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Introduction

This thesis discusses how Operations Research may be used to offer support
to ship operators dealing with maritime routing and scheduling problems. The
main focus is on the modeling of the transportation network for the inventory and
maritime transportation aspects of the supply chain. In particular, it focus on
the routing and scheduling of large heterogeneous fleets of ships for producers of
Liquefied Natural Gas (LNG). The thesis consists of five papers; four discussing
the distribution of LNG, and one focusing on a subproblem in petroleum product
distribution.

The research leading to this thesis is part of a larger research project at NTNU,
OPTIMAR. — Optimization in Maritime Transportation and Logistics, (OPTI-
MAR, 2005). This project’s aim was to develop models and efficient solution
methods for challenges within ship routing and scheduling in order to increase
ship utilization to reduce transportation and logistic costs, as well as reducing the
environmental impact and improving customer service. A second key objective
of the OPTIMAR project was to create a good foundation for commercializing
optimization based decision support systems (DSS). Hence, the main objectives
was to create the methodological basis and increase knowledge for solving com-
plex ship routing and scheduling problems. This thesis is a part of creating
this methodological basis by developing optimization models and methods. And
through the discussions regarding these models and methods it helps expanding
the knowledge we have of complex maritime routing and scheduling problems.

The first four papers in this thesis discuss an inventory routing problem from
one of the worlds biggest producers of LNG. A thorough description of the prob-
lem and a mathematical model for creating an annual delivery program (ADP) is
presented. In the first and second paper two different heuristics for the problem
are developed. The third paper describes a branch-and-cut method. In the last
paper a branch-price-and-cut approach for LNG inventory routing problems is
described, introducing a new decomposition approach to get better bounds in
order to evaluate the performance of the heuristics. The fifth paper introduces a
new Traveling Salesman Problem (TSP) to the literature, namely the TSP with
Draft Limits (TSPDL). This problem is a subproblem in a larger maritime supply
chain for petroleum products.



Introduction

1.1 Background

In this section an introduction to relevant theory for the topics of this thesis
is given. Section 1.1.1 briefly presents definitions for maritime transportation
problems, and relevant literature on maritime routing and scheduling problems.
In this section the focus is on different problem types, not the solution meth-
ods. Section 1.1.2 gives a short overview of the exact solution methods used,
while Section 1.1.3 gives a brief introduction to some of the most commonly used
heuristics.

1.1.1 Maritime Routing and Scheduling

Traditionally maritime transportation is divided into three modes of operation;
liner, tramp, and industrial shipping (Lawrence, 1972). In liner shipping the ships
operate according to a published itinerary and schedule similar to a bus, and the
operator tries to maximize their profit from cargoes lifted. Using the same type of
analogy, tramp shipping resembles taxi services, where the ships follow the avail-
able cargoes. The objective is to maximize the profit from mandatory (cargoes
with a contract of affreightment) and optional (spot) cargoes, with mandatory
cargoes covering the daily operating costs and optional cargoes being the major
contributor to the profit of the operator. Industrial shipping operators usually
own and control both the cargoes and the ships, and the objective of the operator
is usually to minimize transportation cost (Christiansen, Fagerholt, Nygreen, and
Ronen, 2007). Today the boundaries between tramp and industrial shipping are
less clear than they used to be. For instance, many vertically integrated compa-
nies, e.g. in the LNG industry, don’t fit any of these classes. They operate all
(most) vessels picking up LNG at their liquefaction terminal(s), but they only
own part of the fleet. The main share of the volume of gas is delivered to long-
term customers, but there is also the option of selling some LNG on the spot
market to increase profit.

Maritime transportation problems can also be classified based on the length of
the planning horizon. Traditionally this divides the problems into three classes;
strategic, tactical, and operational. Strategic problems are long term planning
problems. In shipping this usually means 5 to 20 years. For instance fieet size and
mix, network design, ship design, and contract evaluation are all typical strategic
planning problems. Problems with a medium planning horizon length are usually
referred to as tactical planning problems. These problems usually have a plan-
ning horizon of a few week up to 18 months. Problems such as ship routing and
scheduling, fleet deployment, inventory ship routing are important tactical plan-
ning problems. Short-term, or operational, planning is usually applied when the
decisions only have a short-term impact (sometimes as short as only one sailing
leg) or the operational environment is highly uncertain. Decisions such as ship
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loading, environmental routing, speed optimization, and booking of single orders
are all important operational planning problems. In shipping the boundaries be-
tween tactical and operational, and strategic and tactical can be somewhat fuzzy.
For instance ship routing and scheduling can be used in fleet size and mix prob-
lems, but usually with less details, and speed optimization can be an integrated
part of a routing and scheduling problem.

Given the scope of this thesis the rest of this introduction will focus on mar-
itime routing and scheduling for tramp and industrial shipping. Liner shipping
is omitted since it differs significantly from the two other modes of operation
and the problems studied in this thesis. For a more comprehensive review on
maritime transportation in general see Christiansen et al. (2007).

Al-Khayyal and Hwang (2007) proposed to separate maritime routing and
scheduling problems for bulk shipping into two categories; cargo routing and
inventory routing problems. The authors described cargo routing problems as
problems "mainly constrained by the cargo, which is usually specified by the
loading/discharge ports, and by the time windows of loading and unloading". In-
ventory routing problems are mostly constrained by the inventory levels in either
loading or unloading ports, or both.

The basic cargo routing problems can be seen as a maritime variant of the land
based pickup and delivery problem with time windows described in for instance
Dumas, Desrosiers, and Soumis (1991) and Desrosiers, Dumas, Solomon, and
Soumis (1995). What differentiates the maritime-PDPTW from the land based
PDPTW is that the set of ships often is heterogeneous and fixed, and that no
central depot exists. The planning period for maritime-PDPTWs is also usually
longer, and the vessels sail around the clock. In the basic maritime-PDPTW
only one product is considered, but several cargoes are allowed to be onboard
the ship at the same time as long as the capacity of the ship is respected. One
cargo consists of a designated number of units and have time windows both for
pickup and delivery. The operator tries to minimize the total cost, while ensuring
that all contractual cargoes are picked up. The basic maritime-PDPTW is rare
in real world cargo routing problems. It is usually extended with one or several
constraints either on the cargoes or the ports, or both.

In the following some examples of the different extensions to the maritime-
PDPTW are presented. One common extension to the maritime-PDPTW is
optional cargoes as in the pioneer work of Appelgren (1969, 1971). This problem
also differs from the maritime-PDPTW since the ships are restricted to carry
only one cargo at the time. Full ship loads are also discussed in Brown, Graves,
and Ronen (1987) where the authors describe a model for scheduling ocean trans-
portation of crude oil. Later, Fisher and Rosenwein (1989) extended this model
to involve the designated amount of a cargo to be picked up at several loading
ports and delivered to several unloading ports.
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A variant of the maritime-PDPTW involving both optional cargoes and multi-
ple cargoes onboard is discussed in Brgnmo, Christiansen, Fagerholt, and Nygreen
(2007a) and Korsvik, Fagerholt, and Laporte (2009). In this model any of the
optional cargoes can be accepted or rejected as long as all the contractual cargoes
are lifted. Fagerholt, Hvattum, Johnsen, and Korsvik (2011) extend this model
by introducing groups of cargoes that have to be accepted or rejected. These
groups of cargoes are defined as coupled cargoes. The authors also consider
stowage constraints on the cargoes. This cargo coupling is extended further by
Andersson, Duesund, and Fagerholt (2011b). The authors introduce additional
synchronization constraints on the coupled cargoes, restricting all the coupled
cargoes to be delivered within a certain time interval of the first cargo delivery.
The stowage constraints from Fagerholt et al. (2011) are not considered in this
paper. A cargo routing problem with flexible cargo sizes is discussed in Brgnmo,
Christiansen, and Nygreen (2007b), Brgnmo, Nygreen, and Lysgaard (2010), and
Korsvik and Fagerholt (2010). Instead of fixed cargo quantities, the shipping
operator is able to adjust the cargo quantities within a given interval. Brgnmo
et al. (2007b) propose a set partitioning approach with pre-generated columns,
while the same authors propose a heuristic column generation approach in order
to solve larger instances in Brgnmo et al. (2010), and a tabu search heuristic
is developed by Korsvik and Fagerholt (2010). In the maritime-PDPTW with
split loads presented by Korsvik, Fagerholt, and Laporte (2011), a cargo may
be split over several ships. The same problem was also studied in Andersson,
Christiansen, and Fagerholt (2011a).

Bausch, Brown, and Ronen (1998) discuss the short-term distribution shipping
of multiple liquid bulk products using vessels with multiple compartments. A
similar problem can also be found in e.g. Scott (1995) and Sherali, Al-Yakoob,
and Hassan (1999). The cargo holds in the previous problem have fixed sizes, and
the setup can not be reconfigured during the planning horizon. Fagerholt and
Christiansen (2000a) and Fagerholt and Christiansen (2000b) extend this model
to handle ships with flexible cargo holds.

One major cost component, for shipping operators is fuel costs, and as a result
of the high fuel prices in the 1970s Ronen (1982) presented a model for optimizing
speed on a voyage leg to reduce cost. Lately, there has been an increased focus
on making shipping more environmentally friendly, and in this context Fagerholt,
Laporte, and Norstad (2009b) present a model and solution method for reducing
fuel emissions by optimizing the speed of ship routes.

The Inventory routing problem (IRP) is defined by Dror and Ball (1987) as
a distribution problem for a set of customers, where each customer maintains
a local inventory of a product, such as heating oil or methane, and consumes
a certain amount of that product every day. A central supplier (depot) tries
to minimize the transportation costs, while ensuring that no customer runs out
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of product at any time. An overview of maritime inventory routing problems
by Christiansen and Fagerholt (2009) points out that there are usually several
differences between road based TRPs and maritime inventory routing problems
(MIRP)s. Road based IRPs often have one central depot and many customers
consuming a product, while in MIRPs one might have several production and
consumption ports. Further, the amount unloaded at each customer in road based
IRPs is often small compared to the capacity of the vehicle, while in MIRPs the
unloaded amount is often a full ship load.

The basic MIRP is defined as a problem of transporting a single product from
one or more production (loading) port(s) to a set of customers (unloading ports).
In this problem everything is loaded before starting to unload. The ship is then
completely emptied before a new loading process can be started. We find many
extensions to this basic problem. These extensions may be structured, in a non-
exhaustive way, by e.g. port structure and loading/unloading policy, production/-
consumption, and products. In real world applications of maritime inventory
routing problems several of these extensions may apply. Many different port
structures and loading/unloading policies are discussed in the literature. An
inventory routing problem with one production port, and several consumption
ports are discussed in this thesis by Rakke, Stalhane, Moe, Christiansen, An-
dersson, Fagerholt, and Norstad (2011) and Stalhane, Rakke, Moe, Andersson,
Christiansen, and Fagerholt (2012). All voyages are direct sailings and only one
loading port and one unloading port are visited on each voyage, while Grgnhaug,
Christiansen, Desaulniers, and Desrosiers (2010) present a problem where the
product is picked up at one out of several loading ports before unloading at one
or multiple unloading ports. Even though the ship may unload at several ports
in one voyage it is always completely emptied before starting a new loading oper-
ation. In Christiansen (1999) and Song and Furman (2010) the structure is even
more complex; the ships may pick up and deliver product at multiple ports, i.e.
the ships may still have product onboard when entering a loading port.

In the basic MIRP there are inventory limits both at the production and con-
sumption ports which we see in Al-Khayyal and Hwang (2007), while in Rakke
et al. (2011) inventory constraints are only considered at the production port.

Production and consumption can be considered in several different ways, e.g.
as a fixed rate as in Christiansen (1999) where the production rate is the same
throughout the planning horizon. It can also be a varying fixed rate as in Rakke
et al. (2011) and Stalhane et al. (2012). Here the production is considered as
fixed over the planning horizon, but it still might vary from one day to the next.
When this assumption is too coarse, one needs to resort to variable production
and/or consumption rates. Ronen (2002) describes an inventory routing problem
for refinery products. Here, variable rates for both production and consumption
are considered to give the necessary information about the true nature of the
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problem. The production is also a decision variable in Grgnhaug et al. (2010).

Most classical MIRPs consider only one product, while lately MIRPs with
multiple products are given more attention. Examples of the former can be found
in e.g. Christiansen and Nygreen (1998a), Christiansen and Nygreen (1998b),
Christiansen (1999) and Song and Furman (2010). Song and Furman (2010)
present a MIRP for a single bulk product and a flexible modeling framework
for MIRPs that can handle several practical features of such problems. The
increased focus on MIRPs with multiple products comes from the challenges
faced by i.e. chemical and petroleum industries as in e.g. Al-Khayyal and Hwang
(2007). Other industries facing the challenge of shipping multiple products is
e.g. cement industry as presented in Christiansen, Fagerholt, Flatberg, Haugen,
Kloster, and Lund (2011) and the pulp industry as presented in Bredstrom et al.
(2005). Inventory routing of multiple products is also discussed in e.g. Persson
and Gothe-Lundgren (2005), Halvorsen-Weare and Fagerholt (2010), and Rakke
et al. (2011).

1.1.2 Exact Solution Methods

Several exact solution methods are used in order to solve maritime routing and
scheduling problems, and in this section a short description of the most commonly
used methods will be presented. It is beyond the scope of this thesis to give
an exhaustive description of all exact solution methods and variants, so only
the basic concepts or methods will be given, together with some references to
implementations. Solving most modern ship routing and scheduling problems
involves solving either an integer program (IP) or a mized integer program (MIP).
Theoretically many of the problems presented in Section 1.1.1 can be solved
using a standard optimization software. However, for most maritime routing and
scheduling problems only small instances of the problems are solvable in this
straight forward way due to the complexity.

Usually one can divide models for maritime routing and scheduling problems
into two categories based on the decision variable for ship activity. Models using
decision variables for each sailing leg are often called arc-flow models, while
models using decision variables for ship routes are usually referred to as path-
flow models.

For arc-flow models the most common exact solution method for solving hard
problems is branch-and-cut. Here, classes of valid inequalities are left out of the
LP relaxation because they contain too many constraints to be handled efficiently
and the fact thath most of these constraints will not be binding in the optimal so-
lution. Instead, the constraints are dynamically added if they are violated by the
optimal solution to the LP relaxation. These violated constraints are identified in
a subproblem, often called a separation problem. After adding the violated con-
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straints the problem is re-optimized, and this is repeated until no more violated
constraints can be found. When no such violated constraints can be identified,
branching is performed. This process is repeated until the optimal solution is
found. Practical implementations of branch-and-cut in maritime routing and
scheduling can be found in e.g. Song and Furman (2010), Rakke, Christiansen,
Fagerholt, and Laporte (2012), and Andersson, Christiansen, Desaulniers, and
Rakke (2012).

Many maritime routing and scheduling problems have groups of common con-
straints affecting multiple ships and groups of constraints only affecting a single
ship. This structure may be exploited to separate the problem into one mas-
terproblem containing the common constraints, and one subproblem for each
ship. Such a decomposition is usually referred to as Dantzig- Wolfe decomposi-
tion. For each ship the subproblem has to generate feasible paths through the
transportation network with respect to for instance capacity constraints, routing
constraints, and time windows on the cargoes. These paths can be generated ei-
ther a priori or dynamically throughout the branch-and-bound tree. Generation
of such paths is usually called column generation, as one path corresponds to a
column in the master problem. When the paths are generated a priori a set of
pregenerated paths, or columns, is added to the LP relaxation and the overall
problem is solved using branch-and-bound. This approach can be found in for
instance Brown et al. (1987), Fisher and Rosenwein (1989), Fagerholt and Chris-
tiansen (2000a), Fagerholt and Christiansen (2000b), and Brgnmo et al. (2007b).
For many problems the number of feasible columns is too large to be generated
a priori, and the columns have to be generated through dynamic column gen-
eration. Here, a restricted masterproblem (RMP) containing only a sufficient
number of columns to provide a feasible solution to the LP relaxation is solved.
This initial solution provides dual variables to the subproblems in order to ob-
tain new columns. Only columns with a negative reduced cost (minimization)
are returned from the subproblems. The RMP is re-optimized, and new duals are
provided to the subproblems. When no more negative reduced cost columns can
be found, branching is performed. This procedure is repeated until an optimal
solution to the problem is found. Different algorithms for solving the subproblems
in dynamic column column generation are discussed in Desaulniers, Desrosiers,
and Solomon (2005). Dynamic column generation in a martime transportation
setting is used in e.g. Christiansen (1999) and Brgnmo et al. (2010).

1.1.3 Heuristics

As with exact solution methods, a large number of different heuristics are used
to solve maritime routing and scheduling problems. This thesis will not give
an exhaustive description of all heuristic methods and variants. Only the basic
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concepts of the most commonly used methods will be given, together with some
references to implementations. The heuristics are divided into two major cate-
gories, heuristics based on mathematical programming and heuristics based on
algorithm design.

Heuristics based on mathematical programming usually starts with an exact
formulation of the problem, but makes certain adjustments in order to be able
to provide good solutions within reasonable time. Such modifications can for
instance be decomposition and solution space reduction. Decomposition refers
to breaking the overall problem into smaller, more manageable, problems and
solving these sequentially. The solution of one problem is used as input to the
next. One heuristic used in several maritime routing and scheduling problems is
the rolling horizon heuristic (RHH) presented by Baker (1977) and Baker and
Peterson (1979). The idea of the RHH is to repeatedly solve a sequence of
MIPs, each covering a short time horizon. The overall problem is solved when
all days in the planning horizon have been considered in at least one MIP. Often
the MIP is extended by adding an extra period, called the forecasting period,
where the binary/integer constraints are relaxed. This heuristic can be found in
Bredstrom and Ronnqvist (2006) and Rakke et al. (2011). In both these papers
an improvement heuristic is used on top of the RHH. After fixing all routes using a
RHH, a LP determining the flow is applied in Bredstrom and Roénnqvist (2006),
while a MIP where the solution from the RHH is used to reduce the solution
space, is solved in Rakke et al. (2011). A similar improvement heuristic is also
applied in Stalhane et al. (2012). Reducing the solution space usually involves
removing variables, as in Rakke et al. (2011), or introducing inequalities that
are invalid for the exact problem, but only has minor impact on the objective
function.

Most algorithm based heuristics use some kind of construction heuristic to
generate one or more initial solution(s). An improvement heuristic is then used
to permute the initial solution(s) in a logical way to obtain a better solution.
Construction heuristics build a solution by adding individual components one by
one until a feasible solution is obtained. Such components may be arcs, vessels,
nodes, cargoes, etc. In Stalhane et al. (2012) the construction heuristic chronolog-
ically adds scheduled voyages to the solution, while keeping the inventory within
its limits. The scheduled voyages are picked according to the availability of the
ships, the remaining demand of the contracts, and the inventory status. After
generating a feasible solution improvement heuristics are usually applied. Exam-
ples of commonly used improvement heuristics are; local search, tabu search, and
large neighborhood search (LNS). Local search tries to improve the solution by
moving from one feasible solution to a neighboring solution while improving the
objective value. When no such moves can be identified a local optimum is found,
and the search terminates. The success of a local search is very dependent on the
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initial solution, and the quality of the local optima around this initial solution.
In order to deal with this nature, local search is often used with multiple ini-
tial solutions. Therefore, this algorithm is often called a multi-start local search.
Maritime applications of multi-start local search can be found in e.g. Brgnmo
et al. (2007a) and Fagerholt, Korsvik, and Lgkketangen (2009a).

A local search heuristic only explores a small area around the initial solution,
and can easily be trapped in a local optimum. To escape local optima, several
meta-heuristics are proposed, and perhaps the most commonly used in trans-
portation and scheduling are tabu search and LNS.

The LNS works by destroying and repairing a part of the current solution in
each iteration. It starts from an initial solution and performs a search until a
local optimum is reached. The new solution is accepted if it is better than the
previously best known solution, if not it is rejected and the algorithm returns to
the best known solution. This solution is then destroyed and repaired to obtain
a new starting solution. The procedure is performed for a predetermined time or
number of iterations. Korsvik et al. (2011) use this heuristic to obtain very good
solutions to a maritime-PDPTW with split loads.

In tabu search local optima are escaped by allowing non-improving moves if
no improving moves are found. If the local optimum is better than the best
known solution the best known solution is updated, and the tabu search chooses
a non-improving move according to a predetermined strategy. A tabu-list is kept
in order to avoid revisiting the same local optimum in the next iterations. The
tabu search continues until a limit is reached. This limit can be e.g. number of
moves, time or number of local optima visited. Several papers apply tabu search
to maritime routing and scheduling problems, for instance Korsvik et al. (2009),
Korsvik and Fagerholt (2010), and Fagerholt et al. (2011).

1.2 Purpose and Outline of Thesis

First, Section 1.2.1 discusses the purpose of the thesis. Then, Sections 1.2.2-1.2.6
present a brief summary of each paper. The papers presented in Sections 1.2.2-
1.2.5 are all based on the same problem, and hence, the problem will only be
presented in Section 1.2.2.

1.2.1 Purpose of Thesis

The purpose of this thesis is to develop new optimization models and methods
for the shipping industry. In particular it focuses on models and methods for
the transportation of LNG and other petroleum products. These models and
methods can be used to develop decision support systems (DSSs) that can help
ship operators dealing with routing and scheduling problems. The models and
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methods presented in the papers in Sections 1.2.2-1.2.5 are developed to solve
a real-world problem, but they are generic and may also be applied to other
problems with the same characteristics. Section 1.2.4 is an invited book chapter,
but will be referred to as a paper as the book is a collection of papers.

The thesis contains five papers. The first four papers discuss a problem from the
LNG industry, but present different methods to solve it. The papers in Sections
1.2.2 and 1.2.3 present different heuristics in order to produce good solutions,
while the papers in Sections 1.2.4 and 1.2.5 are more theoretical. In these two
papers we focus more on providing stronger formulations of the problem in order
to strengthen the bound. The paper in Section 1.2.6 is based on a problem that
might appear as part of a subproblem in an inventory routing problem, and the
inspiration is from a real-world petroleum transportation problem.

In the process of writing these 5 papers several different co-authors and refer-
ees have influenced the writing style, notations, and model syntaxes. This has
resulted in some differences. In the first four papers the mathematical models
and problem descriptions are quite similar, and may seem repetitive, but this was
done in order to make each paper possible to read by itself. For the purpose of
this thesis the paper formats, fonts, and reference styles have been standardized,
leading to some differences to the published papers.

1.2.2 Paper 1: A Rolling Horizon Heuristic for Creating a
Liquefied Natural Gas Annual Delivery Program

In this paper a maritime inventory routing problem for one of the world’s largest
producers of liquefied natural gas (LNG) is presented. The producer is responsible
for the LNG inventories at the liquefaction plant, a loading port with a limited
number of berths, and routing and scheduling of a heterogeneous fleet of LNG
ships. Production may vary during the planning horizon, but these variations
are assumed to be known. The limited number of berths restrict the number of
ships that can be loaded in a given day. In addition, the producer has to fulfill a
set of long-term contracts to customers all around the world.

The goal is to create an annual delivery program (ADP) to fulfill the long-term
contracts at minimum cost, while maximizing revenue from selling LNG in the
spot market. An ADP is a complete schedule of every ship’s sailing plan for the
coming year.

A mixed integer programming (MIP) formulation of the ADP planning problem
is presented. The formulation is based on a priori generation of all possible
scheduled voyages within the planning horizon. Due to the size and complexity
of the problem, there was still a substantial gap even after running the MIP for
24h. In order to produce better integer solutions in less time a rolling horizon
heuristic (RHH) is proposed. The RHH solves the problem by iteratively solving

10



1.2 Purpose and Outline of Thesis

subproblems with shorter planning horizons. Each subproblem is a MIP, and is
solved using a commercial MIP solver. A solution space reduction method is also
applied to limit the symmetry and make it easier to solve the subproblems. To
further improve the initial solutions a MIP improvement heuristic is developed.
The improvement heuristic takes the integer solution of the RHH as an input and
creates a reduced MIP for the full problem. It allows swaps in the schedules and
moves of the loading day within a restricted number of days from the loading
day in the integer solution produced by the rolling horizon. The RHH produced
better solutions to the problem than the MIP formulation in less time.

The main contributions in this paper is the introduction of a new problem to
the literature together with a heuristic solution method that produces very good
solutions in a limited amount of time. The paper was co-authored by Magnus
Stalhane, Christian Rgrholt Moe, Marielle Christiansen, Henrik Andersson, Kjetil
Fagerholt, and Inge Norstad. It is published in Transportation Research Part C
Vol. 19, 2011, pp. 896-911.

1.2.3 Paper 2: A Construction and Improvement Heuristic for
a Liquefied Natural Gas Inventory Routing Problem

This paper discusses the same problem as the one in Section 1.2.2. The solution
method used in the first paper produced very good solutions to the problem using
less time than the MIP formulation, but it still used almost two hours for one of
the instances. In this paper the focus was to create a faster heuristic that was
easier to implement in a DSS than the RHH. A construction and improvement
heuristic (CIH) was developed to accomplish this.

The CIH is a multi-start local search heuristic that constructs a set of solu-
tions using a greedy insertion procedure. The solutions are then improved using
either a first-descent neighborhood search, branch-and-bound on a mathematical
formulation, or both. Tests on real-world instances show that the CIH provides
good solutions in a short amount of time.

The main contributions in this paper is a heuristic solution method that pro-
duce very good solutions in a short amount of time. This makes it very suitable
for inclusion in a DSS. The paper was co-authored by Magnus Stalhane, Christian
Rgrholt Moe, Henrik Andersson, Marielle Christiansen, and Kjetil Fagerholt. It
is published in Computers € Industrial Engineering Vol. 62, No. 1, 2012, pp.
245-255.
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1.2.4 Paper 3: A Branch-and-Cut Method for Creating a
Liquefied Natural Gas Annual Delivery Program

A mixed integer programming (MIP) formulation of the ADP planning problem
is presented and solved with a branch-and-cut algorithm. Several types of valid
inequalities are developed that allow us to reduce the linear programming gap of
the MIP formulation. The computational study shows that the problem is very
complex, but that the valid inequalities are effective.

The main contribution of this paper is the new valid inequalities. These valid
inequalities can be used for many other problems with similar characteristics.
The article is co-authored by Henrik Andersson, Marielle Christiansen, and Guy
Desaulniers. It is submitted as an invited chapter to a volume of Springer’s
International Series in Operations Research and Management Science tentatively
titled Optimization and Analytics in the Oil and Gas Industry with K. Furman,
J.-H. Song and A. El-Bakry as editors.

1.2.5 Paper 4: A Branch-Price-and-Cut Method for Creating
a Liquefied Natural Gas Annual Delivery Program

This is the forth and final paper discussing the ADP planning problem described
in Section 1.2.2. In this paper a new branch-price-and-cut method for the problem
is presented. Two MIP formulations are presented and compared. One of these
formulations is identical to the one presented in the three previous papers, while
the other is new. In the new formulation a new decomposition approach based on
delivery patterns at the customers is developed. This formulation is solved using
a branch-price-and-cut method and the results are compared to the ones from the
standard MIP. The results show that the new formulation drastically improves
the initial lower bounds of the problem. In addition, the new formulation closes
more than 56% of the remaining gap between the best known solution and the
lower bound found by the standard MIP for the instances not solved to optimality
by the MIP.

In this paper the main contribution is the new decomposition approach. It
differs from other decomposition approaches presented in the literature for trans-
portation networks by focusing on the pattern of deliveries in the demand ports
rather than the sailing patterns of the ships. This decomposition can be an al-
ternative for other problems were the commonly used decomposition methods do
not work well. The article is co-authored by Henrik Andersson, Marielle Chris-
tiansen, and Guy Desaulniers. It is submitted to an international journal.
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1.2.6 Paper 5: The Traveling Salesman Problem with Draft
Limits

In maritime transportation, routing decisions are sometimes affected by draft
limits in ports. The draft of a ship is the distance between the waterline and the
bottom of the ship and is a function of the load onboard. Draft limits in ports
can thus prevent ships from entering these ports fully loaded and may impose a
constraint on the sequence of visits made by a ship. This paper introduces the
Traveling Salesman Problem with Draft Limits (TSPDL), which is to determine
an optimal sequence of port visits under draft limit constraints. We present two
mathematical formulations for the TSPDL, and suggest valid inequalities and
strengthened bounds. We also introduce a set of instances based on TSPLIB. A
branch-and-cut algorithm is applied on both formulations for all these instances.
Computational results show that introducing draft limits make the problem much
harder to solve. They also indicate that the proposed valid inequalities and
strengthened bounds significantly reduce both the number of branch-and-bound
nodes and the solution times.

The main contributions in this paper are the introduction of a new problem
class to the research community, two new mathematical formulations for this
problem, and a set of new valid inequalities. The inspiration to the problem
comes from a petroleum distribution problem in shipping, and the TSPDL may
be found as a part of one of the subproblems. As shown in the paper, the TSP
becomes much harder to solve when also considering draft limits, and we hope
that the research made on this problem class may contribute to solve larger and
more complex problems, including such subproblems. The paper also shows that
the inclusion of subtour elimination constraints can efficiently be combined with
two well known formulations of the TSP, and drastically improve the bound and
performance of these models.

This article is co-authored by Marielle Christiansen, Kjetil Fagerholt, and
Gilbert Laporte. It is published in Computers & Operations Research Vol. 39,
No. 9, 2012, pp. 2161 2167.

1.3 Contributions

This thesis have contributed to both the research community and the industry.
In this section these contributions are summarized together with an evaluation
of my contributions to the papers. The rest of the section are organized in the
following way. First, the contributions from this thesis to the research community
are discussed, followed by a short description of the contributions this thesis has
made to the industry. Then, the contributions I made to the papers in this thesis
are discussed.
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1.3.1 Contributions to the Research Community

Details of the contributions to the research community are presented in Sections
1.2.2- 1.2.6. The main contributions are the introduction of a new maritime vari-
ant of the traveling salesman problem, introduction of a new type of inventory
routing problem from the LNG industry, and the introduction of a new decompo-
sition approach for inventory routing problems. New valid inequalities for both
the MIRP and TSPDL have been presented, together with several mathematical
models for these problems. Several previously presented valid inequalities are also
strengthened. In addition to the publication of the papers, I have also presented
the research at several scientific conferences around the world.

1.3.2 Contributions to the Industry

All four papers described in Sections 1.2.2-1.2.5 study an inventory routing prob-
lem based on a case study from the industry. Even though the research in these
papers is focused on one problem, the solution methods, models and results are
general, and thus applicable to a wide range of inventory routing problems. The
heuristics in Section 1.2.2 and 1.2.3 together with some of the results from the
papers in Section 1.2.4 and 1.2.5 can serve as a foundation for industry actors
planning to develop a DSS. The models and solution methods in the papers in
Section 1.2.4 and 1.2.5 can be used to provide valuable information of the quality
of the solutions from a heuristic DSS. In addition, the research described has
provided several valuable inputs to the DSS TurboRouter (MARINTEK).

1.3.3 Contributions to the Papers

Table 1.1 lists my level of contribution to the five papers in this thesis. The
contributions are differentiated between Intellectual Input, Implementation, and
Writing. Intellectual Input refers to the work related to identifying the problem,
formulating the mathematical formulations and valid inequalities, and choosing
and developing appropriate solution algorithms. Implementation covers the data
handling, implementing the formulation to a runnable computer program, and
the execution of the tests. It also covers the analyzes of the test results. Fi-
nally, the Writing refers to the actual writing of the paper. This also includes
the creation of figures and tables, and the submission and referee process. The
levels of contribution are ranked from 1 to 3, where 3 is highest. 1 means some
contribution, 2 significant contribution, and 3 major contribution. The problem
discussed in papers 1-4 was provided by Inge Norstad, MARINTEK. Christian
Rgrholt Moe, Magnus Stalhane, and T were the main contributors to the idea for
the work done in papers 1 and 2. We worked together to identify the problem,
formulate the mathematical formulation, and develop the heuristics. During this
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1.4 Concluding Remarks

Paper Intellectual input Implementation Writing

1 3 3 3
2 3 2 1
3 3 3 1
4 3 3 3
5 3 3 3

Table 1.1: My contributions to the papers in thesis

process we got invaluable input from Henrik Andersson, Marielle Christiansen,
and Kjetil Fagerholt. I was solely responsible for writing the first draft of Pa-
per 1 with some input from Magnus Stalhane, but received very valuable help
from the three co-authors mentioned to finalize and revise the paper. Paper 2
was written by Magnus Stalhane with some inputs from me, and valuable help
from the other co-authors. The research presented in papers 3 and 4 was mainly
performed during my research stay in Montreal, Canada. Here I worked in close
co-operation with Professor Guy Desaulniers. T did most of the problem identi-
fication and model formulation for Paper 3, with a significant contribution from
Guy Desaulniers and some input from the other co-authors. In addition, I did
the full implementation. The paper was mostly written by Henrik Andersson
and Marielle Christiansen. The model formulation and development of the solu-
tion method for Paper 4 were conducted in co-operation with Guy Desaulniers,
who also provided invaluable help during the testing of the implementation. I
was solely responsible for the implementation, data handling and testing, but
received some help from Henrik Andersson. The writing of the draft for Paper
4 was done with input from Guy Desaulniers, Henrik Andersson, and Marielle
Christiansen. Problem identification for Paper 5 was done as a shared work
among the co-authors, while the initial mathematical formulations of the models
was my responsibility with help from the co-authors. I did all the implementation
and data handling for this paper. The draft of the paper was also written by me,
with major contributions from Gilbert Laporte when it came to reviewing the
paper. The two other co-authors also had significant inputs during the reviewing
process.

1.4 Concluding Remarks
A substantial part of the worlds cargo transportation is sea-based. In spite of this,
the amount of research within operations research on maritime transportation

problems are relatively scarce compared to land-based transportation problems.
Looking at inventory routing problems for maritime transportation there exists
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even less literature. In the OPTIMAR project the goal was to provide efficient
solution methods to challenging optimization problems, and many of the most
challenging problems combine inventory management and routing. Hence, this
thesis mainly focused on inventory routing problems or problems that are a part
of such problems.

In papers 1 and 2 an exact solution method and two heuristics for a large
scale inventory routing problem were developed. The heuristics provided good
solutions to the problem in reasonable time. The exact method gives feasible
solutions and lower bounds, but these bounds are not sufficiently strong for the
method to be effective. Strong lower bounds are essential when determining the
quality of the heuristic solutions. In papers 3 and 4 the aims were to develop
cuts and model reformulations that could improve these bounds. The cuts im-
proved the lower bounds for most instances tested. Combining these cuts with
a new decomposition approach further increased the lower bounds and this ap-
proach solved almost all instances tested to optimality. Paper 5 introduced a new
maritime variant of the traveling salesman problem (TSP); the TSP with draft
limits (TSPDL). This problem is a common problem in maritime transportation,
also in inventory routing problems. Two different models for the TSPDL were
proposed, together with several new valid inequalities and methods for tighten-
ing bounds. The computational results showed that the branch-and-cut method
developed, produced very good results for the instances tested. Combining pre-
viously known models and cuts in a new way was also shown to give significant
improvements to both the TSP and TSPDL instances tested.

In recent years the short term market for LNG has had a strong increase.
This creates several challenges for ship operators. In papers 1-4 the short term
market (spot market) has not been modeled in detail. As the maturity and
market share of this market increase, a more detailed modeling may be needed
and this would be an interesting area of future research. The total amount of
natural gas transported as LNG is also increasing, and this may impact the
availability of ships for charter-in. In the models presented in this thesis one
major assumption was that there would always be ships available if the producer
was unable to lift the required amount of LNG with its own fleet. If the LNG
market grows according to some of the predictions this might not be the case and
further research on how to model charter-ins may be needed. Stochasticity in
maritime inventory routing problems has not been discussed in this thesis as this
was considered outside the scope of both the OPTIMAR project and the thesis.
There are many interesting problems to investigate in this area. In addition to
traditional uncertainties such as weather, breakdowns, and fuel prices, there are
significant uncertainties associated with the spot market and the chartering of
ships. Understanding the mechanisms and being able to model these uncertainties
could prove to be of great value for ship operators.
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A Rolling Horizon Heuristic for
Creating a Liquefied Natural Gas
Annual Delivery Program

Abstract:

In this paper a maritime inventory routing problem for one of the world’s
largest producers of liquefied natural gas (LNG) is presented. The producer
is responsible for the LNG inventories at the liquefaction plant, the loading
port with a limited number of berths, and the routing and scheduling of a
heterogeneous fleet of LNG ships. In addition, the producer has to fulfill a
set of long-term contracts to customers all around the world.

The goal is to create an annual delivery program (ADP) to fulfill the long-
term contracts at minimum cost, while maximizing revenue from selling LNG
in the spot market. An ADP is a complete schedule of every ship’s sailing
plan for the coming year.

A mixed integer programming (MIP) formulation of the ADP planning prob-
lem is presented, and it is based on a priori generation of all possible sched-
uled voyages within the planning horizon. Due to the size and complexity of
the problem, a rolling horizon heuristic (RHH) is proposed. The RHH solves
the problem by iteratively solving sub-problems with shorter planning hori-
zons. The RHH finds solutions to the problem within a reasonable amount
of time, and creates very good ADPs according to the problem owner.

2.1 Introduction

Today the demand for energy is higher than ever, and it is forecast that it will
increase even more in the near future. Natural gas (NG) is expected to be one
of the most important sources of energy to fulfill this demand. Estimates pre-
dict that the world’s demand for NG will increase with 52% from 2005 to 2030
according to ETA (2008). At the same time, traditional sources of energy such
as oil and coal are becoming less attractive due to increased prices and environ-
mental considerations. This, and new technology making extraction, refinement,
and transportation of NG both cheaper and more efficient, has made it more
attractive to invest in projects involving NG. As a result gas-rich areas which
previously were considered too remote to be profitable are now being explored.
Traditionally, NG was transported through pipelines, but long distances from
the gas fields to many high-consumption markets made it prohibitively expensive

25



A Rolling Horizon Heuristic for Creating a LNG Annual Delivery Program

to build pipelines. Other forms of transport were also too costly, e.g. the option
of transporting the gas as liquefied natural gas (LNG) was undesirable due to
the need for expensive specialized ships and equipment to handle the LNG at
the loading and unloading ports. However, a combination of higher LNG prices,
technical developments, lower production costs, rising demand, and the desire of
producers to capitalize on their gas reserves, has set the stage for increased LNG
trade and more use of ships as a mean to transport NG. As a result of this, IEA
(2007) predicts that the total fleet of ships transporting LNG will increase to
approximately 400 by year 2015, close to double of the total fleet in 2007.

In addition to the rapidly increasing demand for NG a spot market for LNG has
arisen in recent years. Traditionally, long-term contracts for delivery have been
negotiated in advance of starting projects with take-or-pay clauses shifting the
volume risk to the buyer. Few LNG facilities were built until sales contracts were
signed for the entire capacity. Contracts also contained "destination clauses"
that prevented buyers from reselling the cargoes to third parties. Recently, some
projects have gone forward with capacity unclaimed and long-term contracts
have been growing increasingly flexible. Newer long-term contracts are designed
to provide only a base supply of LNG, and can be supplemented by short-term
contracts during periods of high demand. This spare capacity and more flexible
contracts are expected to lead to increased short-term sales. Experts project that
short-term trading will continue to grow, especially in the Atlantic Basin, and
could reach 15-20% of the LNG market over the next decade (EIA, 2007).

With even larger fleets and more complex decisions to make, the rapid growth
in the LNG trade and the increasingly complex market of NG have made the
work much harder for the schedulers to accomplish manually. This has led to
a growing need for decision support systems (DSS) in order to help schedulers
make good decisions quickly.

In this paper, a combined LNG ship routing and inventory management prob-
lem for one of the world’s largest producers and distributors of LNG is considered.
The producer has a single liquefaction plant with storage tanks and a connected
loading port. Two types of LNG are produced at the liquefaction plant. The
amount of LNG in the storage tanks at the liquefaction plant has to stay within
certain limits, and the size of the loading port restricts the number of ships that
can load simultaneously. From the loading port, the LNG is shipped to customers
world-wide, see Figure 2.1.

The producer has to fulfill a set of long-term customer contracts that either
outline monthly demands, or state that a certain volume of LNG is to be deliv-
ered fairly evenly spread throughout the year to a given regasification terminal.
Over- and under-deliveries are accepted within reasonable limits. In addition,
the producer has the opportunity to sell LNG in the spot market using short-
term contracts. Besides extraction and refinement of NG, the producer operates
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Figure 2.1: Map showing some of the main sailing lanes.

a large fleet of heterogeneous LNG ships. In peak periods it is possible to charter
in additional ships.

To plan for the coming year, an annual delivery program (ADP) which is a
list of scheduled voyages is created. Each scheduled voyage includes information
about the ship sailing, the day of loading at the loading port, and the contract
served. The objective is to create an ADP that abides by the long-term contrac-
tual agreements at lowest possible cost, while maximizing the expected revenue
from spot contracts. Henceforth, this will be referred to as the ADP planning
problem.

The purpose of this paper is twofold: (1) Presenting the LNG supply chain and
a case study from one of the world’s largest producers and distributors of LNG,
where the objective is to create an ADP. (2) Describing a rolling horizon heuristic
(RHH) for the ADP planning problem that solves instances in reasonable time
and with good solution quality. In addition, a modified version of the underlying
mathematical programming formulation is used to further improve a feasible ADP
created by the RHH. The heuristic is compared with an exact solution method
and a heuristic by evaluating the solution quality and solution time. The RHH
is designed for use in a DSS for the producer in order to facilitate the creation
of ADPs. With a fleet of 46 ships, 17 long-term contracts and one year planning
horizon the need for a DSS is great, and the possible gain is substantial.
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The rest of the paper is organized as follows: Section 2.2 describes the LNG
supply chain and the typical planning problems at various levels within the LNG
business. An overview of the recent literature within maritime inventory routing
and use of rolling horizon heuristics is presented in Section 2.3. Section 2.4 is
devoted to a detailed description of the planning problem, while it is formulated
as a mixed integer programming problem in Section 2.5. The RHH is described
in Section 2.6. Real-world cases are described in Section 2.7 and computational
results for these cases are also reported. Finally, concluding remarks and sugges-
tions for future research follow in Section 2.8.

2.2 The LNG Supply Chain and the Planning
Levels within the LNG Business

In order to get a better understanding of the LNG business and the considered
problem of the producer, a presentation of the LNG supply chain is given in
Section 2.2.1 and the various planning levels are described in Section 2.2.2.

2.2.1 The LNG Supply Chain

The LNG supply chain, illustrated in Figure 2, begins with the NG being ex-
tracted from underground reservoirs and sent through pipelines to a liquefaction
facility. At the liquefaction plant, impurities are removed from the gas, and the
gas goes through three cooling processes where it reaches its boiling tempera-
ture of approximately 160°C. A liquefaction plant may consist of several parallel
units (“trains”). By liquefying the gas, its volume is reduced by a factor of 600.
In the supply chain considered, the NG is converted into two types of LNG, rich
(RLNG) and lean (LLNG).

B @8 . @ =

Extraction - - Reagasification Pipelines End use

Figure 2.2: The LNG supply chain. The elements considered in this paper are
highlighted.

The liquefaction plant constitutes a major cost element in the LNG supply
chain. LNG plant costs are high primarily due to strict design and safety stan-
dards, considerable quantity of cryogenic materials required, and a historical
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inclination to over-design in order to guarantee supply. In recent years, major
economies of scale have been achieved by increasing the size of liquefaction trains,
requiring fewer trains to achieve the same output (Chidinma, 2004).

After the refinement and liquefaction processes, the LNG is either temporarily
stored in specially constructed tanks, or directly loaded onto ships where it is
kept at its boiling temperature for the duration of the voyage to the regasification
terminals. The ships can be owned by the producer, one or many customers or a
distributor. If not owned by the producer, the ships may be committed to only
serving specific contracts.

Upon a ship’s arrival at the destination port, the LNG is fed into a regasification
facility. There it is pumped into a storage tank where it is stored until needed.
At that time, the gas is warmed in a controlled environment, and the revaporized
natural gas then enters the pipeline system as methane used by consumers, power
plants, and industrial customers.

2.2.2 The LNG Planning Levels

It is common to distinguish between three planning levels with different time
horizons when planning the LNG supply chain (Stremersch, Michalek, and Hecq,
2008). The strategic, tactical, and operational planning levels will be discussed
in the following, but focus is on the tactical level for creating an ADP.

Strategic Planning

Strategic decisions are long-term decisions important for both tactical and oper-
ational planning. In the LNG business, strategic decisions cover a wide spectrum
and have an impact many years ahead. Investment decisions include physical as-
sets associated with the liquefaction plant and the regasification terminals, where
key issues are production, storage and berth capacities. In addition, the fleet com-
position is an important long-term decision for an LNG transporter. Up to now,
most of the sales of LNG are tied up in long-term contracts which may have a
duration of 20-30 years. The strategic decision concerning the contract portfo-
lio is closely related to the long-term decisions associated with the physical assets.

Tactical Planning
One of the main tasks at the tactical level is to create a new ADP. The planning
horizon is typical one year, but could be extended up to 18 months. When
creating the ADP, the aim is to determine an optimal fleet schedule, including
the delivery dates at the different customers’ terminals. This fleet schedule must
also satisfy inventory considerations, as well as contractual requirements.

In practice, the process of creating an ADP starts by creating an initial ADP
in-office. This initial ADP is used when the producer negotiates with its cus-
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tomers on delivery dates of LNG for the next year. As some customers may not
accept the delivery dates suggested in the initial ADP, it is reconstructed with
certain delivery dates changed. This process continues until all customers get a
sufficient supply of LNG at acceptable delivery dates. The problem discussed in
this paper is how to create the first in-office ADP, and the ADP for this producer
is a table with the following information for each ship and voyage: the type of
LNG transported, the contract served, and the dates for loading, unloading and
returning to the loading port.

Operational Planning

The operational planning level deals with updating fleet schedules due to various
logistical, economic, or contractual reasons. Examples of logistical reasons can
be rescheduling due to unplanned events, such as equipment breakdown or ship
delays. An example of an economic reason is when spot market prices change; new
sales or purchase opportunities may create needs for rescheduling. The typical
length of the operational planning horizon is 3 months.

2.3 Related Literature

In this section, the presentation is limited to consider literature related to the
problem and solution approach considered. Hence, maritime inventory routing
problems are described in Section 2.3.1, while rolling horizon heuristics are re-
viewed in Section 2.3.2.

2.3.1 Maritime Inventory Routing Literature

Combined routing and inventory management within maritime transportation
have only been considered in the literature during the last 15 years. Christiansen
and Fagerholt (2009) give an overview of maritime inventory routing problems,
while Christiansen, Fagerholt, Nygreen, and Ronen (2007) present a comprehen-
sive review within maritime transportation in general. Within LNG inventory
routing problems (LNG-IRP), the literature is scarce. The most general study of
the LNG supply chain, including some of its main characteristics, is presented in
Andersson, Christiansen, and Fagerholt (2010). The authors consider two prob-
lems, one for a producer of LNG and one for a vertically integrated company.
Mathematical models are presented for each problem and solution methods to
both models are discussed, but no computational results are given. The main
differences are that the problem studied in this paper considers more than one
LNG product and takes into account the possibility of selling LNG in the spot
market. For the vertically integrated company Andersson et al. (2010) consider
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inventory management at the regasification terminals, which is not considered in
this paper.

The first study reported in the literature on optimization of LNG-IRPs is done
by Grgnhaug, Christiansen, Desaulniers, and Desrosiers (2010) and Grgnhaug
and Christiansen (2009). The problem has a more complex structure than the
problem considered here, as it involves more than one loading port, inventory
constraints both at the loading and delivery ports, and each ship can visit more
than one regasification terminal on a given voyage. However, the problem has
fewer ships and a much shorter planning horizon than the problem presented
in this paper. Gregnhaug and Christiansen (2009) give both an arc flow and
a path flow formulation for the problem. The paths are pre-generated, while
Grgnhaug et al. (2010) use a branch-and-price-and-cut algorithm to solve the
problem. The authors also introduce the LNG-IRP as a problem class in the
literature, a problem class which also includes the problem studied in this paper.

The ADP planning problem presented in this paper is also studied by Stalhane,
Rakke, Moe, Andersson, Christiansen, and Fagerholt (2010), who developed a
construction and improvement heuristic to create good ADPs. The heuristic
solves the problem by iteratively constructing an initial ADP. This ADP is then
improved using two different heuristics, one local search and one based on a
reduced MIP formulation. Halvorsen-Weare and Fagerholt (2009) study a sim-
plified version of the problem where cargoes for each long-term contract are pre-
generated with defined time windows, and the fleet of ships can be divided into
disjoint, groups. The problem is decomposed into a routing sub problem and a
scheduling master problem where berth, inventory and scheduling decisions are
handled in the master problem, while routing decisions are dealt with in the sub-
problem. Unlike branch-and-price, the sub-problems and master problem are
solved only once.

The LNG-IRP is a special case of the inventory ship routing problem (ISRP),
defined by Christiansen et al. (2007) and is a maritime adaption of the well
known inventory routing problem (IRP). The first study of an ISRP was pub-
lished by Christiansen and Nygreen (1998a,b), and Christiansen (1999). The
authors consider a supply chain for ammonia consisting of several locations that
either produce or consume ammonia and the transportation network between
these locations. The problem has inventory constraints at both the produc-
tion and consumption locations and the goal is to minimize the transportation
cost. The overall problem is solved by a branch-and-price method in Christiansen
(1999) and by a heuristic in (Flatberg, Haavardtun, Kloster, and Lgkketangen,
2000). Al-Khayyal and Hwang (2007) present a MIP formulation for a multi-
commodity liquid bulk ISRP. The problem considered is to find a minimum cost
routing solution for a heterogeneous fleet of ships engaged in pick-up and de-
livery of several liquid bulk products, while also deciding the volumes of each
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product carried. Small problems are solved to optimality, but due to the ex-
ponential growth in computational time as the number of port visits increases,
the solution method seems to be unsuitable for solving large problem instances.
The maritime inventory routing problem described in (Ronen, 2002) also includes
multiple products. The underlying model focuses on the inventory management
and not the routing part of the problem, as the model solution suggests shipment
sizes that are assumed to be input for a cargo routing problem at a later stage.

2.3.2 Literature on Rolling Horizon Heuristics

Most contributions describing rolling horizon heuristics in the literature are found
within manufacturing scheduling. Here, the practice of rolling horizons or rolling
schedules is to routinely update or revise schedules, taking into consideration
more reliable and recent data as they become available. Baker (1977) and Baker
and Peterson (1979) were among the first to test the effectiveness of schedules
obtained from a rolling horizon planning model using limited information about
future demand. The authors considered the effects of the length of the horizons,
the cost structure, and the demand patterns. The conclusion was that rolling
schedules produced low-cost results, but their efficiency depended on the length
of the forecasting period.

There exist several algorithms for solving rolling horizon problems that have
proved to be very powerful, see for instance (Stauffer and Liebling, 1997), (Mercé
and Fontan, 2003), (Dimitriadis, Shah, and Pantelides, 1997) and (Araujo, Are-
nales, and Clark, 2007). These algorithms were constructed to be applied in
particular manufacturing settings and are not directly applicable to ship schedul-
ing problems.

The only contribution we know of that applies a rolling horizon approach in
a maritime setting is (Bredstrom and Ronnqvist, 2006). Here, a combined sup-
ply chain and ship routing problem for a large Scandinavian producer of pulp is
considered. It is an operative planning problem with daily ship routing decisions
over a 40 day planning horizon. The authors develop a MIP model with binary
variables for combinations of ships and routes. The model is solved with a heuris-
tic solution method based on a rolling horizon. The idea is to repeatedly solve
a MIP, each covering a short time horizon. The overall problem is solved when
all days in the planning horizon have been considered in at least one MIP. First
an initial set of days are selected and then an extension serving as a forecasting
period is added. In the forecasting period, the binary restrictions on the vari-
ables are relaxed. The approach is applied to real-world problem instances, and
a comparison with an exact branch-and-bound on reduced problem instances is
provided. The computational studies indicate that real-world instances are solv-
able with the proposed solution method and that it is very efficient in many
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cases. The ship scheduling part of the problem shares some similarities with the
ADP planning problem, but is considerably smaller. The fleet consists of three
ships, and the planning horizon is shorter. However, each scheduled voyage is
more complex, as it includes several port calls and the cargoes might be partial
shiploads.

2.4 Problem Description

The problem studied in this paper is a combined ship routing and inventory
management problem for a producer of LNG. It considers inventory management
at the producer, ship routing and scheduling, and contract management between
the producer and its customers.

2.4.1 Storage and Liquefaction

Two types of LNG are being produced at the producer’s liquefaction facility,
RLNG and LLNG. Production rates at the facility are always such that the
equipment available for gas refinement is 100% utilized. Fluctuations in produc-
tion rates occur due to planned maintenance or unforeseen events, meaning that
production rates may vary during a year. The different types of LNG are stored
in separate tanks with given upper and lower limits, and a limited number of
berths for loading LLNG and RLNG are available.

2.4.2 Shipping

The producer operates a heterogeneous fleet of ships. These ships are either
owned by the producer or by one, or a group of customers. However, all ships
are included in the fleet scheduled by the producer.

Several factors influence the availability of the ships in the fleet. Since there is
no depot, some of the ships may become available for operation after the start
of the planning horizon, when they return to the loading port. The ships may
also be unavailable due to certain pre-allocated activities, e.g. maintenance. The
maintenance is not fixed to certain dates, but is required to be carried out within
a given time interval. It is always scheduled to a dry-dock along the sailing lane,
thus minimizing the time the ship is out of commission. After the maintenance
has been performed, the ship has to go through a purge and cool-down procedure
at a berth in the loading port before starting its next voyage. The length of this
procedure takes on average 24 h.

A shipload must contain a single type of LNG, but a ship can carry different
types of LNG on consecutive voyages without any intermediate preparations.
Though it is technically possible for a ship to sail between the loading port and
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a regasification terminal with only some of the tanks filled, this is not considered
economically feasible by the producer and is never done in practice. Due to
this, and in order to avoid sloshing during transportation, the ship tanks are
always filled up to their capacities at the loading port. The duration of the
voyage influences the amount of LNG delivered to the customer due to boil-off,
which causes a fixed ship-dependent percentage (normally between 0.11% and
0.13%) of the total capacity of a tank to evaporate each day. To keep the LNG
tanks on board a ship cool during the return leg, a certain amount of LNG
must be kept in the tanks. If boil-off causes the ship tanks to be completely
empty, a 24-h cool-down period is required at the loading port before the next
loading operation can take place. However, the producer assumes that a ship will
never be completely empty, meaning that ships will never have to go through a
cool-down process, except after a maintenance period. In total, the operations
executed between the arrival and departure at the loading port, excluding cool-
down, takes approximately 24 h.

All ships have individual cruising speed, making the travel times dependent
on the ship. The duration of a voyage may also depend on the time of year, as
sailing conditions may vary between the summer and the winter months. Not
all ships can visit all regasification terminals. This is due to vessel acceptance
policies at the ports, and that some ships are limited to only visit their owners’
regasification terminals.

The transportation costs consist of several components. The fixed costs are
the time charter rates, while the variable costs are port and canal fees that are
determined by the ship type and the contract served. A third variable component
is the bunker cost, which is dependent on the ship size, the load on board and the
duration of the voyage. Since the fixed costs cannot be changed during the time
horizon, the cost of sailing a scheduled voyage is assumed to only be dependent,
on the capacity class of the ship, the duration of the voyage and the regasification
terminal visited.

If the producer does not have enough ships available at a given time, additional
ships may be chartered in for one-off deliveries. A daily charter rate defines the
cost of these ships.

2.4.3 Long-term Contracts and Sale of Spot Cargoes

The producer has a set of long-term contracts to which it is obliged to deliver
a certain amount of LNG to specified regasification terminals each year. These
contracts have time-frames of 20-30 years. A long-term contract either outlines
a monthly demand, or simply states that the LNG is to be delivered fairly evenly
spread throughout the year. Due to the contracts being long-term, there is some
flexibility in the delivered volumes in a given year.
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In addition to serve the long-term contracts, the producer has the opportunity
to sell LNG in the spot market. The spot market for LNG has until recently
been limited. However, this is now changing and it is expected that the market
will grow into a trade-market similar to that of oil in the near future. The spot
sales are short-term contracts for one-off deliveries from the producer to buyers
on agreed terms, and represent a possibility for increased revenue.

When including the option of selling LNG in the spot market, a new dimension
is added to the ADP planning problem. First, the commercial framework shifts;
in addition to fulfill the long-term contracts at minimum cost, the producer now
seeks to maximize the marginal contribution from selling LNG in the spot market.
Second, it becomes necessary to make assumptions about the expected spot price
and the times at which spot contracts can be expected to occur in the market.

2.5 The Mathematical Model

In this section a MIP formulation for the ADP planning problem will be given.
In the formulation a contract represents a combination of customer, regasification
terminal, and the type of LNG delivered.

The whole planning horizon is divided into a number of time partitions. The
time intervals in the time partitions cover the planning horizon and may be
overlapping. If the planning horizon is a year, months and quarters could be
time intervals, where months and quarters clearly overlap. The whole planning
horizon is also considered a time interval. Demand in a given time interval is
assumed to be known and is used as a parameter in the model independent of
if a long-term contract states a monthly demand or if it states that the LNG
should be delivered fairly evenly spread. The demand in each time interval need
not to be met exactly, but there exists penalty costs associated with over- and
under-deliveries.

A scheduled voyage serves a given contract using a specific ship starting from
the loading port on a given day. For each feasible combination of ship, contract
and start time, a scheduled voyage is generated. A combination is infeasible if
the starting time is prior to the ship being available for operation, or if the vessel
is not allowed to visit the regasification terminal associated with the contract.
The sailing time of a scheduled voyage might vary during the year, and this is
implemented by having the sailing time dependent on the starting day.

In contrast to vehicle routing where the trucks usually return to one or more
central depots there are usually no central depots in ship routing. This means
that ships may be anywhere at the start of a planning horizon. This model as-
sumes that the starting positions of all ships are known. All ships are obligated
to dry-dock for maintenance with an interval of a given number of years. Af-
ter maintenance the ships are warm and completely empty and will need to go
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through a purge and cool-down procedure at a berth in the loading port before
starting the next voyage. Maintenance is modeled using one contract for each
type of LNG, defining which berth is used for the purge and cool-down procedure.

Sometimes, the producer does not have sufficient capacity to lift all cargoes
with its own fleet and needs to charter in ships. It is assumed that at most two
ships can be chartered in each day, one for each type of LNG.

The production at the loading port may vary, but this is due to planned main-
tenance or unforeseen events. In this deterministic model unforeseen events are
not handled, hence, the production rates are assumed to be known at the time
of planning.

The storage tanks at the liquefaction plant have time dependent upper and
lower limits, and the inventory levels must always be between these limits. There
may be an initial inventory, and there may be LNG left in the tanks at the end
of the planning horizon.

In the model, no revenue for long-term contracts are considered, only sailing
costs and penalties. For spot cargoes there is a revenue of selling these on the spot
market. In order to implement forecasts of the spot market price there is a time
dependent revenue per m? based on which day the scheduled voyage starts. Since
one year’s ADP is dependent on the previous’, there are introduced revenues on
the end inventories in order to reduce end effects.

Sets
g The set of types of LNG, indexed by g.
C The set of contracts, indexed by c¢. C = CtTucucM,
crr The set of long-term contracts, C*7 C C.
cs The set of spot contracts, C° C C.
cM The set of maintenance contracts, CM c C.
Cy The set of contracts with demand for gas of type g, C4 C C.
Cy The set of contracts ship v may serve.

The set of available ships, indexed by v. V = VP U VS,
1% The set, of ships operated by the producer, VI C V.
Vs The spot ships available for chartering, V5 C V.

yM The set of ships that require maintenance during the planning hori-
zon, VM c VP,

V. The set of ships that may serve contract ¢, V. C V.

T The set of days in the planning horizon, indexed by t. T =
{1,2,3,...,T}, where T is the last day in the planning horizon.

P The set containing elements of partitions of 7, indexed by p.

Tp The set, of days in time interval p, 7, C T.

Ty The set of days where ship v is available to be scheduled, 7, C T.
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TM The set of days where maintenance of ship v may start, 7.M C 7.
Constants
ct The transportation cost of serving contract ¢ using ship v.

C’gﬁ The penalty cost per unit of over-delivery of LNG to a contract ¢
in time interval p.

C’gg_ The penalty cost per unit of under-delivery of LNG to a contract ¢
in time interval p.

RS, The revenue of selling one unit of LNG under spot contract ¢ at
day t.

Ré The per unit value of having LNG of type g left in the tank at day
T.

L, The loading capacity of ship v.

Teot The time it takes to serve contract ¢ using ship v when starting on
day t.

D, The demand of contract ¢ in time interval p.

Py Accumulated production of LNG of type g up to and including day
t, plus the inventory level at the start of the planning horizon.

B, The number of berths available at the loading port for loading LNG
of type g.

14t The maximum amount of LNG of type ¢ that can be stored at the
loading port at day t.

Ly The minimum amount of LNG of type g that should be available
at the loading port at day t.

Variables
Tevt 1 if ship v starts a scheduled voyage for contract ¢ on day ¢, 0
otherwise.
yjp The over-delivery to long-term contract ¢ in time interval p.
Yep The under-delivery to long-term contract ¢ in time interval p.
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The objective function (2.1) minimizes the sum of the transportation and
penalty costs minus the revenue from LNG sold in the spot market and the
LNG left in the tanks at the end of the planning horizon. The berth restrictions
are stated in constraints (2.2). Since a ship goes through a purge and cool-down
procedure at one of the berths after maintenance, the variables corresponding to
these scheduled voyages are added to the constraints on the return day of the voy-
ages. Constraints (2.3) ensure that the inventory levels are always between their
upper and lower bounds. The contractual demands are handled in constraints
(2.4), relating the amount delivered in a time interval with the demand through
the over- and under-delivery. The routing constraints (2.5) specify that a ship is
only allowed to operate one scheduled voyage each day. Maintenance is handled
by constraints (2.6), and constraints (2.7) and (2.8) are the variable restrictions.

There are some differences between this model and the model presented in
(Stalhane et al., 2010). A cost of over-delivery to a contract has been added to the
objective function (2.1) to make the model more general. In addition the revenue
of selling LNG in the spot market and the sailing times are dependent on the
starting day of a scheduled voyage. Inventory constraints (2.3) are also modeled
as knapsack constraints to enable the solver used to generate more and stronger
valid inequalities. Extensive testing shows that this improves the performance of
the algorithm.

2.6 Solution Method

The ADP planning problem is too large to be solved in reasonable time as a
regular MIP using a commercial solver, and even finding a feasible solution is
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very time-consuming. This motivates the use of an alternative solution method
that produces good results in less time. In the literature, rolling horizons have
successfully been applied to several problems in order to deal with large MIPs.

Even though the RHH produces good ADPs, it has some limitations. The
biggest drawback is that it does not explore the full planning horizon, which
means that it is in some sense myopic. To deal with this a MIP-based improve-
ment heuristic has been developed. It solves the problem for the full planning
horizon, but the number of binary variables is reduced based on the given solution
from the RHH.

The rest of this section presents the RHH and the improvement heuristic de-
veloped for the ADP planning problem. Section 2.6.1 outlines the RHH while
Section 2.6.2 describes the improvement heuristic.

2.6.1 The Application of a Rolling Horizon

The general idea of the RHH is to repeatedly solve the MIP for shorter sub-
horizons of the planning horizon using branch-and-bound. Each sub-horizon, in
the following referred to as time window (7'W), consists of two time periods (T'P).
The two T Ps are TP,CC , which is the central period that will be implemented
in iteration k, and the forecasting period TP,f. In the forecasting period the
model is simplified according to a simplification strategy. Before solving the
problem for TWj. 4, the variables in TP,CC are frozen, and the sub-horizon is
shifted so that the whole, or the first part of, TP,f becomes TPkCH. If the
central period and the forecasting period have equal length, the forecasting period
becomes the new central period. Otherwise only the first part of the forecasting
period defines the new central period. The deviations from demand in TP,CC
are also transferred to TP,CCH. If there is under-delivery in TP,CC, the demand
in TPkC+1 is increased in order to even out the demand deviations over the full
planning horizon. Algorithm 1 gives the pseudo code for the RHH, while Figure
2.3 illustrates the RHH graphically. A similar figure is also given in (Mercé and
Fontan, 2003).

The Central Period

The central period contains binary variables representing the scheduled voyages
that will be frozen in the next iteration. When freezing the variables in the
central period, the deviations from contracted demands are transferred to the
next central period. One reason for this is that the predicted demands represent
the yearly demands evenly distributed over the year, with special constraints for
some contracts. These predicted demands seldom fit to an integer number of
deliveries since they are a percentile of the yearly demand. To exemplify this,
assume a long-term contract with an annual demand of 1000 m?® of LNG and
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Figure 2.3: The rolling horizon heuristic

Algorithm 1 RHH( K : Number of time windows )

k=0
while (k=k+1) < K do
Solve the mathematical model for the problem defined by TPE and TP,f
Freeze the binary variables x.,; in the central period TPkC
if £ < K then
for all ¢ € CET do
Transfer the deviations from demand in TPkC to TPkc+1
end for
end if
end while

that the producer has one ship with a capacity of 100 m3. If the demand is to be
evenly distributed throughout the year the monthly demand is 83.33 m>. Since
all ships leaving the loading port have to be fully loaded it will be impossible to
deliver 83.33 m3 of LNG each month. The solution is then to over-deliver in 10 of
the months, and deliver nothing at all in the two remaining months. This shows
that the initially predicted monthly demands will depend on the deliveries in the
previous months.

The Frozen Period

Once the computational time limit is reached or the optimal solution is found
for a given time window, the variables in the central period are frozen according
to a freezing strategy before the next iteration. Several freezing strategies are
discussed in the literature. For the multi-item capacitated lot-sizing problem in
(Mercé and Fontan, 2003) two different strategies were presented; freezing all
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decisions from the previous central periods, or freezing only the periods when to
produce but not the production quantities. In their case the latter strategy proved
to be most efficient, but for the ADP planning problem this freezing strategy is
not possible to implement because of the problem size. We therefore use the first
strategy. By freezing all variables, the previous periods do not introduce any
variables for the current period. In fact, this actually reduces the feasible space
since many ships will not be available from the start of the time window.

The Forecasting Period

It is desirable to include a forecasting period to use information about a larger
part of the planning horizon so that solutions that are clearly sub-optimal out-
side the central period hopefully can be avoided. There are two main issues that
will be addressed in this section. First, the restrictions on the forecasting vari-
ables will be discussed. Second, it is necessary to determine the length of the
forecasting period. The combination of variable restrictions and a given length
constitutes a simplification strategy for the forecasting period.

The Variables in the Forecasting Period

There are two options for the variables representing scheduled voyages (zcyt),
0 < eyt < 1orae € {0,1}. In the RHH the first option is chosen. Using
continuous variables will reduce the computational effort required to solve the
problem for the forecasting period. The drawback is that the variables can take
fractional values in the final solution and, hence, give less accurate forecasting
information than binary variables. Still, the role of the forecasting period is to
forecast the implications of the decisions made in the central period, hence, less
accurate information is acceptable in order to reduce the computational effort.
From one iteration to the next, binary restrictions are imposed on the variables
in the new central period before re-solving the problem.

The Length of the Forecasting Period

In principle, extending the planning horizon by including additional future pe-
riods will provide some incremental benefit simply because a greater amount of
relevant information is brought into the analysis. Hence, it is expected that the
RHH yields better results as the length of the forecasting period increases. Ide-
ally the full remaining period should be included in order to get information
about the demand over the entire planning horizon. However, this approach is
not practically feasible due to the problem size. Consequently, the forecasting
period needs to be relatively short for the heuristic to be efficient. At the same
time, it should be long enough to be affected by, and affect, the decisions made
in the central period.
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Solution Space Reduction

When applying the principles described in the preceding sections, each sub-
problem should be of manageable size. Still, due to the size of the feasible region
and many almost symmetrical solutions, high solution times for each time window
are expected. To deal with this, a solution space reduction (SSR) has been de-
veloped. This is a common strategy in scheduling and inventory problems where
it has shown both to improve the solution time and quality (Zanakis, Evans,
and Vazacopoulos, 1989). The general idea is to reduce the number of almost
symmetrical solutions without cutting off many good solutions. By limiting the
number of contracts a ship can deliver to on a given day, the number of scheduled
voyages can be decreased, while the flexibility with respect to the LNG volumes
delivered is kept. Hence, only variables to a subset of the contracts are gen-
erated for each day in the planning horizon. The SSR takes an integer N as
input, and creates 1/N of all possible variables associated with each contract.
The algorithm spreads the variables to different days by taking the sum of the
day and the contract number modulo N and only creates variables when this is
zero. For contract number 3, only schedules voyages starting on day 1,5,9,...
are generated if N = 4.

2.6.2 Improvement Heuristic

This section will describe how a modified version of the mathematical model in
Section 2.5 is used to improve the ADPs produced by the RHH by generating only
a small subset of the variables. By using a feasible ADP as a starting point, the
number of variables in the formulation can be limited and, hence, focus the search
effort to a more restricted area of the solution space. A similar improvement
heuristic is used by Stalhane et al. (2010) with success. The section starts with
a description of how a reduced number of variables is created in Section 2.6.2,
and then additional constraints added to the formulation are explained in Section
2.6.2. The section ends with a short description of the improvement heuristic.

Variable Generation

In the full mathematical program described in Section 2.5, a binary variable x..;
for every feasible combination of ¢, v, t is generated. In the improvement heuristic,
only a subset of these binary variables is generated. The set S* of all scheduled
voyages sailed in the ADP is given as input to the improvement heuristic. The
sub-sets S, C S* are the sets of scheduled voyages serving contract ¢ on day t.
For each scheduled voyage in §* serving a long-term contract, the contract ¢ and
day t are kept fixed, but all ships v € V. are allowed to serve the contract. Thus
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the following variables are generated:
Zewt € {0,1}, Ve e CET v € Ve, t € T, such that S, # 0. (2.9)

Let CY* be the set of all long-term contracts ¢ in S* that has an under-delivery
in the ADP given to the improvement heuristic, and let S;t* be the set of all
scheduled voyages carrying gas of type g serving the spot contracts on day t.
Then, ships sailing scheduled voyages in Sft* can be re-routed to a scheduled

voyage serving a long-term contract in CV*. This gives the following variables:

Tepr € {0,1}, Vg€ G,ceC,n{CV*UCweV, teT, (2.10)
such that S # 0.

Maintenance of ships is an area where there is a potential for improvement since
taking a ship out of commission for a period of time may have great impact on
the ADP. On average maintenance only concerns a fifth of the ships and the
part of the planning horizon in which a ship is obligated to start maintenance is
very limited. All variables involving the maintenance contract are generated as
follows.

Tewt € 0,1}, VeeCM ve VM teTM. (2.11)

By only creating the variables mentioned above, the size of the problem in the
improvement heuristic is limited. Thus it might be easier to find good feasible
solutions to the formulation given in Section 2.5 by using traditional branch-and-
bound.

Additional Constraints

For some instances the problem may still be hard to solve. To ease the solution
process further, additional constraints are added to the mathematical program-
ming formulation. For each scheduled voyage, only one z.,; variable can be equal
to one. The reasoning behind this is that the number of scheduled voyages should
be kept constant. To enforce this, the following constraints are added:

> oot =18, VeeCT teT. (2.12)
veEVL
Overview of the Improvement Heuristic

The improvement heuristic solves the mathematical model presented in Section
2.5 with some additional constraints. The objective function (2.1) and the con-
straints (2.2)-(2.6), (2.8) are kept and constraints (2.12) are added. The problem
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is reduced in terms of number of variables based on a feasible ADP generated
by the RHH. This is accomplished by only generating variables based on (2.9)-
(2.11) instead of generating all possible variables as in (2.7). The effect of the
improvement heuristic will be discussed in Section 2.7.

2.7 Computational Study

This section presents the tests performed to evaluate the RHH. Section 2.7.1 de-
scribes the cases used when testing. In Section 2.7.2 results from solving the full
model in Section 2.5 using commercial software are presented. The parameter
testing in Section 2.7.3 includes tests on the effect of the improvement heuristic
and SSR for a large number of penalty settings. Section 2.7.4 outlines computa-
tional results from the best setting found during the parameter tests and compares
them with the results for the full model and the construction and improvement
heuristic in (Stalhane et al., 2010).

The RHH was implemented in Xpress Mosel ver 2.4.0, using Xpress ver. 19.00.00.
The RHH is designed to run on a standalone computer, but due to the number
of tests it was decided to run all tests on a cluster after confirming that the per-
formance was similar to that of a standard laptop (A Dell Latitude 630 Intel(R)
Core(TM)2 Duo, 2.5 GHz, 3.5GB of RAM , Windows XP). The nodes in the clus-
ter are HP DL 160 G5 computers with an Intel Xeon QuadCore E5472 3.0 GHz
processor and 16 GB of RAM running on a Linux operating system. It should
be noted that even though the processor used to run these tests have multiple
cores, only single thread versions of the programs have been used in order to give
running times comparable to using a single core computer.

2.7.1 Description of the Cases

The RHH has been tested on four different cases, A-D. Cases A and C are based
on real case data provided by the producer, while cases B and D are reduced
versions of A and C, respectively. In these cases some of the ships, contracts, and
production volumes are removed. The 16 instances created from these cases are
listed in Table 2.1. For each instance the number of ships, number of contracts
for each gas type, the length of the planning horizon, the number of berths for
each gas type, and a range for the number of scheduled voyages needed are given.
The number of scheduled voyages needed is calculated based on the amount of
LNG to be shipped and the size of the ships available in the instance.

The instances in Table 2.1 are organized such that A1, B1, C1, and D1 repre-
sent the four cases with a one year planning horizon. The remaining instances
represent the original cases with a planning horizon of 8, 6 and 4 months, respec-
tively. The 4 and 8 months instances are used for testing the parameters, while
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all instances are compared in Section 2.7.4.

Table 2.1: Instances

Instance  Number of  Number of Contracts  Planning Horizon  Number of Berths  Number of
Ships LLNG RLNG Days LLNG RLNG Voyages
Al 34 5 3 366 P T 310 - 350
A2 34 5 244 4 1 200 - 230
A3 34 5 3 182 4 1 140 - 170
A4 34 5 3 121 4 1 100 - 120
B1 16 1 3 366 2 1 110 - 140
B2 16 1 3 244 2 1 75 - 90
B3 16 1 3 182 2 1 50 - 70
B4 16 1 3 121 2 1 40 - 50
c1 46 6 11 365 4 1 310 - 350
Cc2 46 6 11 243 4 1 200 - 240
c3 46 6 11 181 4 1 160 - 200
Cca 46 6 11 120 4 1 100 - 130
D1 30 4 4 365 4 1 200 - 240
D2 30 4 4 243 4 1 130 - 160
D3 30 4 4 181 4 1 100 - 130
D4 30 4 4 120 4 1 70 - 100

The cases can be divided into two main scenario classes where cases A and
B reflect the current situation, and C and D reflect a future situation when all
planned production-trains, ships and loading docks have been completed. The
main differences between the cases are: Cases A and B have fewer and smaller
ships and the production rates are lower, but there is more excess LNG available
to sell in the spot market. Cases A and B also include seasonal variations, the
demands are of similar size, and the destinations are, on average, situated closer
to the producer’s loading port.

The model in Section 2.5 makes it possible to have different sailing times for
different periods of the year, but in the data provided a constant sailing time is
assumed throughout the year.

To model the possibility to sell excess LNG in the spot market, one contract
for each type of LNG is defined. In all cases it is assumed that LNG can be sold
on the spot market at a fixed price of USD 150 per m? at any time during the
planning horizon. Further, at the time the ADP is created, the producer will
only know the volume and the delivery times of the LNG to be sold on the spot
market, but where the LNG is to be shipped is considered unknown. To make
the ADP more robust, it is assumed that all spot cargoes are shipped to the
regasification terminal lying furthest away from the loading port.

2.7.2 Exact Solution Method

Here the computational results of solving the mathematical model given in Sec-
tion 2.5 by commercial optimization software are presented. The model is flexible
in terms of partitioning the planning horizon and penalizing the different time in-
tervals. It was decided to penalize monthly and annual deviations from demand.
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Since some of the long-term contracts state monthly demands and others a fairly
evenly spread of LNG deliveries, penalizing monthly deviations will capture both
these aspects. A penalty cost of USD 25 per m? for deviations from monthly de-
mands and USD 175 per m? for deviations from the annual demand has been used
during testing. Over- and under-deliveries to the spot contracts are not penal-
ized. The main reason of testing the exact solution method (ESM) is to get lower
bounds in order to evaluate the quality of the RHH. Therefore each instance was
run for a maximum of 24 h (86,400 s), using heuristics in every branch-and-bound
node in order to produce good solutions. Table 2.2 shows the computational time
(CPU(s)), the relative difference between the upper and lower bounds (Gap) and
the absolute difference between the upper and lower bounds (UB-LB) given in
1000 USD. The ESM could not solve any instance to optimality within 24 h, but
it was very close for some of the 4 month instances, and provided fairly good
results on the 6 and 8 months instances as well. However, for the 12 months
instances of cases A, C, and D the ESM is far from closing the gap.

Table 2.2: Results from the ESM

Instance CPU(s) Gap (%) UB-LB
Al 86400 306.64 54641
A2 86400 20.62 20141
A3 86400 22.28 8700
A4 86400 3.44 2492
B1 86400 12.24 2085
B2 86400 6.23 3279
B3 86400 6.06 1387
B4 86400 10.63 2371
c1 86400 7.77 112224
c2 86400 3.66 37209
c3 86400 0.68 5514
Cca 86400 0.45 2476
D1 86400 8.66 74957
D2 86400 3.39 21499
D3 86400 1.53 7581
D4 86400 0.51 1677

The poor results on the larger instances motivate the development of a heuristic
solution method. Even though optimality cannot be proven by the heuristic, it
will hopefully produce good solutions in less time than the ESM.

2.7.3 Parameter Testing and Settings for the Heuristic

As described in Section 2.6 the RHH solves the ADP planning problem by it-
eratively solving shorter time windows of the full problem. The solution time
and performance greatly depend on the length of the central period and the fore-
casting period. For the ADP planning problem the length of the central and
forecasting period should be an integer number of months since the demands of
the long-term contracts are given on a monthly basis if any seasonal variations
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are present. After extensive a priori testing it was chosen to set the central period
to 1 month and the forecasting period to 2 months in order to keep the compu-
tational effort within reasonable limits. This means that the time window for
each sub problem is 3 months. The time used to solve each time window and the
improvement heuristic is also limited. If we are unable to prove optimality for
a time window the best known solution is accepted as the solution for the time
window. If the reduced problem in the improvement heuristic is not solved to
optimality, the best known solution when reaching the time limit is returned as
the solution of the instance. The time limit is set to 500 s for each time window
and to 1000 s for the improvement heuristic. Preliminary testing shows that the
results improve for almost all cases when time is increased, but these limits are
set in order to have a total running time of less than 2 h for the largest instances,
which was a specification provided by the producer.

Monthly and annual deviations from demand are penalized in the mathematical
model in Section 2.5. Since the RHH only solves the problem for shorter time
windows, the penalties in the full model, Cgf and Cgf, cannot be directly
translated to penalties used by the RHH. In order to capture the penalties in
the full model, penalties are introduced in each sub problem in the RHH. The
over- and under-delivery in each time interval in the time periods and the total
deviations in the time window are penalized. Tests of the RHH both with and
without the SSR were run with penalties on both time windows and time intervals
in the time periods ranging from 100 to 200, with an increment of 25. In later
discussions a penalty setting of e.g. [100, 200], means a penalty of 100 for the
time windows and a penalty of 200 for the time intervals in the time periods.

The parameter testing is done in three steps. First, the effect of the proposed
improvement heuristic is studied. Second, the results of the different penalty
settings for the RHH with and without SSR are analyzed separately. To rank the
settings, the ADP created by the RHH for a given setting is evaluated using the
same objective function as the ESM. This means that the penalties introduced
in each sub problem are not used during the evaluation. The settings are ranked
on the basis of the aggregated objective value for each of the original cases, i.e.
the sum of the objective values of A2, A4, B2, and B4 or C2, C4, D2, and D4.
An overall ranking of the penalty settings is then made by summing the rankings
from the two original cases. Third, a comparison is made between the ten best
penalty settings regardless of algorithm used. The best setting will then be used
during further testing.

The Effect of the Improvement Heuristic

Section 2.6.2 describes an improvement heuristic which takes the ADP created
by the RHH and improves it by solving a reduced version of the mathematical
model in Section 2.5. In order to validate that the improvement could justify
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the increase in the total running time of the RHH, tests with and without the
improvement heuristic were made. All penalty settings for the RHH both with
and without SSR where used in the tests. Results from these tests showed aver-
age improvements over all eight instances ranging from 2.44% to 10.20%. These
results show a significant impact of using the improvement heuristic, and it is
used in all succeeding tests.

Tests of Solution Space Reduction

In Table 2.3 the different penalty settings for the parameter tests of the RHH
with and without SSR. are ranked according to the objective value using objective
function (2.1). For each setting the first two columns provide the penalty setting
for a given run where (tw) is the penalty used for the time window and (tp) is
the penalty used for each time interval in the time periods. Columns 3 and 4
show the ranking of the penalty setting with respect to the total objective value
in cases A+B and C+D. The final column gives the total ranking of a particular
setting. The overall ranking is based on summing the rankings of columns 3 and
4.

Table 2.3: Parameter tests for RHH with and without SSR

Whitout SSR With SSR.
Penalty Aggregated objective rank Penalty Aggregated objective rank
tw tp A+B C+D Overall tw tp A+B C+D Overall
100 100 2 T T 100 100 T T T
150 150 5 2 125 200 3 3 2
100 125 7 3 3 100 125 5 2 3
125 125 5 6 4 125 100 2 7 4
125 100 11 2 5 150 100 10 6 5
125 100 12 4 6 175 100 12 4 6
100 175 8 8 7 150 125 11 5 7
100 150 10 7 8 150 150 7 9 8
150 125 9 10 9 125 125 4 13 9
175 125 6 14 10 200 125 14 10 10
175 100 4 18 11 100 150 8 16 11
200 100 1 21 12 175 125 9 15 12
125 150 16 11 13 200 100 13 12 13
100 200 15 17 14 100 175 6 21 14
125 175 13 20 15 200 150 22 8 15
150 175 19 15 16 175 150 19 11 16
200 125 22 12 17 150 175 15 17 17
200 150 25 9 18 125 150 18 14 18
150 200 14 23 19 175 200 17 20 19
175 150 24 13 20 125 175 16 23 20
175 175 23 16 21 100 200 21 19 21
200 175 18 22 22 175 175 23 18 22
125 200 21 19 23 200 200 20 25 23
175 200 17 25 24 150 200 25 22 24
200 200 20 24 25 200 175 24 24 25

For the tests without SSR studying the columns A+B and C+D separately,
there is no penalty setting that is non-dominated, i.e. best in all four cases. For
example, the penalty setting of [200, 100] is best for the cases A+B, but it ends
up as number 21 for C+D. The best penalty setting overall for the four cases is
clearly [100, 100]. This setting ranks as number 2 in A+B and number 1 in C+D,
with a total ranking sum of 3. For the tests with SSR the best penalty setting
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for the four cases is clearly [100, 100].

The Ten Best Penalty Settings from the Parameter Tests

In Table 2.4 the different penalty settings for all the parameter tests of the
RHH are ranked. The table has an extra column (Alg) compared to Table 2.3.
This column states if SSR was used (ssr) or if the full subproblems were solved
(full). When it comes to the results of the RHH with and without SSR the former
seems to be slightly better than the latter. On the basis of these results it was
decided to run the final tests with penalty setting [100, 100] and SSR. The overall
ranking is based on the sum of rankings in columns 4 and 5.

Table 2.4: The ten best penalty settings from the parameter tests

Penalty Aggregated objective rank
tw tp Alg  A+B CHD Overall
100 100 ssr T 2 1
100 100 full 3 1

150 150 full 4 7 3
125 125 full 6 8 4
100 125 full 11 4 5
100 125 ssr 13 3 6
125 200 SST 9 11 7
100 175 full 12 9 8
125 100 SST 14 9

N

175 125 full 17

-
o

2.7.4 Computational Results

In this section, the RHH is compared with the ESM and the construction and im-
provement heuristic (CIH) developed by Stalhane et al. (2010). When comparing
with the CIH reported in (Stalhane et al., 2010) the setting CON-LS-2-MIP has
been chosen since it gives the lowest average absolute difference between the up-
per and lower bounds. Table 2.5 presents the results for all instances tested. The
relative and absolute gaps between the upper bound and the best lower bound
found by the ESM are given for each algorithm.

Only focusing on the relative difference, the performance of all algorithms
seems significantly worse for cases A and B compared to C and D. However, this
is not the case when looking at the absolute difference between the bounds. The
absolute differences are small on almost all instances from cases A and B. The
explanation is that in the cases A and B there is a lot of excess LNG to sell,
causing the revenue from selling LNG in the spot market to be approximately
the same as the transportation and penalty costs giving a lower bound close to
zero. This makes the relative differences large in these cases. Cases C and D
are much more tightly constrained when it comes to excess LNG. Hence, the
objective value is much closer to the sum of transportation and penalty costs,
giving relatively smaller differences.
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Table 2.5: Comparison of solution quality

ESM RHH CIH

Instance Gap (%) UB-LB Gap (%) UB-LB Gap (%) UB-LB
Al 306.64 54641 33.07 17002 51.01 23380

A2 20.62 20140 9.35 10069 19.41 19148

A3 22.28 8699 13.02 5501 37.70 13071

A4 3.44 2492 3.98 2866 9.35 6403

B1 12.24 2085 37.27 7431 18.92 4355

B2 6.23 3279 13.18 6507 7.82 4051

B3 6.06 1386 12.08 2613 16.64 3460

B4 10.63 2371 13.51 2038 17.73 3718

c1 7.77 112224 6.07 87694 1.84 26643

Cc2 3.66 37209 3.78 38379 2.56 25992

3 0.68 5514 2.17 17674 2.82 22018

ca 0.47 2575 1.77 9703 2.40 13159

D1 8.66 74957 3.95 34216 1.59 13731

D2 3.39 21499 3.50 22238 2.99 18985

D3 1.53 7581 5.21 25839 5.20 25767

D4 0.51 1677 3.44 11289 0.81 2676
Average 31.55 22452 10.33 18873 12.48 14217

Starting with the overall picture and comparing the average performance, both
the average percentage and absolute gaps of the ESM are inferior to the gaps of
the heuristics. This is mainly due to a very large gap with the ESM for the
current ADP planning problem, Al. In general the gaps in solution quality
are more stable for the heuristics than the ESM. When comparing the average
performance of the heuristics, the percentage gap is slightly better for the RHH
while the absolute gap is slightly worse for the RHH.

The ESM produces best solutions on nine of the 16 instances, something that
can be explained by the time limits used. The ESM is run for 86,400 s, compared
with less than 7200 s for the RHH and even shorter time for the CIH. On all 12
months instances except B1, the heuristics are better, indicating that a heuristic
approach is preferable when solving real size instances. Comparing the RHH and
the CIH is harder. On the 16 instances tested, the RHH is better on eight. The
RHH is better than CIH on six of the eight instances based on cases A and C,
i.e. the cases based on real case data provided by the producer.

Table 2.6 shows the total running time in cpu(s) for the ESM, RHH and CIH.
The ESM has been run for 24 h for all the instances, while the RHH reached the
time limit for some, but not all instances. The instances solved by the CIH all
have shorter CPU time than the instances solved by the RHH and ESM.

In addition, Table 2.6 gives information about the CPU time it takes before
the ESM obtains a better solution than the one found by the RHH (ESM >RHH).
For five of the instances the ESM does not find a better solution than the RHH,
hence the value of the column for these instances is 7 >86400”. When comparing
objective values from the RHH and the ESM, considering running time, the RHH
outperforms the ESM in 10 out of 16 instances. Only studying the instances with
a one year planning horizon, the RHH performs better than the ESM in three
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Table 2.6: Comparison of computational time

Instance  ESM (s) RHH (s) CIH (s) ESM>RHH (s)
Al 86400 6626 1587 =86400
A2 86400 4564 642 >86400
A3 86400 3539 318 >86400
A4 86400 2521 157 23577
B1 86400 3043 152 325
B2 86400 2528 76 207
B3 86400 2022 42 2032
B4 86400 2015 23 128
C1 86400 5854 1788 >86400
c2 86400 3727 729 42149
[eF] 86400 3027 410 14348
c4 86400 2552 218 349
D1 86400 5174 530 >86400
D2 86400 3607 226 82392
D3 86400 3069 134 54
D4 86400 2307 66 326

out of four instances. The table also shows that the RHH is more stable with
regard to the solution time than the ESM.

2.8 Concluding Remarks

In this paper a rolling horizon heuristic (RHH) for a large scale ship routing
and inventory management problem is presented. It is a tactical problem with
multiple products, where the goal of the producer is to create an annual delivery
program (ADP) that minimizes the cost of fulfilling its long-term contracts, while
maximizing revenue from selling LNG in the spot market. The producer operates
one loading port with limited inventory and berth capacities for each type of LNG,
and a heterogeneous fleet of ships. A long-term contract either outline monthly
demands, or state that a certain volume of LNG is to be delivered fairly evenly
spread throughout the planning horizon to a given regasification terminal. No
inventory management is considered at the regasification terminals. A mixed
integer programming model of the ADP planning problem is presented. Over-
and under-deliveries within specified time intervals are penalized in the model.

To provide good solutions within reasonable time a RHH is developed. The
RHH solves the problem by iteratively solving subproblems with shorter time
horizons. Each such subproblem consists of a central period and a forecasting
period. After solving a subproblem, the variables in the central period are frozen
and the algorithm moves to the next subproblem. A method for solution space
reduction (SSR) is also developed to further reduce the number of variables in
each subproblem. Finally, an improvement heuristic is implemented on top of the
RHH. Here, the ADP created by the RHH is used as input to a reduced version
of the mathematical model.

For the computational study instances reflecting the current and estimated fu-
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ture situations of the producer are generated. The success of the RHH depends
on several factors. (1) The penalties used in the mathematical model and in
the RHH are critical. An extensive parameter testing has been performed, and
the penalties that performed best on average have been used in the rest of the
computational study. (2) Initial testing indicated that the variables represent-
ing the scheduled voyages in the central period should remain binary, while they
should be continuous in the forecasting period. (3) In addition, the length of the
forecasting period is set to twice the length the central period (4) The computa-
tional results indicate that the RHH should apply SSR as both solution time and
quality improved. (5) The improvement heuristic is important for the success of
the RHH and improved the results by 2%—10% for the instances tested.

The computational study shows that the RHH produces high quality solutions
to real-world problem instances in a relative short amount of time. None of the
instances could be solved to optimality using an exact solution method (ESM),
and for most of the instances the RHH produced better quality solutions than
the ESM in the same amount of time. The computational study also showed
that the RHH is more stable with regard to the solution time than the ESM.
When using the RHH, the user can specify the computational time limit for
each of the subproblems and the improvement heuristic, such that a maximum
computational time is given for the RHH to provide a solution. This makes the
RHH well suited as a heuristic in a decision support system (DSS), where the
user may want quick feedback in some situations where alternative scenarios can
be tested in a short amount of time while considerable time is available in others.
The RHH is also compared to a construction and improvement heuristic (CIH)
developed by Stalhane et al. (2010). This heuristic is fast compared to the RHH,
but for half of the instances the RHH produced better solutions. Both methods
are valuable in a DSS, where it is expected that the RHH will produce relatively
better solutions when there is plenty of computational time available, while the
CIH produces good solutions in a short amount of time.

In the future it would be interesting to study exact solution methods for the
ADP planning problem. Here, different decomposition approaches combined with
problem specific cuts may be promising in order to produce better bounds and
hopefully provide optimal solutions to some of the instances. It would also be
interesting to study other formulations of the problem in order to strengthen the
bound and reduce the symmetry. By finding, and proving, the optimal solutions
to some of the instances we would also be able to provide a better measure of the
performance of the RHH.

Other planning problems faced by the producer also contain interesting re-
search alternatives. At the strategic planning level, both contract portfolio man-
agement and investment planning in physical assets are important decision areas
for this major producer of LNG. At the operational level, the ADP has to be
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updated due to unforeseen events and other disruptions to the plan. Therefore it
would be interesting to study how to re-optimize the solution, given that certain
parts of the plan is fixed, while other parts of it have to be discarded.

The planning horizon for the ADP spans over an entire year, so it is a major
issue to produce a robust plan for the producer. Therefore, an interesting topic
for further research would be to study how to create an ADP that minimizes the
effect of possible disruptions, while ensuring a low cost ADP.
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A Construction and Improvement
Heuristic for a Liquefied Natural
Gas Inventory Routing Problem

Abstract:

We present a large scale ship routing and inventory management problem
for a producer and distributor of liquefied natural gas (LNG). The problem
contains multiple products, inventory and berth capacity at the loading port
and a heterogeneous fleet of ships. The goal is to create an annual delivery
program to fulfill the producer’s long-term contracts at minimum cost, while
maximizing the revenue from selling LNG in the spot market. To solve this
problem we have developed a construction and improvement heuristic (CTH).
The CIH is a multi-start local search heuristic that constructs a set of solu-
tions using a greedy insertion procedure. The solutions are then improved
using either a first-descent neighborhood search, branch-and-bound on a
mathematical formulation, or both. Tests on real-life instances show that
the CIH provides good solutions in a short amount of time.

3.1 Introduction

During the past decade the demand for energy has soared across the globe and is
estimated to increase a further 50% from 2005 to 2030. Natural gas is becoming
increasingly important in fulfilling this demand, with its share of the total energy
consumption expected to increase from 20% in 2005 to 25% in 2030, EIA (2008).
Until recently, natural gas has mainly been transported through pipelines. How-
ever, technological advances have made it possible to transport natural gas cost
efficiently over greater distances by converting it into liquefied natural gas (LNG)
and transporting it in specially designed ships.

More and more countries consider LNG as an alternative way of satisfying their
energy demand. The largest suppliers of LNG have customers spread across far-
east Asia, Europe and North-America. The increased production is also reflected
in the number of LNG ships in service today. The world LNG fleet has grown
from 105 ships in 1998 to 257 ships at the start of 2008, and is estimated to
expand to about 400 ships by 2015 according to Fearnley (2008). Taking into
account that an LNG ship with a capacity of 145 000 m? costs roughly 200-250
million USD to build, and the daily charter rate can be as much as 80 000 USD,
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it is clear that there is a huge amount of money invested in the transportation of
LNG. In addition, a spot market similar to that of crude oil is developing. The
value of a single shipload of LNG is approximately 20-30 million USD, making
this market very profitable. However, to have a stable and predictable income,
most LNG producers have tied the majority of their production to long-term
delivery contracts, while the remaining quantity is sold in the spot market. In
such a complex and shifting environment decision support systems for routing
and scheduling of LNG ships become ever more important.

Figure 3.4: Map showing some of the main sailing routes of the producer.

In this paper we present a ship routing and inventory management problem for
a producer and distributor of LNG. The producer has a single liquefaction plant
with storage tanks and a connected loading port with limited capacity. From the
loading port the LNG is shipped by a heterogeneous fleet of ships to customers
world-wide to whom the producer has a contractual obligation to deliver LNG,
see Figure 3.4. All shipments are full shiploads. In addition, the producer wants
to utilize any excess LNG by selling it in the spot market. The goal is to create
an annual delivery program (ADP) to fulfill the producer’s long-term contract
obligations at minimum cost, while maximizing the expected marginal contribu-
tion from selling excess LNG in the spot market. An ADP is a complete schedule
of every ship’s sailing plan for the coming year.
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3.2 Related literature in maritime LNG transportation

The problem faced by the producer in this case study is similar to problems
faced by other producers of LNG, but also producers of other unrefined products
like crude oil. These problems often have one location where the product is
extracted with limited storage and berth capacity, and many customers to which
it is distributed. The fleet is usually fixed and heterogeneous, and each voyage is
a round trip, where products are unloaded at one or more ports, before the ship
returns empty to the loading port. The main difference between LNG and most
other products is the constraint of full ship loads being delivered to only one
destination. However, many unrefined products are being extracted in remote
locations, with the primary markets located within fairly limited geographical
areas. For instance crude oil tankers are fully loaded in the Middle East, and
make deliveries to either the US, Western Europe or Japan. Thus the sailing trip
may be fairly accurately modelled as one destination when making a schedule for
the coming year.

The purpose of this paper is to present a construction and improvement heuris-
tic (CIH) that quickly solves large real world instances of the LNG planning
problem described above. The heuristic includes a diversification strategy by
constructing a set of initial solutions, and the search for good solutions is inten-
sified by applying branch-and-bound on a mathematical formulation with some
variables from the original formulation fixed. We further show that under certain
realistic conditions, the heuristic performs much better than the one presented by
Rakke, Stalhane, Moe, Andersson, Christiansen, Fagerholt, and Norstad (2011)
for the same problem.

The paper is outlined as follows. First we present an overview of recent litera-
ture in Section 3.2. In Section 3.3 we present a more detailed description of the
problem studied in this paper, before giving a mathematical formulation of the
problem in Section 3.4. The construction and improvement heuristic is described
in Section 3.5, followed by a computational study in Section 3.6. Finally, some
concluding remarks are given in Section 3.7.

3.2 Related literature in maritime LNG
transportation

The problem described in this paper is also studied by Rakke et al. (2011), who
present a rolling horizon heuristic to create good ADPs. The heuristic solves
the problem by iteratively solving mixed integer subproblems with shorter time
horizons by branch-and-bound, taking into account decisions made in the previ-
ous subhorizon. The solution quality is comparable to the one obtained by the
CIH described in this paper, but the solution time is much shorter for the CIH.
Halvorsen-Weare and Fagerholt (2009) study a similar problem from the LNG
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business. The main difference is that the cargoes for each long-term contract
are pre-generated and given time windows. The problem is decomposed into a
routing subproblem and a scheduling master problem where berth, inventory and
scheduling decisions are handled. Halvorsen-Weare and Fagerholt (2009) do not
consider spot market opportunities.

Two other studies of optimizing the LNG supply chain are done by Grgnhaug
and Christiansen (2008) and Grgnhaug, Christiansen, Desaulniers, and Desrosiers
(2010). The problem has a more complex structure than the one presented here,
as it involves more than one production port, inventory constraints both at the
production and consumption ports, variable production and sales, and each LNG
ship can visit more than one regasification terminal on a given voyage. When
it comes to the computational studies, the problem has fewer ships, and a much
shorter planning horizon than the large scale problem presented in this paper.
Grgnhaug and Christiansen (2008) give both an arc flow and path flow formu-
lation of the problem. There the paths are pregenerated, while Grgnhaug et al.
(2010) use a branch-and-price algorithm to solve the problem.

Andersson, Christiansen, and Fagerholt (2010) present a more general study of
the LNG supply chain, and some of its main characteristics. They consider two
problems, one for a producer of LNG and one for a vertically integrated company.
Mathematical models are presented for each problem and solution approaches to
both models are briefly discussed, but no computational results are given.

3.3 Problem description

In this section we give a detailed description of a real planning problem faced by a
producer and distributor of LNG. In addition, we explicitly state the assumptions
made in order to formulate a mathematical model of the problem.

At the producer’s storage and liquefaction plant, two types of LNG are pro-
duced, rich LNG (RLNG) and lean LNG (LLNG). Connected to the plant is a
single loading port with one storage tank for each type of LNG, as well as several
berths for loading LLNG and one berth for loading RLNG. The inventory levels
of the storage tanks should always be between time dependent upper and lower
limits. Due to these limitations, ships may potentially wait outside the port for
a significant amount of time before loading.

The production rates of LNG are assumed to be fixed, since the producer
always aims to produce as much LNG as possible. However, rates may vary, for
instance due to maintenance. Since the producer is not the sole supplier to many
of its customers, storage on the consumption side is assumed to be unknown and
is not taken into account. This means that we assume an infinite storage and
berthing capacity at the customer side.
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3.3 Problem description

The producer distributes LNG from the loading port to its customers world-
wide using a fleet of LNG ships. The fleet is heterogeneous and considered as
fixed for the planning horizon. All ships may transport both types of LNG, but
only one type at a time. The ships are always fully loaded at the loading port.
During a voyage, it is company practice to visit only one regasification terminal
before returning to the loading port. We assume that the sailing time of a voyage
is known. The total time of a port-stay is approximated to one day for all ships
and ports.

All ships have to be maintained at least once every fifth year, and the rule of
thumb is that it should be performed within the last month before this deadline.
Maintenance is performed at a dry-dock along the sailing lane of a voyage, but
the ship occupies one berth at the loading port for one day after the maintenance
to perform purge and cool-down procedures.

As of today, the producer controls 35 ships, but the size of the fleet is expected
to increase significantly in the coming years. In peak periods, we assume that
additional ships can be chartered at a daily rate.

There are also compatibility restrictions on which ships can visit which regasi-
fication terminals. This is due to ship acceptance policies at the ports, and the
fact that some ships are owned by one, or a group of customers, limiting them to
visit only their owner’s regasification terminals.

The producer has committed itself to fulfill a set of long-term contracts, each
with a duration of 10-25 years. A contract states the annual volume of LNG
purchased and the regasification terminal where it is to be delivered. The volumes
to be delivered are either specified per month, or simply stated as being delivered
fairly evenly spread throughout each year. Since the contracts span many years,
there is some flexibility in the volumes that have to be delivered in a given year,
but the producer always aims to deliver as closely as possible to the contractual
demand.

Since production often is greater than the contractual demands, we assume
that the producer has the opportunity to sell excess LNG in the spot market.
When planning, we assume that the spot prices are known.

To plan for the coming year, the producer creates an ADP which is a complete
annual sailing plan for the entire fleet. The ADP consists of a set of scheduled
voyages, where each represents one voyage made by a specific ship from the load-
ing port to a contract’s designated regasification terminal and back again. The
voyage starts by loading in the producer’s port at a particular time and finishes
when it arrives back at the loading port. The day of delivery at the regasification
terminal and the day the ship returns to the loading port are given implicitly by
the start time of the scheduled voyage. Each ship typically undertakes anywhere
between 5 and 30 such voyages during the planning horizon.

The aim is to create an ADP that fulfills the long-term contractual demands
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at minimum cost, while maximizing the expected marginal contribution from
selling excess LNG in the spot market. The ADP created by the producer will
then be subject to negotiations with the customers, who may wish to move certain
delivery dates. It is therefore in the interest of the producer to make an initial
ADP that the customers are likely to accept and thus it is important that the
deliveries are fairly evenly spread throughout the planning horizon.

Even though an ADP is a complete plan for a given year, the producer has
expressed the need for a tool that enables it to quickly (within 30 min) produce
good ADPs in order to perform “what-if” scenario analyses. These include, for
instance, the evaluation of adding a new contract, the impact of changing the
production schedule, the consequences of chartering out a ship, or the effect of
customer demands during negotiations.

3.4 Mathematical model

We start this section by defining the mathematical notation. Then the model is
presented and described.

Let G be the set of liquefied natural gas types and C be the set of all contracts.
The contract set C can be divided into disjoint sets C, containing only the con-
tracts with demand for gas type g. The set of long-term contracts is denoted
CLT | each element having one defined regasification terminal. Let C° be the set
of artificial spot contracts, one element for each g. This set is created in order to
model sale of LNG in the spot market as a scheduled voyage. Let CM be the set
of artificial maintenance contracts, one element for each g. This set is created
to model maintenance as a scheduled voyage. We introduce one maintenance
contract for each gas type in order to decide the berth type to use for purge and
cool-down operations after the maintenance is performed.

Let V be the set of all ships available, while V. represents the ships allowed
to serve contract c. The ships operated by the producer are given by V¥, where
VP C V. In peak periods, additional spot ships may be chartered to serve the
contracts or spot market. The ships that need maintenance during the planning
horizon is given by the set VM C VP,

The set of time periods in the planning horizon is given by 7. We partition
the time periods into time intervals p, where each p has an earliest time period
T, and a latest time period Tp. For instance if each time period t is one day,
then p may be one week, month, or year. The set of all time intervals is given by
P and the set of time periods of time interval p is given by T, = {T,... Ty}
The set P may include overlapping time intervals, for instance both a month and
a week within the same month. Let 7, C 7T be the set of time periods where
ship v is available to start a voyage, and let T, be the set of time periods where
maintenance may start for all v € VM.
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3.4 Mathematical model

Let the parameter T, be the total time of a scheduled voyage to long-term
contract ¢ for ship v. In addition, T, gives the duration of the maintenance
for ¢ € CM. Since the destination of a scheduled spot voyage is not known in
advance, it was considered most robust to set T., = mazyccrr{Te,} for all spot
contracts.

Parameter C represents the transportation and port costs of sailing a sched-
uled voyage to the regasification terminal of contract ¢ and back again, using
ship v. For the spot ships the cost also includes the time charter cost of char-
tering the ship. The loading capacity of ship v is given by L,, and the number
of berths available at the loading port for loading gas type g is represented by
Bgy. Parameter Py, is the production volume, while 1, and Tgt are the lower
and upper limits on the capacity of the storage tank at the loading port for gas
type g at time period ¢t. The estimated value of having LNG of gas type g left
in the storage tanks at the end of the planning horizon is given by Ré, and RY
represents the revenue of selling one unit of gas type g to spot contract c.

One major advantage with the voyage structure in the formulation is that
“boil-off”  the daily evaporation of LNG from the ship’s storage tanks can
be pre-calculated. Boil-off is considered a major challenge in the LNG inventory
routing problems by Grgnhaug et al. (2010), but does not need to be explicitly
handled in our model. The demand D, for LNG of contract c in time interval
p is adjusted for boil-off. As mentioned, the long-term contracts state a monthly
demand or that the annual demand should be fairly evenly spread throughout
the year. In the latter case, the annual demand is partitioned into periodic
demand corresponding to the length of time interval p. A cost Cc[z)7 is introduced
to penalize the under-delivery in time interval p to contract c¢. Any over-deliveries
are implicitly penalized, since they will reduce the amount of LNG the producer is
able to sell in the spot market. It is important that the penalty of under-delivery
is higher than the revenue in the spot market, to ensure that the long-term
contracts are served. It is also important that the penalty of under-delivery over
the entire planning horizon is significantly higher than the penalty of each shorter
time interval, to even out deviations over the planning horizon.

The binary variable xz.,; represents one scheduled voyage by ship v serving
contract ¢ starting in time period ¢, and exists only for the days the ship is
available. The inventory level of gas type g in time period t is given by 44, while
Yep represents the under-delivery of LNG to contract c in time interval p.

mlnz Z Z Cz;ﬂjcyt + Z Z Cg)ycp

ceCveV, teT, ceCLT peP

- Z Z Z Rvaxcvt - Z Réig|7—|a

ceCS vEV tET, 9€g

(3.13)
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The objective function (3.13) minimizes the variable costs incurred by the
producer. The first term calculates the transportation and port visit costs of
sailing the scheduled voyages. The second term penalizes under-delivery to long-
term contracts in different time intervals. The third term subtracts the revenue
associated with selling LNG in the spot market. Finally, the fourth term subtracts
the value of having LNG left in the storage tanks at the end of the planning
horizon.

Constraints (3.14) make sure that the number of ships occupying a berth on
any given day does not exceed the number of berths. In the second term the time
index is adjusted because a scheduled voyage to maintenance contracts occupies
a berth after the ship returns to the loading port. These constraints are only
defined for the loading port.

Constraints (3.15) and (3.16) make sure that the inventory levels in the storage
tanks are between their upper and lower limits. Constraints (3.17) are soft and
ensure that the demand of each long-term contract is met in every time interval.

Constraints (3.18) restrict each ship to sail at most one scheduled voyage on
any given day. Constraints (3.19) state that every ship that is planned for mainte-
nance will undertake maintenance exactly once. Finally, constraints (3.20) limit
the scheduled voyages to be binary on the days the ship is available, while (3.21)
make sure the under-deliveries are non-negative.
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3.5 Solution approach

We now define three expressions that will be used extensively in the follow-
ing section of the paper. An ADP is considered to be berth-feasible if it does
not violate (3.14), inventory-feasible if it does not violate (3.15) and (3.16), and
routing-feasible if it does not violate (3.18).

For the remaining of this paper we assume that the length of a time period
is one day, and that the set of time intervals 7, consists of all the months in
the planning horizon, as well as one time interval covering the entire planning
horizon.

3.5 Solution approach

This section presents the construction and improvement heuristic (CIH) that
solves the ADP planning problem presented above. The heuristic uses a multi-
start approach where a set of initial solutions are constructed, and then improved
by intensifying the search in the neighborhood of each solution. The multi-start
heuristic is chosen because it is difficult to design a search operator which will
allow the search to investigate a large portion of the feasible region, due to the
global inventory- and berth-constraints. Thus a more natural approach is to use a
multi-start heuristic to diversify the search by producing a large number of initial
solutions, each of which may then be improved using simple search operators.

We start by outlining the construction phase, addressing how ships, contracts
and start days are put together to form a feasible set of scheduled voyages. We
then describe two different ways in which this initial ADP may be improved.
One is based on a local search, while the other is based on the mathematical
programming formulation in Section 3.4.

3.5.1 Construction heuristic

To plan for the coming year, the producer creates an ADP consisting of a set
of scheduled voyages S. A scheduled voyage s represents one voyage made by
a specific ship from the loading port to a contract’s designated regasification
terminal and back again. Let s = (¢,v,t), where v denotes the ship sailing the
voyage, ¢ the contract served and t the day the loading process starts.

The construction heuristic creates a feasible ADP by going through the plan-
ning horizon from beginning to end, adding new scheduled voyages to the solution.
Algorithm 2 shows the pseudo code for the construction heuristic. Let S be an
empty set of scheduled voyages. Further, let M be the set of months in the
planning horizon and T, and T, the first and last day of month m. Each itera-
tion starts with the inventory being updated, before the algorithm goes through
each contract ¢ in a greedy fashion according to the ordered set of contracts Cgﬁ,
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ranked according to the contract ranking parameter « and the inventory control
parameter [3. Cgﬁ contains all contracts from CLT and C°.

Ships are then selected from the ordered set VCQ, that may serve the chosen
contract c. The ship selected must be available at the loading port at most &
days after ¢, where x is a look-ahead parameter. This look-ahead functionality
is similar to that recommended by both Ronen (1986) and Atkinson (1994), and
tells us how long it is acceptable to wait for a better ship to become available.

Let TI*F be the first day it is routing-feasible to send out ship v, and TZF" the
first day where it is both berth- and inventory-feasible to load v with the LNG
demanded by contract c¢. Then, the earliest possible start day of a scheduled
voyage serving c using v is TF = max{TEF TIF}. When a ship v is found that
is able to start within the same month and within « days, a scheduled voyage
(¢,v,TF)is added to S and the algorithm continues with the next contract. Using
TF, and data input regarding sailing times to the selected contract’s regasification
terminal, T*F" is updated to be the next day it is routing-feasible to use v.

The berth capacity and inventory levels must also be updated after a new
scheduled voyage is added. It must be ensured that there is LNG available to sail
the voyage on TP, and at the same time make sure that the storage tank will not
exceed its capacity between t and TF.

Adjusting monthly demand

Due to the different sizes of the ships and the fact that all cargoes have to be full
shiploads, contracts will almost never have their monthly demands met exactly.
This may accumulate to large deviations between the amount of LNG delivered
and the contractual demands over the entire planning horizon if we do not adjust
the remaining monthly demands accordingly. Let S.; C S be the set of scheduled
voyages starting on day t, serving contract ¢ and let v(s) be the ship sailing
the scheduled voyage s. Further let D, and D}, be the original and updated
demand for contract ¢ in month m. After the last day of each month, the next
month’s demand is calculated in the following way:

7,
Dimsr) = Detminy + Dl = D D Lugs): (3.22)
t=1T, s€Sct

Contract ranking

The main objective of our contract ranking is to get the deliveries to each contract
fairly evenly spread throughout the planning horizon. We apply two approaches
that both consider the remaining demand in the current month, the first uses
the remaining volume and the second the remaining percentage of the monthly
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3.5 Solution approach

Algorithm 2 CreateADP(a, 3, k)
S=10

m=1
for t €T do
if t>T,, then
m=m-+1
end if
for g € G do
Z.gt = Z.gtfl + Pgt
end for
for c € Cgﬂ do
for v € VCQ do
TE = mazx{TEF TIF
if TP <min{t+x,T,,} then
S=8U (¢,v, TF)
TR =TF + T,
update inventory levels and berth capacities
go to next contract
end if
end for
end for
end for

demand. The reason for considering monthly demands instead of the demand for
the entire planning horizon is that some of the contracts have seasonal variations
in demand that would not have been adjusted for, if we only considered demand
for the entire planning horizon.

Contract ranking parameter o

We combined the two approaches into one ranking scheme for the contracts. The
scheme sorts the contracts on remaining percentage if the difference in remain-
ing percentage is large, and on remaining volume if it is not. More formally, let
pem be the percentage of the monthly demand for contract c that is left to be
scheduled for delivery in month m, and D}, the demand for the contract in the
current month. The algorithm for ranking two contracts, ¢; and ¢y, in month m
is given in Algorithm 3.

Inventory control parameter 3

For most months during the planning horizon the total production will be greater
than the total demand of the long-term contracts. This excess LNG may be sold
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Algorithm 3 Contract ranking scheme

if | Pcim — Peam |§ (0% then
return argmam{pmmD:lma pCZmDZZW}
else

return argmax{pe,m, Peym
end if

in the spot market. As with the long-term contracts the spot sales should be
spread across the planning horizon. The main reason is that only a subset of the
ships can take spot cargoes and we therefore want to spread out these voyages
to avoid having to charter additional ships.

In order to spread the spot cargoes throughout the planning horizon, one ar-
tificial spot contract is added to Cc?g for each gas type. The demand of these
artificial contracts are set to be f times the difference between total production
and total adjusted contractual demand for the given month, where 8 € [0, 1].
The parameter § can thus be seen as a parameter controlling the inventory levels
at the start of the next month, and the value of 3 will be varied in the multi-start
heuristic.

Ship ranking

Each contract in Cgﬁ has a queue of ships associated with it, V9, which contains
an ordered sequence of the ships that are allowed to serve the contract. The ships
are ranked according to the total number of contracts the ship may serve, where
the ships are sorted in increasing order. Ships which may serve the same number
of contracts are sorted in increasing order by their cost to capacity ratio. This
approach is similar to the one used in the heuristic described by Ronen (1986),
and ensures that less flexible ships are used before more flexible ones, and that
the cheapest ships among equally flexible ships are used first.

Maintenance

Some ships need to be scheduled for maintenance each year. The maintenance
for ship v is required to begin during a given time interval [T, Tiw] In order
to add a scheduled maintenance voyage in the construction heuristic we add a
rule to the heuristic ensuring that a ship cannot be selected to sail a normal
scheduled voyage that ends after the last day of the maintenance period Tiw,
unless maintenance has already been scheduled. Once it is decided to schedule
maintenance, it is scheduled as early as possible.
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The objective function

The objective function presented here is equivalent to objective function (3.13)
using the planning horizon and months as time intervals, but will be restated
using the symbols defined in Section 3.5.

Let Do =), g Dem forall c € CET be the total demand of contract ¢, S, C S
the set of all scheduled voyages serving contract ¢, and S, € S. the set of all
scheduled voyages serving ¢ in month m. Further, let C? be the transportation
cost associated with voyage s, and let CP and CP be the penalty cost per
unit of under-delivery of LNG to contract ¢ for the planning horizon and each
month respectively. Finally, v(s) denotes the ship sailing scheduled voyage s, and
c%(g) € C¥NC, the spot contract for gas type g. The function used to evaluate
the ADP is then given as:

z=>_CI+ > > maz{0,Dem — Y Lus}-CH,

seS ceCLT meM SESem

+ Z maz{0, D, — Z Ly} C2 (3.23)

ceCLT SES.

=Y > LuoRlsg — > Ryigr)

9€G s€S8 5 9€g

The first term summarizes the cost associated with each scheduled voyage,
while the second penalizes monthly under-delivery to the long-term contracts.
The third term penalizes under-delivery to the long-term contracts over the entire
planning horizon, and the fourth term subtracts the revenue of selling LNG in
the spot market. Finally, the fifth term subtracts the value of having LNG left
in the storage tanks on the last day of the planning horizon.

3.5.2 Local search heuristic

Here we present an improvement heuristic which takes a feasible ADP and tries
to decrease the value of the objective function described in Section 3.5.1 through
a local search. Since the CIH is a multi-start heuristic the goal of the local
search is to quickly find better solution by exploring the neighborhood around
a feasible solution. We have implemented five local search operators that each
defines a neighborhood N(S) to a given feasible ADP S. The search is done
by going through these operators in a “first improvement” fashion until no more
improvements are found. The five neighborhood operators are:

1. Changing contract: (c,v,t) — (', v,t)
The ship v starting a scheduled voyage to contract ¢ on day t is assigned
another contract ¢'.
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2. Changing ship: (c,v,t) — (c,v',t)
The contract ¢ served on a scheduled voyage starting day ¢ is assigned
another ship v’.

3. Swapping contracts: (c,v,t),(c,v',t") —= (¢, v,t), (c,v', )
The contracts of two scheduled voyages are swapped.

4. Swapping ships: (c,v,t), (', v/, t') = (c,v, 1), (¢, v, 1)
The ships of two scheduled voyages are swapped.

5. Remowve a scheduled voyage
Remove the scheduled voyage (v, ¢, t) from S.

Since the local search uses the “first improvement” strategy, the sequence in
which the scheduled voyages are ordered and tested for each operator will in-
fluence the quality of the solution. Each operator sorts the scheduled voyages
according to c using the contract ranking Cgﬂ, and then according to ¢ in chrono-
logical order. Note that the contract ranking at the end of the planning horizon
will be ranked according to fulfillment of the total yearly demand, as deviation
from demand in each of the previous months are passed onto the next. For op-
erator 2, V¥ is used to order the sequence in which ships are inserted into a
scheduled voyage. All operators are checked with respect to berth-, inventory-,
and routing-feasibility to evaluate if they are feasible.

By construction, there will only be LNG left in the storage tanks at the end of
the planning horizon if all the long-term contracts with a demand for a particular
gas type are satisfied. We may therefore add additional scheduled voyages at the
end of the planning horizon for the artificial spot contracts. Adding these sched-
uled voyages is basically a multiple-knapsack problem, and we solve it through
dynamic programming. The multiple-knapsack problem is NP-hard and thus only
non-polynomial algorithms for solving it are known. However, since the number
of variables is small, the solution time is negligible.

3.5.3 Mixed integer programming heuristic

In this section we describe a mixed integer programming (MIP) heuristic based
on a modified version of the mathematical model presented in Section 3.4. The
idea is to explore more thoroughly the neighborhood around local minima in
order to further improve the value of an ADP. Archetti, Bertazzi, Speranza, and
Hertz (2010) use a similar approach to improve the solutions of their tabu search
heuristic to solve a vehicle routing problem with inventory constraints. The same
MIP heuristic as the one presented here is also used by Rakke et al. (2011) as
part of their rolling horizon heuristic.
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Variable generation

In the mathematical model, every feasible (c,v,t) combination is represented by
a binary variable x.,;. Here we suggest creating only a subset of these binary
variables based on the set of scheduled voyages S given by the ADP used as input
to the model. Recall that S.; is the set of scheduled voyages sailing to contract
c on day t. For each scheduled voyage going to a long-term contract we keep
the contract ¢ and day ¢ fixed, but allow all ships v € V. to sail this scheduled
voyage. Thus we create the following variables:

Tews € {0,1}, Vee CHT v e Vo, t € Ty, Ser # 0. (3.24)

For scheduled voyages going to the artificial spot contracts we allow the new
formulation to re-route the voyages to a long-term contract if it is profitable to
do so. Therefore we create the following variables:

Tepr € {0,1}, Vg€ G,ceCy\CY v eVt €Ty, Sus gy # 0. (3.25)

Maintenance of ships is an area where there is potential for improvement be-
cause taking a ship out of commission may have great impact on the ADP. Since
maintenance on average only concerns a fifth of the ships and the impact of
changing maintenance by only a few days may be substantial, all the variables
involving the maintenance contract will be created:

Tept € {0,1}, VeeCM ve VM teTM. (3.26)

By only creating the variables mentioned above, we limit the size of the problem
to a very small fraction of its original size.

Additional constraints

For some instances the problem may still be hard to solve using branch-and-
bound. To ease the solution process further, additional sets of constraints are
added to the formulation. For each scheduled voyage, only one z.,; variable can
be equal to one. The reasoning behind this is that we want to keep the number
of scheduled voyages constant. We add the constraints:

Z Tevt = |'Sct‘7 VC S CLT,t (S T, Sct ?é (Z), (327)
veV,
> ewt < I8, VeeCoteT. (3.28)
veVe.

The reason why constraints (3.28) are < constraints is that we have generated
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some variables in (3.25) which are not part of these constraints. If one of these
variables are equal to one, all the variables in one constraint in (3.28) will most
likely have to be equal to zero, or the ADP will not be inventory-feasible.

Overview of the mixed integer programming heuristic

The MIP heuristic solves a modified version of the formulation presented in Sec-
tion 3.4, based on input from a feasible ADP. The objective function (3.13) and
constraints (3.14) — (3.19) are all kept, and, in addition, (3.27) and (3.28) are
added to the model. Instead of generating variables as stated in (3.20) and
(3.21), only the variables given by (3.24) (3.26) are created. By solving this
reduced version of the problem we can find good feasible solutions quickly using
branch-and-bound.

3.5.4 Summary of the construction and improvement heuristic

We have presented a CIH to solve the ADP planning problem with respect to
the criteria mentioned above. It is a multi-start heuristic where a number of
initial solutions are generated by a constructive heuristic. These solutions are
then improved by either a local search, and/or by solving a restricted version of
the mathematical model presented in Section 3.4. Figure 3.5 shows the flow of
data through the different parts of the heuristic. The naming convention of the
three different outputs will be used in Section 3.6, where a computational study
of the heuristic is conducted.

]

I

;

i Local Search s—— Mathematllcal
1 Programming
i

]

]

CON-LS CON-LS-MIP  CON-MIP

Figure 3.5: Flowchart showing the different modules of the CIH and how they
interact.
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3.6 Computational results

In this section we test the CIH to see how suitable it is to solve the ADP planning
problem. First we give a short description of the instances used in the compu-
tational study. The testing of the parameters «, § and k is then presented, in
order to determine the best value range for each parameter. Finally we present
the results given by different variants of the CIH on all instances.

The CIH has been implemented in Java version 6.0. The development is done
using the Eclipse Ganymede workbench and compiler. Both the full mathematical
model and the MIP heuristic were implemented in Xpress-IVE 1.19.00, with
Xpress-Mosel 2.4.0, and solved by Xpress-Optimizer 19.00.00. The tests have
been performed on a HP DL 160 G5 computer with an Intel Xeon QuadCore
E5472 3.0 GHz processor, 16 GB of RAM and running on a Linux operating
system. Even though the processors used to run these tests have multiple cores,
only single thread versions of the programs have been run, to give running times
comparable to using a single core computer.

3.6.1 Test case description

We have tested the CIH on four cases, A, B, C, and D, based on real case data
provided by the producer. From these cases we have created 20 instances which
are listed in Table 3.7. For each instance we give the number of ships, number
of contracts for each gas type, the length of the planning horizon, the number of
berths for each gas type, the inventory to production ratio (I/P), and a range for
the number of scheduled voyages needed. The I/P-ratio is calculated as the size
of the storage tanks in the loading port divided by the average daily production.
This measure was used by Halvorsen-Weare and Fagerholt (2009) and gives an
indication of how tightly constrained the problem is with respect to the inventory
constraints. The number of scheduled voyages needed is calculated based on the
amount, of LNG to be shipped and the minimum and maximum ship sizes available
in the instance.

The instances in Table 3.7 are organized such that instances A1, B1, C1, and
D1 represent each of the four cases with a one year planning horizon, while the
instances numbered 2 — 5 are equivalent, with the exception of the length of the
planning horizon.

Case A is tightly constrained with respect to the RLNG inventory, while case
C is tightly constrained with regard to inventory for both gas types. On the
other hand, case B has a lot of maneuvering room in how to schedule its voyages
carrying LLNG, since it will take more than a month to fill up the storage tank.

The cases can be divided into two main scenario classes where cases A and B
reflect the current situation, and C and D reflect a future situation when planned
production-trains, ships and loading docks all have been completed. The main
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Instance Number of Number of contracts Planning horizon Number of berths /P Number of

ships LLNG RLNG days LLNG RLNG LLNG RLNG voyages
Al 34 5 3 366 4 1 9.21 6.17 310 - 350
A2 34 5 3 244 4 1 9.02 6.08 200 - 230
A3 34 5 3 182 4 1 9.05 5.98 140 - 170
A4 34 5 3 121 4 1 9.01 5.50 100 - 120
A5 34 5 3 91 4 1 9.23 5.38 80 - 100
B1 16 1 3 366 2 1 44.60 11.35 110 - 140
B2 16 1 3 244 2 1 44.21 11.29 75 - 90
B3 16 1 3 182 2 1 44.37 11.11 50 - 70
B4 16 1 3 121 2 1 44.14 10.21 40 - 50
B5 16 1 3 91 2 1 45.23 10.00 30 - 40
C1 46 6 11 365 4 1 6.05 6.07 310 - 350
c2 46 6 11 243 4 1 6.08 6.19 200 - 240
C3 46 6 11 181 4 1 6.04 6.39 160 - 200
Cc4 46 6 11 120 4 1 6.07 6.22 100 - 130
C5 46 6 11 90 4 1 6.18 5.82 70 - 100
D1 30 4 4 365 4 1 9.08 9.37 200 - 240
D2 30 4 4 243 4 1 9.14 9.73 130 - 160
D3 30 4 4 181 4 1 9.60 9.97 100 - 130
D4 30 4 4 120 4 1 9.11 9.55 70 - 100
D5 30 4 4 90 4 1 9.35 8.94 50 - 70

Table 3.7: Instances

differences between the cases are: cases A and B have fewer and smaller ships
than cases C and D, the production rates are lower, and there is more excess
LNG available to sell in the spot market. They also include seasonal variations,
the contract demands are of similar volume sizes, and the contract destinations
are, on average, situated closer to the producer’s loading port. Cases B and D
are down-scaled versions of cases A and C respectively, where some of the ships,
contracts, and production volumes are removed. All cases are also used by Rakke
et al. (2011), where a comparison between the heuristics is presented.

3.6.2 Exact solution method

In this section the computational results of the mathematical model given in
Section 3.4 are presented. Each instance was run for a maximum of 24 h (86400
s) and Table 3.8 shows the computational time (CPU(s)), the optimality gap in
percentage (opt. gap) and the difference between the upper and lower bound
(UB — LB) given in 1000 USD. Optimality could not be proven for any of the
instances within the time limit, though the 3 and 4 month instances are very
close. The 6 months instances provide fairly good results, however for the 8 and
12 months instances of cases A, C and D, the best solutions found after 24 h are
far from the lower bound. Especially the 12 month instances of these cases have
big gaps.

Focusing only on the percentage gap indicates a poor performance on the first
10 instances compared to the last 10 instances. However, the picture is quite dif-
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Tnstance CPU(s) opt. gap UB - LB
Al 86400 396.64 % 54641
A2 86400 20.62 % 20141
A3 86400 22.28 % 8700
A4 86400 3.44 % 2492
A5 86400 3.82 % 3107
B1 86400 12.24 % 2985
B2 86400 6.23 % 3279
B3 86400 6.06 % 1387
B4 86400 10.63 % 2371
B5 86400 8.41 % 1464
(e} 86400 777 % 112224
c2 86400 3.66 % 37209
c3 86400 0.68 % 5514
ca 86400 0.45 % 2476
(o5 86400 0.22 % 877
D1 86400 8.66 % 74957
D2 86400 3.39 % 21499
D3 86400 1.53 % 7581
D4 86400 0.51 % 1677
D5 86400 0.47 % 1132

Table 3.8: Test of the exact solution method

ferent if looking at the difference in value between the upper and lower bounds.
It is reasonable that the difference is bigger for the instances with longer plan-
ning horizons as more voyages are made, and there are more time intervals for
which under-delivery is penalized, resulting in a larger objective value. However,
instance A1, which has the biggest percentage gap, is much closer to the opti-
mal solution than instances C1 and C2 which have small percentage gaps. The
reason why instances from cases A and B have larger percentage gaps is that
these instances have a lot more excess LNG. For cases A and B the income from
selling LNG in the spot market is approximately the same as the total costs, and
therefore the objective values become close to zero. This makes the percentage
gap large, even though the total costs related to the instances are similar to those
in cases C and D.

3.6.3 Parameter testing

The CIH is a multi-start heuristic, where the starting points are determined by
the values of contract ranking parameter «, the inventory control parameter [,
and the look-ahead parameter . In this section we test instances A3, B3, C3,
and D3 for several combinations of the three parameters to see which are more
likely to provide good solutions. We test the following setting for the parameters:
a € [0,1] with increments of 0.025, 5 € [0,1] with increments of 0.025, and
k € {1,..,31}. Each tested parameter value for a given parameter is tested over
all the possible combinations of the other parameter values.

Figure 3.6 shows the deviation between the best obtained ADP and the best
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Figure 3.6: Graph showing the variation in the minimal objective value for each
k value, compared to the best found objective value, for each of the
four instances.

ADP for that particular x value, for each of the four instances. Which x value
performs better differs a lot between the instances, and especially instance C3 is
a very sensitive to the x value. However, there is a correspondence between the s
values that provide the best ADPs, and the I/P-ratio given in Section 3.6.1. For
instance A3 which has I/P-ratios of 9.05 and 5.98 the best ADPs are created with
% values between 4 and 10. These observations indicate that there is a connection
between the I/P-ratio and the best x values and we therefore use the I/P-ratio
as a basis for our £ values. This is logical since the I/P-ratio gives the number
of days before an empty storage tank fills up, and thus gives an indication of the
frequency with which voyages need to be scheduled. Since some instances have
different I/P-ratios for each gas type, we replace s with x, in Algorithm 2.

To test what range of r, provides the best ADPs, we tested all four instances
with kg = [(Ig — I,)/P,] + 04, where P, is the daily average production rate of
gas type g, and o, € {—5,...,2}. These tests did not give any clear indication
on what combinations of x values performed better, and it was therefore decided
to do the remaining testing with the same o value for both gas types.

For parameter 3 low values seem to be inferior. We therefore limit § to the
range [0.25,1] in the remaining tests. This result is reasonable since for instances
with much excess LNG, one needs to ship some LNG out to keep the solution
inventory-feasible. For instances with little excess LNG, the construction heuris-
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tic is less sensitive to the value of the S multiplier, since the demand of the
artificial spot contract is so small that it will not be served. The parameter
tests did not give any indication of which values of the o parameter are superior,
and thus the « parameter will be tested over the range [0, 1] in the remaining
computational study.

3.6.4 Computational results

In order to evaluate the effect of using the local search and the MIP heuristic to
improve the ADP created by the construction heuristic, we decided to test six
different variants of the CIH. For each variant the heuristic is run over all the
possible combinations of the parameters, and returns the best ADP.

e CON-LS-1: The construction heuristic with the local search, using a gran-
ularity of 0.1 for @ and 8, and o € {—5,...,2}.

e CON-LS-2: The construction heuristic with the local search, using a gran-
ularity of 0.05 for o and 3, and o € {-5,...,2}.

e CON-LS-3: The construction heuristic with the local search, using a gran-
ularity of 0.025 for « and 8, and o € {-5,...,2}.

e CON-MIP: The best ADP produced by the construction heuristic using a
granularity of 0.05 for « and 3, and o € {—5,...,2}, and then run the MIP
heuristic.

e CON-LS-1-MIP: The best ADP produced by CON-LS-1, and then run the
MIP heuristic.

e CON-LS-2-MIP: The best ADP produced by CON-LS-2; and then run the
MIP heuristic.

Table 3.9 shows the computational results for CON-LS-1, CON-LS-2, and
CON-LS-3. The computational time (CPU(s)) is given in seconds. The gap
between the upper bound found by the CIH and the lower bound obtained by
running the mathematical model is given both as a percentage (opt. gap), and
as an absolute difference in value (UB — LB) given in 1000 USD. None of the
instances were solved to optimality, and thus the quality of the lower bound is not
known. We see that the optimality gap is much lower for the CON-LS variants
than it is for the mathematical model, see Table 3.8, even though the running
time is much shorter.

CON-LS-3 produces better ADPs than CON-LS-2 in 11 out of 20 instances, and
is, on average, 1.3 million USD closer to the lower bound. Especially for instances
A2, 02, and C3 the improvements are substantial (more than 4 million USD).
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CON-I.8-1 CON-L.§-2 CON-T.8-3
Instance CPU(s) opt. gap UB-LB  CPU(s) opt. gap UB-LB CPU(s) opt. gap UB-LB

A1l 108 61.00 % 25923 418 51.91 % 23381 1587 48.79 % 22435
A2 45  19.41 % 19149 171 19.41 % 19149 642 14.32 % 14757
A3 22 46.88 % 15238 83 44.83 % 14779 318 40.36 % 13729
A4 11 16.91 % 10837 41 1554 % 10074 157 13.67 % 9011
A5 6 18.83 % 13375 23 18.03 % 12895 87 15.67 % 11434
B1 10 20.10 % 4582 40 18.92 % 4356 152 18.92 % 4356
B2 5 9.31 % 4761 20 8.84 % 4541 76 8.84 % 4541
B3 3 18.26 % 3745 11 18.25 % 3744 42 18.25 % 3744
B4 1 2132 % 4339 6 21.32 % 4339 23 1454 % 3134
B5 1 21.00 % 3275 4 11.94 % 2013 15 11.94 % 2013
C1 124 2.29 % 33028 474 2.21 % 31858 1788 2.21 % 31858
c2 50 3.28 % 33338 192 3.28 % 33338 729 2.57 % 26138
C3 28 3.14 % 25529 109 3.14 % 25526 410 2.20 % 17924
c4 15 2.62 % 14350 58 2.62 % 14350 218 2.39 % 13095
C5 15 1.79 % 7207 55 1.79 % 7207 206 1.79 % 7207
D1 37 2.56 % 22155 141 2.47 % 21345 530 2.47 % 21345
D2 15 3.04 % 19310 60 2.99 % 18985 226 2.99 % 18965
D3 9 5.20 % 25767 35 5.20 % 25767 134 5.06 % 25107
D4 4 4.09 % 13429 17 3.51 % 11526 66 3.51 % 11526
D5 3 1.11 % 2655 11 1.11 % 2655 44 1.11 % 2655
Average 25.6 14.11 % 15100 98.45 12.87 % 14591 372.5 11.58 % 13249

Table 3.9: Local search heuristic tests

Taking into account the fact that CON-LS-3’s running time is still relatively short
for all instances, it seems to be worth the additional computational time used,
compared to CON-LS-1 and CON-LS-2.

Table 3.10 shows how the MIP heuristic performs when used on the best solu-
tion found by the construction heuristic, CON-LS-1, and CON-LS-2, respectively.
The total computational time for each variant is equal to the computational time
of CON-LS-3 for the same instance to make the results comparable. The results
that give better objective values than CON-LS-3 are marked in bold in the “opt.
gap” column. The tests show that in 12 out of 20 instances the ADPs obtained
by using the CON-LS-2-MIP have a better objective value than those obtained
using only the local search in the same amount of time. For CON-LS-1-MIP the
result, 13 out of 20, is almost the same but the instances which are improved are
different.

It is interesting to note that using an ADP with a better objective value as
a starting point does not necessarily lead to a better ADP after using the MIP
heuristic. This can be explained by the fact that since the computational time of
CON-LS-1 is much shorter than CON-LS-2, CON-LS-1-MIP spends more time
doing branch-and-bound and thus XpressMP is able to find better results. An-
other explanation is that even though the starting solution for the MIP heuristic
is worse for CON-LS-1, it may have a bigger potential for improvement than the
solution found by CON-LS-2. This suggests that one may get better results by
using the MIP heuristic on several local minima solutions produced by the local
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CON-MTP CON-LS-1-MTP CON-L.S-2-MTP
Instance opt. gap UB - LB opt. gap UB - LB opt. gap UB - LB
A1 192.44 % 45022 61.00 % 25923 51.91 % 23381
A2 16.07 % 16310 11.63 % 12270 19.41 % 19149
A3 166.14 % 20804 25.13 % 9590 37.70 % 13071
A4 42.74 % 22430 13.22 % 8746 9.35 % 6404
A5 19.27 % 13638 10.64 % 8114 10.52 % 8032
B1 47.20 % 8776 16.46 % 3869 18.92 % 4356
B2 11.24 % 5645 7.94 % 4109 7.82 % 4052
B3 19.28 % 3921 16.50 % 3435 16.64 % 3461
B4 33.23 % 6158 17.37 % 3652 17.73 % 3718
B5 27.13 % 4026 8.58 % 1491 11.65 % 1969
c1 2.03 % 20317 1.87 % 27005 1.84 % 26643
Cc2 2.98 % 30333 2.56 % 25993 2.56 % 25993
c3 3.74 % 30397 2.85 % 23209 2.82 % 22918
c4 4.09 % 22367 2.40 % 13115 2.40 % 13159
[eF] 2.18 % 8793 0.39 % 1578 0.39 % 1578
D1 3.67 % 31756 2.56 % 22155 1.59 % 13732
D2 1.82 % 11544 3.04 % 19310 2.99 % 18985
D3 5.40 % 26760 5.20 % 25767 5.20 % 25767
D4 1.06 % 3468 3.26 % 10717 0.81 % 2677
D5 1.10 % 2630 1.10 % 2630 1.10 % 2630
Average 30.14 % 17655 10.68 % 12634 11.17 % 12084

Table 3.10: MIP heuristic tests

search. However, such an approach is too time consuming for our purpose. Look-
ing at the average gaps, starting from an ADP generated from the construction
heuristic is inferior to starting from an ADP improved by local search.

Table 3.11 repeats the running times of the different versions of the CTH. The
columns named “Xpress < CIH” gives the time it takes for XpressMP to obtain a
better solution than the one found by the CIH by solving the mathematical model
presented in Section 3.4. The XpressMP implementation of the full mathematical
model was run for a maximum of 86400 s (24 h).

With the exception of instance D3 solved using CON-LS-3, all three CIH vari-
ants find better solutions than XpressMP in the same amount of time on all
instances. Notice that we here compare the time spent by XpressMP to obtain a
specific objective value to the total running time of the CIH algorithm, though
the best solution by the heuristics might have been found in a much shorter time.

Even though the CTH outperforms XpressMP given equal running times, the
time spent by XpressMP until a better solution is found is still relatively short for
most of the 3 and 4 month instances. Here we should keep in mind that XpressMP
will continue its tree search, and may find better solutions if given more time.
On the other hand, the CIH terminates after the given number of seconds, and
is unable to improve on its current best value. Therefore it might be better to
use commercial optimization software on small instances if computational time
is not an issue.
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CON-LS-1 CON-T.§-2 CON-T.8-3
Instance CPU(s)  Xpress<CIH CPU(s) Xpress<CIH CPU(s)  Xpress<CIH
A1 108 >86400 418 >86400 1587 >86400
A2 45 >86400 171 >86400 642 >86400
A3 22 1930 83 1930 318 1930
A4 11 936 41 1806 157 1813
A5 6 168 23 168 87 180
B1 10 9605 40 9605 152 9605
B2 5 1418 20 1418 76 1418
B3 3 159 11 159 42 159
B4 1 33 6 33 23 76
B5 1 15 a 130 15 130
c1 124 >86400 474 >86400 1788 >86400
c2 50 86400 192 86400 729 86400
C3 28 1944 109 1944 410 14348
c4 15 337 58 337 218 337
cs 15 215 55 215 206 215
D1 a7 86400 141 >86400 530 >86400
D2 15 86400 60 86400 226 86400
D3 9 54 35 54 134 54
D4 4 65 17 223 66 223
D5 3 31309 11 31300 a4 31309

Table 3.11: Comparison of computational times

For case B, XpressMP finds better solutions than the CIH for all instances,
though for the B1 and B2 instances it spends a lot of time to do so. For the other
8 and 12 months instances, XpressMP cannot find better solutions than those
provided by the CIH, even after 24 hours of computational time. This suggests
that the CIH is particularly effective when the instances become large and where
the inventories are tightly constrained (low I/P ratio).

Rakke et al. (2011) compare the results obtained in this paper with their rolling
horizon heuristic (RHH). The comparison show that the CIH is much faster than
the RHH, while the results comparing solution quality is mixed. For test cases A
and B the RHH performs better (on average), while for test instances C and D
the reverse is true. On average the solution provided by the CIH is more than 12
million USD better than the solution provided by the RHH for cases C and D,
while it is only on average 3 million USD worse on cases A and B. Especially for
the largest instances C1 and D1 the CIH solution is more than 60 and 20 million
USD better, respectively. This further strenghtens our claim above that the CIH
provides very good solutions when the instances are large and inventories are
tightly constrained. It should also be noted that cases C and D are based on the
future outlook of the producer, which may suggest that the CIH is better suited
for use in a future DSS for the producer.
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3.7 Concluding remarks

In this paper we have presented a solution method for a large scale ship routing
and inventory management problem for a producer and distributor of LNG. The
goal is to create an annual delivery program to fulfill the producer’s long-term
contracts at minimum cost, while maximizing the revenue from selling LNG in
the spot market.

To solve this problem we have proposed a multi-start construction and im-
provement heuristic (CTH). The computational results show that the CTH creates
high quality solutions to real-world instances in a short amount of time. Espe-
cially for large instances with tightly constrained inventories the CIH performs
much better than other known approaches to the problem.

The short running time of the CIH makes it attractive as a component in a
decision support system (DSS). Here users may want to test out different alter-
natives - e.g. analyze the impact of signing a new contract, chartering out a ship
in the fleet, changing the production schedule, and so on. Another component
that makes the CIH attractive in such a DSS is the fact that it contains no ran-
dom components. According to the authors’ experience, most users who are not
familiar with operations research will be sceptical of using any DSS which give
different results in two runs with the same input data.

If the time allowed for the CIH to produce an ADP was far greater, and the
above mentioned concerns were ignored, one could potentially get better solutions
by using the MIP-based inprovement heuristic on several instances, and also
added random components to the construction phase in a GRASP fashion.

An interesting topic for future research is disruption management. For instance
if a ship breaks down, or if production has to be stopped. In such circumstances
there is a need to create a new feasible ADP that minimizes both the inconve-
nience of the customers and the additional cost experienced by the producer.

Robustness is another major issue when the planning horizon spans over an
entire year and looking at how an ADP could be created that minimizes the effect
of possible disruptions is important. Having an ADP that is robust to unforeseen
events may be just as important to the producer as having one that minimizes
cost.
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Creating Annual Delivery
Programs of Liquefied Natural Gas

Abstract:

The annual delivery program (ADP) setup is an important problem in lique-
fied natural gas (LNG) supply chain planning. The ADP for an actor in the
chain is the complete sailing schedule of the ships in the fleet for the coming
year. In this chapter we focus on the ADP planning problem for one of the
world’s largest producers of LNG. The producer is responsible for the LNG
inventories at the liquefaction plant, the loading port with a limited number
of berths, and the routing and scheduling of a heterogeneous fleet of LNG
ships. In addition, the producer has to fulfill a set of long-term contracts
to customers all around the world. The objective is to design an ADP to
fulfill the long-term contracts at minimum cost, while maximizing revenue
from selling LNG in the spot market. A mixed integer programming (MTP)
formulation of the ADP planning problem is presented and solved with a
branch-and-cut algorithm. Several types of valid inequalities are developed
that allow us to reduce the linear programming gap of the MIP formulation.
The computational study shows that the problem is very complex, but that
the valid inequalities are effective.

4.1 Introduction

There are large reserves of natural gas worldwide. Several existing gas producers
are increasing their production capacity and new reservoirs are explored. The
major projected increase in natural gas production is expected to occur in non-
OECD regions, with the largest increments coming from the Middle East, Africa
and non-OECD FEurope and Euroasia, including Russia and other former Soviet
Republics, (EIA, 2011). The world liquefaction capacity is expected to double
from 2008 to 2035. In this period, 20 % of the increase in world natural gas
production is expected to come from Iran and Qatar.

Natural gas has traditionally been transported in pipelines to markets close
to the production areas. However, in several of these areas there are no signifi-
cant markets and a pipeline solution is not an economically viable alternative for
longer distances, especially across oceans. Technological advances in the maritime
industry have made ships a good alternative for long distance transportation of
natural gas. The gas can be cooled down at atmospheric pressure to a tempera-
ture of —162°C (- 260°F). At this temperature the natural gas reaches its liquid
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state and turns into liquefied natural gas (LNG). This reduces the volume of
the gas by a factor of 610, (EIA, 2011), which makes transportation and stor-
age more efficient. In addition, LNG offers greater trade flexibility than pipeline
transportation.

The huge expansion of capacity in liquefaction plants has resulted in a steady
growth of the LNG shipping fleet capacity as well. In 2008, the record breaking
53 new built ships came out of the ship yards. This represented a 25 % increase
in total capacity in a year of no trade growth due to the financial crisis. Together
with the current order stock, forecasts predict that the LNG fleet is experiencing
a growth of about 20 new built ships every year in the coming years. The capacity
of the world fleet of LNG ships has reached about 52 million m? and more than
350 LNG ships are in operation, (GIIGNL, 2010). The size of individual LNG
carrier ships is also increasing. The new built Q-MAX carriers has a capacity of
260 000 266 000 m?, (EIA, 2011).

It is expected that the natural gas consumption will increase by 52 % from
2008 to 2035, (EIA, 2011). Although the global recession resulted in a decline in
natural gas use in 2009, robust demand returned already in 2010. Natural gas
continues to be the fuel of choice for many regions of the world in several sectors,
partly because its relatively low carbon intensity compared with oil and coal. In
the power sector, low capacity costs and fuel efficiency also favor natural gas.

Managing the LNG supply chain is an important task. The LNG supply chain,
illustrated in Figure 4.7, begins with the natural gas being extracted and sent
through pipelines to a nearby liquefaction plant. Impurities are removed from
the gas, which is cooled down to its liquid state and stored in tanks built with
full-containment, walls and systems to keep the gas liquefied. The LNG is then
transported by ships to its destination terminal. There, it is again stored until
it is regasified and finally sent through pipelines to the end users, which can
be power plants, industrial customers and households. Figure 4.7 highlights the
parts of the supply chain we focus on in this chapter. It is common to distinguish

> Extraction > > Liquefactior> > Storage > > Shipping > > Storage > >Regasificatio> >End usage >

Figure 4.7: The LNG supply chain

between three planning levels with different time horizons when planning the
supply chain, (Stremersch et al., 2008). Long-term planning typically includes
decisions about investments and long-term contracts that will have an impact
many years ahead. The annual delivery program (ADP) setup belongs to the
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next planning level and represents a tactical planning problem with a typical
planning horizon of 12-18 months. When creating an ADP, the aim is to deter-
mine an optimal fleet schedule, including the delivery dates (or time windows) at
the different customers’ terminals. This fleet schedule must also satisfy inventory
and berth constraints, as well as contract constraints. Finally, the operational
planning deals with updating fleet schedules because of various logistics, eco-
nomic or contractual reasons. Examples of logistics reasons can be rescheduling
due to unplanned events, such as equipment breakdown or ship delays. An ex-
ample of an economic reason is when spot market prices change; new sales or
purchase opportunities may create needs for rescheduling. The typical length of
the operational planning horizon is up to three months.

In this chapter, we focus on the creation of an ADP for a large-scale producer
and distributor of LNG. The LNG supply chain has become more complex in
recent, years, partly due to the increased volumes and higher number of sup-
ply sources and demand regions. Traditionally, most LNG ships have been tied
up to specific long-term contracts (defined as contracts with duration of more
than 4 years), where they would be dedicated to sail between given liquefaction
plants and regasification terminals. Lately, this situation has changed. There is a
growing spot market for LNG, which creates more business opportunities serving
different markets and introduces more flexibility in utilizing the LNG ships. For
instance, spot and short-term imports recorded a very strong increase (40 % and
727 cargoes) in 2010 compared with 16 % in 2009. In comparison, LNG traded
under long-term contracts recorded a 17 % increase in 2010, (GIIGNL, 2010).
Moreover, this also contributes to making the supply chain planning much more
challenging.

The ADP planning problem considered in this chapter is a combined LNG
ship routing and inventory management problem. The producer has a single
liquefaction plant with storage tanks. Two types of LNG are produced at the
liquefaction plant and the quantity of LNG in the storage tanks has to stay
within its limits. Connected to the liquefaction plant is a loading port. The
number of ships that can load simultaneously is restricted by the number of
berths. From the loading port, the LNG is shipped to customers world-wide, see
Figure 4.8. The producer has to fulfill a set of long-term contracts that either
outline a monthly demand for a given regasification terminal, or state that a
certain quantity of LNG is to be delivered fairly evenly spread throughout the
year. Over- and under-deliveries are accepted, but penalized. In addition to this,
the producer has the opportunity to sell LNG in the spot market using short-term
contracts. The producer operates a large fixed fleet, of heterogeneous LNG ships
and has the option to charter in additional ships in peak periods. All shipments
are full shiploads. To plan for the coming years, the producer creates an ADP
which is a list of scheduled voyages. Each scheduled voyage includes information
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Figure 4.8: A map showing the loading port and possible customer locations

about the ship chosen for the voyage, the day of loading at the loading port
and the contract served. The objective is to create an ADP that abides by the
long-term contractual agreements at lowest possible cost, while maximizing the
expected revenue from spot contracts. Henceforth, this is referred to as the ADP
planning problem.

The purpose of this chapter is twofold: 1) Present the LNG supply chain
and a case study from a large-scale producer and distributor of LNG, where the
objective is to create an ADP, and 2) Describe a mathematical formulation and
valid inequalities for the ADP planning problem that is solved by a branch-and-
cut algorithm. This problem is also studied in Rakke et al. (2011) and Stalhane
et al. (2012) where it is solved by a rolling horizon heuristic and a construction and
improvement heuristic, respectively. The research in this chapter complements
the previous research for this important problem. The algorithm can act as a
basis for other solution approaches like a rolling horizon heuristic and branch-
cut-and-price methods for solving real large-scale instances of the problem.

The rest of the chapter is organized as follows: A brief overview of the recent
literature within LNG supply chain optimization is presented in Section 3. Sec-
tion 4 is devoted to a detailed description of the ADP planning problem, while
the mixed integer programming formulation is given in Section 5. Valid inequal-
ities are described in Section 6. Section 7 presents the real-world cases tested
and the associated computational results. Finally, concluding remarks follow in
Section 8.

94



4.2 Literature

4.2 Literature

In this section, we limit ourselves to present literature related to the optimization
of the LNG supply chain.

Combined routing and inventory management within maritime transportation
has only been considered in the literature during the last one and a half decades.
A survey on maritime inventory routing problems is presented in Christiansen and
Fagerholt (2009), while Christiansen et al. (2007) give a comprehensive review
within maritime transportation in general.

The liquefied natural gas inventory routing problem (LNG-IRP) was introduced
by Grgnhaug and Christiansen (2009) and is an important problem withing LNG
supply chain optimization. The problem includes decisions about production and
sales quantities, inventory management at both liquefaction plants and regasifica-
tion terminals, and routing and scheduling of a fleet of heterogeneous ships. The
hold of the LNG ships is separated into several cargo tanks. The ships are always
fully loaded, but partial unloading is allowed. The need to consider boil-off adds
extra complexity to the problem. The objective of the LNG-IRP is to maximize
the profit by designing routes and schedules for the fleet, including determining
the production and sales quantities at all plants and terminals, without exceeding
the ship capacities or the inventory limits of the storages. The LNG-IRP is stud-
ied by Grgnhaug and Christiansen (2009) and Grgnhaug et al. (2010). Grgnhaug
and Christiansen (2009) propose two formulations for the problem; one arc-based
formulation and one path-based. A priori generation of all feasible paths is used
to solve the path-based formulation. The problem is further analyzed in Gren-
haug et al. (2010) where a branch-price-and-cut algorithm is developed for the
path-based formulation.

Fodstad et al. (2010) and Uggen et al. (2011) study a richer version of the LNG-
IRP which also addresses contract management and trading in a spot market
among other things. An arc-based formulation is developed and solved by Fodstad
et al. (2010), while Uggen et al. (2011) propose a heuristic method based on fix-
and-relax time decomposition for the same formulation.

There are some differences between the LNG-IRP as defined by Grgnhaug and
Christiansen (2009) and the ADP planning problem. The LNG-IRP has a more
complex structure than the ADP planning problem; it involves more than one
production port, inventory constraints both at the production and consumption
ports, and partial unloading. The ADP planning problem on the other hand
includes multiple types of LNG and is considerably larger with respect to the
size of the fleet and the length of the planning horizon.

The ADP planning problem presented here is also studied in several other
papers. Rakke et al. (2011) solve the problem using a rolling horizon heuristic
(RHH). The planning horizon is partitioned into shorter time intervals and the
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RHH iteratively solves subproblems over these time intervals. A construction and
improvement heuristic for the problem is developed by Stalhane et al. (2012). Ini-
tial ADPs are built in a construction phase and then improved using two different
heuristics, one local search and one based on a reduced MIP formulation, in the
improvement phase. The construction and improvement phases are then repeated
many times for different values of the parameters controlling the construction.
A similar MIP-based improvement, heuristic is also used to improve the ADPs
produced by the RHH. A new formulation using delivery patterns is proposed by
Rakke et al. (2012). A delivery pattern states the number of deliveries by each
ship to a given contract within a time interval. A branch-price-and-cut algorithm
is used to solve the problem.

Halvorsen-Weare and Fagerholt (2009) study a similar problem where cargoes
with defined time windows are generated a priori for each long-term contract,
and the fleet of ships can be divided into disjoint groups. This study does not
include a spot market, as opposed to Rakke et al. (2011), Stalhane et al. (2012),
Rakke et al. (2012), and this chapter. Halvorsen-Weare and Fagerholt (2009)
decompose the problem using Dantzig-Wolfe decomposition and handle inventory,
berth, and scheduling decisions in the master problem, while routing decisions
are dealt with in the subproblem. The master problem is a feasibility problem
minimizing penalties for time window violations and is solved using branch-and-
bound, while the subproblems are minimizing the port and transportation costs
and are solved using either a local search heuristic or branch-and-bound.

The most general study of the LNG supply chain including some of its main
characteristics is presented in Andersson et al. (2009). They consider two prob-
lems, reflecting different actors in the LNG supply chain. Mathematical models
for each problem are presented and solution approaches for both problems are
discussed. One of the problems is very similar to the problem considered in this
chapter, but the problem there is simplified with respect to the number of LNG
types and the possibility of selling LNG in the spot market. The other problem
is for a vertically integrated company. Here, inventory management and sales of
LNG at the regasification terminals are also considered.

4.3 Problem description

The ADP planning problem includes inventory and port management at the
producer, routing and scheduling of a fleet of ships, and contract management
between the producer and its customers.
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4.3.1 Inventory and port management at the liquefaction
plant

We consider a large-scale producer of LNG with liquefaction facilities and storages
in one production area. Two types of LNG are being produced; rich LNG (RLNG)
and lean LNG (LLNG). The production rates of LNG are always such that the
equipment available for gas refinement is 100 % utilized. Thus, fluctuations
in production rates occur only becuase of planned maintenance or unforeseen
events such as breakdowns or strikes. This means that the production rates are
given as parameters, but may vary during a year. Here, stochasticity is not
considered and the production rates are assumed to be known at the time of
planning. The different types of LNG are stored in separate tanks with given
upper and lower limits. From the tanks the LNG is transported in pipelines to
the docking facilities, where a limited number of berths for loading LLNG and
RLNG are available. We estimate the total time between arrival and departure
at the loading port to 24 hours. It includes the port arrival, docking and loading
operation. The inventory and port management consists of ensuring that the
quantity of LNG in the storage tanks is within its limits and that the berth
capacity is not violated.

4.3.2 Routing and scheduling of LNG ships

The producer operates a heterogeneous fleet of ships. These ships are either
owned by the producer or by one, or a group of customers. However, the producer
is responsible for the routing and scheduling of all ships.

Several factors influence the availability of the ships in the fleet. Since there
is no depot, some of the ships may be en route at the start of the planning
horizon and become available for operation when they return to the loading port.
The ships may also be unavailable because of certain pre-allocated activities, e.g.
each ship is required to dry-dock for maintenance for a certain number of days
every fifth year. The maintenance is not fixed to certain dates, but is required
to be carried out within a given time interval. Maintenance is always scheduled
to a dry-dock along the sailing lane, thus minimizing the time the ship is out
of commission. After the maintenance has been performed, the ship has to go
through a purge and cool-down procedure at a berth in the loading port before
starting its next voyage. This procedure takes on average 24 hours, but depends
on the ship type and the initial temperature of the empty tank.

A shipload must contain either LLNG or RLNG, but a ship can carry different
types of LNG on consecutive voyages without any intermediate preparations.
Though it is technically possible for a ship to sail between the loading port and
a regasification terminal with only some of its tanks filled, this is not considered
economically feasible by the producer and is never done in practice. Due to this,
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and in order to avoid sloshing during transportation, the ship tanks are always
filled to their capacities at the loading port. The duration of the voyage influences
the amount of LNG delivered to the customer because of boil-off, which causes a
fixed ship-dependent percentage of the total capacity of a tank to evaporate each
day. To keep the LNG tanks on board a ship cool during the return leg, a certain
amount, of LNG must be kept in the tanks to keep the boil-off process going
until the ship returns to the loading port and the loading operation can begin.
Consequently, the amount of LNG loaded at the loading port and the amount
delivered to the customer will differ, depending on the time spent in transit. If
boil-off causes the ship tanks to be completely empty, a 24-hour cool-down period
is required at the loading port before the next loading operation can take place.
However, the producer assumes that a ship never will be completely empty, which
means that ships never have to go through a cool-down process, except before
the first voyage following a maintenance period.

The travel times depend on the ship, because every ship has an individual
cruising speed. The duration of a voyage may depend on the time of year, as
sailing conditions vary between the summer and the winter months. Due to ocean
currents the travel time may also vary between the outbound and return leg of a
voyage. Not all ships can visit all regasification terminals. This is due to vessel
acceptance policies at the ports, and the fact that some ships are owned by one,
or a group of customers, limiting them to only visit their owners’ regasification
terminals.

The transportation costs consist of several components. The fixed costs are
the time charter rates, while the variable costs are port and canal fees that are
determined by the ship type and the contract served. A third variable component
is the bunker oil cost, which is dependent on the ship size, the load on board and
the duration of the voyage. Since the fixed costs cannot be changed during the
time horizon, the cost of sailing a scheduled voyage is assumed to be dependent
on the capacity class of the ship, the duration of the voyage and the regasification
terminal visited.

If the producer does not have enough ships available at a given time, additional
ships may be chartered in for one-off deliveries. A daily charter rate defines the
cost of these ships.

4.3.3 Contract management: Long-term contracts and sale of
spot cargoes

The producer has a set of long-term contracts by which it is obliged to deliver a
certain amount of LNG to specified regasification terminals each year. These con-
tracts have time frames of 20-30 years, so the total amount of LNG the producer
will deliver in a given year is known well in advance. A contract also specifies
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the regasification terminal to receive the LNG, but a regasification terminal may
have more than one contract associated with it. A long-term contract either out-
lines the monthly demand that is to be delivered to the customer’s regasification
terminals, or simply states that the LNG is to be delivered fairly evenly spread
throughout the year. Due to the contracts being long-term, there is some flexibil-
ity in the volumes that have to be delivered in a given year. The current "rule of
thumb" is that it is acceptable for the delivered amount of LNG to deviate with
up to 10 % of the contracted volume, as long as this is evened out the following
year. However, the producer always aims to deliver as close as possible to the
annual demands.

In addition to serving the long-term contracts, the producer has the opportu-
nity to sell LNG in the spot market. The spot sales are short-term contracts for
one-off deliveries from the producer to buyers on agreed terms, and represent pos-
sibilities for increased revenue. To maximize the expected contribution margin
from this option while minimizing the total cost of fulfilling long-term contracts,
spot sales are incorporated in the model.

4.4 Model

The ADP planning problem described in Section 4.3 can be formulated as a
mixed integer linear program. We define G, C, V, T, | to be the sets of LNG
types, contracts, ships, time periods, and time intervals respectively. Contract is
here a generic term representing not only the deliveries of LNG but also a period
of maintenance. The set of contracts can be divided into disjoint sets Cg4, repre-
senting contracts for LNG type g. In each Cg, one contract, cM | is a maintenance
contract and one contract, ¢, is a spot contract; the sets of maintenance and
spot contracts are denoted CM and C° respectively. The maintenance contracts
are needed to model the purge and cool-down procedure which takes place at
one of the berths in the loading port. All other contracts are associated with
long-term contracts and the set of these contracts is denoted CF?. The set of
ships can be divided into two disjoint subsets; V¥ denotes the set of ships oper-
ated by the producer and V® denotes the set of spot ships. The set of ships that
must undergo maintenance during the planning horizon is denoted V. We also
introduce V. as the set of ships that can serve contract c.

There are two types of LNG produced and stored at the liquefaction plant. The
production rate on day t of LNG type g is denoted P, and the time-dependent
upper and lower limits of the storage tanks are denoted @gt and Qgt. The berth
capacity B, restricts the number of ships that can load LNG type g or go through
a purge and cool-down procedure after maintenance using LNG type ¢ in a given
time period.
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The capacity of ship v is denoted L,,, and the cost and duration of a sailing on
contract c is denoted CZ and T.,, respectively. The set of time periods where
ship v is available for service is denoted T, and the set of time periods where it
can start maintenance is denoted TM,

The time horizon is divided into time intervals. These intervals cover the
horizon and may be overlapping. The set of time periods in time interval 7 is
denoted T{ and the demand of contract ¢ in time interval 7 is denoted D.;. The
demand does not need to be met exactly, but there are penalty costs associated
with over-delivery, Cg*, and under-delivery, Cg ~. The revenue from sending
one unit of LNG to spot contract c is denoted R and the revenue from having
one unit of LNG type g left in the storage tanks at the end of the planning horizon
is denoted Ré. The end of the planning horizon is denoted T.

The binary variable x.,; is 1 if ship v starts sailing on contract ¢ in time period
t, and 0 otherwise. The outgoing inventory level of LNG type g at the liquefaction
plant in time period ¢ is denoted gg;. Over- and under-delivery to contract c in
time interval i is given by v, and y_,, respectively. Using this notation, the ADP
planning problem can be formulated as:

ce€CvEV, teT, cECLT i€l
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(4.33)
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Z Z vacvt'f'y;_y;:Dci CECLT7i€|,
veVe teTiINT,
(4.34)
Qgtgquégt geGteT,
(4.35)
Tet €{0,1} c€CveV,teT,,
(4.36)
Yo Y =0 ceCicl
(4.37)

The objective function (4.29) minimizes the transportation and penalty costs
minus the revenue from LNG sold in the spot market and the LNG left in the
tanks at the end of the planning horizon. Constraints (4.30) state the berth
capacities. After maintenance, a ship goes through a purge and cool-down pro-
cedure at one of the berths, and because of this, the variables representing a
sailing on a maintenance contract are added to the constraints on the last day
of the sailing. Inventory balance at the liquefaction plant is given by constraints
(4.31). Constraints (4.32) ensure that each ship serves at most one contract each
day, and constraints (4.33) state that the ships that are scheduled for mainte-
nance undergo maintenance. The demand is handled in constraints (4.34) where
the delivered quantity is balanced with the demand using the variables for over-
and under-delivery. The inventory limits are given by constraints (4.35) and the
variable restrictions by constraints (4.36) and (4.37).

4.5 Strengthening the formulation

The LP-relaxation of the formulation presented in Section 4.4 is weak and does
not provide a good bound. In this section we present valid inequalities that can
be added to strengthen the formulation.

4.5.1 Delivery inequalities

The penalty costs for over- and under-deliveries are a substantial part of the total
objective value. In a fractional solution, these costs can be avoided since it is
always possible to deliver exactly the demand by using fractional ship loads. In
Figure 4.9a, the penalty function of a small example with one contact and two
ships is shown. The demand of the contract is 18 and the ships have capacities of
10 and 15 respectively. The penalty for over- and under-delivery is 15 per unit.
The dots show the feasible integer solutions; no delivery, one delivery with the
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small ship, one delivery with the large ship, two deliveries with the small ship
and so on.

L
250 250
200 200
S 150 S 150
z =
3 =
£ £
& 100 & 100
50 50
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0 5 10 15 20 25 0 5 10 15 20 25
Delivered quantity Delivered quantity
(a) (b)

Figure 4.9: Tllustration of the penalty cost as a function of delivered volume

It is clear that the penalty cost can be zero in a fractional solution; using the
small ship 1.8 times is one possible solution. If this possibility could be cut away,
we would have a strengthened formulation. Figure 4.9b illustrates the idea behind
the delivery inequalities; forcing the penalty cost to be above the red line cuts
away the zero cost solution. The red line can be represented as a valid inequality
connecting the delivered quantity and the penalty cost. If we define (Q_;,C.;)
as the maximum quantity that can be delivered to contract ¢ in time interval ¢
given that we under-deliver and the corresponding penalty cost, and (Q/, C})
as the minimum quantity that can be delivered given that we over-deliver and
the corresponding penalty cost, the following inequalities are valid:

b (Ch-Co)

Ci_( :;_ch)

c N Ltew Q| +C;  ceClicl,  (438)

teT!

where cZ is the penalty cost for contract ¢ in time interval i. To incorporate this
in the model, the following constraints must also be defined:

B> CCny;- ceCHT jel, (4.39)
B> chtyl ceCtT el (4.40)

The penalty costs in the objective function, (CcDﬁy; + Cg_yc_i), are then re-
placed with cZ.
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4.5.2 Symmetry breaking inequalities

Identical ships give rise to solutions that are mathematically different but similar
from a practical point of view; with five identical ships and two sailings, there
are 20 mathematically different solutions that are the same from a practical
point of view. This causes symmetry and to reduce this symmetry, the following
inequalities are derived.

Let V7 be a set of identical ships and let V7 be the last of these ships. Two ships
are identical if they have the same capacity, cruising speed and cost structure, and
if they can serve the same contracts. Order the ships in V7 in a non-decreasing
order with respect to the day when the ships become available for operation. The
symmetry between the ships can be reduced by adding

Z Z (Tejweje — Tejy1ej1,e) = 0 jeVvaV’, (4.41)

ceCteT

where j is the j*" ship in V7. The inequalities force ship j to be used at least as
many days as ship j + 1.

4.5.3 Loading inequalities

For any given time interval T/ = {T”,..., T }, the maximum and minimum num-
ber of loading operations of LNG type g can be calculated from the incoming
inventory level g, 7v_1 and the total production P’ = ZteT, . Start by order-
ing all ships that can load LNG of type g in T’ in a non- decreas1ng order with
respect to capacity. From this order, two sequences of loading quantities can be
created by taken into account the number of times each ship can load within T’.
Assuming that there are three ships, v1, v, and w3, with capacity 8, 11, and 12,
respectively. Within T’, vy can load LNG type g at most 2 times, v, can load at
lost 1 time and v3 at most 3 times. The minimum quantity that can be loaded
given one loading operation is thus 8, i.e. using v;. Given two loading operations,
the minimum loading quantity is 16, i.e. using v; twice. Given three loading op-
erations, the minimum loading quantity is 27, i.e. using v; twice and vy once and
so on. These minimum loading quantities form a sequence of minimum loading
quantities S = (8,16,27,39,51,63). Correspondingly, we can define a sequence
of maximum loading quantities S = (12,24, 36,47, 55,63) by reversing the order
of the ships.

Disregarding the bounds on the incoming inventory we see that the incoming
inventory level must be at least 914 Q = — P’ to be feasible with respect to

the lower bound on the outgomg 1nvent0ry Thus to allow i loading operations,
qg,1/—1 must be at least ¢ 0T -1 + 8;, where s, is the i element in S. Hence, the

number of loading operatlons is bounded from above by ¢ 0T and S. Similar,
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the lowest quantity at which we have to start loading is when g, r_; = @gj/ —
P’, which means that at least j loading operations are needed when g, /1 >
Gy 1/—1 + Sj—1, where §; is the jt" element in S and 5y = 0. The number of
loading operations is thus bounded from below by g, ;~_; and S.

Figure 4.10a shows an example of how the number of loadings can be bounded
using the sequences S and S where P’ = 30, Q 7 = 0 and Q 7 = 35 The
red dotted line shows the maximum number of 10ad1ng< that can be performed,
while the black dotted line shows the minimum number of loadings that must be
performed. The thick black lines define the feasible integer solutions.

We can strengthen this by including the upper and lower bounds on the in-
coming inventory. In Figure 4.10b, these bounds are included; Qg’T, = 0 and

@g’zl = 25. The feasible region of the LP relaxation can be further reduced by
cutting away non-integer extreme points, this is illustrated in Figure 4.10c. Fi-
nally, the remaining feasible region of the LP relaxation and the feasible integer
solutions are shown in Figure 4.10d. Each facet in Figure 4.10d can be expressed
as a linear constraint containing the number of loadings and the incoming inven-
tory level.

A sightly different version of this cut is proposed by Engineer et al. (2009) and
later strengthened by Rakke et al. (2012). We have used the same ideas as in
Rakke et al. (2012) but present it differently. See Rakke et al. (2012) for a more
detailed description of the cuts.

4.5.4 Timing inequalities

A common phenomenon in fractional solutions is premature loadings, which
means that fractions of ships load LNG before enough gas for a full ship load
is available. Engineer et al. (2009) developed a cut to remedy this problem.
Their cut relates the production rate and incoming inventory level to a time-
weighted sum of loading days. The cut was later used in Rakke et al. (2012), and
we have adopted this idea.

Start with a given time interval T/ = {T",... ,T/} and the sequence of maxi-
mum loading quantities, S, defined in Section 4.5.3. Let I1- be the total quantity
loaded during T’ and let K define the least number of ships needed to load I1-,
ie Sx_q1 < It < 5k where 3; is the i*" element in S. The earliest time for the
kth loading, ty, is such that

t,—1 ty
qr/— 1+ZPt<sk<qT/ i+ > P (4.42)
t=T"' t=T"

where s, is the k*" element in S defined in Section 4.5.3. For the sake of simplicity
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Figure 4.10: Tllustration of the relation between the incoming inventory and the
number of loadings

and without loss of generality, we have removed the index representing LNG type
in this section. The least number of days, counting from 7" —1, for the K loadings
is thus Zszl(zk — T’ +1) and this can be used to bound the time-weighted sum
of loadings. To estimate t,, we introduce a production constant P instead of P;.
With P we can reformulate the second inequality of (4.42) into

—dqr’—1

s, S qroa+ (=T +1)P = 1, > =% +T 1 kef{l,... K} (443)
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A natural way to estimate P is P = max;c7 P, but a better estimate can be
found by using the average production rate over a subinterval of T’ starting from
T’'. With this, we get the following estimate of P

P
P = ma h (4.44)
TGT/T—T+1

The bounding inequality

S DY T+ Dwew > (4 —T' +1) (4.45)
k=1

ceC\CM veV, teT’

relating the time-weighted sum of the loadings and the least number of loading
days can now be stated as a valid inequality by substituting ¢, using (4.43). This

gives
> ZZt—T’+1xcvt>Z<8k_qT' 1) (4.46)

ceC\CM veV, teT’

where P is given by (4.44). For a different and more detailed description of the
cut, the reader is referred to Rakke et al. (2012).

4.6 Computational study

The branch-and-cut algorithm for the ADP planning problem is implemented
using Xpress-MP 7.2 and Mosel 3.2.2. The cut separation was written in C++
and called as a module from Mosel. All tests were done on a HP dl165 G5 with
a 2x 2.4GHz AMD Opteron 2431 and 24Gb of RAM.

The delivery inequalities, presented in Section 4.5.1, and the symmetry in-
equalities, presented in Section 4.5.2, are added to the formulation a priori. On
the other hand, the loading and timing inequalities, presented in Sections 4.5.3
and 4.5.4 respectively, are implemented as cuts. The separation routines are run
in every node of the branch-and-bound tree and if a violated cut is found, it is
included and the node is reoptimized. Note that the loading and timing inequal-
ities are implemented somewhat differently from the descriptions and that some
algorithmic considerations have been made about which cuts to search for in the
separation routines. This has a minor effect on the results.

4.6.1 Instances

We have tested the branch-and-cut algorithm on the instances presented in Rakke
et al. (2011) and Stalhane et al. (2012). The test set consists of four groups of
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instances. Groups A and C represent the situations in 2008 and 2012, respectively.
Groups B and D are reduced versions of groups A and C where some contracts
and ships have been removed. Within each group, four different instance are
generated, having a planning horizon of 12, 8, 6, and 4 months respectively. The
instances are denoted with the letter of the group and a number between 1 and
4 where 1 represents a 12-month planning horizon and 4 a 4-month planning
horizon, i.e. B2 is the instance from group B with an 8-month planning horizon.
This naming is the same as in Rakke et al. (2011) and Stalhane et al. (2012).

4.6.2 Results

The computational study focuses on two aspects, the improvement of the initial
LP bounds and the improvement of the best bounds after 4 hours. As was noted
in Rakke et al. (2011) and Stalhane et al. (2012), not only the relative gap,
but also the absolute gap is interesting to study. The 2008 and 2012 cases are
rather different; in the 2008 case there is a lot of excess LNG to sell, causing the
revenue from selling LNG in the spot market to be approximately the same as the
transportation and penalty costs giving a lower bound close to zero. This makes
the relative differences large in these cases. The 2012 case is much more tightly
constrained when it comes to excess LNG. Hence, the objective value is much
closer to the sum of transportation and penalty costs, giving relatively smaller
differences.

Table 4.12 shows the improvements of the initial LP bound for a small set of
combinations of inequalities and cuts. Each column is marked with the section
where the included inequalities are presented, the column denoted ’All’ shows
the results when all inequalities and cuts are included. The first set of results
show the relative improvement of the objective value, in percentage, of including
the inequalities compared with not include any inequalities. The second set
shows the absolute difference between the objective values. It is clear that the
delivery inequalities, presented in Section 4.5.1, are efficient and improve the
objective value of the LP relaxation by 7.1 % on average. They are especially
efficient on the 2008 reduced instances; fewer ships makes it harder to deliver the
right quantity to the contracts and may thus create a larger deviation between
the fractional and integer delivery quantities. The other inequalities are not as
efficient, but still manage to improve the objective value of the LP relaxation on
some instances.

The patterns from the LP values presented in Table 4.12 are repeated when we
study the improvements of the best bound after four hours in Table 4.13. Here,
not all combinations of inequalities and cuts improve the bound. Sometimes the
separation routines take a long time, which means that the number of examined
nodes in the branch-and-bound tree is reduced, something that leads to weaker
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bounds.

4.7 Concluding remarks

This chapter presents a branch-and-cut algorithm and valid inequalities for the
annual delivery program (ADP) planning problem. The ADP planning problem
includes the inventory and port management at the producer, the routing and
scheduling of a fleet, of ships, and the contract management between the producer
and its customers.

Four families of inequalities to strengthen the formulation are presented. The
first family of inequalities cuts away the possibility to do fractional deliveries
without incurring a penalty cost, while the second is symmetry breaking con-
straints. The third family of inequalities bounds the number of loadings in a
given time interval by relating it to the incoming inventory. The fourth family
handles the timing of loadings and prevents that fractions of ships load LNG be-
fore enough gas for a full ship load is available. The computational study shows
that all valid inequalities strengthen the formulation.

Relative improvement Absolute improvement,
Instance| 5.1 5.2 5.3 54 All 5152 53 54 Al
Al 7.1 0.0 0.0 0.1 7.1 7152 0 34 128 7186
A2 3.4 0.0 0.0 0.0 34 4841 0 0 47 4842
A3 5.2 0.0 0.0 0.1 5.4 3505 0 18 46 3605
A4 2.5 0.0 0.0 0.0 2.5 2221 0 21 3 2245
B1 26.6 0.0 0.0 0.3 26.9 13798 0 0 131 13928
B2 13.9 0.0 0.0 0.4 141 10350 0 0 275 10490
B3 16.1 0.0 0.0 0.6 16.5 6302 0 1 248 6434
B4 11.4 0.0 0.0 0.0 134 3848 0 O 0 4516
C1 4.6 0.0 0.0 0.0 4.6 60544 0 O 0 60544
C2 4.2 0.0 0.0 0.0 4.2 38140 0 O 0 38140
C3 4.1 0.0 0.0 0.5 4.1 29506 0 0 3783 29506
C4 4.1 0.0 0.0 1.1 5.2 19564 0 0 5322 24834
D1 2.9 0.0 0.0 0.0 2.9 23241 0 O 0 23241
D2 2.7 0.0 0.0 0.0 2.7 15367 0 O 0 15367
D3 2.3 0.0 0.0 0.0 2.5 10636 0 O 0 11258
D4 3.0 0.0 0.0 1.8 4.5 8590 0 0 5184 12910
Avg. ‘ 7.1 0.0 0.0 0.3 7.5 16100 0 5 948 16815

Table 4.12: Improvements of the LP optimal value
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Relative improvement Absolute improvement
Instance| 5.1 5.2 53 54 All 51 52 53 54 Al
Al 70 00 0.1 00 7.0 7015 1 66 17 7044
A2 33 00 0.0 00 3.3 4642 1 44 61 4677
A3 53 0.0 0.1 00 54 3567 0 50 5 3587
A4 23 0.0 0.0 00 23 2054 0 17 -17 2080
B1 275 0.0 -1.5 2.3 28.9 13872 0 -762 1178 14604
B2 9.5 0.0 0.3 -1.3 10.2 6145 0 171 -819 6605
B3 121 0.0 1.8 -3.6 11.9 3757 0 563 -1130 3682
B4 12.1 0.0 11.6 1.0 12.7 3494 0 3370 302 3672
C1 46 00 0.0 00 4.6 60567 0 0 10 60562
C2 4.2 0.0 0.0 0.0 4.2 38148 -16 -14 -1 38156
C3 35 00 0.0 00 43 25725 0 1 13 31222
C4 4.0 0.0 0.1 03 4.0 19533 1 420 1437 19568
D1 29 0.0 0.0 00 33 22927 303 44 -91 26226
D2 27 00 00 00 3.7 15367 0 25 0 21478
D3 -0.1 -0.1 -0.6 -1.5 0.8 -480 -431 -2656 -7235 3620
D4 0.5 0.2 -04 -03 0.9 1550 560 -1119 -919 2722
Avg. ‘ 6.3 0.0 0.7 -02 6.7 14243 26 8 -449 15594

Table 4.13: ITmprovements of the best bound after four hours

The chapter also provides a detailed description of the ADP planning problem
and an updated review of literature related to the optimization of the LNG supply
chain.
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