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Sammendrag

Denne masteroppgaven legger fram en lesningsmetode for problemet tidsplanleg-
ging for operasjonsrom (ORSP) med to typer etterspersel: operasjoner av elektive
pasienter og operasjoner av et ukjent antall akuttpasienter. Problemet gar ut pa a
lage en plan over ndr, og i hvilket rom, de elektive pasientene skal opereres, sam-
tidig som de totale kostnader minimeres. Det tas hensyn til usikkerheten i forhold
til ankomstene av akuttpasienter og kapasitetsbegrensningene i de pre- og post-
operative fasiliteter. Problemet er modellert med bruk av flerstegs stokastisk pro-
grammering, og de mulige hendelsesforlopene av akuttpasientankomster vises
i scenariotreer. To typer recourse beslutninger blir tatt i hvert steg. En elek-
tiv pasient som er planlagt operert i tidsperioden til steget kan enten bli utsatt
én tidsperiode (type 1 beslutning) eller fa forandret operasjonsrom innen samme
tidsperiode (type 2 beslutning). I tillegg ma alle akuttpasientene som ankommer
fordeles pa operasjonsrom i hvert steg. Modellen er implementert i Xpress™F.
To heuristikker er anvendt pa problemet: heuristikken "fikser og relakser" ("fix
and relax") og en forbedringsalgoritme. Studien av det implementerte problemet
viser at det & inkludere usikkerhet ved hjelp av den presenterte flerstegsmodellen
er nyttig for problemer som representeres av opp til 8 scenarier. Modellen yter
best nar kun type 1 beslutninger tillates i hvert steg. For testinstansene som er
benyttet er det en liten verdi av 4 inkludere kapasitetsbegrensninger i pre-op og
post-op.
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Abstract

This thesis proposes a solution approach to the operating room scheduling prob-
lem (ORSP) with two types of demand for surgery: known elective demand and
uncertain emergency demand. The ORSP consists of scheduling elective surgeries
to an operating room and a time period, while minimizing costs. The uncertainty
regarding emergency patient arrivals and the capacity constraints of the pre-op
and post-op facilities are taken into account. The problem is modeled using multi-
stage stochastic programming, and the dynamics of the emergency patient arrival
process are shown using a scenario tree structure. Two types of recourse decisions
are allowed in each stage; a scheduled elective patient may be postponed one
time period (type 1), or the operating room can be changed for the elective patient
within the same time period (type 2). In addition, the emergency patients arriving
must be allocated rooms in each stage. The model is implemented in XpressM’.
Two heuristics are applied to the model: fix and relax and an improvement algo-
rithm. The computational study shows that including the uncertainty by using
the multi-stage model presented is beneficial for problems represented by up to
8 scenarios. The model performs the best when only allowing recourse decisions
of type 1. For the test instances used, including the pre-op and post-op capacity
constraints seem to be of a small value.
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1. Introduction

Good management of the health services in Norway is becoming increasingly im-
portant. Calculated per capita, Norway has the second highest health expendi-
tures in the world, only after the USA [23]. The expenditures have increased with
84% during the last decade, and as a share of the Norwegian GDP, they have
been varying around 9% in the same period [24]. The corresponding mean of the
OECD countries was 8.6% [23]. Two reasons for the large growth are that both
the demand and the costs of health care increase [18]. The growing demand could
partly be due to a growing aging population [23], partly be due to technologi-
cal developments that have broadened the scope of surgical interventions [11],
and partly be due to that the population in general has more money to spend
[18].

About half of the Norwegian health expenditures are used on medical treatment
[24]. Within the hospital, the operating theatre is one of the most costly resources.
The management of this section will make a major impact on the performance of
the hospital as a whole [6]. Good planning procedures can reduce the costs signifi-
cantly, as the wasted time of scarce and expensive resources is minimized, and the
productivity and effectivity are increased. In addition to the economical aspect,
the satisfaction level of the patients and employees can increase. Good planning
enforces shorter waiting times for the patients, a higher level of efficiency result-
ing in more patients treated, and increased predictability of the surgery waiting
time. The amount of overtime working hours for the staff can be minimized, and
the level of skill of the personnel can be better made use of.

To enforce good management of the operating theatre, the operating room plan-
ning and scheduling problem is of great importance. This problem can be split
into two parts: a long term planning problem and a more short term schedul-
ing problem. The operating room planning problem is about making supply meet
demand. The hospital needs to make sure that they hire the right amount of sur-
geons and nurses, and that they have the right equipment and enough operating
rooms [6].

The operating room scheduling problem is about how the available resources are
allocated. The problem can be split into advance scheduling and allocation schedul-
ing: Advance scheduling is the process of fixing a surgery date for a patient, al-
location scheduling determines the operating room, the resource assignment, and

1



2 CHAPTER 1. INTRODUCTION

the starting time of the procedure on the specific day of surgery (sequencing) [6].
The problem is subject to a large amount of uncertainty. Important uncertain-
ties are related to the demand (emergency patients arrive unexpectedly and the
treatment requirements of the individual patients can vary a lot [5]), the resource
availability (machines fail and surgeons may be away), and the duration of the
surgeries.

This thesis addresses the problem of scheduling dates and operating rooms for
elective surgeries, referred to as the operating room scheduling problem, ORSP.
The problem defined is positioned in between the advance scheduling and the
allocation scheduling.

Most of the literature on operating room planning and scheduling focus on either
elective or non-elective patients only. General optimization models on operat-
ing room planning and scheduling exist, but few include the uncertainty of non-
elective patient arrivals. In the ORSP defined in this thesis, the issue is addressed
using stochastic programming. The stochastic programming solution provides a
suggested plan of when and where to schedule elective patients surgeries. This
is done under capacity constraints of the pre- and post facilities of the operating
room, and the objective of the problem is to minimize costs.

Other relevant objectives for the ORSP could be balancing and maximizing the
utilization level of the resources (avoiding expensive under-utilization, but still
keeping buffers to avoid extra costs due to uncertainty), and minimizing the pa-
tients waiting time for surgeries. The reason for choosing a financial objective is
that financial numbers are easily quantifiable and often more available and intu-
itive to operate with. Also, any cost savings can be invested in improving the
other objectives.

In real life, the hospitals tend to overbook the capacity of the ORs, as it is a com-
mon understanding that it is better to cancel a few surgeries than risking unused
resources [22]. Assigning a particular OR and the corresponding set of resources
to each surgery in a relatively early scheduling phase, before the final scheduling
into time slots per day is done, makes it more likely that the required resources
are available for the elective patients, and that the surgeries are performed on
time. The solution of the ORSP is intended to be a decision support tool, giving a
guidance on when to schedule the patients and on how much capacity should be
reserved for the non-elective patients.

This thesis is divided into 11 chapters. The description of the ORSP is given in
Chapter 2. Then, in Chapter 3 some existing literature on the subject is presented.
Theory relevant for the problem is given in Chapter 4. Then, in Chapters 5 and 6,
the deterministic and stochastic formulations of the problem are presented. Chap-
ter 7 provides additional information about the heuristics applied to the problem.
Chapter 8 presents the test instances used in the computational study, and Chapter
9 describes the implementation of the model and the computational study done.
The conclusions are summed up in Chapter 10. Possible further work is discussed
in Chapter 11.



2. Description of the ORSP

In this chapter, the fundamentals of the problem addressed in this thesis will be
presented.

The aim of the problem presented is to provide hospitals a tool that can aid them
in making a surgery schedule for the elective patients that will reduce the total
expected costs to a minimum. The problem consists of scheduling the elective pa-
tients to time periods and rooms. The decisions must take into consideration the
uncertainty regarding the emergency patient arrivals and the constraints regard-
ing available resources. These constraints are time limits of the operating rooms
and the capacity limits of the pre-op and post-op facilities.

The scheduling of elective surgeries in a hospital is done for a definite planning
horizon, split into time periods. In a medium term perspective, one planning
period could for example be a day, and one planning horizon could be five days,
Monday to Friday. Each of the operating rooms in the hospital is listed with a total
available regular capacity per time period. If the regular capacity is exceeded,
overtime will occur. The overtime is split into time intervals of different price
ranges, and the total overtime can not exceed the total available capacity of the
price ranges.

The capacity is shared between the two patient groups: elective and emergency
patients. Elective patients are already known patients, for which the surgery can be
planned in advance. Non-elective patients are unexpected patients, with stochastic
arrivals. All non-elective patients are treated as emergencies, and they have to
be taken care of on the day of arrival. The expressions "emergency patients” and
"non-elective patients" are used interchangeably in this thesis.

The number of elective cases to be scheduled is known and not a subject to uncer-
tainty. The surgeries need to be performed on one of the days that is possible for
the particular patient. The first day possible is the release period, when everything
is ready for the surgery. This can depend on for example hospitalization date or
date of medical test delivery. An elective patient can also be postponed until the
next planning period.

Each surgery requires a certain amount of time to be done. This includes all the
time the OR is occupied with activities related to the respective surgery; such as
the time needed for preparing the machines and tools, the time needed to perform

3



4 CHAPTER 2. DESCRIPTION OF THE ORSP

the surgery and the time needed to clean the OR. Every surgery must be allocated
to one of the ORs defined as suitable for the patient. The ORs are connected to spe-
cific sets of resources, such as personnel and machines. A set of costs is associated
with each elective case, time period, and OR. These costs represent hospitaliza-
tion costs, penalties for waiting time, preferences, or other aspects beneficial to
include.

The patients move through three stages: the preoperative, perioperative, and
postoperative stage. Each patient occupies a spot in the pre-op facility, with lim-
ited capacity, on the day of surgery. In the perioperative stage the patients are op-
erated on. After the surgery, in the postoperative stage, most of the patients are
moved to the postanaesthesia care unit (PACU). The patients requiring intensive
care are moved to the intensive care unit (ICU). Each patient spends a given num-
ber of days at the post-op, either in the ICU or the PACU. Both units have limited
capacities. Costs are associated with the violation of the capacity limits, as it is
undesirable, or sometimes impossible, to exceed these capacities.

In each time period, three types of decisions must be made. First, the emergency
patients that arrive need to be allocated to ORs. This can lead to change of plans
for the originally scheduled elective patients. The elective patients may be post-
poned one time period, resulting in a day extra at pre-op, or they may be changed
OR for within the same time period. These decisions can lead to extra costs.

The objective of the problem is to minimize costs. The total costs consists of the
costs of performing the elective cases, any extra costs due to change of plans for
the originally scheduled patients, overtime costs, and capacity violation costs for
the pre-op and post-op facilities.



3. Literature review

In this chapter, an overview of relevant literature for the work is presented. Sec-
tion 3.1 provides a literature review of the general OR scheduling problem. Next,
in Section 3.2, literature on OR scheduling problems including non-elective pa-
tients is presented. Last, in Section 3.3, some work done on the OR scheduling
problems including the capacity constraints of the pre-op and post-op facilities is
presented.

3.1 ORscheduling

The operating theater generates very high costs for the hospital. Together with the
fact that the administration of this unit has a large influence on the patients health
and satisfaction level, it is of great importance to focus on good management and
making a good OR scheduling plan. However, it can be hard due to conflicting
priorities and preferences, and due to the scarcity of costly resources. Also, the
demand is largely uncertain, due to the arrivals of emergency patients. The plan-
ning of surgical operations is therefore highly complex, and it has been written a
lot of literature on the subject in the last decades. Cardoen, Demeulemeester and
Belién [6] provides a review on recent research within the field.

The review is from 2009 and includes 124 references to relevant literature pub-
lished in or after 2000. These are structured into 6 descriptive fields, depending
on what they have their main focus on: Patient characteristics (elective or non-
elective, inpatient or outpatient), performance measures (waiting time, patient de-
ferral, utilization, make-span, financial value, preferences or throughput), decision
delineation (what type of decision has to be made and whether this decision ap-
plies to a medical discipline, a surgeon or a patient (type)), research methodology
(information on the type of analysis that is performed and the solution evalua-
tion techniques and applications), uncertainty (stochastic versus deterministic ap-
proaches to how arrival or surgery duration uncertainty is handled), and applica-
bility of research (information on the testing of research and its implementations in
practice).
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3.2 ORscheduling including non-elective patients

Most of the literature written on patient planning and scheduling regards the elec-
tive patients only. Cardoen et al. [6] points out that the large degree of uncer-
tainty regarding the non-elective patients is the main reason why operating room
scheduling urges other scheduling methodologies than the machine scheduling
procedures developed for industrial systems, and that it could be beneficial to do
more studies regarding both elective and non-elective patients.

Waullink et al. [21] look at how to best reserve operating room capacity for emer-
gency surgery. They present and compare two basic approaches: dedicating spe-
cific operating room to non-elective patients, and evenly reserving capacity in all
elective ORs. The real situation was modeled using discrete-event simulation, and
they found that the best way of reserving capacity for emergency surgery, regard-
ing responsiveness, amount of overtime and the overall utilization of the ORs,
was to spread the capacity over multiple rooms.

Bhattacharyya et al.[3] also discuss the effects of reserving specific ORs for emer-
gency patients only. Their study focuses on the orthopaedic unit of a hospital,
and the concluding recommendation was that hospitals and orthopaedic trauma
services should keep an open OR reserved for orthopaedic trauma.

Bowers and Mould [5] look at how the large uncertainty in surgery demand, due
to emergency patients, influences the utilization of the orthopaedic trauma the-
atre. Simulations and approximations, examined as an alternative to the full sim-
ulation, were used to study the balance between maximizing the utilization of the
theatre and avoiding lack of quality or too many overruns. They found that it ap-
pears that if elective patients are willing to accept a possibility of their treatment
being cancelled, substantially greater throughputs could be achieved, and that the
approximated simpler model offers reasonable accuracy.

Krempels and Panchenko [14] look at how the high complexity of the planning of
surgical operations can be dealt with. To handle the new information appearing
as the uncertain data is revealed (emergency cases occur), they suggest a semi-
automated dialog-based system, involving a human planner in the scheduling ac-
tivity. The planner is meant to act as a “sensor” to identify changes as they occur
and integrate his knowledge and decision-making competence into the planning
process. They also discuss heuristics suited to create proposals for surgery sched-
ule.

Lamiri et al. [15] describe a stochastic model for OR planning with both elective
and emergency surgery demand. A stochastic mathematical programming model
is suggested, and a Monte Carlo optimization method combining Monte Carlo
simulation and Mixed Integer Programming is proposed to model the uncertain-
ties. The problem consists of determining a plan that specifies the set of elective
cases that would be performed in each period over a planning horizon of one or
two weeks, and the objective is to minimize costs. The suggested model served as



3.3. ORSCHEDULING WITH CAPACITY CONSTRAINTS FOR THE POST-OPERATIVE INSTAN

a starting point for the model presented in this thesis.

3.3 OR scheduling with capacity constraints for the
post-operative instances

There has been written little literature focusing on OR and post-op together, and
the interaction with pre-op does not seem to have been addressed systematically
up to now [16]. Gupta [12] describes some commonly occurring operations man-
agement problems faced by the managers of surgical suites, one of which related
to the capacities of the pre-op and post-op facilities. The goal of the article is to
identify open challenges to motivate further research. A model is presented for
surgery booking control, which takes into account limited capacity of a critical
downstream resource; the post-op facilities.

Pham and Klinkert [16] present a new surgical scheduling approach, using an
extension of the Job Shop scheduling problem called multi-mode blocking job
shop (MMBJS). They formulate the MMB]JS as a mixed integer linear program-
ming problem and discuss the use of the model for scheduling elective and emer-
gency surgeries. They also point out the importance of connecting the different
surgical stages (pre-op and post-op) when scheduling any surgical case.



CHAPTER 3. LITERATURE REVIEW



4. Theory

This chapter describes relevant theory used in the work of this thesis. Section
4.1 gives an introduction to stochastic programming, Section 4.2 discusses how
stochastic models can be evaluated, and Section 4.3 presents the two heuristics
used in the solution process of the ORSP.

4.1 Stochastic programming

Stochastic programming is a framework for modeling optimization problems that
involve uncertainty. First in this section, uncertainty within the optimization mod-
els will be commented on, then a stochastic programming approach to handle the
uncertainty is discussed; two-stage and multi-stage recourse models.

4.1.1 Uncertainty in optimization models

When using deterministic programming, all the parameters are assumed to be known
and fully predictable. In practical situations, however, many of the parameters are
often uncertain. The uncertainty can for example lie in in prices, demand, costs,
weather, and technology. The deterministic optimization methods fail to take the
impact of uncertainty in the problem into account, and the solutions obtained can
therefore be of limited value.

Stochastic optimization models treat the uncertain parameters as random vari-
ables, with distribution functions representing possible outcomes and their re-
spective probabilities. The distributions may be continuous or discrete, resulting
in problems of different complexity. Recourse models are examples of stochastic
optimization models. In recourse models, stages are introduced. Stages in time,
where new information becomes available and decisions can be made, allow for
a more realistic representation of real problems. In this way, corrective actions
can be done as a response to the new information. This method will be described
more thoroughly in the next sections.
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4.1.2 Two-stage stochastic programming models

Basic properties In a two-stage stochastic programming problem, the decisions
are made in two stages. The (vector) value of a random variable is revealed in
between the two stages. The second stage decision is called the recourse decision
and is used to compensate for any negative effects or exploiting positive effects
that resulted from the first stage decision. The goal of a twostage model is to iden-
tify a first stage solution that is well positioned against all possible observations
of the random variable. The solution scheme is as follows:

1. The first stage problem is solved; the first stage decisions, x, are determined
2. The random variable, w, is observed

3. The recourse problem is solved; the second stage decisions, y, are made

Recourse formulation The general form of the two-stage stochastic program-
ming problem is the recourse formulation, shown in (4.1) and (4.2).

min cx + E[h(x, @)] 4.1)
s.t. Ax>D

x>0
where
h(x, w) =min gy (4.2)
s.t. Woy 2 1w — Twx

y>0

A part of the objective function in (4.1) is dependent on an unknown variable, w.
The set of possible scenarios is represented by ), and the different scenarios are
represented by w, w € Q. The problem in (4.2) can be called the second stage
problem, subproblem, or recourse subproblem [13]. After the unknown variable
is known, the subproblem for the relevant scenario is solved to optimality.

Scenario formulation In the scenario formulation, each possible scenario is for-
mulated as a deterministic problem, and non-anticipativity constraints are added
to ensure that the information structure associated with the decision process is
honored. For a single scenario, the deterministic problem is as given in (4.3).
min cxy + wYw (4.3)
s.it. Toxw +Wolw > 1w
Xw, Yw = 0.
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When each scenario is weighted in the objective function with a probability fac-
tor pw, and extra constraints are added to ensure that the x,, equals the original
decision of x, we get the scenario formulation, shown in (4.4).

min Y’ (cxo + §wYw)Puw (4.4)
we

s.t. Toxw +Wolw > 1w
Xo—x=0VYweQ

Xw,Yw 2 0.

Scenario trees Scenario trees are often used to characterize the uncertainty in a
stochastic optimization problem. A scenario tree depicts how the possible realiza-
tions of an uncertain parameter lead to different scenarios, and how the scenarios
are related to each other. An example of a three stage scenario tree is shown in
Figure 4.1.

To be able to create a scenario tree for a problem, one needs to assume that the
probability distribution of the random quantities affecting the problem solution
can be described as a discrete distribution with a finite number of possible out-
comes. This may be an approximation of the problem, as the decisions often
could be taken at any point in time, and the random variables often are better
represented by a continuous distribution.

The discrete distribution can be represented through an event tree with nodes as-
sociated with the realizations of the stochastic quantities. The nodes represent
information states, specific points in time when a realization of the random pro-
cess becomes known and a subsequent decision is taken. The structure of the
event tree gives information about the information arrival process. The root node
represents the initial decision stage. In this stage, no observations of the stochastic
parameters have been made yet. A path from the root to a leaf node of the event
tree represents a scenario. The probability of each scenario is the product of the
conditional probabilities of visiting each of the nodes on the path. The end leaves
represent the possible futures of the decision problem.

To each node of the event tree one associates a set of constraints, an objective
function, and the conditional probability of visiting the node from its parent node
in the previous stage.

Using a scenario tree to describe the uncertainty gives the opportunity to formu-
late the deterministic equivalent problem with implicit or explicit non-anticipativity
constraints, in a node formulation or scenario formulation, respectively. These
constraints will be explained further in the next paragraphs.

Non-anticipativity In a multi-stage framework information is revealed through
time, and the decisions made at a certain stage may only depend on the realiza-
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tions of the stochastic quantities up to that point and on the decisions previously
made. To make sure that the decision sequence honors the information structure,
non-anticipativity constraints are added. They make sure that scenarios that share
the same history of information until a particular decision stage also have made
the same decisions [13]. In other words, they make sure that the actions that must
be taken at a specific point in time depend only on the information that is available
at that time.

The non-anticipativity constraints may be formulated in explicit or implicit form
[2]. In the case of explicit constraints, the event tree is split path-wise. The deci-
sion process follows the scenario evolution, and the decision problems are solved
locally in every node. The procedure leads to as many dynamic problems as the
amount of scenarios. The method is called scenario formulation, or "split-variable"
form, since the variables given in the implicit form are split into several variables,
according to scenarios.

In the case of implicit constraints, a unique vector of decision variables for each
node of the tree is introduced. This makes sure that the random coefficients of the
problem are properly associated. This is called a node formulation.

4.1.3 Multi-stage stochastic programming models

Basic properties In a multi-stage stochastic programming problem, the deci-
sions are made in multiple stages. The "decide - observe - decide" pattern is
repeated several times. This may lead to large and complex problems. The un-
certain data &y, ..., &7 is revealed gradually over time, in T periods, and the deci-
sions taken are adapted to this process. As the decision vector x; may depend on
the uncertain data &, the sequence of decisions is also a stochastic process. The
values of the decision vector x; can only depend on the available information in
stage t, and not on the results of future observations. This is a basic requirement
of non-anticipativity.

As in the two-stage recourse problems, the multi-stage recourse problem can be
written in either a scenario formulation or a node formulation. The scenario for-
mulation is often more intuitive to read and write, but the node formulation can
ease the solving process, requiring fewer variables and constraints.

Node formulation Figure 4.1(a) shows an example of a three stage scenario tree
with four possible scenarios, w. Each node is labeled E;, where n represents the
node number. t(n) represents the stage number of the node. Every outcome
of the random vector &;,&, corresponds to a unique path from E,, t(n) = 1 to
E,, t(n) = 3 on the scenario tree. The non-anticipativity constraints are formu-
lated in an implicit form. Each node in the scenario tree corresponds to a collection
of scenarios at a specific stage [13]. When in node 3, it is not possible to recognize
which of the scenarios w = 3 or w = 4 will ultimately result.
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(a) The structure of the node formulation (b) The structure of the scenario formulation

Figure 4.1: A three-stage problem

Scenario formulation The structure of the scenario formulation for a three-stage
model is illustrated in Figure 4.1(b). Each scenario is represented by a horizontal
line. All variables are defined along each scenario, also the ones that are not sce-
nario dependent or the ones that are common for some of the scenarios. The vari-
ables are labeled with both a stage index ¢, and a scenario index w, then linked ac-
cording to the illustration with explicit non-anticipativity constraints [19].

4.2 Evaluation of stochastic models

A stochastic approach can result in non-linear problems and large-scale models.
Multi-stage programs, in particular, have the reputation of being computationally
difficult to solve [9]. Specific solution methods are often required, and a lot of
effort and care is needed for estimating acceptable probability distributions of the
uncertain parameters. Deterministic models are usually a lot less demanding to
handle. The main effort will be put into determining the uncertain parameters.
However, the expected value solution, obtained from solving the deterministic
problem, can often be insufficient in an uncertain environment.

To decide whether or not it is necessary to use a stochastic model, different evalu-
ation tools have been developed. Two methods will be presented in the following
section, Section 4.2.1: the value of stochastic solution (VSS) and the expected value of
perfect information (EVPI). These concepts were developed for two-stage problems,
and are described further in Birge and Louveaux [4]. The notation used is in re-
gards to a minimization problem, since the goal of the problem described in this
thesis is to minimize costs. In Section 4.2.2, the corresponding tools to evaluate
multi-stage models are discussed.
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4.2.1 The value of stochastic solution and the expected value of
perfect information

A common and simple method for including uncertainty in the problem solving
is solving the expected value problem (EV). In the EV, all the uncertain parameters
are replaced by their expected values, and the problem is solved as a deterministic
problem.

Using the solution to the EV, the expected value of the expected value solution (EEV)
can be calculated. The EV solution, obtained from the deterministic problem, is
included in the recourse model as the first stage decision. Then, the problem is
solved with these variable values fixed for all the different scenarios, calculating
associated recourse variables and costs. The EEV is the expected average perfor-
mance of the deterministic solution under uncertain conditions.

Further, the solution to the EEV can be used to calculate the value of stochastic
solution (VSS), as shown in equation (4.5). The VSS evaluates what it is worth
to include uncertainty in the model, solving the stochastic recourse problem (RP),
rather than solving the corresponding deterministic problem.

VSS = EEV — RP (4.5)

For a minimization problem, VSS > 0. This is because the solution of the RP
must be equal to or better than the EEV, when solved to optimality. A small VSS
indicates that replacing the random variables by their expected values is a good
approximation [9].

The wait-and-see solutions (WS) can be found by solving each scenario problem in
isolation, for each possible outcome of the uncertain parameters. These solutions
are the expected solutions if all uncertainty is removed.

The expected value of perfect information (EVPI) measures the possible gains from
eliminating all the uncertainties from the stochastic model. First, to calculate the
EVPI, the average of the individual optimal solutions (WS) is calculated based
on the probability of each outcome, and represents the average performance in
the case of perfect information. Then, the EVPI is computed as the difference
between the optimal stochastic solution and the average performance with perfect
information, as shown in equation (4.6).

EVPI = RP - WS (4.6)
The EV PI can be an indication on the maximum amount a decision maker should

be willing to pay to receive complete and accurate information about the future.

For a two-stage minimization recourse model, the relations given in equation (4.7)
are satisfied.

WS < RP < EEV @.7)
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These bounds make it possible to evaluate the potential gains from applying a
recourse model.

4.2.2 Evaluation tools for multi-stage models

The VSS and EVPI, presented above, were developed for two-stage problems.
Escudero et al. [9] have generalized those parameters to the multi-stage case. They
discuss which variables that should be fixed in the WS models when calculating
the EEV.

For the two-stage case, the EEV was calculated as the WS models with first stage
solutions fixed from the deterministic solution. If the same method is followed
in the multi-stage case; fixing the first stage variables and letting the variables
of the following stages be free to adapt to the performance of the different sce-
narios, it may happen that the first stage solution in the EV problem performs
better than the solution of the RP [9]. The reason is that when the WS models
are solved, every scenario is solved as if it was independent from the others. The
non-anticipativity constraints are ignored. Therefore, the EEV should be rede-
fined for the multi-stage models, taking into consideration the non-anticipativity
constraints. One approach of doing this, described in in Escudero et al. [9], will
now be presented.

To adapt the EEV to the multi-stage setting, the expected result in stage t of using
the expected value solution (EEV}) is introduced. This value represents the optimal
value of the RP model, where the decision variables until stage t — 1 are fixed
at the optimal values obtained in the solution of the EV model. For t = 1, we
define EEV; = RP. The relation given in equation (4.8) holds for any multi-stage
stochastic minimization program.

EEV,;; > EEV,, t=1,..,T—1 (4.8)

The corresponding value of stochastic solution in stage t (V' SS;) is defined in equation
(4.9).
VSSy = EEVy — RP, t=1,.,T 4.9)
The relation given in equation (4.10) holds for any multi-stage stochastic pro-
gram.
0< VS5 <VSS44q, t=1,..,T—1 (4.10)
The sequence of VSS; represents the cost of ignoring uncertainty until stage ¢ in

the decision making in multi-stage models, or the performance of the approxima-
tion of the random variables by their expected values up to stage .
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4.3 Heuristics for MIP

Real world MIP problems are often very complex and hard to solve to optimality.
To ease the solving process of the problems, different heuristics can be applied.
The heuristics can be classified into two types: constructive heuristics and im-
provement heuristics [1]. The constructive heuristics are methods that try to build
a feasible solution from scratch. The improvement heuristics take an already exist-
ing solution (for example found by constructive heuristics) and successively try
to improve it.

Heuristics used to construct solutions for a general MIP are among others LP-and-
Fix, where the LP problem is solved, all the integrals are fixed, and the MIP is
solved again, and Fix and relax, described in Section 4.3.1.

Common improvement heuristics for a general MIP are Relaxation Induced Neigh-
borhood Search by Danna et al. [7], where the neighborhood between the LP re-
laxation solution and the current MIP solution is explored, Local Branching by Fis-
chetti and Lodi [10], where branching is done in the neighborhood of the current
MIP solution, and the general improvement heuristic by Uggen et al. [20], de-
scribed in Section 4.3.2. A review of general MIP heuristics can be found in Pochet
and Wolsey [17].

4.3.1 Constructive heuristic: fix and relax

The concept of the fix and relax decomposition heuristic is to in each iteration di-
vide the integer variables into three groups: one fixed integer block, one integer
block, and one continuous block. The fixed integer block consists of fixed solu-
tions found in earlier iterations. The continuous variables are kept continuous
throughout the whole solution process.

The planning horizon is split into a finite number of time intervals n. Each time
interval makes a subproblem, making the original problem decomposed into n
subproblems. The subproblems are solved in iterations corresponding to the time
intervals. In the first iteration, the subproblem is solved with the integer variables
kept integer in the first time interval, and LP relaxed to continuous variables in the
remaining time intervals. The integer variables found for the first interval in the
first iteration are kept fixed for the rest of the iterations. In the next iteration, the
integer variables found in the first interval are fixed, the integer variables of the
second time interval are kept integer, and the integer variables in the remaining
time intervals are LP relaxed to continuous variables. This process is repeated
until all of the subproblems are solved. The solution found is a complete solution
to the original problem. Figure 4.2 illustrates three different iteration stages of the
fix and relax heuristic.
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Iteration 1:

Interval 1 Interval 2 Interval n
L 1 | —
I T 1
~ ~
Integer Block Continuous Block

Iteration 2:

Interval 1 Interval 2 Interval n
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I T 1
' '
Fixed Block Integer Block Continuous Block

Iteration n:

Interval 1 Interval 2 Interval n
L 1 | —
I T 1
~
Fixed Block Integer Block

Figure 4.2: Iterations in the fix and relax heuristic

The heuristic was originally described by Dillenberger et al. [8]. Different adjust-
ments of the heuristic have been made. An overview can be found in K.T. Uggen
et al. [20]. Time limits and MIP gap limits can be set as stopping criteria in each
iteration to speed up the heuristic. The purpose is to obtain a reasonable solution
of an iteration in limited time, and then move on to the next iteration. This may,
though, lead to infeasibility. Akartunali and Miller [1] suggest that earlier itera-
tions are allocated more time than the later iterations, as the problems are bigger
in size and harder to solve at an early stage than later.

4.3.2 Improvement heuristic

The improvement heuristic, based on the "Improvement phase” described in K. T.
Uggen et al. [20], takes an already existing feasible solution (for example gener-
ated from the fix and relax heuristic), and successively tries to improve it.

The integer variables in the feasible solution are grouped into m groups, split by
certain time intervals or split by other criteria. They are all set to be fixed, but
in each iteration i, the fixing of the integer variables in the corresponding inter-
val, i, is removed, and the problem is re-optimized. The algorithm loops through
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the intervals in consecutive order. If a better solution is found during the re-
optimization, the integer variable values from this solution are kept as fixed for
the future iterations. The algorithm continues to loop until it runs through a full
set of intervals, without improvement.

Iteration 1:

Interval 1 Interval 2 Interval n
L 1 Joocnnnnn —
I T 1
'
Integer Block Fixed Block

Iteration 2:

Interval 1 Interval 2 Interval n
L 1 | —
I T 1
~
Fixed Block Integer Block Fixed Block

Iteration n:

Interval 1 Interval 2 Interval n
L 1 Jeeennnnn A
I T 1
'
Fixed Block Integer Block

Figure 4.3: Iterations in the improvement heuristic



5. The deterministic model

In this chapter, a deterministic model for the ORSP with elective and emergency
demand for surgery is presented and discussed. Section 5.1 presents the mathe-
matical formulation with explanations, and Section 5.2 explains the linearizations
done for the overtime costs.

5.1 Formulation of the deterministic model

The following mathematical model is a deterministic model of the problem de-
scribed in Chapter 2. Itis given as a basis for the models incorporating uncertainty,
presented in Chapter 6. The uncertainty regarding the arrivals of non-elective pa-
tients is not included in the model.

5.1.1 Indices, sets, parameters and variables

Indices
t: time period index
i: elective case index
j: emergency case index
T operating room index
d: duration of stay index
v: overtime price range index

19



20

Sets

CHAPTER 5. THE DETERMINISTIC MODEL

set of time periods in the current planning horizon, # = {1,2,...,L}

set of time periods in the current planning horizon, and one period after,
that elective case i can be scheduled to, ’HZC ={B;, (B;+1),...,.L,(L+1)}
set of elective cases to be scheduled in the planning horizon

set of elective cases going to ICU for post-op

set of elective cases going to PACU for post-op

set of emergency cases in time period ¢

set of emergency cases staying at ICU for post-op in time period ¢

set of emergency cases staying at PACU for post-op time period ¢

set of operating rooms

set of operating rooms that elective case i can go to

set of operating rooms that emergency case j can go to

set of overtime price ranges
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Parameters
L: last time period in the planning horizon
B;: release period, earliest time period for performing elective case i
Ct?v cost per unit of overtime of price range v in time period ¢ and operating room r
CPR:  cost per patient exceeding the capacity of pre-op in time period
cle cost per patient exceeding the capacity of ICU in time period ¢
CPC:  cost per patient exceeding the capacity of PACU in time period ¢
pA time needed for performing elective case i
P].B :  time needed for performing emergency case j
TR:  total available regular capacity of operating room r in time period ¢
Tiro overtime capacity of price range v in operating room r, and time period ¢
KPR:  available capacity of pre-operative unit in time period ¢
KIC available capacity of ICU in time period ¢
KfC: available capacity of PACU in time period
DIC:  duration of stay at ICU after surgery for elective case i, for i € Z1C,
where D] € = 0 means that the elective case i only stays at ICU in the
same time period as the surgery
DPC:  duration of stay at PACU after surgery for elective case i, for i € ZC,
where DC = 0 means that the elective case i only stays at PACU in the
same time period as the surgery
Variables
Xitr © with xj, = 1 if elective case i is planned to be performed in time period t and
room r. Xj, = 0 otherwise. x; 7 1), = 1 implies that elective case i is rejected
in the current planning horizon
Yijr with y;, = 1 if emergency case j is performed in room 7, y; = 0 otherwise
Ztrp :  overtime (working time exceeding the total available regular capacity) of price
range v, for operating room r, and time period ¢
ePR ;" amount of patients exceeding the capacity of pre-op in period ¢
elC . amount of patients exceeding the capacity of ICU in period t.
PC .

amount of patients exceeding the capacity of PACU in period ¢
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5.1.2 Mathematical program
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5.1.3 Explanation of the model

The purpose of the model is to find the best possible schedule for the elective
patient surgeries, depending on a single expected arrival sequence of the non-
elective patients. This is done by letting the objective function minimize the to-
tal expected costs. The objective function can be split into three parts, (5.1a) -
(5.1¢):

(5.1a) captures the cost of performing the elective cases in specific rooms and time
periods.

(5.1b) calculates the cost of overtime, summing over the different overtime price
ranges (linearizations of a curved cost function). Further explanation is
given in Section 5.2.

(5.1c) captures the costs of exceeding the capacity in pre-op, ICU and PACU.

The constraints (5.2) regulate the overtime parameters, z4y:

(5.2) calculate the overtime parameters, z4,, in every time period, room, and
overtime price range. If the time needed for the elective and emergency
cases to be performed in a room and time period exceeds the regular ca-
pacity, the corresponding overtime parameters obtain a positive value. The
overtime parameters represent overtime of different price ranges, to accom-
modate for that it may be more expensive to work overtime hours later in
the evening than in the early evening. The cost parameters CS), represent a

linearization of a curved cost function, see Figure 5.1. As the costs increase

with time, the nature of the objective function will ensure that that the over-
time parameters get as small as possible, and that z;1 will obtain a value
before z4,2, and so on. The maximum values of the variables are defined in

constraints (5.10).

The constraints (5.3) - (5.4) establish certain rules for the variables x;;, and y i

(5.3) make sure that every elective case gets assigned to one room and one time
period. If a case is scheduled to time period L 4 1, the surgery is postponed
until the next planning horizon. This can be penalized by giving the cost
parameters Cj, in the first term of the objective function (5.1a), fort = L+ 1,
a large value.

(5.4) make sure that every emergency case gets assigned to a specific room in the
time period of arrival.

The constraints (5.5) - (5.7) count if, and by how much, the pre-op and post-op

capacities are exceeded. The exceeded capacity variables, e} %, e/, and el are
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punished with a cost in the objective function (5.1c).

(5.5) measure by how much the capacity of the pre-op is exceeded in the different
time periods.

(5.6) measure by how much the capacity of the ICU of the post-op is exceeded in
every time period. Patients may stay at post-op for more than a day. These
constraints count all patients that are staying in the post-op unit in a time
period, also when the surgery is to be performed in an earlier time period.
This is done by including the information of the duration parameters when
summing over the time indices.

(5.7) do the same as constraints (5.6), but for the PACU.

The constraints (5.8) and (5.9) define the variables x;;, and y;, as binary. The con-
straints (5.10) define the boundaries of the overtime variables, z;,, and the con-

straints (5.11) ensure non-negativity of the variables e/}, /€, and e/'C.

5.2 Linearizations of the overtime costs

The overtime cost parameters represent linearizations of a curved overtime cost
function, shown in Figure 5.1. The figure shows an example where the overtime
costs are split into 3 price ranges, v € {1,2,3}. For this example, one time pe-
riod in the ORSP is defined as 24 hours. Table 5.1 shows how the overtime cost
parameters in the example are connected to the hours of a day.

Overtime
Time price range Parameters Comments

7AMto5PM 10 hr TR =10  Time interval of regular capacity

5PMto8PM  3hr v=1 Ty =3 Time interval where the overtime
costs CY; per hour

8PMtol1l1PM 3hr v=2 Typ =3 Time interval where the overtime
costs CS, per hour

11PMto7AM  8hr v=23 T3 =8 Time interval where the overtime
costs S, per hour

Table 5.1: Overtime cost ranges - example

As the overtime prices increase during the evening and night, the overtime cost
parameters are related to each other in this way: Ctorl <GC;, < Ct%. The nature
of the objective function will ensure that the overtime variables of the first price
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Cost of overtime

A

M e e v / Overtime
ﬂrl rAFtr2 Er3

Figure 5.1: Linearizations of overtime costs - example

range will be used before the ones of the second price range, and so on.

The total overtime costs for the example will be as follows:

Z Z Z ngztrv = Z Z (ngztrl + ngztrZ + C;}?&‘,Ztr?))
teH reRveV teHreR

Depending on the total overtime, either only the first term will obtain a value, or
the first and the second term, or all three of the terms.
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On the vertical axis of Figure 5.1, four overtime cost points for a given time period
t and room r are marked:

Point 1 marks the total overtime cost for 3 hours of overtime, T}, = 3
Total overtime cost = Ctor1 T1.
ztr1 = Tin
Point 2 marks the total overtime cost for 6 hours of overtime, (Tj1 + Ty2) = 6
Total overtime cost = (Cg1 Ty + Ctor2 Tir2)-
zt1 = Ty, 22 = T2

Point 3 marks the total overtime cost for a value between 6 and 14 hours of over-
time, (Ty1 + Ty + z43) = (6 + 243)

Total overtime cost = (Cg1 Ty + ng Tho + C%ztrg)

Ztr1 = Ty1,  zwo = Two, 0 < zp3 < Tys

Point 4 marks the total overtime cost for 14 hours of overtime, (Ty1 + Tyo + Tya)
=14

Total overtime cost = (Cg1 T + ng Tho + ng T3)

z1 = Ty1,  zZwo = Tyo,  zZu3 = Ty



6. The stochastic multi-stage model

To incorporate the uncertainty regarding the arrivals of non-elective patients, the
deterministic model described in Chapter 5 is reformulated to a stochastic multi-
stage model. The purpose of this model is, as in the deterministic, to make a best
possible schedule of the elective cases in the planning period, creating a robust
solution for both the elective and non-elective patients, no matter what scenario
that actually will occur.

The model solves the problem, regarding the possibilities of the different scenar-
ios. Each scenario represents a certain distribution of emergency patients arriving
throughout the planning horizon, and is given a likely probability of occurring.
Many of the input parameters may change with each scenario.

Section 6.1 presents the recourse decisions to be made in every stage of the model.
Section 6.2 presents the scenario formulation of the multi-stage model. The de-
cision making sequence is explained in Section 6.3, and the node formulation of
the multi-stage model is given in Section 6.4. Alterations of the model is given in
Section 6.5. Last, in Section 6.6, a small example case is presented.

6.1 Recourse decisions

In every stage of the model, the decisions of allocating the emergency patients
to ORs have to be made. In addition, two other types of recourse decisions are
allowed to be made in every stage. The decisions are made for the elective patients
that are scheduled to be performed in the time period of the stage, and they are
made to fit in the emergency patients that arrive in a best possible way.

Recourse decision 1: Decide if some of the scheduled elective patients should be
postponed until the next time period.

Recourse decision 2: Decide if some of the scheduled elective patients should
change OR within the same time period.

27
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6.2 The scenario formulation of the stochastic model

In the scenario formulation each possible scenario for the problem is formulated
as a deterministic problem, and non-anticipativity constraints are added to ensure
that the information structure associated with the decision process is honored, as
described in Section 6.3. This leads to a large amount of variables and constraints,
but it is an intuitive model, making it quite straightforward to read and under-
stand the problem.

6.2.1 Indices, sets, parameters and variables

Indices
S: scenario index
t: time period index

-~

elective case index

j: emergency case index
T operating room index
d: duration of stay index
v: overtime price range index
n: node index
Sets
S set of scenarios denoting the possible realizations of emergency patient arrivals
H: set of time periods in the current planning horizon, # = {1,2,...,L}
HZC :  set of time periods in the current planning horizon, and one period after,

that elective case i can be scheduled to, H¢ = {B;, (B; + 1),...,L, (L+ 1)}
HP: HP={B,(Bi+1),..L}
HE:  HE={(Bi+1),(Bi+2),..L}

z: set of elective cases to be scheduled in the planning horizon
7P set of elective cases with release period B; in time period ¢
T'C:  setof elective cases going to ICU for post-op

ZIPC . set of elective cases going to PACU for post-op

Jis© set of emergency cases in time period t and scenario s

JIC: setof emergency cases staying at ICU for post-op in time period t and scenario s
JEC . set of emergency cases staying at PACU for post-op time period t and scenario s
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R: set of operating rooms

RA set of operating rooms that elective case i can go to

R?S :  set of operating rooms that emergency case j in scenario s can go to

NH : set of nodes in the time periods of the planning horizon, t(n) € H, i.e. all nodes
in the scenario tree, except from the origin node, n = 1, and the leaf nodes (nodes
in the time period t(n) = L+ 1)

SN set of scenarios that pass through node 7 in the scenario tree

V: set of overtime price ranges

Parameters
Ws probability of scenario s occurring, Y scs ws = 1

itr

(:() .

tro *
(:1’1{ .

t

IC .
clc .
PC .
cre .

A .
PA .
B .
PE

PR .
KPR .
IC .
KIC
PC .
KPC .

trs -
Tirsp :

The time period corresponding to node n

last time period in the planning horizon

release period, earliest time period for performing elective case i
cost of performing elective case i in time period ¢, operating room r,
and scenario s, for t € ”HZC

cost of postponing elective case i one time period, to time period t + 1, and

A

itrs

cost of moving elective case i in time period t from operating room ' to

A

itrs

cost per unit of overtime of price range v in time period t and operating room r

operating room r, for t € HP. Comes in addition to C
operating room r, r # 1/, for t € HZD. Comes in addition to C

cost per patient exceeding the capacity of pre-op in time period ¢
cost per patient exceeding the capacity of ICU in time period ¢

cost per patient exceeding the capacity of PACU in time period ¢
time needed for performing elective case i in scenario s

time needed for performing emergency case j in scenario s

total available regular capacity of operating room r in time period ¢ in scenario s
overtime capacity of price range v in operating room 7, time period ¢,
and scenario s

available capacity of pre-operative unit in time period ¢

available capacity of ICU in time period ¢

available capacity of PACU in time period ¢
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DIC:  duration of stay at ICU after surgery for elective case i, scenario s, for i € Z'C,
where DI = 0 means that the elective case i only stays at ICU in the same
time period as the surgery

D};C : duration of stay at PACU after surgery for elective case i, scenario s, for i € Z"C,
where DPC = 0 means that the elective case i only stays at PACU in the same

time period as the surgery

Variables

Xity © with xj, = 1 if elective case i is planned to be performed in time period t and
room 7. X, = 0 otherwise. x; ; 1), = 1 implies that elective case i is rejected
in the current planning horizon

Yjrs:  with yjs = 1if emergency case j is performed in room r and scenario s,
Yjrs = 0 otherwise

Zysp ¢ Overtime (working time exceeding the total available regular capacity) of price
range v, for time period f, operating room r, and scenario s

ebR': amount of patients exceeding the capacity of pre-op in period ¢ and scenario s
elC:  amount of patients exceeding the capacity of ICU in period t and scenario s
elC 1 amount of patients exceeding the capacity of PACU in period f and scenario s
xRl . recourse variable regarding postponement of elective patients, to be decided in
time period t. xRL = 1 if elective case i is postponed one time period,
from time period ¢ to time period t 4+ 1 and room r, in scenario s (xj; = 1).
xRl = 0 otherwise
xR2: recourse variable regarding change of rooms for elective patients, to be decided in
time period t. xR%_ = 1 if elective case i in time period t and scenario s is moved
from operating room r to operating room 1/, r # ' and xj;, = 1. xﬁrzs = 0 otherwise
xfh o with xfl - = 1if elective case i actually is performed in time period t, room r,
and scenario s. xl‘.‘t‘rs = 0 otherwise
N variable to ensure non-anticipativity of the recourse variables decided in node n.
N

Yirn * variable to ensure non-anticipativity of the emergency patient arrivals

knowledge in node n
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6.2.2 Mathematical program

min Q° = Zws<

seS

Z Z Z Cz/?rs ﬁrs

€T tenC rers

+Y Y ¥ Cixi
ZEZtEHD rGRA

+Y Y Y Gt
i€Z teHP reRf

+ Z Z Z Cgvztrsv

teHreRveV

PRoPR | (IC,IC | ~PC,PC
+ Z Ciets +Crey +Ciers) )
teH
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(6.1a)

(6.1b)

(6.1¢)

(6.1d)

(6.1e)

(6.1f)
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subject to:

R2
xltr s < xztrs

Xigy + xB2 — ) xRl Y

7 GRA r’eRIA\{r}

R2 A
Z Xitrls < Xitrs
A
reRMN\{r}

R1
Xitr + xi/(

Z xztr’ -

r’ERA

+ xztrs

<xA

R1
Xitr + X; L(t=1),rs = “itrs

i€, t=B,
reRA, seS (6.2
ieT te,
reRA, seS (6.3)

ieZ t=(L+1),
reRA, s€S (64)

ZPZ? ftlrs+ Z Pﬁyjrs§T55+ Zztrsv/tEH/ reR,

i€l JE€ETks veV
ses (6.5)
Y ) x=1, icT (6.6)
te?—lic rERlA
Y vis=1, teH,seS,
rER?S
j€ Tis (6.7)
Z (xit”_xll'ii}s_le‘};%s)zo iEZ,tEH?,
reRlA
ses (6.8)
Z Z Xty + Z (xitr + X ),rs)) +|Tis| < KFR + EZR, teH,seS (6.9)
reR{  ieIp i€T\Ip

Y X X rea.
i€Z!IC 4={0,.,DI}: reRA
(t—d)eHS

YooY X xuas HITE S K el

i€IPC 4={0,.,DEC}: reRf
(t—d)eHS

 + T < K€ +elf,

teH,seS (6.10)

teH,seS (6.11)
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R1
xi,t(n),rs

R2

xi,t(n),rs

Yirs

Xitr

Yirs
irn
N
]/jrn

R1
itrs

R2
itrs

itrs

0 < zpsp

PR _IC _PC
Cts 1+ €5 s Cs

_ N1
= Xirns

N2

= Xirn s

_.,N
_]/jrn/

€{0,1},

€ {0,1},

€ {0,1},

€ {0,1},

€ {0,1},

€ {0,1},

€ {0,1},

S Ttrsv:

>0,

ieZ, neNH,
reRA, se SN

iceZ, neNH,
re R4, se Sy

neNH, seSN,
jE t7,;(.,1)’5, re R?s

icZ, teHS, rerA

teH,seS,
j € Tis, v €RE
iel, reRY neNH

17

ne NH, se SN,

j S ‘-71‘(71),51 r e R?s

ieT, tecHP,
rERiA,seS

icT, tecHP,
reRi, seS

icZ, teHS,
reRA, seS

teH, reR,
seS,veV

teH,seS

33

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)
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6.2.3 Explanation of the model

The purpose of the model is to find the best possible schedule for the elective pa-
tient surgeries, taking into account the uncertainty regarding the emergency pa-
tient arrivals. This is done by letting the objective function minimize the total ex-
pected costs. The objective function can be split into six parts, (6.1a) - (6.1f):

(6.1a) weights the total costs of each possible scenario, depending on the proba-
bilities for them occurring.

(6.1b) captures the cost of performing the elective cases in specific rooms and time
periods. The variables xl‘.‘t‘rS represent when and where the elective cases ac-
tually are performed. They will, per time period, include the elective pa-
tients that are postponed from the last time period, and exclude the elec-
tive patients that are postponed until the next. They will also include any

changes of operating rooms.

(6.1c) captures the cost of postponing the elective cases to specific rooms and time
periods. If a recourse variable, xﬁrls, takes value 1 for a given patient, the
surgery will be postponed one time period. Any extra costs due to the post-
ponement are included in this term.

(6.1d) captures the cost of changing the operating room of the elective cases in spe-

cific time periods. If a recourse variable, x£? , takes value 1 for a given
patient, the surgery will be moved within the same time period from room r
to room 1’ (r # '). Any extra costs due to the change of operating room are

included in this term.

(6.1e) calculates the cost of overtime, summing over the different overtime price
ranges (linearizations of a curved cost function). A more detailed descrip-
tion is given in Section 5.2.

(6.1f) captures the costs of exceeding the capacity in pre-op, ICU and PACU.

The constraints (6.2) - (6.4) calculate the variables carrying information about
where and when the elective cases actually are performed, x4, :

(6.2) calculate the x7} _ for the elective cases being treated in their release peri-
ods. The recourse variables, xﬁrzs, are added to the originally scheduled, to
include the patients that have changed room. x£! and the rest of the x£2,
are subtracted from the originally scheduled, xj,, to include that the elec-
tive patients may be postponed one day or changed operating room for. The
summations over R/ are done to subtract the recourse variables no matter
which room the elective patients may be postponed or changed to. This can
be done, as the x;?rs in constraints (6.21) are declared as binary variables,
making it impossible for them to obtain a negative value.
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(6.3) calculate the x/ ., for the elective cases planned to be performed in the time

periods after their release periods, within the planning horizon. The elective

patients that are postponed from the preceding time period, le(lt_l) 4o and

the elective patients with changed operating rooms, xX2, are added to the
originally scheduled patients, x;,s for each elective patient, time period, and
room. The elective patients that are being postponed until the next time
period, xRl and the elective patients with changed operating rooms within

itrs’
the time period, xﬁrzs, are subtracted in the same way as in constraints (6.2).

(6.4) calculate the x7._ for the last time period, t = L+ 1. If x/_ = 1 for any
elective patients in this time period, it means that they are not being treated
until the next planning horizon. The elective patients that are postponed

from the last time period in the horizon, xf(ltfl) s (t—1) = L, are added

to the patients originally scheduled to the next planning horizon, xj,, t =
L+1.

The constraints (6.5) regulate the overtime parameters, z4sy:

(6.5) calculate the overtime parameters, zy,, in every time period, room, scenario
and overtime price range. If the time needed for the elective and emergency
cases to be performed in a room and time period of a scenario exceeds the
regular capacity, the corresponding overtime parameters obtain a positive
value. The overtime parameters represent overtime of different price ranges,
to accommodate for that it may be more expensive to work overtime hours
later in the evening than in the early evening. The cost parameters CS, rep-
resent linearizations of a curved cost function, see Figure 5.1. As the costs
increase with time, the nature of the objective function will ensure that that
the overtime parameters get as small as possible, and that z.s; will obtain
a value before z;,5>, and so on. The maximum values of the variables are
defined in constraints (6.22).

The constraints (6.6) - (6.8) establish certain rules for the variables x;;,, y s and the

R1 R2

itrs and Xitrs-

recourse variables, x

(6.6) make sure that every elective case gets assigned to one room and one time
period in the original plan. If a case is scheduled to time period L + 1, the
surgery is postponed until the next planning horizon. This can be penalized

by giving the cost parameters C7. in the first term of the objective function

(6.1a), for t = L + 1, a large value.

(6.7) make sure that every emergency case gets assigned to a specific room in the
time period of arrival. If it is not planned for enough capacity, the arrivals of
the emergency patients may force some of the originally scheduled elective
patients to be postponed or given another operating room.



36 CHAPTER 6. THE STOCHASTIC MULTI-STAGE MODEL

(6.8) make sure that the recourse decisions only can be made for the elective pa-
tients that originally are scheduled to the time period that the decision has
to be made. The two recourse variables, xR trs and xl m, can only obtain value
1 for a patient if the originally scheduled x;, have value 1. Only one of the
recourse variables can obtain value 1 at the same time (an elective patient
can not both be given a new room in the time period of treatment and be
postponed at the same time). The constraints also make sure that the elec-
tive patients only may be postponed one day, and that an already postponed
patient can not be postponed further. By summing over the set of possible
rooms, we also make sure that a patient may change OR if postponed.

The constraints (6.9) - (6.11) count if, and by how much, the pre éa and post—op
capacities are exceeded. The exceeded capacity variables, eLX, elS, and efC are
punished with a cost in the objective function (6.1c).

(6.9) measure by how much the capacity of the pre-op is exceeded in the different
time periods and scenarios. The exceeded capacity variables are punished
with a cost in the objective function (6.1f). The first term regards the elec-
tive patients that originally are scheduled to their release period. They will
be at the pre-op no matter what recourse decisions are being made. In the
next term, for the rest of the elective patients, the recourse decisions regard-
ing postponement are included. The elective patients that are postponed
from the preceding time period are added (xf(ltfmrs). The elective patients
that are being postponed to the next time period are also included - as they
would have to spend an extra night at the hospital.

(6.10) measure by how much the capacity of the ICU of the post-op is exceeded
in every time period and every scenario. Patients may stay at post-op for
more than a day. These constraints count all patients that are staying in
the post-op unit in a time period, also when the surgery is to be performed
in an earlier time period. This is done by including the information of the
duration parameters when summing over the time indices.

(6.11) do the same as constraints (6.10), but for the PACU.

To honor the non-anticipativity of the decision process, the constraints (6.12) -
(6.14) are added.

(6.12) ensure that the decision of which elective patients to postpone only de-
pends on the information available in the period they are being postponed
from. This decision will count no matter how many emergency patients ar-
rive the time period they are being postponed to. This is done by introducing
a variable for each node within the planning horizon, xN!, t(n) € H, set to

rn’
be equal to the recourse decision taken in this specific node.

(6.13) ensure that the decision of which elective patients to change room for, in
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the same time period, only depends on the information available in the time

period they are being treated in. This is done by introducing a variable for

each node, xf\r],f, t(n) € H, set to be equal to the recourse decision taken in
this specific node.

(6.14) ensure that, for all scenarios going through a specific node, the amount of
emergency patients arriving in the time period of the node and the allocation
of them will be the same. This is done by introducing a variable for each
node, y;\r’n, t(n) € H, making the relevant y ;s equal.

N1 ,N2 N Rl ,R2
irn’ Xirns yjrn’ Xitrss Xitrss
and x%

‘s as binary. The constraints (6.22) define the boundaries of the overtime
variables, zsy, and the constraints (6.23) ensure non-negativity of the variables

PR ,IC PC
e, e, and eg .

The constraints (6.15) - (6.21) define the variables x;;, Y jys, X
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6.3 Decision making sequence

The decision making sequence is illustrated by a small example. The planning
period of the example consists of three days: Monday to Wednesday. It is possible
to postpone the elective patients until after Wednesday by scheduling them to
time period L + 1. These patients are not being treated in the current planning
horizon.

In each time period of the example, the amount of emergency patients that arrive
may be high or low. With a horizon of three days, 8 scenarios are possible in to-
tal. This can be seen as 8 end-leaf nodes in Figure 6.1. The initial decisions of
when to treat the elective patients are taken on Sunday evening. During Monday,
emergency patients arrive and are given rooms to be treated in. The recourse deci-
sions that must be taken during the day (illustrated as Monday evening) is whether
some of the elective patients, originally scheduled to Monday, should be post-
poned one day, or if they should be given a new OR, or be performed as planned.
An overview of the decision making sequence for the example is given in Table
6.1.

., MONDAY TUESDAY : WEDNESDAY
Sunday: Mon. Tue. : Wed.

,/@

I
I
I
al
evening | everning | evem'ng I evening
I
I
I
I

/
/
/
/
/
/
/
/
/
/
/
/

\

_— |

OEEE

=2

T
o

Figure 6.1: Scenario tree for the example illustrating the decision making sequence
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Day t= Variables decided Description
Sun. 0 «xp, i€Z,t€ ’HIC, Original schedule of when the elective patients
eve. re RZA are to be treated is decided.
Mon. 1 yjs, t=15€S, The emergency patients that arrive on Mon.
jE€ Tis, 1 € R? (either a high or low amount) have to be treated,
and are given specific ORs.
Rl t=1,i€eT, Some of the elective patients, originally scheduled
re RIA, s €S  toMon. are being postponed until Tue. (f + 1)
xﬁfs/ t=1,ie1l, Some of the elective patients are moved from one
re RlA, seS OR to another, but are still treated on Mon.
Tue. 2 yjs, t=2,s€S, The emergency patients that arrive on Tue.
jE€ Jis, 1 € R? (either a high or low amount) have to be treated,
and are given specific ORs.
xﬁrls, t=2,iel, Some of the elective patients, originally scheduled
re RIA, s€ S  toTue. are being postponed until Wed. (t + 1)
xﬁrzs, t=2,ie1l, Some of the elective patients are moved from one
r e RI-A, seS OR to another, but are still treated on Tue.
Wed. 3  yjs, t=3,s€S, The emergency patients that arrive on Wed.
j€ Jis, 1 € ’R? (either a high or low amount) have to be treated,
and are given specific ORs.
xﬁ}s, t=3,iel, Some of the elective patients, originally scheduled
re RIA, s€S  toWed. are being postponed until the next
planning period. (t = L 4 1)
xﬁfs, t=3,i€e1l, Some of the elective patients are moved from one

reRA, seS

i’

OR to another, but are still treated on Wed.

Table 6.1: Decision making sequence for the example
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6.4 The node formulation of the stochastic model

To reduce the number of variables and constraints, the scenario formulation of
the stochastic model is rewritten to a node formulation. Each node represents a
specific point in time, and contains information about the entire history until that
time period.

6.4.1 Indices, sets, parameters and variables

Indices

~.

QI [N .

Sets

N;
HE -

IB‘

n -

7ic .

Tn ¢

jIC .
g

TiC

time period index
elective case index
emergency case index
operating room index
duration of stay index

node index

overtime price range index

set of nodes in the scenario tree, indexed by n

set of nodes in time period t = £(n)

set of time periods in the current planning horizon, # = {1,2,...,L}

HID = {Bi/ (Bl + 1), ..., L, (L + 1)}

set of elective cases to be scheduled in the planning horizon

set of elective cases with release period B; in the time period of the node n
set of elective cases going to ICU for post-op

set of elective cases going to PACU for post-op

set of emergency cases, arriving in the time period t(#), for the scenarios
passing through node n

set of emergency cases staying at ICU for post-op in the time period #(n)
for the scenarios passing through node n

set of emergency cases staying at PACU for post-op in the time period ¢(1)
for the scenarios passing through node n

set of operating rooms

set of operating rooms that elective case i can go to
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an . set of operating rooms that emergency case j arriving in the time period
t(n), in the scenarios passing through node #, can go to

./\fl.C :  set of nodes in the time periods in the current planning horizon, and one period
after, that elective case i can be scheduled to: {B;, (B; + 1), ...,L, (L+1)}

NP setofnodes in the time periods: {B;, (B; + 1), ..., L}

NFE:  setofnodes in the time periods: {(B; + 1), (B; +2), ...,L}

N setof nodes in the time periods of the planning horizon, t(n) € H, i.e. all nodes
the scenario tree, except from the origin node, n = 1, and the leaf nodes (nodes
in the time period t(n) = L+ 1)

NP:  setof nodes: node n and the nodes preceding node 7 in the scenario tree

V: set of overtime price ranges

Parameters

my :  probability of visiting node n

p(n): preceding node of node n

t(n): time period corresponding to node n

L: last time period in the planning horizon

B;: release period, earliest time period for performing elective case i

cA cost of performing elective case i in operating room r and time period #(n)
for the scenarios passing through node n, for n € N'©

ckl cost of postponing elective case i one time period, to time period ¢ + 1, and
operating room r, for t € HP. Comes in addition to C,

cR2 cost of moving elective case i in time period t from operating room ' to
operating roomr, r # 1/, for t € HID . Comes in addition to le;‘n

Cgv cost per unit of overtime of price range v in time period f and operating room r

CPR cost per patient exceeding the capacity of pre-op in time period ¢

cle cost per patient exceeding the capacity of ICU in time period ¢

cre cost per patient exceeding the capacity of PACU in time period ¢

P#:  time needed for performing elective case i in the scenarios passing
through node n

Pﬁl :  time needed for performing emergency case j in the scenarios passing
through node n

TR :  total available regular capacity of operating room r in time period #(1) in
the scenarios passing through node n

Trnw overtime capacity of price range v in operating room r and time period t(n) in

the scenarios passing through node n
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KPR:  available capacity of pre-operative unit in time period ¢

K¢ available capacity of ICU in time period ¢

KFC: available capacity of PACU in time period ¢

D{f duration of stay at ICU after surgery for elective case i, in the scenarios
passing through node n, for i € Z'¢, where DIC = 0 means that the
elective case i only stays at ICU in the same time period as the surgery

DPC . duration of stay at PACU after surgery for elective case i, in the scenarios
passing through node n, for i € ZPC where DZ.I;IC = 0 means that the
elective case i only stays at PACU in the same time period as the surgery

Variables

Xity © with xj, = 1if elective case i is planned to be performed in time period ¢ and
room r. Xj, = 0 otherwise. x;; 1), = 1 implies that elective case i is rejected in the
current planning horizon

Yjm: withyj,, = 1if emergency case j, arriving in time period (1), is performed in
room 7 for the scenarios passing through node 7.y, = 0 otherwise

Zmo ©  overtime (working time exceeding the total available regular capacity) of price
range v, for OR 7, time period t(n) and the scenarios passing through node n

ebR: amount of patients exceeding the capacity of pre-op in period #(1) and the
scenarios passing through node n

elC . amount of patients exceeding the capacity of ICU in period #(n) and the
scenarios passing through node n

ePC . amount of patients exceeding the capacity of PACU in period t(n) and the
scenarios passing through node n

xRl recourse variable regarding postponement of elective patients, to be decided in
time period (). xRl = 1 if elective case i is postponed one time period (x;,, = 1),
from time period t(n) to time period #(n) + 1 and room r, in the scenarios passing
through node n. xRl = 0 otherwise

xR2: recourse variable regarding change of rooms for elective patients, to be decided in
time period (). x8? = 1 if elective case i in time period #(1) and the scenarios
passing through node 7 is moved from operating room r to operating room 7/,
r# v, and xjpy = 1. xR2 = 0 otherwise

x{r‘n : with xﬁn = 1 if elective case i actually is performed in time period ¢(n), room r,

and the scenarios passing through node n. x{;, = 0 otherwise
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6.4.2 Mathematical program

min QN = Y Y ¥ mcChxd (6.24a)

neNE i€l reRA

Z Z Z m"CRln ) zrn (6~24b)

ne/\/iD i€Z reRA

+ Y Y Y mCE, a0 (6.24c)

neNpP i€lrers

+ %H ZR van (n) ,vzrnv (6.24d)
ne reRk ve

+ Z/\:/H mu (Cimen™ + Cieen + Crmyen®) (6.24e)
ne,
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subject to:
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(6.25)
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6.4.3 Explanation of the model

The explanation given in Section 6.2.3 for the scenario formulation holds for most
parts of the node formulation, as the constraints in the two formulations in gen-
eral correspond to each other completely. There is, however, a few differences,
described below:

The scenario and time indices are for many of the variables and parameters ex-
changed with a node index. The sets are also adjusted. The time period for
a specific node is given as t(n), and the preceding node is given as p(n). The
variables x;;, are not given with a node index, as they represent the first de-
cision, taken before the planning period starts. They will not be affected by
how many emergency patients that arrive, as they are decided before this
information is known.

(6.24a) - (6.24e) The total expected costs, calculated in the objective function, are
calculated by weighting the cost of decisions at each node by the probability
of visiting that node.

(6.33) and (6.34) The third summation mark, summing over a set of nodes, is writ-
ten to include all elective patients that are in post-op in time period t(n).
This depends on the duration of stay at post-op, DlIrS and Dﬁl G.

The non-anticipativity constraints of the scenario formulation are removed in the
node formulation, as they become unnecessary.

6.5 Alterations of the model

By changing which recourse decisions are allowed, 4 alterations of the model are
defined:

a) Both recourse decisions of type 1 and type 2 are allowed

b) Only recourse decisions of type 1 are allowed (postponing the elective pa-
tients one time period)

¢) Only recourse decisions of type 2 are allowed (changing operating rooms
for the elective patients within the same time period)

d) Neither recourse decision of type 1 nor type 2 are allowed

The basic recourse decision of allocating operating rooms to the arriving emer-
gency patients is always allowed.
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6.6 A small example case

In this section, a small example problem and its solution in XpressMP will be pre-
sented to illustrate how the stochastic model works. It is a very simplified version
of a complete problem, and the parameters are chosen to keep the problem easy
to grasp.

NH

o -
=& @

t=0 t=1 t=1+1

Figure 6.2: Scenario tree illustrating the small example problem

Time periods within the horizon:

# of elective patients:

# of emergency patients (each with probability 0.5):
# of rooms:

Release period, all patients:

Duration of surgery, all patients:

Regular capacity per OR:

Overtime capacity:

Capacity pre-op, ICU and PACU:

Set of ORs that the emergency patients can go to:
Set of ORs that elective patient 1 can go to:

Set of ORs that elective patient 2 and 3 can go to:

o
=
N

C O, NO WR

nlimited
1}
1}
1,2}

———— —_—

Table 6.2: Data values for the small example problem (1/3)

Figure 6.2 shows the scenario tree for the example problem. There is only one time
period within the horizon. The objective of the problem is to make a schedule for
3 elective patients at the lowest possible total costs. There is an uncertainty in the
problem: either 2 or 0 emergency patients will arrive in time period 1, each with a
probability of 0.5 of happening. This leads to two possible scenarios. All elective
patients are released in time period 1. The duration of surgery is set to 4 hours for
all patients. For the sake of simplicity, no overtime is allowed, and the capacities
of pre-op and post-op are set to be unlimited. 2 ORs are available, and the total
regular capacity is set to be 8 hours per operating room. The emergency patients
and elective patient number 1 can only go to OR 1. Elective patients number 2 and
3 can go to both OR 1 and 2. These values are summarized in Table 6.2.
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The costs of performing the elective cases are for time period 1 set as shown in
Table 6.3, and for time period 2 (postponing out of horizon) 20 for all patients.
The cost of performing recourse decisions of type 1 is for both of the ORs set
to be 20 for elective patients 1 and 2, and 5 for elective patient 3. The cost of
performing recourse decisions of type 2 is for both of the ORs set to 20 for elective
patients 1 and 3, and 5 for elective patient 2. These values are summarized in
Table 6.4.

Elective patient# 1 2 3
CA forOR1 10 10 10

mn

CA forOR2 10 16 16

mrn

Table 6.3: Data values for the small example problem (2/3), CA for t(n) = 1

mn

Cost of postponing an elective patient

; A —
out of horizon, C/,, , t(n) =2

for all elective patients: 20
Cost of recourse decisions of type 1, CK!

for elective patients 1 and 2: 20

for elective patient 3: 5
Cost of recourse decisions of type 2, CX2

for elective patients 1 and 3: 20

for elective patient 2: 5

Table 6.4: Data values for the small example problem (3/3)

The node formulation of the model implemented in XpressMP solves the problem

in 0.03 seconds. The output is formatted as shown in Figure 6.3. The output
shows that the expected total costs are minimized to 43. Taking a closer look at
the different cost parts of the objective function, what happens in each scenario
can be seen. In scenario 1, the number of emergency patients arriving is 2. In this
case, three recourse actions will be made:

* Both emergency cases will need to be performed in time period 1 and OR
1. This occupies all the regular capacity of the OR, and as overtime is not
allowed, the originally scheduled elective cases need to be moved.

e Elective case 2 will be moved to OR 2, generating a cost of 5 for recourse of
type 2

¢ Elective case 3 will be postponed to the next planning horizon, generating a
cost of 5 for recourse of type 1 and a postponement cost of 20.
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In scenario 2, no emergency patients will arrive. There will be no need to reschedul-
ing the elective patient surgeries that are planned. The total costs of both types of
recourse decisions will be 0, and no elective cases will be postponed to the next
planning horizon. As each scenario may happen with a probability of 0.5, the
costs will be as shown in the figure.

Datafile: examplecase/examplecase. txt
Comments: V60, max 3600 sec

OQutput is written to: examplecase/examplecase_Output.txt
The corresponding variable values of the best solution are written to: examplecase/examplecase_FIX.txt

SOLUTION PROCESS:

Time: Best Bound: Solution value:
0.016 38 50.5

0.031 42.25 43

Total running time: 0.031

The average expected costs are minimized to: 43
Best bound: 43

Expected costs of..
..performing the elective cases: 28
..postponing elective cases to the next planning horizon: 10
..postponing the elective cases one time period (recourse 1): 2.5
..changing the operating rooms of the elective cases (recourse 2): 2.5
..total overtime: @
..exceeding the pre-op capacity: 0
..exceeding the ICU capacity: 0@
..exceeding the PACU capacity: @

TIME PERIOD: 1

Elective cases scheduled to be done:

Expected overtime hours per price range:

1
room 1: ]
room 2: ]

Expected amount of passengers exceeding the capacity of

pre-op: ]
ICU: ]
PACU : Q

Elective cases scheduled to be done in the next planning horizon:
0

Figure 6.3: Model output when solving the example problem
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7. Heuristics applied to the model

In this chapter, the heuristics chosen to be applied to the model described are pre-
sented. Relevant theory can be found in Section 4.3. The decisions made regarding
the fix and relax heuristic applied are described in Section 7.1, and regarding the
improvement heuristic in Section 7.2.

7.1 Fix and relax

A fix and relax heuristic, as described in Section 4.3.1, is applied to the stochastic
model given in Chapter 6. The number of time intervals n is set to equal the
number of time periods in the horizon of the problem and one period after,
n=|Hl+1

As mentioned in Section 4.3.1, it can be advantageous to add a stopping criteria
to the iterations, as it might not be worth solving each subproblem to optimality
(or to the chosen max MIP gap on 0.5%). Ideally, the fix and relax heuristic should
be able to find a good (enough) solution faster than during normal runs. As the
time limit set for the normal runs is 3 600 seconds, the time limit chosen for the
fix and relax heuristic is smaller. The algorithm is chosen to run for 1 200 seconds.
Early iterations are given greater time limits than the later, due to the change in
subproblem complexity during the algorithm [1]. The time limits set for the test
instances are shown in Table 7.1.

M| = 2 3 4 5

Iteration 1 500 450 420 350
Iteration 2 400 375 360 300
Iteration 3 300 225 240 250

Iteration 4 150 120 150
Iteration 5 60 100
Iteration 6 50

Total 1200 1200 1200 1200

Table 7.1: Time limits (seconds) set per iteration in the fix and relax heuristic for data in-
stances of different size
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The variables chosen to be "fixed and relaxed" are the binary elective variables,
Xjtr. The other binary variables are similarly relaxed for the later time intervals,
else kept binary. Table 7.2 gives an overview of the groupings of the binary vari-
ables in the different intervals, valid for all the variables that exist for the given
time period t. The continuous variables are kept continuous throughout the whole
solution process.

Iteration  Fixed binary, {0,1} Binary, {0,1) Continuous, [0,1]
1 Xitrs t=1 Xitr, t=2,...,n
xf?n/ tn) =1 x;-‘ﬁn, t(n)=2,...,n
B my=1 R k) =2,
B2 =1 xR, tm)=2,...,n
Vae  Hm) =1 yh, Hn)=2...n
2 Xitr: t=1 Xitrs t=2 Xige,  t=23,...,m
b, tm)=12  xA, tn)=3,...n
X tn)=1,2 xRl tn)=3,...,n
R tmy=12 82, tn)=3,...,n
Yo ) =12y, tn)=3,..n
n Xige, t=1,...,(n=1)  xj, F=n
xd, tn)=1,...,n
R pm)=1,...,n
xR tn)=1,...,n
yﬁn, tn)=1,...,n

Table 7.2: Variable groups per iteration, fix and relax heuristic

7.2 Improvement algorithm

An improvement algorithm, described in Section 4.3.2, is applied to the best so-
lutions found with different methods. The variables chosen to be fixed are also
here the binary elective variables, x;;,. They are split into groups of elective cases,
depending on the index 7, as shown in Table 7.3. For the problems with horizon
|| < 4, they are split into 3 groups, and for the problems with horizon |H| = 5
also into 5 groups, to see if it has an effect on the solution or solution time.
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# of elective patients Group 1 of xj,  Group 2 of xj, Group 3 of xjy,
60 ie{l,...,20} ie{21,...,40} ie{41,...,60}
90 ic{l,...,30} ie{31,...,60} ic{61,...,90}
120 ic{l,...,40} ie{41,...,80} iec{81,...,120}
150 ie{1,...,50} ie{51,...,100} ic{101,...,150}

Table 7.3: Variable groups to be fixed /unfixed in the improvement heuristic of 3 iterations

The computing time with the improvement heuristic is limited to a maximum of
1 200 seconds per loop through all of the groups defined. This is a relatively low
limit, and it is chosen to make the total time for both constructing a solution with
the fix and relax heuristic and trying to improve it (one or two loops through all
of the elective patients) less than the time limit of 3 600 seconds for normal runs.
The time limits per interval are shown in Table 7.4.

3iterations 5 iterations

Iteration 1 400 240
Iteration 2 400 240
Iteration 3 400 240
Iteration 4 240
Iteration 5 240
Total 1200 1200

Table 7.4: Time limits (seconds) set per iteration for every loop through the improvement
heuristic

In this thesis, the improvement algorithm is applied to:

¢ The best solutions found during normal runs, for the solutions that are not
optimal

* The solutions found with the fix and relax heuristic

* The best solutions found during normal runs for alterations a2 and b. The

solution values found during normal run for alteration d are used as initially
fixed values.
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8. Test instances used in the computational
study

In this chapter, the different data sets that have been created for performing the
computational tests are presented. The values are chosen to create cases of a real-
istic size and structure.

In Section 8.1, a list over the needed input to generate a fictive case for the stochas-
tic multi stage problem is provided. The rest of the parameters required by the
model are randomly created according to the given probability distributions, with
the help of a spreadsheet and the function "= rand()", drawing a number between
0 and 1 from the uniform probability distribution. The input is formatted to suit
the node formulation, as it is computationally easier to solve than the scenario
formulation. In Section 8.2, the parameter values and probability distributions
chosen for the different data sets are presented. Last, an overview of the sets of
test instances will be given in Section 8.3.

8.1 Inputdataneeded for generating a test instance

The input values needed to generate a test instance for the node formulation in a
spreadsheet are as follows:

1. Information about the scenario tree:
(a) Amount of nodes ||

(b) Amount of nodes within the horizon, |AVH| (all nodes except from the
origin node and the leaf nodes)

(c) The probabilities of visiting the nodes, m;,
(d) Time period of node n, t(n)
(e) Preceding node of node n, p(n)
2. The length of the time horizon, measured in amount of time periods, ||

3. The number of elective patients to be scheduled, |Z|
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10.
11.

12.

13.

14.

15.
16.
17.
18.
19.

20.

21.
22.
23.

24,

. The probability that an elective case is going to ICU rather than PACU for

IPC

post-op, to create the Z'¢ and sets

. A total count of the non-elective patients arriving during the horizon, for all

the possible scenarios (letting a non-elective patient have a separate index
for every scenario that he is involved in) ¥, c x| Jn|

. Amount of non-elective arrivals in each node (time period/scenario), mak-

ing the J, sets

. The probability that a non-elective case is going to ICU rather than PACU

for post-op, to create the jnl Cand jf C sets

. The number of available rooms, | R |

. The sets of rooms that the different elective patients can go to, RZA

The sets of rooms that the different emergency patients can go to, an

Distribution of release periods for the elective patients, to create the B; pa-
rameters

A probable cost distribution for an elective case, per room number and node,

to create the C{;‘n parameters

A probable cost distribution for recourse decisions of type 1 (postponing
an elective patient one time period), per room number and time period, to
create the Cﬁrl parameters

A probable cost distribution for recourse decisions of type 2 (changing OR
for an elective patient), per room number and time period, to create the CX?
parameters

O

The costs of overtime per room, time period, and overtime price range, C;,

The costs of exceeding capacity in pre-op per time period, C/ %
The costs of exceeding capacity in ICU per time period, C/©
The costs of exceeding capacity in PACU per time period, C’¢

The probabilities of duration of surgery for elective patients, to create the P}
parameters

The probabilities of duration of surgery for non-elective patients, to create
the P]% parameters

The number of overtime price ranges, |V|
The regular capacities of the ORs per room and node, TR

The overtime capacities of the ORs per room, node, and overtime price
range, Truy

The capacities of pre-op per time period, K/'R
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25. The capacities of ICU per time period, K/©
26. The capacities of PACU per time period, K[’

27. The probabilities of different lengths of stay at post-op for elective patients,
to create the DIC and DP'C parameters

28. The probabilities of different lengths of stay at post-op for non-elective pa-
tients, to create the sets (7,11 Cand an c

8.2 Chosen parameter values for the test instances

Test instances were created for different structures of the scenario trees. The small-
est cases had a planning horizon of 2 time periods, and the largest cases 5 time pe-
riods. The time periods are set to equal days. ¢t = 0 is meant to represent Sunday
evening, t = 1 Monday, and so on. The scenario trees for the different test instance
series are shown in Figures 8.1 to 8.5. The trees represent the possible scenarios of
emergency patient arrivals. The branches between the nodes in N'H represent the
possible realizations of the uncertain parameters; the emergency patient arrivals
per day.

The input values 1a-c, 2, 3, and 5, as described in Section 8.1, for the different
series are given in Tables 8.1 to 8.5. The values 1d (time period of node n) and Ie
(preceding node of node n) are left to be seen in the figures.

NH

t=2+1

t=0 t=1 t—
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Figure 8.1: Scenario tree illustrating the test instances in series h2, input 1
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t=0, t=1, t=2 t=38, t=3+1

Figure 8.2: Scenario tree illustrating the test instances in series k3, input 1
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Figure 8.3: Scenario tree illustrating the test instances in series 74, input 1
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Figure 8.4: Scenario tree illustrating the test instances in series h5b, input 1
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Figure 8.5: Scenario tree illustrating the test instances in series h5c, input 1
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la. |V Amount of nodes 11
1b. INH| Amount of nodes in the horizon 6 (nodes 2 -7)
le. my,n€[2,3] Probability of visiting nodes 2-3 0.5
my, n € [4,11]  Probability of visiting nodes 4-11  0.25
2. |H| Horizon 2 days
3. |Z| # of elective cases 60
5. Y.enn |Tu|  Size of non-elective case counter 18
|S| # of scenarios 4
Table 8.1: Test instance series h2, input 1, 2, 3, 5
la. |V Amount of nodes 23
1b. INH| Amount of nodes in the horizon 14 (nodes 2 - 15)
le. my,n€[2,3] Probability of visiting nodes2-3 0.5
my,n € [4,7]  Probability of visiting nodes 4-7  0.25
my, n € [8,23] Probability of visiting nodes 8 -23  0.125
2. |H| Horizon 3 days
3. |Z| # of elective cases 90
5. Y,enH|Tu|  Size of non-elective case counter 42
|S| # of scenarios 8
Table 8.2: Test instance series k3, input 1, 2, 3, 5
la. [NV Amount of nodes 47
1b. INH| Amount of nodes in the horizon 30 (nodes 2 - 31)
le.  my,n€[2,3] Probability of visiting nodes 2 - 3 0.5
my, n € [4,7]  Probability of visiting nodes 4 - 7 0.25
my, n € [8,15]  Probability of visiting nodes 8 -15  0.125
my, n € [16,47] Probability of visiting nodes 16 - 47  0.0625
2. |H| Horizon 4 days
3. |Z| # of elective cases 120
5. Yaene | Tl Size of non-elective case counter 90
|S| # of scenarios 16

Table 8.3: Test instance series h4, input 1, 2, 3,5
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la. NV Amount of nodes 39
1b. INH| Amount of nodes in the horizon 30 (nodes 2 - 31)

le. my,n€[2,3] Probability of visiting nodes 2-3 0.5
my, n € [4,5] Probability of visiting nodes4-7  0.25
my, n € [8,39] Probability of visiting nodes 8 -39  0.125

2. |H| Horizon 5 days
3. |Z| # of elective cases 150
5. Y,enH|Tu|  Size of non-elective case counter 90

|S| # of scenarios 8

Table 8.4: Test instance series h5b, input 1, 2, 3,5

la. |V Amount of nodes 63
1b. INVH| Amount of nodes in the horizon 46 (nodes 2 - 47)
le. my,ne(2,3]  Probability of visiting nodes 2 - 3 0.5
mp,n € [4,7]  Probability of visiting nodes 4 - 7 0.25
my, n € [8,15]  Probability of visiting nodes 8 -15  0.125
my, n € [16,63] Probability of visiting nodes 16 - 63  0.0625

2. |H| Horizon 5 days
3. |Z| # of elective cases 150
5. Yoent | Tnl Size of non-elective case counter 138

S| # of scenarios 16

Table 8.5: Test instance series hbc, input 1, 2, 3, 5

Number of patients to be treated in the horizon

The number of elective cases is chosen to make an average of 30 cases per day
within the horizon. This number is based on a case with 4 available operating
rooms, as suggested by Atle Riise in Sintef [22].

The number of non-elective cases to be treated within the horizon will vary between
the scenarios. An emergency patient that will arrive in two scenarios will be in-
cluded two sets of emergency cases, J,, and count twice in the size of non-elective
case counter, Y, - x-# | Ju|. This size of this counter must therefore not be confused
with a total of emergency patients arriving. In the test instances, its value is based
on an average of about 3 emergency patient arrivals per day per possible scenario
(3 - [# of branches in the scenario tree| ). The arrival numbers per node are drawn
randomly.
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Post-op distribution

The probability that an elective case is going to ICU rather than PACU for post-op
is set to be 20%. This is on average every fifth patient. The reason for the choice
of percentage is that it is more likely that a patient is going through an uncom-
plicated procedure than a procedure that needs extra resources at post-op. The
probability that a non-elective case is going to ICU rather than PACU for post-op is
set to be 33%. This is on average every third patient. This percentage is chosen
to be higher than for the elective patients, as it is assumed that, on average, the
non-elective patients are in a less stable health situation than the elective patients.
The probability distributions of post-op destinations are given in Table 8.6.

Probability of going to ICU PACU

For elective patients 20%  80%

For non-elective patients 33%  67%

Table 8.6: Distribution of post-op destinations, input 4, 7

Sets of rooms that the patients can be treated in

Four operating rooms are set to be available in the test instances, |R| = 4. This
could be realistic for a medium-sized hospital in Norway [22]. In many hospitals,
the operating room capacity is split between different hospital sections (such as
cardiology, neurology etc) [22]. Every section is allotted given time periods and
operating rooms, according to a schedule set. In the test instances generated, the
patients are split into four groups, to simulate that they belong to different sections
of the hospital. As a simplification, these groups are only set to have limitations
on which rooms they may go to, not on which time periods (although the model
also allows for setting limitations on time periods, by adjusting the set of nodes
that the patients may be scheduled to). The elective patients are divided into the
four groups according to the percentages given in Table 8.7.

% of elective
patients Group# Setof ORs, R#

40% 1 {1 2 3 }
20% 2 { 3 4 )
20% 3 {1 2 4 )
10% 4 { 4 )

Table 8.7: Sets of ORs available for the elective patients, input 8, 9

The emergency patients of the test instances are set to be able to go to all rooms,
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as shown in Table 8.8. This is based on an assumption that they will be performed
surgery on as soon as possible, no matter which section they belong to.

% of emergency
patients Group# Setof ORs, RZ

100% - {1 2 3 4 }

Table 8.8: Sets of ORs available for the emergency patients, input 10

Release periods

The release period for an elective patient is set according to the probability distri-
butions given in Table 8.9. Patients released in the week-end before the planning
horizon, would in the model get their release date on Monday. This is done as it is
likely to believe that the surgery capacity in the week-ends mainly is reserved for
the non-elective patients. The probability of having a release date on day 1, Mon-
day, is therefore set to be larger than for day 2. It is also done to include potential
postponed (queued) elective patients from the last planning period.

Series Release period 1 2 3 4 5

h2  For elective patients 65% 35%

h3  For elective patients 45% 35% 20%

h4  For elective patients  40% 30% 20% 10%

h5b  For elective patients  30% 30% 15% 15% 10%
h5c  For elective patients  30% 30% 15% 15% 10%

Table 8.9: Distribution of release periods for the elective patients, input 11

Cost of performing elective cases

The cost of performing an elective case is drawn from a discrete uniform distribu-
tion set to be in the intervals given in Table 8.10, varying with the horizon.

Time period: All days within the horizon Postponed
Rooms: [1234] [1234]
Costs, C{} 100 +5 175 + 25

Table 8.10: Costs of performing the elective cases, input 12
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Cost of recourse decisions

The cost of making a recourse decision of type 1 (R1) or type 2 (R2) is for all the
elective cases set to be varying around 15 or 5, respectively, for all the horizons
and rooms. These values are shown in Table 8.11.

13 CRl Costof Rl 15+2 forallit r

itr

14 CR? (Costof R2 5+2 forallitr

itr

Table 8.11: Costs of recourse decisions, input 13, 14

Overtime

The regular capacities of the ORs are set to be 10 hours for all rooms. This could
for example represent a working day from 8 am to 6 pm. The overtime cost is
for the test instances split into three price ranges (3, 3 and 8 hours). This could
illustrate one price range from 6 pm to 9 pm, another from 9 pm to midnight, and
a third one for from midnight to 8 am. They are set to be equal between the rooms,
this is done for simplicity. The ranges are given in Table 8.12.

21 |V| #ofovertime priceranges 3 foralli t,r
22 TR Regular capacities 10 forallr,n
23 TR, Overtime capacities:

.of pricerangel 3 forallr,n

rnl
Tr1§12 .of priccrange2 3 forallr,n
TR, .of pricerange3 8 forallr,n

Table 8.12: Overtime price ranges, input 21 - 23

The costs of the different ranges are given in Table 8.13.

v Overtime price range: 1 2 3
15 C9  Costovertime (for all rooms): 35 60 100

tro

Table 8.13: Costs of overtime, input 15

Cost of exceeding capacity in pre-op and post-op

For all time periods, the cost of exceeding capacity is set to be 10 for pre-op and
PACU, and 20 for ICU, as given in Table 8.14.
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(for all time periods)

16  Cost of exceeding the capacity of Pre-Op C/R 10
17  Cost of exceeding the capacity of ICU clc 20
18  Cost of exceeding the capacity of PACU  C/¢ 10

Table 8.14: Costs of exceeding capacity in pre-op and post-op, input 16, 17, 18

Duration of surgery

The duration of the surgery is set to be between 0.5 and 4.5 hours as shown in
Figure 8.6 for the elective patients and Figure 8.7 for the non-elective patients. It
is assumed that the parameter has a larger spread and a larger average for the
non-elective patients than for the elective patients.

30%
25% L4
« 20% L] ]
15% [ ]
10% ®
5% e o
0%

of patients

Percentage

0 05 1.0 1.5 2.0 25 3.0 3.5 4.0 45 5.0
Surgery duration (hours)

Figure 8.6: Duration of surgery for elective patients, input 19
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Figure 8.7: Duration of surgery for non-elective patients, input 20

Capacities of pre-op and post-op

The capacities are set to be 35, 10 and 35 for pre-op, ICU and PACU, respectively,
see Table 8.15. The reason for setting the ICU capacity low is that it is expensive
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to reserve resources and keep capacity up for intensive care. The post-op units
of real hospitals do sometimes have a lower capacity than the amount of patients
[22]. The capacities of the ICU and the PACU are therefore set low enough to
create a bottleneck in some scenarios.

(for all time periods)
24 Capacity of Pre-Op KR 35
25 Capacity of ICU K/ 10
26 Capacity of PACU K¢ 35

Table 8.15: Capacities of pre-op and post-op, input 24, 25, 26

Duration of stay at post-op

When calculating the available capacity of post-op, it is necessary to know for
how long the patients are staying at post-op. Some will leave the same day as
they arrive, for these patients, the duration of post-op is set to 0. The percentages,
shown in Table 8.16, are chosen as the probabilities of staying none, 1, 2, 3, or 4
days. The non-elective patients are assumed to, on average, stay longer at post-op
than the elective patients.

Duration post-op (in days) 0 1 2 3 4

For elective patients 40% 30% 20% 10% 0%
For non-elective patients 20% 20% 30% 20% 10%

Table 8.16: Probabilities of length of stay at post-op, input 27, 28

8.3 Overview of the sets of test instances

The sets of test instances used in the computational testing are all generated as
described in the previous section. The specifications of the sets are described be-
low. Each set was generated for different horizons, as illustrated in Figures 8.1-
8.5.

r4  With 4 ORs available, generated for the different horizons h2, h3, h4, h5b,
and h5c, and the node formulation of the stochastic multi-stage model

r3  With 3 ORs available, generated for the different horizons h2, h3, h4, h5b,
and h5¢, and the node formulation of the stochastic multi-stage model

r4-v With 4 ORs available, generated for the horizons h2 and /3, for both the node
formulation of the stochastic multi-stage model and the deterministic model
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(the expected average values of the possible scenarios in the stochastic prob-
lem)

r4-r With 4 ORs available, generated for the horizon /2, and the node formulation
of the stochastic multi-stage model (10 test instances).

A collection of test instances of the same horizon size is in this thesis called test
instance series.

The numbers of variables and constraints for the different test instances generated
are shown in Table 8.17. The most complex test instance series are h4 and hbc,
consisting of 16 possible scenarios each. The values given in the table are only
given for variation 4, allowing both types of recourse decisions, as described in
Section 6.5.

The corresponding values for the other variations are related to the values given
for alteration a in the following ways: The number of binary variables is reduced
with about 25% from alteration a to alteration b and ¢, and with about 50% to
alteration d. The number of nonzero elements is reduced with about 20% from
alteration a to alteration b, about 33% to alteration ¢ and about 50% to alteration d.
The number of constraints are the same for all variations.

Size # nonzero

hori- #Sce- #Con- #binary  elements
Instance Variation zon narios straints # variables variables in matrix
r4_h2 a 2 4 2 056 3551 3461 14 223
r4_h3 a 3 8 6510 11 301 11 091 49 675
rd_h4 a 4 16 18 360 32121 31 581 150 247
r4_h5b a 5 8 18356 34 089 33639 150 845
r4_h5c a 5 16 30712 56 338 55 648 272 622
r3_h2 a 2 4 1990 3422 3332 13 654
r3_h3 a 3 8 6178 10 502 10292 45 506
r3_h4 a 4 16 17282 30032 29 582 138 560
r3_h5b a 5 8 17462 31683 31233 138 560
r3_h5c a 5 16 28800 51287 50 597 242 747
rd-v_h2 b (det.) 2 4 683 1186 1156 3991
r4-v_h2 b (stoch.) 2 4 2926 2122 12 278 2 836
rd-v_h3 b (det) 3 8 1238 2150 2105 7 760
rd-v_h3 b (stoch.) 3 8 8 695 6 580 40 309 8 485
rd-r h2 b (average) 2 4 2 096 2 860 2770 11 845

Table 8.17: Model dimensions of the test instances generated
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9. Computational study

In this chapter, the results obtained from solving the test instances described in
Chapter 8 will be presented and discussed. Section 9.1 describes how the model
was implemented. In Section 9.2 the model is tested at a technical level, varying
parameter values and applying heuristics. In Section 9.3 the value of applying the
recourse models is studied, and in Section 9.4. Last, in Section 9.5, one potential
use of the model is tested.

9.1 Implementation

The implementation was done for the node formulation of the model, given in
Section 6.4. This formulation is chosen over the scenario formulation, as it should
be computationally easier to solve, with fewer variables and fewer constraints.
All relevant files (code, input, output, and data file generators) can be found in
the enclosed zip archive or for a limited time at:

http://folk.ntnu.no/sofiedov/TIN4905

Hardware

All of the runs were done on nodes in a Linux cluster. The specifications of the
nodes are:

Hewlett Packard d1160 G5 PC

2 x Intel QuadCore E5472 3.0 GHz
16 Gb RAM

72 Gb SAS 15000 rpm.

Software

The code was written in the Mosel language and implemented in Xpress-IVE,
Version 1.22.04. The solver package used was FICO™ Xpress Optimization Suite
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by Dash Optimization. The complete codes for the node formulation, the fix and

relax heuristic and the improvement heuristic can be found in the documentation
folder.

Comments on the Mosel code

After the codes were completed, a tuning was run to reduce the running time,

resulting in the following adjustments:
setparam("XPRS_DEFAULTALG",3) ;
setparam("XPRS_CUTFREQ",2) ;
setparam("XPRS_HEURDIVESTRATEGY",5) ;
setparam("XPRS_HISTORYCOSTS",0) ;
setparam("XPRS_MIPPRESOLVE",3) ;
setparam("XPRS_PERTURB" ,0.0001) ;
setparam("XPRS_ROOTPRESOLVE", 1) ;
setparam("XPRS_SBEFFORT",0.25) ;
setparam("XPRS_SBESTIMATE",5) ;

A max running time stopping criteria was for most of the runs set to 3 600 seconds.
In addition, a MIP gap stopping criteria of 0.5% was used in most of the runs,
except from in the runs that it was considered of importance to get even more
precise results.

Generation of the test instances

Spreadsheets in MS Excel were used to generate the test instances described in the
previous chapter. The spreadsheets are written in a way that is suited for XpressMP
and the node formulation code. After completion, the data was saved to a stan-
dard .txt-file. The spreadsheets and text files can be found in the documentation
folder.

Processing of results

The results were written to text files, and are gathered in spreadsheets for the ease
of reading and handling. These spreadsheets can also be found in the documen-
tation folder.
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9.2 Computational testing

At a technical level, tests were done to find the impact of the recourse decisions
on the model, and the potential benefits from applying the fix and relax and the
improvement heuristics.

9.2.1 The impact of the recourse decisions

The problem was first run to see how the recourse decisions affect the solutions
and solution process. The set of test instances, r4, with 4 available ORs were run
for the 4 model alterations described in Section 6.5. The set includes test instances
of different sizes, with horizons from 2 - 5 days and 4 - 16 possible scenarios.

In alterations a, both recourse decisions of type 1 and type 2 were allowed. Only
the recourse decisions of type 1, regarding postponement of the elective patients
one time period, were allowed in alterations b, and only recourse decisions of type
2, changing operating rooms for the elective patients within the same time period,
were allowed in alterations c. Neither recourse decisions of type 1 nor type 2 were
allowed in alteration d. The basic recourse decision of allocating operating rooms
to the arriving emergency patients were allowed in all alterations.

The results of the runs are shown in Table 9.1. The first column presents the test
instance number and the length of the planning horizon. For the complex test
instance r4_h5c_a, the running time is the time until the first feasible solution was
found. The gap in the column to the right in the table is calculated as:
gap=(objective value - best bound)/objective value.

The runs on alteration d were, for all the test instances, the fastest to solve. This is
because these problems are smaller and less complex than the other alterations.

Alterations a and c seem to be harder to solve. When reaching the time limit of one
hour, the gaps from the best solution found to the best bound were large for these
alterations of all the test instances. This indicates that the recourse decisions of
type 2 (changing room for an elective patient within the same time period) create
difficulties for the solution process. For the most complex test instance, r4_h5c, the
solver did not find a feasible solution within the time limit for alteration a.

The runs on alteration b gave better results. Within the time limit of one hour,
the least complex test instances, r4_h2, r4_h3, and r4_h5b, were solved to solutions
relatively close to the best bound.
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Running Objective
Instance Variation time (sec) Bestbound value Gap
r4_h2 a 3 600 3750 6715 44.2%
rd_h2 b 121 6 407 6440 05%
r4 h2 C 3 600 4324 6609 34.6%
r4_h2 d <1 6518 6535 0.3%
r4 h3 a 3601 4 568 10493  56.5 %
r4_h3 b 3 600 9595 9954 3.6%
r4 h3 C 3 600 4274 10532 594 %
r4 h3 d 16 10 085 10134 05%
r4_h4 a 3603 4124 10248 59.8 %
r4_h4 b 3602 8191 10107 19.0%
r4_h4 c 3601 3391 9641 64.8%
rd_h4 d 2 9475 9513 04%
r4_h5b a 3601 3561 5399 34.0%
r4 _h5b b 3601 5118 5345 42%
r4 _h5b C 3 600 4843 5403 104 %
r4_h5b d <1 5443 5444 0.0%
r4 h5c a 15972 6 028 28600 78.9 %
r4_h5c b 3 604 9798 25920 62.2%
r4_h5c C 3601 8149 23816 65.8%
r4 h5c d 2 23253 23360 0.5%

Table 9.1: Results for the test instance set 74 with 4 ORs available, alterations on allowed
recourse decisions

A possible reason for that allowing only recourse decisions of type 1 makes the
problem easier to solve than allowing recourse decisions of type 2 could have a
connection to the model formulation, given in Section 6.4. The recourse variables
of the two types of decisions appear in the same constraints, except from in con-
straints (6.27) and (6.32), where only the recourse variables of type 1 occur. By
allowing these variables, the formulation gets tighter, and there is a possibility
that this has an influence on the solution process and solution time.

The runs on alteration d gave good results for all the runs. On average, they gave
the second best objective values between the alterations for a test instance, in a
short time. If the optimal solutions were found for all the alterations, the runs on
alteration d would be expected to give the worst objective values. Each of the other
alterations, a-c, may be reduced to alteration d if all of the recourse variables are set
to 0. However, allowing extra recourse decisions makes the problem a lot more
complex. With large test instances, the problem gets too complex to solve to a
good solution within the time limit of one hour, when allowing recourse decisions
of type 1 and 2, especially type 2.

For the smaller test instances, the runs on alteration b gave the best objective val-
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ues between the alterations. For the test instances r4_h4 and r4_hbc, the alteration
d gave the best objective values.

Figure 9.1 presents how the best solution values approach the best bound values
for the different alterations of r4_h2, plotted against computational time, given in
a logarithmic scale. The figure shows that the gap between best bound and best
solution decreases rapidly for the first seconds of all of the alterations. This behav-
ior is common for the runs on all the test instances. The best solution values for
alteration a and ¢ do not at any point in time, within the max time limit, get better
than the optimal solution of alteration d. Alteration b is also solved to optimality,
on a value just below the optimal value of alteration d.

-+ Best solution
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Figure 9.1: Results for test instance r4_h2, best bound and solution development

Reducing the amount of ORs to 3 In the test instance set r4, the amount of
operating rooms available was set to 4. In the test instance set r3, the amount is
decreased to 3 rooms. The the results of the runs on test instance set 3 can be
found in Tables A.1 and A.2 in Appendix A. The tendencies of the results are the
same as for the results on test instance set r4. Alteration b gives good results for
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the smaller test instances, but complicates the solution process maybe too much
for the complex test instances r3_h4 and r3_h5c to produce a good solution within
an hour. Alterations d give fairly good results within a short time, on average
the second best objective values between the alterations. Alterations a and c are
hard to solve to optimality, and for the two most complex test instances, r3_h4
and r3_h5c, no feasible solutions are found within the time limit for the runs on
alteration a.

The results do not indicate a clear relation between adjusting the number of avail-
able rooms from 4 to 3 and the performance in terms of computational time and
gap between best solution and best bound for the different alterations. The gaps
in the results of 3 were on average a bit lower than the gaps in the results of
r4, but it does not seem to be a consistent trend, for example in one specific al-
teration. The gaps between best bound and best solution found are compared in
Table 9.2.

Series: h2 h3 h4
Var.: a b c d a b C d a b c d

Setrd | 442% 05% 34.6% 03% | 56.5%  3.6% 594% 0.5% | 59.8% 19.0% 64.8% 0.4%
Setr3 | 40.9% 04% 44.8% 04% | 444%  09% 50.6% 0.5% | 582% 35.3% 542% 0.5%

Series: h5b hbc
Var.: a b c d a b c d

Setrd | 34.0% 42% 104% 0.0% | 78.9% 62.2% 65.8% 0.5%
Setr3 | 54.4% 25% 124% 0.1% | 68.8% 55.7% 48.0% 0.4%

Table 9.2: Gaps for the test instances in sets 4 and r3.

9.2.2 Applying heuristics

In this section, the value of the two heuristics described in Chapter 7 will be tested
and discussed. The fix and relax heuristic is applied to alterations a and b of every
test instance, and the improvement heuristic is applied to the benchmark values
that did not reach optimal solution within the time limit set, and to the solutions
generated by the fix and relax heuristic. The solution values found during normal
runs are denoted benchmark values, as they are compared to the solutions found
with other methods.

The objective function values found by the different methods compared to the
solution time are presented in Figures 9.2-9.6. Note that it is used a logarithmic
scale on the horizontal running time axis. The final best bounds of alteration b
and d are shown as the blue and green horizontal lines, respectively. The values of
the best bounds of alteration a and c lie below the areas shown. The filled squares
show the benchmark values found, and the non-filled squares show the objective
values found after applying the improvement algorithm to the benchmark values.
The filled circles show the objective values found with the fix and relax heuristic



9.2. COMPUTATIONAL TESTING 75

(with an intended max running time of 1200 seconds), and the non-filled circles
show its improved values. The crosses represent the results from the improvement
algorithm applied to alterations a and b, using initial variable values found in the
benchmark runs on alteration d.

A complete overview of the results can be found in Tables A.1-A .4 in Appendix
A. In the tables, the runs are grouped by test instance, variation, whether a bench-
mark, a fix and relax or an improvement run was done, amount of iterations in the
heuristics and max running time. All time values are measured in seconds. The
result "nbs" indicates that no better solutions were found using the improvement
algorithm. The improvement is calculated as:

improvement=(initial objective value - improved objective value)/initial objective value.
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Figure 9.2: Results for test instance r4_h2
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Figure 9.4: Results for test instance r4_h4
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Objective value

Objective value
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Results from the fix and relax heuristic

The runs done with the fix and relax heuristic seem to give moderate good so-
lutions within the time limit of 1200 seconds. For the test instances 74 _h2 a and
r4_h5c_a, the heuristic gives better solutions than the benchmark does, and also
faster. For most of the other runs, the heuristic gives a poorer solution than the
benchmark does, but it seems to produce a good start solution for the improve-
ment algorithm applied, as discussed in the next subsection.

Time limits and MIP gap limits are set as stopping criteria. The time limits per
iteration are set as described in Chapter 7. For all of the runs, the time limit was
the active stopping criteria. The fix and relax method seems to be fairly consistent
in its computational time consumption, as it has to go through all iterations, no
matter how easy the problem is to solve, making it an unnecessary heuristic for
the problems requiring less than 1200 seconds to find optimal solution.

Results from the improvement heuristic

The improvement heuristic was mainly run with 3 groups of variables to be fixed /un-
fixed. For the test instances of horizon 5, the heuristic was also run for 5 iterations.
These runs did not give any better objective values than the runs with 3 iterations,
and the ideal number of iterations for the heuristic is not studied further in this
thesis.

Applied to the benchmark solutions The improvement heuristic gives either a
small or no improvement when applied to the benchmark solutions of the test
instances in the two sets r4 and r3. The largest improvement was measured to
29.3% on test instance ¥3_h5b_a. For the alterations a, the improvement heuris-
tic succeeded in improving the benchmark solutions in 40% of the runs. For the
improved runs, the heuristic improved the solution with, on average, 10.5% (this
value is influenced by the single high improvement measured to 29.3%. With-
out this improvement, the average value would be 4.2%). For the alterations b
and c, the improvement heuristic gave improvement in 56% and 50% of the runs,
improving the solutions, on average, 0.9% and 1.3%, respectively.

Table 9.3 shows both the objective values found by letting the time limit of the nor-
mal runs be 4800 seconds and the objective values found with the improvement
heuristic applied to the benchmark solutions, with max time 3600 + 1200 = 4800
seconds. In the test instance set 4, the improvement heuristic succeeds in improv-
ing the solution oftener than letting the normal model run for a longer time. The
complex test instance r4_h4 does, however, obtain better solutions with a longer
normal run than with the heuristic, for all alterations. It can seem like the im-
provement heuristic is more effective for the smaller test instances than the larger.
For test instance r4_h5c_a, the improvement with the heuristic was calculated to
10.0%, but at the cost of a very large computational time, far beyond the time limit
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(allowed if no feasible solutions for an iteration are found within the time limit).
A reason for the large improvement on this solution could be that the initial solu-
tion was the first and only solution found for the benchmark run, also violating
the time limit.

Objective value Improvement percentage*

3 600 sec, 4800sec  Improved 4 800 sec Improved

Instance | benchmark normalrun benchmark | normalrun  benchmark
r4 h2 a 6715 6 699 6711 0.2 % 0.1%
rd h2 ¢ 6 609 6 609 6 601 - 0.1%
r4 h3 a 10 493 10 493 10 215 - 2.7 %
r4 h3_b 9954 9945 9916 0.1 % 0.4 %
r4 h3 ¢ 10 532 10 532 10132 - 3.8%
r4 h4d a 10 248 10 086 10 248 1.6 % -
r4_hd b 10 107 9613 10107 49 % -
rd h4 ¢ 9 641 9 635 9560 0.1% 0.8 %
r4_h5b_a 5399 5396 10 248 - -
r4_h5b_b 5345 5345 5345 - -
r4_h5b_c 5403 5403 5403 - -
r4_h5c_a 28 600 28 600 25739 - 10.0 %
r4_h5c_b 25920 25920 24 968 - 3.7 %
r4_h5c c 23 816 23 816 23 816 - -

Table 9.3: Results for test instances in the set r4; objective values for benchmark runs, nor-
mal runs with a larger max time, and improvement runs on the benchmark solu-
tions. *The improvement percentage is compared to the benchmark run.

Applied to the fix and relax solutions The improvement heuristic applied to
the fix and relax solutions give, for all of the runs, a significant improvement of
the objective value. On average, for all the test instances in the sets 4 and 73,
the heuristic improves the fix and relax solutions with 5.8%. However, the ini-
tial fix and relax solutions were on average poorer than the benchmark solutions.
Looking at both the improved benchmark solutions and the improved fix and re-
lax solutions, it seems like the final objective function values of the two methods
lie a lot closer to each other than the initial objective function values of the two
methods.

Applied to the benchmark solutions from alteration d Overall, the best solu-
tions found for alterations a and b were achieved from applying the improvement
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heuristic with initial variable values from the benchmark solutions of alteration d.
The objective values found with this improvement method can be seen as crosses
in the Figures 9.2-9.6. These crosses lie low to the left in all of the graphs, demon-
strating decent performance. The total computational time; time for running al-
teration d added to time for running the improvement algorithm, is lower than
the benchmark max time, and the heuristic gives for the most time a better or an
as good solution as the benchmark values. This method does, however, not seem
to work for neither alteration a nor b for the most complex test instance series,
h4 and hb5c, for both of the test instance sets. Also, the method is less consistent
in finding improved solutions when it is run for 400 seconds compared to 1200
seconds.

For the alterations a, the improvement heuristic using solutions from alteration
d succeeded in improving the solutions of alteration a in 20% of the runs. For
the improved runs, the heuristic improved the solution with, on average, 2.9%.
For the alterations b, the improvement heuristic applied to the alteration d solu-
tions gave improvement in 50% of the runs, improving the solutions, on average,
0.2%.

9.3 Valuation of the recourse model solutions

Different tools to get a quantitative measure of the value of implementing a stochas
tic model rather than a deterministic model were presented in Section 4.2.1. In this
section, the VSS; and EV PI will be calculated for two test instances, r4-v_h2 and
r4-v_h3, generated as described in Chapter 8; one with horizon 2 days and another
with horizon 3 days. The values are calculated for runs on alteration b. The reason
for choosing this alteration to be tested is that alteration a and ¢ are hard to solve
to optimality within reasonable time, and that alteration b seems to performs the
best among the stochastic model alterations.

The tests done in this section are therefore done to compare the results obtained
deterministically with the results obtained with the stochastic multi-stage model,
allowing recourse decisions of type 1 made in every stage - the possibility to post-
pone a scheduled elective patient one time period.

The deterministic problems were solved using the same model as were written
for the stochastic problems. The data input was formatted to suit a node formula-
tion with only one scenario. The different data parameters were calculated as an
average of the values in the node formulation, depending on the probabilities for
the scenarios to occur. For the parameters defined as integers, the average values
were rounded to the closest integer.
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9.3.1 Value of stochastic solution

Tables 9.4 and 9.5 present the calculations made to get the series of VSS; for the
two test instances, calculated with equation (4.9), given in Section 4.2.1. The first
column of numbers gives the solution to the deterministic problem, the solution
to the expected value problem (EV). The running times to solve this problem were
small for both instances, as expected.

The next column gives the solution to the corresponding stochastic recourse prob-
lem (RP). For the instance r4-v_h3 of horizon 3, the solution process was stopped
after 12 000 seconds, resulting in a gap between the best bound and best solution
of 1.55%. For the test instance r4-v_h2 of horizon 2, the deterministic objective
values are better than the stochastic solutions. But the deterministic model does
not account for uncertainties, and the values EEV; and V SS; are introduced to see
how the deterministic solution works in an uncertain environment.

EEV is defined as the RP solution, where no decision variables are initially fixed.
The following columns in the table show the values for the other EEV;. In each
EEV}, the variables x;y,,t' = 1...(t — 1) are fixed from the EV solution. These
values illustrate the consequences of applying parts of the EV solution in an un-
certain environment. The total expected costs in EEV; increase for larger ¢, this
is because more variables are initially fixed, before the uncertainties are revealed.
The values V'SS; also increase with larger t. This sequence of values represents
the cost of ignoring uncertainty until stage ¢ in the decision making. The size of
the values VSS; and the fact that they increase with every t give an indication that
it is beneficial to reduce the uncertainty by using a stochastic model, allowing for
recourse decisions of type 1. This can also be seen in the lower row, providing the
VSS¢/EEV; relationship. This percentage value indicates the relative improve-
ment in the total costs if the stochastic programming approach is used instead of
fixing an amount of variables in the expected value approach.

The best schedule found for test instance r4-v_h2 with the stochastic multi-stage
model performs on average 7.6% better than if the full patient schedule found
in the corresponding expected value problem is used. For test instance r4-v_h3,
the relative improvement using the stochastic multi-stage solution rather than the
expected value solution is 4.1%.

In the tables, the costs can be studied on a more detailed level. When many of
the variables initially are fixed from the EV, more costs are expected to be spent
on postponing elective patients to the next planning horizon, recourse decisions
and overtime. The rows underneath the total expected costs represent how much
higher or lower the different parts of the total costs are, when a larger number of
variables initially is fixed compared to having none fixed.
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9.3.2 Expected value of perfect information

Tables 9.6 and 9.7 present the calculations made to obtain the EV PI values for the
two test instances. The first column of the tables present the expected value problem
(EV) solution, the solution to the deterministic problem. The next columns present
the Wait-and-see solutions (WS) for the different scenarios, The WS values are the
expected objective values of the best solutions to every scenario, if no uncertainties
are present and all information is known. The column Avg. WS is the average of
the WS solutions, and the RP column gives the stochastic solution. The EVPI,
calculated with equation (4.6), given in Section 4.2.1, is a measure of how much it
is worth to eliminate all the uncertainties in the stochastic model.

For both of the problems, it is clear that it is beneficial to reduce the uncertainties
in the model. Especially for the test instance r4-v_h3 of horizon 3, the EVPI is
large. Studying the WS-solutions, one can see that the total expected costs for
scenario 1-4 are substantially higher than for scenario 5-8. This is because a lot
more emergency patients arrive in t = 1 for the scenarios 1-4 than in scenarios 4-8,
7 patients compared to 3. The potential from removing the uncertainties regarding
the emergency patient arrivals in ¢ = 1 is therefore of large value. The stochastic
model must make a schedule including the possibility that both few and many
emergency patients may arrive in t = 1. The V'SS; is therefore small compared to
the EVPI.

For the test instance r4-v_h2 of horizon 2, the EV PI is smaller than the VSS; val-
ues. There is little difference between the amounts of emergency patient arriving
in the different scenarios. In t = 1 there are 4 emergency patients arriving in sce-
narios 1-4 compared to 3 emergency patients arriving in scenarios 5-8. The total
expected costs are more even between the WS solutions in this test instance than
in test instance r4-v_h3.
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9.4 Valuation of including the pre-op and post-op ca-
pacity limits

To get a quantitative measure of the value of including the pre-op and post-op
capacity limits in the ORSP, 10 test instances in the set r4-r of horizon 2 were run
for alteration b in two variations; with and without costs for exceeding pre-op
and post-op capacities, denoted variation A and B. By removing these costs, the
capacity limits of pre-op and post-op are disregarded. The size of horizon is cho-
sen small to make sure that the solution values found have small gaps to the best
bounds found.

The solutions found for variation A, disregarding the pre-op and post-op capacity
constraints, were used as fixed decision variables in variation B, to find the total
expected costs if the capacity constraints are neglected in the planning phase. The
average results for the runs of the 10 instances are shown in Table 9.8.

The value of including the pre-op and post-op capacity limits in the planning
phase is shown in column D. For the test instances in the set r4-r, there is a small
benefit of considering the capacity constraints of pre-op and post-op in the plan-
ning phase, variation C. With parameter values set as described in Section 8.2,
the expected costs can be reduced by 0.2%. This is not a significant improvement,
but the value may change if other capacities are chosen for the pre-op and post-op
facilities, the costs are changed, or the number of emergency patients arriving is
changed. This is not studied further in this thesis.



CHAPTER 9. COMPUTATIONAL STUDY

88

‘sanyirioey do-3sod pue do-axd sy jo syruary A3oeded ayJ, " uonyerae
pue ¢ UOZLIOY JO “i-F. 39S A} UL SIDURJSUI 389} ()T JO d8eIoAe ue 10§ pajemdred ‘syurensuod Ajpeded do-jsod pue do-a1d jo anjep g6 a[qeL

L GG 6% 0 :Aypeded NHVA ays Surpaadxa

o 0z 91 0 :Ayoeded D1 oy Surpasoxa

/ 4} o 0 :Ayeded do-axd oy Surpasoxa

71 ) 8% LL 9WHIBAO T30}

0 0 0 0 :(Z 9SIN0J3I) S3SeD IALII[D Y} JO
swoox 3unperado ayy Surdueyd

01 €6 €8 /8 :(1 9sanoda1) porrad awr suo
sased 9AnaYe ay3 Suruodisod

9/- 8€9 iav 788 :uozuoy Suruueld 3xau ay3
0} sased aanoafe Suruodisod

ot $2S S 08¥ S 866 G :S95BD AN A Sururroyrad
“"JO §3S0D Pajoadxyg

% €00 %<0  %¥10 :den
¥ S6€9 14€9 96 9 ‘punoq isog
I 96€ 9 98¢ 9 ¥0€9 8100 pajoadxa [ejor,
1> 8¥ee cr61 :owry Suruuni fejo],

SIUIDAISUOD V wiof sanjpa papnpur - papivSal

do-1s0d puv do-a4d | paxyf‘papniour «SHI] -SIp SHY

Sutpnjour Jo anjp | (Sqiyg Aovdey  Apovdv)y  Apovdv)

(g-2)=a 0 d 14




9.5. TESTING THE VALUE OF RESERVING AN OR FOR THE EMERGENCY PATIENTS ONLY89

9.5 Testing the value of reserving an OR for the emer-
gency patients only

The model presented in this thesis can be used to see if it is reasonable to reserve
an OR for emergency patients only. If this is the case, the scheduling problem
would be less complicated to solve, as fewer emergency patients would be ex-
pected to interfere the capacity intended for the elective patients, making it easier
to make a surgery schedule. 10 test instances in the set r4-r of horizon 2 were
run for alteration b and two variations: reserving and not reserving an OR for
the emergency patients. The size of horizon is chosen small to make sure that
the solution values found have small gaps to the best bounds found. On average
for the 10 test instances, the gap after the max time of 3600 seconds was reached
was 0.67% for the runs with 1 OR reserved, and 0.22% for the runs with no ORs
reserved.

Figure 9.7 shows the results of the runs. For the instances tested on the ORSP of
alteration b it is on average 2.8% more costly to reserve a full OR for emergency
patients, than sharing the capacity of all ORs between the two patient groups. The
filled circles show the solutions found when one of the four ORs is reserved for
emergency patients only (the emergency patients can also go to one of the other
ORs), and the non-filled circles show the solutions found when the set of ORs that
the patients can go to is as described in Section 8.2, and the capacity is shared
between the two types of patients.

® 1 ORreserved for emergency patients
o No ORs reserved for emergency patients

6800 -

[}
= 6600 l
(o]
>
(]
2 l
2 6400 I 1 l l
Q
o}
6200 A °©
6000 T T T T T T T T T T

Test instance number

Figure 9.7: Results for test instances in the set r4-r for horizon 2, objective values with 1 of
4 ORs reserved for emergency patients, compared to no ORs reserved.
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10. Conclusions

This thesis has defined and described the operating room scheduling problem
(ORSP). The problem consists of allocating elective cases to time periods and op-
erating rooms, considering the uncertainty regarding emergency patient arrivals
and the capacity constraints of the pre-op and the post-op facilities.

Two mathematical models have been presented; A deterministic model and a
multi-stage stochastic model, taking the uncertainty of the arrivals of non-elective
patients into account. The stochastic model is presented in both a scenario formu-
lation and a node formulation. It allows for two reactions in every stage after the
uncertain information regarding the emergency patients has been revealed: the
originally scheduled elective patients may be postponed one time period (type 1)
or changed operating room for within the same time period (type 2). In addition,
the arriving emergency patients must be allocated to ORs. The models presented
provide a tool that can support the decision making regarding the scheduling of
the elective patients in a medium to short term perspective.

The node formulation of the stochastic model was implemented in XpressM’. To
test the model, several fictive data instances were generated to simulate real-life
data for a medium-sized hospital in Norway. The instances include two possible
numbers of emergency patient arrivals in each time period. The results show that
the implemented problems that allow recourse decisions of type 2 soon become
too complex, giving solutions far from the best bounds. Allowing recourse deci-
sions of type 1 give good results for the test instances of a smaller size, evaluating
4-8 scenarios in total.

Two heuristics have been applied to the model: The constructive heuristic "fix and
relax" and an improvement heuristic. The fix and relax heuristic provides medium
good solutions, with the potential to be improved with the improvement algo-
rithm. The improvement algorithm is beneficial to use for the smaller instances,
but does not find better solutions for the most complex test instances with hori-
zons of 4 and 5 time periods.

For the smaller instances, the method that performed the best, in terms of solu-
tion quality and time, was the improvement heuristic with initial variable values
found in a run not allowing the defined recourse decisions, on a problem allowing
recourse decisions of type 1. For the most complex instances, the gaps between

91



92 CHAPTER 10. CONCLUSIONS

the best solutions found and the best bounds were large for the problems allow-
ing recourse decisions of type 1 or 2, for all methods. The best solutions for these
instances were obtained when neither allowing type 1 nor type 2 decisions.

The results indicate that it is advantageous to include the uncertainty using a
multi-stage model, allowing recourse decisions of type 1. Using the solution ap-
proaches presented, it may be valuable to try to obtain realistic approximations
of the uncertain parameters in the later time periods, rather than include them as
uncertain in the model, to avoid too complex problems. Including the pre-op and
post-op capacity constraints in the ORSP seem to be of a small benefit for the test
instances.



11. Further work

In this chapter, the areas considered most relevant for further investigation or
development are presented.

Real data

As the real data becomes easier available from the DIPS system [22], it will be
natural to test the model using actual values, both historical and present. Using
historical data, where all information is known and no uncertainties are present, it
is possible to run the model for the information known at a specific point of time,
and see how the solution would work out in the scenario that actually evolved.
This solution could also be compared to the schedule that actually was decided
on.

Easing the way of treating the data input

If the model is to be used repeatedly and on larger problems, the way of format-
ting the data input should be more intuitive and uncomplicated. Currently, the
data input is manually organized in a spreadsheet in MS Excel, then copied into
a .txt-file, handled by XpressMP. The model would be easier to use if it automati-
cally connected to a user friendly data input interface/application.

Include more details in the model

The model presented in this thesis is, like most optimization models, a simplifi-
cation of the reality. There are a number of extensions that can be made, but it
will not always be possible as a result of limited computational capacity. Below
follows a few of the possible extensions that can be considered.
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Add an urgency level to the emergency cases In the model presented in this
thesis, the emergency patients are all classified under the same level of urgency;
they have to be treated in the time period of arrival. In reality, there is more than
one urgency level [22], and to simulate the reality in a better way, this should be
included in the model.

Extension of the recourse decisions of type 1 The recourse decisions of type 1
only allow for postponing the elective patients one time period. If the reason for
postponing the patients is that there is a bottleneck in ICU or PACU, one would
possibly want to postpone an elective patient further. This would, however, lead
to a lot more complex model, and the possible benefits of changing the rules need
to be weighted against the computational cost.

Including the opportunity to give elective cases different priorities Some of
the elective cases may be more urgent than others. Also, some elective cases may
have been postponed from the last scheduling horizon, and should be guaranteed
to be treated in the current scheduling horizon.

Getting into a more detailed level of the resources In the problem described in
this thesis, each operating room corresponds to a given set of resources. It could
be beneficial to split these "resource groups" into for example surgeons, nurses,
equipment and rooms. This could enable the model to for example communicate
with other models, such as nurse rostering or surgeon’s working schedules, and
it would give a better representation of the reality.



A. Results from the computational study

# Max Running Best  Obj. Impro-
Variation Method It. time time bound value Gap vement

r3_h2 a Benchmark 3600 3600 4271 7233 409 %
Improved 3 1200 1201 nbs - 0.0 %

Improved, values fromd 3 400 400 7068 39.6 %

Fix-and-relax 3 1200 701 7104 399 %
Improved 3 1200 1201 7066 39.6 % 0.5 %

r3_h2 b Benchmark 3600 9 7 027 7055 04 %
Improved 3 1200 1200 7041 02% 0.2 %

Improved, values fromd 3 400 394 7057 04 %

Fix-and-relax 3 1200 474 7043  02%
Improved 3 1200 1201 7042 02% 0.0 %

r3_h2 ¢ Benchmark 3 600 3600 4126 7471 448 %
Improved 3 1200 1213 7344 438 % 1.7 %

r3_h2_d Benchmark 3600 <1 7 209 7238 04 %

r3_h3_a Benchmark 3600 3601 6083 10947 444 %
Improved 3 1200 1202 nbs - 0.0 %

Improved, values fromd 3 400 400 nbs -

Fix-and-relax 4 1200 752 10808 43.7 %
Improved 3 1200 1201 10696 43.1% 1.0 %

r3_h3_b Benchmark 3600 3600 10361 10455 09%
Improved 3 1200 1200 nbs - 0.0 %

Improved, values fromd 3 400 400 10 475 1.1 %

Fix-and-relax 4 1200 753 10696  3.1%
Improved 3 1200 1201 nbs - 0.0 %

r3_h3_c Benchmark 3600 3601 5573 11291 50.6 %
Improved 3 1200 1213 nbs - 0.0 %

r3_h3_d Benchmark 3600 <1 10765 10817 05%

r3_h4_a Benchmark 3600 11162 7033 16844 58.2%
Improved 3 1200 1200 nbs - 0.0 %

Improved, values fromd 3 400 400 nbs -

Fix-and-relax 5 1200 792 19634 64.2%
Improved 3 1200 4007 16520 574% 159 %

r3_h4_b Benchmark 3600 3602 11223 17339 353 %
Improved 3 1200 1201 nbs - 0.0 %

Improved, values fromd 3 400 400 nbs -

Fix-and-relax 5 1200 802 19193 415%
Improved 3 1200 1204 15728 28.6% 181 %

r3_hd_c  Benchmark 3600 3601 6748 14717 542%
Improved 3 1200 1201 nbs - 0.0 %

r3_h4_d Benchmark 3600 1 14644 14717 05%

Table A.1: Overview of results for test instances 3 (1/2)
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# Max Running Best Obj. Impro-
Variation Method It. time time bound value Gap vement

r3_h5b_a Benchmark 3600 3601 2378 5209 544 %
Improved 3 1200 1203 3682 354% 293 %

Improved, values fromd 3 400 521 nbs -

Improved, values fromd 5 400 729 nbs -

Fix-and-relax 6 1200 205 5924 599 %
Improved 3 1200 1201 5275 549% 109 %

r3_h5b_b  Benchmark 3 3600 3600 4930 5057 25%
Improved 3 1200 1202 5054 25% 0.1 %

Improved, values fromd 3 400 401 5058 25%

Improved, values fromd 5 400 403 5099 3.3 %

Fix-and-relax 6 1200 183 5442 94 %
Improved 3 1200 1201 5055 25% 7.1 %

r3_h5b_c  Benchmark 3 3600 3601 4519 5159 124 %
Improved 3 1200 1201 nbs - 0.0 %

r3_h5b_d Benchmark 3600 <1 5197 5204 0.1%

r3_h5c_a  Benchmark 3600 25731 8250 26480 68.8%
Improved 3 1200 37010 nbs - 0.0 %

Improved, values fromd 3 400 18 269 nbs -

Improved, values fromd 5 400 24211 nbs -

Fix-and-relax 6 1200 14 448 27401 699 %
Improved 3 1200 32136 26262 68.6 % 42 %

r3_h5c_b  Benchmark 3 3600 3603 11337 25610 55.7%
Improved 3 1200 1230 nbs - 0.0 %

Improved, values fromd 3 400 400 nbs -

Improved, values fromd 5 400 402 nbs -

Fix-and-relax 6 1200 869 26008 56.4 %
Improved 3 1200 1213 26001 56.4 % 0.0 %

r3_h5c_c  Benchmark 3600 3601 12587 24217 48.0%
Improved 3 1200 1203 nbs - 0.0 %

r3_h5c_d Benchmark 3600 1 23815 23913 04 %

Table A.2: Overview of results for test instances r3 (2/2)
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# Max Running Best Obj. Impro-
Variation Method It. time time bound value Gap vement
r4_h2 a Benchmark 3600 3600 3750 6715 442%
Improved 3 1200 1202 6711 441 % 0.1 %
Improved, values fromd 3 400 400 6509 424 %
Improved, values fromd 3 1200 1201 6474 42.1%
Benchmark 4800 4800 3761 6699 439 %
Fix-and-relax 3 1200 701 6541 42.7 %
Improved 3 1200 1201 6484 422 % 0.9 %
r4_h2_b Benchmark 3600 121 6407 6440 0.5 %
Improved, values fromd 3 400 399 6 446 0.6 %
Improved, values fromd 3 1200 1201 6442 0.5 %
Fix-and-relax 3 1200 701 6443 0.6 %
Improved 3 1200 1201 6435 04 % 0.1 %
r4_h2_c Benchmark 3600 3600 4324 6609 34.6%
Improved 3 1200 1201 6601 34.5% 0.1 %
Benchmark 4800 4 800 4340 6609 343%
r4_h2_d  Benchmark 3600 <1 6518 6535 03%
r4_h3_a Benchmark 3600 3601 4568 10493 56.5%
Improved 3 1200 1203 10215 553 % 2.7 %
Improved, values fromd 3 400 402 nbs -
Improved, values fromd 3 1200 1201 nbs -
Benchmark 4800 4801 4589 10493 56.3 %
Fix-and-relax 4 1200 427 10650 57.1%
Improved 3 1200 1201 10248 554 % 3.8%
r4_h3_b Benchmark 3600 3600 9595 9954 3.6%
Improved 3 1200 1201 9916 32% 0.4 %
Improved, values fromd 3 400 400 10035 44 %
Improved, values fromd 3 1200 1201 9909 32 %
Benchmark 4800 4800 9604 9945 34%
Fix-and-relax 4 1200 753 10045 45%
Improved 3 1200 1201 9909 32% 1.4 %
r4_h3_c Benchmark 3600 3600 4274 10532 59.4 %
Improved 3 1200 1201 10132 57.8% 3.8%
Benchmark 4800 4800 4295 10532 59.2%
r4_h3_d  Benchmark 3600 16 10085 10134 05%
r4_hd_a Benchmark 3600 3603 4124 10248 59.8 %
Improved 3 1200 5007 nbs - 0.0 %
Improved, values fromd 3 400 410 nbs -
Improved, values fromd 3 1200 1210 nbs -
Benchmark 4800 4800 4124 10086 59.1 %
Fix-and-relax 5 1200 791 11831 65.1%
Improved 3 1200 1208 11523 64.2% 2.6 %
r4_h4_b Benchmark 3600 3602 8191 10107 19.0%
Improved 3 1200 1213 nbs - 0.0 %
Improved, values fromd 3 400 400 nbs -
Improved, values fromd 3 1200 1211 nbs -
Benchmark 4800 4800 8193 9613 14.8%
Fix-and-relax 5 1200 790 12496 34.4 %
Improved 3 1200 1208 10700 234% 144 %
r4_hd_c Benchmark 3600 3601 3391 9641 64.8%
Improved 3 1200 1202 9560 64.5% 0.8 %
Benchmark 4800 4801 3402 9635 64.7%
r4_h4 d  Benchmark 3600 2 9475 9513 04 %

Table A.3: Overview of results for test instances r4 (1/2)
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# Max Running Best  Obj. Impro-
Variation Method It. time time bound value Gap vement

r4_h5b_a  Benchmark 3600 3601 3561 5399 34.0%
Improved 3 1200 1201 nbs - 0.0 %

Improved, values fromd 3 400 458 nbs -

Improved, values fromd 5 400 577 nbs -

Improved, values fromd 3 1200 1202 5427 344 %

Improved, values fromd 5 1200 1206 5426 344 %

Benchmark 4800 4801 3567 5396 339 %

Fix-and-relax 6 1200 185 5845 39.1%
Improved 3 1200 1203 5398 34.0 % 7.7 %

r4_h5b_b  Benchmark 3600 3601 5118 5345 42%
Improved 3 1200 1201 5345 42% 0.0 %

Improved, values fromd 3 400 400 5351 4.3 %

Improved, values fromd 5 400 403 5352  44%

Improved, values fromd 3 1200 1202 5344 42%

Improved, values fromd 5 1200 1202 5345 42%

Benchmark 4800 4801 5128 5345 41%

Fix-and-relax 6 1200 184 5745 109 %
Improved 3 1200 1201 5345 42% 7.0 %

r4_h5b_c  Benchmark 3600 3600 4843 5403 104 %
Improved 3 1200 1204 nbs - 0.0 %

Benchmark 4800 4800 4848 5403 103 %

r4_h5b_d Benchmark 3600 <1 5443 5444 0.0%

r4_h5c_a  Benchmark 3600 15972 6028 28600 78.9 %
Improved 3 1200 17 484 25739 76.6%  10.0 %

Improved, values fromd 3 400 11552 nbs -

Improved, values fromd 5 400 415 nbs -

Improved, values fromd 3 1200 11768 nbs -

Improved, values fromd 5 1200 1238 nbs -

Benchmark 4800 16 005 6028 28600 789 %

Fix-and-relax 6 1200 5247 27206 77.8%
Improved 3 1200 12 208 25830 76.7 % 51%

r4_h5c_b  Benchmark 3600 3604 9798 25920 62.2%
Improved 3 1200 1224 24968 60.8 % 3.7 %

Improved, values fromd 3 400 400 nbs -

Improved, values fromd 5 400 402 nbs -

Improved, values fromd 3 1200 1210 nbs -

Improved, values fromd 5 1200 1213 nbs -

Benchmark 4800 4804 9798 25920 62.2%

Fix-and-relax 6 1200 876 30474 67.8%
Improved 3 1200 1215 24859 60.6% 184 %

r4_h5c_c  Benchmark 3600 3601 8149 23816 65.8%
Improved 3 1200 1204 nbs - 0.0 %

Benchmark 4800 4801 8155 23816 65.8%

r4_h5c_d Benchmark 3600 2 23253 23360 05%

Table A.4: Overview of results for test instances 4 (2/2)
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