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Sammendrag:

Elektrisitetspris og produksjonsvolum bestemmer inntekten til en vannkraftprodusent. Variasjoner i
innstremning til vannreservoarene og hgy prisvolatilitet resulterer i signifikant inntektsusikkerhet. En
copula-basert Monte Carlo simulering blir brukt til & koble pris og produksjonsvolum for & finne optimale
hedgingnivaer gjennom minimering av risikomalene; varians, hegde effektivitet, cash flow at risk og
betinget cash flow at risk. Alle risikomal gir optimale hedgingniva i intervallet 35-60 % av forventet
produksjon. Den starste risikoreduksjonen er oppnadd ved a bruke forward-kontrakter med lang
forfallstid, men pa bekostning av en lav risikopremie. Futures- og forward-kontrakter med kort tid til
forfall gir kun en marginal risikoreduksjon, men apner muligheten for & oppna gunstige risikopremier.
Disse resultatene understreker ngdvendigheten av a skille bruken av derivatkontrakter til spekulasjons- og
sikringsformal gjennom posisjoner i henholdsvis kortsiktige- og langsiktige kontrakter.






Toward hedge ratios for hydropower
production

Master thesis

Audun Nordtveit
Kim Thomassen Watle

Abstract:

The electricity price and production volume determine the revenue of a hydropower producer.
Inflow variations to hydro reservoirs and high price volatility result in significant cash flow
uncertainty. A copula-based Monte Carlo model is used to relate price and production volume,
and to find optimal hedge ratios through minimization of risk measures such as variance,
hedge effectiveness, cash flow at risk and conditional cash flow at risk. All risk measures argue
for an optimal hedge ratio between 35 and 60% of expected production. The highest risk
reduction is achieved by the use of forward contracts with long time to maturity, but at the
expense of a low risk premium. Conversely, short-term futures and forwards only provide
marginal risk reduction, but can yield attractive positive risk premiums. These findings
underline the importance of distinguishing the use of derivative contracts for speculation and
hedging purposes, through positions in short-term and long-term contracts respectively.
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1 Introduction

The deregulation of the Nordic electricity market in the 1990’s and the establishment of
a power exchange, known as Nord Pool, made hydropower producers more responsible
for their own profitability. Previously, the price had been set by the regulatory authority
and the new competitive market structure imposed additional price risk for the market
participants. Besides, producers are confronted with production volume risk caused by
inflow uncertainties to their water reservoirs. Combined, these two risk factors cause
uncertainty in a hydropower company’s cash flow. To maintain profit levels, producers
are motivated to limit risk through hedging. Hydropower producers in the Nordic power
market can use financial derivatives to handle price risk. However, there is no market for
weather derivatives which allows them to cope with inflow uncertainty, and hence produc-
tion volume risk. As the hedging strategy directly affects the cash flow of a hydropower
company, it is of interest to examine how different hedge ratios and term structures of
derivative contracts contribute to risk reduction. These topics are treated in depth in
this master thesis.

A popular approach to risk management among Norwegian hydropower producers is
the EMPS-model developed by [Wolfgang et al| (2009), which is an optimization model
that can provide prognoses for production and spot prices. Based on this model, it is
possible to generate price and production scenarios and thereby decide how to optimally
hedge production in order to minimize risk. In this master thesis a copula approach
to link price and production will be considered. Copula is a statistical tool which has
recently received much attention in the financial literature. It is interesting to extend the
copula approach from its traditional financial applications to commodity markets in an
attempt to relate price and production. In addition, it can be of interest for a hydropower
producer to have an alternative financial approach to the traditional optimization method
for risk management purposes.

An overall method of how to approach the problem of finding optimal hedge ratios
is useful. [Paravan et al. (2004) suggest dividing the risk management process into three
steps; 1) identification of risk, 2) measurement of risk and 3) management of risk. Numer-
ous risks are present in the electricity market, and for a hydropower producer price and
inflow uncertainty have already been identified as the major risks (Fleten et al., |2012).
Price and production determine the hydropower producers’ cash flow and fluctuations
in these factors create uncertainty in future revenue expectation. Price risk stems from
variations in the electricity spot price and is essential to include in risk management due
to the extreme volatility. Variation in precipitation results in uncertainty in the inflow
to water reservoirs throughout the year. Hydropower production depends on inflow to
reservoirs, hydro balance, expectations about future precipitation and weather forecasts.
With low water reservoir levels and low inflow, producers are reluctant to increase their
production volume despite high market prices. Thus, inflow variations result in uncer-
tainty in production volume and future revenue of hydropower companies (Fleten et al.,
2010).

It is essential to measure risks in order to judge the influence of the risk factors and
how uncertainties can be reduced through risk management. Various risk measures are
used to estimate risk, and the methods often detect different aspects of the encountered
uncertainties. The statement in Paravan et al.| (2004): “Risk is too complex to be pre-
sented by only one number” also suggest that it might be desirable to have several different
measures for risk. This master thesis will employ variance in cash flow, hedge effective-



ness, cash flow at risk (CFaR) and conditional cash flow at risk (CCFaR) to evaluate risk.
Variance in revenue as a risk measure is easy to implement and an approximate hedging
level can be obtained by minimization. A comprehensible reference hedging level can
therefore quickly be calculated. The hedging effectiveness measure developed in [Edering-
ton (1979) is used to evaluate the achieved variance reduction in cash flow by comparing
the variance of a hedged power portfolio with that of an unhedged position. CFaR and
CCFaR are closely related to the Value at Risk framework, and are used to measure
the downside risk in cash flow distributions. These risk measures give different results
when it comes to optimal hedging strategies and optimal hedge ratios for hydropower
producers. Companies must therefore consider several risk measures and the deviations
between them in order to take well-considered decisions in their risk management.

Once risks are identified and measured, steps to reduce these to a desirable level should
be taken. According to |Stulz (1996)) risk management theory suggests “that some firms
should hedge all risks, that other firms should not worry about risk at all, and finally, that
some firms should worry only about some kinds of risks”. He states that a company’s
motivation for hedging risk is to create benefits, such as reduced bankruptcy and distress
costs, decreased expected tax payments, lowered expected payments to stakeholders and
costs of raising capital. It must also be noted that risk reduction implies a decrease
in return. A hydropower producer must therefore evaluate how hedging affects revenue
before they launch a risk management program. Risk management in Nordic hydropower
production implies hedging in financial derivatives with the spot price as the underlying
variable. Futures and forwards are the most liquid derivatives with several maturity
times available. The delivery period of these contracts may vary, and the maturity will
refer to the last day in the delivery period of futures and forwards in this master thesis.
These contracts delivery period can be compared to financial swaps and swaps refer to
electricity futures and forward contracts in the rest of this thesis. The system spot price
is the underlying electricity price of the swaps, and in this thesis it is assumed that the
producer also receives the system spot price for its production.

This master thesis proceeds along the following lines; Section [2] treats more thoroughly
how risks faced by hydropower producers can be measured, managed and modeled. In
Section [3| the hedge ratios obtained from historical price and production data are consid-
ered. The derivation of the copula-based Monte Carlo model is explained in Section [}
Hedge ratio results from the simulation for various risk measures are then obtained and
discussed in Section [5] Finally, Section [6] concludes.

2 Literature

Price and production volume are identified to be the main risk factors faced by hy-
dropower producers. Measurement and management of these risks are first discussed.
Subsequently, important elements in hedging decisions such as taxation questions and
risk premium are treated. Finally, the copula framework used to connect the two identi-
fied risk factors is presented.

2.1 Measuring risks faced by hydropower producers
Variance in return, Value at Risk (VaR) and Conditional Value at Risk (CVaR) are risk

measures commonly used by financial companies, but have also been introduced in non-
financial firms and in the commodity literature. These risk measures are often used to
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Figure 1: Illustration of standard deviation in cash flow, CFaR and CCFaR. PDF(cash
flow) represents the probability density function of a cash flow distribution. From the
figure it appears that tail events affect standard deviation, CFaR and CCFaR differently.
Long, fat tails will not affect the standard deviation a lot, but the CFaR and especially
the CCFaR will take much lower values for these extreme scenarios. CFaR and CCFaR
are thus good measures for the downside risk.

evaluate and find optimal hedging strategies, conditioning on which derivative contracts
to invest in. |Fleten et al|(2010) consider a hydropower producer and use VaR, CVaR and
standard deviation of the producer’s revenue as risk measures to obtain optimal hedging
positions. VaR is also used as a risk measure in |Vehvildinen and Keppol (2003) to find
a producer’s optimal power portfolio. |[Nasakkala and Keppo| (2005) propose a mean-
variance electricity portfolio model, which can be applied by both electricity consumers
and suppliers, to find the optimal hedging level.

The variance approach is relatively easy to implement in a model where a hydropower
producer’s cash flow volatility depends on the price risk and production uncertainty. Ed-
erington’s hedging effectiveness measure, e defined in (1)), can be used for a comprehensive
comparison of the variance reduction achieved in hedged power portfolios with different
hedge ratios to the variance of an unhedged portfolio (Ederington, 1979).

. Var(U) —Var(H) ] Var(H)

Var(U) B W(U) (1)

In (1), Var(U) and Var(H) is the variance of the unhedged and hedged positions re-
spectively. The Ederington hedging effectiveness measure gives the percentage reduction
in variance achieved by the hedged portfolio. One shortcoming of the variance risk mea-
sure is that it may give misleading results for asymmetrical and non-normal distributions
which are common in power portfolios (Paravan et al. 2004). This results in higher
possibilities of extreme undesirable outcomes in the cash flow.



CFaR and CCFaR are based on the VaR framework and measure the downside risk
in the cash flow. They may therefore be better suited than variance to describe risk for
asymmetrical distributions. C'FaR,, is defined as the highest possible cash flow value, 7,
given a confidence level, a, as represented in . CFaR and CCFaR are illustrated in

Figll]

a = Prob(m < CFaR,), (2)

Standard values of acceptable cash flow threshold values are o = 1%, 5% or 10%. The
CFaR, represents the threshold cash flow value such that a% of possible cash flow
outcomes over a given time horizon are equal or below this value. The choice of the
threshold value, «, reflects the risk aversion of a company. By reducing « a firm is more
reluctant to accept uncertainty in its cash flow. The appropriate a value for a hydropower
producer will be elaborated further in Section[5.4] CCFaR is used to measure the expected
value of the cash flow when it is known to be equal or lower than the C' FaR,, value. The
definition of CCFaR is given in (3).

CCFaR, = E[r|r < CFaR,)]. (3)

2.2 Managing risks faced by hydropower producers

The system spot price at Nord Pool is the price obtained in a supply-demand equilibrium
in the market without considering transmission grid congestions and capacity constraints.
Transmission bottlenecks will lead to different local area market prices. Hedging price risk
by using futures is a well discussed topic in the literature (Working;, 1953, 1962; Johnson,
1960; |[Ederington, 1979). In addition to futures, a hydropower producer can use several
other derivative contracts to hedge the price risk. For hydropower companies, hedging
consists of selling futures and forward contracts, contracts for difference (CfDs) and/or
options in the financial derivative market, the Eltermin market, at Nord Pool to secure
future prices. Derivative products can also be used to speculate in the price movements,
by inclusion of the companies’ own market view, but such strategies are not treated here.

Futures and forwards in the Nordic electricity market differ from the contracts in the
financial market, since they are delivered over a period instead of on a specific day. These
power derivatives are therefore comparable to financial swaps (Benth and Koekebakker,
2008). Both futures and forwards traded at the Eltermin market are standardized con-
tracts with denomination in EUR per MWh, and the system spot price is the underlying
of these contracts. Futures contracts consist of daily and weekly agreements and are
rolling contracts for the next 6 weeks (Nord Pool, 2010). They are marked-to-market
with daily settlement of the change in the market price in the trading period. The dif-
ference between the price on the last trading day, called closing price, and the system
spot price is used to calculate the settlements in the delivery period. Forward contracts
are settled in the same way as futures, but have no marked-to-market settlement in the
trading period. Profits/losses are accumulated in the trading period and realized when
the delivery period ends. Due to no margin requirements prior to delivery, the liquidity
of these long-term contracts is higher than the liquidity of futures (Botterud et al., [2010)).
Forward contracts have monthly, quarterly and yearly delivery periods.

CfDs are the third type of derivative contracts traded at Nord Pool. These agree-
ments are used to hedge the price differences between local areas and the system spot



price caused by congestions in the transmission grid. A hydropower producer sells the
electricity for the local area price, which not necessarily equals the system spot price.
Thus hedging with just swaps will not eliminate all price risk. By using CfDs in com-
bination with swaps it is possible to create a perfect price hedge. The liquidity of these
contracts is however low and only traded for five of the thirteen local areas in the Nordic
power market (Nord Pool, 2012). Options available at Nord Pool are European-style calls
and puts with quarterly and annual forward contracts as the underlying. These contracts
are useful because they offer several strategies to hedge variation in prices (Nord Pool,
2010). Nevertheless, options are not widely traded and may be expensive to use in hedg-
ing policies due to high transactions costs. For a more thorough description of different
derivative instruments used in electricity risk management see |Deng and Oren| (2006)).

Sanda et al| (2011) analyzed the hedging policies of twelve different Norwegian hy-
dropower firms. According to their study futures and forward contracts have the highest
traded volume and are the most commonly used hedging derivatives. These findings and
the low liquidity in both CfDs and options argue for the consideration of only swaps for
hedging decisions in this master thesis. Still, these products do not necessarily give a
perfect price hedge alone.

2.3 Taxation influences the hedging decision of a hydropower
producer

Hydropower producers in Norway are subjected to four different taxes; income tax, re-
source rent tax, natural resource tax and property tax. Among these four taxes, only the
resource rent tax is directly determined by the spot price. As a result, the resource rent
tax may influence the hedging strategy of a producer since deviations between the spot
price and the hedged price are transformed into a relative tax gain or loss. The resource
rent tax is calculated from the power plants’ production sales value individually, where
operating costs, concession costs, property tax, depreciation costs and a non-taxed rev-
enue are deduced from the calculated revenue. For new power plants a negative resource
rent tax corresponding to the construction costs can be carried forward until the revenues
of the plant have offset the investment. In the period where the resource rent tax is neg-
ative the hydropower producer pays no resource rent tax (Skatteetaten, 2012). In this
thesis it is assumed that the hydropower producer’s power plants are fully in resource
rent position and the producer thereby has to pay 30% resource rent tax on spot price
sales value (Regjeringen|, 2012)).

As the resource rent tax is based on spot prices, a producer face risks due to possible
deviations between the realized hedged price and the spot. If the hedged price is above
the spot price it will result in a relatively low resource rent tax and vice versa. In the
extreme case, a hedged hydropower producer might have to pay more than 100% of total
sales value in tax expenses if it is 100% hedged and it’s realized forward price is less than
41.7% of the spot price. The derivation of the total tax paid by a hydropower producer
is found in Appendix [A.1] This peculiar situation can occur since the company will pay
a resource rent tax corresponding to 30% of the spot price, while it receives the hedged
price for its production. If the hedged price is much lower than the spot price and the
company has a high hedge ratio, its revenue after tax will be low due to the unfavorable
hedge. In addition the company’s resource rent tax expense will be high as a result of the
spot price. The resource rent tax as a percentage of the revenue is therefore dependent
on the hedging performance and the hedge ratio of the company.



Other taxes are less sensitive to hedging decisions in the sense that they are either
fixed, as the natural resource tax of 13NOK/MWh of the average production over the last
seven years, or calculated as a percentage of the revenue such as the income tax and the
property tax of 28% and 0.2-0.7% respectively. Since the property tax is deductible from
the resource rent tax, the total tax paid by an unhedged producer is 28%+30%=58% of
the sales value when costs are ignored. For a hedged producer this number is somewhat
different dependent on its hedging performance and hedging level.

A cash flow after tax portfolio model for Norwegian hydropower producers, which
utilizes swaps to hedge price risk and includes taxation issues, can be developed to find
optimal hedge ratios. The revenue after tax of the hedged portfolio, II, is defined in (4)),
but neglects the variable and fixed costs faced by hydropower producers. The transaction
and margin costs in trading swaps are also ignored. Derivation of to is presented

in Appendix

=[P —-HP)S+ HPF|(1—1Tg)— PSTgg, (4)

In (4)), P represents the actual production volume, P the expected production volume,
S the spot price, F' the swap price, H the hedge ratio, T and Trgr are corporate and
resource rent tax respectively.

The variance in profit after tax of a hedged portfolio is given by (5]). The Var(F)
term is set equal to zero since the swap price is locked when a producer enter a swap
agreement.

Var[ll] =(1 — Te)?[Var(PS) + (HP)*Var(S))
+ (Trr)*Var(PS)
+2(1 — Te)Trr[HPCov(PS, S) — Var(PS)]
—2(1 = Tg)*HPCou(PS, S) (5)

The risk reduction achieved in variance in revenue after tax depends on the chosen hedge
ratio, H, of the individual hydropower producer. By minimizing with respect to H,
the optimal hedge ratio, H*, is obtained.

OVar(Il) 0
OH
. _ TRR COU(PS, S)
= B == ) Bvans) (6)

By assuming no uncertainty in the production volume, E[P] = P — Cov(PS,S) =
PVar(S), the hedge ratio expression in @ simplifies to (7).

. Trr
Taz—neutral — 1 - 1 — TC (7)

The hedge ratio H7,,_,cutra developed in @ states that hydropower producers should
hedge 58.3% of their expected production volume. Sanda et al.| (2011) derive the same



hedge ratio for a Norwegian hydropower producer, which means that 58.3% of expected
production must be sold in derivative contracts to obtain a fully hedged power portfolio.

One shortcoming with to @ is that the variance in swaps is set equal to zero,
thus neglecting the possible effect of these contracts’ term structure on the variance. To
deal with this shortcoming, one might generate price and production scenarios and use
directly to measure the risk in the resulting cash flow scenarios.

2.4 Effects of hedging strategies for hydropower producers

Norwegian hydropower producers experience a negative relationship between electricity
prices and production, and pay a resource rent tax on spot revenues. These factors reduce
and set an upper bound for the optimal hedging level well below 100%, as shown for the
tax-neutral portfolio in Section

Fleten et al.| (2010) argue that “the main reason for the negative correlation between
price and hydropower production in the Norwegian market is that the market is regional,
and 99% of the electricity production comes from hydropower”. The inflow to the water
reservoirs is the main factor determining the production volume, and reservoir inflow
depends on precipitation. Local precipitation is correlated with national precipitation
so periods with high water reservoir levels or water reservoir shortages often occur syn-
chronously for all hydropower companies in Norway (Fleten et al.l 2010). Dry and cold
or wet and warm periods often tend to coincide within the Nordic countries. Variation in
electricity consumption is conditioned on the residential heating in Norway. Consequently,
the demand for power by customers and production willingness among producers often
mismatch. Thus, price and production tend to be negatively correlated. The negative
correlation works as a natural hedge and decreases the hydropower producers’ variance
in revenue. Further, this limits their incentive to invest in derivative contracts to hedge
price risk.

Hydropower producers’ hedging policies vary with their risk aversion, with risk averse
producers hedging large parts of their expected production. Multiple optimization meth-
ods have been developed using both static and dynamic hedging approaches to investigate
different hedging strategies and find optimal hedge ratios. |[Fleten et al. (2010]) develop an
optimization model to examine the performance of static hedge positions for hydropower
producers. They find that the use of forwards to hedge price risk significantly reduces the
revenue risk with just a minor decrease in revenue. It is also shown that hedging costs
are higher when producers uses contracts with long time to maturity.

Sanda et al. (2011) find evidence of an extensive risk management practice among
Norwegian hydropower companies. An interesting discovery is that hedging reduces the
downside risk in cash flow, measured by CFaR, in ten out of twelve firms. Surprisingly,
derivative investments contribute significantly to the firms’ profit without any substantial
decrease in cash flow variance. This finding is explained by the prevalent use of selective
hedging, meaning incorporating own market views in hedging decisions.

2.5 Connection between electricity spot and swap prices

Electricity is a non-storable commodity, and therefore the usual cost-of-carry relationship
in finance is not applicable (Lucia and Schwartz, 2002; Bessembinder and Lemmon, 2002;
Longstaff and Wang, 2004; |Cartea and Villaplana) 2008). The risk premium approach
has emerged as a method to investigate the spot-forward price relationship. Fama and



French| (1987)), Longstaff and Wang| (2004) and [Adam and Fernando| (2006) define the
risk premium as in (g)),

R(t,T)=F(t,T) — E[S(T)] (8)

where F(t,T) is the forward price at time ¢ with delivery at time T', E;[S(T)] is the
expected electricity spot price at time 7" and R(¢,T) is the risk premium. According
to Longstaff and Wang (2004) the forward risk premium represents “the equilibrium
compensation for bearing the price and/or demand risk for the underlying commodity”.
The sign of the risk premium have been examined in both financial and commodity
markets. On one side, the classical literature represented by Keynes| (1930)) and Hicks
(1939) argue for a negative premium resulting from hedging-pressure effects. In their
view the expected spot prices should be higher than the forward prices in order to make
the buyer willing to take on the risk of the seller. Conversely, the more recent literature
treating this topic has shown that the risk premium sign does not need to be strictly
negative (Hirshleifer, |1990; Bessembinder and Lemmon), 2002; |Longstaff and Wangj, 2004)).
A motivation for including a risk premium approach in hedging strategy decisions is
to benefit from the possible positive risk premiums and hence the excess return such
contracts can provide (Adam and Fernando|, 2006). For a more thorough examination of
risk premiums in commodity markets see Fama and French| (1987)).

Bessembinder and Lemmon (2002)) develop an equilibrium spot-forward price model
dependent on the market dynamics present in the U.S. electricity markets. They inves-
tigate connection between spot and forward prices, forward risk premiums and optimal
hedging policies. Forward risk premiums vary with the mean and variance in demand,
and skewness and variance in the underlying spot price. The sign of the forward premium
dependent on the power producers’ and retailers’ net demand for different forward con-
tracts, thus forming a hedging pressure effect in the market. Retailers want to reduce the
possible losses due to increased prices from short-term price spikes. Conversely, producers
do not have the same incentive to hedge short-term contracts.

Botterud et al| (2002)) use the risk premium approach to examine the relationship
between the spot and futures prices in the Nordic electricity market from 1995 to 2001.
They explain the sign of the risk premium by the risk-aversion and flexibility of both buy-
ers and sellers. Hydropower producers are able to quickly regulate production, allowing
them to take advantage of the market price fluctuations by adjusting their generation.
The attractiveness of fixing the price by using futures for hedging all of the expected
production is therefore reduced. At the same time, the production flexibility enables
producers to profit from price peaks in the spot market. Contrarily, the demand side has
limited ability to adjust demand with respect to spot price changes. As a consequence
it may be attractive to fix the price for expected future demand in order to reduce the
negative effect of large price spikes. Botterud et al. (2002) find that futures prices on
average have been higher than spot prices in the period of 1995 to 2001, which according
to gives a positive risk premium and in this way contradicts the classical literature.
They pinpoint that the results should be treated with caution due to the limited data
available in the electricity market.

Lucia and Torrd| (2011) examine the sign and size of the risk premium in the Nordic
electricity market between 1998 and 2007. They find that risk premiums on average are
positive and vary throughout the year. Positive risk premiums are observed for contracts
in periods where demand is high, such as during autumn and winter. This result is in
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concordance with the equilibrium model of Bessembinder and Lemmon| (2002)). They also
find significant evidence of a structural break in the prediction power of this model in the
Nord Pool market after the winter 2002-2003.

2.6 Copula, a tool to link price and production

Correlation is a key factor in risk management as risk generally is the result of both
the variance of individual variables and their covariance. As an example the risk in a
portfolio of stocks is dependent on the individual variance of the shares, but also how
they tend to covariate. Analogously, most of the risk in the revenue of a hydropower
supplier stems from the individual risk of the price and the production volumes, and
how these covariate. Historically the most popular way to describe covariance between
two or more variables have been the Pearson product-moment correlation coefficient,
p, explained thoroughly in |Alexander| (2008a). This coefficient is a simple and exact
measure for covariance between elliptically distributed variables, but as distributions get
more non-normal, skewed, heavy-tailed and tail-dependent, the correlation coefficient
tend to underestimate risk (Embrechts et al., [2002).

The copula framework has grown more popular in recent years. Genest et al.| (2009))
show that from 2000 to 2005 the number of documents published on copula theory per
year increased by a factor of nine. According to their survey, finance is by far the field
where copulas have been applied most frequently, due to their advantages in modeling
non-normal returns and dependency between extreme values of assets.

Copulas represent a new way to describe the dependency structure of the covariance
between distributions and were introduced by |Sklar| (1959). He showed that every joint
distribution can be written as in (9) where C' is a copula, and Fy(zy),..., F,(z,) are
cumulative probabilities of the variables x1, ..., x,. The mostly used copulas are bivari-
ate, and a bivariate function must satisfy four properties to qualify as a two-dimensional
copula. These are listed in and explained thoroughly in |Alexander| (2008b).

F(xy,...,x,) = C(Fi(x1),..., Fu(xy,)) 9)

1
2
3
4

C:[0,1] x [0,1] — [0, 1]
C(u1,0) = C(0,uz) =0
C(u1,1) = uy and C(1,ug) = usy
C(v1,v9) — C(uy,ve) > Cluy,ug) — Clug, ug) ¥ ug, ug, vy, v9 € [0, 1],
with u; < wv; and uy < vy (10)

)
)
)
)

There exist a large number of functions C' defined in (@, satisfying the properties of
a bivariate copula listed in . These functions have different dependency structure,
and can therefore be adapted to various problems requiring a more flexible tool than the
linear correlation coefficient. Copula functions have parameters that need calibration to
provide an optimal fit to the data. The estimation of the copula parameters is usually
done by a maximum likelihood estimation of the joint distribution of the dependent
variables. Once the likelihood value is obtained, the best copula can be selected based
on an information criterion such as the Akaike information criterion (AIC) or Bayesian
information criterion (BIC). If the existing families of copulas provide an unsatisfying fit
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to the data an alternative approach could be to implement an empirical copula. |Alexander
(2008D)) presents a straightforward way to create the empirical copula following (L1)).
In C is the cumulative copula function, ¢ the density function, 7" the number of
observations and x and y are the two dependent variables. For a more thorough study of
the copula framework see [Trivedi and Zimmer (2005).

i _ Number of pairs (z,y) such that z < z() and y < y@
)= T

[T, if (2',97) is an element of the sample,

- { 0, otherwhise }

¢

N ~.

Y

S’%l

¢( (11)

)

el
ﬂ\Lu.

Following one obtains an empirical copula density function, ¢, and cumulative distri-
bution function, C, for the joint densities as illustrated in Tab. and Tab respectively.

Table 1: An example of the empirical copula density function, ¢, calculated from . The
first row and column are cumulative probabilities for the two dependent variables x and
y. The table illustrates the joint probability density function, and areas with many high
densities represent scenarios that are likely to occur. Conversely, areas with many zeros
represent unlikely situations.

F(x)/F(yy) 0 01 02 03 04 05 06 07 08 09 1
0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.1 0.000 0.009 0.015 0.009 0.009 0.015 0.012 0.006 0.009 0.006 0.009
0.2 0.000 0.006 0.021 0.000 0.003 0.009 0.018 0.009 0.009 0.006 0.015
0.3 0.000 0.012 0.018 0.009 0.006 0.003 0.015 0.012 0.003 0.009 0.006
0.4 0.000 0.009 0.018 0.003 0.003 0.018 0.006 0.003 0.012 0.015 0.021
0.5 0.000 0.003 0.006 0.015 0.006 0.015 0.009 0.021 0.009 0.009 0.009
0.6 0.000 0.003 0.006 0.009 0.006 0.015 0.003 0.012 0.015 0.009 0.012
0.7 0.000 0.006 0.009 0.021 0.015 0.009 0.006 0.012 0.012 0.018 0.009
0.8 0.000 0.012 0.012 0.009 0.006 0.006 0.012 0.009 0.012 0.012 0.009
0.9 0.000 0.009 0.003 0.009 0.009 0.018 0.012 0.009 0.009 0.012 0.012
1 0.000 0.003 0.021 0.012 0.015 0.012 0.009 0.015 0.006 0.015 0.000

Copulas have not yet been given much attention in the non-financial literature, and
the use of copulas in risk modeling for electricity suppliers in the Nordic power market
is not an exception. So far, copulas have mainly been applied to commodity markets
to determine the spark spread (Benth and Kettler, 2011). Still, there are several rea-
sons to believe that copulas will have the ability to describe the dependency structure
between price and production in a better way than a linear correlation coefficient. Risks
faced by hydropower producers have several characteristics in common with risks encoun-
tered in traditional financial applications. Firstly, electricity prices are far from normally
distributed. Secondly, one could expect a strong tail dependency between price and pro-
duction. High prices often occur during cold winters with high production despite low
production willingness due to low reservoir levels. Low prices are common during wet
periods where producers generate as much as they can to take off reservoir excess wa-
ter. Thus, a copula’s advantage in modeling non-normal distributions and dependency
between extreme values seems like a desirable feature in hydropower risk management.
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Table 2: An example of the empirical cumulative copula function, C. The first row and
column are cumulative probabilities for the two dependent variables = and y. Note that
C' is calculated by |11| and follows the conditions in

F(x)/F(y) 00 01 02 03 04 05 06 07 08 09 10

0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.1 0.00 0.01 0.02 0.03 0.04 0.06 0.07 0.07 0.08 0.09 0.10
0.2 0.00 0.01 0.05 0.06 0.07 0.09 0.12 0.14 0.16 0.17 0.20
0.3 0.00 0.03 0.08 0.10 0.12 0.14 0.19 0.21 0.23 0.25 0.30
0.4 0.00 0.04 0.11 0.13 0.15 0.19 0.24 0.27 030 0.34 040
0.5 0.00 0.04 0.12 0.15 0.18 024 030 0.35 0.39 043 0.50
0.6 0.00 0.04 0.12 0.17 0.20 0.28 0.34 0.40 0.46 0.51 0.60
0.7 0.00 0.05 0.14 0.20 0.25 0.33 0.40 048 0.54 0.62 0.70
0.8 0.00 0.06 0.16 0.24 0.29 038 046 0.54 0.62 0.70 0.80
0.9 0.00 0.07 0.17 0.26 032 043 052 0.61 0.70 0.79 0.90
1.0 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

3 Hedge ratios obtained from historical data

The purpose of this master thesis is to examine optimal swap hedging strategies for hy-
dropower producers to reduce risks. It is therefore of interest to investigate the historically
optimal hedge ratios. These historical hedging levels can be used as benchmarks for the
theoretically obtained hedge ratios from the model later in this thesis. Historical spot
and swap prices along with production volumes for a Norwegian hydropower producer are
considered from 2006 to 2010 on a weekly basis. Table [3| summarizes what are found to
be the optimal static hedge ratios and how to optimally invest in selected swap contracts
with one week, one month, one quarter and one year to delivery, in order to minimize
the risk in the 2006 to 2010 period. Variance is minimized, C FaR5y and CCFaRs5y are
maximized and compared with the natural hedge situation. The natural hedge is the
same as selling all production in the spot market. For the obtained hedge ratios, it is
assumed that a rolling investment in the upfront contract is taken. A 10% investment in
weekly contracts would therefore imply a sale of 10% of next week’s expected production
in weekly contracts each Friday from 2006 to 2010.

The first row in Tab 3| presents the expected cash flow of each strategy compared with
the natural hedge case. The cash flow of the unhedged scenario is therefore 100%. When
the other risk measures are considered a cash flow of 95.9%, 98.3% and 99.3% of the
unhedged return is obtained for minimum variance, maximum CFaRs5y and maximum
CCFaRsy respectively. As all expected cash flow-values for the risk measures are below
100% there are costs associated with hedging. Variance in expected revenue is illustrated
on the second row. As before, the minimized risk measures’ variance is compared with
the undhedged variance. The variance is thus reduced by hedging. Hedge effectiveness
illustrates the same as the variance, and represents the percentage decrease in variance of
each strategy compared to the undhedged case. In this way the sum of the variance and
hedge effectiveness row is 100% for each column. C'FaRsy and CC FaRjsy are maximized
on row four and five respectively, and the listed numbers illustrate the percentage of
the unhedged expected cash flow the CFaRsy% and CCFaRsy attain. For example, the
CFaRsy value of 44.6% for the natural hedge situation means that in 5% of the outcomes
the cash flow will be less or equal to 44.6% of the unhedged expected cash flow. The
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Table 3: Performance of several hedging strategies based on optimization of spot and
swap contract prices from 2006 to 2010. All numbers are in percent of the natural
hedge situation. Hedging reduce the expected cash flow for a hydropower producer, but
can provide risk protection observed by lower variance and higher hedge effectiveness,
CFaRsy and CCFaRsy. The optimal hedge ratio drops when measures that consider
tail events are considered.

Natural Minimum Maximum Maximum
hedge  variance CFaRsy CCFaRsy

Expected cash flow 100 95.9 98.3 99.3
Variance 100 62.2 68.9 78.9
Hedge Effectiveness - 37.8 31.1 21.1
CFaRsy, 44.6 42.9 49.7 48.3
CCFaRsy 38.5 33.1 40.3 40.5
Hedge Ratio (HR) - 47.5 28.0 15.9
% of HR in 1IWF - - - -
% of HR in 1MF - 57.9 48.1 42.3
% of HR in 1QF - 1.3 37.3 57.4
% of HR in 1YF - 40.8 14.7 0.2

higher this value is, the better, since it represent the worst case cash flow. CCFaRs5y
measure more extreme values than C'FaR5y, so the percentage numbers for CCFaR are
lower. As seen in the table hedging reduces downside risk. The hedge ratios, (HR),
in Tab[3| represent the percentage of the expected production a producer should hedge
to minimize the risk measure in question. It is specified how this hedging level should
be allocated between weekly, monthly, quarterly and yearly contracts. In this way the
four last rows sum to 100% for the different risk measures. The total investment in each
contract is therefore the suggested hedge ratio multiplied with the percentage of the hedge
in the contracts.

Examining TabJ3| one observes that hedging might reduce risks at the expense of a
slightly reduced cash flow. Conditioned on the considered risk measure, different optimal
hedge ratios are obtained. The more a risk measure considers tail-risk and extreme
values, the lower the optimal hedge ratio is. Finally, it seems undesirable to invest in
weekly swaps to eliminate risk. These results are not surprising as short-term swaps
are more correlated to spot prices than long-term swaps and will therefore eliminate less
risk. Also, it seems reasonable that risk measures that consider extreme events give lower
hedge ratios. A producer will as an example incur a great loss if it is highly hedged when
a price spike occurs. Although such events are rare, they will affect the C'FaRs5y and
even more the CCFaRsy but only have a marginal effect on the variance.

In this historical analysis weekly risk is considered. Natural seasonal cash flow differ-
ences, due to price and production differences between winter and summer months, are
attempted hedged away. The reason to consider weekly variations despite this obvious
drawback is the short, five year, time horizon of available swap data. For a hydropower
producer, annual cash flow fluctuations are of greater interest than weekly variations.
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However, it is meaningless to investigate risk measures such as C'FaR5y and CCFaRsy
in a data set consisting of five observations.

With the historical optimal hedge ratios in mind it is time to develop a model that
can provide data for a theoretical risk analysis.

4 Derivation of the copula-based Monte Carlo model

, Step1 |
Lo --
v
Production |[—> m———-
Empirical copula <-- Step2 |
Price (model 1) |—=»
Random Random
cumulative || cumulative <- _: Step 3 :
prob. Value || prob.value | | =----
production price
Copula-based Spot,
Monte Carlo futures Fabeiulotn
7’ <_ I
simulation Production forward ,_S_te_p_4_|
prices
(model 2)

Figure 2: An overview over the copula-based Monte Carlo model. Model 1 represents
the spot-price model of |Andresen and Sollie (2011]) which is used to generate spot prices.
Together with historical production, the spot prices are used to construct an empirical
copula. From the copula, a large sample of dependent cumulative probability values
for price and production is randomly generated. The cumulative probabilities are then
linked to production and spot/swaps numbers. To connect spot/swap prices a new model
is necessary since model 1, used for the input values, cannot be employed to estimate
swaps with the available data. The two factor model developed in [Lucia and Schwartz
(2002) is therefore used, and constitute model 2.

A challenge in financial risk management is how to cope with non-normality of the dis-
tributions of risky variables and their interdependency. As discussed in Section a
copula framework will be developed to deal with some of the shortcomings of existing
linear correlation models. Further, knowledge about the price-production dependency
structure can be valuable for hedging decisions in order to define adequate hedge ratios
and optimal use of the available derivative contracts.

To investigate and evaluate hedge ratios a copula-based Monte Carlo simulation ap-
proach is used to generate possible cash flow outcomes for a hydropower producer. Depen-
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dent electricity spot/swap prices, S/F, and production volumes, P, must be simulated
to obtain the cash flow outcomes, since these factors are the only dynamic variables in
the cash flow expression in (4)). Figure [2] illustrates how a large sample of dependent
prices and production volumes can be generated through a copula-based Monte Carlo
simulation. The copula-based Monte Carlo simulation will be described in four steps for
explanatory reasons. Firstly, the input variables, production and price (model 1), to the
empirical copula are treated in step 1. Then, in step 2, the construction of the empirical
copula is elaborated. Subsequently, step 3 explains the generation of correlated cumula-
tive probability values for price and production. Finally, the procedure of linking these

cumulative probabilities to production values, spot and swap prices is considered in step
4.

4.1 Production and price input to the empirical copula

This section will treat the input variables, price and production, to the copula and rep-
resents step 1 in Figl2l An empirical copula requires a large sample of correlated data
points to capture the existing dependency structure. Hence, long data series of price
and production are necessary. Figure |3 depicts the historical average weekly system spot

prices and average weekly production volumes for a Norwegian hydropower producer from
2000 to 2011.
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Figure 3: Time series of weekly historical system spot prices and production volumes from
2000 to 2011. Prices are obtained from Nord Pool’s ftp-server and production volumes
are received from a Norwegian hydropower producer. The figures reveal that neither
the price nor the production are normally distributed and both functions seem to be
extremely volatile and contain spikes.

As the electricity price dynamics have changed over the years, a modified and simpli-
fied model following the work of /Andresen and Sollie (2011]) has been selected to estimate
historical prices conserving the pricing dynamics observed today. Besides, this model en-
ables an estimation of electricity prices going further back than the available market spot
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Table 4: Descriptive statistics for weekly input variables to the modified spot price model
of |Andresen and Sollie| (2011)) spanning from 1986 to 2011 (2005-2011 for the dependent
variable S(t)).

Descriptive AHydro balance Average 12-month  Adjusted Spot prices
statistics (GWh) inflow (GWh) oil index (NOK/MWh)
Min -26.87 90991 2.24 100.1
Max 25.51 153902 16.53 1403.7
Avg -0.37 123471 6.21 334.7
Med 1.59 122222 4.98 307.2
St.dev. 9.84 13599 2.96 128.9
Skew -0.41 0.10 1.10 2.14
Ex. kurt -0.38 -0.57 0.26 11.25
JB 46.67 20.40 279 2524.7
Number of obs. 1357 1357 1357 418

prices, satisfying the need of long data series for the empirical copula construction. The
spot price model, model 1 in Fig., is defined in ([12)) with deviation from normal hydro
balance (Ap, ), 12-month accumulated inflow (/1257) and an inflation adjusted oil product
index (Oaq;.) as inputs. The data are obtained from the Norwegian Water Resources and
Energy Directorate (NVE), Nord Pool and Reuters EcoWin respectively. Nord Pool also
provided the spot prices used to calibrate this price model. To prevent estimated spot
prices to fall too low, the oil index is adjusted according to the consumer price index.
Seasonal load variations are also accounted for by inclusion of a sine function.

In(S(t)) =6o + 41 Sin(z—gt + ¢)

+ Bualmn, + Brlian + BoO agj. (12)

All data are collected on weekly basis and span from 1986 to 2011, except the spot
prices used for the 2005-2011 calibration period. In , the adjusted oil index and
spot prices are transformed by the natural logarithm. Tab[] summarizes the descriptive
data of the input variables. The data are observed to be non-normally distributed as the
normality Jarque-Bera test is rejected for all factors included in TabJd] with a p-value of
less than 0.001.

Estimated coefficient values, obtained from the least sum of squares approach, are
presented in TabJ5l All coefficients are significant. From the coefficient’s sign it is ap-
parent that a negative hydrobalance deviation, representing low reservoir levels, leads to
higher prices. Surprisingly, high yearly inflow has historically contributed to higher prices,
which contradicts common sense. The influence of this variable can hence be questioned.
However, as seen in the descriptive statistics, the product of the inflow-coefficient and
the range of the variable is only a third of the hydrobalance deviation effect, and it might
therefore work as a counterweight. Finally, fuel costs represented by an oil index are as
expected positively correlated to the spot price. Having the regression coefficients, weekly
time series of electricity spot prices can be generated. Electricity prices are generated
back to 1986, when the history of the underlying input variables ends.
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Table 5: Estimated coefficient values in . The estimates are obtained by regressing
Eq on historical weekly spot prices from 2005 to 2011. £, underlines the presence of
seasonal load variations. From [y and (o it appears that low reservoir levels and high
fuel prices contribute to higher spot prices. The inflow to the reservoirs,3;, seems to work
as a counterweight to the reservoir levels as it result in lower spot prices. All values are
significant. This model gives a R? of 0.58.

Coefficient  Value Stdev. t-value

Bo 2.64 0.22 12.5
B 0.10 1.55e-2 6.5
b 1.55 - -

B -3.7le-2  2.43e-3  -15.3
Br 1.18e-5  1.75e-6 6.7
Bo 0.67 5.09e-2  13.1
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(a) Autocorrelation plot of average weekly historical (b) Autocorrelation plot of average quarterly histor-
spot prices. ical spot prices.

Figure 4: Autocorrelation plots of historical spot prices from 2000 to 2011. Autocorrela-
tion of weekly data is strong and persistent for many weeks. The autocorrelation from
one quarter to the next is less prominent than for consecutive weeks, though the quarterly
autocorrelation is still existent. Quarterly data are better suited as input to the empirical
copula than weekly data.

The empirical copula requires a large number of data points to capture the depen-
dency structure of the input variables. However, for a hydropower producer the annual
variations in cash flow and hence the yearly dependency between the underlying vari-
ables is most interesting, since seasonal effects are expected and preferably should not
affect the dependency structure of the copula. Although a 26-year history of data is
estimated, yearly prices do not provide sufficient data points for a robust estimation. By
comparing the autocorrelation in price and production it is seen that the autocorrelation
is higher for prices than for the production. Therefore the prices must be considered in
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an autocorrelation analysis. Prices are highly autocorrelated, see Fig[dl which set a lower
bound to the frequency of the input price data. Autocorrelated input to an empirical
copula results in a dependency structure where some outcomes will have a much higher
probability than in reality, which is clearly an undesirable feature. Weekly data should
therefore be avoided as input to the empirical copula and one should strive to use low
frequency data to limit the negative effect of autocorrelation. If high frequency data
are selected, seasonality and autocorrelation will be problematic. Conversely, long-term
average will not permit a well fitted copula, due to the lack of data. For this reason,
quarterly data are selected as input to the copula. In this way, the autocorrelation of
the input price is reduced from the weekly resolution and a considerable number of data,
104 points, are used in the empirical copula calibration. Nevertheless, seasonal effects
will still be present, and result in more extreme variations in the output scenarios than
would have been the situation if annual data were used. To exemplify, the range of the
output scenarios is wider for seasonal than for yearly data since high production/prices
occurring during the winter can coexist with low production/prices from the summer.
This is a shortcoming of the model.

Table 6: Descriptive statistics for price output of the modified spot price model developed
in |Andresen and Sollie| (2011)) together with historical observed production volumes from
a Norwegian hydropower producer. The data set consists of 104 observations of quarterly
data. These data will be used as input to construct the empirical copula.

Price 13W Prod 13W
(NOK/MWh) (GWh/quarter)
Min 77.25 17.18
Max 624.43 57.23
Avg 212.64 34.35
Med 189.18 34.14
St.dev. 102.02 8.88
Skew 1.24 0.37
Ex. Kurt 1.85 -0.23
JB 41.41 2.59
Number of obs. 104 104

The modeled weekly prices are converted into quarterly data and paired with quarterly
historical production volumes for a Norwegian hydropower producer. Historical produc-
tion volumes are used and not production plans, as|[Sanda et al. (2011)) confirmed that
historical average production is more accurate for predicting production. Descriptive data
for the quarterly price and production used as input to the empirical copula is shown in
Tabl6] Comparing the modeled quarterly 1986-2011 price data in TabJ6] with the weekly
observed 2005-2011 price data in Tab] it appears that the average of the quarterly data
is lower than the weekly calibration data. The reason for this is the level of the input
variables to the model which resulted in lower prices from 1986 to 2005 than from 2005 to
2011, and the difference in price average is therefore not surprising. Figure. [5| illustrates
this trend well, with electricity prices being low until 2003 where they suddenly increased.
During the winter 2002-2003 there was a shock in the market and this may have shifted
the price level and price behavior (Lucia and Torrd, 2011). The estimated price-model
seems to capture this shift quite well. Also, the range of the quarterly data is narrower
than that of the weekly data as quarterly average reduce the magnitude of spikes. Still,
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Figure 5: An overview of the estimated spot prices from [12| and the actual realized spot
prices in the 1986-2011 and 2005-2011 period respectively. Prior to 2003, the estimated
prices were at a significant lower level than in the 2003-2011 period. This is due to the
level of the underlying variables to the price model. The price jump in the model bodes
well with the detected structural break in |Lucia and Torrd (2011]).

the minimum quarterly price is lower than the weekly price, and the minimum quarterly
price was thus realized prior to 2005. Finally, the Jarque-Bera test, JB, underlines the
non-normality of the input data, which further motivate the copula approach.

4.2 Construction of the empirical copula

With the input variables to the copula explained, the next step will be to create a copula
to relate the dependency between price and production and this constitutes step 2 in
FigP2]

There exist numerous predefined copula functions with different dependency struc-
tures between the variables of interest, such as the Clayton and Gumbel copula treated
in detail in Trivedi and Zimmer| (2005). As explained in Section [2.6| copulas have mainly
been applied to relate risks in stock portfolios, and a literature search for copulas applied
to track dependency between price and production for commodities has been without
success.
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Figure 6: Empirical copula based on average quarterly price and production data from
1986 to 2011. Note that the x- and y-axis represent the cumulative probability values of
the input price and production distributions. The level curves could have been smoother

if a larger data sample were used to generate the copula. Alternatively, a possibility could
be to smooth the data points in the empirical copula.
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(a) Cumulative distribution of the electricity price. (b) Cumulative distribution of the production vol-
ume.

Figure 7: Relationship between estimated quarterly electricity spot prices from ,
actual quarterly production volumes for a hydropower producer and their respective cu-
mulative distributions for the 1986 to 2011 period. From the horizontal flat part of the

cumulative price curve it appears that some extreme price spikes have occurred during
the sample period.
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To explain the obtained empirical copula, the joint cumulative distribution and its
level curves, depicted in Figlf, can be investigated. The cumulative probabilities of
possible prices F'(ulv = V'), obtained from the copula C'(u,v), given a production corre-
sponding to the cumulative probability v = V' is represented in .

F(ulv =V) = = (13)

Flo=V) Flo=V) v

The numerator in the equation represents the cumulative probability for the (u,V’) sample
space in Figl6|where u is variable and V' is fixed. For example with V' = 0.1 corresponding
to a production of approximately 290 GWh/Quarter, Fig, a plot of the conditional
cumulative price probability distribution, F(u|V'), can be generated by using (13). The
resulting conditional cumulative probability distribution is graphed in Fig[8] Note that
u = F(u) as u is a cumulative probability.

1.0

—| —— Dependent u and v from copula
-- Assumed independent u and v, F(u|V) = F(u)

0.10, F(ulV)
0.8

0.6
Il

0.4

Cumulative probability for price given V:
0.2

0.0
|

T T T T T T
0 0.2 0.4 0.6 0.8 1

Cumulative probability for price, F(u)

Figure 8: Illustration of the cumulative price distribution conditioned on a fixed produc-
tion corresponding to a cumulative probability V' = 0.1. The conditional price distri-
bution obtained from the copula is compared to an assumed situation with independent
price and production. The flat parts of the curve in the 0.3 < u < 0.4 and 0.7 <u < 0.9
areas are probably due to lack of data. Note that u = F(u) as u is a cumulative proba-
bility. The conditional probability curve lies above the unconditional probability curve,
thus based on the copula approach one should expect higher than usual spot prices when
the production is low.

From Fig. |8|it appears that conditioned on a low production, V' = 0.1, the expected
prices are generally higher than if prices and production volumes were independent. A
similar analysis with production conditioned on price can be performed by switching u
and v.
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4.3 Scenario generation of prices and production

The next step in the model, step 3 depicted in Fig2] is to generate dependent cumulative
probabilities of price and production volume.

The empirical copula function developed in Section [4.2]is used to generate numerous
scenarios of price and production. These scenarios are simulated by first drawing one
random uniformly distributed number between zero and one, representing the cumulated
probability for the production, (V). In order to relate the cumulated production proba-
bility with a correlated cumulative price probability a new random uniformly distributed
number between zero and one, W, is drawn and multiplied with the cumulative price
probability, V. This product, VW, represents the conditional copula value C(u,v = V)
where V' is known and u is yet to be determined. As VW = C(u,v = V), (14) can be
used to find the unknown wu.

C(u,v=1V)

VW =Cu,v=V) =W = %

= F(ulv=1V) (14)

From the equation it appears that W is the conditioned cumulative probability of
givenv =V, F(ulv = V), defined in[13] The relationship between u and F(ulv = V') was
elaborated in Section [4.2]and exemplified with V' = 0.1 in Fig[§l To obtain w it is sufficient
to find the abscissa of the function F'(ulv = V') with ordinate W. The determination of
w is illustrated in Figld, where random values of V' and W are drawn equal to 0.1 and
0.6 respectively. The cumulative price probability, u, is then found to equal 0.47.

1.0

— —— Dependent u and v from copula
-- Assumed independent u and v, F(u|V) = F(u)

0.10, F(u|V)
08
|

W=0.6

0.6

Cumulative probability for price given V:
0.4

0.0

u=0.47 ;

0 0.2 0.4 0.6 0.8 1

Cumulative probability for price, F(u)

Figure 9: Illustration of how to obtain the cumulative price probability © when a random
cumulative production probability of V' = 0.1 is drawn. A random W -value of 0.6 is also
generated to link the production to a correlated random price. A resulting pair of (u, V)
with values (0.47,0.1) is obtained from this simulation.

The process of drawing random correlated pairs of (u,v)-values from the empirical

copula distribution can be repeated a large number of times, and hence forms a copula-
based Monte Carlo simulation.
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4.4 Connecting the cumulative probability pairs, (u,v), to pro-
duction values and spot/swap prices

The last step in the simulation process, step 4 in Fig[2] is to link the cumulative proba-
bilities from step 3 to production and price numbers.

Firstly, production is considered. A data set of cumulative probabilities for pro-
duction, v, has previously been generated. These probabilities are linked to the same
distribution of quarterly production data used as input to the empirical copula. The re-
lationship between production and its cumulative probabilities is illustrated in Fig..
To obtain the production value corresponding to the cumulative probability v one must
find the abscissa of the curve in the figure with ordinate v. The production value is found
by interpolation of the cumulative distribution.

Secondly, prices are treated. The process is more cumbersome than for the production,
as swap prices must be linked to the electricity spot prices. This is necessary since swap
prices are required in later risk analysis, where swaps with different term structure are
included in the hedging strategy. The model used for generating input spot prices cannot
be used to simulate historic swap prices, due to some missing input variables for forward
price estimation. To generate a data set with related pairs of spot and swap prices, the
method of |Lucia and Schwartz| (2002) has been selected. Their two factor model is defined
in and . This model will be treated in depth before an explanation of how to
link cumulative price probabilities to spot and swap prices is given.

In(Sy) = f() + x¢ + &
27t
t) = in(—
£(2) =20+ sin(2 + )
dx: = —kxdt + oy dZ,,
dft = ,ugdt + Ugng
dZ,dZe = pdt (15)

In this model spot-forward prices can be approximated with two Brownian motions, a
mean-reverting short-term factor, y; and a long-term trend factor, &. These factors
are driven by correlated normal error terms, dZ, and dZ., with a correlation coefficient
p. The spot and swap prices are internally consistent, stochastic and time dependent.
Seasonality in prices is accounted for by adding a sine function with period one year,
f(t). The spot price S; and the forward price Fr,; with time to maturity 7', at time ¢,
are defined to follow (16)).

In(S;) =f(t) + x¢ + &

In(Fry) =E(Sre) = f(T+t) + e xe + & + peT

o O 1
+(1 — 2e 2 T)ﬁ+§J§T
1 (1 0Ty PRI (16)
K
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The forward price model is estimated using historical daily input data for spot, weekly,
monthly, quarterly and yearly contracts from 02.01.2006 to 30.04.2010. This period is
chosen as some of the forward contracts had a different structure prior to 2006 and
the available data stopped in 2010. 26,064 observations are considered, consisting of 23
different swap contracts and the system spot price. The number of days to delivery for
the contracts is also used as input to the Kalman filter estimation. Descriptive data for
historical spot and some selected forward contracts used as input to the Kalman filter
are presented in Tab[7]

Coeflicients and the two factors, y; and &, are estimated by running a Kalman filter
on (15). For an introduction to Kalman filtering see Durbin and Koopman (2001). The
results are summarized in Tab[§] and Figl[10]

Table 7: Descriptive statistics for historical observed spot and selected forward contracts
used as input to the Kalman filter with 1086 observations of each contract from 02.01.2006
to 30.04.2010.

Spot IWF IMF 1QF  1YF

Min 80.94 114.65 155.93 185.36 249.17
Max 1090.02  723.15 675.00 667.98 558.28
Avg 343.81 339.45 348.78 362.08 371.37
Med 334.15  332.24 335.72 338.05 357.01
St.dev 111.93 108.97 105.35 102.89  59.86
Skew 0.62 0.41 0.40 0.62 0.76
Ex. kurt 1.82 0.055 -0.22  -0.16 0.02
JB 220.75  31.23 31.83 70.48 105.06

Table 8: Estimated values of the coefficients in the two factor model of [Lucia and Schwartz
(2002)). The values are obtained by running a Kalman filter on (15). The long-term drift
factor p is slightly negative and the mean-reversion coefficient & is relatively high which
gives a half-life, In(2) /&, of fluctuations of less than a half week. The correlation coefficient
p is closer to 0 than to -1, so the two processes are quite independent. The constant
equals 1, and could have been omitted with a resulting upward shift of 1 unit in the
long-term drift factor j.

Coefficient Value

e -0.043
o¢ 0.810
K 1.793
oy 0.264
p -0.268
Yo 1.000
" 0.100
O -0.743

These coefficients and factors can be used to generate spot and swap prices and such
simulation yields spot and contract prices with descriptive statistics summarized in Tab[J]
The output data are observed to be non-normal.
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Figure 10: Estimated time series for the long term factor & and short term factor y;
from the Lucia and Schwartz (2002) two factor model. The factors have a relatively low
correlation coefficient of -0.27 and two factors provide better fit than a one factor model.
No clear trend can be seen for the long-term factor & which should not come as a surprise
since electricity is not a commodity from which an investor expect any return. The short-
term factor fluctuates around a zero mean which could be expected for a mean-revering
process.

Comparing the statistics of the input data to the Kalman filter, Tab[7] with the
output in Tab[9 it appears that the range of the output data is narrower than in the
input data and the standard deviation slightly lower. The difference is most prominent
for short term contracts. These observations should not come as a surprise since a well-
known shortcoming of two factor models, such as the one derived by |Lucia and Schwartz
(2002), is the volatility structure they assume. Although such models fit observed prices
quite well, the volatility term structure is not captured accurately. |Cortazar and Naranjo
(2006) show how such models tend to underestimate the volatility structure of oil and
cobber forwards. The erroneous volatility estimation is particularly strong for short-term
contracts, but also for long-term contracts the estimated volatility is consistently below
that of their observed data. As electricity share many of the same properties as other
commodities it is likely that the same problem arises for electricity swaps, just as observed
in Tab[7] and Tabf9l The tendency to underestimate volatility in swap contracts is an
observation one needs to bear in mind during the later risk analysis.

Having described the pricing relationship between spot and swap prices thoroughly, it
is possible to create one single distribution including these two variables. This distribution
can then be linked to the cumulated probabilities u. First, a table with possible spot and
swap prices with different maturities are generated, as represented in Tab[I0]
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Table 9: Descriptive statistics for estimated spot and selected forward contracts calculated
from the forward equation, , with the coefﬁcients,Tab and factors, Fig. from the
Kalman filter estimation as input.

Spot  1WF  1IMF 1QF 1YF
Min 146.41 150.02 158.86 196.26 266.76
Max 664.56 662.77 630.06 630.11 540.86
Avg 314.51 318.04 327.87 344.79 377.52
Med 309.35 311.03 308.71 321.03 367.41
St.dev 103.86 103.79 105.22 100.12  59.72
Skew 0.50 0.48 0.50 0.90 0.69
Ex. Kurt -0.02 -0.10 -0.33 0.37 -0.06
JB 7.25 6.89 8.08  24.69 13.75

Table 10: Swap contracts available from . The first column of the table gives the time
at which the spot price and swap contracts are traded. The upper two rows illustrate
the term structure of the swaps. The table can be used to understand how contracts
traded on different days are denoted and hence be used as a reference for Tab[I1] where
the maturity date of these contracts is shown.

Time | Spot | Week Week Week Week | Month  Month Month | Quarter Quarter Quarter Quarter | Year
(t) 1 2 3 4 1 2 3 1 2 3 4 1
-20 | S—20 | Fiwi—20 Faw—20 Fsw—20 Faw—20 | Finm—20 Fonr—20 Fsar—20 | Fig—20 Fag—20 Fsg—20 Fag—-20 | Fiv,—20
-19 | S_19 | Fiw—19 Fow—1o Fsw—19 Faw—19 | Finr—19 Fonr—1o Faar—10 | Fig—19  Fag-19 Fsg-19 Fag-19 | Fiv,—10
18 | Sois | Fiw-is Fowois Fawiois Fawas | Fiv-is Fomo1s Favois | Fig-1s Fag-18 Fig-18 Fag-18 | Fivi—1s
-17 | Soir | Fiw—ir Fow—ir Fswio1r Faw—17 | Fiv—1r Fom—ir Faam—17 | Fig—1r Fag-17 Fsg-1r Fag-17 | Fiv—17
-16 | S_i6 | Fiw—16 Fow—16 Fsw—16 Faw—16 | Finr—16 Fornr—i6 Faar—16 | Fio—16  Fag-16 Fsg-16 Fag-16 | Fiv,—16
15 ) Sois | Fiweis Fowois Fawes Fawis | Fiv-s Fomois Favois | Fig-1s Fag-1s Fag-1s Fag-15 | Fiviis
-14 | S_u | Fiw—ia Fow—wa Fswa Faw—1a | Fiv—a Fovr—ia Faa—1a | Fig—14 Fag-14 Fsg-14 Fag-14 | Fiy—ua
-13 | S213 | Fuw—1is Fow—is Fsw—is Faw—1s | Fiv—1s Fonr—is Faar—is | Fig—13 Fag—13 Fsg-13  Fag-13 | Fiv—1s
120 Sope | Fiw-iz Fowoie Faweiz Fawie | Fiv-i2 Fomc12 Fanoi2 | Fig-12 Fag12 Figo12 Fag-12 | Fiyi—12
-11 | Soyy | Fiw—in Fowenr Fsw—ui Faw—11 | Fiv—ut Fov—1n Fam—11 | Fig-11 Fag-11 Fsg-11 Fag-11 | Fivi—u
-10 | S—i0 | Fiw—10 Fow—10 Fsw—10 Faw—10 | Fir—10 Fonr—io Fasar—10 | Fig—10 Fag-10 Fsg-10 Fag-10 | Fivi—10
-9 S | Fiw—o Fowo Fawo Fawo | Firo Fom o Fan o | Figo Fag-9 Fig-9 Fag-o | Fivo
-8 Ss | Fiw—s Fow-s Fsw-s Faws | Fivrs Fonrs Fau-s | Figs Fag-s Fip-s Fag-s | Fiys
-7 S_7 | Fiw—r Fow— Fsw—r Faw—_r | Fir—r Fou— Fau_7 | Fiov Fog—7 Fsg7 Fig_7 | Fiy—r
-6 S | Fiw—s Fow Faws Faws | Fir-6 Fou6 Fam6| Fig6 Fag-6 Fig-6 Fag-6 | Fiv,6
-5 S5 | Fiw—s Fow—s Fsw-s Faws | Fiv—s Fons Faus | Figs Fag-s Fsgp-s Fag-s | Fivs
-4 Sy | Fiw—s Fow—s Fasw—s Faw—a | Firrma Four—a Fam—a | Fio—a  Fogu  Fsgu  Fig_a | Fiva
-3 S | Fiw—s Fow-3 Faw-s Faws | Fiv-3 Fou3s Fau-3| Figs TFag-3 Fig-3 Fag-s | Fiv-s
-2 Soo | Fiw—2 Fow— Fsw—2 Faw—2 | Fin—2 Fou—2 Fsu—o | Fio—2  Fag-2 Fso-2 Fig-2 | Fiy—2
-1 Soi | Fiw—r Fow—r Fasw—1 Faw—i | Firr Fou—r Fsmo1 | Fior Fag1 Fsgo1 Fag1 | Fivioa

0 So Fiwo  Fowo  Fawo  Fawo | Fivo  Fomo  Fampo Figo Fago Fiq.0 Fago Fivo
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Table 11: Rearranged swap contracts available from (15| illustrate how the realized
price and swap prices are linked. The contracts are sorted so that their maturity date
corresponds to the date in the first row.

Time | Spot | Week Week Week Week | Month  Month  Month | Quarter Quarter Quarter Quarter | Year
day 1 2 3 4 1 2 3 1 2 3 4 1
20 | Seao0 | Fiw—or Fowiss Fawar Fawas | Fin-as Fomosi Famoni2 | Fig-12 Fog-202 F3g-203 Fag-385 | Fiv.—3s5
-19 | Sou | Fiw—2s Fowi—ss Faw—a0 Faw—ar | Fia—ar Forrmso Faa—1u1 | Fig—1n Fag—200 Fsg,—202 Fag,—384 | Fiy,—384
-18 | S_us | Fiw—os Fowi—so Faw—so Faw—as | Fiar—as Forr—7o Fanr—110 | Fig—110 Fag—200 Fsg—201 Fag, 383 | Fiv,—3s3
-17 | Soir | Fawcos Fowest Faw—ss Faw—as | Fis—as Forr—7s Fsar—100 | Fig—100 Fog—109 Fso,-200 Fag, 382 | Fiv,—382

-16 | S—16 | Fiw—2s Fow—so Fsw—sr Faw—aa | Fir—aa Forr—7r Fan—10s | Fio—108 Fag—10s Fsg—2s0 Fag—ss1 | Fiv,—ss1
-15 | Sis | Fiw—a2 Fowi—29 Faw—36 Faw—az | Fiar—as Forr—76 Fsar—107 | Fig—10r Fag—197 Fsg-288  Fao,—380 | Fiv,—3s80
-14 | S_u | Fiwe—or Fowi—os Faw—ss Faw—ao | Fia—az Foroms Faar—106 | Fig,—106 Fag,—106  Fso—287  Fao,—379 | Fiv,—379
-13 | St | Fiw—ao Fowi—or Faw—sa Fawean | Fian—ar Fommma Fanr—10s | Fig—10s Fag—105 Fsg—2s6  Fag,—378 | Fiv,—3ms
-120 | Soio | Faweo Fow—os Faw—ss Faw—ao | Fisr—a0 Forr—7s Fsnr—104 | Fig—104 Fog—104 Fso-0ss Fag 377 | Fiv,—s77
-11 | S_ut | Fiw—is Fow—os Fswi—sa Faw—so | Fivr—so Fonmr—m2 Fanr—103 | Fio—103 Fag—103 Fag—2s1 Fag—s76 | Fiv,—37
-100 | Sowo | Fiw—1r Fowi—2a Faw—si Faw—ss | Fiar—ss Fomr—mi Fsar—102 | Fig—102 Fag—102 Fsg—283 Fag,—375 | Fiyv,—sr5

9 | Soo | Fiw—is Faw-23 Fawos0 Fawsr | Fiyvsr Fanvno Famoi01 | Fig-100 Fag-101 Fsg-282 Fag-374 | Fiy—sma
-8 S_g | Fiw—15 Fow—2 Fsw_20 Faw-s6 | Finr—36 Fom—eo Fan—100 | Fio,-100 Fog-100 Fsg,—281 Fag-sm | Fiv—s7s
-7 S_7 | Fiw—1a Fow—o1 Faw_os Faw_ss5 For—es  Fanr—go | Fig—99 Fog 180 Fag—2s0 Fag-372 | Fiv—sn
-6 S_6 | Fiw—13 Fow—20 Fsw—2r Faw_s1 Fori—67 Fam—os | Fig—98  Fag-1ss Fzg-2r9 Fag-3711 | Fiy,—an
-5 S5 | Fiw—12 Fow—19 Faw—26 Faw,_s3 Fonmr—e6  Fam—or | Fig—or  Fag-187 Fag2ms Fag 370 | Fiv,—370
4 Sy [ Fiwen Fawois Fawios Fawos2 Fom 65 Fam—o6 | Fig o6 Fag-186 Fsg-207 Fag,-360 | F1v,—360
-3 S_s | Fiw—10 Fow-17 Faw—2a Faw_s Forr—6s  Fanr—os | Fig—95 Fag-185 Fag-276 Fag—368 | Fiv,—36s
-2 So | Fiw—o Fow—i6 Faw—2s Faw—so | Finr—s0 Fonmr—es Far—os | Fig—o1s Fag-1s4 Fag—ors Fag_s67 | Frv,—ser
-1 S_1 | Fiw—s Fow—1s Fsw—22 Faw—oo | Finr—20 Formr—e2  Faanr—o3 | Fig—03 Fag—1s3 Fsg—2mu Fag 366 | Fiv,—366
0 So | Fiw—r Fow—1a Fawo1 Fawos | Finr—os Fom—e1 Fam—oo | Fig 92 Fog 182 F3g-213 Fug, 365 | Fivi—ses

In Tab. [10, the first column represents the date with daily frequencies. The last
date in the table, t = 0, can be considered as today, whereas the negative times above
represent the number of days prior to today. The spot price S; and swap prices Fr,
where T describes the different swaps, are then generated for each date t with .

A time analysis of the realized prices obtained by a producer in the derivative market
is then conducted, as depicted in TabJTT} The motivation is to relate the prices of swap
contracts, and thereby the realized price for the electricity sold, with spot prices. This
new way to illustrate spot and swap prices might be useful to investigate the effect of
swaps in hedging decisions. The producer achieves a realized price, F} for the electricity it
sells in the derivative market at time ¢ given by , where Fp; correspond to the different
swaps traded at time ¢. Wpg, is the weight of a producer’s total derivative investment

positioned in each contract. Fr,—_r) represents the swap price T" days ahead of time ¢.
Note that Y, Wg, = 1.

Fy =Y Wp Friqr),T € {IW,2W,3W,...,1Y,2Y,3Y} (17)
T

To exemplify how to interpret Tab[I1] a two-week swap is considered at time ¢ = 0,
the last row in the table. The Fyy _14 contract illustrates that the price of a two-week
swap at time ¢t = 0 — 14 = —14 thus two weeks before ¢ = 0 can be considered as the
realized price of the electricity if production is hedged with two weeks contract at time
t = —14. This hedged price can therefore be compared with the spot price at t = 0. A
similar approach can be made for all other dates ¢ and for all other maturities 7. Thus,
the volatility of the realized cash flow over time can be examined by using with Sy,
F, and H as input variables.

To create an empirical distribution for spot/swap prices, the rows in Tab. are sorted
with increasing spot price, but retaining the same swap prices to the spot prices as in the
table. The rows in the table are thus shuffled.
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Having created an empirical distribution for spot/swap prices it is now possible to
link the cumulative price probabilities, u from step 3 in Figl2] to simulated spot and
swap prices. This is simply done by finding the two successive rows in the sorted table
corresponding to the nearest lower and higher v and interpolating between these two rows
for each spot and swap contract, as illustrated in Tab[I2] Hence, daily spot and swap
prices for all u can be obtained. The price output of the copula will therefore be based on
daily and not quarterly data, even though the production has quarterly resolution. The
minimum, average and maximum values of the output price from the Kalman filter, Tab[J]
are to some extent higher than the quarterly data used as input to the empirical copula,
Tablol Nonetheless, the standard deviations of the two data sets are almost identical,
and since the risk measures in this master thesis will be based on relative measures, the
choice of working with two different pricing models will not disturb the risk analysis a
lot.

Table 12: The sorted table of spot and swap prices with their cumulative probability u.
Interpolation is used to connect the cumulative probability u obtained in Figld| to the
empirical price distribution from the Kalman filter.

Cumul.prob. | Spot | Week  Week  Week  Week | Month Month Month | Quarter Quarter Quarter Quarter | Year
(u) 1 2 3 4 1 2 3 1 2 3 4 1
0.46 St, Fiwe, Foweno Faweo Faweo | Fivee  Fomee  Fave, | Frorn Foo,t. Fs0,, Fsour. | Fivie,
0.47 Interp. | Interp. Interp. Interp. Interp. | Interp. Interp. Interp. | Interp. Interp. Interp. Interp. | Interp.
0.49 St, Fiwe,  Fowe,  Fawe, Fawy, | Five,  Fome,  Famg, | Fiou, Faqu, Fsqu, Faqu, Fiyy,
1

As pairs of related spot, swap and production values now are available, sums and
products of these variables can easily be calculated. From the variance of these sums
and products it is possible to obtain covariance between price and production that were
previously unavailable. This copula-based Monte Carlo simulation can hence be applied
to evaluate the price and production uncertainty on cash flow with measures such as
CFaR, CCFaR and hedge effectiveness. The large number of different swap contracts
available from the two factor model also renders possible an analysis of how the term
structures of such contracts influence the hedging performance and the hedge ratios of a
hydropower producer.

5 Results and discussion

With the copula-based Monte Carlo model developed in Section 4} 10,000 scenarios of
dependent electricity spot, swap and production values are generated. These values
and different hedge ratios are then used as input to the expression of the hydropower
producer’s cash flow in (4). Thus, for each hedge ratio the resulting 10,000 cash flow
scenarios can be used to examine the cash flow uncertainty expressed by different risk
measures.

5.1 Risk premium

Before the risk of the cash flow is assessed, an analysis of the risk premium of several
swaps traded in the 2006 to 2010 period at Nord Pool is conducted. The risk premium
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Figure 11: Annualized risk premiums for different forward contracts. Calculated from [18]
There is a clear downward trend in the annualized risk premium with respect to the time
to maturity. Short-term swaps are therefore economically more attractive to hydropower
producers than long-term contracts.

is studied to judge the attractiveness of these derivatives. As mentioned in Section [2.5
the risk premium of the traded swaps may be connected to the term structure of the
contracts. Hence, the risk premium is examined to enable an analysis of the trade-off
between risk and return. The risk premium is defined according to (18)),

T
ReT) = Fre— BlSrl _y  2rpSt
FT,t PFT,t
Annualized R(t,T) = (1+ R(t, 7)) — 1 (18)

where t is a date, T is the time to expiration of a contract and P is the delivery length of
the contract. Thus, (ZtT:Tf pSi)/ P is the average spot price during the delivery period
and Fp, is the forward price of a swap contract with time to maturity, 7', at time ¢.

A summary of the annualized risk premiums is depicted in Fig[l1] The figure reveals
the tendency of a decreasing risk premium when the time to maturity of these contracts
increases. This is consistent with the findings of Botterud et al.| (2002). Also, the slightly
negative drift term, pi¢ in 16, for the long term evolution in forward prices bodes well with
the decreasing risk premium since the price of the contract then decreases with the time
to maturity. The decreasing risk premium with longer time to maturity is also consistent
with the hedging pressure in the market, explained in Section 2.5 Consumers tend to
hedge themselves in the short-term whereas producers often prefer long-term contracts
in their hedging strategies. This creates an unbalanced demand-supply situation for
swap contracts which affects the pricing of the contracts in the direction of higher risk
premiums for short term contracts and low or even negative risk premiums for forwards
with long time to maturity. The risk premium present in swap agreements argues for the
use of short-term contracts by producers to obtain an advantageous realized price for the
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electricity secured in the derivative market. However, the risk premium has little to do
with the elimination of risk as yearly variations and extreme prices will still affect the
cash flow greatly. Thus, both the risk premium and the contracts ability to reduce risk
should be considered in hedging decisions.

5.2 Minimum variance analysis

0.35 0.40
Il 1

Standard deviation of income

0.30
|

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Hedge ratio

Figure 12: Standard deviation of cash flow measured as a part of expected cash flow
conditioned on the hedge ratio. The minimum standard deviation is obtained at a hedging
level of 57.0% of expected production. In the plot the term structure of the hedged swaps
is neglected.

A minimum variance analysis can be carried out to measure and reduce risk. With de-
pendent price and production data series from the copula-based Monte Carlo simulation,
variance in cash flow can be minimized by choosing a hedge ratio according to @ in
Section [2.3] The hedge ratio represents the percentage of the expected production that
should be sold in the forward market. Still, this analysis does not take into account which
swaps to include in a power portfolio since @ ignores the term structure of these deriva-
tives, thus neglecting that weekly and yearly contracts affect risk reduction differently.
However, this approach gives a benchmark for the optimal hedge ratio.

Figure depicts the standard deviation of the electricity producers income as a
function of the hedge ratio. Minimum variance is obtained for a hedge ratio of about
57.0%. This hedge ratio is consistent and almost equal to the tax neutral hedge of
58.3% elaborated in Section [2.3] Hence, the copula framework used to generate price
and production pairs has only marginal effect on the variance of the cash flow and barely
change the optimal hedging level. The figure still underlines the significant variance
reduction effect of hedging. For a non-hedged producer the volatility of the cash flow is
about 42% and drops to approximately 28% when the optimal hedging level is chosen.
A question yet to be answered is how the time horizon of different derivative contracts
affects risk reduction and how a power portfolio should be composed. Possibly, the
optimal hedge ratio can be affected by this choice.
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5.3 Restricted minimum variance analysis
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Figure 13: Unrestricted and restricted scenarios for price and production for a hydropower
producer. The density of the points underlines the probability of the outcomes. Some
small discontinuities are the result of lack of input data to the empirical copula. In the
restricted copula analysis, some scenarios that greatly exceed historic outcomes have been
eliminated. For the unrestricted situation the optimal hedge ratio is 57.0% and it drops
to 51.0% for the restricted scenario. The unrestricted scenarios will be used in later risk
analyses.

The generated series for price and production applied to evaluate volatility in the pre-
vious section permit scenarios where both very high price and production is connected.
Persistent high prices are only viable in the hydro-dominated Nord Pool area during cold
and dry periods, which drain the hydro balance down to a critical level. During these
periods very high production is not desirable, and the very high price and production sce-
nario is therefore unlikely. For this reason it is interesting to investigate the consequence
of excluding the assumed improbable scenarios from the data set. An illustration of the
effect of the data set when the high price, high production scenarios are deleted is shown
in Fig[I3] The consequence on the optimal hedge ratio is a minimum variance obtained
for a hedging level of 51.0% of the expected production. The reduction from the unre-
stricted simulation emphasis that a producer should be careful to hedge as much as the
tax neutral hedge of 58.3% and should probably have a ceiling of the hedge ratio closer
to 50% when risk reduction is measured by the variance framework. A lower optimal
hedging level is the result of a more prominent natural hedge for the restricted copula
case, reflecting a more negative correlation between price and production, than observed
in the unrestricted minimum variance analysis. In the next analyses, the unrestricted
copula-scenarios are considered.
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5.4 Cash Flow at Risk analysis

Cash flow at risk is used as a tool to measure downside risk which is relevant for a
hydropower producer that operates in a sector where prices are subjected to extreme
fluctuations. CFaR and CCFaR are treated more closely in section 2.1} The chosen
threshold value of these risk measures is set equal to o = 5%. This risk level reflects
the secure environment in which hydropower producers operate with stable earnings and
low probability of facing financial distress. These criteria should be determinant when a
company chooses risk measures according to [Stulz (1996)), and C'FaRsy and CCFaRsy
seem suitable. An even higher risk threshold can also be argued for, [Fleten et al.| (2010))
use as an example a VaR gy to monitor risk for a hydropower producer.

The cash flow at risk analysis conducted in this thesis considers the time horizon of
the hedging, which was a shortcoming of the minimum variance approach in the previous
sections. For contracts with long time to maturity, the spot price has time to deviate a lot
from the expected level if price estimates were wrong. Long-term contracts are therefore
less correlated to the spot price in their maturity period than contracts with shorter time
to maturity. For these short-term contracts, estimates are rarely far out of range. Stated
differently, since one knows less about what will happen far into the future than the
possible outcome of the next days or weeks, long term contracts are less correlated to
the spot price in their delivery period than short term contracts. This feature can be the
reason behind some of the characteristics of the calculated C'FaRsy and CCFaRsy in
Fig[T4] that are discussed below. The C'FaRsy and CCFaRsy as percentage of expected
cash flow in the figures are defined in ((19). High CFaRsy and CCFaRsy values are
favorable, since the threshold values then are closer to the expected cash flow.

(C)CFaR

(C)CFaR as a % of expected cash flow = ECF

100% (19)

Firstly, as the time to maturity of the contracts contained in the hedged portfolio
increases, the downside risk measured by CFaRsy and CCFaR5y is reduced when the
optimal hedge ratio is chosen. For a portfolio with one week contracts, Fig, the
CFaRsy is only 40% of the mean for all hedge ratios. With yearly contracts, Fig,
the same number is about 70% for an optimal hedge ratio. Secondly, when contracts
with longer time to maturity are used, the optimal hedge ratio drops. For short-term
contracts there are no clear optimal hedge ratio, Fig reveals an almost flat behavior.
A relatively high hedge ratio would therefore not imply less risk than a lower one. The
optimal hedge ratio then drops successively for monthly and quarterly contracts, Fig/14(b)|
and Fig[14(c)| and attains a minimum level of approximately 35% when CCFaRsy is
assessed for one year contracts in Fig.. The hedge ratio that minimizes downside
risk is always lower for CCFaRs5y than for CFaRsy, as CCFaRsy punishes extreme
events more severely than C'FaRs5y. Thirdly, when the time to maturity of the contracts
increases it is more important to choose the correct hedge ratio. Short time horizons
yield relatively flat CFaRsy and CCFaRsy curves whereas longer time horizons yield
a more parabolic shaped CFaRs5y and CCFaRsy curve. Thus, an overhedged producer
using long-term swaps may experience higher risk than an unhedged producer if its hedge
ratio greatly exceeds the optimal level.
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Figure 14: Downside risk in cash flow for a producer hedging only 1 week futures, 1 month
forward, 1 quarter forward and 1 forward year contracts as a function of the hedge ratio.
CFaR and CCFaR are represented as a percentage of expected cash flow. For long-term
swaps the CFaR and CCFaR curves are more parabolic and can eliminate more downside
risk than short-term contracts, as observed by the higher obtained values. The hedge
ratio that reduces most downside risk is the abscissa of the maximum of the curves, and
the optimal hedging level drops with the length of the hedged contracts.
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5.5 Hedge effectiveness

Hedging effectiveness, defined in , has also been assessed to evaluate how swap con-
tracts with different term structure affect the variance reduction in cash flow. Hedge
effectiveness is treated more thoroughly in section [2.1] The hedge effectiveness analysis
conducted herein includes the time perspective of the hedge as opposed to the mini-
mum variance analysis in section [5.2] The results of the hedge effectiveness analysis are
presented in Fig[T5 and Fig[l6]

The figure underlines that any contracts with a time to maturity of less than two
months is not likely to eliminate more than 10% of the variance in cash flow at any
hedging level. Conversely, contracts with longer time to maturity may eliminate almost
50% of the producers revenue variance. This result emphasizes that it is pointless to use
short-term swaps if the aim is to reduce variance in cash flow. The finding can possibly
explain the surprising result in an empirical analysis of hedging policies among Norwegian
hydropower producers by Sanda et al.| (2011)). In their study the majority of producers did
not obtain a significant reduction in their cash flow volatility. However, they achieved a
substantial part of their profit from their hedging program. It seems therefore likely that
many hydropower producers focus on increased profitability rather than risk reduction.
If the aim of the hedge is to reduce risk, the hedge effectiveness analysis underlines
that most risk is eliminated for hedge ratios in the 40-60% area (Figl/l6(a), Fig{l6(b)
and Figll6(c)). As treated in section [5.4] overhedging can be very risky, and Fig[16(d)
stresses how the variance reduction collapses when the hedging level increases to 90% of
the expected production. Overhedging may hence result in increased volatility and all
risk protection can be lost. As hedging generally leads to reduced revenue, overhedging
implies higher risk and lower return.
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Figure 15: Hedge effectiveness for swaps with different term structure for various hedge
ratios. For the unhedged case the hedge effectiveness is zero.
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Figure 16: Hedge effectiveness for swaps with different term structure for various hedge
ratios. The discontinuity in the increasing hedge effectiveness trend observed for 1 month
and 1 quarter forwards might be due to the different contract structure than for the
preceding points on the abscissa. The increasing hedge effectiveness with time to maturity
illustrates that long-term contracts eliminate more risk than short-term contracts at
an adequate hedging level. The optimal hedging level is between 40 and 60%. When
overhedged, as in Fig, the hedge effect collapses and leads to increased cash flow

volatility.
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5.6 Model results compared with historical hedge ratios

In Section [3| Tab[3] the optimal hedge ratios obtained from the historical data are 47.5%,
28.0% and 15.9% for minimum variance, CFaRs4 and CCFaRs5y respectively. In the
analyses following the copula-based Monte Carlo simulation, Section. and Section. 5.5
the optimal hedging levels are 40-60% for the hedge effectiveness approach and about
45% and 35% for CFaRsy and CCFaRsy. The empirical variance is compared to hedge
effectiveness since both measures minimize variance and include the time perspective.
Thus, it appears that the empirical results are in line with the outcome of simulations
conducted in this thesis. However, the empirical results tend to recommend slightly lower
hedge ratios than the copula-based values. As discussed previously this could be founded
in the estimation of the spot-swap relationship with a two-factor model which normally
underestimates the volatility of the swap contracts. The estimated swap contracts may
therefore be more risky than supposed in the analyses. If a more complete and complex
model for the spot-swap price relationship had been selected, the obtained optimal hedge
ratios would probably have been lower.

It is also interesting to observe that none of the historical optimal hedging strate-
gies involve investment in weekly contracts. This same observation is discussed in the
CFaRsy, CCFaRsy and hedge effectiveness analyses with a conclusion that weekly con-
tracts are too correlated with the spot price to provide risk elimination, and at best yield
a positive risk premium for the producer.

Finally, it seems like the empirical analysis obtains less risk elimination, measured by
hedge effectiveness, C'FaRsy and CC FaRs5y, than the copula-framework claims possible.
This problem questions the adequacy and robustness of the copula-based Monte Carlo
simulation.

5.7 Implications

The implications of the previous analyses are that a producer should adjust its hedging
strategy according to the purpose of the hedge. The minimum variance analysis provides
an easy and comprehensive picture of the optimal hedging level, with a target hedge ratio
in the 51-57.0% range. However, this analysis seems too simplistic as it ignores the term
structure effects of the swap contracts. The analysis shows that it is possible to reduce
the variance in cash flow from about 42% in the unhedged case to approximately 28%
when an optimal hedge ratio is chosen, see Fig[12] These findings challenge the empirical
study of Sanda et al.| (2011]) where only two out of twelve observed hydropower producers
achieve significant reduction in cash flow variance from their hedging program.
Extension of the variance approach by observing hedge effectiveness of different hedg-
ing strategies, consisting of investing a variable part of the expected production in one
swap contract at a time are shown in Fig[T15|and Fig[I6] The hedging effectiveness measure
supports the minimum variance approach, but specifies that the maximum risk reduction
is only possible with long-term contracts. Besides, it is shown that hedging by use of
short-term contracts is almost pointless if the aim is to reduce risk. The C'FaRs5y and
CCFaRsy analyses present similar results. Short-term contracts have only a marginal
risk reducing effect, shown by the flat curves in Fig., and the investment in these
derivatives therefore provides negligible risk protection for a hydropower producer. Con-
trary, the long-term contracts may reduce risk significantly, depicted by the parabolic
CFaRsy and CCFaRsy curves in Fig and Fig. The hedge effectiveness,
CFaRsy and CCFaRsy approaches show that hedging by means of swaps with longer
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time to maturity can almost half the volatility and the downside risk in cash flow if ap-
propriate hedge ratios are chosen. Note that a detailed analysis of the appropriate hedge
ratios should be undertaken to prevent risky overhedging.

Nevertheless, the attractiveness of the long-term contracts lies only in their risk reduc-
ing nature as they are priced with a marginally positive or even a negative risk premium
as depicted in Fig[l1] Contrary, short-term contracts are generally priced with a positive
risk premium and the premium decreases as the maturity, and hence the risk eliminating
ability of the swaps, increases. |[Fleten et al. (2010) also find that hedging costs are higher
when producers use contracts with long time to maturity. Thus, the usual risk-reward
relationship, faithful to the findings of Markowitz (1952)), also applies to the hedging
strategy of hydropower producers.

Swaps can therefore be used for two main purposes by a hydropower producer. Either
as speculation in short term contracts with the aim to obtain attractive prices, but
without eliminating much risk. Alternatively, they can be used in risk reduction strategies
investing in long-term, risk reducing swaps, and achieve a less attractive premium for this
risk protection. This double possible use of these derivatives can probably be the source of
the troubling findings of Sanda et al.| (2011), discussed briefly in Section . The tendency
of hydropower companies to profit from their hedging transactions rather than reducing
cash flow volatility can therefore be founded in hedging biased towards short-term instead
of long-term contracts. Translated, this means that hydropower companies engage in
value adding rather than risk reducing hedging strategies. Whether the companies in
question in Sanda et al. (2011)) are aware of this feature in their hedging program would
be interesting to study more closely.

6 Conclusion

For hydropower producers price and inflow uncertainty are found to be the two most
important risk factors. An empirical copula is suggested to link the price and production
volume in a new way. The copula offers an improved relationship between variables,
including flexibility in tail dependency and normality assumptions, which a linear corre-
lation coefficient, p, does not allow. This master thesis develops a copula-based Monte
Carlo model to investigate hedge ratios for Norwegian hydropower producers taking into
account price and production volume uncertainties. The variance in revenue, hedge effec-
tiveness, CFaR and CCFaR are used as risk measures to examine how swaps with different
term structure affect a hydropower producer’s hedging strategy and hedge ratios.

Swaps with short time to maturity are shown to have little effect on risk reduction
measured by hedge effectiveness, CFaR and CCFaR. Conversely, long-term contracts
should be preferred in order to obtain the highest level of risk reduction measured by
the proposed risk measures. Also, the optimal hedge ratio shifts towards lower levels
when the time to maturity of the hedged swaps included in the power portfolio increases.
This is due to the long-term contracts’ lower correlation with the spot price which offer
a better risk reduction than short-term swaps. Overheding, meaning hedging too much
of the expected production, in long-term derivatives may result in a risk increase in cash
flow instead of risk reduction. The assessed risk measures give different results when it
comes to the optimal hedge ratio. Thus, it may be problematic to recommend one specific
risk measure and one single hedge ratio. The choise of risk measure must therefore be
based on the hydropower producer’s approach to risk. Anyway, for all risk measures a
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hedge ratio of 35-60% of expected production invested in long-term contracts is observed
to give the highest risk reduction.

The hedging performance of swap contracts is seen in light of the expected risk pre-
mium for these derivatives. The risk premium is a decreasing function of the time to
maturity of the swaps, and the low or even negative premium achieved for long-term con-
tracts can be considered as a cost of the provided risk reduction. Hence, swap agreements
can be used for two main purposes by a hydropower producer. Either as speculation in
short-term contracts with the aim to obtain attractive prices but without removing much
risk, or alternatively as a risk reduction strategy taking positions in long-term swaps with
a negative or less attractive risk premium.

The copula-based model developed in this master thesis has some shortcomings.
Firstly, the issue with two sets of prices is problematic, with one set used to construct the
copula and another set of spot and swap prices used as an output distribution from the
copula. The swap price model also underestimates the volatility structure and contributes
to higher optimal hedge ratios. Preferably one single pricing model able to simulate a
long history of spot and swap prices consistent with today’s pricing level and independent
of the production should have been used. Secondly, price hedging has only been assessed
in this master thesis and not production risk. This is due to the nonexistent market for
weather derivatives in the Nord Pool area which can allow producers to hedge their inflow
risk, and thereby the production uncertainty. Finally, prices and production volumes are
seasonally dependent and the natural revenue variations based on the seasonal fluctuation
are to some extent attempted hedged away. The optimal hedge ratios for a hydropower
producer might therefore be lower than those recommended in this thesis, since yearly
variations are more interesting for a hydropower producer than seasonal fluctuations.
Quarterly data are considered to provide a sufficient sample size for the empirical copula
estimation. Another effect of using quarterly and not annual data is that the autocorre-
lation of the input data to the empirical copula is higher. This results in some scenarios
with a higher probability than what is actually the case. Consequently, the copula-based
Monte Carlo simulation generates more of these scenarios, affecting the analysis of the
output data sample. This may in worst case give misleading results. A purely empirical
copula approach for price and production modeling can therefore be problematic. In
further research it might be interesting to go beyond the empirical framework and make
more assumptions to deal with seasonality, autocorrelation and lack of data.
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A Appendix

A.1 Derivation of a hydropower producer’s total tax

A hedged hydropower producer might have to pay more than 100% of sales value in tax
expenses. The total tax paid, PS — II, as a part of the unhedged revenue, PS, can be
expressed as;

PS —1I
Taxr = 75 ) _
_, _ (P~ HP)S + HPF](1 — T¢) — PSTgr
- ~ PS
_TRR+TC — PS

The relationship between S and F' can be examined when a hydropower producer pays
100% tax on its revenue, Tax = 1;

HP(F — 8)(1 —T¢)

Tar+ To — =1
RJer “ PS
HPF — 1—To—T
S _1-To-Thr 5
P S 1— T
0.583P
F=5(1--—"2
( 75 )

By assuming that the company is fully hedged, H = 1, and has no uncertainty in pro-
duction volume, P = P, a forward price of F' = 0.417S yields a 100% tax rate.

A.2 Derivation of a hydropower producer’s hedge ratio

The hydroproducers cash flow function is given by ;

Il =[(P— HP)S+ HPF|(1 - T¢) — PSTxa

where P represents the actual annual production volume, P the expected annual pro-
duction volume, S the spot price, F' the swap price, H the hedge ratio, T and Trg are
constant corporate and resource rent taxes respectively.

The variance in profit after tax of a hedged portfolio is given by ;
Var[ll] = Var([(P — HP)S + HPF|(1 — T¢) — PSTggr)
= (1 —=Tp)*[Var(PS)+ (HP)*(Var(S) + Var(F))] + TazgVar(PS)

+2(1 — Te)* [HPCov(PS, F) — HPCou(PS,S) — (HP)*Cou(S, F)]
—2(1 — Te)Trg[Var(PS) — HPCov(PS, S) + HPCov(PS, F))
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Setting Var(F) = 0, assuming price is fixed when the derivative contracts are entered,

we get ;

Var[ll] = (1 — T¢)?[Var(PS) + (HP)*Var(S)] + (Tgg)*Var(PS)
+2(1 = Te)Trr|HPCov(PS, S) — Var(PS)]
—2(1 = Tg)*HPCov(PS, S)

We differentiate with respect to H to find the optimal hedge ratio;

OV ar(II)

S = 2(1 = To)*HP*Var(S) — 2(1 — Te)*PCov(PS, S)

+ 2(1 — TC)TRRPCOU(PS, S)
—2(1 — To)P[(1 — To)HPVar(S) — (1 — Te) — Tar)Cov(PS, S)]

We also check that the optimal hedge ratio represents a minimum;

O*Var(I1)

oM >0

0?Var(II) _

W = 2(1 — TO)2P2VGT<S) > 0,0k"

The optimal hedge ratio, H*, is thus;
OVar(Il)
OH* B
(1=To)H*PVar(S) —[(1 —T¢) — Trg]Cov(PS,S) =0
Trr Cov(PS,5)
1-T¢' PVar(S)

H =(1

Which is the same as @

Assuming no uncertainty in production volume, P = P, gives the tax neutral hedge,
H; represented in ;

Tax—neutral’

. _ (- Trr )C?U(PS, S)
Taz—neutral 1—To) PVar(s)
Trr PVar(S)
== 1 —T¢’ PVar(S)
~ Tge
1-1T¢

=1
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