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Abstract

This master thesis replicates the approach by Ao et al. (2018) to con-

struct optimal mean-variance portfolios on the Norwegian stock mar-

ket. Their model, which they call the maximum-Sharpe-ratio estimated

and sparse regression (MAXSER) method, relies on a novel uncon-

strained regression representation of the mean-variance problem. Their

findings show the model offering an advantage over previous models

and is able to effectively control for risk. However, based on the Norwe-

gian stock market our estimated portfolio does not attain the maximum

expected returns, and is not able to effectively control for risk. How-

ever, when the number of assets and observations increase, the ability

of the model to control for risk and attain the maximum expected re-

turns increases. These findings are demonstrated through simulation

and empirical analysis. We also find that when investing in individ-

ual stocks in addition to the Fama-French three-factor portfolios, the

performance is improved.
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Sammendrag

Denne masteroppgaven replikerer metoden til Ao et al. (2018) for å

sette sammen optimal mean-variance porteføljer p̊a det Norske aksje-

markedet. Deres modell, kalt maximum-Sharpe-ratio estimated and

sparse regression (MAXSER), avhenger av en ny og ubegrenset re-

gresjonspresentasjon av mean-variance problemet. Deres funn viser at

modellen har økonomiske fordeler over tidligere modeller, og er i stand

til å effektivt kontrollere for risiko. V̊ar estimerte portefølje, som er

basert p̊a det Norske aksjemarkedet, klarer ikke å oppn̊a maksimum

forventet avkastning, og er heller ikke i stand til å effektivt kontrollerer

for risiko. P̊a en annen side, n̊ar antall aksjer og observasjoner øker

evner modellen bedre å kontrollere for risiko, samt oppn̊a den mak-

simale forventede avkastningen. V̊are funn blir demonstrert gjennom

b̊ade simulering og empirisk analyse. Videre finner vi at å investere

i individuelle aksjer i tillegg til Fama-French sin tre-faktor-portefølje

øker prestasjonen betraktelig.
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1 Introduction

1 Introduction

Ever since its introduction by Markowitz (1952), portfolio theory (or

mean-variance analysis) has experienced immense growth and has had

an impact on the fields of finance and economics among university

scholars, portfolio managers, and individual investors as shown by Fran-

cis and Kim (2013). Markowitz’s portfolio theory revolves around how

an investor, with a certain level of risk, can maximize their expected

return. This theory involves only two population characteristics: the

mean and the covariance of asset returns. Even though it was ground-

breaking during its time, many researchers now believe there are sev-

eral shortcomings to Markowitz’s theory, especially when portfolios be-

come large. Thus, researchers have sought to improve his work either

with better estimates for the mean and the covariance or with entirely

new methodologies for portfolio selection. Among these contributions

are the new estimations of the covariance proposed by Ledoit et al.

(2002) and Ledoit and Wolf (2017). Furthermore, a relatively new ap-

proach to the mean-variance analysis has been developed by Ao et al.

(2018). This new approach is known as the maximum Sharpe ratio esti-

mated and sparse regression (MAXSER). This approach is equivalent to

Markowitz’s optimization, but it revolves around a novel unconstrained

regression.

The model developed by Ao et al. (2018) has, as best as we know,

only been tested on the US stock market. This is because most of

the research involving portfolio theory is widely influenced by findings

concerning the US stock market or other large stock markets. Ao et al.

show that their methodology has an advantage in terms of risk control

1



1 Introduction

and return over the regular mean-variance analysis when creating large

portfolios.

This thesis uses Ao et al.’s framework and seeks to evaluate the per-

formance of their methodology when portfolios are created based on

assets traded on the Norwegian stock market. In doing so, we address

the following research question:

Does the use of the MAXSER methodology offer an advantage compared

to previous portfolio theories when performed on the Norwegian stock

market?

To answer this question, the model was analyzed and we found that the

methodology gains no advantage when performed with smaller portfo-

lios. However, we found that when portfolios become larger, the model

performs better, which is consistent with the findings by Ao et al.

(2018). Our findings raise three sub-questions:

1. Is MAXSER able to effectively control for risk when the portfolios are

small?

2. At which point is the portfolio too small for MAXSER to be effective?

3. Does the use of MAXSER offer an advantage when including additional

stocks to factor investing on the Norwegian stock market as well?

The format of this paper is as follows. In Section 2, we cover previous

studies on portfolio theory and the challenges with large portfolios. In

Section 3, we address all decisions made when cleaning and adjust-

ing the data. In Section 4, we establish key definitions and cover the

methodology behind Ao et al.’s model. In Section 5, we cover a simu-

2
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lation analysis and an empirical analysis as well as a discussion of the

results. Last, in Section 6, we conclude the thesis.

3



2 Literature

2 Literature

In this section we cover the academic literature and existing alternative

methods based on the mean-variance portfolio problem proposed by

Markowitz (1952).

2.1 Literature review

Markowitz’s mean-variance portfolio theory remains quite relevant to

this day for both research and practice. This theory depends only on

the expected mean and covariance matrix of asset returns. Since these

parameters cannot be observed in the real world, the mean and co-

variance matrix have to be estimated, creating a sample mean and a

sample covariance. The “plug-in” portfolio is a result of these sample

estimates. Thus, portfolios calculated using the sample mean and sam-

ple covariance will hereby be referred to as “plug-in portfolios.” There

are several challenges when estimating these parameters. The use of

a plug-in portfolio is a maximum-likelihood estimator of the optimal

portfolio and is well justified by classical statistics theory. However,

this plug-in portfolio tends to perform worse out of sample. This poor

performance is worsened when the number of assets is increased. Due to

this situation, the mean-variance portfolio proposed by Markowitz has

been widely adopted by others by using better estimates for the sam-

ple mean and sample covariance. The poor performance of the plug-in

portfolio is illustrated in Figure 1

The plug-in portfolio was constructed based on 10 years of monthly log

returns generated from an i.i.d. multivariate normal distribution. The

horizontal lines in the two panels illustrate the prespecified risk level

4
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Figure 1: Performance of the plug-in portfolio

Figure 1 compares the risk and Sharpe ratio of the plug-in portfolio against a risk constraint

and a theoretical maximum Sharpe ratio, respectively. The risk and Sharpe ratios are plotted

on the y-axis of the two panels, while the number of replications are plotted on the x-

axis. Our portfolios are based on data generated from an identical independent distributed

multivariate normal distribution with parameters calibrated from real data (see Section

5.1.2 for details). Twenty-five stocks and three factors form the asset pool, and the number

of observations is set to 240.

and the theoretical maximum Sharpe ratio1. The lines are used as a

benchmark to compare the simulated portfolios against each other.

On the one hand, the left panel in Figure 1 shows that the plug-in

portfolio carries approximately half the risk as the risk constraint 2 in

nearly every replication. On the other hand, the right panel shows that

the Sharpe ratio of the plug-in portfolio is approximately 20% of the

theoretical Sharpe ratio. If we compare the results from Figure 1 to

1We were unable to identify the theoretical maximum Sharpe ratio, so we put 1.5 in

order to illustrate the results.
2The risk constraint is set to be σ = 0.05 which is a bit higher than that to the original

paper, and is the same for all figures.
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the results achieved by Ao et al., we notice a few differences in terms

of both the plug-in portfolio risk versus the constraint and the plug-in

Sharpe ratio versus the theoretical Sharpe ratio.

2.2 Challenges with large portfolios or a large

number of assets

An important topic in finance is estimating and assessing the risk of

a portfolio. This risk can be measured as a volatility matrix, often

known as the covariance matrix. Because modern portfolios often con-

sist of a large number of assets, the mean-variance problem becomes

high-dimensional and poses serious challenges. Fan et al. (2015) ar-

gue that when estimating the risk of large portfolios, the estimation

of the covariance matrix becomes difficult. They show this by creat-

ing a portfolio with 2,000 assets; the covariance matrix involved would

then contain over two million unknown parameters. The assessment of

the estimation accuracy when the estimation errors from more than

two million parameters are aggregated is hard. Thus, large portfolios

with high-dimensional data pose crucial challenges when it comes to

calculating mean-variance efficiency.

Furthermore, if we take the plug-in portfolio as an example, the risk

can be very high compared to the perceived level of risk even when

the portfolio weights are computed based on simulated independent

and identically distributed returns. For this to be optimal, such high

risk should be compensated by a high return. However, this is not the

case, which results in a low Sharpe ratio (e.g. see Ao et al. (2018)).

In their paper, Ao et al. (2018) argue that even in an ideal situation,

6
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when all assumptions regarding the mean-variance optimization are

satisfied, there are still intrinsic challenges for the estimation of the

mean-variance efficient portfolio.

2.3 Existing alternative methods

Due to the challenges with large portfolios, researchers have devised

several other methods to calculate mean-variance efficient portfolios.

Researchers seek to improve portfolio performance by using other es-

timations of the underlying mean and covariance matrix. Thus, the

differences in these strategies are how one estimates the covariance

matrices and the mean. In estimating the covariance matrix, an alter-

native estimator that is widely used is the linear shrinkage proposed

by Ledoit and Wolf (2003). Ledoit and Wolf argue that the sample co-

variance matrix imposes too little structure and is, therefore, seldom

used. Their answer to this problem is to impose some sort of struc-

ture on the estimator. They do this by shrinking the unbiased but very

variable sample covariance matrix towards the biased but less variable

single-index model covariance matrix. In doing so, they obtain a more

efficient estimator. Furthermore, this estimator is invertible and well-

conditioned, which is crucial. More recently, Ledoit and Wolf (2017)

have proposed a new covariance estimator, the nonlinear shrinkage es-

timator. Here they push up the small eigenvalues of the sample co-

variance matrix and pull down the large ones by an amount that is

determined individually for each eigenvalue. Here lies a challenge in

choosing the correct loss intensity of each eigenvalue. However, they

show that when using their estimator with back testing on historical

data, their estimator outperforms previously suggested estimators and

7
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in fact dominates their linear estimator.

For estimating the mean, Black and Litterman (1990) present a new

model where they compare their outlook for the asset market with ex-

pected asset returns based on the capital asset pricing model. This ap-

proach has been further developed by Lai et al. (2011), whose solution

opens new possibilities for solving the portfolio optimization problem in

cases where the means and covariances for the next investment period

is unknown. Lai et al.’s solution only requires the posterior mean and

second moment matrix of the return vector for the next period, which

then can be combined with the Black-Litterman approach to develop

a Bayesian model with good predictive properties and to maximize a

certain utility function.

To improve portfolio performance, other methods have also been in-

corporated. Some of these methods involve modifying the original op-

timization by imposing certain restrictions on the portfolio weights.

This research is mainly focused on the global-minimum-variance port-

folio. Jagannathan and Ma (2003) argue that constructing a minimum-

risk portfolio, which is subject to the constraint that portfolio weights

should be positive, is equivalent to constructing a portfolio without any

constraints on portfolio weights after the covariance matrix has been

modified in a particular way. Furthermore, they show through simula-

tion that imposing a non-negativity constraint to the portfolio weights

could substantially benefit the performance even if the constraints are

wrong.

All the aforementioned methods should lead to improved portfolio per-

formance, but there are still challenges that remain. In Figure 2, we

8
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Figure 2: Performance of the nonlinear shrinkage portfolio

Figure 2 compares the risk and Sharpe ratio of the plug-in portfolio and nonlinear shrinkage

portfolio against a risk constraint and a theoretical maximum Sharpe ratio, respectively.

The portfolios are constructed the same way and use the same data, as explained in Figure

1.

illustrate the result of implementing the proposed nonlinear shrinkage

method by Ledoit and Wolf (2017), and compare it to the plug-in port-

folio. We observe that the nonlinear shrinkage method carries slightly

more risk than the plug-in, but still only half the risk as the risk con-

straint. The difference in terms of the Sharpe ratio is nearly nonexistent.

2.4 The MAXSER

MAXSER was developed by Ao et al. (2018) and it is a new method-

ology to estimate the mean-variance efficient portfolio. This model can

be applied as a general approach to various situations when the number

of assets is large. In their paper, Ao et al. show that using this model,

under mild assumptions, will achieve mean-variance efficiency and sat-

9



2 Literature

isfy the risk constraint. According to Ao et al. (2018), MAXSER is the

first methodology that can achieve these two objectives at the same

time for large portfolios. Furthermore, they make several other contri-

butions such as the equivalent unconstrained regression representation

of the mean-variance portfolio problem as well as optimal portfolios

when they consist of assets only and when factors are included.

Figure 3: Performance of the MAXSER portfolio

Figure 3 compares the MAXSER portfolio against the plug-in portfolio and nonlinear

shrinkage portfolio. The portfolios are constructed the same way and use the same data as

explained in Figure 1 and 2. The replications were conducted 100 times.

In Figure 3, we observe that the constructed MAXSER portfolio out-

performs the others in terms of the Sharpe ratio, but it fails to control

for risk as efficiently as the others do.

In this thesis, we will use this model to check whether Ao et al.’s results

in achieving mean-variance efficiency and the ability to control for risk

also applies to the Norwegian stock market.

10
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3 Data

Evaluating large portfolios is a data-centered exercise. This section ex-

plains our decisions when working with data available. We address all

relevant steps regarding data cleaning and adjustments to samples,

with the intention of enabling the interested reader to fully replicate

our study.

3.1 Data cleaning

Forming and testing portfolios with the MAXSER methodology re-

quires stock market and accounting data. Using the definitions of vari-

ables found in 4.1, we needed data containing monthly observations of

stock prices and market capitalization, as well as data on a company’s

book value of equity and the risk-free rate. Since we have restricted

access to such data, the financial database for Norwegian academic in-

stitutions, TITLON, is the best source of data for this analysis. The

TITLON database offers data on daily stock prices from 1980 to the

present. In addition, TITLON offers sufficient accounting data from

1997 to 2019. As our analysis requires the use of the three-factor model

which consists of accounting-based factors, our analysis is limited to

the time period from June 1997 to June 2019, a total of 263 months. In

addition, TITLON offers daily data on the risk-free rate. The risk-free

rate has been estimated from the Norwegian overnight weighted aver-

age since 2013 and, before that, from the Norwegian InterBank Offered

Rate.

The raw TITLON data provides a sample of about 2,100,000 stock mar-

ket data points and about 1,400,000 accounting data points. However,

11
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many companies had multiple entries under both the same and different

International Securities Identification Numbers. Thus, we first removed

all duplicated entries from the original sample. Second, to make the

data easier to work with, we merged stock market data and accounting

data into one data frame for the entire period. This data cleaning left us

with about 1,800,000 stock market observations and 662 unique firms

over the period from 1980 to 2019. This data cleaning was conducted

using the programming language R; in particular, the data manipula-

tion package “dplyr” by Wickham et al. (2020) has been used for the

tasks concerning data manipulation and writing algorithms. Cleaning

the data was both long and challenging at times.

Ao et al. (2018) picked 100 stocks at random in their portfolio for their

analysis. This makes their portfolio quite large. However, the Oslo Stock

Exchange Benchmark Index(OSEBX) consists of only 66 stocks. This

implies that our portfolio can consist of 66 stocks at a maximum, but

we could not include all, as that would not be a random selection.

Thus, we estimated that we could create portfolios that consist of at

least 50 random stocks. However, after the data cleaning process, we

found that there were stocks that were missing data. Because stocks

were missing data, we had to exclude them from the portfolio. After

exclusion of the stocks that were missing data, our portfolio could only

have half of the stocks included in OSEBX, implying that our choice

of stocks would be even smaller than before. Our using of Norwegian

data and our selection of possible stocks, the number of which is much

lower than that of Ao et al. (2018), can have a severe impact on our

analysis, causing our results to differ substantially.

12
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3.2 Adjusted prices

The MAXSER methodology considers two scenarios, one of which is

where the asset pool contains only individual stocks. Thus, we needed

the monthly data of each stock traded on the Oslo Stock Exchange up

to the present day. The database TITLON provides daily closing prices

for these companies. Hence, we had to convert these observations into

monthly returns, as seen in 4.1 and 4.2. However, some companies have

either had stock splits, reverse stock splits or paid out dividends over

the time period provided by TITLON. If we neglected this, we would

have errors in our calculations, and our analysis would become biased.

To correct for this, we instead used the adjusted closing price which

takes both dividends and splits into consideration.

3.3 Fama-French three factor model

In addition to considering individual assets, the MAXSER methodology

also considers factor investing in an investment pool. Regarding factors,

we could use any factor identified in the large literature on asset pricing.

However, in this analysis, we have decided to use the Fama-French

three-factor model. This model is specified as

Rit = α +
K∑
j=1

βijfj + ei, (3.1)

where fj’s are factor excess return, βij ’s are the individual stock sensi-

tivities to the factors and ei are the models remaining errors. The fac-

tors included here are small minus big (SMB), high minus low (HML)

and the excess return on the market portfolio, in our case the excess

return on the OSEBX. Monthly data on the Fama-French three factors

13
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can be found on Bernt Arne Ødegaard’s webpage. However, as the use

of his data was cumbersome for us, we decided to use daily data of these

factors provided by TITLON, which we transformed into monthly data.

3.3.1 Small minus big

The additional return received when investing in stocks of companies

with relatively small market capitalization is often referred to as the

“size premium,” which is captured by the SMB factor. This additional

return is computed as the average return of the stocks with the 30%

smallest market capitalization minus the stocks with the 30% largest

market capitalization as shown by Womack and Zhang (2003). A large

capitalization stock outperforms a small capitalization stock if the SMB

factor is negative. A large capitalization stock has outperformed a stock

with small capitalization if the SMB factor is negative.

3.3.2 High minus low

The value premium is measured by the HML factor, which captures the

additional return investors receive by investing in companies with high

book-to-market values, expressed as B/M. Here, the book-to-market

ratio is the value placed on the company by accountants relative to the

value placed by the public. As with the SMB factor, the HML factor

is computed as the average return of stocks with the 50% highest B/M

ratio (typically value stocks) minus the average return of stocks with the

lowest 50% B/M ratio (typically growth stocks) as shown by Womack

and Zhang (2003). In the same manner as the SMB factor, a negative

HML implies that growth stocks have outperformed high value stocks.

14
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3.3.3 Market portfolio

The excess return on the market portfolio is measured by the market

factor, normally expressed as Mkt. This factor is computed as the re-

turn on the market portfolio (in our case, the Oslo Stock Exchange)

minus the risk-free rate. Both these variables are provided by TITLON

but in daily returns. Thus, we had to convert both of them to monthly

returns. How we have done this can be seen in Equation (4.1)

15
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4 Methodology

To examine how the MAXSER methodology performs on portfolios

based on Norwegian stock returns compared to previous models, we

need a solid methodological foundation. This section is aimed at pro-

viding the reader with central definitions and the framework for the

MAXSER model. The last part establishes important tools needed

to empirically evaluate the performance of the model on Norwegian

Stocks.

4.1 Central definitions

4.1.1 Monthly returns

The MAXSER model considers two scenarios, one were the portfolio

consists of only individual assets and the second when factor investing

is allowed. Both scenarios revolve around monthly returns. Thus, we

first have to compute all assets’ compounded daily returns, which is

the percentage change in price from one day to the next:

Daily Returni,d = ln

(
Adjusted pricei,d

Adjusted pricei,d−1

)
, (4.1)

where i represents assets and d days, and we have to convert this into

monthly return, which is computed as follows:

Monthly Returnit = ln

(
Daily Returni,M
Daily Returni,1

)
, (4.2)

where Daily Returni,M is the daily return, M indicates the last day

of the month, while 1 indicates the first day of the month. Equation

(4.2) is used to calculate both the monthly risk-free rate and monthly

market return as well. The calculations were conducted in R using the

Return.calculate function by Peterson and Carl (2020).

16
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4.1.2 Excess return

The model uses stocks’ random excess returns, which are computed as

the assets’ monthly return minus the monthly return of the risk free

rate:

Excess Returni,t = Monthly Returni,t − Risk-Free Ratet, (4.3)

where i indicates assets and t indicates months .

4.1.3 Factor returns

In Scenario II the MAXSER model includes factor return as well as

return on individual assets. The definitions of each factor return is

defined in Section 3.3. But, the computations of each factor return is

defined below:

SMB Returnt = Return on small firmst − Return on big firmst, (4.4)

HML Returnt = Return on high B/Mt − Return on low B/Mt, (4.5)

Market Returnt = Return on OSEBXt − Risk-Free Ratet, (4.6)

where t in (4.4), (4.5), (4.6) indicates months.

4.1.4 Sharpe ratio

The Sharpe ratio is a measure to calculate risk-adjusted returns for a

portfolio, and in our case a measure to compare different portfolios.

The Sharpe ratio is calculated as follows:

Sharpe ratio =
E[Rp]

σp
, (4.7)

where E[Rp] is the expected portfolio return and σp is the standard

deviation of the portfolio excess return.

17
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4.1.5 Spread

When trading in stocks there are certain costs, known as transactions

costs. One of the most known measure for transaction costs is the

spread, where spread is the difference in the best bid price and the best

asking price. A stocks spread is often calculated relative to its price in

order to find the relative spread. The relative spread is calculated as

follows:

Relative spread =
Ask price− Bid price

1
2
(Ask price + Bid price)

, (4.8)

4.2 The MAXSER methodology

4.2.1 An unconstrained regression representation

For any given risk constraint σ, the mean-variance portfolio problem

for a pool of N risky assets is

arg max
w

E(w ′r) = w ′µ subject to Var(w ′r) = w ′
∑

w ≤ σ2 ,

(4.9)

where r = (r1, r2, ..., rN)′ is an asset’s random excess return, and for any

vector v, v′ is the transpose. Furthermore, let µ and
∑

represent the

mean vector and covariance matrix of r, respectively, and the weights

on the portfolio be the vector w.

Then let θ = µ′
∑−1 µ represent the square of the maximum Sharpe

ratio of the optimal portfolio. Following Ao et al. (2018), the optimiza-

tion problem (4.9) can be represented in its dual form, given a return

constraint as:
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arg min
w

w ′
∑

w subject to w ′µ ≥ r∗ = σ
√
θ, 3 (4.10)

where r∗ is the required rate of return.

Thus, the optimal portfolio, w∗, can be expressed as:

w∗ =
σ√
θ

∑−1µ, (4.11)

Because we are working with large amount of data, this becomes high

dimensional and this causes difficulties in estimating the mean and

covariance matrix. Thus, Ao et al. (2018) propose a novel and uncon-

strained regression representation of the mean-variance representation

instead of using plug-in estimates for µ and
∑

in formula (4.11).

Proposition 1. The unconstrained regression 4

arg min
w

E(rc - w′r)2, where rc =
1 + θ

θ
r∗ ≡ σ

1 + θ√
θ
, (4.12)

which equals the mean-variance optimizations in (4.9) and (4.10).

There are several regression representations for the mean-variance port-

folio estimation, but Ao et al. (2018) emphasize that their representa-

tion is very different from existing representations. Their representation

is identical to the mean-variance portfolio problem and unconstrained.

Eliminating the constraint leads to the use of sparse regression, which

becomes helpful for large portfolios due to high dimensionality.

3The equations below are defined by Ao et al. (2018)
4Please note that we assume the propositions listed in this paper are correct. See the

appendix of Ao et al. (2018) for complete proof.
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4.2.2 The sparse regression

The original mean-variance problem can be transformed into an equiv-

alent and unconstrained regression problem by proposition 1. To uti-

lize this regression we need the sample version of arg min
w

E(rc - w′r)2

which is:

arg min
w

1

T

T∑
t=1

(rc −w′Rt)
2, (4.13)

where Rt = (Rt1, ..., RtN)′, t = 1, ..., T . Implying that Rt is the return

matrix including i.i.d copies of the return vector r for all N assets.

When dealing with a high-dimensional regression, estimating the coef-

ficients becomes nearly impossible. In order to solve the problem one

would require to set an upper bound on the `1-norm of the regression

coefficients. Which for us, corresponds to assuming ||w∗||1 is bounded,

where ||v||1 =
N∑
i=1

|vi| for any v = (v1, ..., vN)′. We adopt the sparse

regression technique called LASSO by Tibshirani (1996), in order to

estimate the optimal portfolio w∗:

w(rc) = arg min
w

1

T

T∑
t=1

(rc−w′Rt)
2 subject to ||w||1 ≤ λ, (4.14)

where λ represents the `1-norm constraint tuning parameter. However,

the solution obtained in equation (4.14) is infeasible because the re-

sponse variable rc is unknown. Thus, it needs to be estimated. Details

surrounding the estimation of the response variable can be found in

section 4.3.1.

In theory, investors can invest in assets and factors. This implies that

they can invest only in assets, only in factors or both. Due to this we

will look at two scenarios. In Scenario I we will look at an asset pool
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which only consists of individual assets, while in Scenario II we will

look at the case where factor investing is allowed leading to the asset

pool comprises both individual stocks and factors. We will mainly focus

on the second scenario in our analysis later on.

4.3 Scenario I: When the asset pool comprises in-

dividual assets only

4.3.1 Estimating the maximum Sharpe ratio and the regres-

sion response

The response variable needs to be estimated, as it is unknown in the

regression representation and the estimation of the maximum Sharpe

ratio is closely related to this variable. To estimate this we randomly

pick 25 assets, from OSEBX, with 15 years of data by using the sample

function in R. Then, by creating a function in R that extracts 120

months from the data-pool, hereby extractRand, we generate a random

10 year period, which will be the same for all the assets. We then create

the R = (Rt1, ...,RTN )′ matrix, where t = 1, ..., T and R are i.i.d

copies of the monthly excess return vectors r, for all N assets. From

here we calculate the sample mean and sample covariance, denoted as

µ̂ and
∑̂

respectively. Now the unbiased estimator, proposed by Kan

and Zhou (2007), is the following:

θ̂ =
(T −N − 2)θ̂s −N

T
, (4.15)

where θ̂ = µ̂′
∑̂−1

µ̂ is the sample estimate of θ = µ′
∑−1 µ.
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Proposition 2. Ao et al. (2018) shows that the response variable we

will be using in the unconstrained regression becomes:

r̂c = σ
1 + θ̂√

θ̂
. (4.16)

They emphasize that the estimation of θ is not obtained through consis-

tently estimating µ and
∑

, which would be impossible without impos-

ing strong structural assumptions on them. However, we have estimated

θ directly which makes the estimator θ̂ consistent.

4.3.2 A LASSO-type estimator

Now that we have consistently estimated the response variable, rc in

proposition 2, following (4.14) we can construct our feasible LASSO-

type estimator ŵ∗ = (ŵ∗1, ..., ŵ
∗
N)′ as follows:

ŵ∗ = arg min
w

1

T

T∑
t=1

(rc −w′Rt)
2 subject to ||w||1 ≤ λ, (4.17)

where the expression for ŵ∗ is the basis of the MAXSER methodology.

4.4 Scenario II: When factor investing is allowed

An investor might be able to invest in more than just assets, as they

might be able to invest in factors as well. This implies that factors must

be included in the asset pool. We will now illustrate the implementation

in the case where one can also invest in factors. To do this consider the

following model:

ri = αi +
K∑

j=1

βijfj + ei =
K∑

j=1

βijfj + ui, (4.18)
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where the excess return on factors are denoted as fj and each stocks

individual sensitivity to the factors are denoted as βij’s, the remain-

ing errors in the model which are independent from the factor returns

are denoted as ei. We will allow the idiosyncratic returns (ui) to ad-

mit factor structure, unlike the approximate factor model where the

“idiosyncratic returns” (ui = αi + ei) are assumed to have no factor

structure. The factors in the model can be any factors identified in

the literature of asset pricing. Statistical factors based on historical re-

turns of larger asset pools can also be used. However, we have chosen

the Fama-French three factor model (FF3) which is the same as Ao

et al. (2018) are using in their analysis. The expression above (4.18)

can be rewritten into a compact form as:

r = βf + u, (4.19)

where β = (βij)NxK , f = (f1, ..., fK)′, and u = (u1, ..., uN)′. We denote

the mean of factor returns as µf , the mean of idiosyncratic returns u as

α = (α1, ...,N )′. We denote the covariance matrix of factor returns and

idiosyncratic returns as
∑

f and
∑

u respectively. Following this, the

return vector r will have the following mean µ and covariance matrix∑
:

µ = βµf +α ∑ = β∑
fβ
′ + ∑

u. (4.20)

Now we can include the full pool of factors and assets and denote the

mean and covariance matrix of this return as:

µall =

µf
µ

 , ∑
all =

 ∑
f β′

∑
f∑

fβ
∑
 . (4.21)

The aim now is to find the optimal allocation of weights for both factors

and individual assets (wf ,w), where weights on the factors and weights
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on the individual assets are denoted wf and w respectively. Ao et al.

(2018) show that this optimal allocation leads to a third proposition.

Proposition 3. For any given risk constraint level σ, the optimal port-

folio wall = (wf ,w) is given by:

σ

(√
θf
θall
w∗f −

√
θu
θall
β′w∗u,

√
θu
θall
w∗u

)
, (4.22)

where θf = µ′f
∑−1
f µf , θu = α′∑−1u α, and θall = µ′all

∑−1
allµall are the

squared maximum Sharpe ratios of portfolios on the factors, the id-

iosyncratic components, and the full set of factors and individual assets,

respectively. Moreover, w∗f and w∗u admits the following expressions:

w∗f =
1√
θf

∑−1
f µf , w∗u =

1√
θu

∑−1
u α. (4.23)

Proposition 3 implies that we need estimates for θf , θu, θall,w
∗
f and w∗u

to be able to estimate the optimal portfolio. How these are estimated

will be covered in the next section.

4.4.1 Estimating the maximum Sharpe ratio and the regres-

sion response

Now we have to estimate the response variable to use in the uncon-

strained regression when factors are included. To estimate this we ran-

domly pick 25 assets, from OSEBX, with 15 years of data by using the

same sample function mentioned earlier. Then, we use extractRand

once more, in order to obtain a 10 year time period, which will be

the same for all assets. This will be identical to what we did in Sce-

nario I. However, we now have to include factors as well. Since we are

using the Fama-French three factor model there are three factors to
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be included, high minus low (HML), small minus big (SMB) and the

market factor. The asset return and factor return can be denoted as

Rt = (Rt1, ...,RtN )′ and Ft = (F t1, ...,F tK)′ respectively. Here both

the asset return and factor return have the same time horizon. The

β coefficient in (4.19) is estimated by regressing the return matrix of

the individual assets, R, on the factor return matrix, F , and the esti-

mated coefficient matrix is stored and denoted as β̂. The estimator of

U = R− Fβ is thus Û = (Û 1, ..., ÛT )′ = R− F β̂. Now we calculate

the sample mean and sample covariance of the factor return and denote

them as µ̂f and ∑̂
f respectively.

We can now calculate the three Sharpe ratios needed to calculate the

response variable, these are
√
θf ,
√
θu and

√
θall, which will be the

maximum Sharpe ratio on factors, idiosyncratic returns and all assets

respectively. Due to the fact that there is only three factors the maxi-

mum Sharpe ratio on the factors can be estimated consistently by its

plug-in estimator:

θ̂f = µ̂′f
∑̂−1
f µ̂f . (4.24)

The next two Sharpe ratios,
√
θu and

√
θall, involves a large number of

assets and are thus high dimensional. The issue of high dimensionality

can be solved by adjusting for bias in the plug-in estimator. Ao et al.

(2018) defines the following proposition:

Proposition 4. Define the following estimator of
√
θall:

θ̂all =
(T −N −K − 2)θ̂s,all −N −K

T
, (4.25)

where θ̂s,all = µ̂′all
∑̂−1
all µ̂all is the sample estimate of θall.
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The last Sharpe ratio is a bit trickier to estimate. Due to the fact that

the idiosyncratic returnsU is not observable in our model. One solution

would be to use the sample estimate, U . However, applying (4.25) to

the sample estimate of U will become biased. However, we can use

model (4.19), and through this it can be shown that

θall = θf + θu. (4.26)

Now, through (4.24) and Proposition 4, θu and θf can both be estimated

consistently. This leads to the following proposition.

Proposition 5. Define θ̂u = θ̂all− θ̂f . Using proposition 4, rc, becomes

rc = (1 + θu)/
√
θu, which leads to the estimate of the response variable

becoming:

r̂c =
1 + θ̂u√

θ̂u
. (4.27)

4.4.2 Estimating the optimal portfolio on idiosyncratic com-

ponents

Since the idiosyncratic returns are not observable, we have to use the

estimated idiosyncratic returns Û . However, since we have estimated

the response variable we can consistently estimate the weights on the

idiosyncratic components using the LASSO-type estimator in (4.17) as

the following:

ŵ∗u = arg min
w

1

T

T∑
t=1

(r̂c −w′Û t)
2 subject to ||w||1 ≤ λ, (4.28)

where λ represents the `1-norm constraint tuning parameter.

We have now consistently estimated θf , θu, θall and w∗u. However, there

is one final item which needs to be estimated, namely the weights on
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factors, w∗f . This is relatively easy since there are few factors, and thus

we can compute a consistent estimator on the factor weights using the

plug-in estimator as

ŵ∗f =
1√
θ̂f

∑−1
f ûf . (4.29)

Now, combining all results together with Proposition 3 we achieve our

estimator for the optimal full portfolio ŵall:

ŵall = (ŵf , ŵ) = σ

√ θ̂f
ˆθall
ŵ∗f −

√
θ̂u
ˆθall
β̂
′
ŵ∗u,

√
θ̂u
ˆθall
ŵ∗u

 . (4.30)

4.4.3 Choosing λ in (4.17) or (4.28)

When implementing MAXSER it is important to select an appropriate

λ in (4.17) or (4.28). Since the goal of the MAXSER is to meet the

risk constraint, the selection of λ must be such that the risk of the

estimated portfolio is close to the given risk constraint. The underlying

covariance matrix ∑ or ∑
all is unknown in practice. Thus, in order

to circumvent this difficulty, a cross-validation procedure is used. A

10-fold cross-validation procedure randomly split the sample into 10

groups in order to form 10 testing sets. For each testing set, the rest

of the observations form the training set. Each training set i, has a

`1-norm ratio ζ, which is defined as:

ζ =
||w||1
||wols||1

. (4.31)

Let ζ vary from 0 to 1 to obtain the whole solution path of (ŵ∗ζ)06ζ61

((ŵ∗all,ζ)06ζ61 in scenario II), and find the value ζ(i) such that the dif-

ference in the risk computed using the testing set and the given risk

constraint is minimized in the estimated portfolio. The λ̂ is then the

average of (λ(i), i = 1, ..., 10).
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4.4.4 Implementation steps of MAXSER

When implementing the MAXSER methodology there are several steps

to follow. However, as the number of assets with enough data is rela-

tively low compared to that of the S&P500 we do not need to conduct a

subpool selection procedure. Thus, this step can be dropped from both

scenarios.

Scenario I: When the asset pool consist of stocks only

1. First step is to estimate the response variable, r̂c, in (4.16). To do this

we need to compute the square of the maximum Sharpe ratio, θ̂

2. Second step is to use cross validation and choose the appropriate tuning

parameter, λ and denote this as λ̂

3. Lastly, use the selected λ̂ in the LASSO-type estimator and solve for

the MAXSER portfolio ŵ∗ in (4.17)

Scenario II: Asset pool consists of both assets and factors

1. First step is to obtain β̂ and Û by performing an OLS regression of

asset returns on factor returns.

2. Second step is to estimate the squares of the maximum Sharpe ratios

of θ̂f , ˆθall and θ̂u to estimate the response variable, r̂c, in (4.27)

3. Third step is again to use cross validation and choose the appropriate

tuning parameter, λ and denote this as λ̂

4. Fourth step is to use the selected λ̂ in (4.28) and solve for ŵ∗u

5. Lastly, obtain the MAXSER portfolio ŵall by computing ŵf and plug

in this estimate and the previous ones into (4.30)
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5 Analysis

In this section, we cover a simulation analysis and an empirical analy-

sis of our data. Ao et al. (2018) show that the MAXSER methodology

performs better than previous models on US stock returns. Thus, our

analysis was carried out with the aim of checking whether this is the

case when their methodology is implemented on Norwegian stock re-

turns.

5.1 Simulation analysis

5.1.1 Benchmark portfolios

In our analysis, we have chosen the same strategies that Ao et al. (2018)

use for comparison in their analysis. These strategies include the plug-

in, linear shrinkage and nonlinear shrinkage portfolios discussed above.

Table 1 gives a complete list of the strategies used for comparison.

One special portfolio among the portfolios under comparison is the

“Factor portfolio,” which here is the mean-variance portfolio on factors.

This portfolio is special because it only contains a small number of

assets, three in our case. Since the number of assets is low, the plug-in

formula will yield nearly optimal portfolio weights. This is because we

are no longer in a high-dimensional world. By including this portfolio,

we can compare our results and check whether additional investments

in assets are beneficial. The Factor portfolio is defined as:

ŵF ac =
σ√

µ̂′f
∑̂−1

f µ̂f

∑̂−1

f
µ̂f (= σŵ∗f ), (5.1)
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Table 1: List of benchmark portfolios and their abbreviations. The mean-variance

portfolio, represented by ”MV”, and the global minimum variance portfolio, repre-

sented by ”GMV”.

Portfolio Abbreviation

Plug-in MV on factors Factor

MV/GMV with different covariance matrix estimates

MV with sample cov MV-P

MV with linear shrinkage cov MV-LS

MV with nonlinear shrinkage cov MV-NLS

MV with nonlinear shrinkage cov adjusted for factor models MV-NLSF

GMV with linear shrinkage cov GMV-LS

GMV with nonlinear shrinkage cov GMV-NLS

MV with short-sale constraint

MV with sample cov and short-sale MV-P-SS

MV with linear shrinkage cov and short-sale MV-LS-SS

MV with nonlinear shrinkage cov and short-sale MV-NLS-SS

MV with `1-norm constraint and cross-validation

MV with sample cov and `1-CV MV-P-L1CV

MV with linear shrinkage cov and `1-CV MV-LS-L1CV

MV with nonlinear shrinkage cov and `1-CV MV-NLS-L1CV

here, µ̂f and
∑̂−1

f are the sample mean and sample covariance matrix

of the factor returns, respectively.

The other portfolios are constructed using mean-variance (MV) and

global minimum-variance (GMV), but are replaced by the covariance

matrix with the sample linear shrinkage estimator by Ledoit and Wolf
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(2003) and the nonlinear shrinkage estimator by Ledoit and Wolf (2017)

in the respective MV and GMV portfolio weights formulas. In addition

to the regular mean-variance portfolios with different covariance esti-

mators, we include portfolios with either a short-sale constraint or a

`1-norm constraint. These portfolios use the sample covariance, linear

shrinkage covariance and the nonlinear shrinkage covariance. The short-

sale constraint implies that an investor can only hold long positions in

their portfolio. These portfolios are included so that they hold the same

benefit (in terms of risk control) as the MAXSER portfolio. In this way,

one can compare the result not solely based on the constraint imposed

on the portfolios, but also based on the fundamental methodology of

the MAXSER model.

5.1.2 Simulation comparison

In this section, we present our results when the data are generated

under a multivariate normal distribution. Here, the data was generated

using the mvnorm command from the MASS package in R by Venables

and Ripley (2002). This command allows us to generate new data for all

assets included in our asset pool. This implies that we can create new

return matrices for our asset pool. We then constructed our portfolios

based on the new return matrices. For our simulation comparison, we

created 1,000 entirely different return matrices, with both T = 120

and T = 240, which are calibrated using real data, namely µall and

∑
all from section 4.4. When implementing the MAXSER methodology,

we need both a return matrix with stock returns and a return matrix

with factor returns. This implies that we have to generate 1,000 new

return matrices on both stock returns and factor returns. This is done
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as mentioned above, but instead of using µall and ∑
all, we generated

stock return µ and ∑, and the factor returns are generated using µf

and ∑
f . The formulas for these parameters can be found in section

4.3.1 and 4.4. The level of risk constraint is set as σ = 0.05, because

the number of stocks is relatively low compared to the study we are

replicating. Thus, when implementing the MAXSER methodology, we

start from step one described in Section 4.4.4.

In our simulation analysis, we performed a portfolio selection on 1,000

replications to evaluate the portfolio performance in terms of both

risk and the Sharpe ratio. To calculate the risk and Sharpe ratios for

the mean-variance portfolios (except L1CV), we created an empty list

and we used the portfolio.optim function, from the tseries package by

Trapletti and Hornik (2019), on each simulated set of returns with

the corresponding covariance matrices for each strategy. Each iteration

was saved in the empty list. Then, we extracted the portfolio returns,

portfolio weights, and the standard deviations from the newly created

list. By finding the mean for the standard deviations, we produced the

“Risk” column in Table 2. We found the Sharpe ratio by dividing the

returns by the corresponding standard deviation, and we calculated the

mean of all the Sharpe ratios in order to produce the “Sharpe Ratio”

column in Table 2.

We used the SRISK function by Koenker (2020) on the sample returns,

by setting our λ = 0.528 and r̂∗ = 0.0412 in order to find the mean-

variance portfolios with `1-norm constraint. Furthermore, we extracted

the returns and standard deviations by using sapply. Once we extracted

the standard deviations and returns, we determined the values for the

Risk column by taking the mean of the standard deviations. We deter-
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mined the values for the Sharpe Ratio column by dividing the returns

by the standard deviations and taking the mean of that quotient.

The global minimum-variance portfolios were found by first generating

data using the mvrnorm function, then by finding the covariance ma-

trix of each iteration. We find the covariance matrices in order to use

the minvar function by Schumann (2020), which finds the portfolio

weights that minimize the variance. The expected return was calcu-

lated by using the mapply function on the generated returns and the

the optimal portfolio weights. To determine the risk, we first had to

obtain the variance of each portfolio. This was done by extracting the

attributes from the minvar function. Once we had the variance, we

could find the risk by taking the square root of the variance on each

corresponding portfolio before finding the mean. The Sharpe ratio was

found by using the same method as with the mean-variance portfolios.

The comparison results for sample sizes T = 120 and T = 240 are

summarized in Table 2.

When T = 120, the risk of the MAXSER portfolio is relatively high

compared to the standard mean-variance portfolio with plug-in esti-

mates. Similarly, the factor portfolio is fairly close to the given risk

constraint because it is a low-dimensional portfolio where the plug-in es-

timator would be sufficient. Next, for the mean-variance portfolios with

different covariance matrix estimates, we observe that none of them vi-

olate the given risk constraint. In fact, they are relatively low compared

to the risk constraint. The risks of the plug-in, linear shrinkage and non-

linear shrinkage are approximately 66%, 46% and 58% lower than the

risk constraint, respectively. By imposing a short-sale constraint, we

see that the risk constraint is still not violated for any of them, but the
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Table 2:

Summary of risks and Sharpe ratios of the portfolios under comparison based on

1,000 replications. The sample size of the returns are T = 120 and T = 240, and

are generated from a multivariate normal distribution. The risk constraint is set

to be σ = 0.05. The average values of the Sharpe ratio and risk of each portfolio

are recorded, and its standard deviation(in brackets)

σ = 0.05 T = 120 T = 240

Portfolio Risk Sharpe Ratio Risk Sharpe Ratio

Factor 0.031 (0.002) 0.129 (0.094) 0.032 (0.002) 0.129 (0.068)

MAXSER 0.077 (0.118) 0.653 (0.129) 0.076 (0.013) 0.662 (0.081)

MV/GMV with different covariance matrix estimates

MV-P 0.017 (0.002) 0.308 (0.313) 0.018 (0.001) 0.286 (0.219)

MV-LS 0.027 (0.002) 0.189 (0.202) 0.028 (0.001) 0.170 (0.132)

MV-NLS 0.021 (0.002) 0.233 (0.272) 0.022 (0.001) 0.230 (0.180)

GMV-LS 0.026 (0.002) 0.175 (0.157) 0.029 (0.001) 0.166 (0.093)

GMV-NLS 0.020 (0.002) 0.229 (0.163) 0.022 (0.001) 0.212 (0.101)

MV with short-sale constraint

MV-P-SS 0.025 (0.003) 0.209 (0.212) 0.026 (0.002) 0.206 (0.157)

MV-LS-SS 0.031 (0.002) 0.165 (0.175) 0.031 (0.002) 0.154 (0.132)

MV-NLS-SS 0.027 (0.002) 0.184 (0.209) 0.027 (0.002) 0.189 (0.146)

MV with `1-norm constraint and cross-validation

MV-P-L1CV 0.016 (0.001) 0.327 (0.146) 0.017 (0.000) 0.299 (0.090)

MV-LS-L1CV 0.026 (0.002) 0.175 (0.163) 0.028 (0.001) 0.160 (0.096)

MV-NLS-L1CV 0.020 (0.001) 0.232 (0.166) 0.022 (0.001) 0.215 (0.101)
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risk is marginally larger than without the short-sale constraint. This

indicates that, concerning risk control, the cross-validation procedure

might not have worked as effectively as for the MAXSER portfolio.

Furthermore, we can see from the simulations that the Sharpe ratios

of the mean-variance portfolios are very low compared to MAXSER;

in fact, the mean-variance with plug-in estimates performs the best

among them, even when considering different constraints. This result

is a contradiction to what Ao et al. (2018) found in their analysis. This

might be because our asset pool consists of fewer assets or because of

the overall performance of the Oslo Stock Exchange.

When T = 240, most of the portfolios perform worse than when

T = 120, both in terms of risk and the Sharpe ratio. However, the

MAXSER portfolio is one of the few portfolios that achieves better

results both in terms of lower risk and higher Sharpe ratios. However,

the improvements are marginal. Furthermore, we can see that when

T = 240, we still get the same performance results for both risk and

the Sharpe ratio. The mean-variance portfolio with plug-in estimates

performs best in terms of risk, while the MAXSER portfolio performs

best in terms of the Sharpe ratio. Moreover, the MAXSER portfolio

achieves the highest Sharpe ratio out of the other portfolios tested

both when T = 120 and T = 240.

In short, the MAXSER portfolio achieves significantly higher Sharpe

ratios compared to the other benchmark portfolios, both when T = 120

and T = 240, , but it fails to efficiently control risk as the risk is always

higher than the given risk constraint.
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5.2 Empirical analysis

In this section, we investigate the performance of the MAXSER

methodology based on the out-of-sample return of the stocks included

in the two Oslo Stock Exchange indices OBX and OSEBX, and we

compare our results to that of previous models. The portfolios used for

comparison are the same as those used in the simulation analysis in Sec-

tion 5.1.1, in addition to the index and an equally weighted portfolio.

The results are outlined in Section 5.2.1 and 5.2.5

5.2.1 OBX

First, we evaluated the MAXSER strategy based on the stocks included

in the OBX Index, where OBX is an index consisting of the 25 most

liquid shares (ranked after six months of trading) and the Fama-French

three factors. We began by retrieving all the stock data from the com-

panies currently listed on the OBX Index, and then we formed an asset

pool consisting of all the stocks. Using the asset monthly excess return

of each stock during the prior T -months training period, we performed

a one-step-ahead forecast using a rolling-window scheme. Here, T rep-

resents the sample size. In our case, T = 30. If a stock has missing data

in the prior T -months training period, it gets excluded from the asset

pool. This led to several stocks being excluded from our asset pool,

and our asset pool consisted of 19 stocks and the Fama-French three

factors. Using the one-step-ahead forecast, we could form a return ma-

trix consisting of our out-of-sample data, which would be our testing

data. Next, we calculated the standard deviation of the monthly excess

return on the OBX Index in the first training period in order to obtain

the risk constraint. Thus, the risk constraint σ was set as 0.1. Last,
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we created the portfolios for comparison. These were created using the

prior T -months training data and were rebalanced with new optimal

weights monthly. Our findings based on these portfolios are recorded

in Table 3.

5.2.2 Performance evaluation

The performance of the MAXSER portfolio and the other benchmark

portfolios is evaluated based on their Sharpe ratio and risk, which are

computed from their respective (out-of-sample) monthly returns. We

conducted two testing periods: the first was a 10 year period from 2009

to 2018, and the second one was a 5 year period from 2014 to 2018.

Thus, we had 120 and 60 out-of-sample monthly returns, respectively,

for each strategy.

To verify the statistical significance of the advantage of the MAXSER

portfolio, we conducted hypothesis testing based on the differ-

ence between the MAXSER portfolio’s Sharpe ratio and the other

benchmark portfolios’ Sharpe ratio. This test was conducted by us-

ing the sharpeTesting command in R, included in the package

PeerPerformance by David and Boudt (2020). The results is outlined

in the tables under the pvalue. The test is formed as:

H0 : SRMAXSER 6 SR0 vs H1 : SRMAXSER > SR0, (5.2)

where SRMAXSER denotes the Sharpe ratio of the MAXSER port-

folio, and SR0 denotes the comparable portfolio’s Sharpe ratio. The

sharpeTesting function is a correction by Ledoit et al. (2002) to the

test of Jobson and Korkie (1981); it tests the Sharpe ratio difference

between two portfolios.
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5.2.3 Comparison summary

Table 3:

Outlines the risk, Sharpe ratio and p−values of the Sharpe ratio test (5.2) for the

selection of comparison portfolios on the OBX Index and the FF3 factors. The two

testing periods are 2009-2018 and 2014-2018. The risk constraint is calculated as

the standard deviation of the monthly excess returns from July 2006 - December

2008 on the OBX Index, the first training period.

Portfolio performance based on OBX constituents and FF3 factors

OBX constituents and FF3 (without transaction costs) T = 30 σ = 0.1

Period 2009-2018 2014-2018

Portfolio Risk Sharpe Ratio p-value Risk Sharpe Ratio p-value

Index 0.044 0.215 0.189 0.033 0.170 0.001

Equally Weighted 0.045 0.261 0.370 0.048 0.354 0.003

Factor 0.019 0.247 0.259 0.018 0.278 0.001

MAXSER 0.176 0.407 - 0.106 0.890 -

MV/GMV with different covariance matrix estimates

MV-P 0.019 0.266 0.417 0.011 1.282 0.055

MV-LS 0.022 0.247 0.309 0.023 0.546 0.036

MV-NLS 0.017 0.265 0.368 0.014 0.861 0.862

GMV-LS 0.019 0.446 0.823 0.019 0.573 0.050

GMV-NLS 0.014 0.508 0.557 0.012 0.664 0.161

MV with short-sale constraint

MV-P-SS 0.019 0.246 0.335 0.012 1.077 0.188

MV-LS-SS 0.024 0.201 0.191 0.023 0.527 0.025

MV-NLS-SS 0.020 0.189 0.170 0.014 0.769 0.406

MV with `1-norm constraint and cross-validation

MV-P-L1CV 0.012 0.529 0.467 0.012 0.596 0.204

Here, p < 0.1 represents the statistical significance at the 10% significance level, p < 0.05

at the 5% significance level and p < 0.01 1% at the significance level.

Table 3 provides a summary of the risk, Sharpe ratio and p-value for

the MAXSER portfolio and for each benchmark portfolio. From the

table we observe the following.
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During the first testing period, we can see that the risk of the MAXSER

portfolio is much higher than the given risk constraint of 0.1 and is al-

most four times higher than that of the index during the same period.

This might imply that the MAXSER portfolio is not able to effectively

control for the risk constraint. Furthermore, we observe that nearly

every mean-variance portfolio has almost 10 times lower risk than the

MAXSER portfolio, making the mean-variance portfolios attractive to

risk-averse investors. When comparing the Sharpe ratios, we observe

that the MAXSER portfolio does not achieve the highest Sharpe ratio

out of the comparable portfolios. In fact, the global minimum-variance

portfolios and the mean-variance portfolio with `1-norm constraint and

cross validation are the portfolios that achieve the highest Sharpe ratio,

and for much lower risk. Thus, this makes these portfolios attractive

to many investors. Furthermore, this might imply that there is no ad-

vantage of using the MAXSER methodology to create a portfolio com-

prised of stocks traded on the OBX Index. We observe that the portfolio

achieving the lowest Sharpe ratio is the mean-variance portfolio with a

nonlinear covariance estimate and a short-sale constraint.

Furthermore, when observing data in the second testing period, we can

see that the risk of the MAXSER portfolio is still higher than that

of the benchmark portfolios. However, when comparing it to the first

training period, we can see that the risk is closer to the given risk con-

straint. This might imply that the MAXSER methodology is able to

effectively control for the given risk constraint during the second pe-

riod. However, this change might be because the first training period

contains data from the financial crisis, which the second training period

does not. However, there does not seem to be such an impact in risk
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regarding the other portfolios, justifying MAXSER’s ability to control

for risk. Furthermore, the risk of the benchmark portfolios is still very

low compared to MAXSER. Next, looking at the Sharpe ratio, we ob-

serve an increase for almost all portfolios. Compared to the first testing

period, MAXSER still does not achieve the highest Sharpe ratio. How-

ever, now the standard mean-variance with plug-in estimates both with

and without constraints achieves a higher Sharpe ratio.

By looking at the p-values from the Sharpe ratio test, we can see that

they are large for all the portfolios during the first testing period and

large for all mean-variance and global minimum-variance portfolios dur-

ing the second testing period. This implies that the eventual advantages

of using the MAXSER methodology when creating portfolios is not

economically large or statistically significant when looking at the OBX

Index.

5.2.4 Accounting for transaction costs

Next, we evaluate the performance of the portfolios when transaction

costs are taken into account by computing the net returns of transaction

costs. Following the formula used by Ao et al. (2018),the portfolio net

returns of transaction costs are computed as

rnet(t) =

(
1−

∑
j

ct,j | wj(t+ 1)− wj(t+) |

)
(1 + r(t))− 1, (5.2.1)

where wj(t+1) is the weight of asset j at the beginning of period t+1,

and wj(t+) is the weight of the same asset at the end of period t. ct,j is a

cost level that measures the transaction cost per NOK traded for asset

j, and r(t) is the portfolio return without transaction cost in period t.

The cost level ct,j is based on the work of Ødegaard (2009). We assume
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the average relative spread price for the period from 2000 to 2008 is

applicable through 2018 when calculating the net return of transaction

costs.This average relative spread is used on all portfolios, when looking

at both OBX and OSEBX. However, there might be a different cost

level when trading in factors. Furthermore, Ao et al. (2018) use a cost

level that changes during the testing period, which affects their results.

The fact that we use the same cost level over the entire testing period

and for all assets might have an impact that makes our results differ

from their analysis.

Compared to the results without transaction costs, we see an increase in

risk for almost all portfolios for both testing periods and a decrease in

the Sharpe ratio for all portfolios except the equally weighted port-

folio. Furthermore, looking at Table 4, we can see that the global

minimum-variance portfolio with linear shrinkage covariance outper-

forms the other portfolios in terms of Sharpe ratios for both periods.

We also observe that the MAXSER portfolio is severely impacted by

the transaction costs, both in terms of an increase in risk and also a

severe reduction in the Sharpe ratio. The MAXSER portfolio dropped

from one of the best-performing portfolios, when transaction costs were

excluded, to one of the worst-performing portfolios when transaction

costs were included. Furthermore, as in the case without transaction

costs, we observe that the MAXSER portfolio during the second test-

ing period is much closer to the given risk constraint, showing the

MAXSER methodology’s ability to control for risk.

There is an impact on the p-values when transaction costs are included

during both periods. This implies that when transaction costs are in-

cluded, the advantage of using MAXSER compared to some of the
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benchmark portfolios is statistically significant.

First, by analyzing the use of MAXSER on the OBX Index, we see

that the risk of the MAXSER portfolio is very high compared to the

other benchmark portfolios. The reason is that the MAXSER method-

ology tries to control for risk. Thus, when calculating the weights, the

main goal is to minimize the difference between the portfolio’s risk and

the given risk constraint. Therefore, the risk of this portfolio will lie

around the given risk constraint if it is able to effectively control for

risk. However, the other portfolios have no given risk constraint, and

this might be why they are so much lower than the MAXSER portfolio.

Second, we can see that the advantage of using the MAXSER method-

ology when creating a portfolio is not statistically significant. A reason

for this might be that the asset pool comprises of so few assets, as

OBX includes only the 25 most liquid stocks and we had to exclude

six of them. Additionally, during the first testing period, the MAXSER

portfolio did not seem to be able to effectively control for the given risk

constraint.
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Table 4:

Outlines the risk, Sharpe ratio and p − values of the Sharpe ratio test (5.2) with

portfolio returns with transaction costs for the selection of comparison portfolios

on the OBX Index and the FF3 factors. The two testing periods are 2009-2018

and 2014-2018. The risk constraint is calculated as the standard deviation of the

monthly excess returns from July 2006 - December 2008 on the OBX Index, the

first training period.

Portfolio performance based on OBX constituents and FF3 factors

OBX constituents and FF3 (with transaction costs) T = 30 σ = 0.1

Period 2009-2018 2014-2018

Portfolio Risk Sharpe Ratio p-value Risk Sharpe Ratio p-value

Index 0.044 0.215 0.001 0.033 0.187 0.014

Equally Weighted 0.045 0.247 0.003 0.048 0.350 0.014

Factor 0.018 0.077 0.020 0.017 0.126 0.041

MAXSER 0.206 -0.228 - 0.140 -0.279 -

MV/GMV with different covariance matrix estimates

MV-P 0.043 -0.936 0.000 0.047 -0.846 0.004

MV-LS 0.024 -0.007 0.115 0.022 0.445 0.000

MV-NLS 0.024 -0.667 0.002 0.022 -0.366 0.586

GMV-LS 0.020 0.301 0.000 0.019 0.491 0.000

GMV-NLS 0.016 -0.044 0.142 0.014 -0.137 0.403

MV with short-sale constraint

MV-P-SS 0.043 -0.925 0.000 0.046 -0.876 0.003

MV-LS-SS 0.025 0.012 0.083 0.023 0.434 0.000

MV-NLS-SS 0.018 -0.294 0.601 0.015 0.073 0.048

MV with `1-norm constraint and cross-validation

MV-P-L1CV 0.030 -1.00 0.000 0.022 -1.191 0.000

Here, p < 0.1 represents the statistical significance at the 10% significance level, p < 0.05

at the 5% significance level and p < 0.01 1% at the significance level.

5.2.5 OSEBX

Next, we look at the OSEBX Index. The OSEBX Index is a larger stock

universe, which contains a representative selection of all stocks traded
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on the Oslo Stock Exchange. We look at OSEBX to perform the same

strategy on larger portfolios.

Again, we used a rolling-window scheme to perform the analysis similar

to the one mentioned in Section 5.2.1. We recorded the out-of-sample

returns from the period from 2009 to 2018 and rebalanced the portfolios

monthly based on the prior T -months training period.

We began by randomly forming a pool of 35 stocks currently traded

on the OSEBX Index and of the Fama-French three factors. Using

the assets’ excess monthly returns during the prior T -months training

period, we performed the one-step-ahead forecast, where T represents

the sample size and, in our case, T = 60 As before, if a stock had

missing data in the prior T -month training period, it was excluded

from the asset pool. This led to several stocks being excluded, with

our asset pool then consisting of 29 stocks and the Fama-French three

factors. Using the same procedure as before, we formed a return matrix

based on our rolling-window scheme, which again became our testing

data. Next, we calculated the standard deviation on the OSEBX Index

for the first training period in order to obtain the risk constraint. The

risk constraint was set as 0.08. Then we calculated our portfolio return

based on the monthly optimal weights calculated using the prior T -

month training data and the testing data. When implementing the

MAXSER portfolio, we started with step one in Section 4.4.4, as the

number of stocks is still relatively low compared to that of Ao et al.

(2018). Last, we recorded our findings in Table 5 for all our portfolios

under comparison.

As with the analysis done on the OBX Index, the performance of the
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MAXSER portfolio and the other benchmark portfolios were evaluated

based on their Sharpe ratio and risk, which were computed from their

respective (out-of-sample) monthly returns. The two testing periods

were the same, one with 10 years of testing data and the other with

five years of testing data. This led to the same out-of-sample monthly

returns, 120 and 60, respectively. We also conducted the Sharpe ratio

test mentioned earlier on every portfolio under comparison.

5.2.6 Comparison summary

Table 5 shows the summary of the comparison of the MAXSER and the

other benchmark portfolios in terms of risk, Sharpe ratio and p-values

of the Sharpe ratio tests. For the first testing period, we observed that,

as with the analysis on the OBX Index, the MAXSER portfolio carried

the most risk, at 0.083. This is because the given risk constraint is set

at 0.08, the standard deviation of the OSEBX Index during the first

training period. The risk carried by the MAXSER portfolio implies

that the MAXSER methodology effectively controlled for the given

risk constraint. However, we can clearly see that no other portfolio

reached this amount of risk; in fact, the next highest risk level was

carried by the index during the testing period, which was nearly half

of what the MAXSER portfolio carried. The portfolio that carried the

least amount of risk was the mean-variance with linear shrinkage co-

variance matrix with a short-sale constraint. The risk of the two global

minimum-variance portfolios and the mean-variance portfolio with the

`1-norm constraint was, however, just marginally higher. Further, the

risk of the mean-variance portfolios with different covariance estimates

and no restrictions was somewhat the same. For the second testing pe-
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Table 5:

Outlines the risk, Sharpe ratio and p − values of the Sharpe ratio test (5.2) with

portfolio returns net of transaction costs for the selection of comparison portfolios

on the OSEBX Index and the FF3 factors. The two testing periods are 2009-2018

and 2014-2018. The risk constraint is calculated as the standard deviation of the

monthly excess returns from 2004 - 2008 on the OSEBX Index, the first training

period.

Portfolio performance based on OSEBX constituents and FF3 factors

OSEBX constituents and FF3 (without transaction costs) T = 60 σ = 0.08

Period 2009-2018 2014-2018

Portfolio Risk Sharpe Ratio p-value Risk Sharpe Ratio p-value

Index 0.043 0.245 0.000 0.032 0.198 0.004

Equally Weighted 0.031 0.319 0.000 0.018 0.467 0.018

Factor 0.018 0.184 0.000 0.019 0.182 0.001

MAXSER 0.083 0.997 - 0.064 0.883 -

MV/GMV with different covariance matrix estimates

MV-P 0.019 0.189 0.000 0.015 0.695 0.219

MV-LS 0.018 0.183 0.000 0.012 0.733 0.354

MV-NLS 0.019 0.157 0.000 0.013 0.722 0.300

GMV-LS 0.014 0.543 0.004 0.011 0.804 0.660

GMV-NLS 0.013 0.572 0.004 0.011 0.813 0.698

MV with short-sale constraint

MV-P-SS 0.017 0.270 0.000 0.012 0.873 0.958

MV-LS-SS 0.012 0.264 0.000 0.011 0.753 0.452

MV-NLS-SS 0.017 0.264 0.000 0.011 0.800 0.612

MV with `1-norm constraint and cross-validation

MV-P-L1CV 0.014 0.625 0.002 0.015 0.624 0.118

Here, p < 0.1 represents the statistical significance at the 10% significance level, p < 0.05

at the 5% significance level and p < 0.01 1% at the significance level.

riod, we can see the same results in terms of risk. However, there is

a decrease in the amount of risk carried for every portfolio except for

the mean-variance with `1-norm constraint and cross validation, which

was marginally higher. A contradiction to what Ao et al. (2018) found
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in their analysis is that the MAXSER portfolio carried the most risk.

One of the reasons behind this is that, as mentioned before, the port-

folios under comparison were not constrained to a given level of risk.

Had these portfolios also been given a risk constraint, our results might

have been completely different.

When looking at the Sharpe ratios, we see that the portfolio achieving

the highest Sharpe ratio during the first testing period is the MAXSER

portfolio. This Sharpe ratio is nearly 75% more than that of the mean-

variance portfolio with `1-norm constraint and cross validation, which

achieves the next highest Sharpe ratio out of the comparable portfo-

lios. Both the global minimum-variance portfolios achieve almost half

the Sharpe ratio of the MAXSER portfolio. Furthermore, the mean-

variance portfolios without constraints achieve relatively low Sharpe

rations compared to the MAXSER portfolio; they are in fact lower

than that of the equally weighted portfolio and the Index. However, the

portfolio achieving the lowest Sharpe ratio is the portfolio consisting of

only factors. In terms of the Sharpe ratios during the second testing pe-

riod, the results are the same. However, all the mean-variance portfolios

with different covariance estimates and constraints achieve much higher

Sharpe ratios than during the first testing period, while the Sharpe ratio

of the MAXSER portfolio decreases. In fact, the mean-variance portfo-

lio with plug-in estimates and short-sale constraints achieves a Sharpe

ratio only marginally lower than that of the MAXSER portfolio. We

can see from the two indexes that when the MAXSER portfolio con-

sists of fewer stocks, the portfolio’s Sharpe ratio is lower. This might

only be due to the stocks selected from each index. However, Ao et al.

(2018) show that their methodology performs better when the portfolio
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comprises a larger asset pool.

Furthermore, we can see that the p-values of the Sharpe ratio test are

small during the first testing period. This implies that the advantage

of the MAXSER methodology is not only economically large, but also

statistically significant. However, during the second testing period, the

benchmark portfolios perform much better than before and the p-values

are no longer small, which implies that the methodology is not statis-

tically significant.

5.2.7 Accounting for transactions costs

Looking at the benchmark portfolios for both testing periods when

transaction costs are included, we can see that the risk of the portfolios

increases or stays the same and that the Sharpe ratio decreases. The

MAXSER portfolio is still the portfolio carrying the most risk, nearly

double that of the portfolio carrying the next highest amount of risk for

both periods. However, we can see that the MAXSER portfolio is no

longer achieving the highest Sharpe ratio. With transaction costs, the

portfolios performing best in terms of the Sharpe ratio are the global

minimum-variance portfolios and the equally weighted portfolio. How-

ever, in our analysis, the equally weighted portfolio has no transaction

costs, as the weights on the assets are the same throughout the testing

periods and are therefore excluded when looking at the whole picture

regarding performance of the MAXSER methodology.

When it comes to the p-values of the Sharpe ratio test, they varied

greatly during the two testing periods. During the first testing period,

most of the p-values were small. However, there were some that were
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high enough to imply that the advantage of MAXSER is not statisti-

cally significant when transaction costs are included. We observe that

almost all the p-values are high enough to show no statistical signifi-

cance for the advantage of MAXSER. Due to the fact that the p-values

show no statistical significance of an advantage of MAXSER, it becomes

difficult to argue that MAXSER dominates the benchmark strategies

when it comes to mean-variance efficiency on the Norwegian stock mar-

ket. However, we observe that the methodology effectively controls for

risk, as the difference between the portfolio risk and the given risk con-

straint was always relatively low, except during the first testing period

on the OBX Index.
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Table 6:

Outlines the risk, Sharpe ratio and p−values of the Sharpe ratio test (5.2) for the

selection of comparison portfolios on the OSEBX Index and the FF3 factors. The

two testing periods are 2009-2018 and 2014-2018. The risk constraint is calculated

as the standard deviation of the monthly excess returns from 2004 - 2008 on the

OSEBX Index, the first training period.

Portfolio performance based on OSEBX constituents and FF3 factors

OSEBX constituents and FF3 (with transaction costs) T = 60 σ = 0.08

Period 2009-2018 2014-2018

Portfolio Risk Sharpe Ratio p-value Risk Sharpe Ratio p-value

Index 0.043 0.246 0.000 0.032 0.214 0.696

Equally Weighted 0.031 0.330 0.000 0.018 0.463 0.082

Factor 0.018 0.084 0.000 0.018 0.152 0.938

MAXSER 0.085 -0.022 - 0.066 0.138 -

MV/GMV with different covariance matrix estimates

MV-P 0.040 -1.043 0.000 0.046 -0.954 0.000

MV-LS 0.019 -0.109 0.479 0.012 0.342 0.163

MV-NLS 0.024 -0.611 0.000 0.019 -0.471 0.000

GMV-LS 0.014 0.373 0.002 0.011 0.532 0.012

GMV-NLS 0.013 0.190 0.075 0.011 0.272 0.391

MV with short-sale constraint

MV-P-SS 0.039 -1.019 0.000 0.045 -0.971 0.000

MV-LS-SS 0.018 0.058 0.540 0.011 0.432 0.057

MV-NLS-SS 0.018 -0.060 0.771 0.011 0.246 0.479

MV with `1-norm constraint and cross-validation

MV-P-L1CV 0.018 -0.202 0.118 0.019 -0.271 0.027

Here, p < 0.1 represents the statistical significance at the 10% significance level, p < 0.05

at the 5% significance level and p < 0.01 1% at the significance level.
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6 Conclusion

In this thesis, we replicated the approach of Ao et al. (2018) when

estimating the mean-variance efficient portfolio using data from the

Oslo Stock Exchange. Ao et al.’s approach builds upon a novel uncon-

strained regression representation of the mean-variance problem pro-

posed by Markowitz (1952). When MAXSER is used to create small

portfolios based on assets traded on the Oslo Stock Exchange, we find

that the strategy has no advantage compared to previous models, both

with and without factor investing. However, the strategy is somewhat

able to control for risk.

Looking at the simulation analysis, we see that the MAXSER portfo-

lio outperforms the benchmark portfolios in terms of the Sharpe ratio.

However, the MAXSER portfolio carries much higher risk because it

tries to effectively control for a given risk constraint. The empirical

analysis showcases some of the weaknesses that the MAXSER strategy

has when used on a smaller stock market. With the OBX Index, which

in our case consisted of 19 stocks and three factors, it is clear that the

strategy is not able to effectively control for risk. However, when the

strategy is used on the OSEBX Index, consisting of a larger number of

stocks than the OBX Index, it is more able to control for risk. Further-

more, when comparing the portfolios, we see that the MAXSER portfo-

lio is outperformed by some of the benchmark portfolios in terms of the

Sharpe ratio. This observation implies that the use of the MAXSER

strategy does not gain an economic advantage compared to previous

strategies. However, when assets are included with factor investing,

the MAXSER portfolio gains an advantage.
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The Norwegian stock market is smaller than the US stock market and

contains fewer observations due to missing data. These facts enabled us

to roughly determine how large the portfolios must be for MAXSER to

be effective in terms of risk control. It would be interesting to discover

if this thesis’ findings would change if no data were missing.

As pointed out, a weakness of this study is that a risk constraint is

not imposed on the benchmark portfolios. Had these portfolios been

restricted by a risk constraint, our results in terms of economic gain

might have been different. This is because an increase in risk would

yield a lower Sharpe ratio, and thus, the use of MAXSER could have

been statistically significant. To control for this, future research could

impose such a constraint on the benchmark portfolios.
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A Appendix

A.1 R-function

extractRand ← function(v, p){

firstIndex ← sample(seq(length(v) - p +1), 1)

v[firstIndex:(firstIndex + p - 1)]}
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