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Abstract 

Understanding price-volatility in the natural gas market is important 
as it affects new investments and the behavior of market participants. 
In this paper the volatility of US natural gas prices is investigated 

using daily Henry Hub futures data for the period 1996 to 2011. The 
purpose is to determine the best conditional volatility model for 
forecasting and modeling, and to investigate the fundamental drivers 

of volatility. Several models are applied and compared on the basis of 
explanatory power, post-estimation tests, as well as in- and out-of-
sample one-day-ahead forecasting capabilities evaluated using the 

Dynamic Quantile Test and Kupiec LR test. Based on these 
evaluation criteria EGARCH is found superior to GARCH, GJR, 
IGARCH, RiskMetrics and APARCH. Additionally, EGARCH is 

found satisfactory when evaluating 5, 10 and 20-day-ahead forecasts 
using the Kupiec LR test on Monte Carlo simulated VaR levels. To 
investigate the drivers of volatility, proxies for each determinant are 

included in the conditional volatility models and in an OLS 
framework. Economic activity, seasonality and daily effects are found 
to be statistical significant, with the daily effects having the largest 

influence, while oil volatility, changes in temperature, production and 
storage levels are insignificant.  

From the results it can be concluded that if the aim of the conditional 

volatility modeling is short-term forecasting, the determinants should 
be excluded as they do not improve forecasting accuracy. Conversely, 
if the aim is to explain the causes of volatility, the in-sample 
evaluation indicate that the inclusion of determinants is a reasonable 

approach, and a good foundation for scenario analyses. Our findings 
are useful for producers, traders, risk managers and other market 
participants as they provide an accurate measure of price risk, and 

can be used to understand the causes of volatility.  

  



 

 

Sammendrag 

En grunnleggende forståelse av pris-volatilitet i naturgassmarkedet er 

viktig fordi det påvirker nye investeringer og adferden til 
markedsaktørene. I denne oppgaven er volatiliteten til amerikanske 
gasspriser undersøkt ved anvendelse av daglige Henry Hub futures 

data for perioden 1996 til 2011. Hensikten er å finne den beste 
betingede volatilitetsmodellen til modellering og forecasting, og å 
analysere volatilitetens grunnleggende drivere. Flere modeller 

anvendes og sammenlignes på grunnlag av forklaringskraft, tester, 
samt deres prestasjoner på prognoser in -og out-of-sample én dag 
frem, evaluert med Kupiec LR og Dynamic Quantile Test. Basert på 

disse evalueringskriteriene konkluderes det med at EGARCH er bedre 
enn GARCH, GJR, IGARCH, RiskMetrics og APARCH. I tillegg er 
EGARCH funnet tilfredsstillende ved evaluering av 5, 10 og 20 dagers 

prognoser med Kupiec LR testen på Monte Carlo simulerte VaR 
nivåer. For å undersøke driverne av volatilitet er determinantene 
kvantifisert og inkludert i de betingede volatilitetsmodellene og i et 

OLS rammeverk. Økonomisk aktivitet, sesongvariasjoner og daglig 
effekter er funnet å være statistisk signifikante, der de daglige 
effektene har størst påvirkning, mens oljevolatilitet, endringer i 

temperatur, produksjon og lagring er statistisk ikke-signifikante.  

Fra resultatene kan det konkluderes at dersom målet med 
modelleringen er kortsiktige prognoser, bør determinanter ekskluderes 
ettersom de ikke bedrer prognosenes nøyaktighet. Derimot, dersom 

målet er å forklare årsakene til volatilitet, tyder in-sample 
evalueringen på at inkludering av determinanter er en fornuftig 
tilnærming, og et godt grunnlag for scenarioanalyser. Våre funn kan 

være nyttige for produsenter, tradere, risikostyrere og andre aktører 
ettersom de gir et nøyaktig mål på risiko, og kan brukes til å forstå 
årsakene til volatilitet. 
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Chapter 1  

Introduction 

“The  US gas rollercoaster” is what one of the leading economist on gas, 
Jonathan Stern at the Oxford Institute of Energy, has nicknamed the 

development of US natural gas prices (Foss 2007). Prior to 2000 the prices 
were regarded as relatively stable, but during the last decade prices have 
varied between $2 and $15 per MMBtu1, with an increasing trend until 2008. 

In 2009 the market experienced a plunge in prices due to the economic 
recession and the addition of shale gas. This has made the market evolve from 
a seller’s market driven by tight supply to a buyer’s market. However, since 

the liberalization of the natural gas market, the short-term volatility has been 
high regardless of the price level. Second to electricity the natural gas market 
is the most volatile energy market in the US (Henning, Sloan et al. 2003).  

High price volatility creates uncertainty which market participants, from risk 
managers, production planners to end-users, are forced to deal with. 
Furthermore, assessment of volatility dynamics is of interest to non-industrial 

market participants who may take a speculative position in the market, such 
as banks, trading companies and institutional investors. The US government is 
concerned with price volatility in terms of security of supply since volatility 

affects the willingness to invest in the natural gas value chain and the 
potential effect it may have on the economy. In 2009, 7.5 % of US GDP was 
spent on energy, of which 11 % on natural gas.2 

A comprehensive understanding of market dynamics, modeling and 
forecasting in the natural gas market holds a significant role on strategies 
towards attaining future positions in the market. The aim of this paper is to 

model volatility in the US natural gas market, and to forecast volatility in the 
short-term, defined as 1, 5, 10 and 20 days ahead. This has several 
applications, such as pricing of derivatives, portfolio selection and Value at 

Risk (VaR). A vast amount of financial literature on the modeling and 

                                     
1 Million British thermal unit 
2 Own calculations based on numbers from http://www.eia.gov/ 
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forecasting of volatility has emerged together with several extensions of 
conditional volatility models3 of which six will be adopted in this study. The 

family of  GARCH models is preferred over other techniques such as moving 
average, linear regression and exponential smoothing (Sadorsky 2006a). 
Although implied volatility is commonly perceived as a better measure of 

volatility (Duffie and Gray 1995), this is not considered due to the 
unavailability of options data.4  

According to Engle (2001) ‘the goal of volatility analysis must ultimately be to 

explain the causes of volatility’. This study follows up on this statement by 
combining a fundamental understanding of volatility and its drivers through 
modeling and forecasting. In studies by Mastrangelo (2007) and Serletis and 

Shahmoradi (2006) an OLS analysis is applied in order to explain the 
determinants of volatility in the natural gas markets, while other studies use 
determinants in the conditional variance equation (Pindyck 2004; Mu 2007). 

In order to strengthen the final conclusions in this paper, both methodologies 
are applied in order to assess the volatility fundamentals.  

This paper is believed to be an improvement to the existing body of literature 

based on four main aspects. Firstly, it contains updated analyses of volatility 
in the natural gas market, which should be of interest to market participants. 
Secondly, the inclusion of a larger number of determinants compared to 

existing literature is believed to strengthen the understanding of the market 
dynamics. Thirdly, several models are assessed in order to find the model best 
suited for forecasting and modeling in the US natural gas market. Existing 
literature investigating fundamentals of volatility usually employ only one 

specific model, whereas this paper uses several different models. To the best of 
our knowledge there is no study on the US natural gas market which 
addresses both the causes of volatility and evaluates the model best suited for 

modeling and forecasting. Lastly, research on modeling and forecasting issues 
in energy commodity markets is in large limited to oil-related commodities; 
thus, this paper is believed to fill a gap in the literature. 

This paper is structured as follows: the next chapter introduces the natural 
gas market and gives a description of the value chain and market participants. 
In chapter 3 a short overview of relevant literature on volatility is given, and 

based on a description of several fundamental drivers of volatility, hypotheses 
on their expected influence is presented. Chapter 4 includes data and 
characteristics for natural gas returns, while chapter 5 presents the 

methodology used in this paper. In chapter 6, results are evaluated through 
statistical tests, and the results and their implications are further discussed in 
chapter 7. Chapter 8 contains an elaborate discussion of the determinants’ 

impact on natural gas volatility. Finally, concluding remarks are presented in 
chapter 9. 

                                     
3 See Bollerslev, Chou et al. (1992) for a survey of the GARCH literature and Poon and Granger (2005) 

on related forecasting 
4 Implied volatility can be obtained through purchase of options data on NYMEX 
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Chapter 2  

Market Overview 

Today, the US is the world’s largest market and consumer of natural gas. 
According to the US Energy Information Administration (EIA), natural gas 
accounts for about 25 % of primary energy used in the US by source (EIA 

2011a), which in 2010 corresponded to a total demand of nearly 24 trillion 
cubic feet (Tcf). After Russia, the US is the second largest producer of natural 
gas with over 21 Tcf of dry gas supply (EIA 2011b). The yearly supply gap is 

in large covered by imports from Canada and Mexico, in addition to liquefied 
natural gas (LNG) from the world market. Unlike the oil market, the 
domination of pipeline infrastructures has essentially divided the natural gas 

market into major regions. Pipeline infrastructure is regarded as a capital 
intensive and inflexible way of transporting gas from producers to consumers 
(Söderholm 2000); however, the addition of LNG is believed to move the 

regional markets closer (Shively and Ferrare 2007). 

Since the liberalization, starting with the Natural Gas Wellhead Decontrol Act 
in 1989, the market has been subject to several changes. 5  In the years 

following 2000, a future of tight gas supply was anticipated. Increasing prices 
and decreasing gas resources were expected to be balanced by increased 
imports of LNG (Henning, Sloan et al. 2003; Youngquist and Duncan 2003). 

However, instead of becoming a substantial importer of LNG, the successful 
use of horizontal drilling in conjunction with hydraulic fracturing, starting in 
the period 2004-2006, has greatly increased the profitability and prospects of 

recovering natural gas from low-permeability geological formations, especially 
shale gas (EIA 2011d). As indicated in Figure 1, the amount of 
unconventional gas6 has increased twelve fold from 2000 to 2010, off-setting 

the effect of decreasing conventional supplies. Thus, at times the US 

                                     
5 See Smead (2010) and Henning, Sloan et.al (2003) for a detailed account 
6 Unconventional gas is a term generally connected to gas reservoirs that require treatment to stimulate 
gas production such as shale gas, tight gas and coalbed methane 
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production of natural gas is expected to exceed consumption, with the 
potential of making the US a net exporter (EIA 2012).    

 

Figure 1: Projections for US natural gas produciton towards 2035 indicates a larger domestic 

supply due to unconventional gas (EIA) 

2.1 Value Chain and Market Participants 

When assessing the volatility in the natural gas market, it is important to 

understand the different roles the market participants hold, and how they 
react to and influence price volatility. Similar to other fossil fuels, the natural 
gas value chain can be divided into upstream, midstream and downstream 

activities. Some of the market participants are associated with several of the 
activities in the value chain, e.g. financial services, marketers, integrated 
energy companies and storage providers (Shively and Ferrare 2007). 

 

Figure 2: The natural gas value chain can be divided into three major activities, similar to many 

other fossil fuels 
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2.1.1 Upstream 

Upstream activities consist of exploration, drilling and production from gas 
reservoirs, traditionally conducted by the large exploration and production 
firms.7 The increase in unconventional gas production has, on the contrary, 

been driven by smaller companies. 

Large upfront investments are required prior to production which makes risk 
management and financial services vital. Capital at a reasonable rate and 

hedging against long periods of low prices are important factors for successful 
investments. Once a field is up and running, the operational expenditures are 
so small compared to the capital expenditures that the benefits of a consistent 

level of gas produced and transported is regarded as higher than the drawback 
of low prices. This usually leaves the only interruptions in production to be 
related to shut-downs due to maintenance, or shut-ins due to extreme weather 

such as hurricanes. 

After extraction from the reservoir, raw gas is connected to the transmission 
system through the gathering system.8 The gas is either sold directly from the 

production company to end users, through aggregators who pool gas supplies 
and sell them in blocks, or through marketers in the midstream sector. 

2.1.2 Midstream 

Midstream activities are generally associated with the transmission of gas 

through pipelines and include transportation, storage and trading. The 
transmission system is responsible for moving the gas from the producer or 
aggregator to consumers, covering large distances, where marketers often act 

as a link between the two. In addition, marketers arrange transportation and 
storage, and sometimes provide services such as risk management and 
financing.9 The shipper is responsible for the actual transmission, and may be 
any market participant holding a contract to transport gas in a pipeline.  

Since the gas produced in the upstream sector is kept at a consistent level, it is 
the storage facilities in the midstream sector that are able to dampen price 
volatility by serving as a physical hedge in periods of high or low demand. 

Long-term storage is met by storage providers operating underground 
facilities, and when this is not available LNG is used. Short-term storage, often 
known as balancing or parking, is provided by pipelines, hub operators and 

local distribution companies (LDCs).  

                                     
7  Since gas and oil have often been found together large oil corporations such as BP, Chevron, 
ConocoPhillips, ExxonMobile and Shell are also large gas producers 
8 A gathering system usually consist of a system of small pipes which delivers the gas to a processing 
plant (less frequently the gas is processed at the wellhead). At the processing plant the gas (methane) is 

separated from impurities and valuable byproducts known as natural gas liquids (NGL), consisting of 

ethane, propane, butane and pentane.   
9 Today marketers are a combination of the big oil companies that market gas directly, financial houses 

that do physical marketing (e.g. Goldman Sachs, Merrill Lynch, and UBS), utility-based trading 
subsidiaries and smaller regional marketers (Shively and Ferrare 2007) 
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There exist several points of trade in the US (Figure 3). These are usually 
physical locations, called hubs, where multiple pipelines intersect. Henry Hub 

in Louisiana, the nexus of 16 intra- and interstate natural gas pipeline 
systems, is the hub with the largest traded volume, and is considered the price 
setter for other regions (Walls 1995). The pipelines from Henry Hub are 

connected to markets throughout the US East Coast, the Gulf Coast, the 
Midwest, and up to the Canadian border.  

 

Figure 3: Of the US natural gas pipeline hubs, the Henry Hub is the largest and considered the 

most important 

The market for Henry Hub futures contracts opened on NYMEX April 3rd 
1990 and is regarded as the leading benchmark for the North American 

natural gas market. It is the second most-actively traded futures contract in 
the world based on a physical commodity, and far more liquid than the spot. 
In 2011 and 2012 it has been consistently traded with a daily volume above 

300,000 contracts (CMEGroup 2012a). Compared to the spot price it is also 
more reliable as spot prices are not recorded at a centralized exchange, but by 
agencies basing their price estimates on polls from traders. Thus, only Henry 

Hub futures are considered in this paper.  

The Henry Hub natural gas futures contract is a binding legal obligation to 
make or take delivery in a particular future month. The underlying asset of 
one contract is 10,000 MMBtu of pipeline-quality natural gas delivered at the 

Henry Hub in Louisiana. The contracts are traded up to three business days 
prior to the first day of the delivery month, and offered up to 12 years ahead 
(CMEGroup 2012b). 
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2.1.3 Downstream 

Downstream refers to the distribution and marketing to wholesalers and 
retailers, and consumption by end users. In 2011 the electrical power 
generation was the largest end-user of natural gas, accounting for about 31 % 

of total consumption, followed by the industrial sector consuming around 28 
%. Residential and commercial customers are responsible for 13 and 14 % of 
the consumption, respectively (EIA 2012b).  

 

Figure 4: US consumption by source display a pattern of seasonality in demand (EIA) 

Residential gas consumption exhibit inelasticity to prices in the short term and 
follows the seasons as natural gas is in large consumed for heating. As 
indicated in Figure 4, most consumption occurs in the period November 

through March. The consumption is sensitive to weather, and in the long run 
it is partly based on past prices as this affects the investments into new energy 
equipment. The same holds for commercial customers who’s consumption is 

generally driven by weather and business, but their seasonal consumption is 
less dramatic. 

Larger consumers in the industrial and electric generation sector tend to turn 

to marketers or producers directly to buy gas. Price sensitivity is reflected in 
both the day-to-day business, and in long term investment decisions. 
Industrial gas use tends to be more volatile in the short term than the 

residential and commercial sector due to the close link to the overall business 
market. In addition, a share of the industrial and electrical generation sectors 
have a dual-fuel capability, which makes them able to respond to changes in 

price by switching fuel. In 2002, around 20 % of US industrial gas 
consumption could be switched to other fuels (EIA 2002). An alternative to 
switching is the option of shutting down production when prices are high, or 

in electrical power generation decide which plants to operate (Brown and 
Yücel 2008).  

Electrical generation by natural gas provides the majority of the marginal 

power generation capacity in the US, meeting the seasonal peak demand. 
Natural gas tends to be a high-cost fuel as opposed to most base load 
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electricity generation delivered by coal and nuclear. Thus, contrary to 
residential and commercial customers, gas consumption is highest in the 

summer due to the high demand created by air conditioning. Natural gas 
power plants tend to have lower up-front capital cost, which implies that the 
economics of natural gas power plants are dependent on future gas prices. 

High volatility makes gas investments less attractive relative to coal and other 
alternatives with more stable fuel prices (Henning, Sloan et al. 2003).  
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Chapter 3  

Volatility in the US Natural Gas 

Market  

3.1 Literature review 

The literature review is divided in two parts; the first section gives a short 

overview of research related to modeling and forecasting in energy commodity 
markets, and the second section presents research on fundamentals of natural 
gas volatility.  

3.1.1 Modeling and Forecasting 

Research addressing different class of models and forecasting of futures in the 
US natural gas market is to our best knowledge limited. Focusing on daily 
spot prices of petroleum commodities, Hung et al. (2008) use their findings 

from three models from the GARCH family to suggest that heavily-tailed 
distribution is more suitable for energy commodities due to the leptokurtic 
features exhibited in asset returns. Aloui (2010) confirm these results by 

computing the VaR of four major oil and gasoline commodities using three 
different GARCH models. In addition, evidence of asymmetry and long 
memory was reported. Focusing on petroleum futures, Sadorsky (2006a) 

concludes that different models suit different markets, and that TGARCH 
(Glosten, Jagannathan et al. 1993; Zakoian 1994) fits better than less 
sophisticated models.  

Yaffy, Heddy et al. (2008) do a comprehensive study on forecasting and the 

use of different GARCH models on natural gas futures, concluding that Risk 
Metrics (Morgan 1996) and Asymmetric Power GARCH (APARCH) (Ding, 
Granger et al. 1993) are preferred; however, the paper is limited to the UK 

natural gas market. Satisfactory results from the APARCH model is also 
found by Giot and Laurent (2003) who test VaR models for several 
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commodity spot prices including Brent and WTI 10  for one-day-ahead 
forecasts. Gogas and Serletis (2010) on the other hand, find that for three 

different forecasting horizons11, and for both static and dynamic forecasts, an 
EGARCH specification is preferred in the natural gas market.  

3.1.2 Fundamentals  

There are several papers on the US natural gas market addressing 
fundamentals of volatility. A common weakness with these studies is that they 

assume that the models used are suitable, without evaluating the models 
specifications and performance such as validity of error terms and model fit. 
This may provide an incorrect relationship between the natural gas volatility 

and the fundamentals.  

EIA (2007) analyze the volatility in spot prices for the period 1994-2006, 
concluding that there is no long-term trend in volatility, and there exist 

seasonal patterns and a strong correlation with storage dynamics. However, 
the application of an OLS framework does not account for non-linearity, and is 
a weakness of their study. Serletis and Shahmoradi (2006) also employ an OLS 

model in their investigation of determinants of volatility for the Henry Hub 
futures contracts. The difference is that they first use a regular GARCH(2,1) 
model, following the methodology of Liew and Brooks (1998), to provide an 

estimate for the conditional volatility, which is then used as a dependent 
variable in an OLS regression. They find significant evidence of seasonality, 
yearly and open interest effects in both returns and volatility; however, they 

fail to report test results for their models.          

Mu (2007) models daily Henry Hub futures using vanilla GARCH models12 to 
show that weather shocks have a significant effect on the conditional volatility. 

By including exogenous variables in the conditional volatility model it is found 
that persistence is reduced by 40 %, corroborating the importance of 
fundamental factors driving volatility. Mu (2007) is one of few studies 

including several drivers in the conditional volatility model; however, since 
only one specific model is used, efforts should have been made to evaluate the 
validity and performance of this model. In addition, the market dependencies 

does not appear to be fully investigated, which is evident when only the winter 
season is included. The weather effect in the natural gas market is also 
assessed by Fleming, Kirby et al. (2006) who find a strong link between public 

information flow and volatility by comparing the trading versus non-trading 
period variance ratios.   

Ewing, Malik et al. (2002) investigates the volatility transmission between two 

indexes based on major companies in the oil and gas sectors. It is argued that 
the behavior of natural gas volatility differs from that of oil; the natural gas 

                                     
10  West Texas Intermediate (WTI), also known as Texas light sweet. Grade of crude oil used as 
benchmark in oil pricing 
11 One, two and four weeks ahead 
12 Vanilla GARCH refers to a GARCH(1,1) model with a Gaussian error distribution 
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sector is more persistent and directly affected by shocks such as events or 
‘news’ in its own sector and indirectly by the oil sector. This may imply that 

the inclusion of market information when modeling and forecasting natural 
gas volatility is valuable. Larger persistency is interpreted by Ewing, Malik et 
al. (2002) as a potential economic benefit as market participants would have 

longer time to react to a potential shock, given that it is properly understood. 
Pindyck (2004) contradicts parts of Ewing, Malik et al.’s (2002) conclusions by 
arguing that the shocks to volatility in both oil and gas commodities are 

transitory. However, the different results could easily be related to the fact 
that Ewing, Malik et al. (2002) analyzes times series based on the stock 
market while Pindyck (2004) use price series based on futures.  

Pindyck (2004) estimate volatility through weekly sample standard deviations 
of returns and by using weekly and daily GARCH models; however, the 
conclusions drawn in the paper does not differ between the models applied. A 

statistically significant positive trend in volatility for natural gas is found, but 
it is not regarded as significant in economic terms. In addition, no increase in 
volatility was found due to the Enron collapse. The insignificance of the Enron 

collapse on volatility is also confirmed by Murry and Zhu (2004). This result is 
rational as Enron held the position of a marketer in the gas market; the 
disappearance of a marketer should not affect the physical demand and supply 

balance in the gas market (Shively and Ferrare 2007).  

Since the market liberalization the natural gas price has gone from being less 
volatile than the oil market, to more. Susmel and Thompson (1997) find an 
increase in investments in storage facilities due to the increase in volatility 

following the liberalization, arguing that the regulatory changes taking place 
during the sample period is why a regime switching GARCH (SWARCH) 
model outperforms a GARCH model. Susmel and Thompson (1997) also 

confirm seasonality in price and variance in relation to storage levels. Although 
several factors influencing volatility are investigated, and considerations of 
model fit is undertaken, an improvement would be to give a fundamental 

analysis as to how these dynamics function, not just confirm the existence of 
volatility drivers.   

3.2 Determinants of volatility 

The fundamental drivers of volatility can be divided into supply and demand 

which gives a clear structure in the analysis; however, it should be noted that 
distinguishing between different factors is complex. Factors such as seasonality 
and day-of-the-week effects are hard to define as either supply or demand, and 

are thus not categorized. Demand factors (section 3.2.1-3) considered are 
temperature, economic activity and substitutes, while supply factors (section 
3.2.4-5) are storage dynamics and changes in production.  
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3.2.1 Substitutes 

For most end-users of natural gas flexibility is very limited in the short-term as 
they are not capable of switching to an alternative fuel on short notice. 
However, both the industrial and electrical generation sector holds fuel 

switching potential in order to react to fluctuating prices. In the electricity 
producing sector, gas competes primarily against coal, heavy fuel oil, nuclear 
power and renewables. The main competing fuels in the industry are heavy 

fuel oil, coal and electricity, whereas heating oil and electricity are the principal 
competitors in the commercial and residential sectors. 

In the long term, demand for gas is sensitive to the price of gas relative to 

other fuels (IEA 2009). This implies a correlation between relevant fuels in 
terms of both prices and volatility. In periods where electricity demand is 
relatively low, coal prices function as a floor for gas prices. An example is the 

sharp decline in natural gas prices in 2008 and 2009. This led to significant 
substitution from coal to gas in the power sector, resulting in a boost in gas 
demand, preventing the gas price to fall below coal prices (IEA 2009). 

Most literature focuses on the relationship between oil and gas, and this is also 
the focus of this section. Villar and Joutz (2006) find Henry Hub futures prices 
to be co-integrated13 to WTI with a long term relationship. In the period 

1989-2005 permanent and temporary shocks to the WTI price are shown to 
be transmitted to the Henry Hub price. Hartley, Medlock et al. (2008) 
investigate an overlapping period, confirming Villar and Joutz (2006) results. 

The same holds for Pindyck (2004) and Ewing, Malik et al. (2002), concluding 
that oil volatility has spillover effects on gas volatility, but not the other way 
around. Brown and Yücel (2008) also find a relationship between the gas and 

oil price, but argue that the gas price shows a tendency to move more 
independent since the number of fuel switching facilities has been considerably 
reduced over the last 15 years. This is supported by Bachmeier and Griffin 

(2006) who only find a weak relationship between oil, gas and coal.  

With recent oil and gas prices having record high and low levels, respectively, 
some suggest that the changes in the North American gas market dynamics 

may be proof of a permanent rapture between the two prices (IEA 2009). 
Ramberg and Parsons (2010) addresses this view and provide evidence that 
the relationship is capable of shifting, implying that despite large temporary 

deviations there exists evidence of a co-integrating relationship and that it is 
only the equilibrium between the two prices that is changing.  

Due to the spillover effects from the oil market, the following relationship is 

expected:  

H1: An increase in oil volatility causes higher volatility 

                                     
13 Co-integration is a measure of long term dependency between asset prices; see Alexander (2001a) for 
details 
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3.2.2 Temperature  

The end-user demand is largely driven by seasonality and changes in 
temperature. These factors are known to be one of the strongest short-term 
influences on volatility (Mastrangelo 2007). Weather shocks due to unexpected 

cold or warm weather increases demand which then causes prices to spike and 
increase volatility significantly (Mu 2007). Days with unexpected cold weather 
in the winter season is especially susceptible to volatility for two reasons. 

Firstly, peak demand is met by storage levels that may be fluctuating. 
Secondly, during the winter the transmission system may already be operating 
at maximum capacity. When this is the case, a balanced market can only be 

achieved by increasing prices to reduce demand. Similarly, if a warm summer 
is experienced more gas than expected is consumed, increasing prices.  

H2: Temperature deviating from the average causes higher volatility 

3.2.3 Economic Activity 

Economic activity influences the natural gas market in large through its 
commercial and industrial end-users. A recession would reduce the demand for 
goods and services, leading to a decrease in industrial and commercial 

production rates, which in turn reduces gas demand. Residential consumers on 
the other hand are less flexible – if it is cold, heating is needed no matter the 
state of the economy. However, in periods of economic growth, increase in 

personal disposable income may lead to increase in residential demand 
(Mastrangelo 2007). This factor may also be related to the supply side, as 
periods of economic downturn reduce the willingness to take on risky drilling 

and production projects, as well as investments in natural gas facilities.  

There are several ways to measure economic activity, such as GDP, industrial 
production, treasury bills or the stock market. Serletis and Shahmoradi (2005) 

suggests that natural gas prices are cyclical and can be expressed though 
industrial production. However, as this paper investigates daily futures prices 
of natural gas, a daily proxy of economic activity is required. It is a common 
perception that the stock market contains important information related to 

economic activity (Fama 1981). The volatility of the S&P 500 represents the 
systematic risk in the market. If the economy is stable, this also implies that 
the volatility of the S&P 500 is stable. Similarly, when there are recessions and 

upturns in the overall economy, this will lead to higher volatility in the S&P 
500. This is proven by Hamilton and Lin (1996) and Schwert (1989), who find 
economic recession to be the single largest factor accounting for volatility in 

stock returns. To the best of our knowledge there is no paper investigating the 
impact of economic activity on natural gas volatility. Thus, assuming the 
volatility of the S&P 500 to reflect changes in the business cycle, it should 

have spillover effects on the gas volatility implying the following relationship:  

H3: An increase in S&P 500 volatility causes higher volatility 
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3.2.4 Storage 

Storage levels receive considerable amounts of attention because of the 
physical hedge it provides during periods of high and low demand. The 
seasonal pattern displayed by the storage level is divided into two periods due 

to the consumption pattern. The period April to October is defined as the 
injection season while November to March is called the withdrawal season. On 
average storage reservoirs supply around 20 % of the gas consumed and up to 

50 % of consumption on days with peak demand during the withdrawal 
season (EIA 1995). 

According to Alterman (2012), September and October exhibit an especially 

high volatility since it is the end of the injection season, and the gas available 
to meet winter demand is from that point on finite while the weather 
conditions for the upcoming winter are uncertain. If an especially warm 

summer occurs, the injection season will be shortened, which may cause 
unsatisfactory storage levels for the winter season, in turn causing high 
volatility during the winter. Thus, one should be aware that the storage factor 

may be driven by temperature, and as the withdrawal season starts in 
November, storage owners might be reluctant to withdraw large amounts due 
to uncertainty related to demand later in the winter (Mastrangelo 2007). 

Independent of seasonality, the storage level gives an indication of the storage 
facilities ability to balance the market. 

H4: Storage levels deviating from the average cause higher volatility  

Every Thursday the market receives information on inventory levels for 
working gas in storage across the US through the weekly update storage 
report published by EIA.14 This report is viewed as a good indicator of the 

supply and demand balance in the market. Following the theory of storage 
(Deaton and Laroque 1992; Pindyck 1994; Deaton and Laroque 1996) the 
commodity price is inversely related to storage level as an increase in the gas 

price is connected to either a decrease in supply or increase in demand, or 
both. This suggests that an unexpected change in the storage level may create 
a shift in the perceived balance of the market, creating uncertainty which is 

subject to different interpretation by different market participants (Linn and 
Zhu 2004). Linn and Zhu (2004) investigate intraday volatility and find that 
the volatility is significantly impacted by the release of the weekly update 

storage report. This impact is also confirmed by the findings of Murry and Zu 
(2004) and Mu (2007), which corroborates that news has a substantial effect 
on volatility. 

H5: The release of the weekly update storage report causes higher volatility 

                                     
14 Before April 2002 the report was compiled by the American Gas Association (AGA) and released 
every Monday 
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3.2.5 Production  

Production is normally only disrupted by maintenance work, which is put to 
periods where production levels are higher than consumption, causing minimal 
impact on volatility. Other factors causing changes to production levels can be 

divided into short-term and long-term factors.   

Disruptions in natural gas production from outside influences, such as periods 
with shut-ins due to hurricanes and other severe weather, have traditionally 

caused high volatility and can be regarded as short-term factors. In 2005, 
hurricanes along the US Gulf Coast caused shut ins of ~4 % of US total 
production between August 2005 and June 2006 (EIA 2011c). Alterman 

(2012) identify six periods of high volatility due to hurricanes since 1997 
suggesting that their impact on volatility has been considerably reduced since 
around 2005. 15  This is attributed to milder winters and new onshore 

production from shale gas, which has replaced three times the sustained loss of 
offshore supply (Smead 2010). 

The impact of depleting gas resources or additional supply through new 

production can be regarded as long-term factors. Depleting resources would 
increase volatility as one must rely on imports to satisfy demand (Henning, 
Sloan et al. 2003). The addition from domestic unconventional gas on 

volatility has, to our best knowledge, not been properly investigated. More 
supply means a consistent rise in the average gas level in storage. Some 
suggests that this may contribute to enhanced price stability and a low 

volatility environment in the US natural gas market (Brown and Krupnick 
2010; Alterman 2012). However, with the plunge in prices in 2009 partly due 
to the recession, together with limited data on shale gas production, the only 

factor included in this study is the change in production as a whole.  

H6: Production levels deviating from the average cause higher volatility 

3.2.6 Seasonality and the Monday Effect 

The impact of seasonality is mentioned in several of the supply and demand 
factors. Demand varies with the season, and may exceed the infrastructures 

ability to deliver gas in extreme cold weather during the winter. Since demand 
usually exceeds production during winter it is left to storage facilities and 
imports to balance the market. Warm summers reduce the storage levels for 

the winter, which imply that spring may be the period with lowest volatility. 
Interruptions in the gas production also follow the season to some extent; 
maintenance is planned for periods of low demand and shut-ins occur in the 

hurricane season.16 Alterman (2012) state that winter and fall have the highest 
volatility, supported by results from Mastrangelo (2007) and Serletis and 

                                     
15 Weaknesses in Alterman’s (2012) conclusions should be noted, as they are only based on a qualitative 
observations 
16 Hurricane season in the Atlantic begins in June 1st and ends November 30th. The Eastern Pacific 
hurricane season begins May 15th and also ends November 30th (http://www.nhc.noaa.gov). 
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Shahmoradi (2006); however, their results disagree on which season has the 
highest volatility of the two. It is believed that the winter has a larger impact 

on volatility due to the inelasticity of supply and demand.  

H7: Winter exhibits the highest volatility, followed by fall, summer and spring 

Evidence of a Monday effect in the natural gas market is found by Serletis and 

Shahmoradi (2006), Fleming, Kirby et al (2006) and Mu (2007). The Monday 
effect is the increase in volatility due to the information acquired during the 
weekend. Because of the market’s inability to react to the events during the 

weekend, Monday will accumulate the entire effect of the news from late 
Friday to early Monday. Fleming, Kirby et al (2006) and Mu (2007) argue 
that this effect is due to news about weather information generated during the 

weekend; however, the attribution of the Monday effect as a result of weather 
is out of the scope of this paper. 

H8: Mondays exhibit higher volatility 

Table 1: Summary of the hypothesized impact of determinants on natural gas volatility 

 

Determinant Hypotheses
Substitutes +
Temperature +

Economic activity +
Storage +
Update +

Production +
Spring -

Summer -
Winter +

Monday ef fect +
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Chapter 4  

Data and Descriptive Statistics 

The dataset used in this study include natural gas production and storage 
levels, publication dates for the weekly gas storage report, S&P 500 index 

levels, temperature data, and one- and two months ahead daily closing futures 
prices for natural gas at Henry Hub and WTI crude oil at NYMEX. All data 
related to energy commodity prices, production and storage levels was 

obtained from EIA17 . Time-series for closing prices for the S&P 500 was 
obtained from �-trading18, and the temperature data for the ten largest US 
cities19 was gathered from the National Climatic Data Center (NCDC)20.  

The times series used are summarized in Table 2. For daily observations where 
one or more of the below time series are missing a data point, all observations 
for this data point are excluded. This filtration leads to the exclusion of 3 

days, leaving a total of 3,893 observations ranging May 13th 1996 to November 
30th 2011.  

Table 2: Length, number of observations, frequency and source of the time series used 

 

                                     
17 http://www.eia.gov 
18 http://pitrading.com/free_market_data.htm 
19 New York, Los Angeles, Chicago, Dallas, Philadelphia, Houston, Washington, Miami, Atlanta and 

Boston 
20 http://gis.ncdc.noaa.gov/map/cdo/ 

Time-series Start date End date # obs Freq Source
NYMEX HH Futures Prices 20.12.1993 31.01.2012 4539 Daily EIA
Crude Oil Futures Price 30.03.1983 07.02.2012 7241 Daily EIA
S&P 500 Index 01.04.1960 02.10.2012 13119 Daily π -trading
Natural Gas Production 30.01.1981 30.11.2011 8044 Daily EIA
Natural Gas Storage Level 31.12.1993 03.02.2012 4721 Daily EIA
Natural Gas Storage Report 13.05.1996 30.11.2011 3893 Daily EIA

Temperature Data 01.01.1993 31.12.2011 6939 Daily NCDC



 

18 of 88 

4.1 Natural Gas Prices 

As mentioned previously (section 2.1.2) futures are preferred over spot prices 
due to liquidity and the decentralized spot price. Because futures contracts 

have an expiry date, these must be rolled over to create a continuous time 
series. Following Pindyck (2004), this was done by converting daily futures 
prices to daily spot prices: 
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where 

��  : spot price on day t  

�1�   : price of the nearest futures contract  

�2�   : price of the next-to-nearest futures contract  

�	�   : number of days from time t to expiration of the first contract 
�
  : number of days between the expiration dates for the first 

   and second contract 
 

Comparison of the created spot price and the actual spot price indicate that 
the method used is a reasonable approximation, with the two series having a 

99 % correlation (see Appendix I for derivation of the method).  

 

Figure 5: Natural gas created spot series ($/MMBtu) when futures are rolled over using 

Pindyck’s formula 

As can be seen in Figure 5, the natural gas price has been fluctuating since 
the beginning of the sample period. Some noteworthy episodes21 that have 
impacted prices are: the Californian energy crisis 2000-2001, the hurricanes in 

2005 and the collapse of prices following the summer of 2008 arguably due to 
the recession and increase in unconventional gas.  

                                     
21 For a more detailed description of different episodes causing large changes in prices and high volatility 
see Alterman (2012), Smead (2010) and Henning, Sloan et.al (2003) 
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4.2 Returns Characteristics 

The daily logarithmic return was calculated using the following formula22: 
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 Eq. 4.2 

Looking at Table 3, we see that the minimum and maximum return over the 
period is quite large, consistent with the volatile nature of natural gas prices 

previously discussed. With an average daily return of 0.01 %, corresponding to 
an annualized return of 2.5 %23, the mean return is positive, caused by a risk 
premium. The standard deviation for daily natural gas returns is 4.01 %, 
suggesting that the risk is high compared to the return. In comparison, the 

S&P 500 has an annualized mean return of 4.3 % and a daily standard 
deviation of 1.34%. This indicates that the natural gas market has a high risk–
reward relationship. Natural gas market participants are therefore expected to 

search for hedging strategies rather than arbitrage possibilities. This highlights 
the need for analyses of volatility in the natural gas market. 

Table 3: Descriptive statistics for the natural gas returns imply a high risk-reward relationship 

 

From Figure 6 there appears to be volatility clustering in the natural gas 
returns. This is confirmed from the natural gas squared returns (Figure 7), 
which clearly shows the presence of volatility clustering in the returns series. 

This indicates that a conditional volatility model is appropriate to model the 
price-volatility in the natural gas market. To verify this hypothesis further 
analysis of the autocorrelations in the squared returns is conducted. 

 

Figure 6: Returns of natural gas created spot, with signs of volatility clustering  

                                     
22 This is multiplied by 100 to avoid convergence issues 
23 Using 250 days in a year 
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Figure 7: Squared returns of natural gas created spot, confirming volatility clustering 

The tests performed on the returns and squared returns are summarized in 
Table 4, which will be discussed throughout this chapter.  

Table 4: Tests performed on returns and squared returns suggest conditional volatility and non-

normality 

 

4.2.1 Autocorrelation in Returns 

In an arbitrage-free market the returns should not be correlated. Thus, one 

should not find any specific pattern in the autocorrelations for the different 
lags. 

NG squared return 
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NG squared return 

Test Statistic P-value
Normality test
Skew ness 0.046114 [0.2400]
Excess Kurtosis 6.7049 [0.0000]**
Jarque-Bera 7293.5 [0.0000]**
Q-statistics on raw data
Q(  5) 32.5996 [0.0000]**
Q( 10) 39.4036 [0.0000]**
Q( 20) 50.5426 [0.0002]**
Q( 50) 88.4439 [0.0007]**
Q-statistics on squared data
Q(  5) 299.071 [0.0000]**
Q( 10) 404.846 [0.0000]**
Q( 20) 539.996 [0.0000]**
Q( 50) 723.36 [0.0000]**
LM ARCH test
ARCH 1-2 81.698 [0.0000]**
ARCH 1-5 47.766 [0.0000]**
ARCH 1-10 26.68 [0.0000]**
ADF test
ADF  -35.8573 [0.0000]**
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Figure 8: Autocorrelogram for natural gas returns with lags 1-20 display signs of an AR(1)-term 

In Figure 8 the straight lines represent the 95 % confidence interval, whereas 
the solid bars represent the autocorrelation between returns for lags 1-20. The 
figure indicates no specific pattern or structure; however, there is 

autocorrelation in returns for one lag. Ideally, such a property in returns 
should not be encountered and implies a need for an AR(1)-term in the mean 
equation to account for the autocorrelation. This is also supported by the Box-

Pierce test (Table 4) which confirms the presence of autocorrelation in returns.  

4.2.2 Autocorrelation in Squared Returns 

A popular stylized fact about returns is the existence of a positive dependence 
between squared returns on nearby days. For natural gas returns this is 
apparent from Figure 9, which shows significant autocorrelation for every lag. 

This is also verified by the Box-Pierce statistics for squared returns (Table 4). 
Since the sample returns exhibits volatility clustering and autocorrelations for 
squared returns, the use of conditional volatility models to model the price-

volatility can be justified. GARCH models are a popular choice, and based on 
the figure below a large persistence parameter can be expected.24  

 

Figure 9: Autocorrelogram for natural gas squared returns with lags 1-20, confirming conditional 

volatility in natural gas returns 

                                     
24 This indicates that we can expect � + 
 to be close to 1 in the GARCH models 
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4.2.3 Distribution of Returns 

Another popular stylized fact for returns is that they are usually not normally 
distributed; they exhibit high peaks and fat tails. The Jarque-Bera test for 
normality (Table 4) rejects the hypothesis of normally distributed returns. In 

addition, leptokurtic25 properties can be observed from the same table, and 
from Figure 10. Volatility clustering explains why the distributions of daily 
returns are not normal. Since the returns exhibits conditional volatility, the 

complete sample is obtained from a mixture distribution. When this is the 
case, the kurtosis exceeds the normal kurtosis of three, and fat tails will occur.  

 

 

Figure 10: The comparison with the Gaussian distribution suggest leptokurtic properties in the 

returns distribution 

Verification that the returns data is leptokurtic can also be seen from the QQ-
plot in Figure 11. In addition, the figure does not show signs of one tail being 

heavier than the other, implying that the data is symmetrically distributed. 
This is confirmed by the statistically insignificant skewness parameter the 
Jarque-Bera test. 

                                     
25 Distributions with positive excess kurtosis are called leptokurtic distributions, whereas distributions 
with excess negative kurtosis are called platykurtic distributions 
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Figure 11: The QQ-plot demonstrate fat-tailed properties in returns and a symmetrical 

distribution 

To model the price-volatility in the natural gas market an assumption for the 
error distribution is needed. The existence of leptokurtic properties suggests 

that a student-t or a skewed student-t error distribution is preferred over the 
normal distribution. In addition, it is reasonable to expect both the student-t 
and skewed student-t model will perform satisfactory since the returns data 

appears to be symmetrically distributed. 

4.2.4 Stationarity 

If the returns series of natural gas exhibits unit roots, certain features changes 
with time, implying that the returns series is not stationary. The Augmented 
Dickey-Fuller (ADF) test with two lags is applied to test for stationarity 

(Table 4). The large negative ADF statistic proves that natural gas returns are 
indeed stationary, with constant mean, variance and covariance for each lag. 

4.2.5 Summary and Implications for Modeling 

The annualized standard deviation in Figure 12 shows that the volatility is far 

from constant. The existence of autocorrelation in the squared returns, 
together with volatility clustering, implies that the returns of natural gas 
exhibit conditional heteroskedasticity, which suggest that the family of 

GARCH models are suitable to model the price-volatility in the US natural 
gas market. This is supported by the LM ARCH test (Table 4) which rejects 
the null of no ARCH effects at every lag, and at every level of significance.  

The returns distribution shows substantial leptokurtic properties which implies 
that the student-t distribution is suitable to model the errors. Although a 
skewed student-t error distribution is preferred in many academic applications, 

the QQ-plot shows no signs of asymmetry, implying that a skewed student-t 
error distribution may not be required. 
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Due to the significant autocorrelation in returns for lag 1, the inclusion of an 
AR(1)-term in the mean equation will be investigated further. 

 

Figure 12: Annualized standard deviation for returns in 1996-2011 indicate that volatility is 

conditional (dotted line represents the average) 

4.3 Summary of Determinants 

In order to test and measure the hypothesized impact of the factors 
influencing volatility presented in chapter 3, proxies for the determinants were 
created. Further details about the determinants and the construction of their 

respective proxies can be found in Appendix III. 

• Substitutes: oil volatility (Oil vol) is the conditional volatility estimates 
from a vanilla GARCH model based on returns from WTI  

• Temperature: the squared Degree Day difference (DD diff sq) is defined 
as the squared difference between the degree days26 for day t and the 
average degree days for the entire period on this day of the year 

• Economic activity: S&P 500 volatility (S&P vol) is the conditional 
volatility estimates from a vanilla GARCH model based returns from 
the S&P 500 

• Storage: the absolute stock difference (Stock diff (abs)) is the absolute 
value of the difference between day t’s production level and the two year 
historical average for the corresponding week 

• Storage: the weekly storage update report (Update) is the publishing 
date for this report 

• Production: the absolute production difference (Prod diff (abs)) is the 

absolute value of the difference between day t’s storage level and the five 
year historical average for the corresponding week  

• Seasonality: Spring is defined as March to May, Summer as June to 

August and Winter as December to February  
• Monday effect: (Monday) is a dummy for each Monday in the data set 

                                     
26  Degree days are the sum of heating degree days (HDD) and cooling degree days (CDD). ��� =

max�0, 65 − �� , ��� = max�0, � − 65�, where X is the average temperatur for a given day 
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The summary statistics presented in Table 5 indicate that most of the 
determinants possess leptokurtic properties and skewness. Comparing the 

returns for oil and the S&P 500 with the natural gas returns, the absolute 
values of the minimum and maximum returns are highest for natural gas, 
followed by oil and then the S&P 500 returns. The mean returns for the S&P 

500 and oil are approximately two and four times the mean return of natural 
gas, respectively. The absolute stock and production differences have low 
means and standard deviations, together with low levels of skewness and 

excess kurtosis. The remaining determinants all have a very high excess 
kurtosis and skewness, together with high means and maximum values for 
returns. 

Table 5: Descriptive statistics show that most of the determinants have skewed and leptokurtic 

properties 

 

 

 

 

# obs Minimum Mean Maximum SD Skewness
Excess 

kurtosis
Oil ret 3893 -17.25 0.040 18.646 2.582 -0.048 3.914
SP ret 3893 -9.470 0.017 10.957 1.334 -0.217 6.938
Stock dif f (abs) 3893 0.000 0.148 0.649 0.137 1.315 1.153
Prod diff  (abs) 3893 0.000 0.066 0.284 0.056 1.089 0.500
DD diff  sq 3893 0.000 10.25 195.2 17.29 3.477 16.71
Oil vol 3893 2.489 6.527 53.29 5.124 4.557 26.19
SP vol 3893 0.297 1.791 27.97 2.548 5.522 38.27
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Chapter 5  

Methodology  

In this  paper, OxMetrics™ have been used in all model estimations. The 
quasi-Newton method of Broyden, Fletcher, Goldfarb and Shannon (BFGS) 
was used when solving the conditional volatility models with the maximum 

likelihood approach. 

This paper investigate two important aspects of natural gas volatility; what 
factors impact volatility and which model is best suited for modeling and 

forecasting purposes. In order to provide an answer to our hypotheses on 
volatility drivers, both an OLS and GARCH models are used. The latter 
methodology also allows for an evaluation of the potential model improvement 

from including additional market information. 

5.1 Sample Size 

The in-sample period is defined from May 14th 1996 to December 9th 2008, 
consisting of 3,142 observations which are regarded as sufficient for historical 

VaR estimates as accurate results can be expected above the 99th percentile. 
The out-of-sample period is defined from December 10th 2008 to November 
30th 2011, consisting of 750 observations. This may appear as large for out-of-

sample forecasts, but is believed to be required to achieve a sufficient degree of 
robustness when performing the out-of-sample VaR forecasts. 

The sample size chosen is believed to be of importance to the accuracy of 

forecasts and the coefficients (Angelidis, Benos et al. 2004). As an in-sample 
period ranging from 1996-2008 is used, the coefficients in the GARCH models 
will in large be influenced by past observations. Alexander (2008b) argues that 

the longer the sample period, the more questionable is this assumption 
‘because a long historical period is likely to cover several different market 
regimes in which the market behavior would be very different from today’. 

Thus, the Nyblom test for stability is used in the evaluation of the GARCH 
models to assess if the sample size is a source of bias in the coefficients.  
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5.2 OLS 

As the conditional volatility is unobservable, an estimate for the volatility is 
needed in order to perform the determinant analysis in an OLS framework. 

Following Serletis and Shahmoradi (2006), the time series for the conditional 
volatility of natural gas ���

� is estimated with a vanilla GARCH model and 
used as a dependent variable in the OLS model. The methodology is applied 

on the in-sample period only. 

The following forms the basis of the OLS model, with proxies for the volatility 
drivers as independent variables: 

( )
( )
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4 5 611

7 8 9 10

t tt t

ttt

t t tt

ˆ Oil vol S & P vol Stock diff abs

Pr od diff abs DD diff sq Spring
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σ α δ δ δ
δ δ δ
δ δ δ δ

−− −

−−

= + + +

+ + +

+ + + +
 Eq. 5.1 

5.3 Conditional Volatility Models 

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 
model is based on Bollerslev’s (1986) generalization of Engle’s (1982) ARCH 
model. This framework has led to an abundance of extensions of the model of 

which the RiskMetrics™ (Morgan 1996), IGARCH (Bollerslev 1986), 
EGARCH (Nelson 1991), APARCH (Ding, Granger et al. 1993) and GJR 
(Glosten, Jagannathan et al. 1993) models are used in this paper in addition 

to GARCH. In this section only the GARCH model, with and without 
determinants in the variance and mean equations, is presented as the 
methodology for including determinants is very similar across all models. For 

details regarding the ARCH framework and the extensions of Bollerslev’s 
(1986) GARCH model applied in this paper see Appendix II.  

The GARCH model has the following mean and variance equations: 

t t tr µ ε= +  Eq. 5.2 

2 2 2

1 1

q p

t i t i j t j
i j

σ ω α ε β σ− −
= =

= + +∑ ∑  Eq. 5.3 

The descriptive statistics (section 4.2.3) indicate that the error terms are not 

correctly specified using the normal distribution, consistent with stylized facts. 
Thus, the models will only be evaluated by using the student-t and skewed 
student-t error distribution.  

To choose the appropriate autoregressive lags for the conditional volatility and 
the innovation term27, information criteria for the lags ranging from 1 to 5 is 
evaluated for all six models without determinants (Appendix IV). This 

                                     
27 The innovation term is defined as the shock, more specific the error term in the mean equation that is 
included in the conditional volatility equation 
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procedure for determination of optimal values of p and q is similar to that of 
Pantula, Gonzales-Farias et al. (1994) and Liew and Brooks (1998).  

The descriptive statistics (section 4.2.1) also provide evidence of the potential 
need for an AR(1)-term in the mean equation. Hence, this term is tested for 
by including it in all six models in order to identify a potential increase in 

explanatory power (see Appendix IV). The same methodology is used to test 
for an ARCH-in-mean effect. Similar procedures for determining the inclusion 
of AR-terms and ARCH-in-mean terms can be found in Angelidis, Benos et 

al. (2004) and Gogas and Serletis (2010). 

The inclusion of only one lag for the conditional volatility and the innovation 
term, and an autoregressive term in the mean equation, provides the following 

GARCH specification: 

1t t tr rµ θ ε−= + +  Eq. 5.4 

2 2 2
1 1t t tσ ω αε βσ− −= + +  Eq. 5.5 

When determinants are included, the lagged oil and S&P 500 returns are 

included in the mean equation to remove what the authors of this paper view 
as known market dependencies. Including these factors in the mean equation 
ultimately changes the natural gas volatility estimates due to changes in the 

innovation term; however, as these dependencies are expected to be known, 
these returns do not cause volatility. 

The conditional volatility models including determinants in the mean and 

variance equation can be expressed as follows: 

1 1 2 , 1 3 , 1t t Oil t SP t tr r r rµ θ θ θ ε− − −= + + + +  Eq. 5.6 

2 2 2
1 1t t tWσ αε βσ− −= + +  Eq. 5.7 

where: 
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 Eq. 5.8 

5.4 Evaluating Forecasting Accuracy 

To validate the conditional volatility models, one-day-ahead in- and out-of-
sample VaR forecasts are performed. The models are tested with a VaR level 

α which varies between the 25th, 10th, 5th, 2.5th and 1st percentiles. To assess the 
models’ performance, the failure rates for the returns are calculated. The 
failure rate can be defined as the number of times the absolute value of the 

returns exceed the forecasted VaR. If the models are specified in a correct 
manner, the empirical failure rate should be equal to the pre-specified VaR 
level. While the failure rates for long positions are equal to the percentage of 
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negative returns which are smaller than the one-day-ahead VaR, the failure 
rates for short positions are defined as the percentage of positive returns larger 

than the one-day-ahead VaR.  This makes it possible to test these empirical 
failure rates, defined as  !, against the VaR level α. The tests used to assess the 
failure rates against the VaR level in both the in- and out-of-sample one-day-

ahead model evaluation are the Dynamic Quantile Test (DQT) and the 
Kupiec LR test (Appendix V). For the out-of-sample model evaluation with 5, 
10 and 20-day-ahead forecasts, only the Kupiec LR test is applied. 

5.4.1 In-Sample Evaluation with One-Day Forecasts 

When using one-day-ahead VaR forecasts to evaluate the models performance 

in-sample, the model parameters are estimated using the entire in-sample 
data. These parameters are then used to make the one-day-ahead VaR 
forecasts for all the in-sample data points. The evaluation of the forecasts is 

made in accordance with the above methodology, and is a method of back-
testing the models performance.  

When evaluating the models in-sample there are, in addition to VaR 

validation through back-testing, other criteria that can be investigated. 
Although it is regarded as common practice to choose the model with the 
highest log-likelihood value, this can be misleading as the value will be higher 

the more coefficients are included in the model. A way to mitigate this 
problem is to evaluate the information criteria (Appendix V). These criteria 
incorporate a trade-off between including additional variables and increasing 

the log-likelihood value. If the inclusion of more parameters does not increase 
the information in the model, the information criteria will increase. 
Consequently one wishes to minimize the information criteria to assess the 

models, and thereby choose between the models based on the information 
criteria with the lowest values. 

Another way to compare the in-sample models is by evaluating the post-

estimation tests, which consist mainly of testing the validity of the error terms. 
The post-estimation tests consists of the Portmanteau test on the error and 
squared error terms, the sign bias test, the Nyblom stability test and the 

adjusted Pearson goodness-of-fit test (Appendix V).   

5.4.2 Out-of-Sample Evaluation with One-Day Forecasts 

While in-sample evaluation, or back-testing, is performed on data used to 
estimate the model, out-of-sample evaluation is made on the out-of-sample 
observations. By validating the model out-of-sample, the models performance 

is assessed on observations not included in the model estimation, which makes 
the evaluation of the model’s performance more realistic. In evaluating the 
out-of-sample model performance, the same failure rates for short and long 

positions defined previously are used, together with the DQT and Kupiec LR 
test. 
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OxMetrics™ provides a code for out-of-sample model validation with one-day-
ahead VaR forecasts; however, this code uses an expanding window with re-

estimation of the model every 50 days. It is believed that a fixed length rolling 
window with daily re-estimations is more suitable, therefore a modified code in 
OxMetrics was made to implement these changes. The steps in the out-of-

sample one-day-ahead VaR forecasts are as follows: the respective conditional 
heteroskedasticity model is constructed on the in-sample data, i.e. until time t. 
Then the one-day-ahead VaR prediction for day t+1 is calculated. This VaR 

prediction is compared to the observed return for short and long positions, 
and the result is stored. For the next iteration the parameters in the model are 
re-estimated using the same amount of observations, less the first observation 

in the in-sample period, and including the observation for day t+1 in the out-
of-sample data. This model produces new VaR predictions for day t+2 and 
stores them. The process is repeated until the model reaches the end of the 

out-of-sample period. The models’ forecasting capabilities are then evaluated 
by assessing the failure rates in the respective percentiles. 

5.4.3 Out-of-Sample Evaluation with 5, 10 and 20 Day Forecasts 

To make a final assessment of the value of modeling and forecasting with and 
without determinants, a Monte Carlo simulation is performed. Due to the 

complexity in these forecasts through approximately 18 million random draws, 
it is critical to choose one of the conditional volatility models before 
performing the model evaluation. The model believed to be the best, both in- 

and out-of-sample, is therefore chosen before conducting these forecasts.  

To assess the accuracy of the out-of-sample forecasts 5, 10 and 20 days-ahead 
(h = 5, 10 and 20) VaR-levels are Monte Carlo simulated. These VaR levels 

are compared to the actual h-day returns using the Kupiec LR test. Following 
Alexander (2008a), the simulated h-day VaR predictions are generated in the 
following manner: 

1. The parameters in the conditional volatility model  are estimated for 
the sample ending at time t 

2. The return for day t+1 is simulated using a random draw of z from 
the predefined distribution: 

1 1 1 1t t t tr zµ σ+ + + += +  Eq. 5.9 

3. The conditional variance for day t+2 is then calculated using the 
previously estimated conditional volatility model: 

( )22 2
2 1 1 1t t t tW zσ α σ βσ+ + + += + +  Eq. 5.10 

4. Steps 2 and 3 continue until return for day t+h has been simulated  
5. The simulation procedure is carried out 10,000 times and the h-period 
return is calculated for each of the simulations 
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6. From the distribution of the 10,000 h-period returns, the required VaR 
levels are calculated 

7. The conditional volatility model is rolled forward h days and steps 1-6 
are repeated 

8. Steps 1-7 are repeated until the end of the out-of-sample period is 
reached 

9. The time series of VaR-levels is then compared to the actual h-day 
returns series using the Kupiec LR test 

Due to the limited amount of out-of-sample observations available, not all of 
the percentiles used in the in- and out-of-sample evaluations are tested for. As 
the 20 day forecasts only allow for 37 observations in the out-of-sample period, 

the Kupiec LR test is only applied to the 25th and the 10th percentile. Similarly, 
the 10 day forecasts test the 25th, 10th and 5th percentiles, while the 5 day 
forecasts test the 25th, 10th, 5th and 2.5th percentiles. This yields an expected 

number of observations in the smallest percentile for each forecast length to be 
about 3-4 observations, regarded as sufficient to attain reasonable estimates 
for the failure rates. The procedure described above, less step 7-9, can be 

utilized to provide long term forecasts for returns and volatility.  

The out-of-sample evaluation with 5, 10 and 20 day forecasts is also performed 
when determinants are included, using the following expression for "  in 

Eq. 5.7: 

10

1

1 i i
i

W ln Xω δ
=

 = + + 
 
∑  Eq. 5.11 

where �# are the determinants used throughout this paper. This requires that 
the determinants, except the dummy variables, are simulated before included 
in the conditional volatility equation. This is done by first assuming a 

Gaussian error distribution for the determinants. For a detailed description on 
the simulation process see Appendix VII. 

The oil and S&P 500 volatility estimates are calculated using vanilla GARCH 

models due to the presence of volatility clustering in the squared returns 
(Appendix III). These models are in turn used to obtain volatility forecasts. 
Random z-values are drawn from the Gaussian distribution, which are used to 

calculate the daily oil and S&P 500 return from the mean equation of the 
conditional volatility model. Estimates for the volatility for day ℎ�%
  are 
obtained by using the innovation term in the volatility equation. This 

procedure is repeated until estimates for the oil and S&P 500 volatility and 
returns for an entire year are produced. 

Since the stock and production difference are dependent on what has been 

stored and produced in recent time, an AR(1)-specification should be used.28 
First, the parameters and residuals in the regression equation are estimated, 

                                     
28 The dependencies on past information can be seen in Appendix III 
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and the distribution for the residuals is obtained by using the residuals mean 
and standard deviation from the regression equation in the Gaussian 

distribution. Random z-values drawn from this distribution are used to 
simulate the innovation terms, which are then inserted into the regression 
equation to simulate the determinants.  

Although winter appears to exhibit larger differences in degree days 
(Appendix III), an i.i.d. property is assumed due to the random nature of 
temperature; hence the variable can be drawn from an identical distribution 

each day without considering past information. Sample mean and standard 
deviation are estimated, and randomly drawn z-values from the Gaussian 
distribution are included in the regression equation to find estimates for the 

degree day difference. The squared value are then stored for use in the natural 
gas volatility simulation as a representation of the squared degree day 
difference. 
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Chapter 6  

Results 

This section consists of two main parts. First, the results and an evaluation of 
the OLS regression are presented, followed by the results and evaluation of the 
conditional volatility models.     

6.1 OLS Results 

The purpose of this analysis is to establish a quantitative foundation when 
discussing the market factors. It will be used in the discussion of the 
determinants’ influence on natural gas volatility in chapter 8, together with 

the results from the conditional volatility models. The results from this 
regression are presented in the table below. 

Table 6: Results from the OLS regression on the in-sample period show a high level of statistical 

significance for most of the determinants 

 

 

Proxy Coefficient t-value
Constant 20.7613*** (24.2)
Oil vol (lag 1) -0.3006*** (-2.75)
SP vol (lag 1) 0.363*** (2.6)
DD diff  sq (lag 1) 0.055*** (3.33)
Abs stock diff  (lag 1) 27.002*** (11.8)
Abs prod dif f (lag 1) -6.3918 (-1.29)
Spring -14.7604*** (-16.2)
Summer -10.4926*** (-13.3)
Winter 1.2145 (1.42)
Update -0.0326 (-0.05)
Monday -0.5286 (-0.73)

OLS

The t-values are given in parentheses. *** indicates a significance 
level of 1 %, ** indicates a significance level of 5 % and * indicates a 
significance level of 10 %
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6.2 OLS Model Evaluation 

The correlation matrix in Table 7 can be used to assess potential 
multicollinearity issues between the independent variables.  

Table 7: Correlation matrix (excluding dummy variables), indicating possible multicollinearity  

 

Multicollinearity is highest between the volatilities for oil and S&P 500. The 

severity of potential multicollinearity is evaluated by quantification through 
the variance inflation factor (VIF)29, found in Table 8. This indicates that 
multicollinearity is not sufficiently high to require a re-estimation of the model.  

Table 8: The VIF suggest that multicollinearity does not pose as a severe problem 

 

Table 9 reveals that the independent variables are jointly significant. 

Furthermore, the tests for normality, homoscedasticity and functional form 
fail, implying that the assumptions for BLUE30 do not hold. As a consequence, 
the OLS estimation is flawed; however, since this analysis is only regarded as a 

supplement to the determinant analysis in the conditional volatility models, 
further investigation is not warranted. 

Table 9: Regression statistics from the OLS estimation rejecting the BLUE assumptions 

 

                                     
29 VIF is calculated on the in-sample period only and should be below 4 
30 Best Linear Unbiased Estimator 

Oil vol SP vol DD diff sq Abs stock diff Abs prod diff
Oil vol 1 0.5981 0.0485 0.1334 0.0915
SP vol 0.5981 1 -0.0325 -0.0855 0.0682
DD diff  sq 0.0485 -0.0325 1 0.0496 -0.0412
Abs stock diff 0.1334 -0.0855 0.0496 1 -0.1121
Abs prod dif f 0.0915 0.0682 -0.0412 -0.1121 1

Determinant R-squared VIF Severity
Oil vol 0.42 1.71 Low
S&P vol 0.41 1.68 Low
DD diff  sq 0.16 1.19 Low
Abs stock diff 0.33 1.49 Low
Abs prod dif f 0.03 1.03 Low

R^2 0.1566
Adj.R^2 0.1539
# of  parameters          11
Joint signif icance 58.13 [0.0000]**
Normality test 11054 [0.0000]**
Hetero test 10.25 [0.0000]**
Hetero-X test 8.28 [0.0000]**
RESET23 test 12.51 [0.0000]**
The p-values are given in brackets. *** indicates a 
significance level of 1 %, ** indicates a significance 
level of 5 % and * indicates a significance level of 10 %

Descriptive statistics and tests
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6.3 Conditional Volatility Model Results 

In accordance with the methodology, several initial evaluations were 
conducted concerning model specifications in order to reduce the amount of 

alternative models. These evaluations showed that the preferred lags for all 
models without determinants were one for both the innovation term and the 
lagged volatility.31  The AR(1)-term is always significant and improves the 

information criteria, implying that the model is better when an AR(1)-term is 
included. Although the ARCH-in-mean effect is significant in all six models, 
the information criteria showed mixed results, hence the term was excluded. 

Due to the leptokurtic properties observed in the returns, a student-t error 
distribution is assumed, and used for all models except for the EGARCH 
which only converge with the skewed student-t error distribution. For further 

details on these preliminary results, see Appendix IV.   

Table 10: The in-sample estimations without determinants display a high level of statistical 

significance in the model-specific coefficients across most models 

 

Table 10 shows that most coefficients are statistical significant at a 5 % level. 
The exceptions are the constant in the mean equation, the alpha and skewness 
coefficient in EGARCH, and the asymmetry coefficient in GJR.  

                                     
31 (p,q)=(1,4) also performed well, but since this did not add any additional information to the models 

(p,q)=(1,1) were preferred as this is easier to estimate. Additionally, the EGARCH-model only 
converges for a few combinations 

RiskMetrics GARCH EGARCH GJR APARCH IGARCH
µ 0.0712 0.0712 0.1045* 0.0827 0.0963* 0.0739

(1.16) (1.31) (1.84) (1.52) (1.79) (1.37)

AR(1) -0.0496*** -0.0476*** -0.0458** -0.049*** -0.0455*** -0.0478***
(-2.71) (-2.72) (-2.15) (-2.79) (-2.58) (-2.81)

ω 0.3894*** 2.7219*** 0.3905*** 0.0782*** 0.2512***
(4.16) (9) (4.07) (2.94) (4)

α 0.06 0.0888*** 0.1383 0.1067*** 0.0911*** 0.1039***
(7.79) (0.39) (6.13) (9.33) (8.99)

β 0.94 0.8907*** 0.9745*** 0.8901*** 0.9103*** 0.8961
(71.4) (181.7) (69.09) (98.28)

γ -0.0341* -0.1865**
(-1.67) (-2.28)

θ1 0.0251**

(2.02)

θ2 0.1562***

(3.03)

δ 0.9402***
(5.71)

ν 6.3727*** 5.8762*** 6.0556*** 5.8981*** 5.9715*** 5.2491***
(11.85) (9.08) (9.18) (9.1) (9.16) (9.97)

Skewness 0.0058
(0.23)

The t-values are given in parentheses. *** indicates a significance level of 1 %, ** indicates a 
significance level of 5 % and * indicates a significance level of 10 %
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Table 11: The in-sample estimations with determinants display a varying degree of statistical 

significance for the determinants 

 

RiskMetrics GARCH EGARCH GJR IGARCH
µ 0.0788 0.0849 0.1236** 0.0926* 0.0864

(1.43) (1.54) (2.15) (1.68) (1.57)

Oil ret (lag 1) -0.0628** -0.0625** -0.0681*** -0.0626** -0.061**
(-2.56) (-2.53) (-2.87) (-2.54) (-2.48)

S&P ret (lag 1) 0.0725 0.0668 0.089* 0.0674 0.0696
(1.5) (1.39) (1.88) (1.41) (1.45)

AR(1) -0.033* -0.0312* -0.0303 -0.0323* -0.0329*
(-1.85) (-1.68) (-1.57) (-1.73) (-1.85)

ω 0.3368 2.8816*** 0.3118 -0.2383
(0.83) (10.23) (0.76) (-0.83)

Oil vol (lag 1) -0.0199 -0.0242 -0.0237 -0.0218 -0.0197
(-1.47) (-1.08) (-1.37) (-0.97) (-1.06)

S&P vol (lag 1) 0.0383** 0.0547* 0.0266 0.0533* 0.0422*
(2) (1.73) (1.14) (1.7) (1.65)

Abs stock diff  (lag 1) 0.1668 0.5117 0.8891 0.5009 0.1559
(0.98) (1.5) (1.61) (1.46) (0.62)

Abs prod dif f (lag 1) -0.2203 0.1066 0.1802 -0.0511 -0.0629
(-0.46) (0.13) (0.17) (-0.06) (-0.09)

DD dif f sq  (lag 1) -0.003 -0.0032 -0.0019 -0.0027 -0.0038
(-0.79) (-0.58) (-1.07) (-0.48) (-0.79)

Spring -0.3904*** -0.9094*** -0.7836*** -0.8826*** -0.4096***
(-3.73) (-3.31) (-4.07) (-3.17) (-2.67)

Summer -0.1873 -0.5974** -0.3455** -0.5512** -0.2162
(-1.63) (-2.39) (-2.3) (-2.19) (-1.36)

Winter -0.3897*** -0.4965** -0.041 -0.4746** -0.3153*
(-2.91) (-2.2) (-0.27) (-2.12) (-1.7)

Update 1.0764 1.9955** 0.2669*** 2.0317** 2.0113**
(1.46) (2.33) (3.69) (2.38) (2.16)

Monday 1.4859** 2.8703*** 0.4565*** 2.7179*** 2.3287***
(2.05) (3.43) (5.73) (3.2) (2.74)

α 0.06 0.0687*** -0.154 0.0822*** 0.0938***
(5.42) (-0.59) (4.29) (6.5)

β 0.94 0.8823*** 0.9715*** 0.8827*** 0.9062
(37.64) (132.9) (35.95)

γ -0.0247
(-1.17)

θ1 0.0364**

(2.54)

θ2 0.1706***

(3.12)

ν 4.8001*** 6.1575*** 6.9631*** 6.1667*** 4.9426***
(9.5) (8.5) (7.78) (8.54) (9.2)

Skew ness 0.0192
(0.74)

The t-values are given in parentheses. *** indicates a significance level of 1 %,                  
** indicates a significance level of 5 % and * indicates a significance level of 10 %
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Table 11 shows that the AR(1)-term in the mean equation exhibits weaker 
statistical significance compared to the models without determinants. This 

may be due to the inclusion of lagged returns for the oil and S&P 500 in the 
mean equation. The S&P 500 lagged return shows none or poor levels of 
statistical significance, while the lagged oil return is statistical significant in all 

models at the 5 % level. The remaining model-specific coefficients show a high 
level of statistical significance. The exceptions are alpha and skewness 
coefficients in EGARCH, and the asymmetry coefficient in GJR.  

6.4 Conditional Volatility Model Evaluation  

Evaluation of the models was done considering four different aspects. First, an 
evaluation of the models based on the explanatory power was performed 
followed by post-estimation tests to assess the validity of the error terms. 

Finally, in-sample and out-of-sample forecasting capabilities were evaluated.  

6.4.1 Explanatory power 

Based on the information criteria and the log-likelihood values for the models 
without determinants, presented in Table 12, the EGARCH skewed student-t 
model can be regarded as the best model as it has the highest log-likelihood 

values and lowest information criteria. APARCH is the next best performer, 
indicating that the asymmetric models outperform the symmetric models. In 
addition, the integrated models have the poorest performance, suggesting that 

the returns are stationary, in line with the ADF test (Table 4).  

To assess whether the student-t distribution is preferred over the skewed 
student-t distribution, a comparison of the six models for both distributions 

was undertaken based on log-likelihood values and information criteria. Table 
12 shows that there is very little difference between the log-likelihood values 
for the different distributions; however, the AIC and BIC favors the student-t 

distribution for all models. In addition, the skewness coefficient is always 
insignificant when using the skewed student-t distribution. This implies that 
the student-t is the preferred distribution, except for EGARCH due to 

convergence issues.   

Table 12: Comparing the in-sample models without determinants suggest that EGARCH holds 

the largest explanatory power, and that the student-t error distribution is preferred over the 
skewed student-t distribution  

 

RiskMetrics GARCH EGARCH GJR APARCH IGARCH
Log-L -8533 -8502.7 no conv. -8501.2 -8489.7 -8506.5
AIC 5.43347 5.41612 no conv. 5.41577 5.40908 5.41791
BIC 5.439252 5.427681 no conv. 5.429252 5.424493 5.427546
Log-L from skew ed -8533 -8502.7 -8486.3 -8501.2 -8489.6 -8506.5
AIC from skew ed 5.4341 5.41676 5.40756 5.41639 5.4097 5.41854
BIC from skew ed 5.44181 5.43024 5.42489 5.4318 5.42704 5.43009
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When including determinants, APARCH does not converge for either of the 
distributions, and EGARCH still only converge for the skewed student-t 

distribution. Once again the EGARCH is the best performer based on log-
likelihood values and information criteria. The comparison between the 
different distributions yield the same results as before: the student-t 

distribution marginally outperforms the skewed student-t distribution.  

Table 13: Comparing the in-sample models with determinants suggest that EGARCH holds the 

largest explanatory power 

 

6.4.2 Post-Estimation Tests 

The results from the residual based test without determinants are presented in 

Table 14. The Portmanteau tests32 are performed using 15 and 50 lags, where 
the amounts of lags used are based on Engle (2001) and common procedure in 
econometrical papers. The test shows that there is no residual serial 

correlation in the error or squared error terms, implying that the error 
distribution is correctly specified. According to Serletis and Gogas (1999) 
insignificant Q-statistics for the error and squared error terms indicates that 

the models captures much of the persistence in the volatility. Furthermore, 
there is no evidence of volatility clustering in the error terms as the squared 
error terms are not serially correlated. 

The sign bias test is used to evaluate if there are any asymmetric effects in the 
error terms. As seen in Table 14, this is not the case for most models without 
determinants, except for EGARCH where the asymmetric effects in the error 

terms are significant at the 5 % level.  

For the Nyblom stability test the joint statistic is reported. These values are 
evaluated against asymptotic critical values at a 5 % confidence level 

(Appendix V). The Nyblom stability test shows that the stability of the 
parameters cannot be rejected, indicating that the parameters are stable. 

In line with Malo and Kanto (2005) the Adjusted Pearson goodness-of-fit test 

is used to check if the error distribution is correctly specified. The number of 
cells to use in this test is chosen on the basis of König and Gaab (1982) who 
state that the appropriate number of cells equals the number of observations 

to the power 0.4, which in this case equals ~25 cells. The null hypothesis of 
correctly specified error terms is rejected at a 5 % confidence level in 

                                     
32 Also referred to as the Q-statistics and Box-Pierce statistics 

RiskMetrics GARCH EGARCH GJR IGARCH
Log-L -8492.3 -8471.6 no conv. -8470.7 -8486.3
AIC 5.41521 5.40392 no conv. 5.40404 5.41264
BIC 5.44411 5.4386 no conv. 5.44064 5.44539
Log-L f rom skew ed -8492.1 -8471.5 -8437.5 -8470.7 -8486
AIC from skew ed 5.41575 5.40454 5.38417 5.40463 5.41309
BIC from skew ed 5.44657 5.44114 5.42462 5.44316 5.44777
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RiskMetrics, GARCH, GJR and IGARCH. For EGARCH and APARCH the 
distribution of the error terms is correctly specified.  

On the basis of the mentioned tests, it is concluded that the models without 
determinants will work satisfactory in the estimations; however, due to the 
adjusted Pearson goodness-of-fit test the EGARCH and APARCH are 

preferred. It should be noted that both show signs of asymmetry in the error 
terms; the former at a 5 % level of significance and the latter at a 10 % level. 

Table 14: Post-estimation tests for the models without determinants favors EGARCH and 

APARCH 

 

Evaluating the validity of the error terms for the model with determinants in 
Table 15, all models are correctly specified according to the Portmanteau 

tests, which exclude volatility clustering in the error terms. In addition, the 
sign bias test shows no indication of asymmetric effects in the error terms at 5 
% significance, which is an improvement for the EGARCH model when the 

determinants were not included. The Nyblom stability test statistics indicate 
that the coefficients for all models are stable through time. In contrast to the 
models without determinants, the adjusted Pearson goodness-of-fit test shows 

that the error distribution is correctly specified for all models, which is better 
than for the models without determinants. This indicates that the addition of 
determinants to the conditional variance equations acts as an improvement in 
terms of validity in the error terms.  

Table 15: Post-estimation tests for models with determinants indicate that all models are 

correctly specified 

 

RiskMetrics GARCH EGARCH GJR APARCH IGARCH
Q(15) [0.806] [0.8] [0.706] [0.789] [0.696] [0.804]
Q(50) [0.735] [0.634] [0.487] [0.59] [0.471] [0.678]
Q-sq(15) [0.319] [0.537] [0.1]* [0.47] [0.108] [0.502]
Q-sq(50) [0.754] [0.494] [0.176] [0.358] [0.166] [0.504]
Sign-Bias Test [0.298] [0.163] [0.036]** [0.244] [0.071]* [0.368]
Nyblom test 0.476 1.412 1.754 1.397 1.212 1.238
Adj Pearson (25) [0.032]** [0.03]** [0.538] [0.046]** [0.474] [0.021]**
*** indicates a significance level of 1 %, ** indicates a significance level of 5 % and * indicates a 
significance level of 10 %

RiskMetrics GARCH EGARCH GJR IGARCH
Q(15) [0.734] [0.652] [0.689] [0.634] [0.742]
Q(50) [0.701] [0.519] [0.483] [0.488] [0.692]
Q-sq(15) [0.134] [0.223] [0.181] [0.189] [0.29]
Q-sq(50) [0.829] [0.4] [0.101] [0.318] [0.632]
Sign-Bias Test [0.078]* [0.072]* [0.186] [0.09]* [0.328]
Nyblom test 3.385 3.904 4.381 3.944 3.327
Adj Pearson (25) [0.624] [0.454] [0.281] [0.176] [0.122]
*** indicates a significance level of 1 %, ** indicates a significance level of 5 % and * 
indicates a significance level of 10 %
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6.4.3 In-Sample Evaluation with One-Day Forecasts 

In terms of the models’ forecasting capabilities, the statistics from the DQT 
and the Kupiec LR test are assessed for all six models with and without 
determinants for in-sample VaR forecasting one-day-ahead. If the models are 

able to describe the data in a satisfactory manner, the p-values should be 
larger than 0.05 and the null hypothesis that the empirical failure rate  ! is 
equal to the VaR level � is not rejected. The entire test results are reported in 

Appendix VI. 

Table 16 shows that all the models without determinants perform satisfactory 
in the one-day-ahead VaR forecasts; however, IGARCH and RiskMetrics 

underperform the other four models. The former fails in the 1st percentile for 
long positions in both tests, whereas the latter fail in one long position, and in 
several short positions.  

Table 16: DQT and Kupiec LR test for the models in-sample without determinants disfavor the 

integrated models 

 

The in-sample forecasting results with determinants are similar to those 
without determinants. The table below shows that EGARCH, GJR and 

GARCH are very good in one-day-ahead VaR forecasts, whereas the GARCH 
model only fails in the 5th percentile for long positions in the DQT. 
RiskMetrics and IGARCH fail several times, mostly for the long positions. 

Summarized, the inclusion of determinants makes RiskMetrics slightly better, 
and IGARCH and GARCH slightly worse. The remaining models are 
unaffected.  

Table 17: DQT and Kupiec LR test for the models in-sample with determinants disfavors the 

integrated models 

 

6.4.4 Out-of-Sample Evaluation with One-Day Forecasts 

In this section the models are evaluated based on their out-of-sample VaR 
forecasting capabilities (for detailed test summaries see Appendix VI). When 
determinants are not included EGARCH only fail for two of the test results 

reported, making it the best performing model. The model is good in 
describing all quantiles in the Dynamic Quantile Test, but in the Kupiec LR 
test it fails in the long positions for 25th and 2.5th percentile. This model is 

closely followed by the RiskMetrics student-t model, which fails in the long 

RiskMetrics GARCH EGARCH GJR APARCH IGARCH
Kupiec LR 3/10 0/10 0/10 0/10 0/10 1/10
DQT 2/10 0/10 0/10 0/10 0/10 1/10
Total 5/20 0/20 0/20 0/20 0/20 2/20

RiskMetrics GARCH EGARCH GJR IGARCH
Kupiec LR 3/10 0/10 0/10 0/10 3/10
DQT 1/10 1/10 0/10 0/10 2/10
Total 4/20 1/20 0/20 0/20 5/20
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positions in the 25th percentile for both tests, and the long position in the 10th 
percentile in the DQT test. The remaining models fail mostly for long 

positions.  

Table 18: DQT and Kupiec LR test for the models out-of-sample without determinants favors 

EGARCH and RiskMetrics 

 

In the out-of-sample forecasts with determinants EGARCH fail for long 

positions in the 25th and 10th percentile for the Kupiec LR test and DQT, 
respectively. GARCH and GJR fail for long positions in the 25th, 5th and 2.5th 
percentiles for the Kupiec LR test33, and the integrated models fail in several 

of the percentiles, long positions in particular. 

Table 19: DQT and Kupiec LR test for the models out-of-sample with determinants disfavor the 

integrated models 

 

6.4.5 Out-of-Sample Evaluation with 5, 10 and 20 Day Forecasts 

The previous sections indicate that the EGARCH model is the best 
performing model based on explanatory power, post-estimation tests and in- 

and out-of- sample forecasting both with and without determinants. As a 
consequence, only the EGARCH model will be used to evaluate the 
forecasting capabilities for 5, 10 and 20 day forecasts.  

Table 20, 21 and 22 show the results from the rolling 5, 10 and 20 day 

forecasts performed using a Monte Carlo simulation. The Kupiec LR tests 
show that none of the forecasted VaR-levels have failure rates significantly 
different from the theoretical failure rates. This implies that EGARCH 

produces correct forecasts of the simulated VaR-levels for all quantiles and 
forecasting horizons. 

The accuracy of these results is questioned as the out-of-sample sample size 

only allows for 150, 75 and 37 observations for 5, 10 and 20 day-ahead 
forecasts, respectively. This implies that the allowable deviation between the 
theoretical and the empirical failure rate is quite large. The empirical failure 

rate for the 10th percentile for the 20-day forecasts could be as high as 27 % 
before rejecting the null of correctly forecasted VaR-level. As a result, 
inspection of the simulated VaR-levels has been carried out, which shows that 

                                     
33 APARCH does not converge when including determinants in the out-of-sample VaR forecasts 

RiskMetrics GARCH EGARCH GJR APARCH IGARCH
Kupiec LR 1/10 4/10 2/10 4/10 3/10 5/10
DQT 2/10 2/10 0/10 3/10 2/10 3/10

Total 3/20 6/20 2/20 7/20 5/20 8/20

RiskMetrics GARCH EGARCH GJR IGARCH
Kupiec LR 4/10 3/10 1/10 3/10 6/10
DQT 1/10 0/10 1/10 0/10 5/10

Total 5/20 3/20 2/20 3/20 11/20
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the short positions’ VaR-levels are overestimated for the 25th and 10th 
percentile, and for most forecast lengths, implying that the actual return does 

not exceed the simulated VaR-levels enough times. The trend for the long 
position simulations is opposite, where the simulated VaR-levels are 
underestimated, except for the 5th and 2.5th percentile. In addition, the 

underestimation of the long positions’ central quantiles, and the 
overestimation of the short positions’ central quantiles, suggests that the 
models VaR estimates are skewed compared to the actual VaR-levels. 

When comparing the theoretical and empirical failure rates, it is evident that 
there are mixed results. When including determinants the forecasting 
performance is better in long positions for the 5-day-ahead forecast and in two 

percentiles in the 10-day-ahead forecast. When determinants are not included 
the forecasting performance is better in short positions for the 5-day-ahead 
forecast, and for long positions in the 20-day-ahead forecast. Consequently, 

comparing the failure rates proves inconclusive, which is a common problem in 
econometrics as one GARCH model rarely performs well on all criteria 
evaluated. Still, one can conclude that EGARCH performs satisfactory with 

and without determinants for 5, 10 and 20 day-ahead forecasts. 

Table 20: The Kupiec LR test for 5 day forecasted VaR-levels show that EGARCH performs 

best with determinants (best performance in bold) 

 

Failure rate Kupiec LR p-value Failure rate Kupiec LR p-value

2.5 % 1.3 % 0.437 0.51 2.0 % 0.072 0.79

5 % 3.3 % 0.429 0.51 5.3 % 0.015 0.90

10 % 12.0 % 0.274 0.60 12.0 % 0.274 0.60

25 % 32.7 % 1.924 0.17 32.0 % 1.611 0.20

25 % 20.0 % 0.912 0.34 18.0 % 1.829 0.18

10 % 8.0 % 0.309 0.58 7.3 % 0.562 0.45

5 % 4.0 % 0.147 0.70 4.0 % 0.147 0.70

2.5 % 2.7 % 0.007 0.93 2.7 % 0.007 0.93
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Table 21: Kupiec LR test for 10 day forecasted VaR-levels show that EGARCH performs best 

with determinants (best performance in bold) 

 

Table 22: Kupiec LR test for 20 day forecasted VaR-levels show that EGARCH performs best 

without determinants (best performance in bold) 

 

Failure rate Kupiec LR p-value Failure rate Kupiec LR p-value

5 % 5.3 % 0.007 0.93 5.3 % 0.007 0.93

10 % 10.7 % 0.016 0.90 9.3 % 0.016 0.90

25 % 24.0 % 0.018 0.89 25.3 % 0.002 0.97

25 % 24.0 % 0.018 0.89 24.0 % 0.018 0.89

10 % 10.7 % 0.016 0.90 10.7 % 0.016 0.90

5 % 10.7 % 1.686 0.19 8.0 % 0.526 0.47

10 day forecast

Lo
ng

Without determinants With determinants
S

ho
rtV
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ve
l

Failure rate Kupiec LR p-value Failure rate Kupiec LR p-value

10 % 10.8 % 0.011 0.91 13.5 % 0.201 0.65

25 % 27.0 % 0.035 0.85 32.4 % 0.447 0.50

25 % 16.2 % 0.726 0.39 16.2 % 0.726 0.39

10 % 5.4 % 0.445 0.50 5.4 % 0.445 0.50

Lo
ng

S
ho

rt

20 day forecast

Without determinants With determinants

V
aR

-le
ve

l



 

44 of 88 

Chapter 7  

Model Discussion 

7.1 Model Specification 

Based on descriptive statistics (section 4.2), a GARCH specification to 
describe the natural gas volatility appears appropriate due to the inherent 

nature of the returns and squared returns. This is also evident from the post-
estimation tests, where the results from the Portmanteau and Adjusted 
Pearson goodness-of-fit tests imply that the distributions for the error terms 

are correctly specified, which in turn suggests that the models captures much 
of the persistence in the volatility. As the AR(1)-term show statistical 
significant results in most models, it is also concluded that the inclusion of this 

term improves the models due to the models’ increased explanatory power.  

The results reveal that an asymmetric response is present in the natural gas 
returns, implying that positive and negative returns have different impact on 

the natural gas volatility. For the models without determinants, APARCH, 
GJR and EGARCH show statistical significant asymmetry coefficients. The 
signs of the asymmetry coefficients, together with the alpha coefficients in the 

EGARCH and APARCH models, imply that positive returns is source for a 
higher volatility. This result is anticipated, as natural gas markets usually 
exhibit an inverse leverage effect due to the convexity of marginal costs in 

natural gas production (Bermejo-Aparicio, Moreno et al. 2007). For the 
models with determinants, there are only two asymmetrical models to 
compare. These display mixed results for the asymmetry effect, implying that 

some of this effect is captured by the determinants. 

When constructing conditional volatility models on commodity markets, the 
Nyblom test for parameter stability often fails. Among others, Naryan and 

Naryan (2007) encounter inconsistency in evidences of asymmetry and 
persistency when examining sub-samples in their data. When the Nyblom test 
fails, the coefficients are unstable and the model may be miss-specified 

especially in regards to sample size. This can have significant effects on the 
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VaR forecasting accuracy, which will be especially apparent on the out-of-
sample VaR forecasts. As the Nyblom stability test show that the parameters 

are stable in the in-sample models with and without determinants, it is 
concluded that the sample size is not problematic, although quite large. This is 
evident in the out-of-sample forecasts, which performs quite well. An 

improvement could be to consider the individual statistics for the Nyblom 
stability tests.  

7.2 Model Selection 

When considering the models without determinants, EGARCH is the best 

performer based on explanatory power, closely followed by APARCH. These 
two models are also the only models that pass the Adjusted Pearson 
goodness-of-fit test. However, both show signs of asymmetry in the error 

terms, whereas the former at a higher level of significance than the latter, 
which is not present in the other models. In terms of in-sample forecasting 
capabilities, all models perform excellent except for RiskMetrics and 

IGARCH. For the out-of-sample VaR forecasts, EGARCH is best whereas 
RiskMetrics is a close second. 

The models show similar results in terms of significance of the coefficients 

when determinants are included. The explanatory power is highest for 
EGARCH, followed by GJR and GARCH, and the residual based tests 
indicate that all models are correctly specified. EGARCH and GJR are also 

the best models for in-sample VaR forecasts, closely followed by GARCH. In 
the out-of-sample VaR forecasts EGARCH is again the best model, followed 
by GARCH and GJR. 

As the EGARCH model does not impose any restrictions on the coefficients, 
and because it describes the asymmetry effect, it has been preferred by several 
papers studying energy markets (Narayan and Narayan 2007; Alizadeh and 
Talley 2009). Consistent with this paper’s results, Serletis, Apostolos and 

Gogas (1999) find that EGARCH is superior to GARCH in terms of log-
likelihood when evaluating three time series on North American natural gas 
volatility. Similarly, Gogas and Serletis (2010) conclude that an EGARCH 

specification with GED distributed error terms is the model best suited for 
forecasting in daily commodities futures markets. In volatility forecasting for 
crude oil futures, Marzo and Zagaglia (2010) conclude that EGARCH is the 

best model for this market, and is preferred on forecasts, with both a student-t 
and a GED error distribution. Yaffe, Heddy et al. (2008) on the other hand 
find APARCH and RiskMetrics to outperform EGARCH, but since the paper 

investigate the UK natural gas market and use different evaluation criteria, 
the conflicting results are not considered further.   

A drawback with EGARCH when used in this paper is that the alpha 

coefficient is not significant for the in-sample estimations. In addition, the use 
of a skewed student-t error distribution is not favorable as it includes an 



 

46 of 88 

unnecessary skewness parameter, which is insignificant. Also, signs of 
asymmetric effects in the error terms in the EGARCH model without 

determinants suggest that the model does not capture all the asymmetric 
response on volatility. Still, it is concluded that the EGARCH model is the 
overall best model to describe the natural gas price-volatility in the US natural 

gas market due to its superior properties in terms of explanatory power, 
validity in error terms and forecasting capabilities, in addition to support from 
previous empirical research. 

7.3 The Value of Including Determinants 

To conclude whether or not the inclusion of determinants adds explanatory 
value to the models, the models with and without determinants are compared 
using both log-likelihood values and information criteria. When determinants 

are included the log-likelihood values are significantly higher in all models34; 
however, as the inclusion of more parameters usually increases the log-
likelihood value, the information criteria should also be investigated. While the 

AIC are always better with determinants, this is not the case for the BIC. All 
models except EGARCH show that the BIC is worse when the determinants 
are included. Due to conflicting results in the information criteria, inclusion of 

determinants based on explanatory power is inconclusive. An advantage with 
including determinants is that it allows for investigation of how different 
factors affect the natural gas volatility, without a reduction in the models’ 

explanatory power. However, a drawback with the inclusion is the increased 
complexity of model estimations, and potential convergence issues as 
illustrated by the APARCH model.  

When the determinants were included in the in-sample models, the validity of 
the error terms was improved. This is apparent from the adjusted Pearson 
goodness-of-fit test, where the inclusion of determinants made the distribution 
in the error terms valid for all models. Additionally, the errors’ asymmetric 

effect in the EGARCH model was not present when the determinants were 
included. 

In the in-sample VaR forecasts, the inclusion of determinants makes 

RiskMetrics slightly better, and IGARCH and GARCH worse. The remaining 
models however, are unaffected. In the out-of-sample VaR forecasts 
RiskMetrics and IGARCH perform worse when the determinants are 

included, GARCH and GJR perform better, and the EGARCH model is 
unaffected. This implies that the integrated models do not handle the 
inclusion of determinants in a satisfactory manner.  

The long term forecasts showed that the EGARCH models with and without 
determinants performs satisfactory as they pass the Kupiec LR test for all 
percentiles and for all forecasting horizons. However, as noted in section 6.4.5, 

                                     
34 Using 2&'
 − '	(~*�&+( where m is the number of added determinants 
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a visual inspection was necessary due to the small amount of observations, 
which proved to be non-conclusive. This implies that including determinants 

in long term forecasts is not preferred due to the added model complexity. 

A common critique of conditional volatility models is that they have a 
tendency to overestimate the persistency (Lamoureux and Lastrapes 1990). 

Mu (2007) finds that the observed volatility persistence is reduced when 
including determinants into the conditional variance equation, with a 
reduction in half-life by 43 %. This is also evident in our models as seen in 

Table 23. The half-life, which is only dependent on the persistency parameter, 
is reduced by ~59 % when determinants are included. This implies that the 
inclusion of determinants has a significant effect on the speed of which the 

volatility converges to its mean-reverting level. The unconditional variance, or 
long term volatility, is dependent on the expectation of the determinants when 
included, in addition to the persistency parameter.35 This inclusion reduces the 

unconditional variance by ~14 %, implying that the determinants reduce the 
estimated mean reverting level for natural gas (for further details see 
Appendix VIII). 

As stated in Mu (2007) ‘recent literature on volatility persistence suggests that 
the persistence in the conditional variance may be generated by an exogenous 
driving variable that is itself serially correlated.’ This implies that since the 

persistence is partly generated by the determinants, the persistence parameter 
is reduced to what is believed to be a more accurate measure of the 
persistency parameter when determinants are included. Taking this into 
account, and that one of the purposes of modeling is to remove some of the 

persistency, it is believed that the inclusion of determinants improves the 
specification of the models.  

Table 23: The persistence, unconditional volatility and half-life are lower when determinants are 

included 

 

The above considerations show that the answer to whether or not the 

inclusion of determinants adds value to the models depends on the purpose of 
the models. Looking at Figure 13, the inclusion of determinants causes more 

                                     
35 For the volatility of the oil and S&P 500, the long term volatility from the vanilla GARCH models is 
used as the expected values 

GARCH GJR
Without determinants
Persistence (φ) 0.9794 0.9798
Half-life (days) 33.36 34.01
Unconditional variance 18.94 19.36
Annualized standard deviation 68.81 69.57
With determinants
Persistence (φ) 0.9510 0.9525
Half-life (days) 13.8 14.25
Unconditional variance 16.30 16.47
Annualized standard deviation 63.84 64.16
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noise in the conditional volatility estimates, which is believed to be triggered 
mainly by the daily effects as these proved to have the largest effects on the 

natural gas volatility. However, this is not believed to be problematic, and may 
be a more correct specification of the volatility. In regards to the validity of the 
error terms, adding determinants improves some of the models. Neither the 

explanatory power of the models, nor the forecasting capabilities, is 
significantly affected by the inclusion of determinants. It is therefore suggested 
that determinants should not be included for forecasting purposes as this 

makes the model estimations more complex, and do not significantly improve 
the forecasting capabilities. When determinants are included these can provide 
additional information of the effects of external factors on natural gas volatility 

and makes it possible to run scenario analyses, which should be of value to 
market participants. In addition, it is believed that the models with 
determinants give a more accurate measure of the persistency parameter.  

 

Figure 13: The EGARCH model with determinants display more noise in the conditional 

volatility estimates than the EGARCH model without determinants 

With determinants Without determinants 
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Chapter 8  

Determinants Discussion 

Both the OLS analysis and the conditional volatility models are used in 
combination with empirical evidence to describe the determinants’ effect on 
the natural gas volatility. There are several factors where the models disagree 

on significance. Emphasis is put on the conditional volatility models as they 
give a more correct picture of the actual relationship due to the non-linear 
nature of natural gas volatility; however, we believe the OLS analysis may give 

additional insights.  

Table 24: Comparison between the hypothesized and actual effect of the determinants imply 

mixed results depending on the models used36 

 

8.1 Substitutes 

Oil volatility is only significant for the OLS analysis, not for any of the six 

conditional volatility models. This result is similar to Mu (2007) who also 
includes the volatility of oil into the conditional volatility equation of natural 
gas. In addition, the sign of the oil volatility is negative in all models, contrary 

to our original hypothesis.  

                                     
36 Significance at 10 % level in both OLS and conditional volatility models. The number in parentheses 

shows how many of the conditional volatility models that gave significant results for the respective 
determinant.  

Determinant Proxy Hypotheses
Sign Sign Significance Sign Significance

Substitutes Oil vol + - Yes - No
Temperature DD diff  sq + + Yes - No

Economic activity S&P vol + + Yes + Yes (4)
Storage Abs stock diff + + Yes + No

Storage / new s Update + - No + Yes (4)
Production Abs prod diff + - No +/- No
Seasonality Spring - - Yes - Yes (5)
Seasonality Summer - - Yes - Yes (3)
Seasonality Winter + + No - Yes (4)

Monday effect Monday + - No + Yes (5)

OLS GARCH
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An elaborate discussion of why the relationship is different than expected 
could be attempted, but since the results contradicts former empirical 

evidence (Ewing, Malik et al. 2002; Pindyck 2004) it seems more reasonable to 
concur with Villar and Joutz (2006) in that the OLS approach is ‘faulty and 
subject to spurious results’. Division of the in-sample data into two samples 

yields different signs for the oil volatility in the OLS, further undermining the 
result. This could indicate that Ramberg and Parsons’ (2010) argument of the 
existence of a “shifting relationship” between oil and gas is true, but our 

results and methods are not sufficient to draw conclusions on that matter.  

The lagged oil return in the mean equation is negative and significant. The 
autocorrelation figure in section 4.2.1 displays a negative correlation between 

natural gas return and natural gas returns of lag 1. Therefore, the negative 
coefficient for lagged oil return appears to replace the AR(1)-term in the mean 
equation, which is supported by the AR(1)-term’s insignificant coefficient. As 

a result, the correlation between lagged oil return and lagged natural gas 
return is positive, consistent with Mu (2007) and in line with empirical 
research on the relationship between oil and gas prices  (Villar and Joutz 2006; 

Brown and Yücel 2008; Ramberg and Parsons 2010), indicating a relationship 
between these two markets. To explain and describe the relationship between 
natural gas and oil, if any, a co-integration or multivariate conditional 

volatility analysis might be better suited.  

8.2 Temperature 

The proxy for temperature is only significant in the OLS analysis, where it is 
in line with our hypothesis. This contradicts Mastrangelo’s (2007) OLS 

analysis on volatility, where a ratio for heating degree days proves insignificant. 
Since the temperature proxy is insignificant in all the conditional volatility 
models, our hypothesis is not accepted. However, it should be noted that Mu 
(2007) gets significant results when weather shocks are included in the 

conditional variance equation of a vanilla GARCH model. A potential reason 
for the difference in results compared to earlier studies might be attributed to 
the use of a different proxy to measure unexpected changes in temperature, or 

influence from other determinants on the weather proxy. 

8.3 Economic Activity 

In accordance with our original hypothesis, the results from both the OLS 
regression and most of the conditional volatility models indicate a positive 

dependence between the volatility from the S&P 500 and the natural gas 
volatility. This is expected, as the S&P 500 Index represents the systematic 
risk in the market, and changes in this will spill over on other markets. Thus, 

economic activity influences the dynamics of the natural gas market. This 
implies that including the volatility of the S&P 500 in the conditional 
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volatility equation, rather than in the mean equation, is a correct specification. 
To our knowledge, there are no papers that use this as a proxy for economic 

activity in energy commodity markets; as a result our findings are not 
comparable with other empirical evidence. 

Similar to Mu (2007), the results for the S&P 500 returns included in the 

mean equation proves to be statistical insignificant.  

8.4 Storage 

When investigating storage effects, two proxies were employed; the difference 
in stock from average and the release of the weekly update storage report. The 

stock difference has a positive sign in all models, in line with our hypothesis, 
but is only significant in the OLS. Mastrangelo (2007) also investigate the 
storage level’s effect on natural gas volatility in an OLS framework, and find 

that their proxy is positive and statistically significant. This result however, 
cannot be fully compared since they employ weekly storage levels.  

With the weekly update storage report, the market learn about the status of 

the storage levels, and their reaction to these news are expected to increase 
volatility as the trade of futures reacts either to an increase or a decrease in 
storage levels. The publishing of the storage report is statistical significant in 

four out of five conditional volatility models, supporting earlier empirical 
evidence (Murry and Zhu 2004; Mu 2007), while in the OLS it is statistical 
insignificant with a negative coefficient. It should be noted that the coefficient 

for the weekly update storage report has one of the largest coefficients in the 
conditional volatility models. 

Imperfect market information may explain why only one of the storage proxies 

are statistical significant. If this market does not convey perfect information, 
the market participants do not have information of what the current stock 
levels are; hence they may not react on deviations from the historical stock 
levels. Contrary, as they acquire this information when the weekly update 

storage report is released, this is a better proxy of the impact of storage on 
natural gas volatility. Since the storage difference proxy is insignificant in the 
conditional volatility models, it could thus imply that the market does only 

consider weekly storage levels when trading.  

8.5 Production  

The production in the short term is mainly affected by seasonality and 
extreme weather conditions, whereas the former has been eliminated from the 

proxy for production. This proxy is not significant in any of the models, which 
implies that disruptions in production do not affect volatility. This contradicts 
Alterman (2012) who identifies periods of high volatility due to hurricanes. 

However, it should be noted that Alterman (2012) only performs a visual 
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inspection of volatility graphs to establish the relationship between volatility 
and hurricanes, and does not seek to identify if this relationship is causal. As 

severe weather, and especially hurricanes, can be forecasted, market 
participants may expect a change in production before the change occurs. 
Consequently, this proxy may lag the actual change in expectation. An 

improvement could be to use the same proxy a week ahead to describe the 
expected production, or to simply use a dummy for severe weather. Another 
explanation can also be found in Alterman (2012) who suggests that the 

impact of disruption in production have had reduced effect on volatility since 
2005, which implies that production may not have a significant impact on 
volatility since the proxy only considers changes due to disruptions. 

8.6 Seasonality and the Monday Effect 

Consistent with empirical evidence (Serletis and Shahmoradi 2006; 
Mastrangelo 2007; Suenaga, Smith et al. 2008), both the OLS and all 
conditional volatility models show statistical significant seasonality effects. All 

models produce significant results for spring, and both summer and winter 
show significance across most of the models. The coefficients show that spring 
has the lowest volatility, and that all seasons have lower volatility than fall. 

This supports the hypotheses that volatility is lowest during spring and 
summer; however, it contradicts our hypothesis that winter has the highest 
volatility. 

The results from the conditional volatility models are not supported by the 
OLS as no significant difference between fall and winter is exhibited. In a 
similar analysis, Serletis and Shahmoradi (2006) use months as proxies for 

seasonality, finding December and January to hold most volatility. However, 
Mastrangelo (2007) find October and November to have significantly higher 
volatility than January when using an OLS framework. This suggests that the 
volatility in these seasons may vary according to the model and sample used. 

Fall is dominated by inflexibility in storage facilities as market participants 
attempt to buy gas and fill their storage targets for the upcoming winter. In 
addition, the storage levels may be low in the beginning of fall due to 

unusually warm summer seasons. Strain on storage levels can also be caused 
by an early winter season which may heighten demand even further. This 
increased demand in combination with the lingering hurricane season makes 

the fall highly uncertain, which may be why this is the most volatile season. 

Across all the conditional volatility models, the coefficient for the Monday 
effect is positive, significant and has the highest value of all the determinants, 

consistent with our hypothesis and existing literature (Fleming, Kirby et al. 
2006; Serletis and Shahmoradi 2006; Mu 2007). This implies that information 
generated during the weekend is reflected in higher price changes in the gas 

market on Mondays. 
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Chapter 9  

Conclusion and Further Research 

9.1 Summary and Concluding Remarks 

Since its liberalization, the US natural gas market has undergone large 
changes where volatility has played, and still plays, a significant role both in 
terms of future investments and the need to hedge against daily risk. 

Considering that the natural gas market is the second most volatile energy 
market in the US, and the second largest futures market in the world, there is 
limited research on volatility in this market substantiating the need for further 

analysis.  

The purpose of this paper is to find the model that best describes the price-
volatility in the US natural gas market, to establish causes of volatility and to 

forecast in the short term. Six different conditional volatility models were 
applied on natural gas returns based on Henry Hub futures. Factors affecting 
the price-volatility were investigated by including determinants in the 

conditional volatility equation. First, the conditional volatility models were 
estimated in-sample and compared on the basis of their explanatory power 
and the post-estimation tests. Secondly, in and out-of-sample forecasting was 

performed using the DQT and Kupiec LR test to evaluate the models 
forecasting accuracy. The out-of-sample forecasts were performed using a 
rolling window with daily re-estimations, which is believed to be more 

accurate than an expanding window with intermittent re-estimations. Finally, 
simulation of 5, 10 and 20-day-ahead VaR levels was carried out for the best 
performing model, both with and without simulated determinants. This allows 

for testing of the forecasting capabilities using the Kupiec LR test. To the best 
of our knowledge such an extensive forecasting evaluation, and conditional 
volatility forecasts with determinants, have not been documented in this 

market.  
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Based on explanatory power, validity of error terms and forecasting 
capabilities in- and out-of-sample, it is concluded that the EGARCH37 model 

is superior to GARCH, GJR, IGARCH, RiskMetrics and APARCH 38  to 
describe the price-volatility in the US natural gas market, independent of the 
inclusion of determinants. In the 5, 10 and 20-day-ahead forecasts with 

simulated VaR levels EGARCH does not fail for any percentiles in either long 
or short positions. Of the remaining models, APARCH is the overall second 
best model; however, it does not converge when determinants are included. 

GJR and GARCH vary in performance depending on the criteria considered, 
and IGARCH and RiskMetrics are the weakest models, independent of the 
inclusion of determinants. However, in the out-of-sample forecasting without 

determinants RiskMetrics is the best performer after EGARCH. Market 
participants, who usually apply RiskMetrics for hedging purposes, are 
therefore advised to use EGARCH, as this outperforms the other models in 

terms of forecasting and modeling.  

The proxies for economic activity, seasonality and daily effects were the 
determinants that proved to be statistical significant in the conditional 

volatility models. Economic activity has a positive effect, implying that the 
natural gas volatility is positively dependent on systematic risk. Fall exhibits 
the highest volatility, followed by winter, then summer and spring. Monday 

and the weekly update storage report increase the natural gas price-volatility, 
and are shown to have the largest influence on volatility.  

Two main conclusions can be drawn when comparing the results with and 
without determinants; if the aim of the model is short term forecasting, the 

determinants should be excluded as they do not improve the forecasting 
accuracy. Conversely, if the aim is to explain the causes of volatility, the in-
sample evaluation indicates that the inclusion of determinants is a reasonable 

approach. This type of determinant analyses is also a good foundation for 
scenario analyses, and should be of value to market participants.  

There are four main aspects that are believed to make this paper an 

improvement to the existing body of literature. Firstly, it contains updated 
analyses of volatility in the US natural gas market. Secondly, the inclusion of a 
larger number of determinants compared to existing literature is believed to 

strengthen the understanding of the market dynamics. Thirdly, several models 
are assessed in order to find the best suited model for volatility in the US 
natural gas market. Lastly, research on modeling and forecasting issues in 

energy commodity markets is in large limited to oil-related commodities; thus, 
this paper is believed to fill a gap in the literature. 

                                     
37 AR(1)-EGARCH(1,1) with a skewed error distribution 
38  GARCH, GJR, IGARCH, RiskMetrics and APARCH with the student-t error distribution and 
AR(1)-term in the mean equation 
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9.2 Further Research 

For further research, conditional VaR39 could be used in addition to VaR for a 
more robust forecasting evaluation. To increase the accuracy of the forecasts, 

CAViaR model (Engle and Manganelli 1999) could be applied to directly 
model the tails of the distribution. The application of other members of the 
GARCH family might improve the analyses, such as: Fractionally Integrated 

GARCH to account for long memory effects40, Switching GARCH to model 
different regimes, or multivariate GARCH to investigate the relation between 
different US natural gas markets, or between the US and other regional 

natural gas markets. Implied volatility is often argued to be a better measure 
of volatility; therefore, it could be an improvement to include this in the 
analyses.  

The determinants chosen in this paper are important fundamentals of the gas 
market; however, exploration of different proxies for the determinants, or 
inclusion of other determinants, may improve the model performance. Based 

on the knowledge of how the fundamental drivers affect the natural gas 
volatility, long term forecasts through simulation, or scenario analyses, can be 
performed. In addition, our methodology could be used to study different 

markets or future contracts with varying time to maturity.  

  

                                     
39 Also called the expected shortfall 
40 This can be evaluated with the long memory tests by Geweke and Porter-Hudak (1983) or Robinson 
and Henry (1998) 
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Appendix I Pindyck's (2004) Formula 

The formula given is the following: 
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 
=  

 
 Eq. I.1 

��  : the spot price on day t  
�1�  : the price of the nearest futures contract  
�2�  : the price of the next-to-nearest futures contract  

�	�  : the number of days from time t to expiration of the first contract  
�
  : the number of days between the expiration dates for the first and 
second     contracts 

Derivation: 

1 01 tr n
t tF P e ×= ×  Eq. I.2 

( )2 0 12 tr n n
t tF P e × += ×  Eq. I.3 

where r1 is the return between time t and the expiration for the nearest futures 

contract, and r2 is the return between time t and the expiration for the next-
to-nearest futures contract. Assuming a perfect market: 

1 2r r r= =  

From Eq. I.2: 

( )01 tr n
t tP F e− ×= ×   

Insert this into Eq. I.3: 

( ) ( )0 0 12 1 t tr n r n n
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( )12 1 r n
t tF F e⇒ = ×  Eq. I.4 

Using Eq. I.2 together with Eq. I.4 can eliminate the return r: 
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From Figure 14, the actual spot price and the spot price created using 
Pindyck’s formula can be observed. These two series have a high degree of 

correlation which implies that the risk premium in the futures market is low. 
Also, it implies that the rate of return over the period for the two futures is 
approximately equal. This confirms one of the assumptions used in the 

formula, namely that the discount rate, and hence the risk, is expected to be 
the same in the two time periods n	- and n
. 

 

Figure 14: Created spot series vs. actual spot prices41 ($/MMBtu) 

Appendix II Methodology 

II.1 OLS methodology 

The pooled Ordinary Least Squares (OLS) model provides a linear regression 
model by minimizing the errors. The model is simple to understand and to 
implement. The time series for the conditional volatility is estimated using a 

GARCH(1,1) model with a Gaussian error distribution. The following will 
form the basis of the OLS model: 

10
2

1

ˆt i i
i

Xσ α β
=

= +∑   Eq. II.1 

where the summation term includes the determinants. Details on the 
determinants can be found in Appendix III. 

                                     
41 Dates not included due to constraints in natural gas spot price series: 13.jan.94-06.jan.97, 10.mar.00 

and 23.sep.05-06.oct.05. Data not included due to constraints in natural gas created spot price series: 
08.mar.04. 
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II.2 Conditional Volatility Models 

In this section we present the models used in this paper to model the 
conditional volatility. 

II.2.1 The ARCH model 

The ARCH42 model by Engle (1982) can be used whenever one suspects a 
time-varying variance, which can be detected by volatility clustering among 
other things. The parameters in the model are estimated by maximizing the 

log-likelihood value. It uses information set It-1 whose content is known: 

 { }1 1 2t t tI r ,r ,...− − −=  Eq. II.2 

The returns are defined using the information set: 

2
1| ~ ( , )t t t tr I D µ σ−  Eq. II.3 

The conditional mean and variance are defined as: 

1[ | ]t t tE r Iµ −=
  Eq. II.4 

2
1( | )t t tVar r Iσ −=  Eq. II.5 

The distribution D(·) can vary depending on the distribution used for the 
error terms. The error term, or innovation, is defined as: 

2
1| ~ (0, )t t tI Dε σ−  

t trε µ= −  Eq. II.6 

In all GARCH models we can express the error term with the standardized 
variables zt and the standard deviation: 

t t
t

t t

r
z

µ ε
σ σ
−= =

 

t t tzε σ⇒ =  Eq. II.7 

The standardized variables are i.i.d.43 and are considered to have zero mean 

and unit variance: 

1| ~ (0,1)t tz I D−  

With no ARMA process in the mean, the ARCH model is defined as: 

t tr µ ε= +  Eq. II.8 

                                     
42 Auto Regressive Conditional Heteroskedasticity 
43 Independent and identically distributed 
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2 2
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q

t i t i
i

σ ω α ε −
=

= +∑  Eq. II.9 

The coefficients are all assumed to be non-negative: 

0, 0iω α> ≥
 

Brooks and Persand (2002) points out that ARCH rarely have been used in 
recent time, and have been replaced by the Generalized ARCH (GARCH) 

model.  

II.2.2 GARCH 

This Generalized ARCH model comes from the approach based on 
Bollerslev’s (1986) generalization of Engle’s (1982) ARCH model. It contains 
an autoregressive term of the conditional volatility itself, and is defined as 

follows: 

2 2 2

1 1

q p

t i t i j t j
i j

σ ω α ε β σ− −
= =

= + +∑ ∑  Eq. II.10 

To ensure that the conditional variance is positive, we require the following in 
the maximum likelihood estimation of the parameters:  

0, 0, 0i jω α β> ≥ ≥
 

Also, to ensure a covariance stationary process we have: 

1 1

1
q p

i j
i j

α β
= =

+ <∑ ∑  Eq. II.11 

II.2.3 GJR-GARCH 

This model was proposed by Glosten, Jagannathan et.al (1993), and its 
generalized version is given by: 

2 2 2 2

1 1
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. determines the sign and size of the asymmetry effect. In equity returns this 
is typically positive, whereas it is usually negative for commodity markets. 
The second regularity condition is given by � + 
 + 0.5. < 1.  
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II.2.4 IGARCH 

The GARCH models are said to be second order stationary provided that 
� + 
 < 1. Often this sum is very close to unity, and the Integrated GARCH 
(IGARCH) model by Engle and Bollerslev (1986) has the assumption of 

	� + 
 = 1 . This implies that the IGARCH model is not covariance 
stationary. 

2 2 2

1 1

(1 )
q p

t i t i j t j
i j

σ ω β ε β σ− −
= =

= + − +∑ ∑  Eq. II.13 

Even though this model is not covariance stationary, it is still strictly 
stationary with a well-defined non-degenerate limiting distribution (Nelson 

1990).  

II.2.5 RiskMetrics  

This model was invented by the risk management group at J.P. Morgan in 
1994, and is a standard model in the market risk measurement due to its 
simplicity. The model is a variety of the IGARCH model, where the ARCH 

and GARCH coefficients are fixed to 0.06 and 0.94, respectively (Morgan 
1996). Formally, the RiskMetrics model is defined as: 

2 2 2
1 1(1 )t t tσ ω λ ε λσ− −= + − +  Eq. II.14 

where 1 = 0  and 2 = 0.94  when using daily data. This model does not 
require iteratively solving for the parameters using the max-likelihood 
estimation. 

II.2.6 EGARCH 

Due to the complexity in the EGARCH model, (p,q)=(1,1) is used in the 

model descriptions, which is also what is used in this paper. The Exponential 
GARCH model by Nelson (1991) does not require the strict restrictions of the 
coefficients being all positive, and formulates the conditional variance equation 

in terms of the log of the variance. While the log of the variance might be 
negative, the variance will always be positive. This model also uses the 
standardized innovations defined by Eq. II.7. The model specification for 

EGARCH is as follows: 

2 2
1 1ln( ) ( ) ln( )t t tg zσ ω α β σ− −= + +  Eq. II.15 

The function g(z) is defined as: 

1 2( ) (| | [| |])t t t tg z z z E zγ γ= + −  Eq. II.16 

.
 defines the sign effect, while .� defines the magnitude of the asymmetry 
effect. If .
 < 0 , negative shocks will have a larger impact on the future 
volatility than positive shocks of the same magnitude. The expectance of the 
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normalized innovation depends on the unconditional density assumption made 
on the error distributions.  

II.2.7 APARCH 

Due to the complexity in the APARCH model, (p,q)=(1,1) is used in the 

model descriptions, which is also what is used in this paper. This model was 
introduced by Ding, Granger, and Engle (1993), and can be expressed as:  

1 1 1(| | )t t t t
δ δ δσ ω α ε γε βσ− − −= + − +  Eq. II.17 

where 5 > 0 and −1 < . < 1. The δ parameter plays the role of a Box-Cox 
transformation of the conditional standard deviation, and .  reflects the 
asymmetry effect. 

An interesting feature with the APARCH model is that it has many other 
ARCH extensions, some of which are listed below: 

1. If 2δ = , 0γ = and 0β = we get Engle’s (1982) ARCH model 

2. If 2δ = and 0γ =  we get the GARCH model of Bollerslev (1986)  

3. If 1δ = and 0γ =  we get the GARCH model of Taylor (1986) and 

Schwert (1990) 

4. If 2δ =  we get the GJR-GARCH model of Glosten, Jagannathan et. 

al (1993) 

5. If 1δ =  we get the TARCH model of Zakoian (1994) 

6. If 0β = and 0γ =  we get the NARCH model of Bera and Higgins 

(1993)  

7. If 0δ → and we get the Log-ARCH of Geweke (1986) and Pentula 

(1986)  

II.2.8 The Autoregressive Process 

This process is simply that a variable depends on its previous values. An 

Autoregressive (AR) model of order m, denoted as AR(m), can be expressed 
as the following with returns as the variable of interest: 

1

m

t t t i t
i

r rµ ε−
=

= + +∑  Eq. II.18 

II.2.9 Autocorrelation 

The formal definition of autocorrelation is that the returns are not 
independent of previous returns. The autocorrelation function (ACF) is 
defined as follows: 
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, ,

cov( , )t t k
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r t r t k

r rϕ
σ σ

−

−

=
×

 Eq. II.19 

Appendix III Determinants 

III.1 Definition of the determinants 

The volatility of oil (Oil Vol) and the S&P 500 index (S&P vol) are initially 
unobservable. To create proxies for these determinants we have used vanilla 
GARCH models to create an estimate for the volatility for each of the 

determinants, which are used throughout the paper. As this paper focuses on 
natural gas futures, Pindyck’s (2004) formula is also applied to the oil futures 
to create a spot price, yielding comparable time series of oil and natural gas. 

According to hypothesis 5 and 7 in section 3.2 the storage and production 

proxies are to be created in such a manner that a deviation (negative or 
positive) from the historical average is to increase the size of the variables. As 
a consequence we need to create a proxy for these determinants that can be 

readily measured, is unaffected by seasonality, and increases when deviating 
from the historical average.  

The production proxy (Prod diff (abs)) is generated by using the average of 

the weekly averages for the subsequent five years, and then taking the absolute 
value of the difference between this and the respective day’s actual production 
level.  

( )

2 5

365
1 1

25

t i* j
i j

tt

Pr od

Pr od diff abs Pr od
− −

= == −
∑∑

 Eq. III.1 

For the storage proxy (Stock diff (abs)), the same method is used, except that 
only the two last years are used to create the historical average level of storage 
due to data limitations. As a result, increased values of these determinants 

imply a deviation from the historical level, which will serve as a proxy for the 
deviation from expectation. 

( )

5 5
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1 1

25

t i* j
i j

tt
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− −

= == −
∑∑

 Eq. III.2 
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Similar to the above proxies, the proxy for temperature has to be unaffected 
by seasonality, and increases when deviating from the historical average. To 

understand the squared Degree Day difference (DD diff sq) proxy we need to 
first define the Heating Degree Days (HDD) and Cooling Degree Days 
(CDD). The HDD is defined as the number of degrees above 65°F, otherwise 

zero, for the respective day it is measured. Similarly, the CDD is defined as the 
number of degrees below 65°F. Since weather is very variable across 
geographical locations in the US we have chosen the 10 largest cities, and then 

made an estimate for the HDD and CDD based on the population-weighted 
average for the cities to make a weather index for the entire US. The DD is 
the sum of HDD and CDD for the respective date. For each day of the year, 

an average DD is found, and the DD difference is then defined as the DD for 
the respective day less the average DD for the entire period on this day of the 
year. This implies that if the DD diff sq is high, the temperature has deviated 

from normal levels. 

( ) ( ) 2

t t t t tDD HDD CDD HDD CDD = + − +
 

 Eq. III.3 

Where ���7777777 and ���777777 is the average heating degree days and cooling degree 

days for that particular day of the year. 

The dummies in the analysis are relatively self-explanatory. The seasonal 
dummies are 1 in their respective seasons, 0 otherwise. Winter is defined as 

December through February, Spring as March through May, and Summer as 
June through August. The Update dummy is 1 for the date of publication for 
the weekly natural gas storage report, 0 otherwise. This is often on Thursdays, 

but varies on several occasions.  

Summary statistics for the determinants are included in Table 25.  

Table 25: Descriptive statistics for the determinants used in this paper 

 

III.2 Time series of determinants 

Figure 15 and 16 show the presence of volatility clustering in returns on both 
the S&P 500 and oil price. Therefore, the application of a vanilla GARCH 

model is appropriate to model the volatility of these two prices series. Figure 
17 to Figure 21 show the times series of determinants (not including dummy 
variables). The stock and production difference clearly show signs of an AR-

# obs Minimum Mean Maximum St.dev. Skewness
Excess 

kurtosis
Oil ret 3893 -17.25 0.040 18.646 2.582 -0.048 3.914
SP ret 3893 -9.470 0.017 10.957 1.334 -0.217 6.938
Stock dif f (abs) 3893 0.000 0.148 0.649 0.137 1.315 1.153
Prod dif f (abs) 3893 0.000 0.066 0.284 0.056 1.089 0.500
DD dif f sq 3893 0.000 10.25 195.2 17.29 3.477 16.71
Oil vol 3893 2.489 6.527 53.29 5.124 4.557 26.19
SP vol 3893 0.297 1.791 27.97 2.548 5.522 38.27
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process, while the temperature proxy seems to be a normally distributed 
variable. 

 

Figure 15: Time series of squared oil returns 

 

Figure 16: Time series of squared S&P 500 returns 

 

Figure 17: Time series of estimated oil volatility 
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Figure 18: Time series of estimated S&P 500 volatility 

 

Figure 19: Time series of Stock diff (abs) 

 

Figure 20: Time series of Prod diff (abs) 
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Figure 21: Time series of DD diff sq 

Appendix IV Model Selection 

IV.1 Determination of the autoregressive lags in the 

conditional volatility equation 

By altering p and q for all the six models, we can see that adding more 
parameters does not add information or explanatory power. The estimation 
performed is on the in-sample period with no AR or ARCH-in-mean terms 

with student-t error distribution. As seen from the tables below, using 
(p,q)=(1,1) is the best combination; however, (p,q)=(4,1) also give good 
results. Since the better of the two combinations will depend on whether or 

not we use AIC or BIC44, we conclude that the two are as good combinations 
of the autoregressive lags. Since (p,q)=(1,1) is far more easy to understand 
and estimate, we will use this combination throughout the paper.   

                                     
44 To be minimized 
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Table 26: Information criteria with varying p and q (Darkest=best, Lightest=worst)  

 

 

 

 

1 2 3 4 5

AIC 5.4178 5.4184 5.4189 5.4184 5.4177
BIC 5.4274 5.4299 5.4324 5.4338 5.4351
AIC 5.4186 5.4187 5.4193 5.4186 5.4185
BIC 5.4302 5.4322 5.4347 5.4359 5.4378
AIC 5.4191 5.4186 5.4165 5.4192 5.4188
BIC 5.4326 5.4340 5.4339 5.4385 5.4400
AIC 5.4165 5.4172 5.4176 5.4204 n/a
BIC 5.4319 5.4345 5.4369 5.4416 n/a
AIC n/a 5.4179 n/a n/a 5.4178
BIC n/a 5.4372 n/a n/a 5.4428

4

5

1

2

3

p       
q

GARCH(p,q)

1 2 3 4 5

AIC n/a n/a n/a 5.4098 n/a
BIC n/a n/a n/a 5.4291 n/a
AIC n/a n/a 5.4810 n/a n/a
BIC n/a n/a 5.5002 n/a n/a
AIC n/a n/a 5.4081 n/a n/a
BIC n/a n/a 5.4293 n/a n/a
AIC n/a n/a n/a n/a n/a
BIC n/a n/a n/a n/a n/a
AIC n/a n/a n/a n/a n/a
BIC n/a n/a n/a n/a n/a

EGARCH(p,q)

3

4

5

1

2

p       
q

1 2 3 4 5

AIC 5.4175 5.4188 5.4199 5.4201 n/a
BIC 5.4291 5.4342 5.4391 5.4432 n/a
AIC 5.4184 5.4190 5.4201 5.4198 n/a
BIC 5.4319 5.4363 5.4413 5.4448 n/a
AIC 5.4189 5.4189 5.4176 5.4179 n/a
BIC 5.4343 5.4381 5.4407 5.4449 n/a
AIC 5.4165 5.4198 5.4163 5.4176 n/a
BIC 5.4338 5.4410 5.4413 5.4465 n/a
AIC 5.4191 5.4210 5.4171 n/a n/a
BIC 5.4383 5.4441 5.4441 n/a n/a

GJR(p,q)

3

4

5

1

2

p       
q

1 2 3 4 5

AIC 5.4107 5.4119 5.4133 n/a n/a
BIC 5.4242 5.4293 5.4345 n/a n/a
AIC 5.4111 5.4122 5.4135 5.4147 n/a
BIC 5.4265 5.4315 5.4366 5.4417 n/a
AIC 5.4115 5.4087 n/a n/a n/a
BIC 5.4289 5.4337 n/a n/a n/a
AIC 5.4104 n/a n/a n/a n/a
BIC 5.4297 n/a n/a n/a n/a
AIC 5.4112 5.4123 n/a n/a n/a
BIC 5.4324 5.4373 n/a n/a n/a

APARCH(p,q)

p       
q

4

5

1

2

3
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IV.2 Determination of AR(1) Process and ARCH-in-mean 

By including an AR(1)-term in all six models, it can be seen from the tables 
below that the AR(1)-term is always significant. Also, with an AR(1)-term in 
the mean equation the highest log-likelihood values are received. Additionally, 

by adding an AR(1)-term  the AIC is significantly improved, whereas the BIC 
is approximately the same. Therefore an AR(1)-term will be included in the 
GARCH models since this increases the explanatory power of the models. 

When adding the ARCH-in-mean term, this term is always significant. 
Slightly higher log-likelihood value compared to the models without the 
ARCH-in-mean term is also found. While the AIC is approximately the same 

with and without this term, the BIC is lower, which implies that adding this 
term does not increase the explanatory power by much. Therefore the ARCH-
in-mean term will not be included in the GARCH models. All estimations 

were performed on the in-sample period with p and q set to 1, and with 
student-t distributed error terms. 

Table 27: Information criteria and log likelihood values with and without AR and ARCH-in-

mean terms 

 

1 2 3 4 5

AIC 5.4196 5.4201 5.4207 5.4203 5.4195
BIC 5.4273 5.4298 5.4323 5.4338 5.4349
AIC 5.4204 5.4209 5.4215 5.4204 5.4203
BIC 5.4300 5.4324 5.4349 5.4358 5.4376
AIC 5.4211 5.4207 5.4206 5.4210 5.4207
BIC 5.4327 5.4341 5.4360 5.4383 5.4399
AIC 5.4179 5.4185 5.4192 5.4206 n/a
BIC 5.4314 5.4339 5.4365 5.4398 n/a
AIC 5.4204 5.4185 5.4201 n/a n/a
BIC 5.4358 5.4397 5.4393 n/a n/a

IGARCH(p,q)

4

5

p       
q

1

3

2

RiskMetrics(1,1) GARCH(1,1) EGARCH(1,1)
Log-likelihood -8537 -8506.3 no conv.
AIC 5.43539 5.41776 no conv.
BIC 5.43924 5.42739 no conv.
t-prob AR(1) 0.0069 0.0066 no conv.
Log-likelihood -8533 -8502.7 no conv.
AIC 5.43347 5.41612 no conv.
BIC 5.43925 5.42768 no conv.
t-prob (var) 0.0137 0.0143 no conv.
Log-likelihood -8534.4 -8503.8 no conv.
AIC 5.4344 5.41682 no conv.
BIC 5.44017 5.42838 no conv.

AR(0)               
No ARCH-in-
mean

AR(1) term

ARCH-in-mean
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Appendix V Statistical Tests 

V.1 Kupiec LR test 

The models in this paper are evaluated by comparing the one-day-ahead 

forecasts VaR-predictions for long and short positions with VaR-levels ranging 
from 1st to 25th percentiles according to Kupiec (1995)).  This test is designed 

to test if the observed failure rate ( f̂ ) is different from the theoretical failure 
rate (α ) in a VaR-prediction. The test statistic is defined as, 

( )
( )
1

2log
ˆ ˆ1

T NN

T N
N

LR
f f

α α −

−

 
− = −  

 −
 

 Eq. V.1 

where T is the number of predictions, N is the number of violations of the 
VaR-limits, f  is the failure rate and α is the theoretical failure rate, and has 
the following hypothesis, 

1

:

:
oH f

H f

α
α

=
≠  

Under the null hypothesis the test statistic is asymptotically distributed as *�. 

V.2 Dynamic Quantile test 

The dynamic quantile test by Engle and Manganelli (1999) is designed to 

assess whether the VaR-violations are serially correlated. This is equivalent to 
testing whether the sequence �8&9� < −:;<�(��=


> ≡ �8���=

> is i.i.d. This is 

done by defining the following variable, 

( ) ( )( )t tt
Hit I y VaRα α α≡ < −  Eq. V.2 

( ) ( )( )1 1t tt
Hit I y VaRα α α− ≡ > − −  Eq. V.3 

GJR(1,1) APARCH(1,1) IGARCH(1,1)
Log-likelihood -8504.9 -8493.2 -8510.2
AIC 5.41753 5.41071 5.41958
BIC 5.42909 5.42419 5.42728
t-prob AR(1) 0.0053 0.0098 0.005
Log-likelihood -8501.2 -8489.7 -8506.5
AIC 5.41577 5.40908 5.41791
BIC 5.42925 5.42449 5.42755
t-prob (var) 0.0156 0.9068 0.009
Log-likelihood -8502.5 -8489.9 -8507.6
AIC 5.41663 5.40925 5.41861
BIC 5.43011 5.42467 5.42824

AR(0)               
No ARCH-in-
mean

AR(1) term

ARCH-in-mean
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�@A&�( assumes the value 1 − � when 9� < :;<&�( and −� otherwise. The 
expectation of �@A&�( is therefore by design 0. Similarly, since the sequence 
�8���=


>  is i.i.d, the expectation of �@A&�( given A − @ is 0 for A < @. Accoring 
to Engle and Manganelli (1999), a convenient way of constructing a test for 
the statement above is to perform the following OLS regression, 

( )
( )

1

1t t t

prob
Hit X u where u

prob

α α
δ

α α
− −= + =  −

 Eq. V.4 

In this regression X is a T x k matrix where the first column is a column of 

ones, the next p columns are�@A�B
, … , �@A�BD,and the remaining columns are 
the remaining independent variables included in the VaR estimate. A good 
VaR-model will produce a regression result where the explanatory power of 

the regression is very close to 0. As a result the test statistic becomes, 

 ( ) ( )2
ˆ ˆ' '

1
OLS OLSX X

k
δ δ χ

α α−
∼

 

V.3 Sign Bias test 

The sign bias (SBT), negative sign bias (NSBT) and positive sign bias tests 

(NSBT) introduced by Engel and Ng (1993) are designed to test whether it is 
possible to predict the squared normalized residual by some variable observed 
in the past which are not included in the volatility model being used. If such a 

variable exist, then the current variance model is miss-specified. To perform 
this test the following variables are created, 

SBT: E�B

B  

NSBT: E�B

B F�̂B
 

PSBT: E�B

% F�̂B
 

Engel and Ng (1993) suggest running the following regressions to test whether 
the model is correctly specified, 

SBT: F�̂
� = ; + HE�B


B + I� Eq. V.5 

NSBT:  F�̂
� = ; + HE�B


B F�̂B
 + I� Eq. V.6 

PSBT:  F�̂
� = ; + HE�B


% F�̂B
 + I� Eq. V.7 

and testing the significance of a and b using a t-test. Alternatively, the test 
can be run jointly on the three effects, 

2
1 1 1 1 1ˆ ˆ ˆ

t t t t t t ta bS cS dS uε ε ε− − +
− − − − −= + + + +  Eq. V.8 
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In this case, the joint test for 
0 : 0H a b c d= = = =  is reported. 

V.4 Nyblom Stability Test 

The statistic introduced by Nyblom (1989) is appropriate to test if the 

parameters in a model are consistent. The statistic tests if the parameters 
follow a martingale process by calculating the following cumulative moments, 

( )
1

ˆ
t

t i
i

S l θ
θ=

∂=
∂∑  Eq. V.9 

for all t. The test statistic is given by, 

1

1

1 ˆ'
n

t t
t

L S V S
n

−

=
= ∑  Eq. V.10 

' is asymptotically distributed and depends only on the number of parameters 
in θ . The statistic tests the null hypothesis that the vector θ  is stable 
against the alternative that the entire vector is unstable. The test can be 

modified to test individual elements of the vector, and is given by, 

2

1

1
ˆ

n
kt

k
t kk

S
L

n V=
= ∑  Eq. V.11 

For further details see Nyblom (1989)  
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Table 28: Critical values for the Nyblom stability test (Hansen 1990): 

 

V.5 Box-Pierce  

Box and Pierce (1970) introduce a statistic for testing if there exists residual 

autocorrelation in time-series models. The test statistic is defined as follows, 

( )
2

2

1

ˆm
l

l

Q m T
T l

ρ
=

=
−∑  Eq. V.12 

Where J�  is the serial correlation with lag K , m is the number of serial 
correlations being tested and T is the length of the sample being tested. Under 
the null of no serial correlation, the test statistic is *�&+(-distributed. When 

evaluating the squared residuals of a GARCH(p,q) model, the test statistic 
becomes  *�&+ − L − M(--distributed. 

V.6 LM ARCH test 

Engle (1982) proposed the LM ARCH statistic to test for the presence of 

ARCH effects in a time-series. Using a simple OLS regression, 

2 2
0

1

ˆ ˆˆ ˆ
q

t i t i
i

y yα α −
=

= +∑  Eq. V.13 

estimates for ��# are produced. Under the null hypothesis we have ��# = 0 for 

@ = 1,… , M and the test statistic becomes N<� which follows a *�-distribution 

Degrees of Fredoom (k1) 1 % 2.5 % 5 % 7.5 % 10 % 20 %

1 .748 .593 .005 .398 .353 .243
2 1.07 .898 .749 .670 .610 .469
3 1.35 1.16 1.01 .913 .846 .679
4 1.60 1.39 1.24 1.14 1.07 .883
5 1.88 1.63 1.47 1.36 1.28 1.08
6 2.12 1.89 1.68 1.58 1.49 1.28
7 2.35 2.10 1.90 1.78 1.69 1.46
8 2.59 2.33 2.11 1.99 1.89 1.66
9 2.82 2.55 2.32 2.19 2.10 1.85
10 3.05 2.76 2.54 2.40 2.29 2.03
11 3.27 2.99 2.75 2.60 2.49 2.22
12 3.51 3.18 2.96 2.81 2.69 2.41
13 3.69 3.39 3.15 3.00 2.89 2.59
14 3.90 3.60 3.34 3.19 3.08 2.77
15 4.07 3.81 3.54 3.38 3.26 2.95
16 4.30 4.01 3.75 3.58 3.46 3.14
17 4.51 4.21 3.95 3.77 3.64 3.32
18 4.73 4.40 4.14 3.96 3.83 3.50
19 4.92 4.60 4.33 4.16 4.03 3.69
20 5.13 4.79 4.52 4.36 4.22 3.86

Significance level
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with q degrees of freedom. This test can be modified to test the residuals of a 
regression by running the following regression, 

2 2
0

1

ˆ ˆ ˆ ˆ
q

t i t i
i

ε α α ε −
=

= +∑  Eq. V.14 

V.7 The Jarque-Bera Test for Normality 

This test, introduced by Jarque and Bera (1987) tests the null hypothesis that 

the observed data comes from a normal distribution. This is a goodness-of-fit 
test that tests if the kurtosis and skewness could have been drawn from a 
normal distribution. The test statistic is defined as follows, 

( )2

2 3

6 4

Kn
JB S

 −
 = +
 
 

 Eq. V.15 

where n is the number of observations, S is the sample skewness and K is the 

sample kurtosis. The test statistics used has an asymptotic ( )2 2χ
distribution. 

V.8 Information Criteria  

The information criteria (Akaike 1974; Abascal, Zardoya et al. 2005) are a 
measure of the goodness-of-fit of the conditional variance model. It takes into 

account both the value of the maximized log-likelihood function and the 
number of parameters that must be estimated in the model by imposing a 
penalty for increasing the number of parameters. The four information criteria 

calculated by OxMetricsTM are the following,  

2 2
LogL k

AIC
n n

= − +  Eq. V.16 

( )log
2 2

kLogL
BIC

n n
= − +  Eq. V.17 

( )log log
2 2

k nLogL
Harmann Quinn

n n

  − = − +  Eq. V.18 

2
2 2

LogL n k
Shibata

n n

+ = − +  
 

 Eq. V.19 

V.9 Adjusted Pearson Goodness-of-Fit Test 

In his seminal paper, Pearson (1900) proposed a test to compare an empirical 
distribution to a theoretical one. The adjusted Pearson goodness-of-fit test 
compares the theoretical distribution of innovations to the distribution of 
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innovations used in the conditional heteroskedasticity model. The test divides 
the theoretical distribution into r categories, where  

 1 2 ... rp p p p= = = =
 

The statistic is computed as follows, 

( ) ( )2

1

r
i i

i i

n En
P g

En=

−
=∑  Eq. V.20 

where in  is the number of empirical innovations in category i, iEn is the 
number of theoretical innovations in category i. According to Palm and Vlaar 
(1997) the asymptotic distribution of the test statistic under the null 

hypothesis of a correct distribution is bounded between ( )2 1rχ − and 

( )2 1r kχ − − where k is the number of estimated parameters. 

V.10 Unit Root Test 

Dickey and Fuller (1981) introduced a test for unit roots. The test statistic is 
given by, 

( )
ˆ

ˆ
DF

SEτ
γ

γ
=  Eq. V.21 

Where γ̂ is determined by the following regression, 

1 1 1 1 1...t t t p t p ty t y y yα β γ δ δ ε− − − − −∆ = + + + ∆ + + ∆ +  Eq. V.22 

The test statistic is then compared to Dickey-Fuller table. The intuition 
behind the test is that if the time-series y is stationary it tends to return to 

some constant level. As a consequence large values of y tend to be followed by 
smaller ones and similarly for small values. Therefore, the size of y will be a 
predictor of the next periods change and will therefore have a negative 

coefficient. 

V.11 Residual Based Diagnostic 

Tse (2002) presents a test based on the following regression, 

2 2 2 2
1 1 2 2ˆ ˆ ˆ ˆ1 ...t t t M t M tη δ η δ η δ η ε− − −− = + + + +  Eq. V.23 

where t̂η is the standardized residuals. Because the regressors are inferred, not 
observed, under the null hypothesis of model adequacy, 0 : 0iH δ = for 

1,...,i M= the RBD statistic is ( )2 Mχ distributed. 
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Appendix VI Forecasts in- and out-of-sample 

Table 29: In-sample back testing without determinants 

 

 

 

  

Quantile Statistic P-value Statistic P-value Statistic P-value Statistic P-value

25 % 0.931 0.335 0.021 0.885 0.051 0.821 1.026 0.311
10 % 4.632 0.031 2.299 0.129 0.487 0.485 0.723 0.395
5 % 1.445 0.229 4.278 0.039 0.252 0.615 0.522 0.470

2.5 % 2.935 0.087 10.823 0.001 0.004 0.950 0.003 0.959
1 % 2.692 0.101 1.305 0.253 0.659 0.417 0.390 0.532

25 % 4.980 0.546 4.749 0.576 5.006 0.543 5.172 0.522
10 % 7.078 0.314 9.317 0.157 5.006 0.543 2.264 0.894
5 % 5.425 0.491 10.258 0.114 6.716 0.348 3.431 0.753

2.5 % 9.408 0.152 14.708 0.023 11.703 0.069 4.816 0.568
1 % 8.588 0.198 17.716 0.007 4.265 0.641 1.743 0.942

K
up

ie
c 

LR
D

Q
T

Long Short Long Short
RiskMetrics GARCH

Quantile Statistic P-value Statistic P-value Statistic P-value Statistic P-value

25 % 0.308 0.579 1.026 0.311 0.051 0.821 1.390 0.238
10 % 0.665 0.415 0.096 0.757 0.764 0.382 0.829 0.363
5 % 0.000 0.993 0.000 0.993 0.030 0.863 0.231 0.631

2.5 % 0.027 0.869 0.276 0.600 0.004 0.950 0.153 0.695
1 % 0.011 0.917 0.390 0.532 0.193 0.660 0.390 0.532

25 % 4.428 0.619 6.770 0.343 3.515 0.742 5.405 0.493
10 % 2.106 0.910 3.831 0.700 4.139 0.658 3.109 0.795
5 % 5.171 0.522 2.029 0.917 4.833 0.565 2.974 0.812

2.5 % 10.091 0.121 4.946 0.551 11.703 0.069 2.869 0.825
1 % 2.752 0.839 1.743 0.942 5.168 0.522 1.743 0.942

K
up

ie
c 

LR
D

Q
T

Long ShortLong Short
EGARCH GJR

Quantile Statistic P-value Statistic P-value Statistic P-value Statistic P-value

25 % 0.355 0.551 1.810 0.179 0.004 0.951 1.390 0.238
10 % 0.337 0.562 0.096 0.757 0.000 0.991 0.943 0.332
5 % 0.008 0.928 0.005 0.941 2.824 0.093 0.000 0.993

2.5 % 0.027 0.869 0.086 0.770 0.276 0.600 0.769 0.381
1 % 0.011 0.917 0.390 0.532 8.023 0.005 1.927 0.165

25 % 3.281 0.773 7.746 0.257 6.032 0.420 4.338 0.631
10 % 1.515 0.958 4.156 0.656 4.515 0.607 2.235 0.897
5 % 5.390 0.495 1.829 0.935 11.371 0.078 3.911 0.689

2.5 % 10.091 0.121 5.923 0.432 9.188 0.163 6.263 0.394
1 % 3.891 0.691 1.743 0.942 12.777 0.047 3.276 0.774

K
up

ie
c 

LR
D

Q
T

Long Short Long Short
IGARCHAPARCH
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 Table 30: In-sample back testing with determinants 

 

 

 

 

  

Quantile Statistic P-value Statistic P-value Statistic P-value Statistic P-value

25 % 0.011 0.918 1.700 0.192 0.709 0.400 0.865 0.352
10 % 1.471 0.225 1.622 0.203 0.337 0.562 0.036 0.849
5 % 4.826 0.028 0.698 0.404 0.343 0.558 0.412 0.521

2.5 % 2.948 0.086 0.412 0.521 0.004 0.950 0.027 0.869
1 % 9.321 0.002 5.775 0.016 0.193 0.660 0.659 0.417

25 % 3.957 0.683 6.108 0.411 4.187 0.651 5.480 0.484
10 % 2.781 0.836 8.863 0.181 4.648 0.590 3.125 0.793
5 % 11.295 0.080 3.812 0.702 13.939 0.030 3.949 0.684

2.5 % 8.378 0.212 5.188 0.520 5.700 0.458 5.626 0.466
1 % 15.361 0.018 8.768 0.187 5.168 0.522 1.956 0.924

K
up

ie
c 

LR
D

Q
T

Long Short Long Short
RiskMetrics GARCH

Quantile Statistic P-value Statistic P-value Statistic P-value Statistic P-value

25 % 0.517 0.472 1.026 0.311 0.854 0.355 1.390 0.238
10 % 1.361 0.243 0.000 0.991 0.118 0.731 0.137 0.712
5 % 0.522 0.470 0.005 0.941 0.114 0.736 0.315 0.575

2.5 % 0.576 0.448 0.027 0.869 0.032 0.859 0.027 0.869
1 % 0.390 0.532 0.644 0.422 1.003 0.317 0.390 0.532

25 % 3.956 0.683 7.971 0.240 4.688 0.584 4.778 0.573
10 % 2.227 0.898 2.221 0.898 5.051 0.537 2.777 0.836
5 % 6.467 0.373 1.785 0.938 9.117 0.167 3.942 0.684

2.5 % 9.584 0.143 3.536 0.739 8.382 0.211 5.102 0.531
1 % 1.743 0.942 8.458 0.206 4.899 0.557 1.743 0.942

K
up

ie
c 

LR
D

Q
T

Long ShortLong Short
EGARCH GJR

Quantile Statistic P-value Statistic P-value

25 % 0.264 0.607 1.390 0.238
10 % 0.624 0.430 0.624 0.430
5 % 8.913 0.003 0.252 0.615

2.5 % 2.545 0.111 1.521 0.217
1 % 10.745 0.001 5.775 0.016

25 % 5.181 0.521 5.943 0.430
10 % 6.714 0.348 4.224 0.646
5 % 19.446 0.003 2.460 0.873

2.5 % 9.329 0.156 6.821 0.338
1 % 18.433 0.005 8.768 0.187

K
up

ie
c 

LR
D

Q
T

Long Short
IGARCH
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Table 31: Out-of-sample forecasting without determinants 

 

 

 

 

 

 

 

 

 

  

Quantile Statistic P-value Statistic P-value Statistic P-value Statistic P-value

25 % 13.430 0.000 0.044 0.833 7.694 0.006 0.794 0.373
10 % 3.576 0.059 2.040 0.153 0.233 0.629 0.015 0.903
5 % 0.354 0.552 1.126 0.289 4.140 0.042 1.690 0.194

2.5 % 1.351 0.245 0.084 0.772 9.894 0.002 1.351 0.245
1 % 0.954 0.329 0.325 0.568 5.754 0.016 1.988 0.159

25 % 18.460 0.005 2.886 0.823 12.163 0.058 2.943 0.816
10 % 15.444 0.017 5.651 0.463 7.931 0.243 4.575 0.599
5 % 1.337 0.970 3.451 0.751 7.215 0.301 10.203 0.116

2.5 % 3.134 0.792 2.837 0.829 20.272 0.002 3.018 0.807
1 % 1.434 0.964 0.589 0.997 15.194 0.019 3.163 0.788

RiskMetrics GARCH
Long Short Long Short

K
up

ie
c 

LR
D

Q
T

Quantile Statistic P-value Statistic P-value Statistic P-value Statistic P-value

25 % 6.397 0.011 1.128 0.288 7.694 0.006 0.794 0.373
10 % 0.015 0.903 0.378 0.539 0.707 0.401 0.135 0.713
5 % 2.192 0.139 2.192 0.139 4.945 0.026 1.690 0.194

2.5 % 6.418 0.011 0.825 0.364 9.894 0.002 2.023 0.155
1 % 1.988 0.159 0.954 0.329 5.754 0.016 1.988 0.159

25 % 9.222 0.161 3.036 0.804 10.493 0.105 3.271 0.774
10 % 8.203 0.224 6.627 0.357 13.446 0.036 6.010 0.422
5 % 4.633 0.592 11.820 0.066 8.351 0.213 10.319 0.112

2.5 % 11.291 0.080 3.940 0.685 20.272 0.002 6.471 0.372
1 % 3.191 0.784 1.399 0.966 15.194 0.019 3.163 0.788

EGARCH GJR
Long Short

K
up

ie
c 

LR
D

Q
T

Long Short

Quantile Statistic P-value Statistic P-value Statistic P-value Statistic P-value

25 % 5.990 0.014 1.128 0.288 7.694 0.006 0.649 0.420
10 % 0.241 0.624 0.747 0.387 0.015 0.903 0.000 1.000
5 % 2.766 0.096 4.140 0.042 4.945 0.026 2.766 0.096

2.5 % 9.894 0.002 2.023 0.155 12.048 0.001 5.032 0.025
1 % 3.529 0.060 1.988 0.159 9.027 0.003 3.529 0.060

25 % 10.059 0.122 3.879 0.693 13.046 0.042 3.757 0.709
10 % 7.582 0.270 7.233 0.300 9.161 0.165 4.301 0.636
5 % 5.501 0.481 13.846 0.031 7.546 0.273 7.707 0.260

2.5 % 20.272 0.002 6.471 0.372 27.580 0.000 8.425 0.209
1 % 6.840 0.336 3.163 0.788 42.314 0.000 6.819 0.338

APARCH IGARCH
Short Long Short

K
up

ie
c 

LR
D

Q
T

Long
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Table 32: Out-of-sample forecasting with determinants 

 

 

 

 

  

Quantile Statistic P-value Statistic P-value Statistic P-value Statistic P-value

25 % 6.397 0.011 0.794 0.373 4.495 0.034 0.649 0.420
10 % 0.015 0.903 0.000 1.000 0.000 1.000 0.015 0.903
5 % 10.282 0.001 1.257 0.262 5.832 0.016 0.064 0.800

2.5 % 3.849 0.050 3.849 0.050 6.418 0.011 0.435 0.510
1 % 3.529 0.060 3.529 0.060 3.529 0.060 0.954 0.329

25 % 12.353 0.055 2.461 0.873 11.308 0.079 1.902 0.929
10 % 6.621 0.357 4.466 0.614 10.047 0.123 6.083 0.414
5 % 18.472 0.005 5.206 0.518 9.731 0.136 8.456 0.207

2.5 % 10.662 0.099 6.358 0.384 11.291 0.080 4.826 0.566
1 % 6.840 0.336 6.819 0.338 6.840 0.336 1.399 0.966

RiskMetrics GARCH
Long Short Long Short

K
up

ie
c 

LR
D

Q
T

Quantile Statistic P-value Statistic P-value Statistic P-value Statistic P-value

25 % 6.397 0.011 2.226 0.136 5.216 0.022 0.794 0.373
10 % 0.363 0.547 1.877 0.171 0.132 0.717 0.060 0.807
5 % 0.892 0.345 1.257 0.262 6.806 0.009 0.354 0.552

2.5 % 2.851 0.091 0.825 0.364 6.418 0.011 0.825 0.364
1 % 0.033 0.856 1.988 0.159 3.529 0.060 1.988 0.159

25 % 10.536 0.104 4.006 0.676 11.421 0.076 2.163 0.904
10 % 13.173 0.040 7.835 0.250 7.092 0.312 7.223 0.301
5 % 4.487 0.611 6.455 0.374 12.025 0.061 4.245 0.644

2.5 % 4.940 0.552 7.057 0.316 11.291 0.080 6.094 0.413
1 % 0.491 0.998 3.163 0.788 6.840 0.336 3.163 0.788

EGARCH GJR
Long Short

K
up

ie
c 

LR
D

Q
T

Long Short

Quantile Statistic P-value Statistic P-value

25 % 5.990 0.014 0.519 0.471
10 % 0.135 0.713 0.015 0.903
5 % 9.027 0.003 1.257 0.262

2.5 % 8.029 0.005 6.418 0.011
1 % 5.754 0.016 5.754 0.016

25 % 12.931 0.044 2.676 0.848
10 % 11.519 0.074 4.490 0.611
5 % 15.953 0.014 4.305 0.635

2.5 % 15.075 0.020 11.222 0.082
1 % 15.194 0.019 15.180 0.019

IGARCH
Long Short

K
up

ie
c 

LR
D

Q
T
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Appendix VII Monte Carlo Simulation 

VII.1 Simulating Natural gas Returns and Volatility 

The mean equation in the AR(1)-EGARCH(1,1) skewed student-t model is 

given by: 

1 1 2 & , 1 2 , 1t t S P t Oil t tr r r rµ θ θ θ ε− − −= + + + +  Eq. VII.1 

1| ~ (0,1)t t t t twhere z h z I Dε −=   

Using lag operators, the variance equation is given by: 

( ) ( )( ) ( ) ( )1

1ln 1 1t t th W L L g zβ α−
−= + − +    Eq. VII.2 

( ) [ ]( )1 2 | |t t t twhere g z z z E zγ γ= + −  

which implies 

( ) ( )( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )

1

1

1

ln 1 1 1

ln ln 1

ln ln 1

1

t t t

t t t t t

t t t t t

h L W L L g z

h L h W L W L g z

h W L h W L g z

with p q

β β α

β β α

β α

−

−

−

⇒ − = − + +  

⇒ − = − + +  

⇒ = + − + +  

= =

 

( ) ( ) ( ) ( )1 1 1 2

,
1

ln ln

ln 1

t t t t t t

n

t i i t
i

h W h W g z g z

where W X

β α

ω δ

− − − −

=

= + − + +
⇒  = + + 

 
∑

 Eq. VII.3 

The last equation represents the determinants. When simulating without 
determinants these are simply excluded from the above equations. Together, 
the mean and variance equation described above constitute the basis for the 

natural gas volatility simulation in this paper. For each period a z-value is 
drawn from the student-t distribution to generate the innovation term for 
natural gas. In combination with last period’s natural gas return and returns 

for Oil and S&P 500, this period’s return is generated. The next period’s 
variance is then calculated from the previous two z-values together with the 
variables calculated in the three following sections using the variance equation 
derived above. 

Because the conditional variance model includes five variables in the variance 
equation we need to provide simulated forecasts for these variables as well. 
The dummies are however predetermined. 
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VII.2 Simulating Returns and Volatility for Oil and S&P 500 

The oil and S&P 500 volatility estimates were calculated using vanilla 
GARCH models due to the presence of volatility clustering in the squared 

returns (see Appendix III). These models were in turn used to obtain volatility 
forecasts. Random z-values were drawn from the Gaussian distribution, and 
the following relationship was used to generate the innovation terms: 

 ( )1 0,1t t t t tz h z I Nε −= ∼  

These innovation terms were used to calculate the daily oil and S&P 500 
return from the mean equation of the conditional volatility model: 

 
µ ε= +t tr

 

Estimates for the volatility for day ℎ�%
 were obtained by using the innovation 
term in the volatility equation: 

 
2

1 ω αε β+ = + +t t th h  

This procedure was repeated until estimates for the oil and S&P 500 volatility 
and returns for an entire year were produced. 

VII.3 Simulating the Production and Stock Difference 

Stock and production difference are not independent variables as they are 

dependent on what has been stored and produced in recent time. The 
dependencies on past information can be seen from Appendix III. Therefore, 
these variables were simulated using an AR(1)-process. First, the following 

regression were used to obtain estimates for the AR(1)-parameter and the 
regression residuals: 

 1t t t
y c yθ ε−= + +

 

The distribution for the error terms was obtained by using the mean and 

standard deviation from the above regression in the Gaussian distribution. 
Randomly drawn z-values drawn from this distribution were used in the 
following equation: 

 
( )ε µ σ −= +

1
| 0,1

t t t t
z z I N∼

 

When these error terms were simulated, 9� could be calculated using equation

1t t t
y c yθ ε−= + + , which were repeated 253 times to simulate an entire year. 

After simulating the entire process, the absolute values of each 9� were stored 

for use in the natural gas volatility simulation. 
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VII.4 Simulating the Degree Days Difference 

In order to simulate the degree day difference, an i.i.d. property was assumed 
due to the random nature of weather, although winter seems to exhibit larger 

differences in degree days (Appendix III). This implies that the variable can 
be drawn from an identical distribution each day without considering past 
information. Sample mean and standard deviation were estimated and 

randomly drawn z-values drawn from the Gaussian distribution were included 
in the following equation: 

( )0,1
t t t
y z z Nµ σ= + ∼

 

The squared value of y were then stored for use in the natural gas volatility 
simulation as a representation of the squared degree day difference. 

Appendix VIII Half-life, Unconditional Volatility 

and Persistence  

In GARCH(1,1) the long term volatility, or unconditional volatility, can be 
calculated as follows. From GARCH (1,1) we have: 

2
1 1t t th hω αε β− −= + +  Eq. VIII.1 

Also, according to Alexander (2008a), the long term volatility is equal to the 
expected value of the conditional volatility at any lags l: 

[ ] [ ]LT t t lh E h E h−= =  

For the error term, we can use the following expression: 

2 2 2 2
1 1 1[ ] ( ) [ ]t t t LTE Var E hε ε ε− − −= − =  

By inserting this into Eq. VIII.1, we get the following: 

LT LT LTh h hω α β= + +
 

1 1LTh
ω ω
α β φ

⇒ = =
− − −

 Eq. VIII.2 

where O is the persistence parameter. The half-life can be defined as: 

1 2Hφ =  

ln(1 2)

ln( )
H

φ
⇒ =  Eq. VIII.3 
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In the GJR(1,1) model, the result is almost the same as in GARCH(1,1), the 
only difference being that we must account for the expectance  of the 

asymmetry coefficient. According to Taylor (2005) the asymmetry coefficient 
has an expectation of one half, and the persistence parameter is therefore 
defined as: 

1 2φ α α β−= + +  Eq. VIII.4 

When determinants are included, the persistence parameter will only change 

because the empirical values of �, �B	and	
  are different from the log-
likelihood estimations. However, the expectations of the determinants are not 
directly included in the persistence parameter, in contrast to the unconditional 

volatility. The formal definition for the unconditional volatility when 
determinants are included in the GARCH(1,1) model is:  

2
1 1t t t i i

i

h h Xω αε β β− −= + + +∑
 
[ ]LT LT LT i i

i

h h h E Xω α β β= + + +∑  

[ ] [ ]

1 1

i i i i
i i

LT

E X E X
h

ω β ω β

α β φ

+ +
⇒ = =

− − −

∑ ∑
 Eq. VIII.5 

where �# represents the determinants. For the expectations of the oil and S&P 
500 volatility we have used the long term volatility generated from their 
respective persistence parameters. For the remaining determinants the average 

value is used for the representation of the expected values. 
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