able to check if a file existed. Normally, a cover-

age script is defined in the projects package.json file. This runs all the tests and produces a

coverage report file. However, if no such script is provided, the workflow will run the tests

manually instead, and no file will be generated. If no such file is generated, this needs to

be detected by the workflow, in order to avoid running the upload to Coveralls.io step. This

was solved by creating a relatively small GitHub Action, named File Existence. The action

is written in TypeScript, and based on a template provided by GitHub. The action is able to

check one or more paths for the existence of a file. A boolean result is then available to the

subsequent steps in the workflow.

CHAPTER 3. METHOD 49

3.10 file-reader-action

Following the problems described in Section 3.9 above, another problem arises if the cov-

erage script is defined, but no tests are created. If this is the case, an empty coverage file is

created. Trying to upload this to Coveralls.io results in an error. The need for reading the

contents of a file is therefore necessary, in order to check if the coverage file is empty. If it is

empty, the Coveralls step should not be executed. The solution was to create a small GitHub

Action, named File Reader. The action is written in TypeScript, and based on a template pro-

vided by GitHub. The action is able to read the contents of a file at a path supplied by the

user. The output is then available to the subsequent workflow steps.

3.11 3D models

For testing the various systems, several 3D models are used. These are created with the open-

source 3D modeling software Blender. The torus is a default shape in Blender. So is the mon-

key face model. The monkey model is named Suzanne, and often used for testing purposes.

In addition to these two 3D models, a third one is developed for the purpose of testing the

coloring system of the Voxelizer engine. This is a 3D model of an anvil. It is built from the

ground up. A procedural generated texture is created for the model. The shader setup can

be seen in Figure 3.14 In order to actually apply the generated texture to the 3D model, the

model is UV unwrapped. See Section 2.11.1 for more details on texture maps. Lastly, for per-

formance and reproducibility, the texture has been baked onto an image. The final baked

image is shown in Figure 3.15.

CHAPTER 3. METHOD 50

Figure 3.14: Procedurally generation of rusty metal texture.

Figure 3.15: Baked rusty metal texture.

Chapter 4

Result

This chapter presents the results of this thesis. The chapter starts with presenting the dif-

ferent JavaScript projects developed and improved in connection with this thesis. First, the

new three-voxel-loader three.js plugin, and the improvements of the Voxelizer engine are

presented. This is followed by the new BINVOX package, and the desktop application for the

Voxelizer engine. Then, the results of the JSDoc GitHub Action is presented. Section 4.8 will

present the results in terms of automation of the projects. Finally, Section 4.9 presents some

additional achievements, including some statistics on the popularity of the projects.

4.1 three-voxel-loader

The three-voxel-loader is a plugin for three.js. It is published to the npm registry under the

name "three-voxel-loader", and the source code is available at GitHub under "andstor/three-

voxel-loader".

The plugin is able to generate a three.js mesh based on voxel data in a variety of data

formats. Figure 4.1 shows a screenshot of a VOX model loaded with the three-voxel-loader

plugin. It is also possible to control the size of the individual voxels. This is shown in Fig-

ure 4.2. The size can be any number between 〈0,1].

4.1.1 Level Of Detail

The plugin implements a Level Of Detailing (LOD) system. Figure 4.3 shows four images

of a torus loaded with different LODs. Depending of the resolution of the model, a very

high number of triangles may be generated. By using the LOD system, this number can be

51

https://www.npmjs.com/package/three-voxel-loader
https://github.com/andstor/three-voxel-loader
https://github.com/andstor/three-voxel-loader

CHAPTER 4. RESULT 52

Figure 4.1: Screenshot of Chicken stored in VOX file format loaded with the three-voxel-
loader plugin.

(a) Voxel size set to 0.3. (b) Voxel size set to 1.

Figure 4.2: Generated meshes of different voxel sizes with the three-voxel-loader plugin.

CHAPTER 4. RESULT 53

drastically reduced. For example, the mesh in Figure 4.3a consists of 406,068 triangles. By

setting the LOD (maxDepth) to 2, the number is reduced to only 768 triangles, still preserving

the shape. This can be seen in Figure 4.3d.

(a) Full resolution torus mesh (406068 trian-
gles).

(b) Simplified torus mesh (19740 triangles)
with a LOD (maxDepth) of 4.

(c) Quite simplified torus mesh (4752 trian-
gles) with a LOD (maxDepth) of 3.

(d) Very low detail torus mesh (768 triangles)
with a LOD (maxDepth) of 2.

Figure 4.3: Torus meshes with diffrent LOD levels.

4.1.2 Loading support

The plugin is able to load a variety of different voxel data formats. This includes XML, VOX,

BINVOX and JavaScript arrays (3D array). In addition to the raw voxel data, the three-voxel-

loader plugin also supports color. The data formats that support this is XML, VOX and

JavaScript arrays (4D array for color data).

CHAPTER 4. RESULT 54

4.1.3 Example

An example of the plugin is deployed to GitHub Pages. Visit https://andstor.github.io/

three-voxel-loader/examples/ to see the example. Figure 4.4 shows a screenshot of the

site. The example includes a GUI with controls for changing, among other things, the voxel

size and the LOD.

Figure 4.4: Screenshot of the three-voxel-loader example page at GitHub Pages.

4.2 Voxelizer

The new Voxelizer engine version v1.0.0 is greatly improved, compared to the old version

v0.1.3. The engine is completly redesigned, and resolves all known problems and bugs the

old engine had. Further, several new features are implemented, making the engine even

more powerfull. Among the new features are support for coloring and shell voxelization, in

addition to several new exporting formats. The performance of the engine is also drastically

improved. Other improvements includes both code quality and documentation. In order to

provide the engine with an own identity, a new logo for the engine is created, as shown in

Figure 4.5.

https://andstor.github.io/three-voxel-loader/examples/
https://andstor.github.io/three-voxel-loader/examples/

CHAPTER 4. RESULT 55

Figure 4.5: Logo for the Voxelizer engine v1.0.0.

The new version is published to the npm registry, still under the name "voxelizer". The

source code is available at GitHub under "andstor/voxelizer". Here, the old version is also

available, tagged with the tag "v0.1.3".

4.2.1 Voxelization

The new version of the Vexelizer engine is greatly improved. The engine captures a lot more

deatils of the 3D models. It is much more stabile, and produces a lot more consistent re-

sults. The engine also provides several new voxelization features. This includes both shell

voxelization, and coloring support. Figure 4.6 shows a rendered image of an anvil 3D model

developed for testing purposes. The anvil has a blue-ish metallic surface, with several red/-

gold rust spots. Figure 4.7 shows a colored voxelization of this 3D model at a resolution of

29. This high-detailed voxelization seems to accuratly reproduce the original coloring of 3D

model. Figure 4.8 shows the same model at a lower resolution of 27. The individual rust spots

are still clearly seen, and the overall result seems to be correlating well. Further, in order to

showcase the shell voxelization, the voxelization result in Figure 4.8 is cut in half. This is seen

in Figure 4.9. Here, the cavities at the rear end of the anvil is also clearly visible.

https://npmjs.org/package/voxelizer
https://github.com/andstor/voxelizer
https://github.com/andstor/voxelizer/tree/v0.1.3

CHAPTER 4. RESULT 56

Figure 4.6: Render of textured anvil 3D model.

Figure 4.7: Colored voxelization (resolution of 29) of anvil 3D model.

CHAPTER 4. RESULT 57

Figure 4.8: Colored voxelization (resolution of 27) of anvil 3D model.

Figure 4.9: Colored voxelization (resolution of 27) of anvil 3D model cut in half.

CHAPTER 4. RESULT 58

4.2.2 Visual assesment

In this section, the various improvements of the problems the old engine had is presented.

Fistly, the old engine produced several holes. The new version fixes this problem. This can

be seen in Figure 4.10, which shows the voxelization of a torus 3D model. Figure 4.10a shows

the voxelization of a torus with the old version, and Figure 4.10b shows the result with the

new version. Comparing the two, it is clear that the holes are no longer present.

(a) Voxelized torus with Voxelizer v0.1.3. (b) Voxelized torus with Voxelizer v1.0.0.

(c) Original torus 3D model.

Figure 4.10: Voxelization of a torus with Voxelizer v0.1.3 and v1.0.0. The voxelization is done
with a resolution of 40.

CHAPTER 4. RESULT 59

As mentioned in Section 2.14, the old engine produced a lot of artifacts. The new version

fixes this problem. This can be seen in Figure 4.11, which shows the voxelization of a mon-

key 3D model. Figure 4.11a shows the voxelization of a monkey with the old version, and

Figure 4.11b shows the result with the new version. Comparing the two, it is clear that the

new engine produces voxelizations where the artifacts are more or less completly removed.

(a) Voxelized monkey with Voxelizer v0.1.3. (b) Voxelized monkey with Voxelizer v1.0.0.

(c) Original monkey 3D model.

Figure 4.11: Voxelization of a monkey with Voxelizer v0.1.3 and v1.0.0. The voxelization is
done with a resolution of 100.

CHAPTER 4. RESULT 60

The voxelization with the old engine often fails in filling in the gap between the sampled

front and back. This produce completly unusable result. Also, since it is only sampled from

the front and back, the details from the other sides of the models are not captured in the

voxelization. The new version is much more robust, and captures details from all six sides of

the model. This results in a much more accurate representation of the model. This improve-

ment can clearly be seen in Figure 4.12, which shows the voxelization of an anvil 3D model.

Figure 4.12a shows a voxelization of an anvil with the old engine. Here, the voxelization has

failed in the filling process. Figure 4.12b shows the result with the new version. Comparing

the two, it is clear that the new engine produces a lot more accureate voxelizations.

CHAPTER 4. RESULT 61

(a) Voxelized anvil with Voxelizer v0.1.3.

(b) Voxelized anvil with Voxelizer v1.0.0.

(c) Original anvil 3D model.

Figure 4.12: Voxelization of an anvil with Voxelizer v0.1.3 and v1.0.0. The voxelization is done
with a resolution of 27.

CHAPTER 4. RESULT 62

4.2.3 Performance

The engine’s algorithm is completly overhault. The old raycasting algorithm has a time com-

plexity of:

O (n3 ×m)

where n is the resolution of the voxelization, and m is the number of triangles in the 3D

model. In order to produce more accurate results, the new algorithm does a lot more sam-

pling. Despite this, the time complexity is redused. With the settings set to colorless and

filled, the time complexity of the upgraded raycasting algorithm is:

O (n3 × log(m))

where n is the resolution of the voxelization, and m is the number of triangles in the 3D

model.

Following is a speed and memory comparison of the old and new vesion of the Voxelizer

engine. The tests are executed in Node.js v12.16.3. The hardware used is a MacBook Pro

(13-inch, 2018) with a 2.3GHz quad core processor and 16GB of 2133MHz LPDDR3 RAM,

running MacOS Catalina v10.15.4.

First, the versions are tested with a low-poly mesh. Then, a high-poly mesh is used. The

engine is tested at various resolutions. Note that a resolution of 2 results in 2×2×2 voxels.

The old engine version is only able to do a colorless, filled voxelization. In order to make

a fair comparison, the new Version’s RaycastAlgorithm is set to be colorless and filled. As

input, the mesh will be programatically generated by the code provided in Listing 4.1. This

produces a torus mesh with 3200 triangles.

Listing 4.1: JS code for generating low-detailed torus mesh.

1 let geometry = new THREE.TorusBufferGeometry(10, 3, 16, 100);

2 let material = new THREE.MeshBasicMaterial();

3 let torus = new THREE.Mesh(geometry, material);

CHAPTER 4. RESULT 63

21 22 23 24 25 26 27 28 29 210

0

50

100

150

200

Resolution of the voxelization.

E
xe

cu
ti

o
n

ti
m

e
(s

ec
o

n
d

s)

21 22 23 24 25 26 27 28 29 210
2−1

21

23

25

27

29

211

213

M
em

o
ry

fo
o

tp
ri

n
t(

m
eg

ab
yt

es
)

v0.1.3 time
v1.0.0 time

v0.1.3 memory
v1.0.0 memory

Figure 4.13: Plot over execution time and memory footprint for voxelization of a low-detailed
mesh with the old and new Voxelizer engine.

Table 4.1: Execution times and memory
footprints for voxelization of low-detailed
mesh with Voxelizer v0.1.3.

Resolution Time (sec) Memory

(MB)

21 0.0254 1.0146

22 0.0116 1.5868

23 0.0195 1.3817

24 0.0624 1.2659

25 0.2288 1.7142

26 0.8879 2.8593

27 3.4578 24.0315

28 14.3298 138.2336

29 58.0136 885.5446

210 260.8811 8764.2631

Table 4.2: Execution times and memory
footprints for voxelization of low-detailed
mesh with Voxelizer v1.0.0.

Resolution Time (sec) Memory

(MB)

21 0.0154 3.00344

22 0.0172 3.8611

23 0.0214 7.7465

24 0.0382 6.8227

25 0.0403 7.7983

26 0.6752 8.1104

27 1.6094 6.0841

28 5.5269 1.6326

29 15.5968 1.7861

210 86.0982 1.9199

Figure 4.13 shows a graph over the execution time and the memory footprint for a vox-

CHAPTER 4. RESULT 64

elization of a low-detailed mesh with the Voxelizer engine v0.1.3 and v1.0.0. The raw data is

available in Table 4.1 and Table 4.2.

The new engine has a relatively low memory footprint. At resolutions from 21 to 27, the

memory consumption stays around 7MB. Then, at a resolution of 28, the memory drops to

around 2MB. This is most likely due to the JavaScript Garbage Collector (GC) kicking in. At

larger resolutions, the memory seems to stay relatively stabile around 2MB. The old engine

starts with a very low memory footprint. It stays low, between 1MB and 2MB, from a resolu-

tion of 21 to 26. Then, the memory footprint starts to increase rapidly. A total of 24MB are

used for a resolution of 27. At 210 the footprint has risen to 8.7GB. This is most likely due to

the fact that the old engine used normal JavaScript arrays that dynamically expands. A lot of

obsolete data objects will accumulate, and the GC seems to not be able to handle this well.

Regarding execution time, this is also greatly improved in the new engine version. This

is especially noticeable at large resolutions. At a resolution of 210, the old engine use 260

seconds to voxelize the 3D model. The new version only use 86 seconds, a reduction of about

60%.

An new mesh is generated with the code in Listing 4.2. This produces a highly detailed

torus mesh with 1,000,000 triangles. The results are presented in the figures below.

Listing 4.2: JS code for generating high-detailed torus mesh.

1 let geometry = new THREE.TorusBufferGeometry(10, 3, 1000, 500);

2 let material = new THREE.MeshBasicMaterial();

3 let torus = new THREE.Mesh(geometry, material);

CHAPTER 4. RESULT 65

21 22 23 24 25 26 27 28 29 210

0

1,000

2,000

3,000

4,000

Resolution of the voxelization.

E
xe

cu
ti

o
n

ti
m

e
(s

ec
o

n
d

s)

21 22 23 24 25 26 27 28 29 210
2−1

21

23

25

27

29

211

213

M
em

o
ry

fo
o

tp
ri

n
t(

m
eg

ab
yt

es
)

v0.1.3 time
v1.0.0 time

v0.1.3 memory
v1.0.0 memory

Figure 4.14: Plot over execution time and memory footprint for voxelization of a high-
detailed mesh with the old and new Voxelizer engine.

Table 4.3: Execution times and mem-
ory footprints for voxelization of high-
detailed mesh with Voxelizer v0.1.3.

Resolution Time (sec) Memory
(MB)

21 0.5388 3.5880

22 1.2370 1.1134

23 5.8674 8.7263

24 19.8983 30.0106

25 70.2835 73.1078

26 278.1215 197.0107

27 1141.1212 937.7180

28 4543.6064 8726.9914

Table 4.4: Execution times and mem-
ory footprints for voxelization of high-
detailed mesh with Voxelizer v1.0.0.

Resolution Time (sec) Memory
(MB)

21 0.17265 8.1706

22 0.1612 8.3496

23 0.2277 14.2518

24 0.2755 10.9389

25 0.3402 17.6270

26 1.0793 38.7798

27 1.9604 75.5248

28 6.0971 76.1971

29 17.9376 79.4146

210 88.8092 76.6116

Figure 4.14 shows a graph over the execution time and the memory footprint for a vox-

elization of a high-detailed mesh with the Voxelizer engine v0.1.3 and v1.0.0. The raw data is

CHAPTER 4. RESULT 66

available in Table 4.3 and Table 4.4.

The results shows similar characteristics as the ones with the low detailed mesh. How-

ever, very noticeable is the large difference in execution time. At a resolution of 27, the old

version is able to voxelize the mesh with 1,000,000 triangles in 4543 seconds, about 75 min-

utes. The new version is able to do the same in only about 6.1 second. The new version is

also tested at a resolution of 210. This takes only 88.8 seconds. This massive performance

improvement is mainly due to the raycasting optimization discussed in Section 3.4.4.

The memory consumption of the old version is more or less the same as with a low de-

tailed mesh. The new version does consume more memory than in the previous test. This

is because the BVH tree generated for the raycasting performance improvement does need

a bit of memory. The memory footprint of the new version seems to gradually scale up from

8MB at a resolution of 21, to 76MB at resolution 27. From here on, the memory footprint stay

more or less constant. This is because the BVH implementation gradually builds up the BVH

tree, as described in Section 3.4.4.

4.2.4 Exporting

Several new exporting options are added to the upgraded Voxelizer engine. This includes

XML, BINVOX and ndarray. The old multidimensional JavaScript array exporting option is

also available, ensuring some backwards compatibility. The exporters system is made exten-

sible, making it easy to add new exporting options in the future.

4.2.5 Code quality

This section describes how the code quality is improved. The old codebase had several prob-

lems. Firstly, all the code was contained in one large file. This made it hard to navigate and

the code was messy. The new version makes use of ES Modules, making it possible to or-

ganize the code in different files. Secondly, the engine previously hardcoded the one algo-

rithm used. The new version includes an easily extensible algorithm system. This is ensured

through the use of inheritance and factory patterns, as discussed in Section 3.4.2. Thirdly,

the code did barely include tests for the system. The new version now includes unit tests

for almost the whole engine. Lastly, the code had no code documentation. This is resolved

by writing JSDoc for all classes and functions. This documentation is also made easily ac-

cessible at GitHub Pages with the help of the new JSDoc Action, presented in Section 4.5. A

https://andstor.github.io/voxelizer/

CHAPTER 4. RESULT 67

screenshot of the public documentation page is shown in Figure 4.15.

Figure 4.15: Public documentation for the Voxelizer engine.

4.2.6 Example

An example of the engine is deployed to GitHub Pages. Visit https://andstor.github.io/

voxelizer/examples/ to see the example. Figure 4.16 shows a screenshot of the site. The

example includes a GUI with controls for controlling, among other things, the resolution,

shell or solid voxelization, the LOD, and clipping planes for visually inspecting the results.

https://andstor.github.io/voxelizer/examples/
https://andstor.github.io/voxelizer/examples/

CHAPTER 4. RESULT 68

Figure 4.16: Screenshot of the Voxelizer engine example page at GitHub Pages.

CHAPTER 4. RESULT 69

4.2.7 Usage example

This section provides an example of how to use the Voxelizer engine v1.0.0. This example

assumes that the project is bundled with a tool such as Webpack or Browserify, enabling the

use of the ES Modules import syntax. Also, the node package manager (npm) is assumed to

be installed.

First, the engine and its peer dependency three.js needs to be installed. This is easily

done with npm. To install the Voxelizer engine and the peer dependency three.js, run the

following commands:

$ npm install voxelizer

$ npm install three

Then, Listing 4.3 provides the example code now to be described in steps:

1. First, the Voxelizer engine v1.0.0, and its peer dependency three.js needs to be im-

ported. This is done in lines 2 and 3.

2. Line 4 imports the GLTFLoader. This makes it possible to load a GLTF file.

3. Then something to voxelized is needed. This could be any three.js mesh with Buffer-

Geometry. By using the imported GLTFLoader, a GLTF file can be loaded. The GLT-

FLoader is instantiated on line 7.

4. To actually load the model, the asynchronous "load" function is used at line 8. This

function needs a path to the file to load.

5. To set up the Voxelizer sampling class, some options are needed. These are defined on

lines 12-15, making the engine produce a colored shell voxelization.

6. The sampler is then instantiated at line 16.

7. Line 19 and 20 actually samples the model with a resolution of 10.

8. In order to inspect the results, the returned volume data is fed to a XMLExporter at

lines 23-26. This converts the volume data to a XML resource.

9. Line 25 prints the XML output to the console.

The result of the example code is a 103 voxel result of the loaded 3D model.

CHAPTER 4. RESULT 70

Listing 4.3: Voxelizer engine v1.0.0 example usage.

1 // Import via ES6 modules

2 import * as THREE from ’three’;

3 import { Sampler, XMLExporter } from ’voxelizer’;

4 import { GLTFLoader } from ’three/examples/jsm/loaders/GLTFLoader’;

5

6 // Load 3D model.

7 const gltfloader = new GLTFLoader();

8 gltfloader.load(’path/to/file.glb’, function (data) {

9 let mesh = data.scene;

10

11 // Setup Voxelizer.

12 let options = {

13 fill: false,

14 color: true

15 };

16 const sampler = new Sampler(’raycast’, options);

17

18 // Voxelize 3D model.

19 const resolution = 10;

20 let volume = sampler.sample(mesh, resolution);

21

22 // Export result to XML.

23 const exporter = new XMLExporter()

24 exporter.parse(volume, function (xml) {

25 console.log(xml)

26 });

27 });

CHAPTER 4. RESULT 71

4.3 BINVOX

BINVOX is a package for parsing and building BINVOX files. It is published to the npm

registry under the name "binvox", and the source code is available at GitHub under "and-

stor/binvox".

The package handles BINVOX files according to the BINVOX file format specification [54].

The package is able to parse a BINVOX resource, turning it into JSON. Further, it can do this

in reverse. Hence, properly formatted JSON data can be turned into a BINVOX file resource.

The package provides both an ES Module build and a UMD build. It can therefore be used

with both Node.js and in the browser.

4.4 Voxelizer Desktop

The Voxelizer Desktop application allows for easy use of the Voxelizer engine. It is a stan-

dalone cross platform desktop application. Ready-made installation files for macOS, Win-

dows and Linux can be found at https://github.com/andstor/voxelizer-desktop/releases/

latest on GitHub. The source code is also available at GitHub under "andstor/voxelizer-

desktop".

4.4.1 Features

The Voxelizer Desktop application includes several features.

• Importing - The application supports several 3D model file formats. This includes

GLB, GLTF, OBJ and STL. Some data formats need additional resources like texture im-

ages or binaries in order to work. This is also supported.

• Voxelization - The Voxelizer engine provides the application with voxelization capa-

bilities. Several voxelization options are available, including: resolution, coloring and

filling.

• Visualization - It is possible to view and inspect both the loaded 3D model and vox-

elized result through an interactive window.

• Exporting - Voxelizer Desktop enables the user to export to a XML file or a BINVOX file,

and save this to the file system.

https://www.npmjs.com/package/binvox
https://github.com/andstor/binvox
https://github.com/andstor/binvox
https://github.com/andstor/voxelizer-desktop/releases/latest
https://github.com/andstor/voxelizer-desktop/releases/latest
https://github.com/andstor/voxelizer-desktop
https://github.com/andstor/voxelizer-desktop

CHAPTER 4. RESULT 72

• Auto updating - When a new version of the application is released on GitHub, the ap-

plication will automatically download and install the new version.

4.4.2 GUI

The user is first presented with an elegant and easy drag and drop user interface. Here, the

user can just drop the 3D model files. Figure 4.17 shows a screenshot of the start screen,

where a file is dropped onto the window.

Figure 4.17: Voxelizer Desktop drag and drop start screen.

When a user drops one or more files, the application starts to load them up. If no sup-

ported filetype is found, a modal warning shows up like the one seen in Figure 4.18. Other-

wise, a spinning loading wheel is presented, as shown in Figure 4.19, to indicate that the 3D

model is loading.

CHAPTER 4. RESULT 73

Figure 4.18: Voxelizer Desktop drag and drop start screen filetype error.

Figure 4.19: Voxelizer Desktop loading 3D model.

CHAPTER 4. RESULT 74

When the loading finishes, the user is presented with the main interface. This is shown

in Figure 4.20. Here, the loaded 3D model is first presented in an interactive display. Further,

at the bottom there are various controls for the voxelization and for exporting.

Figure 4.20: Voxelizer Desktop main interface.

CHAPTER 4. RESULT 75

The application has support for dark mode. Meaning, depending on the system settings,

either a light-theme or a dark-theme is selected. The application also has localization sup-

port (language). Currently, English and Norwegian Bokmål is available. The selected lan-

guage will depend on the system settings. Figure 4.21 shows the main interface in dark mode

and with a Norwegian interface.

Figure 4.21: Voxelizer Desktop with dark mode and Norwegian language.

CHAPTER 4. RESULT 76

If one tries to export before voxelizing the model, a modal will show a warning message.

Figure 4.22 shows this error message.

Figure 4.22: Voxelizer Desktop voxel warning.

CHAPTER 4. RESULT 77

To actually voxelize the model, the user needs to click on the Voxelize button. This starts

the voxelization process. When finished, the result is presented in the 3D graphics window.

This can be seen in Figure 4.23

Figure 4.23: Voxelizer Desktop displaying voxelized result.

CHAPTER 4. RESULT 78

To export and save the voxel data in the selected file format, the user needs to click on

the Export button. This opens up the operating system’s file system dialog, as can be seen in

Figure 4.24. A file name and location then needs to be provided. When the user clicks on the

Save button, the file is saved.

Figure 4.24: Voxelizer Desktop OS file dialog for saving voxel data.

In order to voxelize a different 3D model, the user can click on the arrow icon in the upper

left corner. When the user exits the application, the application state is saved. Among other

things, this enables the application window to remember its window location and size.

4.5 JSDoc Action

The JSDoc Action makes it easy to automate the process of generating JSDoc documentation.

It is a GitHub Action, and is published to the GitHub Marketplace under the name "JSDoc

https://github.com/marketplace/actions/jsdoc-action
https://github.com/marketplace/actions/jsdoc-action

CHAPTER 4. RESULT 79

Action". Figure 4.25 shows the graphics generated by the GitHub Marketplace for the JSDoc

Action. The source code is available at GitHub under "andstor/jsdoc-action".

Figure 4.25: Graphics from the GitHub Marketplace for the JSDoc Action.

The action is easy to combine with other deployment actions. This makes it very simple

to publish the generated documentation to any hosting service, for example GitHub Pages.

The JSDoc Action also supports templates. These are installed with npm, so any package can

be used. See the npm documentation for more details on the installation command [73].

All that is needed for a minimum base setup is a workflow step like the one defined in

Listing 4.4. This will generate documentation for all source files in the "./src" directory, and

output the built files to a "./out" directory. Any other GitHub Action might further process

this output.

Listing 4.4: Basic JSDoc Action workflow step

1 - name: Build docs

2 uses: andstor/jsdoc-action@v1

3 with:

4 source_dir: ./src

5 recurse: true

6 output_dir: ./out

4.5.1 Example usage

In the following, a complete example to illustrate how easy it is to automate the JSDoc doc-

umentation process with the JSDoc Action is provided. This assumes that GitHub is used for

hosting the code to generate documentation for.

First, a workflow yaml file needs to be created. This file needs a name, for example docu-

mentation.yaml, and has to be uploaded to the default branch in the user’s repository, under

https://github.com/marketplace/actions/jsdoc-action
https://github.com/marketplace/actions/jsdoc-action
https://github.com/marketplace/actions/jsdoc-action
https://github.com/andstor/jsdoc-action

CHAPTER 4. RESULT 80

".github/workflows/". Then, the actual workflow needs to be defined. Listing 4.5 provides

an example workflow. This workflow is set to only run when code is pushed to the master

branch. Ubuntu is then chosen as the platform to run the workflow job on. Several workflow

steps are then defined:

1. First, the user’s code repository is cloned with the help of the Checkout Action by

GitHub. This makes the user’s source code available to subsequent steps.

2. Second, the JSDoc Action is used for generating the actual JSDoc documentation files.

Lines 15-19 defines several input options to the JSDoc Action. The source directory is

set to "./src". The output directory is set to "./out". A path to a JSDoc configuration file

in the user’s repository is then specified. In order to freshen up the plain JSDoc theme,

the minami template is used. This is the name of the package on npm. Finally, the

README.md file in the user’s repository is used as frontpage.

3. Third, the GitHub Pages action is used for deploying the generated documentation

files to GitHub Pages. It needs two input configurations. One is a deployment key. See

the documentation for the GitHub Pages action for how to set up this. The other is a

directory where the files to publish resides. This is set to the the JSDoc Action’s output

directory, "./out".

When the workflow file is finished and saved to the correct place, the repository will feature

automatic JSDoc documentation generation.

CHAPTER 4. RESULT 81

Listing 4.5: Example documentation workflow file

1 name: Documentation

2 on:

3 push:

4 branches:

5 - master

6 jobs:

7 deploy:

8 runs-on: ubuntu-latest

9 steps:

10 - name: Checkout code

11 uses: actions/checkout@v2

12 - name: Build

13 uses: andstor/jsdoc-action@v1

14 with:

15 source_dir: ./src

16 output_dir: ./out

17 config_file: ./conf.json

18 template: minami

19 front_page: README.md

20 - name: Deploy

21 uses: peaceiris/actions-gh-pages@v3

22 with:

23 deploy_key: ${{ secrets.ACTIONS_DEPLOY_KEY }}

24 publish_dir: ./out

4.6 file-existence-action

The File Existence action is a GitHub Action. The action is published to the GitHub Mar-

ketplace by the name "File Existence", and the source code is available at GitHub under

"andstor/file-existence-action".

The action is able to check if one or more files exists during a workflow run. The user

just supplies the paths as inputs to the action. The action then produces a boolean output

variable which is available to the subsequent workflow steps. If any files are missing, the

output is set to false. Otherwise, true. It is also possible to make the action trigger an error if

one or more files are missing. This will effectively cancel the entire workflow.

https://github.com/marketplace/actions/file-existence
https://github.com/andstor/file-existence-action

CHAPTER 4. RESULT 82

4.7 file-reader-action

The File Reader action is a GitHub Action. The action is published to the GitHub Marketplace

by the name "File Reader", and the source code is available at GitHub under "andstor/file-

reader-action".

By providing a path as input to the action, the action is simply able to read the contents

of a file during a workflow run. The action produces an output variable with the contents of

the file. This variable will be available to the subsequent workflow steps.

4.8 Automation

Several automation systems are implemented for the various projects. This makes the main-

tenance of the projects very easy. All JavaScript package building and publishing is fully

automated. Automatic JSDoc generation and publishing is also set up. Further, mainte-

nance tasks for the GitHub actions are automated. See Section 3.8 for a walkthrough of how

the automations systems work, and what they do in details. For the GitHub Actions, auto-

matic updating of version tags are implemented, according to the GitHub guidelines. For the

JavaScript packages, the following tasks are automated:

• Building

• Testing

• Code coverage generation, and uploading to Coveralls.io

• Security analysis with LGTM by Semmle

• JavaScript JSDoc documentation generation with the JSDoc Action

• Publishing of JavaScript package to the npm registry

Figure 4.26 shows how some of these automated task (defined in Workflows) are run on

GitHub’s CI/CD system. Here, one can see all the checks are passed. Also, an alert is trig-

gered by the security analysis by LGTM, stating that three new alerts are introduced in the

code.

https://github.com/marketplace/actions/file-reader
https://github.com/andstor/file-reader-action
https://github.com/andstor/file-reader-action

CHAPTER 4. RESULT 83

Figure 4.26: Screenshot of automation checks for a pull request on GitHub.

CHAPTER 4. RESULT 84

4.9 Popularity and achievements

Several of the projects has already gained interest by the public. GitHub users are able to star

a repository. This is one of the main measurements available for how popular a repository

is. Several of the repositories created in connection with this thesis have received numerous

of stars already, and is used by several people. Table 4.5 shows how many stars the different

repositories have, as of May 17th, 2020 1.

Table 4.5: Repositories statistics as of May 17th, 2020.

Repository Stars Used by

jsdoc-action 13 22

file-existence-action 6 17

voxelizer 4 3

three-voxel-loader 4 1

file-reader-action 1 5

binvox 1 2

voxelizer-desktop 1 0

Another achievement is the inclusion of a link to the JSDoc Action in the README.md file

of the original JSDoc repository. As of May 17th, 2020 the JSDoc repository has 10.6 thousand

stars and is used in by more than 39.300 repositories. This gives the action a lot of marketing.

The approved pull request is number #1745. Figure 4.27 shows a screenshot of the Templates

and tools section of the README.md file. The link to the JSDoc Action is located at the

bottom of the Build tools subsection, marked in red. Figure 4.28 shows the response to the

approved pull request from the lead maintainer Jeff Williams (hegemonic) of JSDoc.

1The statistics also include personal staring and usage.

https://github.com/jsdoc/jsdoc/blob/master/README.md
https://github.com/jsdoc/jsdoc/pull/1745
https://github.com/hegemonic

CHAPTER 4. RESULT 85

Figure 4.27: Screenshot of JSDoc README.md file.

Figure 4.28: Screenshot of response from JSDoc lead maintainer.

Chapter 5

Discussion

This chapter discusses the achieved results, the execution of methodologies, and how the

projects could be further improved. The chapter starts with Section 5.1 that discusses the

completeness of the entire project, compared to the requirements specification. Section 5.2

describes how the chosen working methodology worked out. The improvements of the Vox-

elizer engine are discussed in Section 5.3, closely followed by the Voxelizer desktop applica-

tion in Section 5.4. The level of automation achieved is described in Section 5.5. The rest

of the supportive projects are discussed in Section 5.6. Finally, Section 5.7 discusses some

features that are left as future work.

5.1 Requirements specification completeness

Most of the primary objectives are completed according to the requirement specification.

Also, the majority of the user-stories are addressed, as can be seen from the backlog included

in Appendix D. The project is therefore overall considered a success.

Due to various extra work like the binvox package, the file-existence-action and the file-

reader-action, some functionality had to give way to others. It was not enough time to make

the CLI tool for the Voxelizer engine. However, this could be a valuable companion tool for

the Voxelizer engine, and should therefore be considered for future work.

86

CHAPTER 5. DISCUSSION 87

5.2 Working methodology

Scrum was used as the working methodology for this project. However, since Scrum is de-

signed for teams, the method needed some adaptations. The changes described in Sec-

tion 3.2.1 worked out very well. The method helped in keeping the project on track. Fur-

ther, the desire to complete the sprints functioned as a strong motivator throughout the en-

tire project. This is backed by the sprint cumulative flow diagram available in Appendix C.

The diagram shows a reasonable steady stream of completed issues throughout the entire

project.

5.3 Voxelizer

Compared to the old Voxelizer engine, the new version produces voxelization results of a

lot higher quality. The improvement can clearly be seen from the results described in Sec-

tion 4.2.2. The engine is also greatly improved in terms of performance. Although, the level

of performance gain shown in Section 4.2.3 was not expected, especially the huge reduction

in memory footprint. Further, several new features are introduced. Being able to produce

shell and color voxelizations makes the engine much more attractive.

During development, it became clear that extending the importing support for the differ-

ent formats specified in the requirements specification was not beneficial. three.js already

provides support for around 40 file formats. However, at the time of the creation of the old

engine version, the loaders were hard to import and use. Since then, these loaders have

implemented support for ES Modules. It was therefore decided that the task of loading the

models should be left up to the user.

5.4 Voxelizer Desktop

The Voxelizer Desktop ensures easy use of the Voxelizer engine. It fulfills all the main require-

ments. The application provides an intuitive user interface, and the voxelization process is

very easy. By supporting several of the most popular 3D file formats, like OBJ, GLTF and STL,

the user is most likely able to voxelize his/her files directly, without additional conversion

steps.

CHAPTER 5. DISCUSSION 88

5.5 Automation

The different projects were highly automated at an early stage. This made the various main-

tenance task throughout the project very easy. Future support and maintenance is therefore

also expected be easy. Especially valuable is the JSDoc action. This will ensure available and

up-to-date high-quality API documentation.

5.6 Supportive projects

Several tools were main to aid the various projects. This includes the three-voxel-loader plu-

gin, the BINVOX package, the File Existence action and the File Reader action. With the

exception of the three-voxel-loader, these tools are mainly the result of refactoring. Keeping

the code in smaller modules, or packages, makes it easier to maintain. It also makes it easy

for others to use the software for other projects. Further, this often means an increase in both

testing and contributions to the project.

The three-voxel-loader three.js plugin proved to be very valuable in terms of testing. In-

specting the raw voxel data is more or less impossible. By visualizing the voxelized results,

testing and debugging the Voxelizer engine was very easy.

5.7 Future work

The uncompleted requirements specification and the user-stories provides an excellent ba-

sis for future work. In addition to this, the following sections suggests some additional im-

provements.

5.7.1 three-voxel-loader

The three-voxel-loader plugin generates a cube (CubeBufferGeometry) for every voxel. Even

for voxels that are not visible from outside the model. When loading a large and filled voxel

model, this results in an enormous number of faces being rendered, putting a heavy load on

the hardware. A future improvement could be to only render an extracted surface mesh of

the voxels result, when a voxel size of 1 is used. This would dramatically reduce the number

of triangles needed to render the voxel model.

CHAPTER 5. DISCUSSION 89

Another interesting feature could be to support isosurface extraction. This is the opposite

process of the voxelization process. It tries to approximate a 3D mesh directly based on voxel

data. The most popular isosurface extraction algorithm is the the marching cube algorithm,

published in 1987 by Lorensen and Cline [74]. Including this feature into the project could

be of great value.

5.7.2 Voxelizer

Due to the fact that JavaScript is single-threaded, no multithreading is implemented in the

Voxelizer Engine. However, it is possible to implement a sort of multithreading with Web

Workers in the browser, or Worker Threads in Node.js. A future improvement could be to

implementing support for this type of multithreading directly into the Voxelizer engine. This

way, the heavy voxelization calculations could be split up into chunks and voxelized in par-

allel.

Chapter 6

Conclusion

The primary objective of this thesis was to improve the Voxelizer engine. The engine is com-

pletely overhauled, addressing all known issues with the old version. Several new features are

also added, like coloring and shell voxelization. The performance of the engine is also greatly

improved. The speed of the voxelization is significantly increased, and the memory footprint

is reduced by several orders of magnitudes. The exporting capabilities are also extended with

several file formats and data structures. This includes ndarrays, XML, and BINVOX. Export-

ing to BINVOX files is made possible with the new BINVOX JavaScript package.

To make voxelization easy and accessible, a complementary cross platform desktop ap-

plication is developed for the Voxelizer engine. This features a sleek drag and drop interface,

along with visualized voxelization results, made possible with the new three-voxel-loader

three.js plugin.

To ensure the projects keep a high level of quality, and are easy to maintain, a lot of au-

tomation is implemented. This has removed much manual and laborious work. It has also

made the software a lot safer, drastically reducing the potential of human errors and bug in-

troductions. To achieve this level of automation, several GitHub Actions are developed. This

mainly includes the highly successful documentation tool, the JSDoc Action. It is embraced

by the popular JSDoc tool, and is already gaining in popularity. Two more actions are also

developed for automation purposes. This is the File Existence action, and the File Reader

action.

To summarize, the Voxelizer engine is greatly improved. A companion desktop applica-

tion is developed, alongside several automation tools. The project is considered a success,

and I believe that these results are a useful contribution to the open-source community.

90

Bibliography

[1] J. Zadik, B. Kenwright, and K. Mitchell, “Integrating real-time fluid simulation with a

voxel engine,” The Computer Games Journal, vol. 5, no. 1, pp. 55–64, Jul. 2016. DOI:

10.1145/37402.37422. [Online]. Available: https://doi.org/10.1007/S40869-

016-0020-5.

[2] P. Min. (Jan. 2004 - 2020). “Binvox,” [Online]. Available: http://www.patrickmin.

com/binvox (visited on 05/06/2020).

[3] Scrum.org. (2020). “Scrum,” [Online]. Available: http://www.scrum.org/ (visited on

05/06/2020).

[4] Atlassian. (2020). “What is kanban?” [Online]. Available: https://www.atlassian.

com/agile/kanban (visited on 05/06/2020).

[5] Git. (). “About git,” [Online]. Available: https://git-scm.com/about.

[6] V. Driessen. (Jan. 2010). “A successful git branching model,” [Online]. Available: https:

//nvie.com/posts/a-successful-git-branching-model/ (visited on 04/29/2020).

[7] GitHub. (2020). “Github actions,” [Online]. Available: https://github.com/features/

actions (visited on 05/10/2020).

[8] ——, (2020). “Workflow syntax for github actions,” [Online]. Available: https://help.

github.com/en/actions/reference/workflow-syntax-for-github-actions

(visited on 05/07/2020).

[9] ——, (2020). “Github pages,” [Online]. Available: https://pages.github.com (vis-

ited on 05/02/2020).

[10] M. D. Network. (Mar. 2019). “Prototype-based programming,” [Online]. Available: https:

//developer.mozilla.org/en-US/docs/Glossary/Prototype-based_programming

(visited on 05/04/2020).

91

https://doi.org/10.1145/37402.37422
https://doi.org/10.1007/S40869-016-0020-5
https://doi.org/10.1007/S40869-016-0020-5
http://www.patrickmin.com/binvox
http://www.patrickmin.com/binvox
http://www.scrum.org/
https://www.atlassian.com/agile/kanban
https://www.atlassian.com/agile/kanban
https://git-scm.com/about
https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/
https://github.com/features/actions
https://github.com/features/actions
https://help.github.com/en/actions/reference/workflow-syntax-for-github-actions
https://help.github.com/en/actions/reference/workflow-syntax-for-github-actions
https://pages.github.com
https://developer.mozilla.org/en-US/docs/Glossary/Prototype-based_programming
https://developer.mozilla.org/en-US/docs/Glossary/Prototype-based_programming

BIBLIOGRAPHY 92

[11] Netscape. (Dec. 1995). “Netscape and sun announce javascript,” [Online]. Available:

https://web.archive.org/web/20070916144913/http://wp.netscape.com/

newsref/pr/newsrelease67.html (visited on 05/03/2020).

[12] E. International. (2020). “Ecma international,” [Online]. Available: http://www.ecma-

international.org (visited on 05/03/2020).

[13] TIOBE Software. (Mar. 2020). “TIOBE index for may 2020,” [Online]. Available: https:

//www.tiobe.com/tiobe-index/ (visited on 05/03/2020).

[14] npm. (2020). “Npm,” [Online]. Available: https://www.npmjs.com (visited on 05/03/2020).

[15] RequireJS. (). “Requirejs,” [Online]. Available: https://requirejs.org (visited on

05/04/2020).

[16] UMD. (Oct. 2017). “UMD,” [Online]. Available: https://github.com/umdjs/umd

(visited on 05/04/2020).

[17] Mozilla Developer Network. (Apr. 2020). “Browser support,” [Online]. Available: https:

//developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules (vis-

ited on 05/04/2020).

[18] Babel. (2020). “Babel is a javascript compiler. babel is a javascript compiler. babel is a

javascript compiler,” [Online]. Available: https://babeljs.io (visited on 05/04/2020).

[19] Webpack. (2020). “Webpack,” [Online]. Available: https://webpack.js.org (visited

on 05/04/2020).

[20] Rollup. (2020). “Rollup,” [Online]. Available: https://rollupjs.org/guide/en/

(visited on 05/04/2020).

[21] Browserify. (2020). “Browserify,” [Online]. Available: http://browserify.org (vis-

ited on 05/04/2020).

[22] TypeScript. (2020). “Typescript,” [Online]. Available: https://www.typescriptlang.

org (visited on 05/04/2020).

[23] Microsoft. (2020). “Microsoft,” [Online]. Available: https://www.microsoft.com

(visited on 04/30/2020).

[24] Google. (May 2020). “Google closure compiler,” [Online]. Available: https://github.

com/google/closure-compiler (visited on 05/04/2020).

https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
http://www.ecma-international.org
http://www.ecma-international.org
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.npmjs.com
https://requirejs.org
https://github.com/umdjs/umd
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://babeljs.io
https://webpack.js.org
https://rollupjs.org/guide/en/
http://browserify.org
https://www.typescriptlang.org
https://www.typescriptlang.org
https://www.microsoft.com
https://github.com/google/closure-compiler
https://github.com/google/closure-compiler

BIBLIOGRAPHY 93

[25] JSDoc. (May 2020). “Jsdoc,” [Online]. Available: https://github.com/jsdoc/jsdoc

(visited on 05/04/2020).

[26] GitHub. (May 2020). “Dependency graph,” [Online]. Available: https://github.com/

jsdoc/jsdoc/network/dependencies (visited on 05/04/2020).

[27] ——, (May 2020). “Stargazers,” [Online]. Available: https://github.com/jsdoc/

jsdoc/stargazers (visited on 05/04/2020).

[28] K. Group. (). “Webgl overview,” [Online]. Available: https://www.khronos.org/

webgl/.

[29] ——, (2020). “Opengl es,” [Online]. Available: https://www.khronos.org/opengles/

(visited on 05/06/2020).

[30] three.js. (). “Three.js,” [Online]. Available: https://threejs.org.

[31] M. Lysenko. (Jan. 2020). “Ndarray,” [Online]. Available: https://github.com/scijs/

ndarray (visited on 05/04/2020).

[32] Mozilla Developer Network. (Mar. 2020). “Javascript typed arrays,” [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays

(visited on 05/04/2020).

[33] GitHub. (2020). “Electron,” [Online]. Available: https://www.electronjs.org (vis-

ited on 05/02/2020).

[34] ——, (2020). “About github,” [Online]. Available: https://github.com/about (vis-

ited on 01/25/2020).

[35] Microsoft. (2020). “Visual studio code,” [Online]. Available: https://code.visualstudio.

com (visited on 05/02/2020).

[36] Facebook. (2020). “Facebook messenger,” [Online]. Available: https://www.messenger.

com/desktop (visited on 05/02/2020).

[37] Microsoft. (2020). “Microsoft teams,” [Online]. Available: https://www.messenger.

com/desktop (visited on 05/02/2020).

[38] Google. (). “Chromium,” [Online]. Available: https://www.chromium.org/Home

(visited on 05/11/2020).

[39] Facebook. (2020). “React,” [Online]. Available: https : / / reactjs . org (visited on

05/02/2020).

https://github.com/jsdoc/jsdoc
https://github.com/jsdoc/jsdoc/network/dependencies
https://github.com/jsdoc/jsdoc/network/dependencies
https://github.com/jsdoc/jsdoc/stargazers
https://github.com/jsdoc/jsdoc/stargazers
https://www.khronos.org/webgl/
https://www.khronos.org/webgl/
https://www.khronos.org/opengles/
https://threejs.org
https://github.com/scijs/ndarray
https://github.com/scijs/ndarray
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays
https://www.electronjs.org
https://github.com/about
https://code.visualstudio.com
https://code.visualstudio.com
https://www.messenger.com/desktop
https://www.messenger.com/desktop
https://www.messenger.com/desktop
https://www.messenger.com/desktop
https://www.chromium.org/Home
https://reactjs.org

BIBLIOGRAPHY 94

[40] ——, (). “Facebook,” [Online]. Available: https://about.fb.com (visited on 05/02/2020).

[41] Semmle. (2020). “Lgtm,” [Online]. Available: https://lgtm.com (visited on 05/04/2020).

[42] ——, (2020). “Security at semmle,” [Online]. Available: https://semmle.com/security

(visited on 05/04/2020).

[43] Coveralls. (). “Coveralls,” [Online]. Available: https : / / coveralls . io (visited on

05/02/2020).

[44] E. E. Catmull, “A subdivision algorithm for computer display of curved surfaces,” Ph.D.

dissertation, University of Utah, 1974.

[45] B. Foundation. (). “About blender,” [Online]. Available: https://www.blender.org/

about.

[46] ——, (2020). “Render baking,” [Online]. Available: https://docs.blender.org/

manual/en/latest/render/cycles/baking.html (visited on 05/03/2020).

[47] S. D. Roth, “Ray casting for modeling solids,” Computer Graphics and Image Processing,

vol. 18, no. 2, pp. 109–144, Feb. 1982.

[48] D. MacDonald, “Space subdivision algorithms for ray tracing,” M.S. thesis, University

of Waterloo, waterloo, Ontario, 1988.

[49] Wikipedia. (2020). “Voxel,” [Online]. Available: https://en.wikipedia.org/wiki/

Voxel (visited on 05/04/2020).

[50] A. Storhaug. (Apr. 2019). “Voxelizer v0.1.3,” [Online]. Available: https://github.com/

andstor/voxelizer/tree/v0.1.3 (visited on 05/04/2020).

[51] Travis. (2020). “Travis ci,” [Online]. Available: https://travis-ci.org (visited on

05/10/2020).

[52] R. van Rüschen. (Jan. 2020). “Sparse octree,” [Online]. Available: https://github.

com/vanruesc/sparse-octree (visited on 05/10/2020).

[53] D. Klein. (Aug. 2018). “Format-vox,” [Online]. Available: https://github.com/sh-

dave/haxe-format-vox (visited on 05/08/2020).

[54] P. Min. (). “Binvox voxel file format specification,” [Online]. Available: https://www.

patrickmin.com/binvox/binvox.html.

https://about.fb.com
https://lgtm.com
https://semmle.com/security
https://coveralls.io
https://www.blender.org/about
https://www.blender.org/about
https://docs.blender.org/manual/en/latest/render/cycles/baking.html
https://docs.blender.org/manual/en/latest/render/cycles/baking.html
https://en.wikipedia.org/wiki/Voxel
https://en.wikipedia.org/wiki/Voxel
https://github.com/andstor/voxelizer/tree/v0.1.3
https://github.com/andstor/voxelizer/tree/v0.1.3
https://travis-ci.org
https://github.com/vanruesc/sparse-octree
https://github.com/vanruesc/sparse-octree
https://github.com/sh-dave/haxe-format-vox
https://github.com/sh-dave/haxe-format-vox
https://www.patrickmin.com/binvox/binvox.html
https://www.patrickmin.com/binvox/binvox.html

BIBLIOGRAPHY 95

[55] A. Storhaug. (May 2020). “Binvox,” [Online]. Available: https://github.com/andstor/

binvox (visited on 05/08/2020).

[56] G. D. A. Team. (2020). “Dat.gui,” [Online]. Available: https://github.com/dataarts/

dat.gui (visited on 05/08/2020).

[57] G. Johnson. (Mar. 2020). “Three-mesh-bvh,” [Online]. Available: https://github.

com/gkjohnson/three-mesh-bvh (visited on 05/09/2020).

[58] Mozilla Developer Network. (2020). “Uint8clampedarray,” [Online]. Available: Uint8ClampedArray

(visited on 05/10/2020).

[59] Facebook. (). “Jest,” [Online]. Available: https://jestjs.io (visited on 05/10/2020).

[60] T. Preston-Werner. (2020). “Semantic Versioning,” [Online]. Available: https://semver.

org (visited on 05/10/2020).

[61] K. Basques. (2019). “Get started with analyzing runtime performance,” [Online]. Avail-

able: https://developers.google.com/web/tools/chrome-devtools/evaluate-

performance (visited on 05/10/2020).

[62] electron-builder. (2020). “Electron-builder,” [Online]. Available: https://www.electron.

build (visited on 05/11/2020).

[63] Facebook. (2020). “Create react app,” [Online]. Available: https://github.com/

facebookincubator/create-react-app (visited on 05/11/2020).

[64] Format.js. (2020). “React-intl,” [Online]. Available: https://www.npmjs.com/package/

react-intl (visited on 05/11/2020).

[65] J. 3. (2011-2017). “Configuring jsdoc with a configuration file,” [Online]. Available: https:

//jsdoc.app/about-configuring-jsdoc.html (visited on 05/10/2020).

[66] GitHub. (May 2020). “Checkout v2,” [Online]. Available: https://github.com/actions/

checkout (visited on 05/10/2020).

[67] S. Ueda. (2020). “Github pages action,” [Online]. Available: https://github.com/

marketplace/actions/github-pages-action#table-of-contents (visited on

05/10/2020).

[68] A. Storhaug. (2020). “Jsdoc action issues,” [Online]. Available: https://github.com/

andstor/jsdoc-action/issues?q=is%3Aissue+ (visited on 05/10/2020).

https://github.com/andstor/binvox
https://github.com/andstor/binvox
https://github.com/dataarts/dat.gui
https://github.com/dataarts/dat.gui
https://github.com/gkjohnson/three-mesh-bvh
https://github.com/gkjohnson/three-mesh-bvh
Uint8ClampedArray
https://jestjs.io
https://semver.org
https://semver.org
https://developers.google.com/web/tools/chrome-devtools/evaluate-performance
https://developers.google.com/web/tools/chrome-devtools/evaluate-performance
https://www.electron.build
https://www.electron.build
https://github.com/facebookincubator/create-react-app
https://github.com/facebookincubator/create-react-app
https://www.npmjs.com/package/react-intl
https://www.npmjs.com/package/react-intl
https://jsdoc.app/about-configuring-jsdoc.html
https://jsdoc.app/about-configuring-jsdoc.html
https://github.com/actions/checkout
https://github.com/actions/checkout
https://github.com/marketplace/actions/github-pages-action#table-of-contents
https://github.com/marketplace/actions/github-pages-action#table-of-contents
https://github.com/andstor/jsdoc-action/issues?q=is%3Aissue+
https://github.com/andstor/jsdoc-action/issues?q=is%3Aissue+

BIBLIOGRAPHY 96

[69] Androz2091. (Apr. 2020). “How to use a github repo as template?” [Online]. Available:

https://github.com/andstor/jsdoc-action/issues/20 (visited on 05/10/2020).

[70] npm. (2020). “Npm registry,” [Online]. Available: https://www.npmjs.com (visited

on 05/10/2020).

[71] GitHub. (2020). “Versioning your action,” [Online]. Available: https://help.github.

com/en/actions/building-actions/about-actions#versioning-your-action

(visited on 05/10/2020).

[72] smac89. (May 2020). “Actions tagger,” [Online]. Available: https://github.com/

marketplace/actions/actions-tagger (visited on 05/10/2020).

[73] npm. (Mar. 2020). “Npm-install,” [Online]. Available: https://docs.npmjs.com/

cli/install (visited on 05/13/2020).

[74] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d surface con-

struction algorithm,” SIGGRAPH Comput. Graph., vol. 21, no. 4, pp. 163–169, Aug. 1987,

ISSN: 0097-8930. DOI: 10.1145/37402.37422. [Online]. Available: https://doi.org/

10.1145/37402.37422.

https://github.com/andstor/jsdoc-action/issues/20
https://www.npmjs.com
https://help.github.com/en/actions/building-actions/about-actions#versioning-your-action
https://help.github.com/en/actions/building-actions/about-actions#versioning-your-action
https://github.com/marketplace/actions/actions-tagger
https://github.com/marketplace/actions/actions-tagger
https://docs.npmjs.com/cli/install
https://docs.npmjs.com/cli/install
https://doi.org/10.1145/37402.37422
https://doi.org/10.1145/37402.37422
https://doi.org/10.1145/37402.37422

Appendices

97

Appendix A

Preliminary report

98

Preliminary report
for bachelor’s thesis

TITLE

Voxelizer: an Open Source Voxelization Engine

CANDIDATE

André Storhaug

DATE SUBJECT CODE SUBJECT DOCUMENT ACCESS

31.01.2020 IE303612 Bachelor’s thesis - Open

STUDY PAGES/ATTACHMENTS BIBL. NR.

Computer engineering 24/0 Not used

SUPERVISOR(S)

Primary: Ricardo da Silva Torres

Secondary: Saleh Abdel-Afou Alaliyat

Summary

This preliminary report concerns the plans and preparations for a bachelor’s thesis at the Nor-

wegian University of Science and Technology (NTNU). The purpose of the thesis is to improve

and further develop the already existing open source project named Voxelizer. Voxelizer is a

JavaScript engine for converting 3D models into a volumetric representation, a process known

as voxelization.

The engine needs to be refined, professionalized, and extended. To ease the use of the en-

gine, a cross platform desktop application and a command line interface will be developed.

In order to make the Voxelizer engine and the complementary software easy to maintain, the

projects will have a focus on automation. Especially, a GitHub action will be developed for au-

tomating the generation of JavaScript documentation.

Postal address Visitation address Phone Fax Bank account
NTNU i Ålesund Larsgårdsvegen 2 70 16 12 00 70 16 13 00 7694 05 00636
N-6025 Ålesund Internet E-mail Foretaksregisteret
Norway www.ntnu.no postmottak@ntnu.no NO 947 767 880

tel:+4770161200
fax:+4770161300
mailto:postmottak@ntnu.no

ii

This assignment is an exam submission done by a student at NTNU in Ålesund.

Contents

1 Terminology 1

2 Introduction 2

3 Project organization 3

3.1 Project group . 3

3.2 Steering group . 3

4 Attitudes 4

5 Project description 5

5.1 Thesis problem - goals - purpose . 5

5.1.1 Thesis problem . 5

5.1.2 Goals . 5

5.1.3 Purpose . 5

5.2 Requirements specification . 6

5.2.1 Voxelizer . 6

5.2.2 three.js voxel loader . 7

5.2.3 Voxelizer Desktop . 7

5.2.4 Voxelizer CLI . 8

5.2.5 JSDoc Action . 8

5.2.6 Automation . 8

5.3 Methodology . 8

5.4 Information gathering . 9

iii

CONTENTS iv

5.5 Risk analysis . 9

5.6 Primary activities in further work . 11

5.7 Progress plan . 12

5.7.1 Master plan . 12

5.7.2 Project control assets . 14

5.7.3 Development assets . 14

5.7.4 Internal control and evaluation . 14

6 Documentation 15

6.1 Reports and technical documents . 15

7 Planned meetings and reports 16

7.1 Meetings . 16

7.2 Progress reports . 16

8 Planned deviation management 17

Chapter 1

Terminology

Concepts

Cross-platform software Computer software that can be run on multiple computing platforms.

Library A collection of data and programming code that is used to develop software.

Voxel Three-dimensional analogue of a pixel, representing a value on a regular grid in three-

dimensional space.

Voxelization The process of converting a 3D model into voxels.

Abbreviations

API Application Programming Interface

CLI Command Line Interface

GUI Graphical User Interface

MDN Mozilla Developer Network

UML Unified Modeling Language

1

Chapter 2

Introduction

This project aims to improving an already existing open source [1] engine named Voxelizer [2]. It

is a cross-platform engine for conducting voxelization of 3D models, and is written in JavaScript.

The background for its creation was an assignment in a simulation course. The objective

was to simulate diffusion using a cellular automaton. I wanted to do the simulation in the shape

of a 3D object. Hence, I needed some way of constructing a volume representation out of a 3D

model. Further, I also wanted to make the simulation with web technologies by making use of

Three.js [3], an abstraction layer over WebGL [4].

To the best of my knowledge, there was not any simple open source solution for this in

JavaScript. I therefore decided to make a solution myself. The result was the open source project

"Voxelizer". However, due to time constraints, the current state of the engine can only be con-

sidered a crude prototype. It has several issues, lacks important features and needs to be pro-

fessionalized.

Alongside the engine, a desktop program and a CLI interface will be developed. These will

be making use of the Voxelizer software, and will greatly simplify the use of it.

2

Chapter 3

Project organization

3.1 Project group

Table 3.1: Students in the group

Name of student

André Storhaug

3.2 Steering group

The steering group will consist of Ricardo Da Silva Torres at NTNU in Ålesund, along with Saleh

Abdel-Afou Alaliya at NTNU in Ålesund. Torres will act as supervisor and Alaliyat will be the

co-supervisor.

3

Chapter 4

Attitudes

As a computer engineer, one is expected to behave responsible and professional. One should be

curious of new technology and strive to provide the best solutions possible. Further, one should

take proud in ones own work and feel a certain responsibility of the work that is done.

In a world that is becoming increasingly smaller, good collaboration is essential. In the role

as a computer engineer, it is expected that one will come into contact and collaborate with per-

sons from many different disciplines. It is therefore vital to have open mindsets and welcome

new ideas. Discussions are to be expected. However, disagreements should be kept factual and

handled respectfully.

The development of software is often a large part of the job as a computer engineer. Software

has potential to affect human lives. Either directly or indirectly. The creation of software should

therefore be rooted in strong ethics and respect for the users privacy. With this in mind, open

source is a great way of achieving both transparency and openness. Today, everything revolves

around profit. Companies are doing everything from charging huge amounts for proprietary

software, to profiting on your personal information. However, open source has become a pop-

ular platform in which people can collaborate on software projects. By join forces and helping

one another, one can achieve truly great things.

4

Chapter 5

Project description

5.1 Thesis problem - goals - purpose

5.1.1 Thesis problem

There exists an open source JavaScript engine for conducting voxelization of 3D models. This

engine is called "Voxelizer". However, the engine faces several issues and is lacking important

features. It needs to be professionalized and made easy to both use and maintain.

5.1.2 Goals

This project has two main goals. The first goal is to improve and extend the open source Vox-

elizer engine in such a way that it fulfills the requirements specified in the next section. The

second goal is to develop a cross platform desktop application and a CLI for easy voxelization of

3D models, based the Voxelizer engine.

In order to ensure maintainability of the various software projects, automation is critical.

Therefore, a common subgoal will be to develop a GitHub action in order to automate docu-

mentation generation.

5.1.3 Purpose

The purpose of this project is to make it easy to conduct high quality voxelization of 3D models.

5

CHAPTER 5. PROJECT DESCRIPTION 6

5.2 Requirements specification

The scope of this project is defined and limited by the requirements specification defined in

following sections. In addition to this specification below, a backlog with user stories shall be

created.

5.2.1 Voxelizer

Algorithms

The voxelization algorithm should provide an accurate render of the original 3D model (poly-

gon mesh [5]). The result should be geometrically representative without distortions. No holes

should be present, unless dictated so by the given 3D model shape. Internal cavities and struc-

tures need to be accurately preserved. Lastly, there should be an absolute minimum of artifacts.

It should be possible to do two types of voxelization. One that is a shell voxelization, and

another that is a filled volume version. The shell-type algorithm should only capture the surface

of the 3D model. The filled-type algorithm needs to capture a complete volume representation

of the 3D model. It should also be possible to precisely control the wanted resolution of the

voxelization.

Input

The engine should support a large variety of different input types. Both in terms of various file

types and data structures. Support for popular file formats, such as OBJ, STL and gLTF should

be implemented.

Output

A diverse mixture of output types have to be supported. This includes relevant file formats and

data structures. Some file formats for saving voxel data are VOX by MagicaVoxel [6], XML, BIN-

VOX [7] and Minecraft SCHEMATIC format. Relevant data structure exports include 3D arrays

and octrees.

CHAPTER 5. PROJECT DESCRIPTION 7

It should also be possible to export the voxelized result as normal 3D models. This could be

file formats such as OBJ, STL and gLTF. Each voxel in the model should be represented as a cube.

Lastly, one could also support image export for each layer of the voxelized result. File format

could for example be JPEG or PNG.

Coloring

The texture of a 3D model should carry over to surface voxels. This should be in the form of the

most representative color.

Optimization

tree.js raycasting should be optimized. three.js raycasting is CPU based. It iterates each face in a

3D model, checking if the ray intersects a face or not. However, one can speed up the raycasting

by employing a spatial index, for example with the help of an octree [8] or aabb tree.

5.2.2 three.js voxel loader

The three.js voxel loader module needs to be able to load voxel data into a three.js mesh [9].

The module should manage to load the voxel file formats and data structures that the Voxelizer

engine supports exporting. This is voxel data stored in the form of a 3D array or an octree, or in

a file format like VOX, XML, BINVOX or SCHEMATIC.

It should be possible to customize the appearance of the loaded voxels, Both in terms of size,

material and/or color.

5.2.3 Voxelizer Desktop

The Voxelizer Desktop shall be a cross-platform [10] desktop application. It should work on both

MacOS, Windows and Linux. The application should be able to voxelize a 3D models with the

use of the Voxelizer engine [2]. Also, it should automatically update itself when a new release

of the application is published. The application should provide an intuitive GUI, it should be

possible to view both the original 3D model and the voxelized result.

CHAPTER 5. PROJECT DESCRIPTION 8

5.2.4 Voxelizer CLI

The Voxelizer CLI should be a cross-platform [10] CLI application. It should function on MacOS,

Windows, and Linux. The application should be able to voxelize 3D models with the use of the

Voxelizer engine [2].

5.2.5 JSDoc Action

The JSDoc GitHub Action should be an installable GitHub Action [11], available from the GitHub

marketplace [12]. It should automate the process of generating JavaScript documentation with

the help of JSDoc [13].

5.2.6 Automation

Automation should be used to ease maintenance of the various software projects. Firstly, JavaScript

projects need to have the documentation automatically generated with JSDoc [13]. Secondly,

the process of publishing new versions should be automated to the greatest extent.

5.3 Methodology

The method that will be utilized in this project is the agile methodology Scrum [14]. Scrum is

a very popular working methodology in the software development business. It uses an iterative

and incremental approach, where each sprint gives an opportunity to improve the development

process. Scrum organizes the work in sprints. This is a predefined period of time that is devoted

to a set of very defined goals. The tasks to be done are often defined in a product backlog [15].

Scrum is mainly intended for teams. However, even though this is a one-man project. The

Scrum methodology will serve as a project framework for keeping up with progress, in addition

to being able to adapt the project pace to the available working capacity. By breaking down the

tasks to be done in sprints, this will help with organizing the work and steering the project in the

right direction, allowing adjustments along the way.

For this project, each sprint will be two-week long. After each spring, a review of the com-

pleted sprint will be done. This will be an opportunity to reflect on the process, and see which

CHAPTER 5. PROJECT DESCRIPTION 9

goals were completed and which was not. Further, this review will set the basis for determining

if adjustments should be made for the next sprint.

Scrum also seems to be a good fit because there will be a meeting with the supervisor every

two weeks. By organizing the tasks to be done in two-week sprints, this will make the meet-

ings with the supervisor more effective and relevant. New functionallity can be discussed and

reviewed, in addition to planning ahead for the next two weeks.

5.4 Information gathering

The main source of information will come from various web resources. Everything from articles

to code documentation will be needed for this project. The MDN Web Docs [16] will be an

important source for JavaScript documentation. For Node.js related work, the Node.js API Docs

[17] will be put to good use. Also, documentation from the third party library Three.js [18] will

be essential. Further, Stack Overflow [19] will be a highly valued source of information due to its

wast amount of questions and answers in a lot of topics.

5.5 Risk analysis

A qualitative approach will be used for assessing the risk of this project. A risk can be described

as the likelihood of an event times the impact. A MEDIUM risk level will be accepted. The Table

5.1 will be used in order to define the various risk levels.

Table 5.1: Risk level matrix.

IMPACT

LOW MEDIUM HIGH VERY HIGH

L
IK

E
L

IH
O

O
D VERY HIGH MEDIUM HIGH VERY HIGH VERY HIGH

HIGH MEDIUM HIGH HIGH VERY HIGH

MEDIUM LOW MEDIUM HIGH HIGH

LOW LOW LOW MEDIUM MEDIUM

In Table 5.2 below, a risk assessment and risk control is conducted. The letter “L" stands for

CHAPTER 5. PROJECT DESCRIPTION 10

“Likelihood”, “I” for “Impact” and "R" for "Risk".

Table 5.2: Risk assessment table.

Residual risk

ID Description L I R Risk control L I R

R1

Services like GitHub, Jira

and Confluence may go

down, making various re-

sources unavailable.

L VH H
Perform regular backups

of important data.
L M M

R2
Sickness, resulting in in-

ability to work.
M M M Practicing good hygiene. L M M

R3
Damaged equipment

used for development.
L VH M

Exercise caution when

handling important

equipment.

L H M

R4
Lost or corrupt files due to

system crash or failure.
M VH H

Perform regular backups

of important data.
M L L

R5
Incompatibilities be-

tween technologies.
M M M

Properly assess the tech-

nology and plan ahead

before starting develop-

ment.

L M L

R6
Security vulnerability in

package dependency.
VH H VH

Automatic package audit-

ing and fixing provided by

GitHub [20].

L H M

VH: VERY HIGH risk

H: HIGH risk

M: MEDIUM risk

L: LOW risk

The risk assessment done in Table 5.2 shows that with the appropriate counter measures, all

risks are reduced to a MEDIUM level. This is an acceptable level.

CHAPTER 5. PROJECT DESCRIPTION 11

5.6 Primary activities in further work

Table 5.3: Main activities.

Nr Main activity Time/scope

A1 Writing 18 weeks

A11 Preliminary report 3 weeks

A12 Bachelor’s thesis 15 weeks

A2 voxelizer 7 weeks

A21 Core improvements 1 week

A22 Algorithm improvements 2 weeks

A23 Texture support 1 week

A24 Extending 3D model file loading 1 week

A25 Extending data exporting 1 week

A26 Write tests 3 days

A27 Optimization 2 days

A3 three-voxel-loader 2 weeks

A4 voxelizer-desktop 3 weeks

A41 Core 1 week

A42 GUI 2 weeks

A5 voxelizer-cli 1 week

A6 jsdoc-action 1 week

A7 Automation 1 week

5.7 Progress plan

5.7.1 Master plan

Figure 5.1 presents a gantt diagram for the planned time scheduling. This includes all activities

listed in section 5.6. These activities primarily include writing and software development. Activ-

ities A1 is concerned about writing the preliminary report and the thesis. Activity A2, A3, A4, A5,

and A6 are concerned with the development of various software systems, where each activity is

a confined project. A7 is concerned with automation of various tasks in many of the software

projects.

CHAPTER 5. PROJECT DESCRIPTION 13

2020

January February March April May

W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20 W21

Writing

Preliminary report

Preliminary report completed

Bachelor’s thesis

Bachelor’s thesis completed

three-voxel-loader

three-voxel-loader completed

jsdoc-action

jsdoc-action completed

Automation

Automation implemented

voxelizer

Core improvements

Algorithm improvements

Texture support

Extending 3D model file loading

Extending data exporting

Write tests

Optimization

voxelizer completed

voxelizer-desktop

Core

GUI

voxelizer-desktop completed

voxelizer-cli

voxelizer-cli completed

Figure 5.1: Gantt diagram of progress plan.

CHAPTER 5. PROJECT DESCRIPTION 14

5.7.2 Project control assets

In order to keep the project on track, Jira [21] will be used. Jira is a project management tool

developed by Atlassian, supporting a vast number of features such as issue tracking and project

management. The main reason for choosing Jira over for example GitHub’s solutions, is that Jira

supports the agile methodology Scrum. For managing documents, minutes of meetings, UML

diagrams, etc., Confluence [22] will be used.

Since this project revolves around open source projects, Jira and Confluence will only be

used for internal related work. For public usage, the GitHub issue tracker and wiki will be used.

Any issues, bugs, or documentation of public interest shall be be placed on GitHub, instead of

Jira and Confluence.

5.7.3 Development assets

For developing the various systems, the development tools listed in Table 5.4 will be used.

Table 5.4: Development tools.

Development tool Description

Visual Studio Code [23] Editor for writing and debugging code.

Blender [24] 3D modeling software.

Git [25] Version control.

GitHub [26] Hosting of git repositories.

SourceTree [27] Git desktop client.

5.7.4 Internal control and evaluation

At the end of each sprint, a review of the completed sprint will be conducted. A burndown

chart will be generated for each sprint. This will help identifying if adjustments to the plan is

necessary.

The requirements specification will serve as the primary criteria in order to decide whether

a goal is completed or not. If a system is implemented but contains minor bugs, it will still be

considered complete.

Chapter 6

Documentation

6.1 Reports and technical documents

Firstly, a progress report shall be created for every two weeks. Secondly, documentation for the

various systems will be produced. In order to make a successful software project, good docu-

mentation is imperative. A lot of this documentation will mainly be automatically generated

by JSDoc. The automation will be integrated in the workflow of a new version release of a sys-

tem (GitHub repository). This ensures the validity of the documentation, as well as ensures

future maintenance. This integration will be provided by a GitHub action, also to be a part of

this project. The generated documentation will be publicly available, hosted at GitHub Pages.

Lastly, various UML diagrams will be created. These will serve as illustration for the relationship

between the various systems.

As mentioned in Section 5.7.2, internal documentation will be kept private in Jira and Con-

fluence. Documents of public interest will be placed publicly available on GitHub.

15

Chapter 7

Planned meetings and reports

7.1 Meetings

A meeting with the advisor will be held every two weeks. These meetings will be used for report-

ing on the current progress. The meetings are an opportunity of gathering constructive feedback

from the supervisor. Further, they will serve as documentation for working both professionally

and responsible.

7.2 Progress reports

Progress reports will be developed up-front of each meeting. These will describe what activities

were planned, and what activities were actually seen through. If any deviations from the plan

occurred during the period, these should also be included in the progress report. The report

will be sent to the supervisor at least a day before the meetings. This will form the basis for the

matters to be discussed at the meetings.

16

Chapter 8

Planned deviation management

In the event of deviations from the current plans, both in terms of progress or content, several

measures need to be taken. If the deviations from the plan are of greater significance, the super-

visor should be alerted. If the deviation is of lesser importance, it should be discussed with the

supervisor at the regular meeting. One should then consider to change the planned approach.

Many of the planned systems build upon one another. Therefore, if a task shows to be harder

and more time consuming than first anticipated, it should consume time from tasks of lower

priority. However, if a task exceeds its planned time schedule because of minor bugs, then these

bugs should be properly documented and the task considered finished. These bugs should then

be revisited at a later stage if there is time to spare. Since the systems are open source projects,

these bugs might also be resolved by volunteers after this project is finished.

17

Bibliography

[1] Wikipedia. (Jan. 2020). “Open source,” [Online]. Available: https://en.wikipedia.org/

wiki/Open_source (visited on 01/26/2020).

[2] A. Storhaug. (2019). “Voxelizer,” [Online]. Available: https://github.com/andstor/

voxelizer (visited on 01/26/2020).

[3] three.js. (). “Three.js,” [Online]. Available: https://threejs.org (visited on 01/27/2020).

[4] K. Group. (). “Webgl overview,” [Online]. Available: https://www.khronos.org/webgl/

(visited on 01/27/2020).

[5] Wikipedia. (). “Polygon mesh,” [Online]. Available: https://en.wikipedia.org/wiki/

Polygon_mesh (visited on 01/31/2020).

[6] ephtracy. (). “Magicavoxel,” [Online]. Available: https://ephtracy.github.io/index.

html?page=mv_main.

[7] P. Min. (). “Binvox voxel file format specification,” [Online]. Available: https://www.

patrickmin.com/binvox/binvox.html (visited on 01/31/2020).

[8] Wikipedia. (). “Octree,” [Online]. Available: https://en.wikipedia.org/wiki/Octree

(visited on 01/31/2020).

[9] three.js. (). “Mesh,” [Online]. Available: https://threejs.org/docs/#api/en/objects/

Mesh (visited on 01/31/2020).

[10] Wikipedia. (Jan. 2020). “Cross-platform software,” [Online]. Available: https://en.wikipedia.

org/wiki/Cross-platform_software (visited on 01/31/2020).

[11] GitHub. (). “Github actions,” [Online]. Available: https : / / github . com / features /

actions (visited on 01/31/2020).

18

https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Open_source
https://github.com/andstor/voxelizer
https://github.com/andstor/voxelizer
https://threejs.org
https://www.khronos.org/webgl/
https://en.wikipedia.org/wiki/Polygon_mesh
https://en.wikipedia.org/wiki/Polygon_mesh
https://ephtracy.github.io/index.html?page=mv_main
https://ephtracy.github.io/index.html?page=mv_main
https://www.patrickmin.com/binvox/binvox.html
https://www.patrickmin.com/binvox/binvox.html
https://en.wikipedia.org/wiki/Octree
https://threejs.org/docs/#api/en/objects/Mesh
https://threejs.org/docs/#api/en/objects/Mesh
https://en.wikipedia.org/wiki/Cross-platform_software
https://en.wikipedia.org/wiki/Cross-platform_software
https://github.com/features/actions
https://github.com/features/actions

BIBLIOGRAPHY 19

[12] (). “Extend github,” [Online]. Available: https://github.com/marketplace (visited on

01/31/2020).

[13] JSDoc. (). “Jsdoc,” [Online]. Available: https://github.com/jsdoc/jsdoc (visited on

01/31/2020).

[14] Scrum.org. (). “Scrum,” [Online]. Available: http://www.scrum.org/ (visited on 01/26/2020).

[15] ——, (). “What is a product backlog?” [Online]. Available: https://www.scrum.org/

resources/what-is-a-product-backlog (visited on 01/31/2020).

[16] Mozilla. (). “Mdn web docs,” [Online]. Available: https://developer.mozilla.org/en-

US/ (visited on 01/23/2020).

[17] Node.js. (). “Node.js documentation,” [Online]. Available: https://nodejs.org/api/

(visited on 01/23/2020).

[18] three.js. (). “Three.js docs,” [Online]. Available: http://threejs.org/docs/ (visited on

01/23/2020).

[19] S. Overflow. (). “Stack overflow,” [Online]. Available: https://stackoverflow.com (vis-

ited on 01/31/2020).

[20] GitHub. (). “Managing vulnerabilities in your project’s dependencies,” [Online]. Available:

https://help.github.com/en/github/managing-security-vulnerabilities/

about-security-alerts-for-vulnerable-dependencies#alerts-and-automated-

security-updates-for-vulnerable-dependencies (visited on 01/26/2020).

[21] Atlassian. (). “Jira,” [Online]. Available: https://www.atlassian.com/software/jira

(visited on 01/25/2020).

[22] ——, (). “Confluence,” [Online]. Available: https://www.atlassian.com/software/

confluence (visited on 01/25/2020).

[23] Microsoft. (). “Visual studio code,” [Online]. Available: https://code.visualstudio.

com (visited on 01/25/2020).

[24] B. Foundation. (). “About blender,” [Online]. Available: https://www.blender.org/

about (visited on 01/25/2020).

https://github.com/marketplace
https://github.com/jsdoc/jsdoc
http://www.scrum.org/
https://www.scrum.org/resources/what-is-a-product-backlog
https://www.scrum.org/resources/what-is-a-product-backlog
https://developer.mozilla.org/en-US/
https://developer.mozilla.org/en-US/
https://nodejs.org/api/
http://threejs.org/docs/
https://stackoverflow.com
https://help.github.com/en/github/managing-security-vulnerabilities/about-security-alerts-for-vulnerable-dependencies#alerts-and-automated-security-updates-for-vulnerable-dependencies
https://help.github.com/en/github/managing-security-vulnerabilities/about-security-alerts-for-vulnerable-dependencies#alerts-and-automated-security-updates-for-vulnerable-dependencies
https://help.github.com/en/github/managing-security-vulnerabilities/about-security-alerts-for-vulnerable-dependencies#alerts-and-automated-security-updates-for-vulnerable-dependencies
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/confluence
https://www.atlassian.com/software/confluence
https://code.visualstudio.com
https://code.visualstudio.com
https://www.blender.org/about
https://www.blender.org/about

BIBLIOGRAPHY 20

[25] Git. (). “About git,” [Online]. Available: https://git-scm.com/about (visited on 01/25/2020).

[26] (). “About github,” [Online]. Available: https://github.com/about (visited on 01/25/2020).

[27] Atlassian. (). “Sourcetree,” [Online]. Available: https://www.sourcetreeapp.com (vis-

ited on 01/25/2020).

https://git-scm.com/about
https://github.com/about
https://www.sourcetreeapp.com

Appendix B

Progress reports

123

 1

Progress report #1 - 13.02.2020

Main purpose / focus

Create a 3D viewer plugin for three.js, in order to visualize voxel data.

Planned activities

1. Generate polygon mesh based on voxel data.

1. Also read in color of voxels.

2. Implement an octree backed structure.

3. File importing support.

1. 3D array

2. VOX (MagicaVoxel editor) file format

3. XML file format

4. BINVOX file format

5. Octree

6. Minecraft SCHEMATIC file

format

Completed work

1. Generate polygon mesh based on

voxel data.

1. Colorizes the voxels.

2. Implement a pointer based sparse

octree backed structure.

1. Added simple Level of Detail

(LOD) support.

3. File importing support.

1. 3D array

2. VOX (MagicaVoxel editor) file

format

VOX file credits:

https://github.com/ephtracy/voxel-model

 1

Progress report #2 - 26.02.2020

Main purpose / focus

Automation of JSDoc documentation.

Restructure Voxelizer core code base / planning.

Planned activities

1. Create JSDoc GitHub Action.

a. Publish to GitHub Marketplace.

b. Upload generated docs to GitHub Pages automatically.

c. Support JSDoc 3rd party templates.

2. Automatically run tests

3. Automatically publish new JS packages (e.g. on npm)

4. Restructure code base of Voxelizer

Completed work

1. Created JSDoc GitHub Action.

a. Supports 3rd party JSDoc templates.

b. Published to GitHub Marketplace, see here.

c. Documented simple solution to upload docs to GitHub Pages.

It can also easily be combined with other deployment actions.

d. Added link to the jsdoc-action in the main JSDoc repository README file.

See approved pull request.

2. Restructured Voxelizer codebase / planned ahead.

 2

Voxelizer engine diagram:

1

Progress report #3 - 19.03.2020

Main purpose / focus

Algorithm improvements

Planned activities

1. Improve algorithm for shell voxelization

2. Improve algorithm for solid voxelization

Completed work

Due to the covid-19 pandemic, I have not been able to complete any of the planned

activities these two weeks. The work has been started on, however there is still a lot to

do left.

 1

Progress report #4 - 02.04.2020

Main purpose / focus

Finish algorithm improvements and start on surface voxel coloring.

Planned activities

1. Improve algorithm for shell voxelization

2. Improve algorithm for solid voxelization

3. Implement voxel coloring system

Completed work

1. Both the shell and solid voxelization algorithms are completed.

1. Runtime of O(n^3), excluding time taken for raycasting, where n is the

resolution (number of voxels produced is n^3).

2. Generates geometrically representative result without distortions.

3. Output is without holes, unless dictated so by the model.

4. Internal structures and cavities are preserved.

Voxelization example:

The cow model is provided courtesy of the AIM@SHAPE project.

 1

Progress report #5 - 04.15.2020

Main purpose / focus

Support multiple importing formats.

Support multiple exporting formats.

Optimization / improvement of three.js’s raycasting.

3D modeling - for testing.

Planned activities

• Implement exporting support

o BINVOX file format

o XML file format (coloring)

o 3D Array (coloring)

o VOX file format (coloring

o SCHMATIC file format

• Add importing support of binvox files for three-voxel-loader.

• Implement importing support.

o STL file format

o PRWM file format

o MMD resources

o glTF file format

o MTL file format

o OBJ file format

• Optimize three.js raycasting functionality.

o Implement a spatial index.

• Create 3D model for testing Voxelizer library.

Deviations

The implementation of the importing support is dropped for the voxelizer library.

Three.js provides several “examples” for importing various file formats. Previously,

these examples were not included with the base three.js package. The old voxelizer

library therefore implemented a wrapper around the OBJ file loader. However, all the

loaders are now included in the three.js base package. This makes it much easier to

access and use the various loaders. The voxelizer library will therefore leave the

process of importing 3D model files into three.js objects up to the user. These loaders

produce an Object3D object, which the voxelizer library then can consume.

 2

An AutoLoader was started on, however due to the various loaders requiring a lot of

different settings, assets, paths etc. this proved hard to implement properly. Although,

this functionality can possibly be used in the voxelizer desktop application.

Completed work

• Several of the exporting formats are implemented.

o BINVOX file format

o XML file format (coloring)

o 3D Array (coloring)

• Importing support of BINVOX files for three-voxel-loader is implemented.

NOTE: The BINVOX functionality has been extracted in a separate repository. See

https://github.com/andstor/binvox

It can both parse and build BINVOX files according to the specification.

• The raycasting functionality of three.js is optimized with the three.js plugin

https://github.com/gkjohnson/three-mesh-bvh. This utilizes Bounding Volume

Hierarchies, effectively reducing the time complexity for raycasting from O(n) to

O(log n). It does take some time to generate the tree structure. However, this is

negligible for a normal use case of voxelizing a large mesh.

• Created a 3D model of an anvil with Blender.

Anvil 3D model render:

1

Progress report #6 – 30.04.2020

Main purpose / focus

Voxelizer Desktop application.

Planned activities

• Create Desktop application for using the Voxelizer engine.

o Voxelize models with the Voxelizer engine.

o File drop for loading 3D models

 STL

 glTF

 OBJ (and MTL)

o Internationalization (language translation)

o React integration for GUI

o GUI controls options

 Shell or solid

 Coloring

 Clipping

o Exporting support for the exporters provided by the Voxelizer engine.

o Logo

Completed work

• Electron application core setup

o React integration

o Internationalization (language translation)

o Uses the Voxelizer engine

o Uses the three-voxel-loader plugin

o Auto updating

o File drop for loading 3D model

 glTF

A lot of time was spent on creating the necessary compilation and development scripts.

Security recommendations provided by the Electron documentation has also been

studied.

2

Due to a bug in the bundling process for the three-voxel-loader plugin, the module was

not able to be imported by the Electron framework. The bundler had to be changed from

Webpack to Rollup. This has also been done for the binvox package. New releases

have been published.

Voxelizer Desktop application images

File drop:

Voxelized model result:

1

Progress report #6 - 14.05.2020

Main purpose / focus

Finish Voxelizer Desktop application.

Planned activities

• File drop for loading 3D models

o STL

o glTF

o OBJ

• GUI controls options

o Shell or solid

o Coloring

o Clipping

• Exporting support for the exporters provided by the Voxelizer engine.

• Logo

• Build and publish the application.

Completed work

All the planned activities are completed, except clipping. The application is packaged

and uploaded to GitHub. Installation files for both Windows, Linux and macOS can be

found at https://github.com/andstor/voxelizer-desktop/releases/latest

Appendix C

Sprint cumulative flow diagram

134

Appendix D

Backlog

135

Backlog - voxelizer

Table of Contents

3D Testing Model ... 2

Resolution ... 2

Restructure code base ... 2

three.js raycasting optimization .. 2

Surface voxel coloring .. 2

MTL file format import support ... 2

Solid voxelization .. 3

Shell voxelization .. 3

SCHEMATIC file format export support ... 3

BINVOX file format export support ... 3

XML file format export support ... 3

VOX file format export support ... 3

Octree export support ... 4

3D array export support ... 4

STL file format import support .. 4

glTF file format import support ... 4

OBJ file format import support ... 4

Automatic testing .. 4

Automatic publishing ... 4

voxelizer

 Page 2 of 4

3D Testing Model DONE

A 3D model should be created to be a able to test the system.

It needs a relatively high level of complexity.

It should be textured in a way to showcase the coloring functionality of the Voxelizer system.

Resolution DONE

As a user, I want to be able to set the wanted resolution of the voxelized output.

Relates

relates to Shell voxelization

relates to Solid voxelization

Restructure code base DONE

As a developer, I need the core codebase to have a good structure and be easy to maintain, so that other functionality that builds

upon the core is easy to develop with high quality.

three.js raycasting optimization DONE

three.js itterates all faces during raycasting. This needs to be drastically reduced. It can most likely be implemented with a spatial

index.

Surface voxel coloring DONE

As a user, I want to be able to produce color voxelizations.

Blocks

is blocked by Shell voxelization

MTL file format import support CLOSED

Blocks

is blocked by OBJ file format import support

voxelizer

 Page 3 of 4

Solid voxelization DONE

As a user, I want to be able to produce a filled volume voxelization of a 3D model.

Relates

relates to Resolution

Blocks

is blocked by Shell voxelization

Shell voxelization DONE

As a user, I want to be able to produce a shell voxelization of a 3D model.

Relates

relates to Resolution

Blocks

blocks Solid voxelization

blocks Surface voxel coloring

SCHEMATIC file format export support TO DO

As a user, I want to be able to export the voxel data to the SCHEMATIC file format, so that i can import it into the game Minecraft.

BINVOX file format export support DONE

As a user, I want to be able to export the voxel data to the BINVOX file format.

XML file format export support DONE

As a user, I want to be able to export the voxel data to an XML file.

VOX file format export support TO DO

As a user, I want to be able to export the voxel data to the VOX file format, so that i can import it into the MagicaVoxel editor.

voxelizer

 Page 4 of 4

Octree export support TO DO

As a user, I want to be able to export the voxel data to an octree data structure.

3D array export support DONE

As a user, I want to be able to export the voxel data as a normal nested JavaScript array.

STL file format import support CLOSED

glTF file format import support CLOSED

OBJ file format import support CLOSED

Blocks

blocks MTL file format import support

Automatic testing DONE

As a repository maintainer, I want all new code changes to be automatically tested.

Automatic publishing DONE

As a repository maintainer, I want the publishing of new modules to be automated.

Backlog - three-voxel-loader

Table of Contents

Octree import support ... 2

3D array import support ... 2

Generate three.js mesh .. 2

Octree backed structure ... 2

Customize styling of voxels .. 2

SCHEMATIC file format import support ... 2

BINVOX file format import support ... 3

XML file format import support ... 3

VOX file format import support ... 3

three-voxel-loader

 Page 2 of 3

Octree import support DONE

As a user, I want to be able to load voxel data stored in an octree data structure, so that I can easily view voxel data.

3D array import support DONE

As a user, I want to be able to load voxel data stored in a 3D array, so that I can easily view voxel data.

Generate three.js mesh DONE

As a user, I want to be able to generate a three.js mesh from voxel data, so that I can visualize the voxel data.

Relates

relates to Customize styling of voxels

Blocks

is blocked by Octree backed structure

Octree backed structure DONE

As a user, I want the voxels to be stored in an octree, so that I can manipulate the voxels easily.

Blocks

blocks Generate three.js mesh

Customize styling of voxels DONE

As a user, I want to be able to customize the styling/appearance of the voxels.

Relates

relates to Generate three.js mesh

SCHEMATIC file format import support TO DO

As a user, I want to be able to load voxel data stored in SCHEMATIC file format, so that I can easily visualize voxel data.

three-voxel-loader

 Page 3 of 3

BINVOX file format import support DONE

As a user, I want to be able to load voxel data stored in BINVOX file format, so that I can easily view voxel data.

XML file format import support DONE

As a user, I want to be able to load voxel data stored in XML file format, so that I can easily view voxel data.

VOX file format import support DONE

As a user, I want to be able to load voxel data stored in VOX file format, so that I can easily view voxel data.

Backlog - voxelizer-desktop

Table of Contents

Dark mode .. 2

Desktop application ... 2

Exporting support .. 2

Importing support .. 2

Shell or solid option .. 2

Coloring option .. 2

Clipping ... 2

Resolution ... 3

Logo .. 3

Automatic updates .. 3

Voxelization ... 3

Language .. 3

voxelizer-desktop

 Page 2 of 3

Dark mode DONE

As a user, I want the application to honor my computer's dark mode setting.

Desktop application DONE

As a user, I want to be able to be able to run the program as a desktop application, so that it I easy to conduct voxelization of

3D models.

Exporting support DONE

As a user, I want to be able to export the vowelized result to a file. The file type should be of one of the types supported by the

voxelizer library.

Importing support DONE

As a user, I want to be able to import 3D models of various file formats.

The 3D model file formats that should be supported are the ones which three.js supports.

Acceptance Criteria:

File formats:

• OBJ

• STL

• glTF

Shell or solid option DONE

As a user, I want to be able to toggle between doing a shell or filled voxelization.

Coloring option DONE

As a user, I want to be able to toggle between whether or not to do color voxelization.

Clipping TO DO

As a user, I want to be able to clip off parts of the model, so that it is easy to inspect the internals off the voxelized result.

voxelizer-desktop

 Page 3 of 3

Resolution DONE

As a user, I want to be able to specify the resolution of the voxelization.

Logo DONE

As a user, I want a logo for the application, so that I can easily find it among my other applications.

Automatic updates DONE

As a user, I want that the application updates automatically when new releases are published. This way, time could be spent

actually using the application, not maintaining it.

Voxelization DONE

As a user, I want to be able to voxelize a 3D model easily with the help of the voxelizer library.

Language DONE

As a user, I want the application to be displayed in my language, so that I can easily understand the content.

Backlog - jsdoc-action

Table of Contents

Upload to GitHub Pages .. 2

Templates .. 2

Publishing .. 2

GitHub Action .. 2

JSDoc .. 2

jsdoc-action

 Page 2 of 2

Upload to GitHub Pages DONE

As a user, I want to be able to publish the generated documentation to GitHub Pages.

Templates DONE

As a user, I want to be able to use a custom template for JSDoc, so that I can customize the style of my documentation.

Publishing DONE

As a user, I want to be able to install the GitHub action from the official GitHub marketplace, so that it is easy to find and install

the GitHub Action.

GitHub Action DONE

As a user, I want to be able to generate JSDoc through a GitHub Action, so that it is easy to generate JavaScript documentation

JSDoc DONE

As a user, I want to be able to generate JavaScript documentation with the use of JSDoc, so that I can generate high quality

documentation.

