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Abstract

Through the last decades, climate change and energy dependence concerns have
gained increased attention. Renewable energy development has expanded, with
wind power being the fastest growing technology. This thesis investigates the op-
timal interaction between an operational wind park and the Nordic power market.
Wind power producers incur costs of imbalances resulting from deviations from
their submitted production plans to the spot market. This report develop, im-
plement and test a stochastic optimisation model giving optimal spot market bids
for intermittent electricity producers in a day-ahead power market. The optimal
bids are based on the evaluation of a large number of scenarios for the uncertain
realisations of the wind forecasts, the balancing market prices and the spot market
prices.

A case study is undertaken in order to evaluate model performance. Data is
collected for specified dates at current and future wind power sites of a Norwegian
company. The developed stochastic optimal bidding model is executed, once for
each wind park individually and once for all wind parks jointly. The case study re-
veals that jointly use of the model gives expected revenues higher than both the sum
of individual use and submission of bids equal expected production. The increase
in expected revenues results from a risk-pooling effect of jointly bid submission
and from the inclusion of price and production uncertainty. The risk-pooling effect
also suggests that wind park owners would benefit from geographically diversifying
their wind parks within the same price area.

Use of the developed model gives rather small increases in expected revenues and
is likely to violate the Balance Agreement. However, investigations of model results
give basis for further discussions. Examinations of the case study results show that
perfect production forecasts would make the inclusion of uncertainty unnecessary,
indicating that efforts should be made in order to reduce the uncertainty of the
production forecasts, rather than on improving the price forecasts.

From a socio-economic point of view, the regulation costs incurred to wind
power producers represents a reduction in value from introducing wind power to
the power system. Some of the potential value of wind power is lost, through what
can be seen as transaction costs of the current power market. It is suggested that
delaying the spot market bid submission deadline, which in turn reduce the wind
forecast lead-time and hence uncertainty, would increase the value of introducing
wind power to the power system. Further research should be undertaken in order to
investigate the optimal spot market bid submission deadline, minimising all costs
related to this deadline.
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Sammendrag - Abstract in Norwegian

I løpet av de siste ti̊arene har klimaendringer og spørsm̊al om energiforsyningssik-
kerhet f̊att økt oppmerksomhet. Fornybar energi er i stadig utvikling, med vindkraft
som den raskest voksende teknologien. Denne oppgaven undersøker det optimale
samspillet mellom en operativ vindpark og det nordiske kraftmarkedet. Vindkraft-
produsenter p̊aløper kostnader for ubalanser for̊arsaket av avvik fra innsendt produk-
sjonsplan til spotmarkedet. Rapporten utvikler, implementerer og tester en stokas-
tisk optimeringsmodell som gir optimale spotmarketsbud for uregelmessige kraft-
produsenter i day-ahead kraftmarkeder. De optimale budene er basert p̊a en evalu-
ering av et stort antall scenarier for usikre realiseringer av vindprognoser, balanse-
markedspriser og spotpriser.

En case-studie gjennomføres for å evaluere modellens ytelse. Data samles inn for
angitte datoer for n̊aværende og fremtidige vindparker tilhørende et norsk selskap.
Den utviklede stokastiske optimale budgivningsmodellen kjøres, en gang for hver
vindpark individuelt og en gang for alle vindparker i fellesskap. Case-studiet viser
at bruk av modellen i fellesskap gir forventede inntekter høyere enn b̊ade summen
av individuell bruk og ved innlevering av bud lik forventet produksjon. Økningen
i forventede inntekter er et resultat av akkumulering av risiko, risk-pooling, og
som følge av inkludering av pris- og produksjons-usikkerhet. Effekten av risk-
pooling antyder ogs̊a at vindparkeiere vil være tjent med geografisk spredning av
sine vindparker innenfor samme prisomr̊ade.

Bruk av den utviklede modellen gir relativt sm̊a økninger i forventede inntekter
og bryter trolig balanseavtalen. Modellresultatene gir likevel grunnlag for videre
diskusjoner. Resultatene fra case-studiet viser at perfekte produksjonsprognoser
ville gjort inkludering av usikkerhet unødvendig, noe som indikerer at usikkerheten
i produksjonsprognosene bør reduseres, snarere enn å forbedre prisprognosene.

Fra et samfunnsøkonomisk synspunkt, representerer vindparkenes regulering-
skostnader en reduksjon i verdien ved å innføre vindkraft i kraftsystemet. Noe av
den potensielle verdien av vindkraft g̊ar tapt, gjennom det som kan sees som tran-
saksjonskostnader ved dagens kraftmarked. En utsettelse av innleveringsfristen for
bud til spotmarkedet, som i sin tur reduserer vindprognosens ledetid og dermed
usikkerhet, ville økt verdien av å introdusere vindkraft til kraftsystemet. Videre
forskning bør utføres for å finne optimal innleveringsfrist av bud til spotmarkedet,
ved å minimere alle kostnader knyttet til denne fristen.
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1 Introduction
During the last decade, climate change and energy dependency concerns have
gained increasing attention. Consequently, governments around the world consider
introducing regulations encouraging the use of renewable energy. In the EU, the
goal has been set that 20 % of all electricity should origin from renewable sources
within the year of 2020. This rather ambitious goal gives massive challenges when
it comes to developing new and existing technology as well as integrating these
technologies with the current power systems.

Wind power has been the renewable technology with the largest growth. The
Norwegian government is obligated to further develop renewable energy as a res-
ult of the Kyoto protocol and directive 2001/77/EC1 of the European Parliament
which comes in force in Norway through the EEC. One of the actions taken by the
government in order to increase the level of renewable energy, was the introduction
of the Swedish-Norwegian Renewable Energy Certificate System. The certificate
system will generate an extra revenue-stream to developers of new, renewable elec-
tricity production.

When new wind energy production sites are developed and operating, the pro-
duced energy must be sold. The majority of physical trades take place through
the Nord Pool Spot power exchange auction. All electricity suppliers must submit
their production plans to this spot market. Deviations from the bids submitted
are usually associated with imbalance costs. For intermittent sources such as wind
power, minimising the imbalance costs impose great challenges since the produc-
tion cannot be known in advance.

This thesis will perform the following tasks:

• Develop, implement and test a stochastic optimisation model giving optimal
spot market bids for combinations of electricity producing technologies in a
day-ahead market setting, taking scenarios of forecasted spot market prices,
balancing market prices and production as input.

• Develop and describe a routine generating scenarios from given data and runs
the model for optimal bidding.

• Investigate the value of the model by using measures such as the Value of
Stochastic Solution (VSS) and the Expected value of perfect information
(EVPI).

A case study will be used in order to investigate the performance of the de-
veloped model. With support from the main topics, discussions regarding the
socio-economic value of wind power will also be included. Finally, suggested fur-
ther research topics regarding possible actions reducing the imbalance costs of
intermittent sources and thereby the associate socio-economic losses are presented.
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2 Literature Study
This chapter gives an introduction to the current literature governing the mar-
ket interaction process for intermittent renewable energy production. Section 2.1
presents an overview of market interaction models describing the bidding process
for renewable energy in day-ahead market settings. The bid sizes of renewable en-
ergy production to day-ahead markets depend on the forecasted production. Sev-
eral methods exist in order to predict wind park production. Section 2.2 gives an
overview of relevant literature concerning wind power prediction tools, Section 2.3
introduces spot price prognosis and Section 2.4 presents regulated power market
price prognosis.

2.1 Optimal Market Interaction of Renewables
With the exponential growth of the renewable energy industry, attention has been
given to the market interaction for producers selling energy to electricity markets.
The attention is reflected by the numerous articles concerning optimal bidding and
market interaction, mostly published during the last ten years. Most approaches are
specialised cases, some include management of Energy Storage (ES) while others
are adapted to market arrangements different to the Nordic system. This section
will give an overview of the relevant literature concerning market interaction of
renewable energy. It will do so by classifying the models used and pointing out
both advantages and disadvantages of the chosen models.

An overview of the current research development concerning the use of optim-
isation algorithms in the field of renewable and sustainable energy is provided by
Alcayde, Baños, Gil, Gómez, Manzano-Agugliaro and Montoya (2011) [4]. This
study reviews over two hundred papers and serve as s a guide to relevant research
in the field.The first conclusion of the study is that the use of optimisation meth-
ods to solve renewable energy problems has increased dramatically in recent years,
specially for wind and solar. The second conclusion is that traditional approaches
for modelling and solving still were in use at the same time as the number of art-
icles using heuristic optimisation methods was growing. Frances and Kwon (2012)
also make a review of optimisation based models for power producers in day-ahead
electricity auction markets [28]. They present several relevant models, although
limited attention is given to intermittent sources.

One of the models reviewed is written by Hildrum, Holen and Korpaas (2003)
at NTNU, concerning operation and sizing of wind power plants with energy stor-
age [24]. This article focuses on the energy storage and transmission constraints,
and presents a deterministic model where spot prices, wind power production and
balance prices are known in advance. The article concludes that introducing en-
ergy storage will increase wind farm revenues, but it is not investigated how much
introduction of storage would create in revenues by itself. The energy storage used
as example was pumped hydro storage, considering one day of operation. It is
pointed out that water value consideration over a longer period would make the
model more complete, although also more complex.

A stochastic model for optimisation of wind power with possibility to use
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pumped storage is developed by Garcia-Gonzalez, Gonzalez, de la Muela and San-
tos (2008) [21]. They presents a two-stage stochastic problem with uncertainty in
spot prices as well as wind power output. The first stage decision is to decide what
volume to bid to the spot market, while the second stage discussion concerns how
much energy to actually deliver to the market, once the spot price and wind energy
are known. The Spanish market, being similar to the Nordic market, is considered.
The model simplifies the balancing market substantially, by assuming the balance
price always being a fixed fraction higher than the spot price. When modelling the
pumped-storage, one day is considered, thereby neglecting water values for coming
days. Nevertheless, it is shown that a joint market interaction increases the total
profits of the producers, compared to the profits when the producers interact with
the market individually. The study concludes that this is due to the fact that de-
viations from the volume bid to the spot market is calculated for both producers
combined. The pumped-storage proved to have flexibility of operation, reducing
the total imbalance costs. The wind farm owner was assumed risk-neutral.

The Master’s Thesis at NTNU of Ravnaas (2009) considers optimal bidding
for a wind power park [52]. In connection with this thesis, Doorman, Farahmand
and Ravnaas (2010) published an article describing the Nordic power system in
great detail and implements this in a mathematical model [38]. The first stage and
recursive decisions are the same as in the paper from Garcia-Gonzalez, Gonzalez,
de la Muela and Santos (2008) [21], but uncertainty is now also included in the
balance market prices, as well as for wind power output and spot prices. The
balance market is described both using the 1-price and 2-price models. The article
concludes that the introduced 2-price system gives a wind farm producer incentives
for making bids equal to expected production and that expected profits are reduced
compared to the case of 1-price. Further work is suggested on the effects on the
balance market price in markets with higher wind penetration. From the master
thesis, data files for solving the mathematical model is obtained. The problem is
implemented in MATLAB and the solution algorithm is based on ”trial and error”
approach with trying all possible bids, and then choosing the best one. The model
is only concerned about one actor interacting with the market.

Coordinated planning of wind and hydropower, when they are located in an
area with limited transmission capacity, is the focus of the Swedish article by
Matevosyan, Olsson and Söder (2009) [32]. They generate scenarios from uncer-
tainties arising from wind power production, spot prices and balance prices. The
article focuses on deciding the price that the wind power producer should pay the
hydropower plant in order to reduce the hydropower output when the capacity
limit of the transmission line is reached. The study concludes that coordination of
the wind and hydropower plant increases revenues for both actors, as they used the
available transmission capacity more efficient. In order to achieve this, the size of
the payments from the wind farm to the hydropower plant is described. The study
points out that the model used is a two stage stochastic model and that outcomes
of all stochastic variables were known when deciding the recursive variable. This
is not entirely correct, and future work is suggested to deal with implementing one
more stage into the model.
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Two articles developing models similar to this thesis became available during
the spring of 2012. The first article was available online 17 March 2012 where
Catalão, Mendes and Pousinho (2012) develop a model closely related to the model
developed through this thesis [37]. The Portuguese market is considered and case
studies is performed. The article concludes that using the stochastic model in-
creases the expected profits and shows that wind power producers should not bid
the expected production, given that reliable price forecasts are available. The
second article is a pre-print submitted by Ávila, Hakvoort and Ramos to Elsevier 9
May 2012 [3]. The article is based on the doctoral thesis of two of the authors. The
stochastic optimisation model introduced is very similar to the model developed in
this master’s thesis. The main difference is the market setting, where the doctoral
thesis is based on the Dutch and German power markets with the possibility to
exploit arbitrage opportunities when market prices are unequal.

A different approach to the bidding problem for intermittent power producers
is possible when realising that choosing the optimal quantities submitted to the
day-ahead market has the same properties as the Newsboy problem explained by
Rudi and Pyke (2000) [40]. Adlakha, Nair and Wierman (2012) study the prob-
lem of conventional energy procurement in the presence of intermittent renewable
resources [34]. The authors model the problem as a variant of the newsvendor
problem, in which the presence of renewable resources induces supply side uncer-
tainty, and in which conventional energy may be procured in three stages to balance
supply and demand. The closed form expressions for the optimal energy procure-
ment strategy is computed and the impact of increasing renewable penetration is
investigated. Changes are proposed to the structure of electricity markets. A key
insight from the results is that there is a separation between the impact of the
stochastic nature of wind power aggregation, and the impact of market structure
and forecast accuracy. It is shown that the optimal bids submitted to the day ahead
market is expected to deviate from the expected production according to the cost
of regulation. Additionally, the paper studies two proposed changes to the market
structure, the addition and the placement of an intermediate market. It is show
that addition of an intermediate market does not necessarily increase the efficiency
of utilisation of renewable sources. Further, it is shown that the optimal placement
of the intermediate market is insensitive to the level of renewable penetration.

Another example of using the Newsboy analogy is found in an essay by Rud
(2009) called ”A Newsboy Model Perspective on the Power Market: The Case of
a Wind Power Producer” [39]. The essay focuses on the interaction between the
day-ahead market and the real-time market, and discusses the optimal bidding and
implications of a wind power producer who does not have the ability to predict with
certainty his production, nor the ability to adjust production in real-time. The
paper discusses how the problem may be interpreted within the classic newsboy
model. In a setting of a day-ahead and a real-time market, the results indicate that
the optimal sales bid of the wind power producer might diverge from the expected
production. This aspect is also found in the context of market optimisation, where
the uncertainty of the wind power production has direct implications for the optimal
level of planned production by other producers.
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2.2 Estimation of Wind Power Production
The use of weather prediction systems, more specifically wind forecasting methods,
plays an important role when investigating the optimal market interaction of wind
power. Forecasting methods can be divided into predictions of real-world realisa-
tions, physical methods, and implementations used when evaluating performance of
optimisation models, mathematical/statistical methods. This section focuses on the
the latter, which is work describing estimation methods of wind power production
used when evaluating the performance of market interaction models.

A review on the forecasting of wind speed and generated power is provided
by Lei, Shiyan, Chuanwen, Hongling and Yan (2009) [29]. Their article gives a
bibliographical survey on the general background of research and developments in
the fields of wind speed and wind power forecasting. ARMA models are discussed
as the main type of conventional statistical methods. The article concludes that
models all have their own characteristics. Some of them are good at short-term
prediction while others perform better in long-term prediction; some are simple
and widely used while other complex ones have more accurate results. Another
article titled A review on the young history of the wind power short-term prediction
by Costa, Crespo, Navarro, Lizcano, Madsen and Feitosaalso introduce relevant
research in the field of wind forecasting used to predict wind turbine production
(2008) [14].

Foley, Leahy, Marvuglia and McKeogh (2012) provide a practical approach to
both physical and statistical methods [18]. They list common forecasting methods
and discuss various measures used in order to determine and compare the per-
formance of forecasting methods. The statistical and machine learning approach
methods are detailed. Then the techniques used for benchmarking and uncertainty
analysis of forecasts are overviewed, and the performance of various approaches
over different forecast time horizons is examined.

Matevosyan and Söder (2006) use the statistical ARMA method when devel-
oping a model for minimisation of imbalance costs of trading wind power on the
Nordic power market [31]. The model is similar to the model developed in this
thesis, without taking uncertainty in prices into account.

An article comparing the performance of ARMA methods with quantile regres-
sion is written by Bertocchi, Innorta, Tomasgard and Vespucci (2010) [51]. This
paper introduces a stochastic multi-stage linear model for the daily hydro-wind
power system scheduling problem with scenarios on hourly wind power production.
In order to study the influence of scenario generation on the optimal solution, two
approaches for scenario generation was studied, the quantile regression and the
autoregressive integrated moving average techniques. The article concludes from
the value of stochastic solution that the quantile regression scenarios describe the
uncertainty better than the ARIMA scenarios.

The general conclusions found in the literature are similar to what is stated
by Foley, Leahy, Marvuglia and McKeogh (2012), namely that one of the ultimate
goals of every wind power prediction model is to estimate the wind power output as
early and as accurately as possible [18]. Wind power will become more attractive for
system and market operators as weather prediction model accuracy improves and as
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easier to use forecasting techniques are developed. Wind power prediction tools are
invaluable because they enable better dispatch, scheduling and unit commitment
of thermal generators, hydro plant and energy storage plant and more competitive
market trading as wind power ramps up and down. Overall accurate wind power
prediction reduces the financial and technical risk of uncertainty of wind power
production for all electricity market participants.

2.3 Estimation of Spot Market Prices
At the submission time of production plans to the spot market, the future prices
of this market are not known. This section introduce literature regarding methods
used in order to generate forecast scenarios predicting next-day electricity prices
in the spot market.

Contreras, Espinola, Nogales and Conejo (2003) investigate forecasts both for
spot markets and long-term contracts, necessary to develop bidding strategies or
negotiation skills in order to maximise benefit [13]. The paper provides a method
to predict next-day electricity prices based on the ARIMA methodology. ARIMA
techniques are used to analyse time series and been mainly used for load fore-
casting, due to their accuracy and mathematical soundness. The paper includes a
detailed explanation of the ARIMA models and results from mainland Spain and
Californian markets. The authors conclude that proper ARIMA models give reas-
onable errors, taking into account the complex nature of price time series and the
results previously reported in the technical literature, in particular from Artificial
Neural Networks.

Conejoa, Contrerasa, Esṕınolaa and Plazasb (2005) analyse different forecasting
techniques to predict the market clearing prices of a day-ahead electric energy
market [12]. The work concludes that time series techniques reveal themselves as
more efficacious than wavelet-transform or neural network techniques. Among time
series techniques, they find dynamic regression and transfer function algorithms
more effective than ARIMA models.

A paper written by Zhou, Tesfatsion, and Liu (2009) develops a similar spot
market forecasting method, based on an ARMA model [53]. The study proposes a
two-stage approach for generating simulated price scenarios based on the available
price data. Time series data from the Midwest ISO (MISO) are used as a test
system to validate the proposed approach. The simulation results indicate that
the proposed approach is able to generate price scenarios for distinct seasons with
empirically realistic characteristics.
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2.4 Estimation of Balance Market Prices
This thesis includes the uncertainty of the balance market prices. These prices
are not known at the time of bidding to the spot market, and must therefore be
forecasted. The literature has few articles concerning this topic, probably due to
the fact that speculation of balance market prices might violate the regulations of
the power market. Section 3.2.3 describe the applicable agreements in force at the
Norwegian power system.

Jaehnert, Farahmand and Doorman (2009) presents work on modelling of prices
using the volume in the Norwegian regulating power market [23]. The article
develops a short term model based on a SARIMA process, and computes a forecast
of future regulating states. With a statistical description of the regulating volumes,
scenarios are generated that are the input to the long-term model resulting in
regulation price scenarios.

Skytte (1999) performs an econometric analysis on the regulating power market
in the Nordic power exchange [41]. The paper concludes that in order to buy
regulating power one must pay a premium of readiness in addition to the spot price
that is independent of the amount of regulation. For down-regulation the level of
the premium of readiness is seen to be strongly influenced by the level of the spot
price. On the other hand, the premium for up-regulation is less correlated to the
spot price. Furthermore, it is seen that the amount of regulation more strongly
affects the price of regulating power for up-regulation than for down-regulation.
The disclosed cost of using the regulating power market is found to be a quadratic
function of the amount of regulation. With the estimated relation a buyer or seller
of electricity is able to optimise both his total bids on the spot and regulating
power markets within his expectations of fluctuations of demand and supply.
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3 Background
This chapter describes how wind turbines can be used in order to commercially
generate electricity and discusses the functions of the electricity market where the
produced energy is sold. Section 3.1 introduces the technology and economics of
wind turbines while Section 3.2 describes the Nordic market for electricity.

3.1 Wind Power
Section 3.1.1 briefly elaborates on the main components of the wind turbine before
it is explained in Section 3.1.2 how the wind turbine converts kinetic energy of
moving air into electric energy that can be transmitted through the power grid.
The measures of energy and efficiency are discussed in Section 3.1.3 and a short
introduction to the economics of wind turbines are found in Section 3.1.4.

3.1.1 The Wind Turbine

Today, the wind turbines are considered one of the most mature renewable energy
technologies. The horizontal axis turbine is the dominant type, although vertical
axis turbines are gaining increasing interest because of its lower centre of gravity, an
advantage in offshore installations [47]. The horizontal axis wind turbine consists
of the main parts shown in Figure 1; rotor blades, nacelle, tower and foundation.
Other core components are the generator and transformer. The majority of turbines
also include a gear, while most directly driven turbines use permanent magnets.
The gearbox is subject to frequent maintenance and failure, while directly driven
turbines require heavy generators and expensive permanent magnets [36].

Rotor blades

Nacelle

Tower

Foundation

Figure 1: Main wind turbine components
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The rotor blades use aerodynamic lift in order to convert kinetic energy into
mechanical energy. This mechanical energy is then transferred through a shaft and
often a gearbox to the generator, where the mechanical energy is transformed to
electrical energy. The generator and gearbox, if present, are usually found inside the
nacelle, which in turn is located on top of the tower. A higher tower means exposure
to greater wind speeds, but also stronger dimensional forces. The tower can be
fixed to the ground, or to a foundation sitting on the seabed. Floating turbines are
currently under development and testing [10]. The electric energy output from the
generator cannot be directly fed into the power grid. A transformer is therefore
required in order to deliver the right power quality, meaning that frequency, voltage
and other characteristics must satisfy the grid codes [50].

3.1.2 The Electrical System

The design of the electrical system for wind turbines differs from most conventional
generators by the fact that the wind speed varies widely. Firstly, it must be de-
cided whether a fixed-speed or variable-speed system is preferable. In a fixed-speed
wind turbine the rotor speed is determined by the frequency of the power grid in
combination with the gear ratio and the design of the generator. This means the
rotor speed must be constant, regardless of wind speed [30]. Fixed-speed wind
turbines are designed to reach maximum efficiency at a particular wind speed. The
advantages of fixed-speed turbines are the simple, robust, reliable and well-proven
technology with low cost electrical systems. The main disadvantages include un-
controllable reactive power, mechanical stresses and limited power quality control.
Fixed-speed turbines are usually directly connected to the grid through a soft-
starter and capacitor bank to reduce reactive power consumption. Being directly
grid connected means that all wind speed fluctuations are transmitted to power
fluctuations to the grid. In weak grids, or in systems with high penetration of wind
power, such power fluctuations might become a serious issue [43]. The fixed-speed
turbine was the dominant technology through the 1990s.

Due to increasing issues with the disadvantages of fixed-speed turbines, the
variable-speed turbine is currently the dominant technology. Such turbines are
connected to the power grid through a power converter. The fluctuations in wind
speeds are absorbed in the rotor speed of the wind turbine. Variable-speed turbines
are designed to maximise efficiency over a wide range of wind speeds. The power
converter gives better control of power quality and mechanical stresses can be re-
duced. The challenges with variable-speed turbines are more complicated electrical
systems leading to higher costs and also higher electrical losses.

Both fixed- and variable-speed turbines can be designed using different gener-
ator types, although most wind turbines use an asynchronous or induction gen-
erator having the advantages of mechanical simplicity and low price due to high
production volumes. The main concern with such generators is the need for re-
active magnetising current, which can be supplied from the grid, capacitor banks
or modern power electronic converters. Another generator type is the doubly-fed
induction generator (DFIG), which has the ability to control the flow of reactive
power as well as providing voltage control. The DFIG gives a limited variable-
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speed wind turbine, where the rotor speed is limited by the size of its variable
rotor resistance.

Variable-speed turbines can also use synchronous generators, the dominant type
in conventional electricity facilities. Synchronous generators do not need reactive
magnetising current, but they are more expensive and mechanically more com-
plicated than the other generator types described. Using a synchronous generator
eliminates the need for a gearbox, but requires a full-scale frequency converter and
leads to a large and heavy generator.

In order to reduce mechanical stress on components in the wind turbine as
well as minimising power fluctuations, the aerodynamic forces on the turbine is
controlled in different ways. Separation can be made between active and passive
control mechanisms. Most recent turbines have active pitch control, where the angle
of the rotor blades can be adjusted continuously according to the wind speed. At
high wind speeds, the blades can be stalled in order to stop production and reduce
forces on the wind turbine. Passive control means that the rotor blades are bolted
to the hub at a fixed angle, designed to stall the blades at a certain predefined
wind speed. Where passive control is cheap and simple, the active control system
achieves greatest efficiency and low power fluctuations.

3.1.3 Energy and Efficiency

Only a fraction of the theoretical power in the wind can be utilised by Wind
turbines. The theoretical power of the wind depends on the wind speed, v, the
cross-section area considered, A, and the density of the air, ρ. The actual electrical
output from a wind turbine also depends on rotor blade efficiency, mechanical
losses and electrical losses. These losses are included in the power coefficient Cp.
Equation (1) shows the formula for actual electrical output from a wind turbine.

Pel = Cp ·
1
2ρAv

3 (1)

The power coefficient, Cp, is upwards limited by Betz’s theorem [5] stating that
the rotor blades at maximum can capture 59.26 % of the kinetic energy available
in the wind. Wind turbines with Cp factors up to 50 % are commercially available.

Wind turbines operate from their cut-in wind speed to their cut-out wind speed,
following a so-called power curve. Figure 2 shows individual power curves of two
single turbines and the aggregated curve of a large wind park. Of the single tur-
bines, one turbine is a low wind turbine while the other is designed for locations
with strong winds. The Vestas V112-3.0 is chosen as the low wind turbine, while
the Enercon E70-2.3 is chosen as high wind turbine. The 160 MW wind park
consist of 80 individual turbines, including the wake effect, which is the effect of a
slower airflow experienced by some of the turbines in the wind park due to disturb-
ance from upstream turbines. When the wind speed exceeds the cut-out speed,
production shuts down.
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Figure 2: Power curves showing high wind, low wind and wind park production at
different wind speeds.

In order to reduce frequent start-ups and shut-downs, the turbine is not restar-
ted until the wind speed drops 3 to 4 m/s below cut-out speed. This action is called
the hysteresis loop, and can lead to significant loss of power in very short time. A
passing storm can cause huge challenges for a power system with high wind power
penetration when a large number of turbines enter hysteresis loops at almost the
same time. Some turbines are equipped with technology intending to smoothen
the cut-out and restart at high wind speeds. The chosen Enercon turbine has this
feature, as can be seen on the right tail of the high wind turbine power curve in
Figure 2.

Wind speed (m/s)

W
in

d 
sp

ee
d 

fre
qu

en
cy

 (
hi

st
og

ra
m

) 
an

d 
W

in
d 

en
er

gy
 (

ci
rc

le
s)

0 10 20 30

0
50

0
10

00
15

00
20

00
25

00
30

00

[hours], (kW/m2)

Figure 3: Wind speed and energy content distribution, from [27].
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When designing and choosing among available turbines, the rated wind speed
plays an important role. This is the wind speed at which the turbine output reaches
rated capacity. The rated wind speed should be chosen close to the wind speed
containing the most energy at the site chosen for installation. This does rarely
match the most frequent wind speed, since the available power in the wind increases
with the cube of the wind speed. The wind speed distribution graphed together
with the energy content at different wind speeds for an example site at the west
coast of Norway is shown in Figure 3. The histogram shows the number of hours
at given wind speeds, while the circles show the energy content of a cross-section
of the airflow in kW/m2, also at given wind speeds.

3.1.4 Economics

In order to encourage companies to increase renewable energy production, several
countries have support schemes that in different ways attract investments into wind
energy development. Wind power is capital intensive compared to conventional
power generation. Around 75 % of the total costs of wind energy are related to
upfront capital costs [7]. The turbine and foundation make up for 80 % of this cost.
Grid connection accounts for 10 % while land rent, electric installation, consultancy,
financial costs, road construction and control systems fill the last 10 %. Cost of
grid connection, foundation and electric installation are the most site dependent
costs.

Operation and maintenance costs lie in the range of 1.5 % to 2 % of the initial in-
vestment. These costs include regular maintenance, repairs, insurance, spare parts
and administration. Wind turbines are considered to have en expected lifetime of
around 20 years. Lifetime expectancy depends highly on the site chosen, where
turbulent locations reduce expected lifetime. Offshore locations have less turbu-
lent airflows, but have challenges with salty conditions. Although wind energy is
considered a green source of power, the rotor blades put forward great disposal
challenges at the end of their lifetime.

Wind power projects have high risks due to the high initial investment costs.
The revenue stream comes over the lifetime of the wind park and in order to give a
positive net present value (NPV) of a project in total, the revenues must cover the
initial investment, operation and maintenance costs in addition to giving return on
the investment. The revenues are in turn highly dependent on the market prices,
including the spot market, balance market and electricity certificate market prices.
The future market prices are associated with a high degree of uncertainty, giving
high risk to wind power projects. Even small changes in the predicted prices largely
influence the NPV of a wind power project.
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3.2 The Electricity Market
Electricity markets can be seen as a sequence of market arrangements that organise
the interactions between the market players. The market arrangements have dif-
ferent timeframes from the long-term to short-term, until real time. Section 3.2.1
introduce the main market arrangements in the Nordic system before the spot and
regulated power markets are discussed in more detail in Section 3.2.2 and Sec-
tion 3.2.3, respectively. Lastly, Section 3.2.4 describes the market for electricity
certificates.

3.2.1 Electricity Market Arrangements

This section describes the main characteristics of electricity markets in restructured
or deregulated power systems. The market for electricity differs from most other
markets due to characteristics of the commodity. Electricity cannot be stored on a
large scale to competitive prices. When electricity is generated, it has to be used
the same moment. These physical characteristics give the power market certain
challenges and necessitate schemes that differentiate it from most other markets.
One of these differences is the continuous need for balance between suddenly varying
supply and demand. Another challenge is the pricing of electricity. Since electricity
is consumed the same time it is produced, the pricing must happen either ahead
of real time, ex ante or after real time, ex post.

Source Generation Transmission Distribution Retailing

Figure 4: The Value Chain of Electricity, adapted from [22].

The generalised value chain for electricity is shown in Figure 4. Electricity can
be based on a large range of different energy sources, including renewable and non-
renewable resources. Non-renewable resources are often transported long distances
for use in centralised conversion facilities in order to generate electricity. In con-
trast, most renewable energy conversion takes place in generators at the location
of the resource. Generation takes place at conversion facilities where energy from
the original source is converted into electricity. The generated electricity is then
brought to substations located close to end customers by the main Transmission
network. Distributors are then responsible for carrying the electricity from the
substations to end customers. Electricity Retailers are responsible for charging
the end customers for the amount of electricity used. The Retailer is responsible
for the terms of power delivery, including the price of electricity paid by the end
consumer. When customers change electricity retailer, this will change the price
and terms of delivery, but not the physical flow of electricity.
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In 1991, the Norwegian market for electricity was deregulated. The other Nor-
dic countries followed until the year of 2000 when Norway, Sweden, Finland and
Denmark had a common market for electricity. Trading of electricity in this de-
regulated market consists of both physical deliveries and financial contracts. A
representation of the nordic restructured power market is shown in Figure 5. This
market has a clear separation between the wholesale and retail market ensuring
that both power generation and sales are subject to competition.
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Figure 5: The Nordic electricity market, adapted from [44].

The wholesale market consists of trades between generators, grid owners and
retailers both for short-term purposes and long-term deliveries. Wholesale trading
takes place through brokers, Over-the-Counter (OTC) trades or through power ex-
changes. In the Nordic system, NASDAQ OMX is the financial power exchange
while physical power exchange is traded at Nord Pool Spot through elspot. Sec-
tion 3.2.2 describes the elspot market in more detail.

End customers buy electricity at the retail market. Here, retailers re-price elec-
tricity bought in the wholesale market before offering contracts to end customers.
Retailers usually offer electricity at fixed-price, variable-price or spot contracts.
Fixed price contracts require the customer to pay the same unit price during a
given period, while variable-price contracts allows the retailer to change the price
after a given customer notice time. Spot contracts follow the spot price with either
a mark-up or fixed overhead. Customers can choose between retailers charging
them for electricity, but not between distributers charging network tariff. The dis-
tributers are in a position of natural monopoly since building several distribution
networks would not be socio-economic.
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Figure 5 also shows the recently introduced intra-day market, elbas. Through
this bilateral market, participants can trade expected imbalances close to real-time.
By using elbas, actors can adjust their bids according to expected deviations close
to real-time. So far, elbas has not proved to be a liquid marked over time in
most areas in Norway [11], but this might change in some price areas because of
the expected introduction of new, renewable energy production. Since elbas is a
bilateral market, it requires that there is a buyer or seller willing to buy or sell
volumes equal a participants expected imbalance.

During operational hours, system balance must be assured. In the Balancing
market, shown at the far right of Figure 5, actual demand is compared with the
elspot volumes, elbas trades taken into account. Assuring system balance and
power quality are collective matters, and therefore a free market will fail to as-
sure system balance and other ancillary services without proper regulations [8].
Consequently, the balancing responsible entities are often handled through natural
monopolies, usually by the Transmission System Operator (TSO). Although the
balancing responsibility is handled through a natural monopoly, market functions
are often used also in the Regulated Power Market described in Section 3.2.3 [26].

In order to encourage further investments into the field of renewable energy, a
common Swedish-Norwegian energy certificate market was recently launched. This
market assigns an additional income to producers of renewable energy. The Energy
certificate market is described in Section 3.2.4.

The optimal bidding problem can be solved independently from the financial
market, the intra-day market elbas and the energy certificate market. These mar-
kets are therefore given less attention throughout this thesis. Financial contracts
can secure energy sales and reduce the risk of operation, but will not influence the
bids submitted to the spot market. Through elbas, participants can buy or sell
expected imbalances. The elbas market gives the possibility to reduce the losses of
deviation from bids submitted to elspot, but does not affect the optimal bids that
are to be submitted to the spot market in the first place. The same argument goes
for the electricity certificate market, which gives additional profits to wind parks
without influencing the voice of optimal bid to the spot market.
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3.2.2 The Spot Market

In the Nordic system, trading of more than 70 % of physical deliveries take place
through Nord Pool Spot [44]. Nord Pool Spot has the responsibility for both the
day-ahead market elspot and the intra-day market elbas. In the elspot market,
several rules apply to the participating actors. Firstly, the bids must be submitted
to the market by 12 noon. Secondly, bids must state preferred sold or bought
quantities at distinct prices for each hour of the following day. Different bidding
formats are possible through flexible bids, block bids and linked block bids. Since
these other bidding possibilities are not relevant for wind power producers, they will
not be described further here. Thirdly, the bids must be on the interval from zero
to installed capacity, increasing by 0.1 MW. With increasing prices, the quantity
of the submitted bids must be non-decreasing
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Figure 6: Daily Routines at Nord Pool Spot, adapted from [44].

The Nord Pool Spot elspot is a clearing market arranged as an auction with
ex-ante pricing. Figure 6 shows the daily routines at Nord Pool Spot. Power sup-
plying actors submit bids with their preferred production plans, creating the supply
curve. The demand curve is partly created from bids from price sensitive power
demanding actors and partly from retailers estimating household demand. Typical
participants of this market are power utilities, retail companies, large industrial
companies as well as broker firms. Figure 7 illustrates how the resulting supply
and demand curves are used in order to find the market clearing price, also called
the system price. Nord Pool Spot calculates the system price for each hour through
the following day from bids submitted before 12 noon. The price can vary from
hour to hour, but stays fixed for one hour at a time.
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Figure 7: Example of market clearing process at Nord Pool Spot.

The calculation of the system price does not take into account transmission con-
straints. Such constraints may limit the possible physical delivery from where the
electricity is supplied, to where it is demanded. In order to account for the transmis-
sion constraints, the Nordic system is divided into price areas called elspot areas.
The TSO decides the bounds of these areas according to transmission limits. The
areas may have prices that differ from the system price, depending on whether the
maximum transmission capacities between the areas are reached. In areas with
surplus supply, the price will be lower than the system price and vice versa. Trans-
mission losses are also the reason why market participants are charged for point
of connection tariffs based on marginal losses. Generators must pay a predeter-
mined percentage times the spot price in order to account for marginal transmis-
sion system losses to the TSO. These costs are not considered in this thesis and an
introduction can be found in literature [25].

It usually takes one hour from all bids are submitted until Nord Pool Spot has
finished its calculations and released the prices for the following day. The price then
tells the market participants how much energy they are obligated to purchase or
sell during the various hours of the following day. These volumes are also forwarded
to the TSO for use when settling the deviations for each market participant in the
regulated power market.

3.2.3 The Regulated Power Market

The main task given to the Transmission System Operator (TSO) is to facilitate
the spot market by physically enabling the transport of electricity from sellers to
buyers [46]. In Norway, the TSO is also ensuring system balance and power quality.
This includes responsibility to account for sudden changes in supply or demand in
order to keep the frequency of the system steady at 50 Hz. Changes in supply
or demand occurs when market actors deviate from submitted plans to the spot
market, or with the presence of faults on transmission lines or production facilities.
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The TSO must make arrangements so adjustments can be made on short time
scales. The arrangements are divided into primary, secondary and tertiary re-
serves [20]. The primary reserves are automatically activated by frequency devi-
ations. Secondary reserves are in Norway manual and used in order to prepare for
larger deviations than the primary reserves can handle. The tertiary reserves are
manually activated and ensure that there is a buffer for the primary and second-
ary reserves. The tertiary reserves are partly solved by using a market mechanism
called the regulated power market or often just the balance market.

In the regulated power market, balance participating entities bid the prices they
require in order to alter production or consumption. Examples of such bids are
shown in Figure 8. The bids are used by the TSO when imbalances arise in the
power system in order to activate the options with lowest associated costs replacing
the reserves used in order to restore system balance. Among the cheapest options,
the option with the largest deviation from the spot price will set the regulated
power market price for that particular hour.
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Figure 8: Regulated power market bids and price setting.

In order to enter the wholesale market for electricity, Norwegian participants
must sign the Balance Agreement given by Statnett, the Norwegian TSO [45]. This
agreement gives the TSO the right to settle the imbalances of all participants at
the regulated power market prices. The agreement also refers to the laws and
regulations governing the regulated power market [1]. Among other regulations,
the agreement gives market participants the obligation to follow submitted plans
and states that imbalances are settled inside every price area for each participant.

After operating hours, the TSO calculates the mismatch between actual and
submitted volume. The TSO is given the submitted volumes from Nord Pool Spot,
while the actual volumes are measured in the network. If the system in total has
less supply than demand during a particular hour, the system is upwards regulated
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for that hour and the balancing market price will usually be higher than the spot
price. If the supply is greater than the demand, the system is downwards regulated
during that hour. Similar, if demand is equal supply, the system is zero regulated.
If a market participant is deviating from its submitted volume, this deviation is
settled by the TSO in a process called the balance settlement.

The balance settlement is a way for the TSO to distribute the costs of regulation
among balance responsible actors of the power market. According to the Balance
Agreement and the associated regulations, all balance responsible actors pay or are
getting paid for their deviations from submitted bids. For demand participants in
the market, deviations are sold or bought at the regulated power market price. For
supply participants this is also true for participants with less than 3 MW installed
capacity. This is called the 1-price model. When installed capacity of supply
participants exceeds 3 MW, deviations will be settled using the 2-price model.
The 2-price model was introduced in order to make sure that producers never get
better prices in the regulated power market than in the spot market and thereby
encourage the producers to submit bids equal expected production [38].

Table 1: The six possible balance market cases and corresponding profits.

Case System Regulation (gsh − xh) Profit (Loss)
1 Zero − (gsh − xh)Πs

sh

2 Up − (gsh − xh)Πb+
sh

3 Down − (gsh − xh)Πs
sh

4 Zero + (gsh − xh)Πs
sh

5 Up + (gsh − xh)Πs
sh

6 Down + (gsh − xh)Πb−
sh

In 2009 the 2-price model was introduced in Norway. A supplier with greater
than 3 MW installed capacity will find itself within one of the six cases shown in
Table 1:

1. If the system is zero regulated, volume bought in the balance market will be
priced at the spot price, Πs

sh.
2. If the system is upwards regulated, volume bought in the balance market will

be priced at the upwards balance price, Πb+
sh .

3. If the system is downwards regulated, volume bought in the balance market
will be priced at the spot price, Πs

sh.
4. If the system is zero regulated, volume sold in the balance market will be

priced at the spot price, Πs
sh.

5. If the system is upwards regulated, volume sold in the balance market will
be priced at the spot price, Πs

sh.
6. If the system is downwards regulated, volume sold in the balance market will

be priced at the downwards balance price, Πb−
sh

In cases where actual production equals submitted bid, (gsh − xh) = 0, there
will be no regulation revenue or cost.
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3.2.4 The Energy Certificate Market

The growing awareness of climate change and energy dependence concerns have cre-
ated discussions in many countries whether renewable energy development should
be encouraged by the governments. The European Union (EU) introduced the Dir-
ective on Electricity Production from Renewable Energy Sources (RES Directive)
as one of many ways to encourage renewable energy development [16]. The RES
Directive comes in force in Norway through the European Economic Community
(EEC).

Since little new renewable energy production was initiated i Norway, the gov-
ernment decided to take action. Since 1 January 2012 Norway has been part of
a Norwegian-Swedish electricity certificate market, encouraging increased develop-
ment of renewable energy [2]. This bilateral certificate market is a support scheme
for renewable energy, estimated to introduce 26.4 TWh of renewable production
by 2020. The additional amount of energy corresponds to the power consump-
tion of more than half of all Norwegian households. The new production capacity
will be distributed between Norway and Sweden depending on investor views on
profitability and complexity factors of obtaining concessions.

Producers of renewable energy that fulfil the given requirements [2], can sell
electricity certificates in addition to the electricity they produce. The price of
the certificates is given through the certificate market, where demand is created
by requiring every market participant buying electricity to also buy electricity
certificates. This way the government sets the volumes requested of new, renewable
production while the market provides certificate prices [42].

The Energy Certificate Market will not affect how wind parks interact with
the spot market. The certificate market is however likely to initiate a large-scale
development of new wind parks, increasing the demand for methods to maximise
revenues once the wind parks become operational.
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4 Model Formulation
This chapter outlines the formulation of a mathematical stochastic optimisation
model aiming to find optimal hourly bids to the day-ahead spot market for wind
power. Section 4.1 introduces the characteristics of the problem, with a presenta-
tion of desired model output, necessary model input and how the model deals with
uncertainty. Thereafter, model development is presented through Section 4.2.

4.1 Introduction
This section describes the characteristics of the bidding problem faced by a wind
energy producer when interacting with the market for electricity. A setting similar
to the Nordic power market is assumed, with the main characteristics previously
described in Section 3.2.

The main component of the market interaction for owners of wind power in a
day-ahead market is the bidding process. Section 3.2.2 described how this process
takes place in the Nordic spot market. Conventional electricity producers use
the possibility to bid different quantities at distinct prices in order to maximise
expected long run profits [19]. In contrast, the bidding process for wind power
will be a matter of quantity. This is due to the fact that wind power has close
to zero marginal cost and usually no option of energy storage, both implying that
production is beneficial whenever prices are above zero.

The actual production from wind parks will often differ from the bids initially
made to the spot market. This deviation may in turn reduce the total profits due to
regulation costs. Reducing the expected difference between the quantity bid to the
spot market and the actual delivered quantity can therefore increase profits. The
regulated power market and the possible losses when deviating from the submitted
plan was discussed in Section 3.2.3.

Mathematical problems must be related to the underlying real world problems.
In this thesis the methodology used is first to identify the desired model output
in Section 4.1.1, before realising the necessary model input through Section 4.1.2.
The use of scenarios in order to represent uncertainty is explained in Section 4.1.3.

4.1.1 Desired Model Output

When formulating an optimisation problem mathematically, it is necessary to first
identify the real-life problem at hand [6]. Afterwards, a suitable mathematical
model can be formulated, implemented and executed. The output of the optim-
isation model aims to help decision-makers take informed choices. In order to give
this decision support, it is necessary to identify the decisions that are to be made as
well as what additional information that might be useful to the decision-maker. In
the case of optimal bidding in a day-ahead spot market for electricity, the main de-
cision is choosing the size of hourly bids submitted to the spot market. Information
supporting this decision include expected hourly wind farm production, expected
daily revenues from the spot market as well as expected daily costs or revenues
from the regulated power market.
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4.1.2 Necessary Model Input

In order to produce useful results, a model must receive input data describing char-
acteristics of the problem. For wind power, the production and hence the wind
speed forecast for the twenty-four hours at the day of operation is of importance.
Other required inputs include hourly spot prices as well as upwards and down-
wards regulated power market prices. The future always represents uncertainty,
meaning that deterministic values of required input data cannot be known [6]. In
order to describe the problem properly, this uncertainty is taken into account when
describing the optimal bidding process.

4.1.3 Representation of Uncertainty

One way of dealing with uncertainty is by using the expected values in a determ-
inistic model. This gives a simple and fast model, but is not likely to provide the
best decision support [6]. Another way to deal with the uncertainty associated
with future events is by introducing a stochastic programming model, where it is
assumed that information regarding the distribution of the unknown parameters
are known or can be estimated. Using such distributions, scenarios of parameter
realisations can be made.

First stage 
decision: 

 Bid to the 
spot market, 

… 

… 

… 

… 

… 

… 

… 

… 

Second stage decisions: 
 Production, gsh gshl 

… 
h=0 h=1 h=2 h=24 

xh

Figure 9: Scenario tree showing how uncertainty is handled in the model.

Each scenario will have a given probability, Ps, and every node in the second
stage will have a given spot price, Πs

sh, upwards regulated power market price,
Πb+

sh , downwards regulated power market price, Πb−
sh , and predicted output for each

wind park, Fshl. The problem has two stages and twenty-five time periods, as seen
in Figure 9.
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A sufficient number of scenarios are used as input to the two-stage stochastic
model in order to represent uncertainty. The bid to the day ahead spot market, xh,
is the first stage decision, while the actual individual and total production in each
scenario, gsh and gshl, are the recourse decisions. The first stage decision must be
made initially, while the second stage decisions are to be made once nature has
revealed the actual parameter realisations. The model has one time period for the
first stage decision, settling what bids to submit to the spot market for each hour
of the following day, and twenty-four time periods for the second stage decisions,
resolving the actual production in each scenario.

4.2 The Optimal Bidding Model
This section describes the formulation of a model for the optimal bidding process for
wind energy production. The uncertainty regarded in the bidding model for wind
parks include the forecasting of production, spot prices and regulated power market
prices. Section 4.2.1 formulates the revenue maximisation problem faced by either
a single wind farm or several wind farms within the same price area, depending on
model input. The complete model formulation is repeated in Section 4.2.2.

4.2.1 Formulating the Optimal Bidding Model

The revenue generated by a wind park can be split in three, one part from act-
ing in the spot market and two parts from acting in the regulated power market.
When actual production, gsh, exceeds the bid submitted to the spot market, xh,
or contrary when actual production, xh, is less than submitted bid, gsh, market
participant deviations are settled through the regulated power market as described
in Section 3.2.3. Surplus production will be sold at the downwards regulated power
market price, Πb−

sh , while insufficient production must be accounted for with pur-
chase of regulated power at the upwards regulated power market price, Πb+

sh .
When several wind farms are included in the bidding process, only one bid is

submitted for each hour of the following day to the day-ahead spot market [1]. As
a consequence, imbalances are jointly settled meaning that the total imbalance is
considered rather than the sum of the individual imbalances from each wind farm.

max Revenue =
∑
s∈S

∑
h∈H

Ps · [Spotsh + RP Salesh + RP Purchasesh] (2)

The objective function of the linear stochastic optimisation problem shown in
Equation (2) takes the sum over scenarios, s, and periods, h, of the scenario prob-
ability, Ps, multiplied by the sum of revenues from the spot market, Spotsh, as well
as regulated power market purchase and sale, RP Salesh and RP Purchasesh.

Spotsh = xhΠs
sh (3)

Equation (3) describes the revenue in each scenario, s, and period, h, from
acting in the day ahead spot market, the scenario and period spot price Πs

sh, times



24 4 MODEL FORMULATION

the submitted bid for that hour xh.

RP Salesh =
{

(gsh − xh)Πb−
sh | (gsh − xh) > 0, RP Downwards (4a)

(gsh − xh)Πs
sh | (gsh − xh) > 0, RP Upwards (4b)

Equation (4) shows that the revenue in a period where actual production is
greater than submitted bid, depends on whether the market is upwards or down-
wards regulated. This follows the 2-price model described in Section 3.2.3. The
regulated power market prices are given as both upwards and downwards prices
for each hour. When the system is upwards regulated, the upwards price is greater
than the spot price while the downwards price is equal to the spot price and vice
versa. Because of this feature of the input data, the formulation can be simplified
as shown in Equation (5).

RP Salesh = (gsh − xh)Πb−
sh | (gsh − xh) > 0 (5)

When the actual production is less than the submitted bid, the negative revenue
from purchasing the corresponding amount of energy in the regulated power market
can be described as shown by Equation (6).

RP Purchasesh = (gsh − xh)Πb+
sh | (gsh − xh) < 0 (6)

When the system is zero regulated, the revenues from acting in the regulated
power market will be the deviation between actual production and submitted bid,
(gsh − xh), times the spot price, Πs

sh. Since the spot price and the regulated power
market prices are equal when the system is zero regulated, the following holds;
(gsh − xh)Πs

sh = (gsh − xh)Πb+
sh = (gsh − xh)Πb−

sh . Periods with zero regulation
can therefore be captured in Equation (5) or (6) for either upwards or downwards
regulated market, and the term for the zero regulated balance market is hence not
explicitly stated.

The simplified Equations (5) and (6) are dependent on whether (gsh−xh) takes
a positive or negative value. If this were to be implemented using a linear solver,
it would have been necessary to introduce several new constraints [48]. Instead,
the characteristics of the problem can be used by introducing two non-negative
variables; d+

sh and d−sh. These variables represent the positive or negative value of
(gsh − xh). For xh fixed to zero, the relationship can be seen in Figure 10.

Only one of the variables d+
sh and d−sh will differ from zero because of the ob-

jective function coefficients that are multiplied with them. These coefficients are
the downwards and upwards regulated power market prices, Πb−

sh and Πb+
sh respect-

ively. Attempts to give both d+
sh and d−sh a positive value will always result in a

more negative contribution to the objective function, as it either requires an actual
production, gsh, lower than possible production, Fshl, or a negative contribution
in form of additional RP Purchase. The new variables d+

sh and d−sh will be defined
by the constraint shown in Equation (7).

(gsh − xh)− d+
sh + d−sh = 0 ∀s ∈ S, h ∈ H (7)
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gsh

(gsh − xsh)

d

d−
sh

+
sh

Figure 10: Representation of (gsh − xh) shown with submitted bid, xh, fixed to
zero.

With the introduction of d+
sh and d−sh defined by Equation (7), the sales and

purchases in the regulated power market seen in Equations (5) and (6), can now
be expressed by Equations (8) and (9).

RP Salesh = d+
shΠb−

sh (8)

RP Purchasesh = d−shΠb+
sh (9)

In addition to Equation (7), the model constraints are shown in Equations (10)
to (15). Constraint (10) defines the sum of the production from all the individual
wind parks considered. Constraint (11) limits the production from each wind park
by the maximum possible output of the wind park in every scenario and period.
Constraint (12) makes sure that the bids submitted to the spot market fulfil the
requirement of being less than total installed capacity as described in Section 3.2.2,
while Constraints (13) to (15) make sure that all variables are non-negative.

gsh =
∑
l∈Lu

gshl ∀s ∈ S, h ∈ H (10)

gshl ≤ Fshl ∀s ∈ S, h ∈ H, l ∈ Lu (11)

xh ≤
∑
l∈Lu

Gl ∀h ∈ H (12)

xh ≥ 0 ∀h ∈ H (13)
gsh, d

+
sh, d

−
sh ≥ 0 ∀s ∈ S, h ∈ H (14)

gshl ≥ 0 ∀s ∈ S, h ∈ H, l ∈ Lu (15)

The complete mathematical model formulation can be seen in Section 4.2.2.
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4.2.2 Complete Mathematical Model Formulation

The complete resulting mathematical stochastic optimisation model for finding the
optimal bidding procedure in a day-ahead spot market for electricity, taking into
account the uncertainty in production, spot and regulated power market prices is
shown in Equations (16) to (26).

Maximise

Revenue =
∑
s∈S

∑
h∈H

Ps · [Spotsh + RP Salesh + RP Purchasesh] (16)

Spotsh = xhΠs
sh (17)

RP Salesh = Πb−
sh d

+
sh (18)

RP Purchasesh = −Πb+
sh d
−
sh (19)

Subject to

(gsh − xh)− d+
sh + d−sh = 0 ∀s ∈ S, h ∈ H (20)

gsh =
∑
l∈Lu

gshl ∀s ∈ S, h ∈ H (21)

gshl ≤ Fshl ∀s ∈ S, h ∈ H, l ∈ Lu (22)

xh ≤
∑
l∈Lu

Gl ∀h ∈ H (23)

xh ≥ 0 ∀h ∈ H (24)
gsh, d

+
sh, d

−
sh ≥ 0 ∀s ∈ S, h ∈ H (25)

gshl ≥ 0 ∀s ∈ S, h ∈ H, l ∈ Lu (26)
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5 Model Implementation
This chapter implements the model formulated through Section 4 using suitable
software and methods. Section 5.1 explains the implementation of the uncertain
input data, before Section 5.2 briefly shows the software used when implementing
the mathematical optimisation problem. Lastly, Section 5.3 explains the usage of
the developed user interface and the file structure containing the complete model
implementation.

5.1 Input Data
The optimal bidding model gives results highly dependent on input data. The bid-
ding procedure suggested by the developed model can never be of higher accuracy
than the input data itself.

The model can be used for two fundamentally different purposes. When used
during operation of an installed wind park, the purpose is to maximise revenues
and the main importance becomes having input data accurately describing the sur-
roundings for the actual moments in time. The other purpose is testing the model
performance on a general basis. When the focus is general model performance, the
main importance becomes representing input data according to correct parameter
realisation distributions. In other words, during operation it is desirable to predict
the outcome of the parameters by minimising the forecast errors compared to actual
realisation. When testing model performance, the forecasts for production, spot
and balance price does not necessarily predict the corresponding realised values.
Instead, the forecast should follow the distribution of likely realisations.

One method used in order to generate statistically correct forecast scenarios
following known, normal distributed error terms is the ARMA forecasting method
described in Section 5.1.1. The implementation of the production, spot price and
balance price forecasts are described in Sections 5.1.2, 5.1.3 and 5.1.4, respectively.

5.1.1 ARMA Forecasting Method

The ARMA model will be described briefly here, while a thorough description of
the model is found in [13]. The ARMA model consists of two parts, one being the
AutoRegressive and the other being the Moving-Average. The model is usually
notated ARMA(p, q) where p and q are the number of autoregressive and moving-
average terms, respectively. ARMA models are widely used in order to represent
an univariate time series and the general formulation is shown in Equations (27)
to (29).

Xh = C +
p∑

i=1
αiXh−i +

q∑
i=1

βiεh−i + εh (27)

|αi| ≥ 0 ∀i = 1, 2, .., p (28)
εh ∼ N(0, σε) ∀h ∈ H (29)
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Xh is the forecasted value of parameter X in time period h. εh is the forecast
error, assumed to be randomly drawn from a normal distribution with expected
value of zero and standard deviation of the forecast error, σε. The constant para-
meters, αi, are autoregressive parameters deciding the impact given by previous
values of X to the forecasted value of X. βi are moving-average parameters giving
the connection between the forecast errors, εh, of this and previous periods. C is
a constant describing the intercept when h = 0.

The numbers p and q indicate the number of previous periods that are con-
sidered when generating the forecast for a particular period. The p and q should
in general be chosen large enough to describe the statistical properties of the data
and give an acceptable error term, while at the same time be small enough to give
an efficient model [9].

5.1.2 Production Forecast

In order to estimate future production from a wind farm, several steps are necessary.
First, a forecast of wind speeds must be obtained. Then this forecast must be
converted to wind park output. When a wind park has been in operation for
some time, it is possible to gather information on actual production compared to
corresponding wind speeds and directions. The conversion from wind speed to park
effect then takes into account wake effects and wind direction effects. It can then
be assumed that the conversion from wind speed and direction to wind park output
is certain and that uncertainty is included in the wind speed forecast.

For the purpose of investigating model performance, several assumptions can
be made. A simplified method is to use a wind speed forecast in order to calculate
output from a single wind turbine using the power curve of the installed turbines.
Example power curves were discussed in Section 3.1.3. Multiplying the resulting
turbine output with the total number of installed turbines gives an approximation
to the total wind park output.

The literature study in Section 2 revealed that most studies use either ARMA
or ARIMA models in order to generate forecast scenarios of wind speed errors
with desired statistical properties. When using an ARMA model to forecast wind
speeds, the procedure is to model error terms and then add these error terms to
a given forecast. This can be explained by the fact that actual wind speed equals
the sum of forecasted wind speed and the forecast error as seen in Equations (30)
and (31).

Error = True Wind Speed− Forecast (30)
⇒ True Wind Speed = Forecast + Error (31)

Adding the forecasted wind speed to a given number of wind speed error scen-
arios and then using the power curve on the resulting wind speeds can generate
several scenarios for the wind park output.

In the spot market, the bidding takes place 12 hours before the first hour of
operation. This means that it is necessary to forecast the wind speeds and the
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power output 12 to 36 hours ahead of time. Most forecasting models are run only
a few times a day due to their large size and long run times. The Norwegian
Meteorological Institute finishes model runs twice daily at approximately 06:00
and 18:30. At the time before 12:00, the 06:00 forecast as well as currently realised
wind speeds are known.
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Figure 11: Example wind speed scenarios with twelve hours lead-time.

When creating scenarios of wind park production estimates, the error terms can
be added to the deterministic forecast starting at the day of operation. Figure 11
illustrates this situation on a limited number of example scenarios. When adding
error scenarios starting the day of operation, the resulting scenarios will have twelve
hours lead-time on the forecasts errors.
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Figure 12: Example wind speed scenarios with no lead-time.

In order to remove the lead-time, error terms must be added to the forecast
starting at the first period after the last measured wind speed. This will include



30 5 MODEL IMPLEMENTATION

the uncertainty of the forecast between the last known measurement and the first
hour of operation. Example scenarios without lead-time are shown in Figure 12.

The variance of the wind speed scenarios seen in Figure 12 was not changing
much over time. When creating forecasts of the future, the difficulties of predicting
outcomes are generally increasing with time into the future. The example scenarios
in Figure 11 and Figure 12 are generated using constant standard deviation of the
wind speed forecast error. Using a standard deviation varying with the lead-time
of the forecast will generally result in forecast scenarios with increasing variance
over time. A simple example of variable standard deviation is shown in Figure 13.
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Figure 13: Example wind speed scenarios with variable standard deviation.

The implementation of wind park output scenario generation is done by includ-
ing the twelve-hour lead-time. Since the model currently is used only in order to
investigate theoretical model performance rather than real-life performance. This
is not expected to significantly influence the results. The forecast errors are gener-
ated using an ARMA model on the time-series of actual forecast errors calculated
from forecasted wind speeds minus the actual observed wind speed. The ARMA
parameters found, was treated as constants for all hours during the day of oper-
ation. Using constant input parameters to the ARMA model and hence using a
constant standard deviation might affect the model results.

An Excel file is to be filled with the wind speed forecast for the coming day,
as well as updated observations. A macro described in Section 5.3 will use these
values when generating a given number of wind park output scenarios based on
scenarios of wind speeds.

5.1.3 Spot Price Forecast

The hourly spot market prices for the next twenty-four hours are not known at the
time of bidding. It is therefore necessary to forecast these prices. In order to repres-
ent the uncertainty, the spot price forecast should not only estimate the expected
prices, but also give a description of the error distribution. Several price forecast-
ing methods satisfy this requirement and an overview is given in [12], where it is
concluded that time series techniques reveal themselves among the most efficient
solutions, with ARMA models being one of them.

When forecasting next-day spot market prices, it is suggested that an ARMA(1,1)
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model sufficiently describes the statistical properties of the time-series [19]. Then
only one α and β is to be decided. Several algorithms are able to find best possible
values for the α and β. At the time spot price forecasts are made, the spot prices
are known for the current day. In contrast to the estimated production output,
values are known until the day of operation. This means that prices for the current
day are used in order to forecast the day of operation and adding error terms to
this forecast gives scenarios for model input with no lead-time.

5.1.4 Balance Price Forecast

There is uncertainty regarding both the future regulated market prices, as well as
what direction the system will be regulated. The balance price shows low correl-
ation with the system price, but depends strongly on balancing volumes [23]. A
balance price forecast based on the spot price is therefore likely to have a larger
error than a forecast based on the balance volume. A forecast using an ARMA
model based on historical balancing prices can also be used, giving less accuracy
compared to a model based on volumes, but better accuracy than a model based
on spot market prices [38]. The current model implementation is for general test-
ing purposes and scenarios with possible realisations, having the right statistical
properties, are therefore sufficient.

At the time of scenario generation, the prices in the regulated power market are
usually known up until hour six of the current day. Prices up to this time are used
in order to forecast the day of operation. Error terms are added to the forecast
giving scenarios for model input. The upwards and downwards regulated power
market prices are found separately. All regulated power market prices in the final
scenarios are compared with the spot market price of the same scenario, making
sure the upwards regulated power market prices always are greater or equal the
spot prices and the downwards regulated power market prices are less or equal the
spot market prices.

5.2 Optimisation Problem
The mathematical optimisation problem formulated in Section 4.2.2 was imple-
mented using the FICO R© Xpress Optimization Suite.

Figure 14: The Xpress product Suite, from [17].
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It can be seen from Figure 14 that this Suite contains a graphical user interface
(GUI) called Xpress-IVE. Through this interface, optimisation problems can be for-
mulated using the Mosel language. The Xpress Optimization Suite then solves the
problems using the Xpress-Optimizers. The implementation of the optimal bidding
problem will only solve on computers with a licensed full version of this program,
due to the number of constraints and variables. The problem is formulated so all
input data enters the problem by reading given Microsoft Excel files. The problem
is also implemented in a way making it possible to call it from Microsoft Excel
using Visual Basic Macros.

5.3 User Interface

The model is implemented in order to easily enable users to run the model. In
addition to a working version of the FICO R© Xpress Optimization Suite described
in Section 5.2, the file system included in the Appendices must be copied to the
computer where the model is to be run. This file system with included files and
folders are shown in Figure 15.

Code

Input

Price Uncertainty Only
Production Uncertainty Only

OPTBID_EEV.mos
Master_Code.xlsm
MainData.xls

unregister.xls

OPTBID.mos

ARMA-Code register.xls
arma.xll
arma_vba.xla

OPTBID_WS.mos

Windforecast.xls
Regulating prices_2012_Hourly_EUR.xls
Elspot Prices_2012_Hourly_EUR.xls

OPTBID_EEV.mos
Master_Code.xlsm
MainData.xls

OPTBID.mos
OPTBID_WS.mos

OPTBID_EEV.mos
Master_Code.xlsm
MainData.xls

OPTBID.mos
OPTBID_WS.mos

Figure 15: Structure of the relevant model implementation files.

Before running the model the first time, the register.xls in the ARMA-Code
folder must be opened. This file enables the arma.xll program required by several
other macro functions. When the ARMA-module is loaded, it can be used on the
same computer without the need to load it again. The MainData.xls” file in the
Code folder contain both data needed to be entered before the first model run,
as well as values updated by the model during model runs. Before running the
model the first time, the user must enter into MainData.xls the preferred number
of scenarios to be generated, the number of operational periods, the number of
locations considered and finally the installed capacity of the wind parks at each
location.
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After the first-run settings are completed, the user must open MasterCode.xlsm.
When choosing the Input Sheet of this workbook, the user will see the graphical
interface shown in Figure 16. The user can now enter the date of the forecasted
period, choose the correct price area and tick the locations that are to be included
when running the model. When ready, pressing the Find optimal bids runs the
macro functions that generate scenarios and runs the optimal bidding model. If the
model is to be run again for the same date but for different wind parks, pressing the
Same date, new locations will run the model again using the previously generated
scenarios.

Date: 2012-03-16
Must be formatted: "YYYY-MM-DD"

Price Area: 3

Wind farms: TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

Input

Find optimal bids 

NO1 

NO2 

NO3 

NO4 

NO5 

Location1 

Location2 

Location4 

Location3 

Location5 

Location6 

Location7 

Location8 

Location9 

Location10 

Same date,  
new locations 

Figure 16: The user interface found in the MasterCode.xlsm file.

When the model has finished running, choosing the results sheet of Master-
Code.xlsm reveals the optimal bids and expected revenues found by the model. An
example of such results is shown in Figure 17.

Date:
Price Area: NO3
Wind farms: 1 2 3 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
10 13,1 20,3 25,2 49,5 31,8 37,2 50,4 57,2 58,1 77,6 95,1 96,5 114,6 113,5 112,5 136,2 160,8 141,2 119,2 106 111,3 117,8 80

Expected spot market revenue [EUR]

Expected balance market sales revenue [EUR]
Expected balance market purchase revenue [EUR]
Expected balance market revenue [EUR]

Expected total daily revenue: [EUR]

-21 521,41  
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72 078,06   
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Figure 17: Example of the Results sheet of MasterCode.xlsm after model runs.
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The macro functions and subroutines included in MasterCode.xlsm and their
main tasks are shown in Table 2.

Table 2: Descriptions of macro functions and subroutines in MasterCode.xlsm.

Macro Name Main purpose

Sub getnScenarios() Creates global variable of number of scenarios given by user
in MainData.xls.

Function FullPath() Returns the full path of the current Spreadsheet.
Sub Writelocations() Enters the locations chosen in MasterCode.xlsm into

MainData.xls.
Sub WriteScenprob() Writes the scenario probabilities in MainData.xls.

Sub FindSpotARMA() Reads spot prices from the Elspot Prices 2012 Hourly EUR.xls
in the Input folder and runs the ARMA program both in order to
find a forecast and forecast error. Resulting scenarios are saved
to MainData.xls.

Sub FindRKUpARMA() Reads the upwards regulated power market prices
from Regulating prices 2012 Hourly EUR.xls in the Input
folder and runs the ARMA program both in order to find a
forecast and forecast error. Resulting scenarios are saved to
MainData.xls.

Sub FindRKDownARMA() Same as Sub FindRKUpARMA(), but for downwards regulated
power market prices.

Sub FindOutputforecast() Reads the wind speed forecast and historical forecast error
from Windforecast.xls in the input folder and runs the ARMA
program on the foreast error. The scenarios of wind speeds are
then calculated into wind park output using the power curve.
Resulting scenarios are saved to MainData.xls.

Sub OPTBID() Calls the run mosel function that runs the model using Fico
Xpress and the OPTBID.mos file, taking input from the
MainData.xls file.

Sub Main() Calls all subroutines necessary for finding optimal bids;
getnScenarios, Writelocations, WriteScenprob, FindSpotARMA,
FindRKUPARMA, FindRKDownARMA and OPTBID.

Sub Main2() Calls the subroutines necessary to run the model when only
locations have changed, getnScenarios, Writelocations and
OPTBID.
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6 Model Performance with Case Study
This chapter will evaluate the model by performing a case study and calculating
the VSS and EVPI measures. Firstly, Section 6.1 describes the case study. Then
Sections 6.2 and 6.3 give short introductions to the VSS and EVPI measures,
correspondingly. Lastly, Results of the case study is presented and briefly discussed
in Section 6.4.

6.1 Case Description
Background information on the case study is presented, with Section 6.1.1 present-
ing the case study location, Section 6.1.2 the chosen dates and Section 6.1.3 the
data collection process undertaken.

6.1.1 Location

The case study is carried out based on current and future wind park sites of the
company TrønderEnergi in the area of Sør-Trøndelag, Norway. The wind parks
at Valsneset and Bessakerfjellet are already in operation, while the Frøya and En-
gvikfjellet sites are under development. Wind power already accounts for approx-
imately 10 % of the total yearly energy generation of the company and is becoming
an increasingly important part of the production portfolio [49]. All four wind parks
and their locations are shown in Figure 18.

Bessakerfjellet

Valsneset

Engvikfjellet

Frøya

Trondheim

Oslo

Trondheim

Norway

Figure 18: Wind park locations used in the case study.
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At Valsneset five turbines with installed capacity of 2.3 MW each, have been
in operation since 2006. The turbines were delivered by the German company
Enercon [15]. Each turbine tower has a height of 64 meters, with rotor diameter
of 71 meters. In 2008, all 25 turbines at the mountain of Bessakerfjellet were in
operation. The turbines are the same type as the ones at Valsneset. The application
for a concession to develop Frøya wind park was submitted in 2004. During this
case study, it is assumed that all the 86 turbines the company applied for are
of the same type as Valsneset and that they already are in operation. When it
comes to Engvikfjellet, it is also assumed that all 43 turbines already are producing
electricity.

6.1.2 Dates

The model performance depends on the scenarios used for model input. The model
is formulated and implemented ensuring the possibility for model runs each day in
order to find the optimal bidding procedure for the upcoming twenty-four hours.
Different time periods will have unlike price and production scenarios. In order to
identify general trends in the model performance, two dates with various price and
production prognosis are selected.

Table 3: Dates chosen for case study.

17 March 2012
18 April 2012

The dates shown in Table 3 represents the dates of which the twenty-four hour
of optimal bids are to be decided. The model is also tested for 16 March and 17
April, giving similar results. When stating 17 March 2012, this means the model
was run 16 March 2012, finding the optimal bids for the subsequent day.

6.1.3 Data Collection

Spot prices and regulated power market prices are publicly available for download
at the Nord Pool Spot website [44]. Spread sheets containing the relevant prices
are downloaded at 11:00 the day preceding the twenty-four hour periods of the
days of operation shown in Table 3. When it comes to wind speed forecasts,
publicly available data for each site from The Norwegian Meteorological Institute
are used [33]. The files are named and arranged according to Figure 15 described
in Section 5.3.

6.2 Value of Stochastic Solution - VSS
The Value of Stochastic Solution (V SS) measures the value of including uncertainty
in the model. Equation (32) shows the V SS calculated as the difference between
the solution of the stochastic problem (SS) and the expected result of using the
expected value (EV) solution, called EEV [6].
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V SS = SS − EEV (32)

The value of the SS comes from the original problem, while the EEV solution is
the expected result when using the EV solutions as model input. The EV solutions
are found by replacing all uncertain parameters in the original formulation with
their corresponding expected values. This means including only the expected values
as one scenario for production, spot price and balance price forecasts. The results of
total energy bid to the day-ahead market for each period, xh, and energy produced
during each period, gshl, must be stored. Then the declaration of the original
problem is modified to become the EEV problem, by changing the declaration of
the variables xh and gshl to the new parameters Xh and Gshl. The stored results
are now assigned to these parameters, Xh and Gshl, and used as input to the EEV
problem, where the full set of scenarios are included.

Due to the way the optimal bidding problem is formulated, unexpected results
of the EEV might occur since solving the model with the EV can cause extreme
resulting bids. The EV solution includes only the deterministic spot and regulated
power market prices. The model can therefore choose to bid total installed capacity
when the system is known to be downwards regulated and likewise suggest bids of
zero when the system is upwards regulated. The model will be indifferent between
such extreme bids and the expected production whenever there is zero cost of
regulation. Using these extreme values when calculating the EEV gives very large
costs of regulation and hence an unrealistically high V SS. In order to account for
this, the expected production can be used directly when finding the EEV solution.
The production forecast is already given and is also representing the bids a decision-
maker is likely to submit to the market when not considering uncertainty.

6.3 Expected Value of Perfect Information - EVPI
The future cannot be predicted with absolute accuracy. It is however often possible
to reduce the uncertainty of future events and this usually comes at a certain
cost. The Expected Value of Perfect Information (EV PI) is a theoretical measure
of how much a decision maker would be willing to pay in order to eliminate all
uncertainty [6]. The numerical value of the EV PI for a maximisation problem
is found using Equation (33). For minimisation problems, the right hand side is
reversed.

EV PI = WS − SS (33)

The wait-and-see (WS) solution represents the solution if we could wait for
the realisations of all random parameters before making any decisions. SS is the
stochastic solution of the original problem. The WS solution is a way of imitating
perfect forecasts of wind park production, spot and regulating power prices. A
perfect wind park output forecast implies that both numerical weather prediction
and methodology to convert wind speeds into total wind park production is ab-
solutely correct. Even though this never can happen in reality, EV PI is still a
useful measure of the distance between the best solution of our original problem,
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SS, and the theoretical maximum, WS. In order to find the WS solution, the de-
claration of xh in the original problem must be changed to xsh. This modification
enables the model to choose individual bids to the spot market for each scenario
and period. Since the WS problem is not stochastic, original problems containing
non-anticipativity constraints can relax these.

6.4 Results
This section will present the results of model runs using the case data, including
uncertainty in spot market prices, regulated power market prices and expected
production. The stability of the stochastic solution is elaborated on by Section 6.4.1
before Sections 6.4.2 and 6.4.3 present the case study results from 17 March 2012
and 18 April 2012, correspondingly. A discussion on the effects of price versus
production uncertainty is included in Section 6.4.4, while overall discussions are
found in Chapter 7.

6.4.1 Stability of Stochastic Solution

The scenario generation process use random numbers. Randomness is a prerequisite
for stochastic models, but too large fluctuations will give results of little use [35].
All uncertain parameters of the model have zero expected forecast error, meaning
that including an unlimited number of scenarios would produce identical results of
every model run. Implementing unlimited number of scenarios is not possible in
reality, which means repeated model runs are expected to produce different results.
The stability of the solution to the optimal bidding model is investigated by running
the model ten times and comparing the model results. The optimal bids from the
ten model runs are shown in Figure 19.
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Figure 19: Optimal bids from ten model runs with data input for 18 April 2012.
Dotted line: expected production, solid lines: the ten model runs.

The expected revenues from the ten model runs reveals that all results were
within a range of 4.2 % from the average revenue. The bidding procedures shown
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in Figure 19 also indicate that all ten model runs follow the same tendency, with
bids lower than expected production during the first hours and then bids higher
than expected production for the remaining periods. A discussion of this tendency
is included in Section 6.4.3. Increasing the number of scenarios is expected to
reduce the variance of the results. In the following Sections, 6.4.2, 6.4.3 and 6.4.4,
the model is run once with the number of scenarios fixed at one thousand.

6.4.2 Case Study Results - 17 March 2012

The optimal bidding model is run for 17 March 2012, once with all wind farms
included and once for each wind farm individually. The headings of Table 4 states
the time period considered, Period, the optimal bids when considering all wind
parks together, Joint, the sum of the optimal bids when adding the result of model
runs for each park, Sum Individual, the expected production from the forecast, Ex-
pected production, the difference between joint consideration and sum of individual
bids in per cent, Joint less Individual and the difference in per cent between joint
optimal bid and forecasted production, Joint less Expected.

Table 4: Results of optimal bidding model run, 17 March 2012.

Sum Expected Joint less Joint less
Period Joint Individual Production Individual Expected

[MWh/h] [MWh/h] [MWh/h] % %

1 244.1 244.5 242.6 0% 1%
2 250.1 250.8 249.3 0% 0%
3 251.1 252.0 249.9 0% 0%
4 62.4 63.6 61.6 -2% 1%
5 81.6 82.8 80.7 -1% 1%
6 103.6 105.0 102.0 -1% 2%
7 315.8 327.0 310.1 -3% 2%
8 318.4 318.2 316.8 0% 1%
9 335.0 346.2 330.2 -3% 1%
10 255.1 254.0 254.5 0% 0%
11 183.6 185.9 185.9 -1% -1%
12 115.3 116.5 114.4 -1% 1%
13 90.1 88.4 93.4 2% -4%
14 56.1 47.6 60.6 18% -7%
15 34.9 24.8 38.9 41% -10%
16 20.6 11.5 24.4 79% -15%
17 14.7 1.6 20.4 819% -28%
18 1.1 0.0 10.5 inf -90%
19 0.0 0.0 9.1 inf -100%
20 6.6 0.0 18.0 inf -63%
21 21.4 17.4 30.6 23% -30%
22 27.3 18.4 35.0 48% -22%
23 28.1 16.8 37.1 67% -24%
24 46.7 38.2 52.7 22% -11%

It can be seen from Table 4 that the Joint less Individual difference is in the
range from - 3 % and up to infinite because of periods with Sum Individual bids
of no volume. The Joint less Expected reveals deviations ranging from - 100 % to
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2 %. The graphical representation of the same bidding schemes shown in Figure 20
reveals a large dip in production based around period four and five. During these
periods, strong winds are expected to cause several of the wind parks to shut down
production. The largest variations in bid size from the different bidding procedures
are seen at the end of the period, where production is expected to be low. When
expecting wind speeds barely to low for production, small forecast errors can cause
relatively large deviations in actual production. This is true for wind speeds both
close to the upwards and downwards slope of the power curve of the wind park.
Wind turbine and wind park power curves were discussed in Section 3.1.3.
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Figure 20: Graphical illustration of different bidding procedures, 17 March 2012.

The joint optimal bids deviate from the sum of the individual optimal bids
in several periods because of a risk-pooling effect due to diminishing correlation
in production uncertainty. If there is high probability that a greater production
than expected will occur at a majority of the wind parks, then the joint optimal
bid will be greater than the expected volume. Contrary, when the majority of the
scenarios representing the production uncertainty of several parks tend to represent
a lower production than the expected value, the joint model will find an optimal
bid smaller than the expected production. The incentives for co-location and joint
market interaction of renewable energy are thoroughly discussed in [27].

The deviation between joint optimal bids and the expected bids are caused by
both the risk-pooling effect and by the forecasted prices in the spot and regulated
power markets. The individual optimal bids for each wind park take these prices
into consideration, the expected production does not. If an upwards regulated
hour is expected, it is beneficial to submit a bid lower than expected production,
since excess production will be sold at the spot market price anyhow. A higher bid
than expected production would result in the risk of having to buy the unfulfilled
amount at the upwards regulated power market price which is greater than the
spot price. The effect of forecasted prices are more clearly evident for 18 April
2012 and is therefore discussed in more detail in Section 6.4.3.

Table 5 shows resulting revenues from the model run for the Joint and Sum
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Individual cases, as well as the Wait-and-See and EEV revenues to be used when
assessing the value of the model. Spot represents the revenues from bids submitted
to the spot market. RP Sale shows the revenues from selling excess energy in the
regulated power market, meaning that actual production during a particular hour
is greater than submitted bid to the spot market. RP purchase shows the total cost
of purchasing power in the regulated power market when submitted bid is greater
than actual production.

Table 5: Resulting revenues of different bidding schemes, 17 March 2012.

Expected Sum Wait-and-
Revenues Joint Individual See EEV

[EUR] [EUR] [EUR] [EUR]

Spot 75 653.70 74 359.47 83 114.20 77 348.30
RP Sale 5 784.56 8 428.61 25 61.67 5 168.16

RP Purchase -5 962.24 -8 086.30 -8 323.76 -7 089.59
RP Total -177.68 342.31 -5 762.09 -1 921.43

Total 75 476.02 73 43.81 77 352.11 75 426.87

By using Table 5 it can be calculated that total joint revenues is 1.0 % larger
than the sum of the individual park revenues. The V SS is found to be EUR
49.15. The small value of the V SS in this case means submitting bids based on
the expected production would lead to a small expected loss of revenue, compared
to using the optimal bids found by the model. In other words, the expected value
of using the stochastic model developed at this day is less than 0.01 % of the
Joint revenues. The EV PI introduced in Section 6.3 is also found from Table 5 to
be EUR 1 876,09. According to this EV PI, owners of the wind parks should be
willing to pay up to 2.5 % of the Joint revenues in order to eliminate all uncertainty.
Section 6.4.4 will investigate further whether production or price uncertainty takes
up the majority of this value.

6.4.3 Case Study Results - 18 April 2012

Model performance is also investigated using input data for 18 April 2012. Again
the model is run once with all wind farms included and once for each wind farm
individually. Table 6 shows the resulting bidding strategies and how much they
differ from each other.

It can be seen from Table 6 and the graphical representation in Figure 21 that
the Joint less Individual difference is in the range from - 5 % to 12 %, while the
Joint less Expected reveals deviations ranging from - 21 % to 25 %. Section 6.4.2
stated that the joint optimal bids are deviating from the expected bids as a result
of both the risk-pooling effect and as a result of forecasted prices in the spot and
regulated power market. The individual optimal bids for each wind park take these
prices into consideration, the expected production does not. This can explain the
larger deviations in Joint less Expected than Joint less Individual observed.
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Table 6: Results of optimal bidding model run, 18 April 2012.

Sum Expected Joint less Joint less
Period Joint Individual Production Individual Expected

[MWh/h] [MWh/h] [MWh/h] % %

1 23.7 21.60 24.2 10% -2%
2 22.4 20.20 24.4 11% -8%
3 29.5 26.30 27.5 12% 7%
4 34.0 30.80 28.6 10% 19%
5 58.1 56.50 46.0 3% 26%
6 40.7 38.30 30.3 6% 35%
7 44.5 42.40 31.8 5% 40%
8 60.9 55.30 46.0 10% 32%
9 67.0 66.50 50.0 1% 34%
10 69.0 69.00 51.7 0% 33%
11 86.6 87.90 68.9 -1% 26%
12 105.8 103.70 89.1 2% 19%
13 106.5 105.80 88.3 1% 21%
14 126.2 118.00 104.7 7% 21%
15 123.8 118.50 105.3 4% 18%
16 121.1 116.90 105.4 4% 15%
17 144.9 140.10 125.3 3% 16%
18 168.4 167.70 146.6 0% 15%
19 149.5 149.00 130.0 0% 15%
20 128.0 127.60 110.1 0% 16%
21 115.8 115.20 95.4 1% 21%
22 119.8 124.70 98.5 -4% 22%
23 126.9 133.30 103.6 -5% 23%
24 84.8 87.30 67.6 -3% 25%
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Figure 21: Graphical illustration of different bidding procedures, 18 April 2012.

If an upwards regulated hour is expected, it is beneficial to submit a bid that
is lower than expected production, since excess production will be sold at the spot
market price anyhow. A higher bid than expected production would result in
the risk of having to buy the unfulfilled amount at the upwards regulated power
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market price which is greater than the spot price. This effect can be illustrated by
the example scenario shown in Figure 22 where it can be seen that the Regulated
Power market purchase price, RP UP, is higher than the spot price, Spot, during
periods 1 to 6. The Regulated Power market sales price, RP Down, is lower than
the spot price from period 14 to 24.

Considering only the scenario seen in Figure 22, total revenue will be unchanged
as long as bids less or equal expected production are submitted during periods 1 to
6 and bids greater or equal expected production are submitted for the periods after
hour 14. This means that submitting bids of zero production during the first hours
and bids with installed capacity for the later periods would give equal revenues to
submitting expected production. When including enough scenarios, this effect will
not be this extreme. Instead, the model will tend to increase the bids in periods
with high probability of being upwards regulated and tend to reduce the bids in
periods with high probability of being downwards regulated.

0 

5 

10 

15 

20 

25 

30 

35 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

[EUR/MWh]

Period 

RP Up 

RP Down 

Spot 

Figure 22: Example scenario of spot and regulated power market prices.

Table 7 shows resulting revenues from the model run for Joint and Sum In-
dividual cases, as well as the Wait-and-See and EEV revenues to be used for
evaluating the value of the model. Spot represents the revenues from bids submit-
ted to the spot market. RP Sale shows the revenues from selling excess energy in
the regulated power market, meaning that actual production during a particular
hour is greater than submitted bid to the spot market. RP purchase shows the
total cost of purchasing power in the regulated power market when submitted bid
is greater than actual production.

Using Table 7 it can be calculated that total joint revenues are 5.1 % larger
than the sum of the individual park profits. The V SS amounts to EUR 2 342.38
corresponding to 3.3 % of the total joint revenues. In other words, the expected
value of using the stochastic model developed is EUR 2 342.38 for 18 April 2012.
The EV PI introduced in Section 6.3 is found to be EUR 8 674.52 also by using
Table 7. The owners of the wind parks should according to this measure be willing
to pay an amount corresponding to 12.3 % of the Joint revenues in order to elimin-
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Table 7: Resulting revenues of different bidding schemes, 18 April 2012.

Expected Sum Wait-and-
Revenues Joint Individual See EEV

[EUR] [EUR] [EUR] [EUR]

Spot 95 050.79 93 579.04 16 5825.00 70 063.80
RP Sale 4 090.94 6 929.36 173.72 10 052.50

RP Purchase -28 660.85 -33 421.89 -86 843.80 -11 977.90
RP Total -24 569.91 -26 492.54 -86 670.09 -1 925.40

Total 70 480.88 67 086.51 79 155.40 68 138.50

ate all uncertainty. Section 6.4.4 will investigate further whether decision-makers
should focus on reducing production or price uncertainty.

6.4.4 Effects of Uncertainty

Sections 6.4.2 and 6.4.3 presented the general results from the model runs and
discussed some of the findings. Among the results were the V SS and EV PI
measures and questions were raised whether these values were connected to the
uncertainty in production or prices. This Section will enlighten these questions
by first presenting results from model runs including only wind park production
uncertainty and then model runs including only spot and regulated power market
price uncertainty. Thereafter, a general discussion is included.

Table 8: Results when including production uncertainty only, 17 March 2012.

Expected Joint WS EEV
Revenues [EUR] [EUR] [EUR]

Spot 75 866.80 77 348.30 77 348.30
RP Sale 5 663.49 0.00 5 139.99

RP Purchase -6 070.32 0.00 -7 071.31
RP Total -406.83 0.00 -1 931.32

Total 75 459.97 77 348.30 75 416.98

Table 8 shows the expected revenues from spot sales, regulated power purchase
and sale as well as total expected revenue for the Joint, wait-and-see and EEV
cases. It can be seen that the wait-and-see solution contains no regulation costs.
Only production uncertainty was included, meaning that the wait-and-see solution,
making separate bids for each scenario, will bid the expected production of each
scenario.

When production was assumed certain and the prices uncertain, the model gave
results shown in Table 9. Here it can be seen that all expected total revenues are
equal. For the Joint case, this can be understood by the fact that production
is known and submitting corresponding bids to the spot market will result in no
regulation. The wait-and-see solution has the same total expected revenue, but a
different distribution. The optimisation model must in this case have had several
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Table 9: Results when including price uncertainty only, 17 March 2012

Expected Joint WS EEV
Revenues [EUR] [EUR] [EUR]

Spot 77 348.30 83 190.00 77 348.30
RP Sale 0.00 2 367.39 0.00

RP Purchase 0.00 -8 209.12 0.00
RP Total 0.00 -5 841.73 0.00

Total 77 348.30 77 348.30 77 348.30

optimal solutions, since bidding the expected production for all scenarios in the
same period would also have given the same total revenue.

Table 10: Uncertainty measures of the 17 March and 18 April 2012 model runs.

Joint, uncertain Joint, uncertain
Joint production prices

17 March 2012
Total Revenues [EUR] 75 476.02 75 459.97 77 348.30

VSS [EUR] 49.15 42.99 0.00
EVPI [EUR] 1 876.09 1 888.33 0.00

18 April 2012
Total Revenues [EUR] 70 480.88 70 447.53 79 119.30

VSS [EUR] 2 342.38 976.72 0.00
EVPI [EUR] 8 674.52 8 671.77 0.00

The model evaluation measures are presented in Table 10. The same procedure
was done with data for 18 April 2012, and the corresponding evaluation measures
are also shown in Table 10. Results from 18 April coincide with the results from
17 March. Both results show that when reducing the uncertainty of the model,
a decrease in the V SS and EV PI can be observed. It was also revealed that
the V SS and EV PI measures are zero in the case of uncertain prices only. This
does not mean it is only beneficial to take uncertainty in production into account.
When including all uncertainty, the uncertainty in prices and production are both
influencing the resulting optimal bids. This can be exemplified using a scenario
where there is an upwards regulated period at the same time that actual production
is less than expected production. The optimal bid will now be pushed upwards by
the prices, but downwards by the production in this particular scenario. Other
scenarios might have prices and productions affecting the solution in the same
direction. The total of the scenarios give the global optimal solution to the bidding
problem.

The V SS and EV PI measures of zero does however reveal that a perfect pro-
duction forecast would make the use of stochastic model superfluous, contrary to
perfect price forecast. This result indicate that attention should be given to im-
prove production estimation methods, rather than price forecasting techniques.
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7 Discussions
The case study revealed that using the developed optimal bidding model increased
the expected operational revenues from wind parks. The model had short solving
times, only a few seconds for the optimisation problem and a few minutes for the
complete implementation in visual basics including scenario generation. The case
study revealed that jointly submitting bids for wind parks, rather than individually,
increased expected profits. The results were in line with previous studies in the
literature, also those using the newsboy approach. An overview of relevant research
was given by the Literature Study in Section 2.

The increase in expected profits was explained by risk-pooling, meaning that
correlation of errors are reduced with increasing numbers of wind parks considered.
This result indicates that wind park owners will benefit by geographically diversi-
fying their wind parks within the same price area, consistent with current literat-
ure [34]. It also suggested that companies should submit bids to the spot market
jointly for the complete generation portfolio, including hydropower, coal, gas or
other production available.

Risk-pooling could encourage wind power park owners to initiate agreements
in order to jointly bid their production. Such agreements would reduce the total
expected costs of regulation, but would also introduce three new challenges. One
of the new problems would be distributing the costs of regulation between the com-
panies working together. Another challenge would be to persuade the companies to
reveal their production plans to each other, since production plans usually are re-
lated to a high degree of confidentiality. The last question raised would be whether
the jointly bidding arrangement would violate governmental collusion regulations,
realising that the collaborating firms would be in a situation similar to a monopoly
with the possibility to manipulate spot prices and balance market prices.

Section 6.4.4 discussed whether price or production uncertainty was the main
driver for the V SS and EV PI measures. It was explained that the combination of
both uncertainties gave the value of the stochastic optimal bidding model. With
perfect production forecasts, it would be unnecessary to include uncertainty alto-
gether. The same was not true with perfect forecasts of the prices, which only
reduced the value of including uncertainty.

The inclusion of price uncertainty might be seen as market speculation. All
producers must accept the Balance Agreement described in Section 3.2.3 in order
to access the wholesale market for electricity. Through the Balance Agreement,
producers commit to attempt following their submitted production plans. The
Norwegian TSO Statnett would argue that submitting bids not equal to the expec-
ted production would be violating the Balance Agreement. Due to the uncertain
nature of wind park output, it would however be hard to recognise producers not
submitting expected production.

The aspects discussed so far all have in common that due to the uncertainty
of production, the value of introducing new wind power to the power system is
reduced. In order to maximise the value of introducing new wind power, the
uncertainty must be decreased. Less uncertainty can be achieved by improving the
forecasting systems, both when it comes to the wind forecasting and when it comes
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to the conversion from wind speed and direction to park output. Some companies
specialise in very specific forecasts and research is done on improving the general
forecasting methods [18].

Conversion from wind speed and direction to park output is also in focus of many
companies operating wind power production. Instead of general simplifications,
wind speeds and directions can be measured at each wind turbine. Then, actual
wind speed and direction can be compared with the forecasted values as well as
actual production. This would give accurate descriptions of the forecast errors as
well as individual, location specific power curves for every turbine.

Even with the improvements of wind park output prediction systems, consider-
able uncertainty would still be present due to the long lead-time of the wind fore-
casts. Even without the improvement of forecast methods, better forecast would
be found if the forecast lead-time was reduced. Reducing the lead-time could be
achieved by ending the spot market bidding closer to the day of operation. Delay-
ing the spot market bid submission deadline would increase the value of wind power
in the power system, but would also affect other market participants.

Calculation of the system price takes less than one hour, giving a lower limit to
the time between deadline of submitting bids and operational periods. It must be
investigated how much time the TSO would require in order to maintain ancillary
services such as system balancing at a satisfactory level. Other parties might also
have points of view regarding the time of spot price announcement.

The current design of the power system originate from the historical conditions
with production facilities with easy scheduling such as hydropower, combined heat
and power (CHP), coal and gas plants. In order to ensure fulfilment of the entire
value of new intermittent sources such as wind power, the power system design must
be challenged. Reducing the lead-time of wind forecast by delaying the deadline of
submitting the spot market bids is likely to have a significant impact. When first
considering a change of the power system design, it should be investigated whether
system prices should be calculated more than once for each period of operation,
with each time being close to each particular period of operation. This means the
bidding deadline could be individual for each time period of the day of operation,
meaning that the lead-time would be equal for all periods. The optimal period
duration should also be investigated.

From a socio-economic perspective, the spot market deadline should be adjusted
in order to maximise socio-economic surplus. Delaying the deadline would increase
the value of new, intermittent power production such as wind power, but might re-
duce the value of conventional power generation. The traditional sources generally
have long start-up and shutdown times with high associated costs. Ramping up or
down production also requires time and usually comes at given costs. The renew-
able sources would in general benefit from having a deadline as late as possible,
while conventional generators would prefer early deadlines giving the possibility
for production planning. The optimal spot market deadline would be found by
minimising all relevant costs related to the spot market deadline. This exercise
should be performed using the current generation mix in the Nordic market, as
well as using the expected generation mixes for given times in the future.
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8 Conclusions
The majority of renewable energy sources have some degree of intermittency in their
production output. In the Nordic spot market for electricity, participants must
submit their production plans at noon the day prior to operation. Deviations from
submitted production plans usually introduce regulation costs. With focus on wind
power, a stochastic optimisation model aiming to find the optimal spot market bids
was developed, taking into account the uncertainty in spot market prices, regulated
power market prices and expected production. A routine generating scenarios and
running the developed optimisation model was created and described. The value
of the optimal bidding model was investigated by performing a case study and by
calculating the V SS and EV PI measures. Based on the case study results, general
discussions regarding the socio-economic value of introducing wind power to the
power system were included.

Section 8.1 lists the main findings, Section 8.2 summarises the contributions
of this Master’s Thesis while Section 8.3 points out the limitations of the results
before Section 8.4 suggest topics for further research.

8.1 Main Findings
• Use of the developed stochastic optimisation model increased the expected

revenues compared to bidding expected production for the dates chosen for
the case study. The increase in expected profits was explained by both the
risk-pooling effect when jointly submitting bids and by the model inclusion
of price and production uncertainty.

• Wind park owners would benefit from geographically diversifying their wind
parks within the same price area. Submitting bids to the market including
the complete production portfolio could also increase the risk-pooling effect.

• The Nordic electricity market currently has incentives for market participants
to jointly submit their bids to the spot market. Due to confidential production
plans and collusion regulations, such collaborative bidding are not likely to
occur.

• Perfect production forecasts would make the stochastic model unnecessary,
implying efforts should be given in order to reduce the uncertainty of pro-
duction forecasts, rather than of price predictions.

• Although not easily recognisable, including price uncertainty in the planning
process in order to find optimal bids might violate the Balance Agreement.

• Uncertainty of the production from wind parks reduces the value of intro-
ducing wind power to the power system. Increasing the value of introduced
wind power can be obtained by improved wind forecasts, better wind speed
and direction to turbine output conversions or by delaying the deadline for
bid submission to the spot market.
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8.2 Summary of Contributions

This Master’s thesis has developed, implemented and tested a stochastic optimisa-
tion model giving optimal spot market bids for intermittent electricity producing
technologies in a day-ahead market setting, taking into account the uncertainty
in prices and production forecasts. The model formulation presented provided
the advantage of including uncertainty also in the regulated power marked prices.
The formulation and implementation of the model provided short solving times,
enabling several model runs or, with a few modifications, operational use.

The report has presented a realistic application of the developed model to a
Norwegian case, considering real market data and generated power production
scenarios from existing and future wind parks.

Routines generating scenarios and running the model were created, enabling
the possibility to perform case studies other than the ones presented here. The
implementation code is made available for other researchers wanting to perform
similar case studies or wanting to modify the model.

8.3 Limitations

The validity of the developed model, as well as the case study results with cor-
responding discussions are limited by the assumptions and implementation choices
made.

When converting the wind forecast to wind park production scenarios, the gen-
eral power curve was used without taking into account wake losses or other losses
connected to individual turbine locations. The effects of wind direction on actual
production was disregarded. The wind speed to wind park output conversion was
implemented by creating output scenarios with desired statistical properties useful
when assessing expected model performance. In order to be useful for actual oper-
ational planning, the implementation of the conversion from wind forecast to wind
park production must be improved.

Wind power producers were considered risk-neutral. Other risk attitudes might
change the optimal bids in order to alter the variance of the expected revenues.

Most wind speed forecasts can be provided with an uncertainty distribution.
During this thesis, the uncertainty distribution of the wind forecast from the fore-
cast provider was not considered. When it comes to the standard deviation of the
wind forecast errors, they were considered constant, rather than variable.

In terms of forecasting the uncertain parameters and their errors, the effects
of using methods alternative to the ARMA model were not investigated. It was
neither explored whether the error terms of the forecasts were unbiased estimators.

Marginal loss tariffs were not considered. Including this point-of-connection fee
could occasionally make it preferable to stop production before prices drop below
zero.

The numerical results of the case study might not represent the true values
due to these limitations. However, the main discussions and conclusions should be
valid.
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8.4 Further Research
The optimal bidding model could be used in order to perform other case studies.
The implementations should be improved, according to the limitations described
in Section 8.3.

The optimal time of spot market deadline should be investigated further. The
socio-economic value of the power system should be maximised. This can be done
by finding the optimal spot market bid submission deadline or several deadlines,
when minimising all costs related to this deadline. Examples of such costs are the
regulation costs for intermittent sources, ramping and startup costs for conventional
sources, costs of ancillary services, labour hour costs and other costs related to the
deadline of the spot market.

Ultimately, the main socio-economic question regarding the power system is
how and where generators, particularly renewables, should be allowed to interact
with electricity markets. Hopefully, by building on the current research results from
this thesis and other literature, the most efficient manner for renewable energy to
interact with the electricity markets can be identified.
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Appendices
Implementation files including the model code and case study data described in
Section 5.3 are submitted together with the Master’s Thesis to the DAIM (Digital
Arkivering og Innlevering av Masteroppgaver) database used by NTNU for storage
and submission of Master’s theses. The attachments can be found by searching the
database using the tile of this thesis.

The contents include, but are not limited to the files shown in Figure 15:

• Spreadsheets with the input data used in the case study.

• VBA codes presented in Figure 2.

• Fico Xpress model code with implementation of the market interaction mod-
els and code fore evaluating the performance measures.
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