
Fleet Deployment Optimization in Liner 
Shipping

Sondre Morten Steen

Industrial Economics and Technology Management

Supervisor: Lars Magnus Hvattum, IØT
Co-supervisor: Inge Norstad, IØT

Department of Industrial Economics and Technology Management

Submission date: June 2012

Norwegian University of Science and Technology





Abstract

This thesis presents a study of a real fleet deployment problem in liner
shipping. In the context of data from Saga Forest Carriers and actual
contracts between charterers and shipping companies, an optimization model
is developed and implemented. The formulated model exploits the
advantages of a heterogeneous fleet, incorporates the requirements concerning
fairly evenly spread shipments and facilitates overlapping voyages. By
additionally including inventory management and freedom of choice
regarding speed, the formulation contributes to the existing literature by
presenting a rich model featuring new ways to model several issues. The
thesis also presents a heuristic solution approach and evaluates the developed
model in comparison with the heuristic and well-known alternative
solution methods. The computational studies indicate that a rich and
realistic mathematical formulation, emphasizing to maintain the existing
flexibility, has a positive effect on the results when solving real fleet
deployment problems.

Sammendrag

I denne oppgaven studeres ulike problemstillinger knyttet til fl̊atestyring i
linjefart. I lys av virkelige data fra Saga Forest Carriers og kontraktskrav
i avtaler mellom charterer og rederi, er en matematisk modell utviklet og
implementert. Den formulerte modellen utnytter fordelene av å ha en
heterogen fl̊ate, tar hensyn til kravene om jevnt spredte besøk og utnytter
overlappende seilaser. Ved å i tillegg inkludere lagerstyring og valgfrihet
n̊ar det gjelder hastighet, bidrar formuleringen til eksisterende litteratur ved
å tilby en rik modell med nye m̊ater for å modellere flere begrensninger.
Oppgaven evaluerer ogs̊a modellens resultater sammenlignet med heuristiske
tilnærminger og kjente alternative løsningsmetoder. Resultatene viser at
den virkelighetsnære modellen som legger vekt p̊a å ikke kompromittere
fleksibilitet, egner seg godt til å løse reelle problemer innen fl̊atestyring.

i





Acknowledgements

I would like to express my thanks to my supervisors, Associate Professor Lars Magnus
Hvattum from the Department of Industrial Economics and Technology Management
(IOT) and Inge Norstad, PhD candidate at IOT and research scientist at MARINTEK
for knowledgeable guidance during my work on this thesis.

I am also grateful to Dr. Arvid Steen for his comments on preliminary drafts.

Trondheim, June 5, 2012

Sondre Steen

iii





Contents

1 Introduction 1
1.1 The introduction of operations research . . . . . . . . . . . . . . . . . . . 2
1.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 The contribution from this thesis . . . . . . . . . . . . . . . . . . . . . . . 4

2 Liner shipping 7
2.1 Industrial-, tramp- and liner shipping . . . . . . . . . . . . . . . . . . . . 7
2.2 Planning in liner shipping . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Literature review 9
3.1 Operations research historically . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 The fleet deployment problem . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Combined inventory management and routing . . . . . . . . . . . . 11
3.2.2 Solution methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Problem description 14

5 Solution methods 17
5.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Heuristics for large instances . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Computational studies 28
6.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2.1 Example instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 Testing performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.3.1 Performance of the full model . . . . . . . . . . . . . . . . . . . . . 33
6.3.2 Fix-and-relax heuristics . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3.3 Problem structure effects . . . . . . . . . . . . . . . . . . . . . . . 39

6.4 Testing the performance relative to other modeling solutions . . . . . . . . 40
6.4.1 Time windows replacing inventory control . . . . . . . . . . . . . . 40
6.4.2 Fixed number of voyages . . . . . . . . . . . . . . . . . . . . . . . . 41
6.4.3 Fixed speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.4.4 Shared inventories . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7 Concluding remarks 47

References 49

A Mathematical formulation 53

B Mosel code 58

v



List of Tables

1 Comparison to Arnulf and Bjørkli [2010]. . . . . . . . . . . . . . . . . . . 5
2 The fleet of Saga Forest Carriers. . . . . . . . . . . . . . . . . . . . . . . . 29
3 Test instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4 Example instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5 Results for the full model (30 and 60 days) . . . . . . . . . . . . . . . . . 34
6 Results for the full model (120 and 150 days) . . . . . . . . . . . . . . . . 35
7 Results for the full model (90 days) . . . . . . . . . . . . . . . . . . . . . . 35
8 Specifications for heuristic 1-4. . . . . . . . . . . . . . . . . . . . . . . . . 36
9 Results for heuristic 1 and 2. . . . . . . . . . . . . . . . . . . . . . . . . . 37
10 Results for heuristic 3 and 4. . . . . . . . . . . . . . . . . . . . . . . . . . 37
11 Results for heuristic 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
12 Results for heuristic 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
13 The best results obtained from the heuristics. . . . . . . . . . . . . . . . . 38
14 Voyage distribution between trades. . . . . . . . . . . . . . . . . . . . . . 39
15 Problem structure effects for the full model and when speed is fixed. . . . 39
16 Problem structure effects for time windows and fixed number of voyages. . 39
17 Objective function values when using time windows. . . . . . . . . . . . . 41
18 Solution time and gap when using time windows. . . . . . . . . . . . . . . 42
19 Objective function values when fixing number of voyages. . . . . . . . . . 43
20 Number of voyages performed. . . . . . . . . . . . . . . . . . . . . . . . . 43
21 The ratio of ”low” speed voyages. . . . . . . . . . . . . . . . . . . . . . . . 44
22 Objective function values when fixing speed. . . . . . . . . . . . . . . . . . 44
23 Shared inventories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
24 Objective function values when sharing inventories. . . . . . . . . . . . . . 46

vi



List of Figures

1 The growth of international seaborne trade . . . . . . . . . . . . . . . . . 1
2 Office locations and trades for Saga Forest Carriers. . . . . . . . . . . . . 14
3 Inventory level as a function of time. . . . . . . . . . . . . . . . . . . . . . 19
4 Overlapping voyages may lead to negative ballast sailing costs. . . . . . . 20
5 Network example for an arc flow model. . . . . . . . . . . . . . . . . . . . 21
6 Iteration one in a fix-and-relax heuristic. . . . . . . . . . . . . . . . . . . . 27
7 Problem structure for a fix-and-relax heuristic. . . . . . . . . . . . . . . . 27
8 Trades and inventory locations for the example instance. . . . . . . . . . . 33
9 Optimal solution for the example instance. . . . . . . . . . . . . . . . . . . 34

vii





Fleet Deployment Optimization in Liner Shipping 1

1 Introduction

Maritime shipping is a growing transport sector, both in terms of total tonnage and
relatively to other means of transport. Globalization of trade and outsourcing of
production to low wage countries, mainly in Asia, is the main driver of the growth.
Liner shipping is one of the segments that have experienced the largest growth. An
annual growth rate of 10% over the past two decades has resulted in an increase in
containerized trade from a share of 5.1% of the world’s total dry cargo trade in 1980, to
25.4% in 2008 [UNCTAD, 2009].

The economic status in maritime shipping industry follows the worldwide macroeconomic
conditions. The development in seaborne trade is tightly connected to the development
in the world economy and merchandise trade. Focusing on the last years, UNCTAD
[2011] describes an upswing in demand in the world seaborne trade in 2010. The report
shows that in 2010, record deliveries of new tonnage were reported with an increase of
28% from 2009, and a 8.6% growth in the world fleet. The container trade segment has
had a particular positive trend and since 2005 the containership fleet has nearly tripled.
Figure 1 shows the growth in international seaborne trade the last 30 years.

Figure 1: The growth of international seaborne trade (millions of tons) [UNCTAD, 2011].

One explanation of the particularly high increase in transport by sea is the advantages
shipping has when it comes to transporting large volumes over long distances at a low
cost. Trucks have their advantages when it comes to flexibility and speed, but have
limited capacity and range and are relatively costly. While rail has good cargo capacity,
transport by rail suffer from lack of freedom of movement and share the same limitations
as trucks when it comes to operational area, having to operate on the same continent
and in some cases within the same country. Transport by air offer even better flexibility
than shipping when it comes to intercontinental transport, but the low capacity and



2 Sondre Morten Steen

high cost makes transport by air only a preferred mode for time sensitive, high-value
goods.

The challenges in routing and scheduling of ships also distinguish from the challenges of
the standard vehicle routing and scheduling problems and the challenges in the airline
industry. First, a fleet of ships is much more heterogeneous than fleets of trucks or cargo
trains [Ronen, 1983]. Second, trucks often operate out of the same base, while ships
do not necessarily have to return to given ports. In scheduling ships there is also much
higher uncertainty involved, due to the duration of the voyages and the vulnerability to
extreme weather conditions. Long delivery time for new ships and volatile demand also
make the economic situation for a shipping company unclear and hard to predict. These
differences and more imply that modeling and solving problems in maritime shipping
needs to be researched separately from the standard vehicle routing problems. They all
support one statement, though: The utilization of the fleet in a competitive and dynamic
market is of vital importance.

1.1 The introduction of operations research

Currently the situation in most shipping companies is that the planning process is based
on experience, simple spreadsheets and manual modifications. The planners in charge
have extensive experience and often first hand knowledge about operating at sea, but
in many cases limited education and training when it comes to the use of optimization-
based Decision Support Systems (DSSs). Chajakis [1999] describes how the process of
introducing computer-based systems among the current staff of planners is a challenging
task. Traditionally, the planners have a strong position internally in the company. They
might see computer-based systems as a threat to the need for their specialized experience
and knowledge. Computer-based DSSs may indeed streamline the planning process,
reduce the demand for planners and make the shipping companies less vulnerable to
employee turnover, but the knowledge of the experienced planners is still a valuable
asset. The computer-based DSSs should be seen as a tool to facilitate a faster planning
process and better solution quality.

The environment the shipping companies operate in today is highly competitive. The
freight rates are diminishing and new entrants intensify the already fierce competition
among the carriers. The lower margins emphasize how crucial it is to operate the service
network efficiently and optimize the utilization of the fleet. Furthermore, the fleets are
increasing in size, making it undeniable that the planning problems that before were
solved manually by the experienced planners, now have become so large and complex
that use of computers induce significant savings. At the same time, fuel prices and
the economies of scale drive the shipping companies to million dollar investments in
increasingly larger containerships. New jumbo ships with capacities around 22 000 TEU
(twenty-foot equivalent unit) reduce the shipping price per container with around 40%
[Gelareh and Pisinger, 2010], but at the same time, larger ships reinforce the importance
of utilization and how even small improvements in the scheduling process induce large



Fleet Deployment Optimization in Liner Shipping 3

savings. Powell and Perakis [1997] present a case where an integer-programming
model was implemented for the fleet deployment at Flota Mercante Grancolombiana.
A reduction in operating costs of 1.5% was reported when comparing the integer-
programming model to the existing fleet deployment plans.

A sector that has implemented operations research with success is the airline industry.
The airline industry faced the same challenges the shipping companies increasingly
do today, years ago. Larger fleets, more human resources and a larger network of
destinations resulted in overwhelming planning problems. Despite resistance from the
organization at first, efficient planning is considered impossible without optimization-
based DSSs in the airlines today. As the fleet sizes and the network complexity
increase in the shipping industry today, the airline industry has set an example of how
optimization-based DSSs are invaluable tools when it comes to achieving economies of
scale, cost reductions and improved utilization. Like just-in-time once went from being a
competitive advantage to a necessity, these systems are looked upon as a requirement to
survive in the airline industry today. The shipping industry still have a way to go, but
increasingly seems to recognize the advantages of using optimization-based DSSs when
solving highly complex problems.

Lately, the shipping companies seem to recognize the benefit of employing planners
with a more academic background [Christiansen et al., 2004]. Their education has
equipped them with computer experience, abilities to learn new software fast, and most
importantly recognition of the opportunities that exist in new technology. This trend
therefore gives reason to hope that the gap between researchers developing optimization-
based DSSs and the planners will decrease in the future.

1.2 Terminology

In order to be able to continue the discussion around maritime shipping and operations
research, and get more into detail on the liner shipping industry and the fleet deployment
problem, it is worthwhile to clarify the terminology used in the rest of the thesis before
we proceed.

Liner does in this thesis refer to a cargo ship designated to service scheduled long
distance maritime shipping routes, commonly called trade routes.

A trade (route) describes a number of loading ports in one geographical region and
a number of unloading ports in a different, often distant geographical region. In this
thesis a trade is referred to by the two regions it services. For example, WCEUR refers
to a trade that loads cargo at the US West Coast and unloads in Europe.

A voyage is one traversal of a trade.

Fleet deployment refers to the decisions regarding which of the available ships to use
for each specific voyage, on every trade.



4 Sondre Morten Steen

Charter in is to hire a spot ship from another shipping company to service a
voyage.

Charter out is to hire out a ship (when excess capacity) to perform services for other
shipping companies. A ship can be hired out for a certain amount of time (time charter)
or on a voyage basis (voyage charter).

In this thesis, cargo refers to Saga Forest Carriers’ (Saga) most regular cargo, forest
products. Saga’s fleet are also suited to carry a wide variety of traditional unitised and
bulk cargoes, such as containers, steel, clay, aluminium and break-bulk bulk cargoes. The
model developed in this thesis is suitable for liners carrying any type of cargo.

The charterer is the owner of the transported cargo and enter a contract with a liner
shipping company for the transportation.

The Contract of Affreightment (CoA) is the contract between the ship owner and
the charterer regarding transport of cargo. The most important points are the trade
routes, the total volume of cargo transported over the planning period, loosely defined
time restrictions and the freight rate.

The freight rate is the price the charterer agrees to pay for the transport of the
cargo.

Ballast sailing is sailing without cargo, in other words empty or with only ballast
to ensure stability. Ballast sailing is often necessary to reposition a ship for its next
voyage.

1.3 The contribution from this thesis

This thesis can be seen as an extension of the work of Arnulf and Bjørkli [2010]. Both
master theses are written at the Norwegian University of Technology and Science under
the supervision of some of the same supervisors. The knowledge of strengths and
weaknesses of the work of Arnulf and Bjørkli has been used as an advantage in the
process of developing a new, independent model with new features that eliminates some
of the limitations of the model from Arnulf and Bjørkli [2010].

Central for the contribution to the current research on the fleet deployment problem of
both this thesis and Arnulf and Bjørkli [2010] is the handling of the requirement in the
contract between the charterer and the shipping company regarding service times. The
CoA often states that a trade should be serviced fairly evenly spread with respect to
time. From the shipping company’s point of view this is desirable because it provides
flexibility when it comes to fleet deployment. Neither do the charterers have any strong
incentives to lock the pickup of the goods to specific dates. Arnulf and Bjørkli [2010]
state that no studies had previously been performed on this particular aspect of the
fleet deployment problem and presented two approaches to the issue. Both were based
on restricting the time of service to specified time windows and imposing a minimum
threshold for the time between any two voyages on a trade. The first approach used a



Fleet Deployment Optimization in Liner Shipping 5

Table 1: Comparison to Arnulf and Bjørkli [2010].

Feature Arnulf and Bjørkli [2010] This thesis

Fleet Homogeneous Heterogeneous
Number of voyages Fixed Optional
Charter in spot ships Yes Yes
Accept additional spot cargo No Yes
Overlapping voyages No Yes
Choice of speed No Yes
Inventory control No Yes
Quantity control No Yes

hard restriction, while the second allowed for the threshold to be broken in return for
a penalty addition in the objective function. This thesis uses a hard restriction on the
minimum threshold for the time spread between any two voyages on a trade, but uses
no limiting time windows for the time of service.

The model in this thesis is also made richer by incorporating a heterogeneous fleet. Most
shipping companies have a heterogeneous fleet, and exploiting this opens for different
solutions as the choice of type of ship may affect the number of voyages necessary to
satisfy the contract requirements.

One limitation in Arnulf and Bjørkli [2010] was that a ship was forced to unload its
entire load before accepting any new cargo. This enforced additional costs to situations
where the next loading ports for a ship either corresponded to the unloading ports of
the current voyage, or could have been visited with a smaller cost than the cost of
performing a separate visit after unloading all cargo for the current voyage. This thesis
enables the possibility of what we may call overlapping voyages, that is the possibility of
loading cargo in available space for the upcoming voyage before the entire current load
is discharged.

Offering free choice of speed is a complicating factor that turns the fleet deployment
problem into a nonlinear optimization problem. Arnulf and Bjørkli [2010] thus excluded
this option. This thesis solved the nonlinearity issue by offering the planners to choose
operational speed from a discrete set when assigning a ship to a voyage. This offers the
possibility of reducing cost by traveling at an economic and fuel efficient speed when
time is available, or to choose a high speed to get the possibility of using a ship on a
voyage it would have been unavailable for otherwise.

This thesis also offer a richer portfolio of chartering out options. Arnulf and Bjørkli
[2010] subtract an income fee from the total costs whenever a ship has a period of time
above a threshold at which the ship do not service voyages. This thesis offers spot
voyages equivalent to the contractual voyages, except for the obligation the shipping
company has to fulfill them. This thesis also offer the possibility to accept up to a



6 Sondre Morten Steen

specified amount of additional spot cargo on a voyage if excess capacity exists, which is
a new feature. Finally, the quantity loaded on each ship at every voyage is also specified,
and the level of cargo in the onshore inventories that service the trades is monitored at
all times. An overview of the differences between this thesis and Arnulf and Bjørkli
[2010] is provided in Table 1.

This introduction will be concluded by a brief presentation of the rest of the thesis. The
following chapter will give insight in planning problems within liner shipping and the
fleet deployment problem in particular. Chapter 3 provides a brief review of previously
published literature relevant to the problem addressed, and is followed by a thorough
description of the problem in Chapter 4. Chapter 5 consists of modeling issues, the
mathematical formulation and a description of the heuristic technique used. Issues
regarding the input, problem instances, tests and results are presented in Chapter 6.
Chapter 7 provides the concluding remarks and suggestions on future work.



Fleet Deployment Optimization in Liner Shipping 7

2 Liner shipping

Shipping operations today are grouped into three categories. The classification that has
become the standard was presented in Lawrence [1972] and separates shipping operations
into industrial-, tramp- and liner shipping.

2.1 Industrial-, tramp- and liner shipping

In industrial shipping and tramp shipping, the fleet is deployed based on the current
demand at all times, and thus operates dynamic schedules. Industrial shipping differs
from tramp shipping by that the industrial shipping companies own both the cargo and
the fleet, and thus control the entire chain of operations. Tramp shipping companies
operate partially on contracts and partially service the spot market, being available at
short notice to any cargo at any port. Typical markets for these areas of shipping are
the markets of liquid bulk cargo as oil and liquid natural gas (LNG), and the dry bulk
markets of e.g. coal, grain and minerals. Industrial shipping in particular, mainly exist
in oil- and gas companies.

Liner shipping companies operate on published schedules, consisting of predetermined
routes of ports for loading and unloading. In general, the schedules need to be completed
regardless of ship utilization. Consequently long term contracts, planning and demand
analysis become important. Liner shipping companies mostly service containerized
freight, typically finished consumer products or manufactured parts. The value per
volume unit and weight unit of these products are in general higher than for bulk
products and reflects the higher cost containerized transport faces compared to the
transport of bulk cargo. Lawrence [1972] provides a more in-depth explanation of the
characteristics and distinctiveness for the different shipping types.

2.2 Planning in liner shipping

The standard for classifying planning problems within liner shipping separates the
problems into strategic-, tactical- and operational problems based on the length of the
planning horizon. The strategic planning level incorporates in example route design and
fleet size and mix. Which routes to operate, ports to visit, and number and size of
ships in the fleet, are long term desicions that take months to change the effects of. In
contrast to the strategic problems we find operational planning problems as determining
the amount of spot cargo to accept in a port. Cargo-booking and similar decisions have
effect on the operations the following couple of days and are short term decisions that
are taken on a day-to-day basis.

The fleet deployment problem sorts under tactical planning problems, with a planning
horizon spanning from a couple of weeks to a couple of months. Tactical planning
problems are based on the decisions from the strategic planning phase. Thus, it is
also important for the planning staff with responsibility for the strategic decisions to
understand the tactical planning phase to be able to generate the best possible integrated



8 Sondre Morten Steen

solution. Fleet deployment is concerned with which ships to allocate to which routes
and the sequence of voyages to operate for each ship. The objectives are to maximize
the utilization of the fleet and minimize the total costs. The main concerns are which
ship types to use on which trade routes due to the properties regarding load capacity
and travel speed, and to specify when each ship is scheduled to service the given trade
route. A comprehensive review on planning problems within shipping is provided in
Christiansen et al. [2007].

In Saga, the planning process is divided into two stages. Saga’s headquarter is located
in Tønsberg, Norway. This is where the first stage of the process is performed. At the
headquarter, costs are estimated and the ships are assigned to voyages based on these
estimations. The plan is then sent out to the regional offices, where the operational
planning stage may result in modifications due to unforeseen events. This thesis is
providing a tool to the headquarter in their planning process. The headquarter basically
performs two tasks. First an estimation of time and cost has to be made in order
to provide input data for the fleet deployment problem. This estimation is based on
information about the fleet and distances between all ports. The information is used
to create what may be called template voyages. It is assumed that a vessel services a
particular voyage at the same cost and with the same duration every time. Furthermore,
the template voyages are sent together with fleet specifications, inventory data and spot
cargo availability as input to the fleet deployment problem. The input files used in this
thesis are generated the same way based on real data from Saga. When the job of solving
the fleet deployment problem is done, the results are sent out to Vancouver, Antwerp
or one of the other regional offices. As the regional offices is able to obtain and react to
sudden changes that affects the ships, operational changes may be decided. Examples
of such sudden events could be a production failure at one port making the ship skip
that particular port, a crane breakdown in one port that makes it favorable to visit that
port later in the sequence, or a large supply of particularly profitable spot cargo at one
given port.



Fleet Deployment Optimization in Liner Shipping 9

3 Literature review

This section presents an overview of the existing literature on operations research applied
to planning problems in the maritime shipping industry.

3.1 Operations research historically

While the airline industry and land based transportation services long have used
operation research extensively, operations research has received relatively little attention
within the shipping industry. This is reflected in the number of publications in the
literature on the respective areas. Ronen [1983], Ronen [1993] and Christiansen et al.
[2004] have conducted thorough reviews on the literature published on ship routing and
scheduling in the periods 1950-1983, 1983-1993 and 1993-2004 respectively. The first
review, Ronen [1983], contains 40 references and reaches back to how Dantzig and
Fulkerson [1954] presented how the simplex algorithm may help solve the fleet size
problem formulated as a linear programming problem. In contrast does Bodin et al.
[1983], published the same year on routing and scheduling of vehicles and crews, contain
700 references. Furthermore, Ronen [1993], which covered the development over the
next decade also contained 40 references, while Laporte and Osman [1995] on classical
routing problems included exactly 500 references, mainly to publications from the 1980s
and early 1990s. Despite the fact that Christiansen et al. [2004] approximately doubled
the number of references presenting literature from between 1993 and 2004, it is safe to
say that relatively few contributions exist for ship routing and scheduling.

Despite its position as the major artery of international trade, maritime shipping have
suffered under the lack of attention from researchers. Even though being presented three
decades ago, the explanations presented in Ronen [1983] are still highly relevant. The
fact that the dominant transportation modes in the USA are truck and rail is still valid.
Thus, shipping receives relatively little attention from the major research communities
for quantitative methods. The conservative shipping industry is also an inhibiting factor
on new ideas such as the use of optimization models. Still relevant is also the nature of
the maritime planning problems. The variety in operating environments and structure
of the problems, gives general research less impact compared to the impact on standard
vehicle routing and scheduling problems on land and in air. At sea there is also much
more uncertainty due to rapidly shifting weather conditions, mechanical problems and
strikes that may cause significant delays. To build in slack in the schedules is costly, and
thus often limited. This results in that few schedules are in fact completed according to
plan. Levy et al. [1977] state that the probability of meeting a planned schedule is as
low as 30% [Ronen, 1983].

3.2 The fleet deployment problem

For the fleet deployment problem in particular, Bradley et al. [1977] identify Everett
et al. [1972] as the first paper to propose a linear programming model as a solution



10 Sondre Morten Steen

approach [Gelareh and Pisinger, 2010]. Boffey et al. [1979] then presented methods
for ship scheduling on a North Atlantic route using interactive computer programs and
heuristics and Benford [1981] presents a simple procedure for selecting the optimal fleet
mix and sea speeds in order to be able to perform the given service level at maximum
profitability.

The work on the fleet deployment problem in the following decade is strongly influenced
by the Greek researchers A. N. Perakis and N. Papadakis. Perakis identified an
artificial constraint in Benford [1981] that led to an increase in costs of 15% and
presented an improved formulation and solution method in Perakis [1985]. The main
contribution from Perakis and Papadakis [1987a] is the development of detailed and
realistic operating cost functions and the sensitivity analyses showing the effects of
changes in the cost components. Perakis and Papadakis [1987b] presented a computer
program implementing a solution method to the fleet deployment problem modeling some
of the costs as random variables with known probability density functions. In the next
paper in the sequence, Papadakis and Perakis [1989], continue the development in solving
the same non-linear fleet deployment problem and includes multiple destinations.

Perakis and Jaramillo [1991] and Jaramillo and Perakis [1991] still use a detailed and
realistic model for the estimation of the operating costs of the liner ships servicing
various routes, but is now able to present a linear programming formulation for the liner
fleet deployment problem. The approach includes some manipulation of the results
to achieve integer solutions and therefore do not guarantee optimal solutions, but
Jaramillo and Perakis [1991] suggest two promising mixed linear-integer programming
formulations. Perakis and Jaramillo [1991] also make a valuable contribution to the
overview of early literature on operations research in liner shipping, presenting a review
of the development within interactive computer programs, heuristic optimizing models
and mathematical and numerical methods with increasingly more realistic models. An
integer-programming model determining the optimal deployment of an existing fleet
extending the work in Perakis and Jaramillo [1991] and Jaramillo and Perakis [1991]
was presented in Powell and Perakis [1997]. The model was tested on a real liner-
shipping problem with constraints regarding predefined routes, service requirements and
compatibility constraints and presented substantial savings.

Fagerholt and Lindstad [2000] present a real case from the deployment of supply ships
servicing offshore installations in the Norwegian Sea. For an overview of the literature
addressing fleet deployment and operation, Perakis [2002] presents the literature present
up to 2002. Christiansen et al. [2007] present an overview also including publications
from between 2002 and 2007.

Last, and highly relevant to this thesis, Arnulf and Bjørkli [2010] present two
mathematical formulations of the fleet deployment problem. While the arc flow
formulation does not solve large problems to optimality, the computational results for
the path flow formulation present optimal solutions for instances containing six trades,
twelve ships and about 70 voyages with a planning horizon of 200 days. Instances with



Fleet Deployment Optimization in Liner Shipping 11

data from Saga are solved to optimality for planning horizons less than five months.
Two path flow models are formulated, both based on a decomposition approach and a
priori column generation. Finally, four different path reduction heuristics are introduced
to reduce the number of paths generated.

3.2.1 Combined inventory management and routing

Combined inventory management and routing is vital for effective supply chain
management. To achieve a successful integration, one of the vital conditions that need
to be fulfilled is willingness to share information and data between the producer and the
transport company. Thus, the majority of the maritime combined inventory management
and routing are found in industrial shipping, where the cargo owner is the only actor and
controls both the inventory management and the ships [Andersson et al., 2010]. The liner
shipping industry may however also have large benefits from a integrated production and
transport plan.

Andersson et al. [2010] present an exhaustive review on combined inventory management
and routing in maritime transportation. More than 90 papers, mainly publications
from scientific journals and book chapters, are reviewed. An in-depth discussion of the
combined problem and a classification of the literature is provided. Among other surveys
we find Bertazzi et al. [2008] which present a discussion of the various characteristics
of inventory routing problems and creates an understanding for the complexities of
inventory routing problems by providing a small deterministic example case. Cordeau
et al. [2007] provide a general approach to the combined inventory management and
routing problem via the standard vehicle routing problem, but include references to
papers focusing on maritime applications.

3.2.2 Solution methods

The most commonly used solution method to the fleet deployment problem is based
on a column generation approach, where the routes a generated a priori. Generating
all the feasible harbor visit sequences may however lead to a problem size too large to
handle and is also time consuming, so approaches only generating promising routes are
often used. The routes that improve the overall solution make up the columns in the
master problem, while the subproblems consists of determining these routes. The optimal
solution is determined by iterating between the master problem and the subproblems
until no new columns that lead to further improvement are found. A set partitioning
approach based on a priori column generation is used in Fagerholt [1999], Fagerholt
and Lindstad [2000] and Christiansen and Fagerholt [2002]. Fagerholt [2001] adds soft
time windows to obtain better schedules and also Fagerholt [2004] uses the same two-
phase approach, but with an integer programming model in the second phase. The
complexity and size of the problem is a function of the number of feasible possibilities
each ship has. A common approach has been to use time windows to define the possible
service time for a given service, and thus the size of these affects the number of feasible



12 Sondre Morten Steen

routes. A large window implies more flexibility and possibilities, while a tight window
reduces the number of feasible solutions. The window size affects the complexity of the
solution algorithm accordingly [Desrochers et al., 1992]. Window size reduction is the
first way discussed in Christiansen and Nygreen [1998a] to eliminate arcs in a network
representing feasible routes. An arc is eliminated if it is impossible to service two trade
routes consequently within the respective time windows of both, if choosing to travel
between them. One of the major advantages of set partitioning models, and a reason for
their large share in the literature (40%), is that complex nonlinear constraints easy can
be incorporated when generating the columns [Christiansen et al., 2004]. This enables a
possibility to use heuristics for the column generation and use of standard optimization
software for the set partitioning model.

The two major approaches for modeling the fleet deployment problem are through arc
flow models or path flow models [Christiansen et al., 2007]. In an arc flow model a
binary variable represents whether a specific ship travels directly from a certain port
to another given port. By assigning values to these variables, the routes for each ship
are constructed. Additionally the model consists of variables keeping track of time for
servicing the voyages and the load on each ship. Thus the feasible schedules are explicitly
given through constraints on the arcs. Arc flow models have been used in Fagerholt et al.
[2009], and by Christiansen and Nygreen [1998a] and Christiansen [1999] that considered
a combined inventory management and ship scheduling problem using a Dantzig-Wolfe
decomposition.

A path flow model is based on predefined routes and uses a binary variable to represent
whether a specified ship performs a given route. Only feasible routes are considered
and a route is equivalent with a full schedule specifying arrival times and load along
the route. Path flow models are widely used in papers covering maritime planning
problems, starting with Appelgren [1969] that published a path flow formulation which
was improved in Appelgren [1971] two years later. The approach used Dantzig-Wolfe
decomposition to solve the linear programming problem. Appelgren did however not
consider inventory management. This was included in Christiansen and Nygreen [1998b]
which used paths giving information about the geographical route, load quantity and
start time from each harbor to solve a combined inventory management and ship routing
problem with time constraints. A branch-and-bound approach was used to make the
solution integer optimal.

When comparing the approaches, the a priori generation of feasible routes may be
considered an advantage for the path flow approach as all the constraints regarding
feasible schedules are handled outside the mathematical formulation. An advantage
with the arc flow model is that the mathematical formulation needs fewer variables
[Andersson et al., 2010].

Christiansen et al. [2007] describe models for the network design process for liner shipping
and Gelareh and Pisinger [2010] provide a mixed integer programming formulation
for a model integrating the network design and fleet deployment process for a liner



Fleet Deployment Optimization in Liner Shipping 13

service. Fagerholt and Lindstad [2007] present a DSS, TurboRouter, that is currently
in use by shipping companies and combines advanced optimization algorithms with
possibilities for manual planning. Fagerholt [2004] provides a solution method using
pre-generated routes as input to an integer programming formulation of a real liner
shipping problem. In Fagerholt [1999] the same real world problem is solved with a
three-phase approach starting by generating routes, then combining them and at last
using these as columns in a set partitioning formulation solving the integrated fleet size
and deployment problem.



14 Sondre Morten Steen

Figure 2: Office locations and trades for Saga Forest Carriers [www.sagafc.com].

4 Problem description

This section will provide a quick recap of important aspects of the fleet deployment
problem, before the problem is more explicitly defined by going through the restrictions
and properties that require special consideration.

The fleet deployment problem represents the problem of determining how the fleet is
to be deployed to a given set of predefined trades. This is equivalent to the problem
of determining the sequence of voyages to operate and the schedule for each ship in
the fleet. The objective is to define the optimal plan that assigns the ships such that
all voyages are served while minimizing cost. Fleet deployment is one of the central
tactical planning problems in liner shipping. The trade routes are determined by the
liner shipping company after a thorough analysis of the demand in the different regions
and then published so that the charterers may enter into contracts regarding transport
of goods along the routes. Figure 2 shows the locations of Saga’s headquarter and
regional offices, and how the trades are spread between the world’s major trade markets.
The world market of today consists of regions with different properties in terms of
labor costs, available technology and access to raw material. This implies that the
demand for transport of goods is different between the different regions. Consequently
the shipping company often has to sail ballast in order to reposition their ship for its
new voyage. It is central for the profitability to minimize the amount of non-profitable
ballast sailing.

Charter in, charter out and spot cargo. In this thesis, the fleet deployment
problem is mainly considered as assigning the current fleet to voyages. The possibility to
charter in ships for certain voyages will be limited to a minimum and is only to be looked
upon as an emergency solution. To acquire additional cargo to the ships sailing ballast
is however a highly desirable way of generating extra profit without contract obligations,



Fleet Deployment Optimization in Liner Shipping 15

and is therefore an important aspect of the fleet deployment problem. Additional cargo
is only accepted on ballast journeys if time allows it and it is profitable. Excess capacity
on regular voyages may also be exploited to generate extra profit by accepting spot cargo
in ports of call on the scheduled voyages. This makes the demand for transport of spot
cargo in the different ports a relevant issue in the fleet deployment problem, since it may
affect the decision in terms of where the larger ships are best utilized.

Fairly evenly spread. In order to achieve the best utilization of the fleet possible, it
is favorable to enter into contracts that are flexible regarding visiting times. Flexibility
when it comes to restrictions on time of visit enables more alternatives in terms of
available ships and makes the shipping company less vulnerable to unpredictable weather
conditions at sea. The term fairly evenly spread is therefore commonly used in CoAs. It
simply means that the voyages are to be spread in time over the planning period, which
is one of the charterer’s major concerns as limits on inventory capacity and production
rate impose limits on the volume of goods in inventory and when goods are ready for
transport. As the other major concern is total volume transported, the shipping company
has no restrictions regarding the total number of pickups over a period. In example may
a larger ship be able to operate a trade with fewer pickups than a ship with less capacity.
This may lower the overall costs for a shipping company with a heterogeneous fleet and
will be evaluated in the process of assigning the fleet to voyages.

Demand. The CoA specifies the total volume of goods that is to be transported during
a planning period.

Choice of operational speed. The cost and time related to a voyage is dependent
on the operational speed on the voyage. The company may reduce costs significantly by
reducing speed when time allows it or may be just able to perform an additional voyage
by increasing speed on one voyage. UNCTAD [2011] reports a significant reduction in
idle tonnage in the container market early in 2011, but the liner companies still deploy
their ships at reduced operating speeds. In example the majority of the container lines
in 2010 and 2011 ran their Asia-Europe services at only 17 to 19 knots, compared to
the normal speeds of 21 to 25 knots. The aim is to reduce fuel expenditure and ship
overcapacity, and depending on fuel prices, this is estimated to save the liner companies
up to $100 per delivered TEU on major East–West routes.

Inventory. Goods transported on a voyage are loaded from an onshore inventory.
This inventory has limitations regarding minimum and maximum levels and a given
production rate. Consequently the shipping companies have to visit the inventories in a
way that prevents the inventories from exceeding their limits.

In some cases multiple trades may operate out of the same inventory. Dependent on
the features of this larger inventory this may offer some extra flexibility to the shipping
companies if they are able to exploit the extra capacity.



16 Sondre Morten Steen

Overlapping voyages. A special case occurs when a ship may be assigned to a voyage
that starts in the same region its previous voyage terminates. In this case it is possible
to increase efficiency by starting to load the goods for the forthcoming voyage before
having unloaded the current goods completely.



Fleet Deployment Optimization in Liner Shipping 17

5 Solution methods

This section will continue the previous section by presenting how the issues that need
special attention are modeled. Secondly, a step by step explanation of the mathematical
formulation is provided. The full mathematical formulation is additionally presented
as a continuous version with brief explanations of the restrictions gathered at the end
in Appendix A. Ultimately, this section contains a presentation of the ideas behind
the heuristics that have been used to improve computational time on the larger test
instances.

5.1 Modeling

Modeling the fleet deployment problem there are many features that need special
consideration. This section will explain how these are handled when modeling the
problem, feature by feature as presented in the problem description.

Charter in, charter out and spot cargo. The charter out possibility offered in this
thesis is called voyage charter. The charter agreement specifies the two ports the voyage
shall occur between and the ship owner covers the expenses related to operation of the
ship. The possibility of chartering out ships on a one-voyage basis is included in the
model in the input data by creating a new trade. The demand on this trade is zero, but
voyages on this trade may be performed if there is sufficient time in the planning period
and doing so has a positive net profit.

One possible scenario is that a competing liner shipping company needs to charter in
a ship to perform one of its voyages. If chartering out a ship to meet this request
is profitable, it is done. Even more, the possibility of generating some profit from
the ballast sailing is desirable. In the case where it exists spot cargo in demand for
transport between the two regions of the ballast journey, this is favorable compared to
sailing ballast even though the revenue per item may be relatively small as long as the
ship is still capable of reaching the start of its next contractual voyage. Modeling this,
it is necessary to be aware of the possibility for spot ships to perform voyages on these
non-contractual trades and prevent this from happening. In this model this is solved by
assigning an infinitely high cost for spot ships to perform these voyages.

The possibility for accepting extra cargo on contractual voyages and the option of
executing one of the contractual voyages by a hired-in spot ship is modeled by creating
new variables assigned to these opportunities.

Fairly evenly spread. The contracted restriction that states that voyages on the
same trade are to be serviced with a specified spread in time can be modeled and solved
in different ways. One intuitive method, which is commonly used to define pickup
intervals is the use of time windows. A lower and an upper bound define a time window
when a voyage can take place in time. Tight time windows ensures a good spread
and reduces the solution space and solution time, but does at the same time corrupt



18 Sondre Morten Steen

the planning flexibility. A different method, which also can be used in combination
with time windows, is to introduce a threshold to state the least allowed difference in
time between one voyage and the next on a trade. This prevents voyages that might
have been allowed by loose time windows to occur too close in time. The drawback
from incorporating a hard restriction like this is that in real life it may be possible to
negotiate violations of the minimum spread and thus, the hard restriction might result
in lost business opportunities. Furthermore, this may be prevented by allowing the
threshold to be violated at a penalty cost. This might result in better solution quality
if it for instance results in avoiding expensive ballast sailing against accepting a penalty
cost for violating the minimum spread constraint. The challenge when modeling the
minimum spread constraint as a soft constraint is to make the penalty cost reflect the
actual costs. This thesis uses no time windows, but only a hard restriction on minimum
spread between voyages. This choice is made to not corrupt the flexibility in service
times for voyages provided in the CoA by introducing artificial constraints.

Demand. The demand restriction is simple, but worth mentioning because of its way
of replacing the common restriction in fleet deployment modeling regarding number
of voyages on a trade. Commonly a hard restriction defining the exact number of
voyages on a trade is calculated from the demand. Using the demand restriction as
it is described in the CoA allows more flexibility in terms number of voyages serviced on
a trade, by determining the optimal number in the process of solving the fleet deployment
problem.

Choice of operational speed. One major operating cost for a liner is fuel. The
relationship between the ship speed and the fuel consumption is nonlinear. In order to
enable linear programming, but still be able to offer a choice of operational speed, the
determination of the optimal speed is separated from the fleet deployment problem and
taken into account when generating the routes based on distances and operating costs.
This enables the model to offer a choice of a fixed operational speed from a discrete set.
The choice has effect on the voyage about to be performed and the following ballast
journey. As the point of offering a choice of speed is to offer the opportunity to save
cost if available time, to make it possible to reach the deadline of a journey unreachable
otherwise or to increase utilization of particular ships, very little extra value is added by
offering separate speed choices for voyages and ballast journeys.

Inventory. The far most common practice for companies with issues regarding
combined inventory management and ship routing is to separate the problems into two
phases [Andersson et al., 2010]. First, the inventory management system produces a
cargo plan that includes information about production rate, quantity available at every
given time, pickup ports, and capacity limits for the inventory. The routing, or what
may be referred to as the fleet deployment relating it to this thesis, is then planned
separately in phase two based on the cargo plan. This is also how this thesis models
the combined problem. The inventory control is handled by integrating the data for
the inventories in the model, such that constraints on the inventories are kept when



Fleet Deployment Optimization in Liner Shipping 19

Figure 3: Inventory level for inventory m as a function of time.

developing the solution to the fleet deployment problem. The inventory management is
thus a central part when creating a feasible plan for assigning and scheduling ships, and
inventory control a necessity for the fleet deployment planners. This thesis handles the
inventory issues by restrictions that allows inventory control independent of which ships
or trades that operate out of the inventory. The inventory is kept track of by a separate
variable for each inentory and upper and lower bounds enforce the ships to service the
inventory within these limits. Figure 3 shows how the inventory level may change during
a planning period. The drops in inventory level reflects the loading when a voyage is
serviced, while the production rate sets the slope for the increase in between voyages.
In this case, four voyages is serviced from inventory m during the period. As we can
see from the figure, tab is chosen by convenience for the fleet, while tef is enforced by
the inventory level reaching the maximum limit and the quantity loaded at tcd may be
bound by the minimum inventory limit. Assigning every trade to an inventory is solved
easy by matrices that keeps track on which trades that operate out of which inventories.
Facilitating shared inventories forces the introduction of the variables qripj and yripj to
be able to keep track of the inventory level when operated by multiple trades. This is
described in detail in the mathematical formulation in section 5.2.

Overlapping voyages. In the case where a ship end its voyage in the same
geographical region as it is about to start its next, it may be possible to improve efficiency
by investigating the possibility of starting to load cargo for the upcoming voyage before
all cargo from the previous voyage is discharged. If treating all voyages separately and
not considering this opportunity, all ships first will visit all the ports where they shall
discharge cargo, and then transit to the first port for loading cargo for the next voyage. It
is however a plausible scenario that the ship is scheduled to visit some of the same ports
for both voyages. In these cases, if the ship is able to discharge and load on the same visit,
it may actually be able to avoid sailing ballast between the two voyages. A prerequisite



20 Sondre Morten Steen

Figure 4: Overlapping voyages may lead to negative ballast sailing costs.

is that the cargo is discharged and loaded such that the ship has the necessary capacity
at all times. To optimize the port sequence is however not a part of our model and
is done in the cost estimation process carried out before the fleet deployment problem
is solved. Hence, is the possibility of overlapping voyages incorporated if it is included
in the estimates of cost and duration of ballast sailing between two voyages that may
overlap. If two voyages overlap, the ballast sailing cost and time between these may have
a negative sign to reflect the cost and time saved. Figure 4 shows why these negative
numbers occur. The letters refers to the costs of traversing the arcs representing voyages
(black arcs) or the ballast journey (blue arc). The figure shows two subsequent voyages,
the first ending in South America, the next starting in the same region. Both voyages
is scheduled to visit two ports. If no loading of new cargo can be done until the first
voyage is completed, the total costs will be (a + b) + d + (b + c). If the possibility to
overlap is included a and c still is performed, but as the ship also loads cargo when it
reaches the first port, b only need to be traversed once, and no ballast journey (d) is
necessary. This makes the new costs a + b + c. As the calculations are done outside
the model, the model remains equal, meaning that the overlap has to be included when
generating the costs. Hence the ballast journey, d′ needs to take the value −b, making
the total costs (a + b) + d′ + (b + c) = (a + b) + (−b) + (b + c) = a + b + c which is the
desired outcome.

5.2 Mathematical formulation

This section presents an arc flow formulation that covers all described assumptions and
possibilities. An arc flow model can be represented by nodes and arcs. The nodes
represent voyages that are linked together by arcs that describes how the ship travel
from one voyage to the next. Figure 5 shows a small example for the possible arcs for
one ship in a graph consisting of three ships, two trades with two voyages each and no



Fleet Deployment Optimization in Liner Shipping 21

Figure 5: Network example for an arc flow model.

speed option. Note that all the arcs in the graph need to be duplicated for each choice
of speed and that each voyage contains different sets of information regarding cost and
time, correspondingly. The problem is formulated as a deterministic cost minimization
problem. Initially, all necessary indices, sets, parameters and variables are declared.
In the literature, vessel and ship is used interchangeably. In this thesis, ship is used
consistently, but to avoid confusion with variables and constants related to spot ships,
the letter v will be used to index ships.

Sets:
V Set of available ships.
R Set of trades.
Nr Set of voyages for trade r,Nr = {1, 2, ..., nr}.
Rv Set of trades that can be serviced by ship v.
Vr Set of ships that can service trade r.
Av Set of arcs that can be sailed by ship v.
M Set of inventories.
Rr Set of trades that operate from the same inventory as trade r.
Kv Set of possible speeds for ship v.

Indices:
v ship, v ∈ V .
r, p trade, r, p ∈ R.
i, j voyage, i, j ∈ Nr.
o(v) initial position for ship v.
d(v) final position for ship v.
m inventory, m ∈M .
m(r) inventory for trade r.
k speed, k ∈ Kv.



22 Sondre Morten Steen

Parameters:
Cvrk Cost of performing a voyage on trade r by ship v at speed k.
CS
r Cost of performing a voyage on trade r by a spot ship.

Tvrk Duration of a voyage on trade r when performed by ship v at speed k.
TS
r Duration of a voyage on trade r when performed by a spot ship.

CB
o(v)rk Ballast sailing cost from origin to first voyage on trade r at speed k.

CB
vrpk Ballast sailing cost from a voyage on trade r to a voyage on trade p

at speed k.
TB
o(v)rk Ballast sailing duration from origin to first voyage on trade r at speed k.

TB
vrpk Ballast sailing duration from a voyage on trade r to a voyage on trade p

at speed k.
Dr Demand on trade r.
Qv Maximum load capacity on ship v.
QS Maximum load capacity on spot ships.
Gm Production rate at inventory m.
Wr Minimum spread between voyages on trade r.
T Time at the end of the planning period.
LMAXm Maximum inventory capacity at inventory m.
LMINm Minimum limit at inventory m.
LS
MAXr Maximum available spot cargo on trade r.

L0m Initial quantity at inventory m.
Ev Earliest possible start time for ship v.
Ari Time window opens for voyage i on trade r.
Bri Time window closes for voyage i on trade r.
PS
r Unit revenue for additional spot cargo.

Variables:
xvripjk equals 1 if voyage i on trade r is serviced right before voyage j on trade q

by ship v at speed k, and 0 otherwise.
xo(v)rik equals 1 if voyage i on trade r is serviced first by ship v at speed k,

and 0 otherwise.
xrid(v)k equals 1 if voyage i on trade r is serviced last by ship v at speed k,

and 0 otherwise.
xo(v)d(v) equals 1 if ship v does not service any voyage, and 0 otherwise.

to(v) Start time from origin.

tri start time for voyage i on trade r.
qri Quantity loaded on voyage i.
qripj Quantity loaded on voyage (p, j) if performed before voyage (r, i) in time.
qSri Quantity additional spot cargo loaded on voyage i.
lri Available inventory on trade r at the start of voyage i.
sri equals 1 if voyage i on trade r is serviced by a spot ship.
yripj equals 1 if voyage (r, i) is serviced after voyage (p, j) in time.



Fleet Deployment Optimization in Liner Shipping 23

Objective function:
The problem is formulated as a minimum cost problem, adding all costs related to
performing the voyages either by the company’s own fleet or by spot ships, and
subtracting any profits from accepting extra spot cargo on any voyage.

min (
∑
v∈V

∑
r∈Rv

∑
i∈Nr

∑
k∈Kv

CB
o(v)rkxo(v)rik +

∑
v∈V

∑
r∈Rv

∑
i∈Nr

∑
p∈Rv

∑
j∈Nr

∑
k∈Kv

(
CB
vrpk + Cvrk

)
xvripjk+

∑
v∈V

∑
r∈Rv

∑
i∈Nr

∑
k∈Kv

Cvrkxrid(v)k +
∑
r∈R

∑
i∈Nr

CS
r sri −

∑
r∈R

∑
i∈Nr

PS
riq

S
ri )

Flow constraints:
The following constraints ensures that every ship has a valid path through the node
network.

Every ship is required to leave its start position:

xo(v)d(v) +
∑
r∈Rv

∑
i∈Nr

∑
k∈Kv

xo(v)rik = 1, v ∈ V (5.1)

Every ship is required to reach its destination node:

xo(v)d(v) +
∑
r∈Rv

∑
i∈Nr

∑
k∈Kv

xrid(v)k = 1, v ∈ V (5.2)

Node balance for every voyage node:∑
k∈Kv

xo(v)rik +
∑
p∈Rv

∑
j∈Np

∑
k∈Kv

xvpjrik =

∑
k∈Kv

xrid(v)k +
∑
p∈Rv

∑
j∈Np

∑
k∈Kv

xvripjk, v ∈ V, r ∈ Rv, i ∈ Nr (5.3)

Quantity constraints:
A ship can not accept more cargo than its capacity:

qri + qSri ≤
∑
v∈V

Qv

∑
p∈Rv

∑
j∈Np

∑
k∈Kv

xvripjk +
∑
k∈Kv

xrid(v)k

+ QSsri, r ∈ R, i ∈ Nr (5.4)

A ship can not accept more cargo than currently available in the inventory:

qri ≤ lri, r ∈ R, i ∈ Nr (5.5)

The contractual demand needs to be satisfied:∑
i∈Nr

qri = Dr, r ∈ R (5.6)



24 Sondre Morten Steen

Voyage completion constraints:
One voyage can be serviced one time maximum:∑

v∈V

∑
k∈Kv

xo(v)rik +
∑
v∈V

∑
p∈Rv

∑
j∈Np

∑
k∈Kv

xvpjrik + sri ≤ 1, r ∈ R, i ∈ Nr (5.7)

To ensure that if one or multiple voyages are skipped on a trade, it is the last one(s):∑
v∈V

∑
k∈Kv

xo(v)r(i+1)k +
∑
v∈V

∑
p∈Rv

∑
j∈Np

∑
k∈Kv

xvpjr(i+1)k + sr(i+1) ≤∑
v∈V

∑
k∈Kv

xo(v)rik +
∑
v∈V

∑
p∈Rv

∑
j∈Np

∑
k∈Kv

xvpjrik + sri, r ∈ R, i ∈ {1, 2, ..., (nr − 1)} (5.8)

Harbor inventory constraints:
The cargo available at the time of loading for a voyage is given by the following
relationship:

lri = L0m(r) + Gm(r)tri −
i−1∑
j=1

qrj −
∑
p∈Rr

np∑
j=1

qripj , r ∈ R, i ∈ Nr (5.9)

The cargo available must be within the inventory’s limits before and after each
voyage:

lri ≤ LMAXm(r), r ∈ R, i ∈ Nr (5.10)

lri − qri ≥ LMINm(r), r ∈ R, i ∈ Nr (5.11)

The following harbor inventory constraints are formulated to set the correct value for
qripj in order to make the calculations for cargo available correct.

The value of qripj is 0 if (r, i) is equal to qri if (r, i) is performed after (p, j) and zero
otherwise:

qripj ≤ qpj , (r, i), (p, j) ∈ Av (5.12)

qripj ≤ max
v∈V
{Qv}yripj , (r, i), (p, j) ∈ Av (5.13)

qripj ≥ qpj −max
v∈V
{Qv} (1− yripj) , (r, i), (p, j) ∈ Av (5.14)

The correct values for yripj are ensured by the following two equations:

yripj (tri − tpj) ≥ 0, (r, i), (p, j) ∈ Av (5.15)

(1− yripj) (tpj − tri) ≥ 0, (r, i), (p, j) ∈ Av (5.16)

Linearized by using the big-M method equation 5.15 can be rewritten as:

tri − tpj ≥M (yripj − 1) ,where M = T



Fleet Deployment Optimization in Liner Shipping 25

Linearized by using the big-M method equation 5.16 can be rewritten as:

tpj − tri ≥ −Myripj ,where M = T

Time constraints:
Voyages are required to have a minimum spread in time. Also, the voyages need to be
serviced in order, that is voyage 1 before 2 and so on, for every trade:

tri ≥ tr(i−1) + Wr, r ∈ R, i ∈ {2, 3, ..., nr} (5.17)

A ship cannot start its first voyage before reaching it from its starting position:∑
k∈Kv

xo(v)rik(to(v) + TB
o(v)rk) ≤

∑
k∈Kv

xo(v)riktri, v ∈ V, r ∈ Rv, i ∈ Nr (5.18)

A ship cannot start its next journey before the previous is completed:∑
k∈Kv

xvripjk
(
tri + Tvrk + TB

vrpk

)
≤
∑
k∈Kv

xvripjktpj , v ∈ V, (r, i), (q, j) ∈ Av (5.19)

Linearized by using the big-M method equation 5.18 can be rewritten as:

to(v) +
∑
k∈Kv

TB
o(v)rkxo(v)rik − tri ≤Mo(v)ri

1−
∑
k∈Kv

xo(v)rik

 ,

where Mo(v)ri is given by: Mo(v)ri = Eo(v) + max
k∈Kv

{TB
o(v)rk}, v ∈ V, r ∈ Rv, i ∈ Nr

Linearized by using the big-M method equation 5.19 can be rewritten as:

tri +
∑
k∈Kv

(
Tvrk + TB

vrpk

)
xvripjk − tpj ≤Mv

1−
∑
k∈Kv

xvripjk

 ,

where Mv is given by: Mv = T − Ev, v ∈ V

A ship cannot leave its start position before the given time for earliest departure:

to(v) ≥ Ev, v ∈ V (5.20)

All voyages must have started before the end of the planning period:

tri ≤ T, r ∈ R, i ∈ Nr (5.21)

Spot market constraints:
A ship has an upper limit on quantity of spot cargo:

qSri ≤ LS
MAXr, r ∈ R, i ∈ Nr (5.22)



26 Sondre Morten Steen

Binary constraints:

xvripjk ∈ {0, 1}, v ∈ Vr, (r, i), (p, j) ∈ Av, k ∈ Kv (5.23)

xo(v)rik ∈ {0, 1}, v ∈ V, r ∈ Rv, i ∈ Nr, k ∈ Kv (5.24)

xrid(v)k ∈ {0, 1}, v ∈ V, r ∈ Rv, i ∈ Nr, k ∈ Kv (5.25)

xo(v)d(v) ∈ {0, 1}, v ∈ V (5.26)

yripj ∈ {0, 1}, (r, i), (p, j) ∈ Av (5.27)

5.3 Heuristics for large instances

The problem considered in this thesis is a planning problem with a finite time horizon
and multiple visits to each customer. The problem can be classified as a Mixed Integer
Programming (MIP) problem, and has a problem structure that results in what seems to
be an exponential increase in solution time as the number of binary variables increases.
Heuristics are a widespread solution approach in the literature. This thesis uses a
combination of the exact model and the ideas behind the fix-and-relax heuristic.

One approach that has proven itself effective for solving large instances of MIP problems,
like the fleet deployment problem, is fix-and-relax heuristics [Dillenberger et al., 1994].
The basic idea behind this approach is to decompose the problem into subproblems, each
subproblem being a partially relaxed and smaller MIP, with a number of binary variables
that makes it quick to solve to optimality by the standard optimization software. These
subproblems are solved successively, and for each iteration, a new subset of binary
variables is permanently fixed to their solution values. Hence, the relaxed variables
are gradually reduced in number and eventually disappear. The major advantage of the
basic fix-and-relax approach is solution speed, while a weakness is that even if a feasible
solution exists, there is no guarantee that the heuristic will be able to find it. For more
literature on fix-and-relax methods for MIPs, de Araujo et al. [2007] test the performance
of a fix-and-relax heuristic on a lot sizing and scheduling problem formulated as a MIP
model. Another recent paper is Beraldi et al. [2008], which present good results for the
same type of problem and also shows how fix-and-relax heuristics may be combined with
a rolling horizon approach Uggen et al. [2011] present an enhanced fix-and-relax heuristic
and applies this to a maritime inventory routing problem. The results presented shows
that fix-and-relax heuristics are able to reduce computing time considerably compared to
a general Mixed Integer Linear Programming solver, with only a slightly worse objective
function value.

Rolling-horizon heuristics follow a similar approach as the fix-and-relax heuristics and
are also suitable for overcoming computational infeasibility for large MIP problems. The
most common use of rolling-horizon heuristics is in dynamic lot sizing and scheduling
problems, where demand gradually becomes known during the planning horizon, but
rolling-horizon approaches are also very suitable when all parameters are perfectly
known [Mohammadi et al., 2010]. Uggen et al. [2011] presents an enhanced fix-and-relax
heuristic and applies this to a maritime inventory routing problem. The results presented



Fleet Deployment Optimization in Liner Shipping 27

Figure 6: Iteration one in a fix-and-relax heuristic.

Figure 7: Problem structure for a fix-and-relax heuristic.

shows that fix-and-relax heuristics are able to reduce computing time considerably
compared to a general MIP solver, with only a slightly worse objective value.

The fix-and-relax heuristic used as base for the implemented heuristic approaches in
this thesis and described in this section is inspired by the basic ideas behind fix-
and-relax heuristics given in Dillenberger et al. [1994]. First, the planning horizon is
divided into a finite number of intervals, n. A large problem may be decomposed into
subproblems in several ways and any index of the integer variables can be used as
criterion for partitioning the variables into groups [Ferreira et al., 2009]. The nature
of our problem makes the decision variables regarding voyages suitable as separators
since the voyages on a trade are performed successively. Furthermore, each interval is
considered a subproblem, resulting in n subproblems. In the first iteration, the binary
constraints on all decision variables except from the variables concerning a subset of the
first voyages for every trade, are relaxed. Relaxing the binary constraints and turning
the variables into continuous variables, may be called a partial Linear Programming
(LP) relaxation. The next step is to fix all the integer variables from the first iteration
to their solution values and reinforce the integrality constraints for the binary variables
concerning the next subset of voyages. The problem is then solved iteratively, and
the process of fixing variables to their solutions and reinforcing binary constraints are
repeated until iteration n, which reinforces the last binary constraints, is completed.
The term block is commonly used to refer to the intervals and the problem may be
grouped into three blocks which we may call the fixed block, the binary block and the
continuous block. The first contains the variables that have been fixed to integer values,
the second the variables that have been enforced binary constrants, but are not fixed yet,
and the last block contains the LP relaxed variables. Inspired by Uggen et al. [2011], but
modified and customized to this thesis, Figure 6 and Figure 7 shows the first iteration
and the problem structure graphically.



28 Sondre Morten Steen

6 Computational studies

The implementation of the mathematical model has been written in the programming
language Mosel. The models has the been run with use of the commercial optimization
software Xpress IVE on a HP Intel Core i7-2600, CPU 2x3.40 GHz, 16 GB RAM running
on Windows 7 SP1.

The full mathematical model presented in section 5.2 is implemented. Regarding
constraint 5.15, 5.16, 5.18 and 5.19, the implemented versions are the linearized
ones.

The Mosel code is provided in Appendix B.

6.1 Input

All test cases are built on actual data from Saga, where the data obtained has been
applicable. The following sections will present the shipping company, the structure of
the input data and how data that was not available from Saga was estimated.

Saga Forest Carriers. Saga Forest Carriers Intl AS is an international shipping
company specializing in the transportation of forest products and break-bulk cargo
(general cargo). Saga is headquartered in Tenvik, situated near Tønsberg, Norway
and has regional offices in Vancouver, Savannah, Rio de Janeiro, Antwerp, Tokyo and
Shanghai. Saga is a part of the Hesnes Group [www.sagafc.com].

The present fleet consists of 24 sophisticated open-hatch ships. It is a homogenous
deep-sea fleet, allowing for flexibility and full interchangeability between ships within
the trades that Saga operates. Saga has recently fulfilled an extensive newbuilding
program by taking delivery of nine sophisticated open hatch gantry ships from Oshima
Shipbuilding Ltd, Japan. Each ship is fitted with two specialized gantry cranes of 40-42
MT lifting capacity. Further, Saga has two ships on order that will be entering the Saga
pool within 2014 [www.sagafc.com].

All data reagarding ships is real data provided by Saga. V , the set of available ships
varies between the test cases, but all combinations of ships used are subsets of the actual
fleet. Kv, the set of possible speeds for ship v, is in every instance a set of two operational
speeds, named ”high” and ”low” and being 20 knots and 14 knots respectively. Maximum
cargo capacity on each ship, Qv is actual data retrieved from Saga. As is Ev, earliest
possible start time for each ship, which is set from the situation for Saga’s fleet at a given
point in time. Table 2 lists Saga’s entire fleet divided into classes. All ships within the
same class are as close as identical. The small differences in cargo capacity and cost are
however specified in the input data. The capacity is measured in deadweight tonnage
(DWT) and states how much weight a ship can safely carry measured in tonnes. The
abbreviation column gives the two letter abbreviation that is used in the input file. The
largest instance used in the testing makes use of the entire fleet.



Fleet Deployment Optimization in Liner Shipping 29

Table 2: The fleet of Saga Forest Carriers.

Ship Capacity (DWT)

Adventure class

Saga Pioneer

46 882

Saga Odyssey
Saga Navigator
Saga Journey
Saga Frontier
Saga Explorer
Saga Enterprise
Saga Discovery
Saga Adventure

Bird class

Saga Viking 46 882
Saga Voyager 46 882
Saga Andorinha 47 000
Saga Tucano 47 032
Saga Jandaia 47 027
Saga Beija-Flor 46 990

Tide class

Saga Sky 47 034
Saga Horizon 47 016
Saga Wind 47 053
Saga Spray 47 076
Saga Crest 47 016
Saga Wave 47 062
Saga Tide 47 029

Mitsui class

Saga Morus
56 800

Saga Monal

Trades. The set of trades, R, is obtained from the trades that Saga operates. The
demand on a trade, Dr, is based on typical numbers from Saga’s contracts. The number
of voyages is set in accordance to the demand such that the smallest ship in the fleet
has the capacity to fulfill the total demand on a trade if servicing all the voyages.
Mathematically, the number of voyages on a trade can be formulated like this:

nr = dmax
v∈V
{Dr/Qv}e, r ∈ R (6.1)



30 Sondre Morten Steen

Port constraints as cargo handling equipment available and limits on the size of ships
manageable, although liner ships usually are of moderate sizes, affect the compatibility
between ports and ships. The fleet of Saga is heterogeneous, but in terms of ship-
port compatability the fleet offers full interchangeability between ships for all the ports
included in all trades. Hence, Rv includes all trades for every ship and Vr includes all
ships for every trade.

Wr, the minimum spread between the voyages on trade is taken from typical numbers
in Saga’s CoAs.

Cost and time The largest matrices in the input file are the matrices covering costs
and durations of voyages and ballast journeys. All the data in these matrices are real
data obtained from Saga. Based on the specified set of trades and ships, real data
are obtained both for ”high” and ”low” speed. Ballast costs and sailing duration from
origin to first voyage is derived from the ship’s starting position. Ballast costs and sailing
duration for the journey after a ship’s last voyage are all zero. That is, a ship’s final
position is set to be the final port of its last voyage. As no maintenance schedule is
incorporated, this is a fair assumption. All costs are given in US Dollars (USD), while
the duration of a voyage is given in days.

Inventory All inventory data has been calculated from the same set of formulas. For
all trades, initial quantity, L0m, is set to the capacity of the Mitsui class, the class with
the largest capacity. The minimum and maximum limits at every inventory, LMINm

and LMAXm, are set to 0 and two times the capacity of the Mitsui class respectively.
The production rate, Gm, is calculated for every instance by using the built-in solver
in Microsoft Excel to find the rate such that the quantity at the end of the planning
period is equal to the initial quantity. Hence total quantity produced over a planning
period equals demand for every inventory. When multiple trades share one inventory,
the individual inventory data from the involved trades is summarized into one large
inventory. The following equation ensures that an inventory does not exceed its capacity
if the quantity given by the demand is transported within time:

L0m(r) + Gm(r)T ≤ LMAXm(r) + Dr +
∑
p∈Rr

Dp, r ∈ R (6.2)

Spot ships To estimate the voyage cost and voyage time for using a spot ship, a ship
from Saga’s Adventure class has been used as a template. The load capacity and duration
of performing a voyage is set to be equivalent, as we assume that when planning ahead a
spot ship is available at the desired time. To reflect the additional cost of hiring a spot
ship to perform a voyage a penalty of 200% has been added. The penalty is estimated
to reflect the positioning costs, the voyage cost and the profit margin demanded by the
spot ship.

Spot cargo Data for the market for spot cargo on each trade is difficult to estimate
as the market is volatile and no real data is obtained. In this thesis it is assumed that



Fleet Deployment Optimization in Liner Shipping 31

Table 3: Test instances.

No. of No. of No. of voyages
Instance ships trades 30d 60d 90d 120d 150d

(4S, 3T, xxD) 4 3 4 8 12 16 20
(8S, 3T, xxD) 8 3 6 12 19 25 31
(10S, 4T, xxD) 10 4 7 14 21 28 35
(12S, 5T, xxD) 12 5 9 18 27 36 45
(15S, 6T, xxD) 15 6 11 22 34 45 56
(15S, 8T, xxD) 15 8 11 22 33 44 55
(20S, 8T, xxD) 20 8 14 28 42 56 70
(25S, 10T, xxD) 25 10 17 34 51 68 85

spot cargo is available in every port at any time. The maximum limit for spot cargo
on a voyage, LS

MAXr, is set to 20% of the capacity of a ship in the Adventure class to
prevent spot cargo from becoming the main purpose of a voyage. The unit revenue is
derived from calculating the unit costs for transporting contractual cargo.

Planning period The time at the start of the planning period is zero. The time
at the end of the planning period, T , therefore also states the length of the planning
period. Typically today, a planning period of three months is used by the planners in
the shipping companies. In most of the test instances, the typical length of 90 days
are used, but shorter and longer horizons were part of the test instances for testing
performance on various sized problems. The horizon of the planning period is given, as
voyage durations, in days.

6.2 Instances

The testing is executed on a set consisting of 40 instances in total. The base is a set of
eight instances where the number of ships in the fleet and number of trades is varied.
These eight instances are then run with five different planning horizons with differences
in duration. Table 3 shows the composition of ships and trades, and number of voyages
in total for the different instances. The first column also states how the instances are
named and referred to in the rest of this thesis. The name of the instance gives the
following information: number of ships in the fleet, number of trades, duration of the
planning period measured in days. For example, the smallest instance with four ships
and three trades will be denoted (4S, 3T, 90D) for the typical planning period of 90
days. No. of Voyages is given by equation 6.1 and states the number of voyages available
to fulfill the commitments in the CoA.



32 Sondre Morten Steen

Table 4: Example instance.

Fleet

Ship Abbr. Class Capacity

Saga Adventure AD Adventure 46 882
Saga Andorinha AN Bird 47 000
Saga Beija-Flor BJ Bird 46 990
Saga Monal ML Mitsui 56 800

Trades

Origin-destination Abbr. Demand No. of voyages

Europe-US East Coast EUREC 160 000 4
South America-Europe SAMEUR 170 000 4
South America-Far East SAMFE 165 000 4

6.2.1 Example instance

To describe an example of a problem instance we use (4S, 3T, 90D). The most important
data for the example instance is provided in Table 4. It is also worth mentioning that
even though the three trades in this particular problem has the same number of voyages,
large variation occur in different instances. In example (8S, 3T, 90D) has 13, 3 and 3
voyages for its trades which effects the complexity of the problem. As the table shows,
the numbers of voyages are given such that the planners may choose to service the entire
trade with Saga Adventure, the smallest ship.

4 ∗ 46882 = 187528 ≥ max{160000, 170000, 165000} (6.3)

This quick calculation shows that four voyages with the smallest ship is sufficient to
meet the demand on every trade. We also see that if Saga Monal is assigned to all the
voyages on one trade, only three voyages are necessary to satisfy the demand, as three
times Saga Monal’s capacity exceeds the demand of every trade:

3 ∗ 56800 = 170400 ≥ max{160000, 170000, 165000} (6.4)

We also see that a composition of ships where Saga Monal is used twice to service the
EUREC trade and Saga Adventure once (as Saga Adventure is the smallest ship in the
fleet, any other may also be used), is sufficient to satisfy the demand for the EUREC
trade of 160 000 DWT.

2 ∗ 56800 + 46882 = 160482 ≥ 160000 (6.5)

As SAMEUR and SAMFE both operate from South America in this example they
also operate from the same inventory. The origins and destinations for the trades,
and the locations of inventories are shown in Figure 8. The optimal solution to the



Fleet Deployment Optimization in Liner Shipping 33

Figure 8: Trades and inventory locations for the example instance.

fleet deployment problem for this instance is presented in Figure 9. Note that the
fourth voyage on the SAMEUR trade is not serviced by any ship, as the three first
voyages on the trade are serviced by Saga Monal which is sufficient to meet the demand
requirement. Choice of speed is however not included in the graphic representation of
the solution.

The following two sections will present all the results obtained from the testing. The first
section will present the test results related to the performance of the model on differently
sized instances, while the second section compares the formulations developed in this
thesis to other approaches for modeling constraints in the fleet deployment problem.
The conclusions drawn from the testing are presented in Chapter 7.

6.3 Testing performance

The first set of tests is constructed to test the limits in terms of number of ships and
trades, and length of planning horizon, for which the full model still returns valuable
results for a planner. The tests for the full model is run on all 40 instances generated.
Then a variety of heuristic approaches is tested to investigate the value of heuristics
as the problem sizes increase. Furthermore, the effects of the problem structure for
individual problem instances are analyzed. The unit for the objective function values,
USD, is denoted $.

6.3.1 Performance of the full model

The first set of tests examines how the full model performs in terms of solution quality
and computational time.



34 Sondre Morten Steen

Figure 9: Optimal solution for the example instance.

Table 5: Results for the full model (30 and 60 days planning horizon).

30 days 60 days
Instance Obj.val.($) Sol.time Gap Obj.val.($) Sol.time Gap

(4S,3T) 2 455 520 0.02s 0 % 2 914 385 0.41s 0 %
(8S,3T) 1 922 790 0.05s 0 % 4 146 371 63.33s 0 %
(10S,4T) 1 764 481 0.06s 0 % 3 974 976 21.83s 0 %
(12S,5T) 2 304 396 0.11s 0 % 4 749 197 5.69s 0 %
(15S.6T) 2 701 647 0.25s 0 % 4 734 188 3.77s 0 %
(15S,8T) 3 736 622 0.58s 0 % 5 470 434 1h 5.1 %
(20S,8T) 3 949 610 0.41s 0 % 8 680 322 1h 3.2 %
(25S,10T) 5 256 585 1.44s 0 % 9 112 020 1h 9.3 %

As we can see from Table 5, the full model solves all instances to optimality for a
planning horizon with a duration of 30 days within two seconds. Optimal solution is
also guaranteed for five out of eight instances when the planning period is extended to
60 days. For (15S,8T,60D) and the two larger instances, the model starts to struggle
with guaranteeing that optimal solution is found. The model was terminated and forced
to return the solution after one hour to make the results regarding gap comparable with
the rest of the tested instances. In Table 6, only solutions detected within one hour are
displayed. If no feasible integer solution was found within the hour, the model was set to
terminate. As we see from the table, planning horizons of 120 and 150 days resulted in
solutions with large gaps between optimal solution and best bound, and for the largest
instances more computational time is needed to detect feasible integer solutions. The
typical length of the planning period used in the industry is 90 days. When comparing
the full model to all the models with variations in terms of e.g. inventory control, time
windows, speed choice or number of voyages, results from running the full model for one



Fleet Deployment Optimization in Liner Shipping 35

Table 6: Results for the full model (120 and 150 days planning horizon).

120 days 150 days
Instance Obj.val.($) Sol.time Gap Obj.val.($) Sol.time Gap

(4S,3T) 7 631 941 15m 39s 0.4 % 11 309 037 1h 20.4 %
(8S,3T) 8 776 486 1h 22.8 % 10 400 570 1h 20.0 %
(10S,4T) 9 297 279 1h 9.4 % 14 131 901 1h 20.3 %
(12S,5T) 14 266 789 1h 28.0 % 23 840 905 1h 40.4 %
(15S.6T) 18 652 738 1h 26.9 % - - -

Table 7: Results for the full model with 90 days planning horizon.

1h sol.time Unlimited solution time Difference
Instance Obj.val.($) Obj.val.($) Sol.time Gap Obj.val.($)

(4S,3T,90D) 6 541 743 6 541 743 2m 16s 0 % 0.0 %
(8S,3T,90D) 6 597 846 6 597 846 3h 2m 10.9% 0.0 %
(10S,4T,90D) 6 577 028 6 378 627 4h 24m 2.3 % -3.0 %
(12S,5T,90D) 7 933 607 7 881 225 9h 26m 6.4 % -0.7 %
(15S,6T,90D) 10 993 465 10 993 465 1h 54m 5.7 % 0.0 %
(15S,8T,90D) 14 268 801 13 806 533 3h 25m 33.6 % -3.2 %
(20S,8T,90D) 15 866 013 14 005 143 11h 45m 7.0 % -11.7 %
(25S,10T,90D) 37 252 542 16 512 932 27h 33m 13.7 % -55.7 %

hour is used to obtain a good basis for comparison. Table 7 shows the results compared
to the benchmark values, when the model is allowed more computational time. We
see that more computational time provide better solutions, both in terms of objective
function value and gap for most instances.

6.3.2 Fix-and-relax heuristics

Six variations of a fix-and-relax heuristic have been implemented and tested. Table 8
shows the specifications for four of the heuristics, while the instance specific specifications
for the heuristic 5 are presented with its results in Table 11 and the last variation
is described in the text. All heuristics can be classified as two-block fix-and-relax
heuristics.

The four rows in Table 8 named by type of flow variable, describes whether a variable is
continuous, binary or removed in the first iteration, or what we define as Block 1. The
first voyage on a trade is abbreviated v1, the second v2 and further on. That v1 is set
as binary means that xvripjk is a binary variable when i = 1. An exeption is found in
heuristic 2, where a binary constraint for a voyage means that j = 1 in the flow variable,
xvripjk. j = 1 can be interpreted as the incoming arc to voyage j, and a *-notation is
used to specify when this is the case. Note that xo(v)d(v) is removed from the model



36 Sondre Morten Steen

Table 8: Specifications for heuristic 1-4.

Heuristic 1 Heuristic 2 Heuristic 3 Heuristic 4

Block 1

xvripjk v1, v2 binary v1 binary* v1 binary v1, v2 binary
xo(v)rik Binary Binary Binary Binary

xrid(v)k Continuous Binary Continuous Binary

xo(v)d(v) Removed Removed Removed Removed

Time limit voyages - - 50 days 50 days
Voyages per ship 2 - 2 -
First voyage priority - - Yes Yes

Block 2

xvripjk fixed Voyage 1 Voyage 1* Voyage 1 Voyage 1
xo(v)rik fixed Yes Yes Yes No

for every heuristic, including heuristic 5 and 6. This was done to prevent a large part
of the fleet to go idle when solving the first iteration, while a few ships performed all
voyages with binary constraints. Activating the entire fleet is necessary when solving
the problem instances in this thesis, as every instance is tight in terms of high demand
for transport relative to the horizon of the period. The row named Voyages per ship in
Table 8 refers to a constraint enforced to ensure that no ship performs more than a given
number of the voyages with binary constraints in the first iteration, while Time limit
voyages ensures that no ship is performing the voyages too late in the period for the rest
of the voyages on the trade to be completed. First voyage priority is stating that a ship
has to service the first voyage on a trade as its first voyage after leaving from its origin.
For heuristic 5 and 6, xo(v)rik and xrid(v)k are binary, xo(v)d(v) is removed and the First
voyage priority is enforced. The rows regarding Block 2 states which variables that are
fixed from the solution of the first iteration when solving the second iteration where,
since we only use two iterations, all variables that originally were so, are binary.

How heuristic 1-6 performs in comparison to the full model is presented in Table 9-12.
The values in the Diff. columns refer to the heuristics’ differences in objective function
values compared to the corresponding values for the full model. The first issue worth
noticing is that every instance not larger than (16S,6V,90D) is solved in less than one
minute. The larger instances need a couple of minutes, but still provides substantial
improvements from the full model, which was not able to guarantee an optimal solution
to any of the larger instances in an hour. The objective function values are however for
most instances, substantially worse when comparing to the full model. The exception are
some of the largest instances, where actually significant improvements are seen. These
results occur because of the reduced solution time, which allows the heuristic to reach
its optimal solution, while the full model returns the best solution found after one hour,
which may not be an overall good solution at all.



Fleet Deployment Optimization in Liner Shipping 37

Table 9: Results for heuristic 1 and 2.

Heuristic 1 Heuristic 2
Instance Obj.val.($) Sol.time Diff. Obj.val.($) Sol.time Diff.

(4S,3T,90D) 9 753 208 1.5s 49.1 % 8 581 818 2.4s 31.2 %
(8S,3T,90D) 10 817 439 0.9s 64.0 % 9 246 883 4.4s 40.2 %
(10S,4T,90D) 8 370 162 9.8s 27.3 % 7 204 685 6.6s 9.5 %
(12S,5T,90D) 14 138 288 13.1s 78.2 % 8 957 737 51.2s 12.9 %
(15S,6T,90D) 12 464 189 32.9s 13.4 % 14 147 074 14.2s 28.7 %
(15S,8T,90D) 11 043 643 2m 44s -22.6 % 10 519 756 2m 53s -26.3 %
(20S,8T,90D) 19 456 754 1m 51s 22.6 % 16 122 629 2m 18s 1.6 %
(25S,10T,90D) 27 231 040 3m 19s -26.9 % 20 271 887 15m 47s -45.6 %

Table 10: Results for heuristic 3 and 4.

Heuristic 3 Heuristic 4
Instance Obj.val.($) Sol.time Diff. Obj.val.($) Sol.time Diff.

(4S,3T,90D) 8 188 178 1.1s 25.2 % 8 255 982 1.2s 26.2 %
(8S,3T,90D) 9 988 996 3.3s 51.4 % 6 963 185 9.2s 5.5 %
(10S,4T,90D) 7 927 982 6.2s 20.5 % 6 943 882 47.5s 5.6 %
(12S,5T,90D) 10 454 514 18.0s 31.8 % 8 217 533 1m 9s 3.6 %
(15S,8T,90D) 10 744 053 57.4s -24.7 % 10 577 865 3m 13s -25.9 %

Heuristic 5 is the last version of the fix-and-relax heuristics not distinguishing between
trades. It is quite similar to heuristic 1-4, but Table 11 needs some explanation for the
three rightmost columns. B1 and B2 refers to which voyages that are binary restricted
and fixed in iteration one and two respectively. The column named xo(v)rik can take two
values. If the values of the variable is fixed in iteration two, the value is F, while a cell
takes the value V if the final value of the variable is to be determined in the second
iteration. Heuristic 6 is designed based on the results from heuristic 1 through 5. These
heuristics were able to reduce the solution time significantly, but returned relatively
bad objective function values. The aim when designing this last heuristic was thus to

Table 11: Results for heuristic 5.

Heuristic 5
Instance Obj.val.($) Sol.time Diff. B1 B2 xo(v)rik

(8S,3T,90D) 7 062 132 12.1s 7.0 % 1-3 1 F
(10S,4T,90D) 6 561 822 50.1s -0.2 % 1-2 1 V
(12S,5T,90D) 8 511 014 33.5s 7.3 % 1-2 1 V
(15S,8T,90D) 10 729 490 1m 59s -24.8 % 1 1 V



38 Sondre Morten Steen

Table 12: Results for heuristic 6.

Heuristic 3
Instance Obj.val.($) Sol.time Diff.

(8S,3T,90D) 6 961 527 7.9s 5.5 %
(10S,4T,90D) 6 616 902 1m 38s 0.6 %
(12S,5T,90D) 8 014 312 4m 30s 1.0 %
(15S,6T,90D) 11 115 520 7m 23s 1.1 %
(15S,8T,90D) 11 492 973 1m 33s -19.5 %
(20S,8T,90D) 14 574 591 9m 57s -8.1 %
(25S,10T,90D) 40 715 362 8m 56s 9.3 %

Table 13: The best results obtained from the heuristics.

Instance Version Obj.val.($) Sol.time Diff.

(8S,3T,90D) Heuristic 6 6 961 527 7.9s 5.5 %
(10S,4T,90D) Heuristic 5 6 561 822 50.1s 2.9 %
(12S,5T,90D) Heuristic 6 8 014 312 4m 30s 1.7 %
(15S,6T,90D) Heuristic 6 11 115 520 7m 23s 1.1 %
(15S,8T,90D) Heuristic 2 10 519 756 2m 53s -23.8 %
(20S,8T,90D) Heuristic 6 14 574 591 9m 57s 4.1 %
(25S,10T,90D) Heuristic 2 20 271 887 15m 47s 22.8 %

allow some more solution time, but achieve better objective function values. This was
done by only applying binary constraints to the first voyage on half the trades in the
first iteration. This results in a less constrained problem in the second iteration, with
fewer variables already determined, and Table 12 shows that objective function values
close to, if not better, the values of the full model were obtained. We will conclude the
presentation of results from the testing of different heuristics by providing a table that
shows the best results obtained from all the heuristics. When using heuristic approaches
there is no guarantee of finding the optimal solution or even a feasible solution at all.
An approach using multiple heuristics with different properties may therefore provide an
increased probability of reaching a good solution. In our case, we see that if all heuristics
are run when solving the fleet deployment problem for an instance, the total solution
time still is acceptable. If using the approach of running all heuristics and storing the
best value, the results presented in Table 13 are obtained.

Actually improving the objective function value for two instances and detecting solutions
that are about 7% worse than the full model for the other two, shows that a carefully
designed fix-and-relax heuristic is able to find good solutions in very short time compared
to the full model.



Fleet Deployment Optimization in Liner Shipping 39

Table 14: Voyage distribution between trades.

Instance Voyages Voyages per trade

(8S,3T,90D) 19 13, 3, 3
(10S,4T,90D) 21 3, 10, 3, 5
(12S,5T,90D) 27 3, 10, 3, 4, 7
(15S,6T,90D) 34 3, 10, 7, 3, 4, 7

Table 15: Problem structure effects for the full model and when speed is fixed.

Full model Shared inventory Fixed speed
Instance Gap Gap Gap

(8S,3T,90D) 13.8 % 13.8 % 10.5 %
(10S,4T,90D) 7.4 % 8.8 % 4.4 %
(12S,5T,90D) 8.0 % 7.1 % 3.2 %
(15S,6T,90D) 6.0 % 8.4 % 7.8 %

6.3.3 Problem structure effects

The results in Table 5-7 clearly show that increasing problem size, in general implies
longer solution time. Another connection that appears in the results, but is worth
highlighting is how the problem structure effects the result. Structure in this context
refers to how the number of voyages is distributed between the voyages on a trade.
Table 14 shows that instance (8S,3T,90D) has one trade with 13 voyages and two trades
with three voyages each. This makes (8S,3T,90D) the instance with the most extreme
structure regarding difference in number of voyages for the trades. Table 15 and Table
16 show that even though (8S,3T,90D) has less voyages in total when we compare it
to the three larger instances, solution time is higher and the gap is larger, given the
allocated computational time of one hour.

Table 16: Problem structure effects for time windows and fixed number of voyages.

Time windows Fixed number of voyages
Instance Sol.time Gap Sol.Time Gap

(8S,3T,90D) 81.0s 0 % 1h 16.1 %
(10S,4T,90D) 1.2s 0 % 52m 13s 0.0 %
(12S,5T,90D) 3.5s 0 % 1h 1.9 %
(15S,6T,90D) 57m 13s 0 % 1h 4.5 %



40 Sondre Morten Steen

6.4 Testing the performance relative to other modeling solutions

This section describes how the solutions implemented in the full model was measured
against other methods of modeling constraints in the fleet deployment problem.

6.4.1 Time windows replacing inventory control

A common approach to ensure fairly evenly spread voyages over the planning period is
to use time windows. Hard time windows are absolute and define an interval in which
a voyage has to take place, while soft time windows define the same interval, but allows
voyages to take place outside the time interval against a penalty cost. This thesis use
no time windows at all, but rely on inventory control and a hard minimum spread limit
to ensure that all voyages are fairly evenly spread on a trade. The aim of this test is to
investigate how the contract requirement that states that all voyages on a trade should
be fairly evenly spread in time is best handled.

To enforce hard time windows, we need to define two new parameters. WMINri gives the
lower time limit for a voyage to start and WMAXri gives the upper time limit, resulting
in [WMINri,WMAXri] being the interval we call the time window. The parameters are
present in the following two new constraints:

tri ≥WMINri, r ∈ R, i ∈ Nr (6.6)

tri ≤WMAXri, r ∈ R, i ∈ Nr (6.7)

Constraint (6.6) states that all voyages must start after the time window opens, and
constraint (6.7) that all voyages must start before its time window closes. At the same
time, all constraints regarding inventory control are removed. This applies to constraint
(5.5) regarding quantity loaded and the harbor inventory constraints (5.9), (5.10), (5.11),
(5.12), (5.13), (5.14), (5.15) and (5.16). The same constraints are added to, and removed
from the code when running the test instances.

The time windows are defined by taking the duration of the planning period measured
in days and divide it by the number of voyages for the specific trade. Then the time
windows are given a length corresponding to the double of this number and will start
at intervals corresponding to this number. For example the first voyage on a trade with
three voyages, given the standard planning period of 90 days, will have to start within
the interval [0, 60], the second voyage within [30, 90] and the last within [60, 90]. Note
that the time windows overlaps and that the last window will have half the length of the
others as the end time can not be exceeded. This way of defining the intervals makes the
time windows quite wide. Tighter time windows were also tested, but with difficulties
in obtaining feasible solution. The results from the testing of time windows show that
it is hard to obtain good results with time windows. If the charterer defines absolute
time windows in the CoA, the planner has no choice, but if the charterer is more flexible
it is hard to exploit this flexibility by using time windows. As Table 17, the objective
function values are substantially worse when time windows are enforced. Only for the



Fleet Deployment Optimization in Liner Shipping 41

Table 17: Objective function values when using time windows.

Full model Time windows Spot ships
Instance Obj.val.($) Obj.val.($) Difference Obj.val.($) Difference

(4S,3T,90D) 6 541 743 6 169 012 -5.7 % 25 855 363 295 %
(8S,3T,90D) 6 597 846 11 453 077 73.6 % 26 333 536 299 %
(10S,4T,90D) 6 577 028 16 735 943 154.5 % 38 756 272 489 %
(12S,5T,90D) 7 933 607 30 353 481 282.6 % 53 385 125 573 %
(15S,6T,90D) 10 993 465 31 398 801 185.6 % 63 824 004 481 %
(15S,8T,90D) 14 268 801 33 286 355 133.3 % 70 436 550 394 %
(20S,8T,90D) 15 866 013 43 797 335 176.0 % 81 079 136 411 %
(25S,10T,90D) 37 252 542 60 411 370 62.2 % 97 988 296 163 %

smallest instance does the time windows open for solutions not possible when inventory is
controlled. The two rightmost columns show the objective function values for servicing
all voyages with spot ships and how these values compare to the values for the full
model. Using spot ships to perform all voyages will always be a feasible solution as
long as number of voyages times minimum spread between voyages does not exceed the
planning horizon, and tells us something about the performance of an model compared
to what we may call the worst case solution. With reference to the large instances in
Table 6 where no feasible integer solution was found within the given solution time, the
trivial solution of only using spot ships is a feasible solution also for these. The reason
this solution is not detected within the time given is that, as Table 17 shows, the solution
where spot ships are used to service all voyages has an objective function value so bad
that it is not yet investigated when the algorithm terminates. The algorithm is designed
to detect the best solution and the bounds for this, and thus bad solutions as the spot
ship solution are not investigated until very late in the solution process. The rigidity of
the time windows is an advantage when it comes to solution times, though. As Table
18 shows, the optimal solution is guaranteed in less than one hour for all the instances
up to and including (15S,6T,90D). With the time windows used, this is however of little
value when the objective function values are of the quality presented, so to find the right
size of the interval specifying the time windows is essential for success if choosing that
method of modeling. Soft time windows can be used to allow more solutions, against
a penalty cost, but still the intervals will be essential, and enforcing a penalty function
will compromise the good solution times.

6.4.2 Fixed number of voyages

This thesis offer flexibility in terms of number of voyages on an trade. In contrast to a
fixed number, it is determined by the demand and the capacity of the ships assigned to
the voyages. This test investigates how our way of modeling voyages per trade performs
compared to fixing the number of voyages to a specified number based on the capacity
of the smallest ship in the fleet and the demand on a trade. The number of voyages on



42 Sondre Morten Steen

Table 18: Solution time and gap when using time windows.

Full model Time windows
Instance Sol.time Gap Sol.time Gap

(4S,3T,90D) 136.1s 0.0 % 8.5s 0 %
(8S,3T,90D) 1h 13.8 % 1m 21s 0 %
(10S,4T,90D) 1h 7.4 % 1.2s 0 %
(12S,5T,90D) 1h 8.0 % 3.5s 0 %
(15S,6T,90D) 1h 6.0 % 57m 13s 0 %
(15S,8T,90D) 1h 36.1 % 1h 1.28 %
(20S,8T,90D) 1h 18.0 % 1h 0.34 %
(25S,10T,90D) 1h 61.8 % 1h 0.50 %

a trade is given by Equation 6.1, and the following modifications were done to model
that a fixed number of voyages has to be serviced:

• Constraint 5.8 is removed as no voyages can be skipped.

• Constraint 5.7 is turned into the following equality constraint, stating that every
voyage has to be serviced exactly once:∑

v∈V

∑
k∈Kv

xo(v)rik +
∑
v∈V

∑
p∈Rv

∑
j∈Np

∑
k∈Kv

xvpjrik + sri = 1, r ∈ R, i ∈ Nr (6.8)

To make the model for fixed number of voyages as similar as possible and comparable to
the full model, no further changes are made. If fixing number of voyages and choosing
to disregard the possibility to accept additional spot cargo on a voyage all constraints
regarding quantity transported on a voyage can be removed. This implies removing the
capacity constraints 5.4 and 5.5, the demand constraint 5.6, as well as the inventory
constraints 5.9-5.16 and the spot market constraint 5.22. This is however a substantial
change in the model and makes it impossible to compare the objection function values
or the computational times in a meaningful way.

The two instances (4S,3T,90D) and (10S,4T,90D) are solved in 18.4s and 52m 13s
respectively. For all other instances, Table 19 gives the optimal solution at one hour. The
results show that flexibility to skip voyages if demand is already satisfied has a positive
effect on the objective function. The gap between optimal solution and best bound is
however much smaller when fixing number of voyages and a more detailed analysis of the
results shows that the optimal solution is determined faster when the number of voyages
is fixed. This is also reasonable since less choices results in smaller branch-and-bound
trees, fewer computations and faster determination of the optimal solution. For the
two largest instances, the model where voyages are fixed actually is able to determine a
better objective function value. Note however, that the gap for these instances is much
tighter when voyages are fixed. The objective value is also higher than the best bound



Fleet Deployment Optimization in Liner Shipping 43

Table 19: Objective function values (USD) when fixing number of voyages.

Full model Fixed voyages Difference
Instance Obj.val. Gap Obj.val. Gap Obj.val. Gap

(4S,3T,90D) 6 541 743 0.0 % 6 683 073 0 % 2.2 % 0 %
(8S,3T,90D) 6 597 846 13.8 % 7 357 207 10.1 % 11.5 % -16.6 %
(10S,4T,90D) 6 577 028 7.4 % 7 265 656 0 % 10.5 % 42.0 %
(12S,5T,90D) 7 933 607 8.0 % 8 945 085 1.9 % 12.7 % 58.9 %
(15S,6T,90D) 10 993 465 6.0 % 12 025 165 4.5 % 9.4 % 56.8 %
(15S,8T,90D) 14 268 801 36.1 % 12 143 567 15.7 % -14.9 % -141.3 %
(20S,8T,90D) 15 866 013 18.0 % 14 492 726 2.6 % -8.7 % -148.2 %

Table 20: Number of voyages performed.

Instance Voyages performed Voyages on trade

(4S,3T,90D) 11 12
(8S,3T,90D) 16 19
(10S,4T,90D) 18 21
(12S,5T,90D) 24 27
(15S,6T,90D) 29 34
(15S,8T,90D) 30 33
(20S,8T,90D) 41 42
(25S,10T,90D) 51 51

determined for the full model, with 12 143 567 exceeding 9 119 089 and 14 492 726
exceeding 13 015 127, for instance (15S,8T,90D) and (20S,8T,90D) respectively. This
is the same effect as identified when large instances are solved heuristically. The results
obtained when allowing longer solution time confirms the results in the table by showing
that after 11h 45m, the optimal solution to (20S,8T,90D) had an objective function
value of 14 005 143, which is less than the corresponding value when fixing the number
of voyages.

Table 20 gives an overview over how many voyages that are performed when solving the
full model. The column, Voyages on trade states how many voyages that are necessary if
no large ships are used, and thus the number of voyages performed when fixing number
of voyages.

6.4.3 Fixed speed

More choices imply more flexibility, a larger solution space and better solutions. Offering
the possibility to reduce costs by reducing operational speed on ships when time allows
it should improve the value of the objective function. Choices do however imply
more variables, and more variables increase computational time. This test investigates



44 Sondre Morten Steen

Table 21: The ratio of ”low” speed voyages.

Voyages performed Share of ”low”
Instance at ”low” speed in total speed voyages

(4S,3T,90D) 4 11 36 %
(8S,3T,90D) 12 16 75 %
(10S,4T,90D) 16 18 89 %
(12S,5T,90D) 24 24 100 %
(15S,6T,90D) 28 29 97 %
(15S,8T,90D) 24 30 80 %
(20S,8T,90D) 35 41 85 %
(25S,10T,90D) 50 51 98 %

Table 22: Objective function values (USD) when fixing speed.

Instance Full model Fixed speed Difference
Obj.val. Gap Obj.val. Gap Obj.val. Gap

(4S,3T,90D) 6 541 743 0 % 7 052 889 0 % 7,8 % 0.0%
(8S,3T,90D) 6 597 846 13,8 % 7 167 584 10,5 % 8,6 % -23.8%
(10S,4T,90D) 6 577 028 7,4 % 7 551 357 4,4 % 14,8 % -40.6%
(12S,5T,90D) 7 933 607 8,0 % 8 881 857 3,2 % 12,0 % -59.9%
(15S,6T,90D) 10 993 465 6,0 % 11 605 811 7,8 % 5,6 % 30.9%
(15S,8T,90D) 14 268 801 36,1 % 12 705 319 15,9 % -11,0 % -55.9%
(20S,8T,90D) 15 866 013 18,0 % 16 283 410 16,1 % 2,6 % -10.2%
(25S,10T,90D) 37 252 542 61,8 % 21 561 721 24,9 % -42,1 % -59.7%

the influence of the possibility to choose operational speed on total costs and how
computational time is affected by fixing operational speed.

The choice of speed is limited to a choice from a discrete set of two speeds. ”High” speed
is 20 knots and ”low” speed is 14 knots. When speed is fixed, the ships are restricted to
operating on ”high” speed only. All input values for the fixed speed case are identical
to the values of ”high” speed for the full model.

Table 21 shows the proportion of voyages that are serviced at ”low” speed when the
planners have the option to reduce speed. The numbers show that ”high” speed is only
preferred for a small share of the voyages. By removing the choice between ”high”
speed and ”low” speed, and only allowing ”high” speed, the results in Table 22 occured.
We can in general see an increase in the costs when all voyages are enforced to be
serviced at ”high” speed. The exceptions are (15,8T,90D) and (25S,10T,90D), where
the optimal solutions actually are better when the speed is fixed. This is due to the
same effect as seen for the heuristic approaches and when fixing number of voyages, as
the solution space when fixing the speed is reduced, and thus good solutions are found



Fleet Deployment Optimization in Liner Shipping 45

Table 23: Shared inventories.

Number of inventories
Instance with no sharing when shared

(4S, 3T, 90D) 3 2
(8S, 3T, 90D) 3 3
(10S, 4T, 90D) 4 3
(12S, 5T, 90D) 5 3
(15S, 6T, 90D) 6 4
(15S, 8T, 90D) 8 6
(20S, 8T, 90D) 8 5
(25S, 10T, 90D) 10 6

and determined good faster. The results support this by showing that the gap decreses
and by analyzing the best bounds for the two instances where optimal solution improves
when fixing speed we see that the best bounds support the statement. Fixing speed may
produce lower objective function values in one hour since more of the enumeration tree is
explored, but the best bounds show that solutions with much better objective function
values may exist. That it actually also does were proven when e.g. the model with data
for (25S,10T,90D) was run for 27h 33m and obtained an objective function value of
16 512 932, which is significantly lower that the corresponding value when fixing speed.
Solution time was one hour for every instance, except from for (4S,3T,90D) which solved
in 11.1s.

6.4.4 Shared inventories

All the testing is generally done with no shared inventories. The possibility is
incorporated in the code for all instances, but in general every trade operates out of its
own inventory. When testing the effect of shared inventories, we have assumed that all
trades with starting points in the same geographical region share one inventory. For the
instance with the actual problem size, (25S,10T,90D), three trades load at the US West
Coast and share one inventory. For the rest of the instances, only pairs of trades share
inventories. What is different between the tests are the sets in the input which allocate
trades to inventories and the corresponding inventory data which is scaled up accordingly
to the joint inventories. Table 23 shows number of inventories when every trades operates
from its own inventory (equals number of trades) and number of inventories when trades
from the same region share inventories. The results from sharing inventories are
presented in Table 24. We see that solution times were approximately equal between
the full model and the model where trades operating from same region shared inventory.
From the objective function values we see an increase for most instances. This can only
be explained by that centralized inventories increase flexibility, and lead to increased
solution time. Increased flexibility eventually produces at least as good objective function
values, but as seen in many tests before, larger solution space may lead to worse solution



46 Sondre Morten Steen

Table 24: Objective function values (USD) when sharing inventories.

Full model Shared inventory Difference
Instance Obj.val. Gap Obj.val. Gap Obj.val. Gap

(4S,3T,90D) 6 541 743 0 % 6 620 674 0 % 7.8 % 0.0 %
(8S,3T,90D) 6 597 846 13.8 % 6 597 846 13.8 % 8.6 % -0.1 %
(10S,4T,90D) 6 577 028 7.4 % 6 797 335 8.8 % 14.8 % 19.3 %
(12S,5T,90D) 7 933 607 8.0 % 7 799 038 7.1 % 12.0 % -11.6 %
(15S,6T,90D) 10 993 465 6.0 % 11 229 765 8.4 % 5.6 % 40.6 %
(15S,8T,90D) 14 268 801 36.1 % 15 139 686 41.2 % -11.0 % 14.1 %
(20S,8T,90D) 15 866 013 18.0 % 18 374 105 30.5 % 2.6 % 69.8 %
(25S,10T,90D) 37 252 542 61.8 % 31 806 530 55.7 % -42.1 % -9.9 %

values as it takes more time to detect the good solutions. It seems that the flexibility is
exploited for instance (15S,8T,90D) and (25S,10T,90D), that offer a reduction in number
of inventories of two and four, respectively. It is also worth noting that (8S,3T,90D)
produces the exact same result in both cases, which is in accordance with Table 23 that
shows that no trades share inventories for this particular instance.



Fleet Deployment Optimization in Liner Shipping 47

7 Concluding remarks

This thesis adds an exact formulation to the relatively limited work in the current
literature on exact methods for the fleet deployment problem. The mathematical
formulation presented shows positive results in terms of detcting good solutions that
satisfies the requirements defined by the CoA without compromising flexibility.

Testing the full model on the full set of test instances with various sizes, shows that the
major concern is determining how good the optimal solutions obtained are. When the
instances reaches a certain size, the gap between best solution found and best bound
obtained becomes significant. Analyses of the results indicate however, that a good
solution is determined relatively fast in most cases. It is the determination of whether
the solution is optimal that is computationally hard and time consuming. One possible
explanation is the symmetric properties of the problem. An integer linear program
is symmetric if its variables can be permuted without changing the structure of the
problem. The fleet deployment problem studied in this thesis has such characteristics
as it consists of many ships with the identical properties. Mutually swapping the values
of varibles related to these ships will produce a different solution with the exact same
objective function value. When using a branching technique in the solution method,
symmetry leads to an enumeration tree with many isomorphic subproblems, that is
subproblems with the same structural properties. Furthermore, this means that even if
the optimal solution is found, the branch-and-bound tree can still get very large until
optimality is proven. The results support this, as even relatively modestly sized problems
are difficult to solve to optimality.

With knowledge of the exact model’s challenges regarding optimality for large problem
instances, the performance of heuristic approaches based on the idea behind fix-and-
relax heuristics was tested. One challenge when evaluating the performance is that the
exact method was unable to produce dual bounds for larger instances. Conclusions
can nevertheless be drawn. The results show clearly that fixing relatively few variables
in the first iteration improves solution time significantly. No approach needed more
than a couple of minutes to return its optimal solution. The quality of the objective
function values shows however that it is necessary to be very careful when fixing
variables from the first iteration, not to compromise the best solutions. The radical
improvements in solution times can be explained by the characteristics of symmetry
identified. Fixing variables has thus proven itself an efficient approach to reduce
symmetry. What proved itself most effective for this type of fleet deployment problem
varied between the instances. Relaxing the integer constraints on all variables except
from the variables concerning the one, two or three first voyages resulted in very short
solution time. Enforcing binary constraints to the first voyage on half the trades returned
in general better solutions, still within ten minutes. The conclusion is that a portfolio
of heuristics where the number of variables to restrict, fix and relax for each iteration
is varied, provides an efficient approach that in most cases will return a near optimal
solution.



48 Sondre Morten Steen

One focus when developing the model in this thesis was to model the real world problem
as realistic as possible. No time windows were enforced, the number of voyages performed
on a trade was detemined in the solution process, and speed was eligible from a discrete
set. The comparative testing shows that the flexibility provided by these features led to
positive results.

To keep track of cargo aboard the ships and the cargo level in the onshore inventories at
all time, provided significantly better objective function values than using time windows.
Inventory control proved itself superior in terms of solution flexibility and adds value to
the solution by including information on available cargo at all times.

Allowing the planner to choose how many voyages to perform on a trade, by assigning
ships with a specific cargo capacity to specific trades, proved itself valuable. The results
show that the feature is utilized by showing that the optimal solution includes less
voyages than offered in the input data. Comparing the results shows a decrease in the
objective function value of 5.0% in average, when using the full model where the number
of voyages is unspecified. Fixing the number of voyages has an advantage with respect
to solution time, but if time is not of vital importance, the flexibility to choose voyages
is a property worth investigating in further studies.

The results from testing the effect of optional speed are also positive. Compared to when
speed is fixed, offering the choice between two different operational speeds reduced the
objective function value with 9.5%. The specific set of operational speeds provided is
decisive for the outcome, but the conclusion is that being able to vary speed through
the planning period leads to improved solutions.

Summarizing the results obtained from comparing the model with more traditional
approaches, we see that every feature in the model has positive effects on the optimal
solution.

The trend in the literature is to describe more industrial cases and increasingly complex
models [Andersson et al., 2010]. The trend also includes to formulate richer models that
provides descriptions closer to real world problems. This thesis submits to this trend by
offering a customized model incorporating the actual demands given in the CoA, without
introducing artificial constraints that compromise solution flexibility. Fairly evenly
spread voyages is a relatively new constraint in modeling the fleet deployment problem,
first presented in Arnulf and Bjørkli [2010], in accordance to the authors. This is the
first model that uses inventory control as a tool to model this issue. Inventoy control also
enriches the model. The positive computational results give room for optimism regarding
use of these ideas in optimization models in the industry. Hopefully optimization-based
DSSs based on mathematical models similar to this, will be an increasingly important
tool for planners solving fleet deployment problems in Saga Forest Carriers or other liner
shipping companies with heterogeneous fleets in the future.



Fleet Deployment Optimization in Liner Shipping 49

References

H. Andersson, A. Hoff, M. Christiansen, G. Hasle, and A. Løkketangen. Industrial as-
pects and literature survey: Combined inventory management and routing. Computers
and Operations Research, 37(9):1515 – 1536, 2010.

L. H. Appelgren. A column generation algorithm for a ship scheduling problem.
Transportation Science, 3(1):53–68, 1969.

L. H. Appelgren. Integer programming methods for a vessel scheduling problem.
Transportation Science, 5(1):64–78, 1971.

H. S. Arnulf and A. Bjørkli. Fleet deployment in liner shipping. Master’s thesis,
Norwegian University of Science and Technology, 2010.

H. Benford. A simple approach to fleet deployment. Maritime Policy and Management,
8(4):223–228, 1981.

P. Beraldi, G. Ghiani, A. Grieco, and E. Guerriero. Rolling-horizon and fix-and-relax
heuristics for the parallel machine lot-sizing and scheduling problem with sequence-
dependent set-up costs. Computers and Operations Research, 35(11):3644–3656, 2008.

L. Bertazzi, M. Savelsbergh, and M. G. Speranza. Inventory routing. In B. Golden,
S. Raghavan, E. Wasil, R. Sharda, and S. Voß, editors, The vehicle routing problem:
latest advances and new challenges, volume 43 of Operations Research/Computer
Science Interfaces Series, pages 49–72. Springer US, 2008.

L. Bodin, B. Golden, A. Assad, and M. Ball. Routing and scheduling of vehicles and
crews: The state of the art. Computers and Operations Research, 10(2):63–211, 1983.

T. B. Boffey, E. D. Edmond, A. I. Hinxman, and C. J. Pursglove. Two approaches to
scheduling container ships with an application to the north atlantic route. Journal of
the Operational Research Society, 30(5):413–425, 1979.

S. P. Bradley, A. C. Hax, and T. L. Magnanti. Applied mathematical programming.
Addison Wesley, Reading, MA, 1977.

M. Chajakis. Reflections on a marine vessel affair. OR/MS Today, 26(4):32–39, 1999.

M. Christiansen. Decomposition of a combined inventory and time constrained ship
routing problem. Transportation Science, 33(1):3–16, 1999.

M. Christiansen and K. Fagerholt. Robust ship scheduling with multiple time windows.
Naval Research Logistics (NRL), 49(6):611–625, 2002.

M. Christiansen and B. Nygreen. A method for solving ship routing problems with
inventory constraints. Annals of Operations Research, 81:357–378, 1998a.

M. Christiansen and B. Nygreen. Modelling path flows for a combined ship routing and
inventory management problem. Annals of Operations Research, 82:391–413, 1998b.



50 Sondre Morten Steen

M. Christiansen, K. Fagerholt, and D. Ronen. Ship routing and scheduling: Status and
perspectives. Transportation Science, 38(1):1–18, 2004.

M. Christiansen, K. Fagerholt, B. Nygreen, and D. Ronen. Chapter 4: Maritime
transportation. In Cynthia Barnhart and Gilbert Laporte, editors, Transportation,
volume 14 of Handbooks in Operations Research and Management Science, pages 189
– 284. Elsevier, 2007.

J.F. Cordeau, G. Laporte, M.W.P. Savelsbergh, and D. Vigo. Vehicle routing.
In C. Barnhart and G. Laporte, editors, Handbooks in operations research and
management science, volume 14, pages 367–428. Elsevier, 2007.

G. B. Dantzig and D. R. Fulkerson. Minimizing the number of tankers to meet a fixed
schedule. Naval Research Logistics Quarterly, 1(3):217–222, 1954.

S. de Araujo, M. Arenales, and A. Clark. Joint rolling-horizon scheduling of materials
processing and lot-sizing with sequence-dependent setups. Journal of Heuristics, 13
(4):337–358, 2007.

M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm for the
vehicle routing problem with time windows. Operations Research, 40(2):342–354, 1992.

C. Dillenberger, L. F. Escudero, A. Wollensak, and W. Zhang. On practical resource
allocation for production planning and scheduling with period overlapping setups.
European Journal of Operational Research, 75(2):275–286, 1994.

J. Everett, A. Hax, V. Lewison, and D. Nutts. Optimization of a fleet of large tankers
and bulkers: A linear programming approach. Marine Technology, pages 430–438,
October 1972.

K. Fagerholt. Optimal fleet design in a ship routing problem. International Transactions
in Operational Research, 6(5):453–464, 1999.

K. Fagerholt. Ship scheduling with soft time windows: An optimisation based approach.
European Journal of Operational Research, 131(3):559 – 571, 2001.

K. Fagerholt. Designing optimal routes in a liner shipping problem. Maritime Policy
and Management, 31(4):259–268, 2004.

K. Fagerholt and H. Lindstad. Optimal policies for maintaining a supply service in the
Norwegian Sea. Omega, 28(3):269–275, 2000.

K. Fagerholt and H. Lindstad. Turborouter: An interactive optimisation-based decision
support system for ship routing and scheduling. Maritime Economics and Logistics,
9(3):214–233, 2007.

K. Fagerholt, T. A. V. Johnsen, and H. Lindstad. Fleet deployment in liner shipping:
A case study. Maritime Policy and Management, 36(5):397–409, 2009.



Fleet Deployment Optimization in Liner Shipping 51

D. Ferreira, R. Morabito, and S. Rangel. Solution approaches for the soft drink integrated
production lot sizing and scheduling problem. European Journal of Operational
Research, 196(2):697–706, 2009.

S. Gelareh and D. Pisinger. Simultaneous fleet deployment and network design of liner
shipping. Technical report, DTU Management Kgs. Lyngby, 2010.

D. I. Jaramillo and A. N. Perakis. Fleet deployment optimization for liner shipping part
2: Implementation and results. Maritime Policy and Management, 18(4):235–262,
1991.

G. Laporte and I. H. Osman. Routing problems: A bibliography. Annals of Operations
Research, 61(1):227–262, 1995.

S.A. Lawrence. International Sea Transport: The Years Ahead. Lexington Books,
Lexington, MA, 1972.

V.D. Levy, S.P. Lvov, and S.E. Lovetsky. Man-machine system for merchant fleet
operation scheduling. In Proceedings, 7th International Symposium on Transportation
and Traffic Theory, Kyoto, 1977.

M. Mohammadi, S. Fatemi Ghomi, B. Karimi, and S. Torabi. Rolling-horizon and fix-
and-relax heuristics for the multi-product multi-level capacitated lotsizing problem
with sequence-dependent setups. Journal of Intelligent Manufacturing, 21(4):501–510,
2010.

N. A. Papadakis and A. N. Perakis. A nonlinear approach to the multiorigin,
multidestination fleet deployment problem. Naval Research Logistics (NRL), 36(4):
515–528, 1989.

A. N. Perakis. A second look at fleet deployment. Maritime Policy and Management,
12(3):209–214, 1985.

A. N. Perakis. Fleet operations optimization and fleet deployment. The Handbook of
Maritime Economics and Business, LLP, (Chapter 26):580–597, 2002.

A. N. Perakis and D. I. Jaramillo. Fleet deployment optimization for liner shipping part
1: Background, problem formulation and solution approaches. Maritime Policy and
Management, 18(3):183–200, 1991.

A. N. Perakis and N. A. Papadakis. Fleet deployment optimization models: Part 1.
Maritime Policy and Management, 14(2):127–144, 1987a.

A. N. Perakis and N. A. Papadakis. Fleet deployment optimization models: Part 2.
Maritime Policy and Management, 14(2):145–155, 1987b.

B. J. Powell and A. N. Perakis. Fleet deployment optimization for liner shipping: An
integer programming model. Maritime Policy and Management, 24(2):183–192, 1997.



52 Sondre Morten Steen

D. Ronen. Cargo ships routing and scheduling: Survey of models and problems. European
Journal of Operational Research, 12(2):119 – 126, 1983.

D. Ronen. Ship scheduling: The last decade. European Journal of Operational Research,
71(3):325–333, 1993.

K. Uggen, M. Fodstad, and V. S. Nørstebø. Using and extending fix-and-relax to solve
maritime inventory routing problems. TOP, pages 1–23, 2011.

UNCTAD. Review of maritime transport. Technical report, United Nations Conference
on Trade and Development, Geneva, 2009.

UNCTAD. Review of maritime transport. Technical report, United Nations Conference
on Trade and Development, Geneva, 2011.

www.sagafc.com. Saga Forest Carriers. May 2012 .



Fleet Deployment Optimization in Liner Shipping 53

A Mathematical formulation

Sets:
V Set of available ships.
R Set of trades.
Nr Set of voyages for trade r,Nr = {1, 2, ..., nr}.
Rv Set of trades that can be serviced by ship v.
Vr Set of ships that can service trade r.
Av Set of arcs that can be sailed by ship v.
M Set of inventories.
Rr Set of trades that operate from the same inventory as trade r.
Kv Set of possible speeds for ship v.

Indices:
v ship, v ∈ V .
r, p trade, r, p ∈ R.
i, j voyage, i, j ∈ Nr.
o(v) initial position for ship v.
d(v) final position for ship v.
m inventory, m ∈M .
m(r) inventory for trade r.
k speed, k ∈ Kv.



54 Sondre Morten Steen

Parameters:
Cvrk Cost of performing a voyage on trade r by ship v at speed k.
CS
r Cost of performing a voyage on trade r by a spot ship.

Tvrk Duration of a voyage on trade r when performed by ship v at speed k.
TS
r Duration of a voyage on trade r when performed by a spot ship.

CB
o(v)rk Ballast sailing cost from origin to first voyage on trade r at speed k.

CB
vrpk Ballast sailing cost from a voyage on trade r to a voyage on trade p

at speed k.
TB
o(v)rk Ballast sailing duration from origin to first voyage on trade r at speed k.

TB
vrpk Ballast sailing duration from a voyage on trade r to a voyage on trade p

at speed k.
Dr Demand on trade r.
Qv Maximum load capacity on ship v.
QS Maximum load capacity on spot ships.
Gm Production rate at inventory m.
Wr Minimum spread between voyages on trade r.
T Time at the end of the planning period.
LMAXm Maximum inventory capacity at inventory m.
LMINm Minimum limit at inventory m.
LS
MAXr Maximum available spot cargo on trade r.

L0m Initial quantity at inventory m.
Ev Earliest possible start time for ship v.
Ari Time window opens for voyage i on trade r.
Bri Time window closes for voyage i on trade r.
PS
r Unit revenue for additional spot cargo.

Variables:
xvripjk equals 1 if voyage i on trade r is serviced right before voyage j on trade q

by ship v at speed k, and 0 otherwise.
xo(v)rik equals 1 if voyage i on trade r is serviced first by ship v at speed k,

and 0 otherwise.
xrid(v)k equals 1 if voyage i on trade r is serviced last by ship v at speed k,

and 0 otherwise.
xo(v)d(v) equals 1 if ship v does not service any voyage, and 0 otherwise.

to(v) Start time from origin.

tri start time for voyage i on trade r.
qri Quantity loaded on voyage i.
qripj Quantity loaded on voyage (p, j) if performed before voyage (r, i) in time.
qSri Quantity additional spot cargo loaded on voyage i.
lri Available inventory on trade r at the start of voyage i.
sri equals 1 if voyage i on trade r is serviced by a spot ship.
yripj equals 1 if voyage (r, i) is serviced after voyage (p, j) in time.



Fleet Deployment Optimization in Liner Shipping 55

Objective function:

min (
∑
v∈V

∑
r∈Rv

∑
i∈Nr

∑
k∈Kv

CB
o(v)rkxo(v)rik +

∑
v∈V

∑
r∈Rv

∑
i∈Nr

∑
p∈Rv

∑
j∈Nr

∑
k∈Kv

(
CB
vrpk + Cvrk

)
xvripjk+

∑
v∈V

∑
r∈Rv

∑
i∈Nr

∑
k∈Kv

Cvrkxrid(v)k +
∑
r∈R

∑
i∈Nr

CS
r sri −

∑
r∈R

∑
i∈Nr

PS
riq

S
ri )

Constraints:

xo(v)d(v) +
∑
r∈Rv

∑
i∈Nr

∑
k∈Kv

xo(v)rik = 1, v ∈ V (A.1)

xo(v)d(v) +
∑
r∈Rv

∑
i∈Nr

∑
k∈Kv

xrid(v)k = 1, v ∈ V (A.2)

∑
k∈Kv

xo(v)rik +
∑
p∈Rv

∑
j∈Np

∑
k∈Kv

xvpjrik =

∑
k∈Kv

xrid(v)k +
∑
p∈Rv

∑
j∈Np

∑
k∈Kv

xvripjk, v ∈ V, r ∈ Rv, i ∈ Nr (A.3)

qri + qSri ≤
∑
v∈V

Qv

∑
p∈Rv

∑
j∈Np

∑
k∈Kv

xvripjk +
∑
k∈Kv

xrid(v)k

+ QSsri,

r ∈ R, i ∈ Nr (A.4)

qri ≤ lri, r ∈ R, i ∈ Nr (A.5)∑
i∈Nr

qri = Dr, r ∈ R (A.6)

∑
v∈V

∑
k∈Kv

xo(v)rik +
∑
v∈V

∑
p∈Rv

∑
j∈Np

∑
k∈Kv

xvpjrik + sri ≤ 1, r ∈ R, i ∈ Nr (A.7)

∑
v∈V

∑
k∈Kv

xo(v)r(i+1)k +
∑
v∈V

∑
p∈Rv

∑
j∈Np

∑
k∈Kv

xvpjr(i+1)k + sr(i+1) ≤∑
v∈V

∑
k∈Kv

xo(v)rik +
∑
v∈V

∑
p∈Rv

∑
j∈Np

∑
k∈Kv

xvpjrik + sri, r ∈ R, i ∈ {1, 2, ..., (nr − 1)} (A.8)

lri = L0m(r) + Gm(r)tri −
i−1∑
j=1

qrj −
∑
p∈Rr

np∑
j=1

qripj , r ∈ R, i ∈ Nr (A.9)

lri ≤ LMAXm(r), r ∈ R, i ∈ Nr (A.10)



56 Sondre Morten Steen

lri − qri ≥ LMINm(r), r ∈ R, i ∈ Nr (A.11)

qripj ≤ qpj , (r, i), (p, j) ∈ Av (A.12)

qripj ≤ max
v∈V
{Qv}yripj , (r, i), (p, j) ∈ Av (A.13)

qripj ≥ qpj −max
v∈V
{Qv} (1− yripj) , (r, i), (p, j) ∈ Av (A.14)

yripj (tri − tpj) ≥ 0 (r, i), (p, j) ∈ Av (A.15)

(1− yripj) (tpj − tri) ≥ 0, (r, i), (p, j) ∈ Av (A.16)

tri ≥ tr(i−1) + Wr, r ∈ R, i ∈ {2, 3, ..., nr} (A.17)∑
k∈Kv

xo(v)rik(to(v) + TB
o(v)rk) ≤

∑
k∈Kv

xo(v)riktri, v ∈ V, r ∈ Rv, i ∈ Nr (A.18)

∑
k∈Kv

xvripjk
(
tri + Tvrk + TB

vrpk

)
≤
∑
k∈Kv

xvripjktpj , v ∈ V, (r, i), (p, j) ∈ Av (A.19)

to(v) ≥ Ev, v ∈ V (A.20)

tri ≤ T, r ∈ R, i ∈ Nr (A.21)

qSri ≤ LS
MAXr, r ∈ R, i ∈ Nr (A.22)

xvripjk ∈ {0, 1}, v ∈ V, (r, i), (p, j) ∈ Av, k ∈ Kv (A.23)

xo(v)rik ∈ {0, 1}, v ∈ V, r ∈ Rv, i ∈ Nr, k ∈ Kv (A.24)

xrid(v)k ∈ {0, 1}, v ∈ V, r ∈ Rv, i ∈ Nr, k ∈ Kv (A.25)

xo(v)d(v) ∈ {0, 1}, v ∈ V (A.26)

yripj ∈ {0, 1}, (r, i), (p, j) ∈ Av (A.27)

Constraint (A.1)-(A.3) are flow constraints. Constraint (A.1) ensures that every ship
leaves its start position and constraint (A.2) that every ship reaches its destination.
Constraint (A.3) ensures that every ship that reaches a node also leaves it. Constraint
(A.4) ensures that the load on a voyage does not exceed the capacity of the ship, while
constraint (A.5) states that the maximum load also is limited by the current goods
available in stock. Constraint (A.6) states that the contractual demand needs to be
satisfied.

That one voyage is serviced one time maximum is ensured by (A.7), while (A.8) ensures
that if voyage(s) are skipped on a trade, it is the last one(s).

(A.9)-(A.16) regards stock available and limits for each stock. The stock available before
a voyage is given by (A.9). (A.10) and (A.11) set the maximum and the minimum limits
for a stock, respectively.

(A.12)-(A.16) set the value of qripj equal to qri if (r, i) is performed after (p, j) and to
zero otherwise.



Fleet Deployment Optimization in Liner Shipping 57

(A.17)-(A.21) can all be referred to as time constraints. Constraint (A.17) ensures both
the spread and the order of the voyages within a trade. (A.17) ensures that every voyage
is fairly evenly spread by imposing a minimum spread in time, and also that the first
voyage is serviced before voyage number two and so on. (A.18) states that a ship cannot
start its first voyage before reaching it from its starting position. That a ship does not
start its next journey before the previous is completed is ensured by (A.19), while (A.20)
ensures that a ship does not leave its start position before its available. (A.21) restricts
the voyages to start within the planning period.

(A.22) ensures that the spot cargo accepted does not exceed the limit given for spot
cargo.

Constraint (A.23)-(A.27) are the binary constraints.



58 Sondre Morten Steen

B Mosel code

(!

Implementation of mathematical formulation. The two constraints added

to the model when introducing time windows are specified in the code.

The other modifications done in order to facilitate the comparative

tests are only described in the text.

!)

model superModel

options noimplicit

uses "mmxprs" !gain access to the Xpress-Optimizer solver

uses "mmodbc" !to be able to write to Excel files

uses "mmsystem" !to be able to monitor solution time

parameters

DataFile = "input 25S 10T 90D.txt" !input file

ResultsXLSX = "mmodbc.excel:noindex;result 25S 10T 90D.xlsx"

ResultsTXT = "result 25S 10T 90D.txt" !results as *.txt

end-parameters

setparam("XPRS MAXTIME",-3600) !returns the best solution after one hour

setparam("XPRS VERBOSE",TRUE) !writes solution process data

! INDICES and NAMES

declarations

NumShips : integer

Ship : set of integer

NumTrades : integer

Trade : set of integer

Voyage : set of integer

MaxNumVoyages : integer

MaxNumTradesWithSameInventory : integer

NumInventories : integer

Inventory : set of integer

TradesWithSameInventory : set of integer

MaxCapacity : integer

NumSpeedOptions : integer

Speed : set of integer

end-declarations



Fleet Deployment Optimization in Liner Shipping 59

initializations from DataFile

NumShips

NumTrades

NumInventories

NumSpeedOptions

end-initializations

Ship := 1..NumShips

Trade := 1..NumTrades

Inventory := 1..NumInventories

Speed := 1..NumSpeedOptions

declarations

NumVoyages : array(Trade) of integer !Number of voyages on each trade

NumTradesWithSameInventory : array(Trade) of integer

end-declarations

initializations from DataFile

NumVoyages

NumTradesWithSameInventory

end-initializations

forward public function findMaxNumVoyages : integer

forward public function findMaxNumTradesWithSameInventory : integer

MaxNumVoyages := findMaxNumVoyages !Finds largest number of voyages

Voyage := 1..MaxNumVoyages

MaxNumTradesWithSameInventory := findMaxNumTradesWithSameInventory

if(MaxNumTradesWithSameInventory>0) then

TradesWithSameInventory := 1..MaxNumTradesWithSameInventory

else

TradesWithSameInventory := 0..0

end-if

finalize(Trade); finalize(Ship); finalize(Voyage); finalize(Inventory);

finalize(TradesWithSameInventory)

declarations

ShipNames : array(Ship) of string

TradeNames : array(Trade) of string

end-declarations



60 Sondre Morten Steen

initializations from DataFile

ShipNames

TradeNames

end-initializations

! CONSTANTS and SETS

declarations

!Defines which Ships vv that are compatible with which trade routes rr:

Rv : array(Ship,Trade) of integer

!Cost of performing voyage ii on trade rr by Ship vv

VoyageCost : array(Ship, Trade, Speed) of integer

!Cost of performing a voyage on trade rr by a spot ship

SpotVoyageCost : array(Trade) of integer

!Time for performing voyage ii on trade rr by Ship vv (T riv)

VoyageTime : array(Ship, Trade, Speed) of real

!Time for performing a voyage on trade rr by a spot ship

SpotVoyageTime : array(Trade) of real

!Cost of sailing ballast from initial position to trade rr for ship vv:

BallastCostStart : array(Ship, Trade, Speed) of integer

!Cost of sailing ballast between voyages:

BallastCost : array(Ship, Trade, Trade, Speed) of integer

!Time for sailing ballast from initial position to trade rr for ship vv:

BallastTimeStart : array(Ship, Trade, Speed) of real

!Time for sailing ballast between voyages:

BallastTime : array(Ship, Trade, Trade, Speed) of real

!Earliest possible start time for Ship vv:

ShipStartTime : array(Ship) of real

!Production rate at trade rr

ProductionRate : array(Inventory) of real

!Demand on trade rr

Demand : array(Trade) of integer

!Maximum load capacity on Ship vv

ShipCapacity : array(Ship) of integer

!Maximum load capacity on spot ships

SpotShipCapacity : integer

!Minimum spread between voyages on trade rr

Spread : array(Trade) of integer

!Maximum Inventory capacity on trade rr

InventoryLimit Min : array(Inventory) of integer

!Maximum Inventory capacity on trade rr

InventoryLimit Max : array(Inventory) of integer

!Initial Inventory on trade rr

InitialInventory : array(Inventory) of integer



Fleet Deployment Optimization in Liner Shipping 61

!Maximum available spot cargo on trade rr

SpotCargoAvailable Max : array(Trade) of integer

!Time at end of planning period

EndTime : integer

!Unit revenue for additional spot cargo

SpotCargoUnitRevenue : array(Trade) of real

!Inventory allocation

InventoryForTrade : array(Trade) of integer

!Trades with same Inventory

TradesWithCommonInventory : array(Trade,Trade) of integer

!SpeedOptions

SpeedOptions : array(Ship,Speed) of string

end-declarations

initializations from DataFile

Rv

VoyageCost

SpotVoyageCost

VoyageTime

SpotVoyageTime

BallastCostStart

BallastCost

BallastTimeStart

BallastTime

ShipStartTime

SpotShipCapacity

ProductionRate

Demand

ShipCapacity

Spread

InventoryLimit Min

InventoryLimit Max

InitialInventory

SpotCargoAvailable Max

EndTime

SpotCargoUnitRevenue

InventoryForTrade

TradesWithCommonInventory

SpeedOptions

end-initializations

forward public function findMaxCapacity : integer

MaxCapacity := findMaxCapacity



62 Sondre Morten Steen

! VARIABLES

declarations

!x vripjk equals 1 if (rr,ii) and (pp,jj) is serviced successively

by Ship vv, and 0 otherwise

x vripjk : dynamic array(Ship,Trade,Voyage,Trade,Voyage,Speed) of mpvar

!x o equals 1 if (rr,ii) is serviced first by ship vv, and 0 otherwise

x o : dynamic array(Ship,Trade,Voyage,Speed) of mpvar

! x d equals 1 if (rr,ii) is serviced last by ship vv, and 0 otherwise

x d : dynamic array(Ship,Trade,Voyage,Speed) of mpvar

!x od equals 1 if ship vv does not service any voyage, and 0 otherwise

x od : dynamic array(Ship) of mpvar

!Start time from origin for ship vv

t o : array(Ship) of mpvar

!Start time for service on (rr,ii)

t ri : array(Trade,Voyage) of mpvar

!Quantity loaded on (rr,ii)

q ri : array(Trade,Voyage) of mpvar

!Quantity additional spot cargo loaded on (rr,ii)

qS ri : array(Trade,Voyage) of mpvar

!Available Inventory on trade rr at the start of voyage ii

l ri : array(Trade,Voyage) of mpvar

!s ri equals 1 if (rr,ii) is serviced by a spot ship

s ri : dynamic array(Trade,Voyage) of mpvar

!Quantity loaded on (pp,jj) if performed before voyage (rr,ii)

q ripj : dynamic array(Trade,Voyage,Trade,Voyage) of mpvar

!equals 1 if voyage (rr,ii) is permormed after voyage (pp,jj) in time

y ripj : dynamic array(Trade,Voyage,Trade,Voyage) of mpvar

end-declarations

!Creating x vripjk (binary):

forall(vv in Ship, rr in Trade, ii in Voyage, pp in Trade, jj in Voyage,

kk in Speed | ii <= NumVoyages(rr) and jj <= NumVoyages(pp) and not

((rr = pp) and (ii >= jj))) do

if ((Rv(vv,rr) = 1) and (Rv(vv,pp) = 1)) then

create(x vripjk(vv, rr, ii, pp, jj, kk))

x vripjk(vv, rr, ii, pp, jj, kk) is binary

end-if

end-do



Fleet Deployment Optimization in Liner Shipping 63

!Creating x o and x d (binary)

forall(vv in Ship, rr in Trade, ii in Voyage, kk in Speed |

ii <= NumVoyages(rr)) do

if ((Rv(vv,rr) = 1)) then

create(x o(vv, rr, ii, kk))

create(x d(vv, rr, ii, kk))

x o(vv, rr, ii, kk) is binary

x d(vv, rr, ii, kk) is binary

end-if

end-do

!Creating x od (binary)

forall(vv in Ship) do

create(x od(vv))

x od(vv) is binary

end-do

!Creating s ri (binary):

forall(rr in Trade, ii in Voyage | ii <= NumVoyages(rr)) do

create(s ri(rr,ii))

s ri(rr,ii) is binary

end-do

!Creating y riqj (binary):

forall(rr in Trade, ii in Voyage, pp in Trade, jj in Voyage | ii <=

NumVoyages(rr) and jj <= NumVoyages(pp) and not (rr=pp and jj=ii) ) do

create(y ripj(rr, ii, pp, jj))

y ripj(rr, ii, pp, jj) is binary

end-do

!Creating q riqj:

forall(rr in Trade, ii in Voyage, pp in Trade, jj in Voyage |

ii <= NumVoyages(rr) and jj <= NumVoyages(pp) ) do

create(q ripj(rr, ii, pp, jj))

end-do



64 Sondre Morten Steen

! CONSTRAINTS

declarations

Constraint 5.1 : array(Ship) of linctr

Constraint 5.2 : array(Ship) of linctr

Constraint 5.3 : array(Ship,Trade,Voyage) of linctr

Constraint 5.4 : array(Trade,Voyage) of linctr

Constraint 5.5 : array(Trade,Voyage) of linctr

Constraint 5.6 : array(Trade) of linctr

Constraint 5.7 : array(Trade,Voyage) of linctr

Constraint 5.8 : array(Trade,Voyage) of linctr

Constraint 5.9 : array(Trade,Voyage) of linctr

Constraint 5.10 : array(Trade,Voyage) of linctr

Constraint 5.11 : array(Trade,Voyage) of linctr

Constraint 5.12 : array(Trade,Voyage) of linctr

Constraint 5.13 : array(Trade,Voyage) of linctr

Constraint 5.14 : array(Ship,Trade,Voyage,Speed) of linctr

Constraint 5.15 : array(Ship,Trade,Voyage,Trade,Voyage,Speed) of linctr

Constraint 5.16 : array(Ship) of linctr

Constraint 5.17 : array(Trade,Voyage) of linctr

Constraint 5.18 : array(Trade,Voyage,Trade,Voyage) of linctr

Constraint 5.19 : array(Trade,Voyage,Trade,Voyage) of linctr

Constraint 5.20 : array(Trade,Voyage,Trade,Voyage) of linctr

Constraint 5.21 : array(Trade,Voyage,Trade,Voyage) of linctr

Constraint 5.22 : array(Trade,Voyage,Trade,Voyage) of linctr

end-declarations

!Flow constraints:

!Every ship is required to leave its start position:

forall(vv in Ship) do

Constraint 5.1(vv) :=

x od(vv) + sum(rr in Trade, ii in Voyage, kk in Speed |

ii<=NumVoyages(rr)) x o(vv,rr,ii,kk) = 1

end-do

!Every ship is required to reach its destination node:

forall(vv in Ship) do

Constraint 5.2(vv) :=

x od(vv) + sum(rr in Trade, ii in Voyage, kk in Speed |

ii<=NumVoyages(rr)) x d(vv,rr,ii,kk) = 1

end-do



Fleet Deployment Optimization in Liner Shipping 65

!Node balance for every voyage node:

forall(vv in Ship, rr in Trade, ii in Voyage | ii <= NumVoyages(rr)) do

Constraint 5.3(vv,rr,ii) :=

sum(kk in Speed) x o(vv,rr,ii,kk) + sum(pp in Trade, jj in Voyage,

kk in Speed | jj<=NumVoyages(pp))(x vripjk(vv,pp,jj,rr,ii,kk)) =

sum(kk in Speed) x d(vv,rr,ii,kk) + sum(pp in Trade, jj in Voyage,

kk in Speed | jj<=NumVoyages(pp))(x vripjk(vv,rr,ii,pp,jj,kk))

end-do

!Quantity constraints:

!A ship can not accept more cargo than its capacity:

forall(rr in Trade, ii in Voyage | ii <= NumVoyages(rr)) do

Constraint 5.4(rr,ii) :=

q ri(rr,ii)+qS ri(rr,ii) <= sum(vv in Ship)(ShipCapacity(vv)*

(sum(pp in Trade,jj in Voyage,kk in Speed | jj<=NumVoyages(pp))

(x vripjk(vv,rr,ii,pp,jj,kk)) + sum(kk in Speed)(x d(vv,rr,ii,kk)))) +

SpotShipCapacity*s ri(rr,ii)

end-do

!A ship can not accept more cargo than currently available in inventory:

forall(rr in Trade, ii in Voyage | ii <= NumVoyages(rr)) do

Constraint 5.5(rr,ii) :=

q ri(rr,ii) <= l ri(rr,ii)

end-do

!The contractual demand needs to be satisfied:

forall(rr in Trade) do

Constraint 5.6(rr) :=

sum(ii in Voyage | ii<=NumVoyages(rr))(q ri(rr,ii)) = Demand(rr)

end-do

!Voyage completion constraints:

!One voyage can be serviced one time maximum:

forall(rr in Trade, ii in Voyage | ii <= NumVoyages(rr)) do

Constraint 5.7(rr,ii) :=

sum(vv in Ship, kk in Speed)(x o(vv,rr,ii,kk)) +

sum(vv in Ship, pp in Trade, jj in Voyage, kk in Speed |

jj<=NumVoyages(pp)) (x vripjk(vv,pp,jj,rr,ii,kk)) + s ri(rr,ii)<= 1

end-do



66 Sondre Morten Steen

!To ensure that if voyage(s) are skipped on a trade, it is the last one(s):

forall(rr in Trade, ii in Voyage | ii <= NumVoyages(rr)-1) do

Constraint 5.8(rr,ii) :=

sum(vv in Ship, kk in Speed)(x o(vv,rr,ii,kk)) +

sum(vv in Ship, pp in Trade, jj in Voyage, kk in Speed |

jj<=NumVoyages(pp))(x vripjk(vv,pp,jj,rr,ii,kk)) + s ri(rr,ii)>=

sum(vv in Ship, kk in Speed)(x o(vv,rr,ii+1,kk)) +

sum(vv in Ship, pp in Trade, jj in Voyage, kk in Speed |

jj<=NumVoyages(pp))(x vripjk(vv,pp,jj,rr,ii+1,kk)) + s ri(rr,ii+1)

end-do

!Harbor inventory constraints:

!The cargo available for a voyage:

forall(rr in Trade, ii in Voyage | ii <= NumVoyages(rr)) do

Constraint 5.9(rr,ii) :=

l ri(rr,ii) = InitialInventory(InventoryForTrade(rr)) +

ProductionRate(InventoryForTrade(rr))*t ri(rr,ii) -

sum(jj in 1..(ii-1))(q ri(rr,jj)) -

sum(pp in 1..NumTradesWithSameInventory(rr) |

NumTradesWithSameInventory(pp)>0,jj in 1..NumVoyages(

TradesWithCommonInventory(rr,pp)) | jj<=

NumVoyages(TradesWithCommonInventory(rr,pp)))

(q ripj(rr,ii,TradesWithCommonInventory(rr,pp),jj))

end-do

!The cargo available must be within limits before and after each voyage:

forall(rr in Trade, ii in Voyage | ii <= NumVoyages(rr)) do

Constraint 5.10(rr,ii) :=

l ri(rr,ii) <= InventoryLimit Max(InventoryForTrade(rr))

end-do

forall(rr in Trade, ii in Voyage | ii <= NumVoyages(rr)) do

Constraint 5.11(rr,ii) :=

l ri(rr,ii) - q ri(rr,ii) >= InventoryLimit Min(InventoryForTrade(rr))

end-do

!q ripj equals q ri if (rr,ii) is performed after (pp,jj) and 0 otherwise:

forall(rr in Trade,ii in Voyage, pp in Trade, jj in Voyage |

ii<=NumVoyages(rr) and jj <= NumVoyages(pp)) do

Constraint 5.12(rr,ii,pp,jj) :=

q ripj(rr,ii,pp,jj) <= q ri(pp,jj)

end-do

forall(rr in Trade,ii in Voyage, pp in Trade, jj in Voyage |

ii<=NumVoyages(rr) and jj <= NumVoyages(pp)) do

Constraint 5.13(rr,ii,pp,jj) :=

q ripj(rr,ii,pp,jj) <= MaxCapacity*y ripj(rr,ii,pp,jj)

end-do



Fleet Deployment Optimization in Liner Shipping 67

forall(rr in Trade,ii in Voyage, pp in Trade, jj in Voyage |

ii<=NumVoyages(rr) and jj <= NumVoyages(pp)) do

Constraint 5.14(rr,ii,pp,jj) :=

q ripj(rr,ii,pp,jj) >= q ri(pp,jj) - MaxCapacity*(1-y ripj(rr,ii,pp,jj))

end-do

!Setting y ripj to 1 if (rr,ii) is performed after (pp,jj) and 0 otherwise:

forall(rr in Trade,ii in Voyage, pp in Trade, jj in Voyage |

ii<=NumVoyages(rr) and jj <= NumVoyages(pp)and not (rr=pp and jj=ii) ) do

Constraint 5.15(rr,ii,pp,jj) :=

t ri(rr,ii) - t ri(pp,jj) >= EndTime*(y ripj(rr,ii,pp,jj)-1)

end-do

forall(rr in Trade,ii in Voyage, pp in Trade, jj in Voyage |

ii<=NumVoyages(rr) and jj <= NumVoyages(pp)and not (rr=pp and jj=ii) ) do

Constraint 5.16(rr,ii,pp,jj) :=

t ri(pp,jj) - t ri(rr,ii) >= -EndTime*y ripj(rr,ii,pp,jj)

end-do

!Time constraints:

!Voyages need to be fairly evenly spread and serviced in order:

forall(rr in Trade, ii in Voyage | ii <= NumVoyages(rr) and ii > 1) do

Constraint 5.17(rr,ii) :=

t ri(rr,ii) >= t ri(rr,ii-1) + Spread(rr)

end-do

!A ship cannot start its first voyage before reaching it from the start:

forall(vv in Ship, rr in Trade, ii in Voyage,

kk in Speed | ii <= NumVoyages(rr)) do

Constraint 5.18(vv,rr,ii,kk) :=

t o(vv) + BallastTimeStart(vv,rr,kk) - t ri(rr,ii) <=

(ShipStartTime(vv) + BallastTimeStart(vv,rr,kk))*(1-x o(vv,rr,ii,kk))

end-do

!A ship cannot start its next journey before the previous is completed:

forall(vv in Ship, rr in Trade, ii in Voyage, pp in Trade, jj in Voyage,

kk in Speed | ii <= NumVoyages(rr) and jj <= NumVoyages(pp) ) do

Constraint 5.19(vv,rr,ii,pp,jj,kk) :=

t ri(rr,ii)+VoyageTime(vv,rr,kk)+BallastTime(vv,rr,pp,kk)-t ri(pp,jj)<=

(EndTime - ShipStartTime(vv)*(1-x vripjk(vv,rr,ii,pp,jj,kk))

end-do

!A ship cannot leave its start position before it is available:

forall(vv in Ship) do

Constraint 5.20(vv) :=

t o(vv) >= ShipStartTime(vv)

end-do



68 Sondre Morten Steen

!All voyages must be completed within the planning period:

forall(rr in Trade, ii in Voyage | ii <= NumVoyages(rr)) do

Constraint 5.21(rr,ii) :=

t ri(rr,ii) <= EndTime

end-do

!Spot market constraints:

!A ship has an upper limit on quantity of spot cargo:

forall(rr in Trade, ii in Voyage | ii <= NumVoyages(rr)) do

Constraint 5.22(rr,ii) :=

qS ri(rr,ii)<=SpotCargoAvailable Max(rr)

end-do

!*************************************************************************

!The following constraints are added when introducing time windows:

!Time window constraints:

forall(rr in Trade, ii in Voyage | ii<=NumVoyages(rr)) do

Constraint TW min(rr,ii) :=

t ri(rr,ii)>=TW min(rr,ii)

end-do

forall(rr in Trade, ii in Voyage | ii<=NumVoyages(rr)) do

Constraint TW max(rr,ii) :=

t ri(rr,ii)<=TW max(rr,ii)

end-do

!*************************************************************************

! OBJECTIVE FUNCTION

declarations

Cost : linctr

end-declarations

Cost:=

sum(vv in Ship,rr in Trade,ii in Voyage,kk in Speed | ii<=NumVoyages(rr))

(BallastCostStart(vv,rr,kk)*x o(vv,rr,ii,kk)) +

sum(vv in Ship,rr in Trade,ii in Voyage, pp in Trade,jj in Voyage,

kk in Speed | ii<=NumVoyages(rr) and jj<=NumVoyages(pp))

((BallastCost(vv,rr,pp,kk) + VoyageCost(vv,rr,kk)) *

x vripjk(vv,rr,ii,pp,jj,kk)) +

sum(vv in Ship,rr in Trade,ii in Voyage,kk in Speed | ii<=NumVoyages(rr))

(VoyageCost(vv,rr,kk) * x d(vv,rr,ii,kk)) +

sum(rr in Trade,ii in Voyage | ii<=NumVoyages(rr))

(SpotVoyageCost(rr) * s ri(rr,ii)) -

sum(rr in Trade,ii in Voyage | ii<=NumVoyages(rr))

(SpotCargoUnitRevenue(rr) * qS ri(rr,ii))

minimize (Cost )



Fleet Deployment Optimization in Liner Shipping 69

declarations

End_time : real

end-declarations

End_time := gettime

!Write solution to file

declarations

ObjectiveValue : real

BestBound : real

Gap : real

CurrentTime : string

CurrentDate : string

SolutionTime : real

TotalNumberOfVoyages : integer

end-declarations

ObjectiveValue := getobjval

BestBound := getparam(’XPRS_bestbound’)

if(ObjectiveValue<>0) then

Gap := (1-BestBound/ObjectiveValue)*100 !%

else Gap := 0

end-if

CurrentTime := getparam(’parser time’)

CurrentDate := getparam(’parser date’)

SolutionTime := End time-Start time

TotalNumberOfVoyages:=0

forall(rr in Trade) do

TotalNumberOfVoyages += NumVoyages(rr)

end-do

initializations to ResultsXLSX

DataFile as ’Inputfile’

CurrentDate as ’CurrentDate’

CurrentTime as ’CurrentTime’

SolutionTime as ’SolutionTime’

ObjectiveValue as ’ObjectiveValue’

BestBound as ’BestBound’

Gap as ’Gap’

NumVessels as ’Vessels’

NumTrades as ’Trades’

NumStocks as ’Stocks’

TotalNumberOfVoyages as ’TotalNumberOfVoyages’

EndTime as ’EndTime’

end-initializations



70 Sondre Morten Steen

fopen(ResultsTXT,F OUTPUT)

!Write running data

writeln("Inputfile: "+DataFile)

writeln("Date and time: "+CurrentDate+" "+CurrentTime); writeln("")

!Write solutions to output

writeln("Total cost: "+ getobjval)

writeln("Best bound: "+ BestBound)

writeln("Gap: "+Gap)

writeln("Solution time: "+SolutionTime+"s")

writeln("")

writeln("End time: "+EndTime)

writeln("Total number of voyages: "+TotalNumberOfVoyages)

forall(rr in Trade) do

writeln("Number of voyages on Trade "+rr+": "+NumVoyages(rr))

end-do

! FUNCTIONS

!Returns the largest number of voyages in any trade:

public function findMaxNumVoyages : integer

declarations

maxValue : integer

end-declarations

maxValue := 0

forall(rr in Trade) do

if NumVoyages(rr) > maxValue then

maxValue := NumVoyages(rr)

end-if

end-do

returned := maxValue

end-function

public function findMaxNumTradesWithSameInventory : integer

declarations

maxValue : integer

end-declarations

maxValue := 0

forall(rr in Trade) do

if NumTradesWithSameInventory(rr) > maxValue then

maxValue := NumTradesWithSameInventory(rr)

end-if

end-do

returned := maxValue

end-function



Fleet Deployment Optimization in Liner Shipping 71

public function findMaxCapacity : integer

declarations

maxValue : integer

end-declarations

maxValue := 0

forall(vv in Ship) do

if ShipCapacity(vv) > maxValue then

maxValue := ShipCapacity(vv)

end-if

end-do

returned := maxValue

end-function

end-model


	Title Page
	masteroppgave.pdf

