
Industrial Economics and Technology Management
June 2011
Bjørn Nygreen, IØT
Professor Truls Gundersen (EPT), EPT
Researcher Rahul Anantharaman, SINTEF Energy
Research

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Industrial Economics and Technology Management

Optimization based design of an IRCC
process with CO2 capture

Erik Lien Johnsen

Abstract

To deal with the threat of climate change, many technologies should be
investigated, and power generation through an IRCC with CO2 capture
is one alternative. However, capturing CO2 has a negative effect on the
efficiency of the process as it requires a lot of energy. In this work, we try
to reduce the energy consumption of an IRCC process with CO2 capture
by developing a tool for finding the optimal process design with extensive
heat integration.

The design of an IRCC process involves many parameters which inter-
fere in complex relationships. In this report, an MINLP model is established
for optimizing important parameters simultaneously. The model relies on
metamodeling based on process simulations in Aspen HYSYS to approxi-
mate difficult correlations, combined with a more direct approach for mod-
eling computationally easier parts of the process. A general model for heat
recovery targeting is developed for the heat integration optimization, and
implemented as a part of the full IRCC optimization model.

The global solver BARON is used for solving the problem, together
with a relaxation procedure based on pinch analysis insights, and optimal
solutions are usually found within several hours.

The optimized IRCC process reaches a net electric efficiency of 49.97 %,
assuming maximum heat integration, with only 1 % of the cooling and
heating demands to be covered by utilities. The accuracy of the model is
relatively good when compared to process simulations, but a less idealistic
version of the IRCC should be designed based on the results to confirm the
capability of the model.

i

Preface

This work is my master thesis in the master programme of industrial eco-
nomics at the Norwegian University of Science and Technology (NTNU).
As my technological specialization is in process engineering, and my eco-
nomical specialization is in optimization, I have chosen a project in which
I can use my knowledge from both fields.

Combining the two disciplines have been rewarding, as large parts of
my education have come to use, but it has also been challenging. I have
had to balance between different conventions, learn new software and dive
deeper into the field of non-linear optimization.

I started this work with a project thesis in the previous semester, and I
want to mention that the sections 2.3 and 3.1 and parts of the introduction
are modifications of text from this prestudy. Except for these parts, which
are included for completeness, and some of the preface, this master thesis
is new material.

I would like to thank my supervisor, Professor Bjørn Nygreen at the
Department of Industrial Economics and Technology Management, for let-
ting me work with this project, for guidance to the project in general and
for sharing his optimization expertise.

I am also thankful to Professor Truls Gundersen at the Department of
Energy and Process Engineering for coming up with the project description
and initiating the collaboration with Rahul Anantharaman, Bjørn Nygreen,
him and me, and for his useful comments and insights.

Finally, I will thank researcher Rahul Anantharaman at SINTEF En-
ergy Research for answering my questions whenever I dropped into his office.

iii

He has contributed to this work by setting up the flow sheet in HYSYS,
providing background information and reviewing my work with a critical
but always positive vision. It has been encouraging to hear that he intend
to publish an article based on my work1.

Trondheim, 14 June 2010

Erik Lien Johnsen

1for the ESCAPE 22 conference

Contents

1 Introduction 1

2 The IRCC process with CO2 capture 3
2.1 CO2 capture . 3
2.2 IRCC design . 4
2.3 Unit operations and equipment 5

2.3.1 Auto-thermal reformer (ATR) 5
2.3.2 WGS reactors . 7
2.3.3 CCU . 7
2.3.4 Combustor . 8
2.3.5 Gas turbine . 8
2.3.6 Air compressors . 9
2.3.7 HRSG and steam turbines 10

3 The IRCC optimization model 11
3.1 Related work . 11
3.2 Overview of the IRCC optimization model 12

3.2.1 Symbols and notation 13
3.2.2 The objective function 17

3.3 Metamodeling . 18
3.4 Physical modeling . 22
3.5 Heat integration modeling 26

3.5.1 The heat integration model 28

v

4 Implementing the IRCC optimization model 33
4.1 Global optimization . 33

4.1.1 BARON . 34
4.1.2 Scaling, variable bounds and reformulation 36
4.1.3 Improving the heat integration modeling 37
4.1.4 Relaxation based on process insights 38

4.2 Simulation and regression 39
4.3 Overview of the implementation 41

4.3.1 Software versions . 43
4.3.2 Hardware . 43

4.4 Scenarios . 45
4.4.1 Maximizing power output 45
4.4.2 No choice for ATR air compression 45
4.4.3 Lower turbine inlet temperature 46
4.4.4 Higher pressure steam cycles 46
4.4.5 Lower limit for CO2 capture 46

5 Results 47
5.1 Overall performance . 47
5.2 Heat integration results . 48
5.3 Accuracy . 54
5.4 Comparison with other IRCCs 58
5.5 Results for alternative scenarios 59

5.5.1 Maximizing power 59
5.5.2 No choice of ATR air compressor 61
5.5.3 Lower turbine inlet temperature 61
5.5.4 Higher steam pressure levels 62
5.5.5 Lower limit for CO2 capture 62

5.6 Computational performance 63
5.6.1 Reliability of BARON 64

6 Conclusion 65
6.1 Further work . 66

Bibliography 67

List of Figures 73

List of Tables 75

A The complete IRCC optimization model 77

B Regression coefficients 81

C The exponents ae 85

D Figures for alternative scenarios 87

E Data 93

F Source code 97
F.1 The optimization model written in GAMS 97

F.1.1 The main file — ircc.gms 97
F.1.2 Combustion modeling — combustion.gms 102
F.1.3 Air distribution modeling — air.gms 103
F.1.4 Turbo-machinery modeling — turbo.gms 104
F.1.5 Connecting to the heat integration model — hrsgcon-

nected.gms . 106
F.1.6 The heat integration model — hr.gms 108

F.2 Data handling and regression code in MATLAB 110
F.2.1 Main file — ircc.m 110
F.2.2 Input of basic data — irccdata.m 114
F.2.3 Handling the HYSYS process simulations — simula-

tion.m . 117
F.2.4 Making Latin hypercube sampling scheme — sam-

pling.m . 119
F.2.5 Dealing with regression coefficients and related sets

— regcoeffs.m . 120
F.2.6 Regression — polyreg2.m 122

F.2.7 Setting some model parameters and basic equations
— setmodelparameters.m 125

F.2.8 Calculating combustion parameters — combustion.m 126
F.2.9 Calculating parameters for air distribution — air.m 129
F.2.10 Calculating parameters for modeling of turbo-machinery

— turbo.m . 129
F.2.11 Setting and calculating upper and lower bounds —

bounds.m . 134
F.2.12 Setting and calculating parameters for heat integra-

tion — hr.m . 137
F.2.13 Reading solution from file — getsolution.m 143
F.2.14 Post-processing and output of the solution — irccout-

put.m . 145
F.2.15 Post-processing and output of heat integration results

— cascade.m . 148

Chapter 1

Introduction

Climate change due to anthropogenic emissions of greenhouse gases (GHG)
is accepted as a serious threat, and the increase of CO2 in the atmosphere
is the main contributor to the increased greenhouse effect. There are many
ways to reduce the amount of CO2 in the atmosphere, and CO2 capture
and storage (CCS) is one way which can be cost effective compared to other
techniques (David and Herzog, 2000; Metz et al., 2005). The process of CCS
is normally divided into three steps: Capture, transportation and storage.
Of these, the capture is the main element of the CCS cost (Gibbins and
Chalmers, 2008).

Power generation from fossil fuels constitute a substantial share of the
man-made GHG emissions, and most of the large emitters are such power
plants, making them well suited for CCS. Capturing CO2 requires a lot of
energy, leading to reduced efficiency and increased cost for the power plant.
Thus, an energy-efficient design of the plant with CO2 capture is important
to make CSS more attractive.

The energy demand of a process can be reduced by applying heat in-
tegration in an optimal way, but this is a complex task. Mathematical
programming (MP) — or optimization — is a tool suited for this exercise,
and it has to some extent been successfully applied. However, the approach
has usually been to match heat sources and sinks, whose temperatures and

1

duties are given, while better solutions could be obtained by not fixing the
temperatures and duties in advance. This complicates the model by intro-
ducing the need for non-linear relations, which can lead to computational
difficulties.

Optimization can also find the most efficient process design, both with
respect to heat integration and for fulfilling the main purpose of the process
— power generation. However, a mathematical description of the process
may be highly nonlinear and very complex in terms of optimization. A way
to reduce these problems is approximating difficult correlations by simpler
ones based on data from process simulations, and if the approximation is
chosen carefully this approach can be fruitful (Palmer and Realff, 2002b).

The goal of this work is to establish an optimization model for an inte-
grated reforming combined cycle (IRCC) process with CO2 capture, which
can find process designs with optimal integration such that the energy de-
mand of the process is reduced. By optimizing the main process and heat in-
tegration simultaneously, better solutions can be found than with a sequen-
tial approach. To model such a complex process, it is important to find a
good balance between accuracy and solvability by approximating some cor-
relations and making simplifying assumptions, without over-simplifying.

2

Chapter 2

The IRCC process with CO2
capture

In this chapter, the integrated reforming combined cycle process with CO2
capture is described, starting with a short introduction to CO2 capture,
followed by an overview of IRCC design, defining the scope of this work
from a process engineering point of view. Then the unit operations and
equipment that make up the process are described more in detail. IRCC
process designs from the literature are described shortly for comparison in
section 5.4.

2.1 CO2 capture

Carbon capture technologies are divided into three categories, namely pre-
combustion, post-combustion and oxy-combustion. The integrated reform-
ing combined cycle is of the pre-combustion type, in which the carbon
dioxide, which normally is a product from combustion, is separated from
the fuel before the main combustion occurs. The IRCC is one of many ways
of generating power from natural gas (NG) while capturing CO2. A much
more thorough description of CCS is found in Bolland (2010).

3

2.2 IRCC design
Reforming is the process of converting natural gas into syngas, and this
takes place in a reformer. Syngas is a mixture of carbon monoxide (CO),
hydrogen gas (H2) and CO2. For CO2 capture the syngas is further pro-
cessed such that the CO and steam (H2O) is converted to more CO2 and
H2 in one or several water-gas shift (WGS) reactors. The CO2 is separated
in what we here call the CO2 capture unit (CCU), which normally is an
absorption process. The hydrogen can be used for many purposes, but in
the IRCC the hydrogen-rich gas is combusted and the exhaust is expanded
in a turbine to generate electricity. The heat in the exhaust is then utilized
by a heat recovery steam generator (HRSG).

Nord and Bolland (2011) point out six important aspects of designing
an IRCC process with CO2 capture:

1. Which type of reformer to use, e. g. steam reformer, partial oxidation
or autothermal reformer

2. What pressure level to adopt

3. Design of the heat recovery steam generator

4. Level of heat integration

5. Use of membranes in the reforming process, in the water-gas shift
section or for CO2 capture

6. Method for CO2 capture

Regarding aspect number one, we assume an autothermal reformer to be
used. For the last two aspects, membrane technologies are not used, and
an amine-based absorption process is assumed for CO2 capture. Aspects
number two, three and four are addressed in this work. The pressure level
is one of the parameters we try to optimize. We do also try to optimize
many parameters not mentioned by Nord and Bolland (2011), but the aim
of this is related to heat integration, where we try to reach a very high
level. This also relates to the HRSG, as increased power output from the

4

steam cycles is one of the goals for the heat integration. However, we do
not try to optimize the pressure levels of the HRSG

2.3 Unit operations and equipment1

Figure 2.3 is a simple flow-sheet of our process, where the type of reformer
and CCU is fixed, and some assumptions are made for the HRSG design.
The unit operations here are explained in the following subsections. There
should also be a number of heat exchangers, compressors and other unit
operations, like in the more complete IRCC process depicted in Nord et al.
(2009), but we are here only considering the most important ones.

2.3.1 Auto-thermal reformer (ATR)

The reforming of natural gas to syngas can be done in several ways. In
the process examined in this report, it is done in an auto-thermal reformer
(ATR). “Auto-thermal” refers to that the amount of oxygen is set such that
no external heat supply is needed to keep the temperature at a specified
level. The reactions taking place in the ATR are

CH4 + 1
2O2 → CO + 2H2 ∆H = −35.9 [kJ/mol] (2.1)

CH4 +H2O
 CO + 3H2 ∆H = 205.9 [kJ/mol] (2.2)
CO +H2O
 CO2 +H2 ∆H = −41.2 [kJ/mol]. (2.3)

The oxygen added provides heat by reaction (2.1), which is seen by
the negative heat of reaction (∆H). The extent of the other two reactions
depends on how much heat is supplied by the reaction with oxygen, tem-
perature conditions and on the amount of steam added, which is referred
to by the steam-to-carbon ratio, the molar ratio of steam to methane.

Before the reformer, the natural gas feed is pre-reformed with added hy-
drogen such that the longer hydrocarbon chains are split into methane, but
in this work the natural gas is for simplicity assumed to be pure methane.

1This section is to a large extent based on the authors project thesis (Johnsen, 2010).

5

ATR LTSHTS WR CCU

Air

Waste
water

 CO2

Waste

'Cold'
exhaust

Water

 CH 4
1000C

30C
30C

30C

200C1350C

32C
143.6C 143.6C

230C

324.6C 324.6C
560C

560C

415C

20C

ATR product HTS product LTS product

CCUreboiler

exhaust

GT fuel

RH

LPSLPBLPE

HPE HPB HPS

preheat

15C

25 bar

18 bar

1.03 bar

0.048 bar

120 bar

4 bar

1.013 bar

4 bar

preheat

110 bar

Index Given value Stream for heat integration

CoolerHeater Pump Turbine Compressor Reactor Separator Combustor Sub-process

6

The oxygen needed in the ATR can be supplied as air or in a relatively
pure form. The latter option requires an air separation unit (ASU) up-
stream of the reformer, while the former results in higher flow rates and
larger equipment. In this work an air-blown ATR is used.

2.3.2 WGS reactors

In the WGS reactors, the water-gas-shift reaction (2.3) takes place. The
equilibrium of this reaction is shifted more to the right with lower tempera-
tures, thus cooling is applied before each of the reactors. The shift is usually
done in two stages, a high temperature shift (HTS) with Fe3O4/Cr2O3 as
catalyst, and a low temperature shift (LTS) with Cu/ZnO/Al2O3 as cata-
lyst. The first catalyst normally operates at temperatures between 310 and
450 ◦C, and the one in the LTS at 210–240◦C (Rhodes et al., 2002, 1995),
but operation slightly outside these ranges should be possible.

The reaction is exothermic, and the coolers can be used to generate
steam.

The water left in the stream is taken out in the water removal flash,
before the gas enters the CCU.

2.3.3 CCU

In what is here called the carbon capture unit, the CO2 is separated from
the other components in the gas stream. There are many different technolo-
gies for capturing CO2, including membranes, adsorption and distillation,
but absorption processes are most widely used, usually with an amine-based
solvent. The separation requires a lot of energy, and the higher the capture
ratio2, the higher the energy consumption. An economically acceptable
capture ratio is around 85–95% (Bolland, 2010), and in this work 90 %is
chosen as a lower limit.

The main consumer of energy in the amine absorption process is the
amine reboiler. The temperature of the reboiler is typically around 120 ◦C,

2capture ratio: ηcap = amount of CO2 captured
amount of CO2 formed

7

and about 1.5 MJ of heat has to be supplied per kg of CO2 captured (Nord
et al., 2009).

2.3.4 Combustor

After the CO2 is captured, the gas consists of mainly H2, together with
N2 since the reformer is air-blown. This gas is compressed before being
fed to the combustor together with air and eventually a diluent. In the
combustion chamber, the hydrogen is completely combusted with air as in
reaction (2.4). There will also be some CO, CH4, H2O and CO2 left in the
syngas, and the former two are combusted completely as in reactions (2.5)
and (2.6).

H2 + 1
2O2 → H2O ∆H = −241.8 [kJ/mol] (2.4)

CO + 1
2O2 → CO2 ∆H = −283.0 [kJ/mol] (2.5)

CH4 + 2 O2 → 2 H2O + CO2 ∆H = −890.4 [kJ/mol] (2.6)

The energy released from reactions (2.4)-(2.6) is then utilized in the gas
turbine.

2.3.5 Gas turbine

The gas turbine is used to generate power by expanding the combustion
product of air and hydrogen-rich fuel, and the power output and outlet
temperature may be calculated with the following equations:

Ẇ = η ṁ cp (Tin(1−
(
pout
pin

)κ−1
κ

) (2.7)

Tin − Tout = ηTin(1−
(
pout
pin

)κ−1
κ

) (2.8)

Ẇ denotes power, η is the efficiency, cp is the specific heat capacity, Tin,
Tout, pin and pout are temperatures and pressures at the inlet and outlet of
the turbine, and κ is the specific heat ratio.

8

The large-scale gas-turbines available are designed for natural gas, and
using hydrogen instead of NG is not straight-forward, but developing a new,
specialized turbine is extremely expensive. One problem is that combustion
of hydrogen involves much higher flame temperatures, which lead to high
NOx emissions. This is avoided by diluting the fuel, and as nitrogen is a
suitable diluent(Chiesa et al., 2005), using an air-blown ATR is advanta-
geous. However, by diluting the fuel, the volumetric heating value become
lower and larger equipment or higher gas velocity is needed to generate the
same amount of power as in the case of natural gas.

2.3.6 Air compressors

To make the ATR and combustor operate at the chosen pressures, air must
be compressed accordingly. The large main air compressor is used to com-
press the combustion air to 18 bar, and may also compress all or parts of
the air to the ATR, possibly followed by a second air compressor if the
ATR pressure is higher than that of the combustor. We have also included
the option of using an extra, smaller air compressor for supplying the ATR
with compressed air.

The equations for compression work and compressor outlet tempera-
tures are similar to those for turbines, but with inverse efficiencies:

Ẇ = 1
η
ṁ cp (Tin(

(
pout
pin

)κ−1
κ

− 1) (2.9)

Tout − Tin = 1
ηTin

(
(
pout
pin

)κ−1
κ

− 1) (2.10)

Large-scale air compressors and gas turbines are only available in certain
sizes, and thus the process has to be dimensioned to match the size of this
equipment. A typical large-scale air compressor can handle 640 kg/s of air,
which is the size we assume in this work.

9

2.3.7 HRSG and steam turbines

Energy left in the flue gas is exploited in a heat recovery steam generator,
driving one or several steam turbines. Usually there is an arrangement
including high and low pressure steam, and sometimes an intermediate
pressure level too. Steam is heated in the economizer part, evaporated in
the boiler and then superheated before being expanded in the turbine, and
a pump is used to increase pressure. The heating of steam can also be
integrated with heat sources in other parts of the process.

HRSG design have a large impact on the efficiency of the IRCC power
plant, but as it is a complex task in itself this work is limited by look-
ing at two predefined steam levels, low pressure (LP) steam at 4 bar and
high pressure (HP) steam at 120 bar. For both pressure levels, water is
pumped to the chosen pressure, then heated up to saturation, boiled, and
superheated to 230 and 560 ◦C. Steam to the ATR is extracted from the
HP turbine, and the steam left is then reheated to 560 ◦C and expanded
in an intermediate pressure (IP) turbine down to the LP level, where it is
expanded again together with the LP steam down to 0.048 bar.

10

Chapter 3

The IRCC optimization
model

In this chapter, a model for optimizing an IRCC process with CO2 capture
is presented, but first we look at similar work already done by others and
provide an overview for the decisions made for modeling this process.

3.1 Related work1

Much of the optimization work in process engineering is of the simple type
where one variable is analyzed at a time, like the recent study of Emun
et al. (2010) on an integrated gasification combined cycle (IGCC) process,
which is the coal equivalent of the IRCC, using Aspen Plus for simulation.
Their work did not include CO2 capture, but some heat integration was
examined.

Martelli (2010) applies optimization to a greater extent, optimizing the
design of heat recovery steam cycles. His model is also applied on an IGCC
process with CO2 capture, and show promising results. The non-linear
functions are linearized in the optimization, and temperatures and duties

1This section is to a large extent based on the authors project thesis (Johnsen, 2010).

11

are fixed in the heat integration part.
More high-level integration is studied by Sadhukhan and Zhu (2002),

which formulate their model for integrating gasification in an overall refin-
ery as a mixed integer non-linear program. They decompose the problem
into several steps, including a “site-level” and a “process-level” optimization
problem, and solve them heuristically.

Palmer and Realff (2002a,b) have used non-linear functions from regres-
sion approximating difficult correlations in their optimization, and their
model is tested on an ammonia synthesis process. The model based on
polynomial regression is solved with a steepest ascent method. Their focus
is on establishing a model based on very few flow-sheet simulations, for
cases where simulation is time-consuming.

For optimizing heat integration simultaneously with process design, Du-
ran and Grossmann (1986) and Grossmann et al. (1998) have developed
general models which are discussed in section 3.5.

To summarize, the works dealing with the IRCC process do not apply
optimization in any depth, while some more optimization is applied on sim-
ilar processes. When looking at works not dealing with reforming processes,
a wider range of approaches to process optimization is found, and some of
the methods in the literature are applied in this work to find more efficient
designs of an IRCC process with CO2 capture.

3.2 Overview of the IRCC optimization model

Making an optimization model for the whole IRCC process is a challenging
task. To see how a change in one variable effects other variables, optimiza-
tion relies on a mathematical description of relationships between variables.
The relationships between pressures, temperatures, mass and energy flows
and so on in chemical and thermodynamic processes are often complex in
themselves. Many of the relationships in the IRCC process are non-linear,
and to obtain a satisfactory level of accuracy, we need a non-linear opti-
mization model.

Chemical equilibrium reactions do often require iterative calculations,

12

and to find the enthalpy of steam the usual approach is to interpolate
between values in a steam table rather than using analytical equations.
Such formulations are incompatible with most optimization software, at
least for efficient solving.

In addition to this, the heat integration modeling may require binary
variables together with non-linear equations as both flows (ṁcp) and tem-
peratures are taken as variables.

To deal with these factors, different modeling strategies are applied to
different parts of the process. For the part of the system involving equi-
librium reactions, approximate relationships based on results from process
simulations and regression are used, as powerful software is available for
simulating the process accurately and fast, and this is presented in section
3.3. The steam turbines are also modeled in a similar manner. Where
practically possible, physical relationships from thermodynamics and bal-
ance equations are used in the modeling, and this is presented in section 3.4.
The heat integration modeling is based on a separate MINLP2 formulation
which is connected to the rest of the model, and this model is explained in
section 3.5.1

3.2.1 Symbols and notation

In the preceding chapters, the notation common in process engineering have
been used, whereas the notation we will use for optimization modeling is
adapted to optimization. Capital letters denote constants, “curly” capital
letters denote sets, while lowercase symbols are used for variables. In sub-
scripts, lowercase letters are used for indices, and capital letters or numbers
are part of the variable or constant name, or a specific instance of an in-
dex. Greek letters are used for constants even in lowercase. A bar above or
below the symbol for a variable is used to denote upper and lower bounds,
respectively.

The symbols used for the model are presented in the following table,
grouped by type and generally listed in the order they appear in the fol-

2Mixed-Integer Non-Linear Program (optimization model with both integer variables
and non-linearities)

13

lowing sections.

Indices
i, j - independent variable
d - dependent variable
k, l - component or substance
n - used for the coefficient before the nth power of temperature in (3.12)
e - equipment
s - stream
p - stream (used for the stream making the pinch candidate in that equa-

tion)
h - hot stream (stream requiring cooling)
c - cold stream (stream requiring heating)

in(e) - the inlet stream for equipment e (which has only one inlet stream, or
for which the inlet streams can be considered one stream)

out(e) - the outlet stream for equipment e (which has only one outlet stream)
Sets
I - all independent variables
I1,d - the independent variables (used in regression) for which there are linear

terms αd,i for dependent variable d
I2,d - the independent variables i for which there are bilinear or quadratic

terms βd,i,j for dependent variable d
Jd,i - the independent variables j for which there are bilinear or quadratic

terms βd,i,j for dependent variable d and independent variable i
D - all dependent variables
DF - dependent flow variables
DS - dependent state variables
ET0 - set of turbines and pumps modeled as mass flow multiplied by a con-

stant
ET1 - set of turbines (and compressors) modeled with a linear function of feed

pressure
ET2 - set of turbines and compressors modeled with equations from thermo-

dynamics
EC2 - set of compressors modeled with equations from thermodynamics
ER - set of reactors (with known extent of reaction)
ESP - set of splitters
EM - set of mixers
ESE - set of separators modeled with fixed splitting for each component
EP - set of equipment with power output
EW - set of equipment requiring work input
Ks - set of substances in stream s

14

KF,s - set of fuel components in stream s
S1 - set of all process streams
SIN,e - set of streams flowing into equipment e
SOUT,e - set of streams flowing out of equipment e

S - set of streams subject to heat integration
SP - set of streams that might possibly make pinch
H ⊂ S - set of hot streams (non-isothermal)
C ⊂ S - set of cold streams (non-isothermal), C ∩ H = ∅
HI ⊂ S - set of hot isothermal streams, HI ∩H = ∅
CI ⊂ S - set of cold isothermal streams, CI ∩ C = ∅ = HI ∩ CI
SN ⊂ S - set of non-isothermal streams (hot and cold), H ∪ C
SI ⊂ S - set of isothermal streams (hot and cold), HI ∪ CI

SS,TI - set of tuples (s, p) of heat integration streams s with inlet temperature
equal to that of stream p

SS,TO - set of tuples (s, p) of non-isothermal heat integration streams s with
outlet temperature equal to that of stream p

SS,F1 - set of tuples (s, p) of non-isothermal heat integration streams s with
heat capacity flow equal to that of stream p, modeled with a constants
CP,s,k

SS,F2 - set of tuples (s, p) of non-isothermal heat integration streams s with
heat capacity flow equal to that of stream p, where fC,p is a variable

SE,Q - set of tuples (s, e) of isothermal heat integration streams s with heat
flow equal to that of equipment e

SS,M - set of tuples (s, p) of non-isothermal heat integration streams s with
the mass flow as isothermal heat integration stream p

Constants
αd,0 - constant term from regression
αd,i - regression coefficient for linear term
βd,i,j - regression coefficient for bilinear (or quadratic) term xi xj
We - work or power output per unit mass flow through equipment e
AW,e - coefficient for pressure in equations for the work or power output of

equipment e
AT,e - coefficient for pressure in equations for the outlet temperature of equip-

ment e
BW,e - constant term in equations for the work or power output of equipment

e
BT,e - constant term in equations for the outlet temperature of equipment e
QLHV,k - Lower Heating Value for fuel component k
Qs,k - heat demand resulting from one unit of flow of substance k in stream s

15

Ge,k,l - amount of substance k in the reaction product resulting from one unit
of substance l in the inlet stream to reactor e

ηe - efficiency of equipment e
Hn,k - coefficient for the nth power of t in the enthalpy equation for substance

k
Ts - temperature of stream s
Ps - pressure of stream s
Rk - mass specific gas constant for substance k
Ns,k - fraction of component k in stream s
Ve,s,k - fraction of component k from the inlet of separator e going to outlet

stream s
U - minimum CO2 capture ratio multiplied by the molar mass of CO2 di-

vided by the molar mass of methane
Fs,k - mass flow of substance k in stream s
CP,s,k - average specific heat capacity for substance k representative for the

state of stream s

KH - unit cost for the hot utility (heating supplied above pinch)
KC - unit cost for the cold utility (cooling supplied below pinch)
Ks - cost per heat capacity flow of stream s
TADJ,s - equals HRAT (heat recovery approach temperature) if s ∈ C∪CI , 0 else
M1,s,p, M2,s,p - big M constants
Qs - specific heat for isothermal stream s
Variables
z - The objective (net plant efficiency based on LHV)
z2 - The alternative objective (net power output)
xi, xj , xd - variable used in the regression3

we - work or power output for equipment e
fs,k - mass flow of substance k in stream s
ps - pressure of stream s
ts - temperature of stream s
tI,e - ideal temperature out of equipment e
a - exponent for the pressure ratio in (2.8)
qe - heating demand of equipment e

qH - hot utility consumption (external heating above pinch)
qC - cold utility consumption (cooling below pinch)
tIN,s - inlet temperature for stream s
tOUT,s - outlet temperature for stream s

3The names xi are used here for convenience, but these variables will later be referred
to by different names which explain their physical interpretation.

16

tM,s,p - a "‘constructed"’ temperature between tIN,s and tOUT,s used in calcu-
lating the heat transfer above pinch candidate p

fC,s - heat capacity flow (ṁcp) for stream s
fQ,s - heat flow for isothermal stream s
fQP,s,p - heating exchanged above pinch if stream p would make the pinch for

isothermal stream s
ys,p - binary variable, related to whether tIN,s is above or below tIN,p

Named instances of indices/set members
Streams CC The carbon capture stream leaving the CCU
Equipment ATR The autothermal reformer

CCU The carbon capture unit
GT The gas turbine

Substances C4 Methane
H2O Water/steam
CO2 Carbon dioxide

3.2.2 The objective function

We will start the presentation of the model with the objective function.
Ideally, one would like an objective function in economic terms, e. g. maxi-
mizing the net present value of the whole plant, but there are many reasons
for not using such an objective. Cost data for process equipment are gener-
ally not publicly available, and there are many factors influencing the cost
of the plant, and some of these are not included in our model. In addition,
prices for the outputs of the process — power and possibly avoided CO2
emissions — are not known with certainty. Another reason is that proper
modeling of investment costs and net present value would introduce more
non-linearities and discrete variables.

While some economical considerations are taken in choosing bounds
and parameters for the model, the objective is rather to maximize the net
electric efficiency of the process:

17

minimize z (3.1)
QLHV,CH4 fin(ATR),CH4 z =

∑
e∈EP

we −
∑
e∈EW

we (3.2)

An alternative is to maximize the power output for the given size of
the air compressor. This is achieved by replacing z with z2 (equation 3.3),
which has the advantage of being linear.

z2 =
∑
e∈IP

we −
∑
e∈EW

we (3.3)

Before the equations are presented in the next sections, it should be
noted that all variables are non-negative, and are bounded by upper and
lower bounds. The complete optimization model with all constraints is
presented in appendix A.

3.3 Metamodeling
Palmer and Realff (2002a,b) propose the metamodeling approach to deal
with processes that are too difficult for optimization when modeled di-
rectly. The idea is to simulate the process under various conditions, and
apply regression on the simulation results to obtain equations correlating
the variables of the model. In Palmer and Realff (2002a) the importance
of a smart sampling scheme to get as much information as possible from
few simulations is highlighted, and polynomial and kriging regression mod-
els are investigated. In the second article (Palmer and Realff, 2002b) they
present heuristics to solve the optimization problems.

Minimum bias Latin hypercube sampling (MBLHS; or orthogonal sam-
pling) is recommended if the number of simulations is very low. This be-
comes impractical when one can afford more simulations, as it gets more
difficult to find a minimum bias Latin hypercube. A regular Latin hyper-
cube sampling (LHS) scheme is easier to implement, and still a good choice
as it ensures a wide distribution of the values for each input variable in

18

the simulation, such that LHS is a good method for varying input variables
(McKay et al., 1979).

LHS is done by dividing the range for each input variable into one
equally large — or equally probable — interval per simulation to be per-
formed. Then, for each simulation, the value of each input variable is taken
from a randomly selected interval under the condition that the interval is
not used in any other simulation.

Choosing an appropriate regression model is critical to ensure a good
description of reality without forgetting the classical trade-off between re-
ality representation and solution speed (Nygreen et al., 1998, p. 252). The
regression functions need to have many of the same characteristics as the ac-
tual correlation, but should also be relatively easy in terms of optimization.
Kriging regression models may be well suited in describing the relationships
between the variables in the IRCC process, but they are more complex and
not ideal for global optimization. Polynomial models are more straight-
forward to use, and, as pointed out in detail in the project thesis (Johnsen,
2010), second order polynomials (3.4) fit the simulation results quite well.

xd = αd,0 +
∑
i∈I1,d

αd,i xi +
∑
i∈I2,d

∑
j∈Jd,i

βd,i,j xi xj ∀d ∈ D (3.4)

The ATR and especially the WGS reactors were considered too difficult
for direct, physical modeling, and were thereby modeled with the meta-
modeling approach. The part of the process for which metamodeling was
performed is shown in figure 3.1, where variables are indicated with blue
letters, and the input variables are furthermore written in bold font.

In our model, the feed flow rate of methane should be a variable, but
in the simulations this flow rate was set to a fixed value, as the correlation
between variables from the regression and the methane feed flow rate is
straight-forward. Energy and mass flow variables are proportional to the
methane feed flow rate, while state variables like temperatures and pres-
sures are independent of this. Thus, the resulting equations for our model
are as follows:

19

ATR WR CCU

CH4 flow

CH4 feed temperature

air feedsteam feed
temperature temperature

HTS inlet LTS inlet

1000C

30C 30C

30C

200C

CO2 flow

LTSHTS

Waste
water

CO2

Waste

CH4

S2C

HTS outlet LTS outlet

ATR pressure

CO flow

H2O flow
H2 flow

N2 flow

ATR product HTS product LTS product

syngas compression

GT fuel

Steam Air

H2-rich
fuel

GT fuel preheat

temperature temperature

temperature temperature

heat capacity
flow

heat capacity
flow

heat capacity
flow heat capacity

flow

work

temperature

Figure 3.1: Flow-sheet for the metamodeling part of the process

xd −

αd,0 +
∑
i∈I1,d

αd,i xi +
∑
i∈I2,d

∑
j∈Jd,i

βd,i,j xi xj

 fin(ATR),CH4

= 0 ∀d ∈ DF

(3.5)

xd −
∑
i∈I1,d

αd,i xi −
∑
i∈I2,d

∑
j∈Jd,i

βd,i,j xi xj = αd,0 ∀d ∈ DS (3.6)

The steam turbines are also modeled with the help of simulations be-
cause of the difficulties in calculating steam properties. As the conditions
of the low pressure steam turbine are set in advance, only one simulation
with a unit mass flow to find the specific power output was needed, and
the power output is simply calculated by multiplying this value with the
actual mass flow:

we −We fin(e),H2O = 0 ∀e ∈ ET0 (3.7)

For the high and intermediate pressure turbines, the intermediate pres-
sure is a variable, such that the simple approach used for the LP steam
turbine does not work. Instead, simulations are done for pressures from
18 to 30 bar to find the power output per unit mass flow and outlet tem-
peratures of the turbines. Because the correlations between pressure and,
respectively, power and temperature were not too far from linear, linear
regression was chosen. These results are presented graphically in figures
3.2 and 3.3. This give us the following equations:

20

18 20 22 24 26 28 30
380

400

420

440

460

480

500

520

540

560

580

p [bar]

w
 [k

J/
kg

]

HP (simulated)
IP (simulated)
HP (approximated)
IP (approximated)

Figure 3.2: Simulated and approximated mass specific power for HP and
IP steam turbines

18 20 22 24 26 28 30
270

280

290

300

310

320

330

340

350

p [bar]

T
 [o C

]

HP (simulated)
IP (simulated)
HP (approximated)
IP (approximated)

Figure 3.3: Simulated and approximated outlet temperatures for HP and
IP steam turbines

21

we − (BW,e +AW,e pin(ATR))fin(e),H2O = 0 ∀e ∈ ET1 (3.8)
te − (BT,e +AT,e pin(ATR)) = 0 ∀e ∈ ET1 (3.9)

3.4 Physical modeling

Parts of the process can be described quite accurately with analytical equa-
tions from thermodynamics and simple balance equations, and it appears
appropriate to exploit these direct, physical relationships rather than mak-
ing more arbitrary approximations for such parts of the process.

The combustor, the gas turbine and the air compressors are modeled
in this way, and we start by looking at the combustor, which is a reactor
for which the extent of reaction is known, as we have complete combustion.
The syngas entering the combustor consists of H2 and N2, and some CO2,
CO, CH4 and H2O. The fuel components H2, CO and CH4 are combusted
completely, and air is supplied in excess such that the temperature out of
the combustor is 1350 ◦C. The amount of air is determined by the energy
balance of equation (3.10), which ensures that the heat released in reactions
(2.4)-(2.6) equals the heat needed to heat the reaction products and the
other components including the air to 1350 ◦C. The lower heating value
(LHV; QLHV,k) is used for the energy released in the combustion, while the
enthalpy equations (3.12) are used in calculating the heat demands Qs,k.
The composition of the exhaust is determined by equation (3.11) according
to the stoichiometry of the combustion reactions.∑

s∈SIN,e

∑
k∈KF,s

QLHV,k fs,k =
∑

s∈SIN,e

∑
k∈Ks

Qs,kfs,k ∀e ∈ ER (3.10)

fout(e),k =
∑

s∈SIN,e

∑
l∈Ks

Ge,k,l fs,l ∀k ∈ Kout(e), e ∈ ER (3.11)

Turbines and compressors are essentially working in the same way, and
are modeled with the same equations. However, the conditions of and even
the flow rate through the main air compressor are set in advance, so these
calculations are done before the optimization starts, while the conditions

22

of the other air compressors and the gas turbine are variables in our model.
The steam turbines are modeled as described in section 3.3.

Equations (2.7)–(2.10) are the basis for the modeling of turbines and
compressors, but the modeling is more complex than it seems. The heat
capacities cp depend on the temperature, and the specific heat ratio κ
likewise, as it is a function of heat capacities.

For calculating the average heat capacity over the temperatures in the
turbine or compressors, we use the relationship between enthalpy and heat
capacity, ∆h = cp ∆T . Fifth-degree polynomial equations,

hk(t) =
5∑

n=0
Hk,n t

n, (3.12)

where hk(t) is the specific enthalpy of substance k at temperature t, are
used to calculate the enthalpy at a certain temperature for each component
of the stream. By using the ideal4 outlet temperature as defined in (3.14),
we get equation (3.13) for the power output of the turbine. Equation (3.15)
give us the actual outlet temperature.

we −
∑

k∈Kin(e)

ηe fin(e),k

5∑
n=1

Hk,n(Tin(e)
n − tI,en) = 0 ∀e ∈ ET2 (3.13)

tI,e − Tin(e)

(
pout(e)
Pin(e)

)ae
= 0 ∀e ∈ ET2 (3.14)

tout(e) − |ηe| tI,e = (1− |ηe|) Tin(e) ∀e ∈ ET2 (3.15)

ae we − ηe (Tin(e) − tI,e)
∑
k∈Ke

Rk fk,in(e) = 0 ∀e ∈ ET2 (3.16)

The exponent ae in (3.14), corresponding to the expression κ−1
κ in equa-

tions (2.7) and (2.9), is set according to equation (3.16), which is derived
in appendix C.

4Ideal as in no irreversibilities or energy loss, i. e. if η = 1.

23

The reasoning behind equations (3.13)–(3.16) is based on the case of
a turbine, but the same equations are also used for compressors. This is
accomplished by setting the efficiency terms ηe, where e is a compressor,
equal the inverse of the compressor efficiency, multiplied by minus one to
reverse the temperature difference in equation (3.13):

ηe = − 1
η0,e

∀e ∈ EC2,

where η0,e is the actual efficiency for compressor e. The minus sign should
not be used in equation (3.15), and this is ensured by using the absolute
value |ηe|.

This modeling of the gas turbine and air compressors is highly non-
linear, and special care is taken to reduce the computational challenges re-
lated to these equations with appropriate scaling and bounds, as discussed
in section 4.1.2. The inlet temperatures and pressures for the gas turbine
and air compressors in our process are predetermined, and as shown with
capital letters in the equations, they are fixed parameters in our model.
For the gas turbine, even the outlet pressure is set in advance, such that
equation (3.13) could be written with Pout(GT) instead of pout(GT), and this
is taken care of in the implementation. If instead both inlet and outlet
conditions were unknown, the same equations could be used with similar
adjustments, but that would mean even heavier non-linearities in the opti-
mization model.

Splitting and mixing of compressed air is also modeled physically. Split-
ting is straight-forward if the stream is considered as made up of one sub-
stance, as we only need equation (3.17) to ensure mass balance while the
splitting ratios are taken care of by other equations and optimization. If
the stream consists of several components, which are modeled as such, an
equation like (3.18)5 is also needed, to ensure that the composition is the
same for the outlet streams as for the inlet stream. This equation assumes
that the composition of the inlet stream is known, and if that is not true,

5It should be noted that this equation is needed for only one k ∈ Ks and all l ∈ Ks \k,
and that the sets Ks, s ∈ SOUT,e must be equal to Kin(e).

24

non-linear equations are needed. However, the splits we consider in the
IRCC are modeled without distinguishing different substances, such that
only equation (3.17) is needed.

fin(e),k =
∑

s∈SOUT,e

fs,k ∀e ∈ ES , k ∈ Kin(e) (3.17)

Nin(e),lfs,k = Nin(e),kfs,l ∀e ∈ ES2, s ∈ SOUT,e, k, l ∈ Ks (3.18)

Mixing does in addition to the mass balance equation (3.19) involve
the calculation of the mixing temperature, which is the mass average tem-
perature as in equation (3.20). The mixing pressure is the lowest of the
pressures of the streams to be mixed, and this could be modeled using bi-
nary variables, but in our case this need not be modeled explicitly as the
pressures of the streams to be mixed are known to be equal.

fout(e),k =
∑

s∈SIN,e

fs,k ∀e ∈ EM , k ∈ Kout(e) (3.19)

tout(e)
∑

k∈Kout(e)

fout(e),k =
∑

s∈SIN,e

∑
k∈Ks

ts fs,k ∀e ∈ EM (3.20)

The amine absorption process for carbon capture is modeled simply as
a separator with fixed ratios of each component in the inlet stream going
to each of the three outlet streams, the H2-rich fuel, the CO2-rich carbon
capture stream (CC) and a waste stream to model the material lost to the
amine. In addition, the amine reboiler is modeled as a heater requiring 1.5
MJ of heat at 120 ◦ C per kg of CO2 captured with equation (3.22). Work
for compressing CO2 to 110 bar is set at 342 MJ (95 kWh) per kg of CO2
and modeled with equation (3.23).

fs,k = Ve,s,k fin(e),k ∀e ∈ ESE , s ∈ SOUT,e, k ∈ Kin(e) (3.21)
qCCU = QCC,CO2 fCC,CO2 (3.22)
wCCU = WCCU fCC,CO2 (3.23)

fCC,CO2 ≥ U fin(ATR),CHg (3.24)

25

It should be noted that the CCU is partly included in the metamodeling
part, but as the relations between variables are this simple, regression is
only done for the fin(CCU),k variables, and the other variables are calculated
with equations (3.21)-(3.23). The last equation for the CCU ensures that
the capture ratio is above a given limit, which is set to 90 % in this model.

In addition to what is mentioned so far, some simple modeling is done
for unit operations which have a smaller impact on the total energy con-
sumption of the process. Pumps to compress the steam to the given steam
levels are modeled as the LP steam turbine, but the minor temperature in-
crease is neglected. Work related to condenser cooling in the steam cycles
is set to 0.5 % of the total power output from the steam turbines, which is
a commonly applied rule of thumb. Use of cold utilities, that is cooling not
covered by heat integration, is included in the model as the work needed to
pump cooling water from atmospheric pressure to 2 bar, and the amount of
cooling water is determined by assuming that it is heated from 10 to 25 ◦C,
which is realistic in Norway. Use of hot utilities is modeled conservatively
by assuming a one-to-one relationship between power and heat, and this
is good enough because a demand for external heating in the process is
unlikely.

3.5 Heat integration modeling

In the IRCC process, there are several streams to be cooled and heated,
and if hot and cold streams6 are matched appropriately, the energy require-
ments of the process can be reduced significantly. This is the basis for heat
integration.

To model heat integration for the IRCC, we use the concept of the heat
recovery pinch (Linnhoff and Hindmarsh, 1983). Complete modeling of
heat integration would involve both heat recovery targeting and heat ex-
changer network design. However, as we aim for simultaneous optimization
of the process, including heat integration, the temperatures and flow rates

6With respect to heat integration, a cold stream is a stream requiring heating, whereas
hot refers to a demand for cooling, regardless of the temperature of the streams.

26

of the streams to be integrated are not known before optimizing the heat
integration, and a full model with heat exchanger network design would
become too hard to solve. Thus, our heat integration model is limited to
heat recovery targeting, following the principles described in section 5.2 of
Gundersen (2000).

Optimization of a process with respect to the heat recovery target is
a complex task in itself when temperatures and flow rates are not fixed.
The calculation of heat flows involves non-linear terms, as temperature
differences are multiplied by specific heat times mass flow rate. The implicit
matching of hot and cold streams based on feasible temperature differences,
that is the modeling of the pinch, is based on discrete decisions, which can
be modeled with binary variables.

Duran and Grossmann (1986) developed a model for simultaneous opti-
mization and heat integration of chemical processes, much like what is the
purpose of this work, but with approximating functions instead of binary
variables to model kinks (functions with discontinuous derivatives). These
approximating functions might be problematic, as the optimization tend to
choose solutions where the approximation is least accurate. As the heat
integration model is an important part of this work, and as algorithms and
hardware have improved since 1986, we want to model the kinks exactly
with binary variables. Grossmann et al. (1998) extend the model for isother-
mal streams, and present a formulation with binary variables, although rec-
ommending the use of approximating functions for non-isothermal streams
to ease the optimization. This MINLP formulation contain three binary
variables (or one special ordered set of type 1 with 3 elements) for each
possible combination of pinch candidate and stream. In principle, the inlet
temperature of any of the streams may cause pinch, thus the model will in
worst case have 3NS

2 binary variables, where NS is the number of streams.
In this work, a model with fewer binary variables is presented. Instead

of three binary variables per combination of pinch candidate and stream,
our model have only one binary variable (or one SOS1 with two members)
per such combination. Even though the number of binary variables might
be an indication of how hard it is to solve a problem, there are other factors
which influence the solvability, and when comparing our model with that

27

of Grossmann et al. (1998) on several test problems, some problems were
solved faster with our model, and some were easier for the other model.
However, both models found the same optimal solutions. We cannot con-
clude that our model is better or worse than that of Grossmann et al.
(1998), but it is chosen for this work because the author is more familiar
with his own formulation, and for the purpose of presenting and testing it.
The novel heat integration model is presented in the following section.

3.5.1 The heat integration model

The main principles of the heat integration targeting model developed in
this work, are that cold streams above pinch are undesirable and that the
pinch can be implicitly defined by a set of constraints (3.25) which ensure
that there is at least enough heating (including utilities) to cover the cooling
demand above any temperature. The temperature corresponding to the
strictest of these constraints is the pinch temperature. This is equivalent
to choosing the amount of external heating such that no residuals in the
heat cascade are negative, as is the standard procedure for heat recovery
targeting based on pinch analysis when the temperatures and flows are
known. This is also the principles used by Grossmann et al. (1998).

qH ≥
∑
c∈C

(tOUT,c − tM,c,p)fC,c −
∑
h∈H

(tIN,h − tM,h,p)fC,h∀p ∈ SP (3.25)

When the utility heating demand qH is defined, the demand for utility
cooling qC is given from the energy balance of (3.26). The objective of the
heat integration model, if it is to be run separately, is to minimize the cost
of utility consumption and possibly costs for streams, as in (3.27).

qC − qH =
∑
s∈S

(tIN,s − tOUT,s)fC,s (3.26)

min KH qH +KC qC +
∑
s∈S

Ks fC,s (3.27)

The novelty of our model is that instead of explicitly distinguishing be-
tween the three different cases of a stream being above, across or below a

28

temperature, we do only need to know whether the inlet temperature for
hot streams, or the outlet temperature for cold streams, is above or be-
low each possible pinch temperature, and then a constructed intermediate
temperature (tM,s,p) and the fact that we try to minimize utility consump-
tion take care of the rest. The temperature differences tIN,h − tM,h,p and
tOUT,c− tM,c,p of constraints (3.25) accounts for the part of the stream that
is above pinch candidate p, and this is ensured by constraints (3.28)–(3.33).

tM,h,p ≥ tOUT,h ∀h ∈ H, p ∈ SP (3.28)
tM,h,p ≥ tIN,p + TADJ,p − TADJ,h −M1,h,pyh,p ∀h ∈ H, p ∈ SP (3.29)
tM,h,p ≥ tIN,h −M2,h,p(1− yh,p) ∀h ∈ H, p ∈ SP (3.30)
tM,c,p ≤ tOUT,c ∀c ∈ C, p ∈ SP (3.31)
tM,c,p ≤ tIN,p + TADJ,p − TADJ,c −M1,c,p(1− yc,p)∀c ∈ C, p ∈ SP (3.32)
tM,c,p ≤ tIN,c −M2,c,pyc,p ∀c ∈ C, p ∈ SP (3.33)

To explain how these equations work, we start by looking at hot streams,
assuming for simplicity that TADJ,s = 0 ∀s. The temperature difference
in equation (3.25), tIN,h − tM,h,p, should be tIN,h − tOUT,h if hot stream h
is above pinch candidate p, tIN,h − tIN,p if it crosses pinch (and stream p
makes the pinch), and 0 if the stream is below pinch candidate p, to make
sure that only heat exchanged above pinch candidate p is included.

Heating above pinch is valuable, so in the difference tIN,h − tM,h,p, we
want tM,h,p to be as low as possible, and this is ensured as QH is to be
minimized (3.27) and lower tM,h,p in (3.25) yields lower QH7. Equations
(3.28)-(3.33) make sure that tM,h,p is at least as high as tOUT,h and either
tIN,h or tIN,p.

If the hot stream h is above pinch candidate p, then tOUT,h is the highest,
and thus we get tM,h,p = tOUT,h. If the stream is below or across pinch
candidate p, both tIN,h and tIN,p will be higher than tOUT,h, and tM,h,p will
equal the lowest of tIN,h and tIN,p.

7This is only true (and relevant) for the p that actually makes the pinch, and this
applies even to the next arguments.

29

For hot streams across pinch candidate p, tIN,p will be the lowest, and
we get the correct contribution above pinch candidate p, tIN,h − tIN,p, in
equation (3.25). For streams below pinch, tIN,h is lower than tIN,p, thus the
binary variable yh,p is chosen such that tM,h,p = tIN,h, and the temperature
difference in equation (3.25) becomes tIN,h − tIN,h, which is 0 as it should
be.

Equations (3.31)-(3.33) for the cold streams follow the same principles,
but with opposite inequalities as cooling above pinch is unfavorable, and
with tOUT,c as the higher temperature in the temperature difference in
equation (3.25).

This first formulation do not allow for isothermal streams, but this can
be done by changing equations (3.25) and (3.26) to (3.34) and (3.35) and
adding (3.36)-(3.40):

qH ≥
∑
c∈C

CP,c(tOUT,c − tM,c,p)fC,c +
∑
c∈CI

fQP,c,p −∑
h∈H

CP,h(tIN,h − tM,h,p)fC,h −
∑
h∈HI

fQP,h,p
∀p ∈ SP (3.34)

qC − qH =
∑
s∈SN

(tIN,s − tOUT,s)fC,s +
∑
h∈HI

fQ,h −
∑
c∈CI

fQ,c (3.35)

tIN,h ≥ tIN,p + TADJ,p − TADJ,h −M1,h,pyh,p ∀h ∈ HI , p ∈ SP (3.36)
tIN,c ≤ tIN,p + TADJ,p − TADJ,c +M1,c,p(1− yc,p)∀c ∈ CI , p ∈ SP (3.37)
fQP,h,p ≤M2,h,p(1− yh,p) ∀h ∈ HI , p ∈ SP (3.38)
fQP,h,p ≤ fQ,h ∀h ∈ HI , p ∈ SP (3.39)
fQP,c,p ≥ fQ,c −M2,c,pyc,p ∀c ∈ CI , p ∈ SP (3.40)

What is left then, is only defining the domains for the variables. In addi-
tion to (3.42), there should be upper and lower bounds for tIN,s, tOUT,s and
fC,s, and the difference between tIN,s and tOUT,s will often be constrained.

ys,p ∈ {0, 1} ∀s ∈ S, p ∈ SP (3.41)
qH , qC , tIN,s, tOUT,s, tM,s,p, fC,s, fQ,s, fQP,s,p ≥ 0 (3.42)

30

This whole formulation is assuming that the pinch point can only be
located at the inlet of a stream. This is true if the heat capacity is constant
(not varying with temperature), but heat capacity does in reality vary with
temperature, and if the HRAT is low, this may not only result in wrong
determination of the pinch point, it may even mean that the heat exchange
in the optimized solution is infeasible. The assumption of constant heat
capacities is however widely used, partly because heat capacity is almost
constant over a the temperature interval of most streams, and with the
HRAT chosen at 20 ◦C it is fairly safe anyway.

Some improvements of the heat integration model are presented in sec-
tion 4.1.3.

The heat integration do of course depend on the temperatures and flow
rates of the overall model, and such connections are either ensured by us-
ing the same variable in both parts of the model, or by simple equality
constraints such as

tIN,s = tp ∀(s, p) ∈ SS,TI (3.43)
tOUT,s = tp ∀(s, p) ∈ SS,TO (3.44)
fC,s =

∑
k∈Kp

CP,p,k fp,k ∀(s, p) ∈ SS,F1 (3.45)

fC,s = fC,p ∀(s, p) ∈ SS,F2 (3.46)
fQ,s = qe ∀(s, e) ∈ SE,Q, (3.47)

where p refers to a stream, not necessarily a pinch candidate anymore.
Equation 3.45 is an approximation because a constant is used for heat
capacity, without knowing the state of stream p. In addition there are some
of the heat integration streams that depend on each other, for example is
the heating of steam divided into three steps, which of course should have
the same underlying mass flow rates and equal temperature at the outlet
of the first stream and the inlet of the next. These streams are modeled
with constant temperatures, such that there is only a need for connecting
the flows:

Qp,H2O fC,s = CP,s,H2OfQ,p∀(s, p) ∈ SS,Q (3.48)

31

In our model, such connections are only made between a isothermal and
a non-isothermal stream, but it would of course be possible to model the
connection of two non-isothermal streams with a similar equation.

32

Chapter 4

Implementing the IRCC
optimization model

In the preceding chapters, the model is established formally. Additional
considerations are made in the actual implementation of the model, both to
enhance computational performance and to deal with practical issues such
as enabling communication between different software. These measures are
explained in this chapter, starting with issues related to optimization and
the solver in use, followed by a description of the simulation and then an
overview of the architecture of the implementation.

4.1 Global optimization

While linear optimization is extensively applied, and software for effec-
tively solving large-scale linear optimization problems — mainly based on
the simplex algorithm, but also interior-point methods — is easily avail-
able, solving non-linear optimization problems is not that straight-forward.
Convex problems can usually be solved quite easily, but many real-world
problems are non-convex. The solution of a non-convex problem do often
depend on good bounds on the variables and initial values close to the
optimum, as most software can only find local solutions.

33

Optimization with integer variables — Mixed Integer Programming
(MIP) — is also more challenging than continuous linear optimization, but
the development of algorithms for solving MIP problems — dominated by
the successful branch-and-bound algorithm — have reached farther than for
non-linear problems, and MIP is applied extensively. Optimization with
both non-linearities and discrete variables — Mixed Integer Non-Linear
Programming (MINLP) — is, as one should expect, generally very chal-
lenging.

Some efforts have been made to develop global optimization software
that can solve a wide range of non-convex optimization problems, and even
MINLPs, and the performance of such solvers is improving as better algo-
rithms are developed and computational power is ever increasing. In this
work such a solver is used, and thus the solving is not dealt with directly,
but some measures are applied to help the software.

4.1.1 BARON1

As this work depend heavily on the global optimization software used, it is
natural to describe the capabilities of the solver before discussing the efforts
made to ease the optimization. BARON, an acronym for the Branch-And-
Reduce Optimization Navigator, is a global solver that also use external
solver software for solving LP and NLP subproblems.

BARON is capable of solving MINLPs with factorable functions derived
recursively from sums and products of a set of basic functions, including ax,
ln(x), xa and xy, where the a’s are real numbers and x and y are variables.
This is referred to as factorable non-linear programming, and is general
enough to cover a wide range of optimization problems, including that of
this work.

As the name suggests, BARON is based on branching and reduction.
Branch and bound is applied with branching on both continuous and in-
teger variables. Branching means that the problem is divided into smaller
sub-problems, which together span the original problem, but individually

1This section is based on Sahinidis and Tawarmalani (2010) and the more thorough,
but older Sahinidis (2000).

34

are somewhat easier to solve, and bounding refers to finding upper and
lower bounds to the sub- and master problems, which are used to decide
whether a sub-problem is worth investigating. The subproblems are re-
laxed2 with convex underestimators (assuming minimization). The relaxed
problem is solved to find lower bounds, and local minimization is applied
to find upper bounds. Branching is done for the variable that, according to
certain criteria, contribute most to the gap between the relaxation and the
actual model, and several approaches are used to determine the value for
branching. These are the midpoint of the feasible interval for that variable,
the incumbent solution or the solution to the lower bounding problem.

The relaxations in the lower bounding problems are based on underesti-
mators for concave terms. Bilinear terms and strictly concave power terms
are underestimated with linear functions that make a straight line between
the upper and lower bound for the term, and Sahinidis (2000) point out
that, as the relaxed problems are typically constructed such that they are
exact at the upper and lower variable bounds, tight variable bounds are
important to get tight relaxations.

Reduction refers to measures that reduce the size of the problem. One
such measure is optimality-based range reduction, which is a procedure for
adding valid inequalities based on the optimal solution of relaxations to de-
crease the feasible area without cutting off the optimal solution. Feasibility-
based range reduction is another such measure, in which variable bounds
are tightened by using insights from the constraints in what is called the
“Poor man’s linear programming” heuristic, to cut off infeasible portions
of the solution space.

Most non-linear optimization solvers require user-supplied starting points,
but BARON do not need this. BARON do even perform a multi-start local
search before starting the main branch and bound algorithm, without any
initial values provided by the user.

2a relaxed problem — or a relaxation — is a modification of the original problem
with less stringent constraints and/or an objective function consistently giving better
objective values. All feasible points in the original problem are feasible in the relaxation,
and the optimal solution of the relaxation is at least as good as the optimal solution to
the original problem, although it is not necessarily feasible in the original problem.

35

4.1.2 Scaling, variable bounds and reformulation

State-of-the-art solver software will usually do several forms of pre-processing
like scaling and reformulation of the problem, but there are good reasons
to do this manually before the problem is sent to the solver. Firstly, it is
not always obvious what the software does of pre-processing, and — more
importantly — the software do not have qualitative insights to the problem.

Scaling is applied to avoid a difference in many orders of magnitude be-
tween variables in the model to avoid numerical problems. Manual scaling
is recommended by McCarl et al. (2011, chapter 12.2), and scaling is espe-
cially important in non-linear optimization. An example from our model
is the variable corresponding to the outlet temperature of the gas turbine,
which have a upper bound of almost 1000 K. This may not seem dramati-
cally high, but this variable appears to the fifth power in (3.15), resulting
in an upper bound for this intermediate expression of 1015, while the coef-
ficient has a value of about 10−13, if no scaling is applied. By scaling the
temperature variables such that this upper bound is instead around 1.2,
and the related coefficients accordingly, we get 1.25 ≈ 2.5, with the values
of corresponding coefficients not far from this. In the implementation of
our model, applying appropriate scaling of critical variables and coefficients
manually have been necessary to make BARON solve the problem.

Providing appropriate variable bounds is not only important in avoiding
physically impossible or undesirable solutions, it is also critical in to the
process of solving, as mentioned in section 4.1.1 and because the size of
the solution space is reduced. A considerable effort is made to find good
bounds on critical variables, and both upper and lower bounds are provided
for all variables. For non-linear models in general, it is also important to
set variable bounds such that division with zero and discontinuities are
avoided. However, in our formulation we have used a form of reformulation
to avoid having division expressions with variables in the denominator at
all. This simple trick is illustrated below:

x

y
= z,

reformulation

→ x = y z

36

4.1.3 Improving the heat integration modeling

The heat integration model is in itself relatively heavy, as it contains both
binary variables and non-convex constraints, and measures were taken to
make it easier to deal with.

The binary variables used in modeling the pinch are complicating the
model, and there can be quite many of them. In our model, 14 streams
are included in the heat integration part, which would give 142 = 196
binary variables if all streams are considered candidates for making pinch.
However, the steam superheaters cannot logically cause pinch because their
inlet is at the outlet of boiler, resulting in a kink in the cold composite curve
away from the hot curve. There are two superheaters, thus we are left with
14 · 12 = 168 binary variables.

The model can be improved additionally by utilizing that he binary
variables ys,i are related to which of the streams s and i have the highest
inlet temperature (adjusted for HRAT). If the lower bound of tIN,s+TADJ,s
is higher than the upper bound of tIN,i + TADJ,i, there is no need for the
binary variable ys,i. This logic is used to remove variables from the model,
and makes it easier for the solver. This is another reason to provide good
variable bounds, and for our process, the number of binary variables was
reduced to from 168 to 44.

As in any big M formulation, finding the lowest possible — but still
big enough — value for the big M constant has a positive effect on the
model’s solvability. The equations involving big M constants are (3.29),
(3.30), (3.32), (3.33), (3.36)–(3.38) and (3.40). Taking (3.29) and (3.30) as
an example,

tM,h,i ≥ tIN,i + TADJ,i − TADJ,h −M1,h,iyh,i

tM,h,i ≥ tIN,h −M2,h,i(1− yh,i),

M1,h,i must be as big as the highest possible value of tIN,i+TADJ,i−TADJ,h−
tM,h,i for which tM,h,i is greater than tIN,h. With t and t denoting upper
and lower bounds, respectively, for the variable t, we get the following tight
value for M1,h,i:

M1,h,i = tIN,i + TADJ,i − TADJ,h − tIN,h,i (4.1)

37

Similar reasoning is used in setting the other big M values.

4.1.4 Relaxation based on process insights

BARON could not find the optimal solution to our model, at least not
prove optimality without spending more time than tolerable. To improve
the solving, a relaxation scheme was developed. As the model was solvable
before the heat integration modeling was included, it was natural to try
making a relaxation of this part, and the discrete variables were suspected
to cause difficulties for BARON.

The ys,i variables are related to pinch candidate streams by their second
index, and their purpose is to determine the tM,s,i variables used in con-
straints (3.25). For a given optimal solution, only one of these equations
will be binding, namely the one corresponding to the actual pinch point.
As the temperatures and heat flows of the integrated streams are governed
by other equations in the model too, one could expect that several of the
constraints (3.25) are redundant. Said with other words, there are probably
only a few of the pinch candidate streams that are close to make pinch.

If only a subset of the pinch candidates are accounted for in the model,
this corresponds to removing some of the constraints (3.25), and all other
equations defined over the set of pinch candidates. As constraints are re-
moved, we get a relaxation of the original problem, and the optimum of
the problem accounting for fewer of the pinch candidates will be at least as
good as the optimum of the original problem. If the optimum of the relax-
ation is feasible in the original model, i. e. it satisfies the pinch constraints
that are removed, it is even the actual optimum. As many of the pinch
candidates may be very unlikely, the chance for these removed constraints
being fulfilled is possibly quite high if the appropriate pinch candidates are
chosen to remain.

Even if the solution of the relaxation is not feasible in the original
problem, it is very easy to make it so — it is just to add more external
cooling and heating. A feasible solution constructed in this way need not be
optimal, but it will at least provide a lower bound (as we are maximizing).

A process engineer with knowledge of the process should be able to

38

detect which streams are likely to make pinch, and the three boilers (LP
steam, HP steam and CCU reboiler) were natural suspects. However, it
is possible to make the model suggest likely pinch candidates too, and the
following iterative approach is suggested:

1. Run the original model for some time, and add the stream p causing
pinch in the current solution to the currently empty subset of pinch
candidates, SP∗ := {p}.

2. Run the model with SP∗ instead of SP as pinch candidates to opti-
mality, and post-process the solution to find which stream p would
cause the pinch with this solution.

3. If the stream causing pinch in this solution is in the subset of pinch
candidates: Stop. The solution is optimal.

4. Else, add the new stream causing pinch (p) to the subset of pinch
candidates SP∗ := SP∗ ∪ {p}, and go to step 2.

This approach depend on the optimal solution of the relaxed problem, and
if the optimum of the original problem is not found during the first few
iterations, the relaxed problem will become hard to solve, as more pinch
candidates — and thereby more constraints with corresponding discrete
variables — are added. It is by no means guaranteed to work well under
all circumstances, but for the purpose of this work, it has worked well.

Lagrange relaxation has also been considered. The relaxation used here
may be interpreted as Lagrange relaxation with all multipliers equal to zero,
and as it was successful, other multiplier values have not been investigated.

4.2 Simulation and regression
Process simulation is utilized to provide data for regression in the meta-
modeling. Software like Aspen Plus, PRO/II and Aspen HYSYS are known
to give very accurate results for a wide range of chemical and thermody-
namic processes, and in this work Aspen HYSYS (Asp, 2006) is used for
process simulation.

39

5000 simulations were performed with LHS, for values of each input
variable within the ranges presented in table 4.1. To avoid bad approxima-
tions in the outer parts of the feasible solution space, these ranges are a bit
wider than the ranges used in the optimization, but for the ATR pressure,
a value higher than 30 bar would result in negative compression further
downstream, and to avoid this, while still trying to ensure a good fit near
this value, many simulations are run for an ATR pressure of 30 bar.

Table 4.1: Ranges for input variables
Variable Feasible range Range tested
ATR pressure 18–30 bar 15.6–30 bar
Steam to carbon ratio 1–2 0.8–2.2
Temperature of methane to the ATR 200–500 ◦C 140–560 ◦C
HTS temperature 300–450 ◦C 270–480 ◦C
LTS temperature 180–250 ◦C 166–264 ◦C
Temperature of air to the ATR 410–530 ◦C 386–554 ◦C
Temperature of steam to the ATR 280–345 ◦C 267–358 ◦C

The upper five variables in table 4.1 are considered free in the optimiza-
tion, with ranges based on what might be considered practically possible,
while the other two variables do actually depend on variables in the model
which are not part of the simulated process, and the ranges for these are
based on assumptions for the air compressors and steam turbines.

The regression for each output variable is done only for input variables
which theoretically can influence the output variable, and where coefficients
with values close to zero have turned up, the regression is performed again,
requiring this coefficient to be zero to get rid of such insignificant coeffi-
cients. All variables are scaled to the interval

〈
−1

2 ,
1
2

〉
before regression

to make the coefficients comparable and avoid numerical trouble. These
measures are discussed and explained in Johnsen (2010).

The resulting second order polynomial regression coefficients are indi-
cated in table 4.2, where + means that the coefficient is positive, – means
that it is negative, and an empty cell means that the coefficient is zero. Ac-
tual regression coefficients are found in appendix B. The output variables
are listed in table 4.2, with numbering that is used in the other tables. In

40

Table 4.2: Output variables
d Variable d Variable
1 Mass flow of CO2 after LTS 10 Syngas compressor outlet temperature
2 Mass flow of CO after LTS 11 Mass flow of H2O after WR
3 Mass flow of H2 after LTS 12 Mass flow of CO after WR
4 HTS product temperature 13 Mass flow of CO2 after WR
5 LTS product temperature 14 Mass flow of H2 after WR
6 GT fuel preheating 15 Mass flow of CH4 after WR
7 HTS product cooling 16 Mass flow of N2 after WR
8 LTS product cooling 17 GT fuel compression work
9 ATR product cooling

addition to the simulation described in section 3.3, simulations of a larger
part of the process, with values from optimized solutions, are used to verify
the accuracy of our optimization model.

4.3 Overview of the implementation

The complete model consists of a process model in HYSYS, and an op-
timization model written in GAMS (General Algebraic Modeling System;
Brooke et al., 2003), which is a high-level modeling language which can
call several solvers, including BARON. For efficiently handling input and
output data for both HYSYS and GAMS/BARON, in addition to some cal-
culations such as the regression and data processing, MATLAB was chosen
as an appropriate tool, with its powerful language, built-in functions and
data plotting capabilities. Communication between MATLAB and GAMS
is done with the GDXMRW package (Ferris et al., 2010), and the HYSYS
simulations are controlled with Hysyslib (Berglihn, 2011) functions.

An overview of the interaction between software is sketched in figure
4.1, which also shows the structure of the implementation. The part above
the dashed line is the basis for metamodeling. The LHS sampling scheme
is calculated in MATLAB, and then Hysyslib functions are used in setting
the values of input variables in the HYSYS process model. When the sim-
ulation is done, the results are sent back to MATLAB and stored, and the

41

Table 4.3: Signs of regression coefficients
d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
αd,0 + – + + + – – – – + + – – –
αd,1 – + + – – – – + – + + –
αd,2 – + – + – + – –
αd,3 – + – – – + –
αd,4 – + – + + – + + – –
αd,5 + – – – – + + + + – + – – +
αd,6 – + + – – – – + – + + –
αd,7 + + –
βd,1,1 + + + –
βd,2,2 – + – + + – –
βd,3,3 – + + + +
βd,4,4
βd,5,5 – + – + + – – +
βd,6,6
βd,7,7
βd,1,2
βd,1,3 +
βd,1,4
βd,1,5 + – + – + + –
βd,1,6
βd,1,7
βd,2,3
βd,2,4 + – + –
βd,2,5 + – + + – – + +
βd,2,6
βd,2,7
βd,3,4
βd,3,5 + + –
βd,3,6 +
βd,3,7
βd,4,5 + – + + – – – + +
βd,4,6
βd,4,7
βd,5,6 + – + – + + –
βd,5,7 + + –
βd,6,7

42

simulation is repeated for the next sample. After simulating the process
for all sets of input data from the sampling scheme, MATLAB performs
regression to fit the data to second order polynomials. The regression co-
efficients are then saved, such that this procedure needs to be done only
once unless there are changes in the process simulation model. In the part
below the dashed line, some constants are calculated in MATLAB before
the GDXMRW package is used to send data to GDX files, which GAMS
can read. GAMS is either called through MATLAB or separately, and
sends the model with data from the data files to BARON, which solves
the model. Solution data are then written to another GDX file, which is
read by MATLAB and used to produce figures and tables for displaying
the solution.

If using the iterative solution approach of section 4.1.4, this procedure
should be repeated until the solution of the relaxed model is feasible in the
overall model. As indicated by a dashed arrow, this looping must be done
manually.

Finally, the accuracy of the solution is checked by running a HYSYS
simulation with values from the optimal solution as input data. The results
from this solution is compared with the optimization model results like in
table 5.3.

The dashed arrow with input data and parameters indicates that this
part of the model could be run again with alternative data, and in section
4.4 we present different scenarios for which the model will be re-run.

4.3.1 Software versions

Software versions used are listed in table 4.3.1. BARON uses CPLEX for
linear subproblems, and MINOS for NLPs.

4.3.2 Hardware

The computations are carried out on an Acer Aspire 5741G laptop with an
Intel Core i3-350M processor (2.26 GHz, 3MB L3 cache) and 4 GB DDR3
RAM, running Windows 7.

43

Process simulation
(HYSYS)

LHS sampling
scheme generation

(MATLAB)

Regression
(MATLAB)

Data pre-
processing
(MATLAB)

Solving model
(GAMS/BARON)

Data post-
processing
(MATLAB)

Sample
values for

input
variables

Solution
values for

output
variables

Regression
coefficients

Input data
and parameters

Data

Optimized
solution

GDXMRW

HYSYSLIB

Process simulation model Data handling/processing Optimization model

Possible loop
for the iterative
procedure with

relaxation

Process simulation
(HYSYS)

Optimized
solution

More realistic
solution

Repeat for next sample

Data storage

Simulation results

Solution
output

(MATLAB)

Figure 4.1: Structure of the implementation and software interaction

44

Table 4.4: Software versions
Software Version
BARON 9.0.6
ILOG CLEX 12.2.0.1
MINOS 5.51
GAMS 23.6.2
HYSYS 7.2
MATLAB 7.11.0.584 (R2010b)

4.4 Scenarios

To show that the model works for different data and modifications, and
to investigate the effect of changing certain parameters, we will run the
model for different scenarios. The base case, which receive most of the
attention in the Results chapter, is the model run with the data presented
so far in this work, with the objective to maximize the electric efficiency of
the process. The alternative scenarios are modifications of this, with the
changes described in the following. Results for these scenarios are presented
in section 5.5.

4.4.1 Maximizing power output

This scenario is run with the alternative objective of (3.3), to see whether
the solution is changed if one decides to maximize power output for the
given size of the air compressor rather than maximizing the efficiency.

4.4.2 No choice for ATR air compression

In the model there is a choice between using a second compressor after
the main air compressor or an extra air compressor, or a combination, to
compress the air fed to the ATR. With this scenario, we can see the impact
of having to use only the main and second compressors.

45

4.4.3 Lower turbine inlet temperature

The assumption of a combustion temperature of 1350 ◦C might be a bit
optimistic when turbine cooling is not modeled, as this becomes the turbine
inlet temperature, therefore it is interesting to see what happens to the
solution if the TIT is set to 1285 ◦C.

4.4.4 Higher pressure steam cycles

A limitation of the model is that it does not optimize the pressure levels
in the steam cycle. In this scenario, the high pressure level is set to 130
bar, and the low pressure level to 8 bar, to see if a different pressure level
affects the solution.

4.4.5 Lower limit for CO2 capture

In this scenario, we investigate the impact of the restriction requiring 90 %
of the carbon in the methane fuel being captured as CO2. The CCU is still
modeled in the same way, but the process need not be designed to form
that much CO2 in reformer and the water gas shifts, as the constraint of
minimum 90 % capture is relaxed.

46

Chapter 5

Results

Results for the IRCC optimization model are presented in this chapter,
showing both the performance of the resulting IRCC design, and the accu-
racy of the model. We will compare the optimized process to similar pro-
cesses in the literature, and go through results for the scenarios described
in section 4.4. Finally, the computational performance of the model is
analyzed.

5.1 Overall performance

The main results with respect to power are presented in table 5.1, and the
optimized values for different variables are shown in the flow-sheet in figure
5.1. The gas turbine power output reported in the table does not include air
compression, meaning that the net gas turbine power is 418 MW. Auxiliary
power consumption comprises the work for pumping of steam, and pumps
for condenser and utility cooling.

It is interesting to note that the ATR pressure is at its upper bound of
30 bar. The pressure do not affect the reactions very much, so this suggests
that the lost power generation in the HP turbine for extracting the steam
at this relatively high pressure and compressing air accordingly is at least
compensated for by avoiding compression of the syngas. The steam to

47

Table 5.1: Summary of power output and consumption for optimized IRCC
Gas turbine power (gross) 707.04 MW
Main air compressor work -288.76 MW
Second air compressor work -0.00 MW
Extra air compressor work -71.76 MW
HP steam turbine power 74.05 MW
IP steam turbine power 90.55 MW
LP steam turbine power 97.84 MW
CO2 compression -19.95 MW
GT fuel compression work -0.15 MW
Auxiliary power consumption -4.51 MW
Net power output 584.35 MW
Energy input (CH4 LHV) 1183.89 MW
Efficiency 49.36 %
Cold utilities (external cooling) -8.39 MW
Hot utilities (external heating) -0.00 MW
CO2 capture ratio 90.00 %
ATR pressure 30.00 bar
Steam to carbon ratio 1.07

carbon ratio is close to its lower bound to avoid too much steam extraction,
but the CO2 capture constraint keeps it from being lower as more steam
drives the reforming and WGS reactions towards more hydrogen and CO2.

The extra air compressor is chosen for supplying the ATR with air such
that the second air compressor is not in use. One interesting detail of the
result is that there is no LP steam production, and reasons for this are
discussed in 5.2. The distribution of power generation between the gas
turbine and the steam turbines is however standard, with 418 MW of net
power from the gas turbine and around 260 MW from the steam turbines.

5.2 Heat integration results
To illustrate the heat integration results, we will use composite curves (fig-
ure 5.2) and the grand composite curve (figure 5.3), showing the driving
forces for heat exchange in the resulting process. The rationale behind such

48

ATR LTSHTS WR CCU

Air

Waste
water

 CO2

Waste

'Cold'
exhaust

Water

 CH 4
1000C

30C
30C

30C

200C1350C

32C
143.6C 143.6C

230C

324.6C 324.6C
540C

500C

415C

20C

1(S2C)

28kg/s
347C

515C

500C
450C 180C

512C 237C

30.0bar

0.81% CO2
9.1% H2O
11% O2
79% N2

0.2% H2O
35% CO2
1.3% CO
0.15% CH4
59% N2

185MW 106MW 94MW

0MW

31C

640kg/s

ATR product HTS product LTS product

CCUreboiler

exhaust

GT fuel

RH

LPSLPBLPE

HPE HPB HPS

preheat

0MW
524C
0kg/s

74MW
347C

91MW
276C

98MW

0kg/s

 707MW
630C

15C

25 bar

18 bar

1.03 bar

0.048 bar

120 bar

4 bar

1.013 bar

39MW72MW
515C
136kg/s

187kg/s

158kg/s

4 bar

24kg/s

preheat

110 bar

Figure 5.1: Flow-sheet with data for the optimized process

49

plots are presented in Gundersen (2000, section 5.2.1). It is important to
keep in mind that the heat integration results are based on the maximum
level of heat recovery, and the consumption of utilities is likely to be higher
with a realistic heat exchanger network design.

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

900

1000

Q [MW]

T
 [o C

]

Figure 5.2: Composite curves for optimized IRCC

The composite curves and the grand composite curve do not show the
results for individual streams, so the heat integration stream data are pre-
sented in table 5.2.

The demand for external cooling in the optimized process is low com-
pared to the total cooling demand of the process, and there is no demand
for external heating. The process is however pinched, with the LP econ-

50

0 50 100 150 200 250
0

100

200

300

400

500

600

700

800

900

1000

Q [MW]

T
 [o C

]

Figure 5.3: Grand composite curve for optimized IRCC

51

Table 5.2: Heat integration stream data
Stream tIN tOUT heat capacity flow heat exchanged
ATR product 1000 450 0.3369 185.3
HTS product 512.3 180 0.3192 106.1
LTS product 237.1 30 0.4518 93.56
exhaust 629.9 80 0.8882 488.4
GT fuel preheat 30.64 200 0.2299 -38.94
LPE 32 143.6 0.7867 -87.79
LPB 143.6 143.6 - -0
LPS 143.6 230 0 -0
HPE 143.6 324.6 0.9073 -164.2
HPB 324.6 324.6 - -223.5
HPS 324.6 560 0.647 -152.3
IP steam reheat 346.5 560 0.3533 -75.43
CH4 preheat 15 500 0.07266 -35.24
CCU reboiler 120 120 - -87.52

omizer being responsible for the pinch. The CCU reboiler and to a lesser
extent the HP boiler are also quite close to making pinch, as seen from the
parts of the grand composite curve pointing against the temperature axis.

The large “pocket” to the left of the upper part of the grand composite
curve indicates that it could be potential for integrating some additional
power production, but at such high temperatures it is not very realistic,
with the possible exception of choosing a higher pressure level for the HP
steam.

In the optimized IRCC there is no LP steam production. This is proba-
bly so because the CCU reboiler is demanding heating in the same temper-
ature range as the LP boiler, and because there is enough high temperature
heating available to generate HP stream instead. This feature is also ad-
vantageous as the process become simpler with only one steam level, and
less equipment is needed.

When looking at the temperatures of individual streams, we see that
the inlet temperature for the HTS is at its upper bound, while that of the
LTS is at its lower bound of 180 ◦C. High WGS temperatures make heating
available at higher temperatures, while low temperatures result in more

52

CO2 and hydrogen formed, and the solution ensure good heat integration
while respecting the CO2 capture constraint. The methane feed is preheated
to 500 ◦C, which is the upper bound. There are two possible reasons for
this, the first being that with higher inlet temperatures, the ATR needs
less air to reach the specified 1000 ◦C, because air is used to heat the ATR
with reaction (2.1), and less air means less air compression work. Secondly,
mixing streams of different temperatures leads to exergy losses, and the air,
which constitutes most of the flow into the ATR is supplied at a temperature
of 514 ◦C.

The high temperatures of the ATR product cooler are in reality restric-
tive for which streams it could exchange heat with. The problem is related
to the high CO content of the stream together with high temperatures,
and is called metal dusting (Grabke et al., 1993), which is a catastrophic
form of corrosion. This means that this hot stream should only be mixed
with streams that are “cold enough”, or boiling streams, and this is not
accounted for in the heat integration modeling1. However, if we look closer
at the solution, we see that metal dusting can be avoided. The three cold
streams with temperatures high enough to cause metal dusting are the
superheating of HP steam, the reheating of IP steam and the preheating
of methane, as their outlet temperatures are above the HP stream boiling
temperature. A safe source of high temperature heat is the exhaust stream,
and this stream may actually cover the entire heat demand above the tem-
perature of the HP boiler. This is evident in figure 5.4, which shows the
composite curves for the cold streams above 324.6 ◦C against the curve for
the exhaust stream. As the ATR product stream is not needed for heat-
ing to high temperatures, metal dusting can be prevented in the optimized
IRCC design.

1A way to deal with this is to model hot streams which may cause metal dusting as
isothermal streams at their outlet temperature, such that they cannot be integrated with
high temperature streams.

53

0 50 100 150 200 250

350

400

450

500

550

600

Q [MW]

T
 [o C

]

Figure 5.4: Heat exchange to avoid metal dusting

5.3 Accuracy

The model is based on some approximations, and it is important to check
how the results of the model fit the reality, or at least with simulations in
HYSYS. Table 5.3 shows a comparison between outputs of the model and
values for process simulation results from HYSYS based on the optimized
solution as inputs. The table includes the majority of the variables in our
model, except those that are given as input for the HYSYS simulation.

The deviation is reasonably low for most of the variables, and for what
might be the single most important one, the gas turbine (gross) power
output, the deviation is only 0.4 %.

There 15 % deviations for the CO flow rates in the syngas, which also
leads to a deviation for the CO2 in the exhaust, are disappointing, even
though these are less important numbers for the efficiency. This must
mean that the regressed polynomial do not fit as good as it should should
for the CO, but as the CO flow rate is low compared to that of CO2,
this do not have much effect on the solution. This deviation give a slight
underestimation of the CO2 capture ratio.

54

Table 5.3: Model outputs compared with simulation in HYSYS
Variable unit Model HYSYS Deviation
Gas turbine power MW 707.041 709.849 -0.396 %
Second aircompressor work MW 0 -0 - %
Extra air compressor work MW 71.7603 72.6515 -1.227 %
HP steam turbine power MW 74.0493 74.7811 -0.979 %
IP steam turbine power MW 90.5535 89.5368 1.135 %
LP steam turbine power MW 97.8402 103.435 -5.409 %
GT fuel compression work MW 0.148669 0 ∞
Mass flow of air to combustor kg/s 640 638.945 0.165 %
Mass flow of CO2 after LTS kg/s 60.7901 61.0586 -0.440 %
Mass flow of CO after LTS kg/s 2.22987 1.93889 15.007 %
Mass flow of H2 after LTS kg/s 7.62393 7.63742 -0.177 %
Mass flow of H2O after WR kg/s 0.352254 0.349639 0.748 %
Mass flow of CO after WR kg/s 2.22986 1.93889 15.007 %
Mass flow of CO2 after WR kg/s 60.7561 61.0135 -0.422 %
Mass flow of H2 after WR kg/s 7.62391 7.6374 -0.177 %
Mass flow of CH4 after WR kg/s 0.255106 0.262419 -2.787 %
Mass flow of N2 after WR kg/s 103.856 103.736 0.116 %
Mass flow of H2O after combustion kg/s 68.5331 68.6648 -0.192 %
Mass flow of CO2 after combustion kg/s 6.10469 5.67659 7.541 %
Mass flow of O2 after combustion kg/s 86.451 86.2423 0.242 %
Mass flow of N2 after combustion kg/s 594.592 593.657 0.157 %
Gas turbine outlet temperature ◦C 629.856 630.372 -0.082 %
Extra air compressor outlet temp. ◦C 514.828 516.926 -0.406 %
HP steam turbine outlet temp. ◦C 346.516 344.432 0.605 %
IP steam turbine outlet temp. ◦C 276.421 279.527 -1.111 %
HTS product temperature ◦C 512.313 512.957 -0.125 %
LTS product temperature ◦C 237.107 240.921 -1.583 %
GT fuel compressor outlet temperature ◦C 30.6394 30 2.131 %
GT fuel preheating MW 38.9406 38.2443 1.821 %
HTS product cooling MW 106.09 105.935 0.147 %
LTS product cooling MW 93.5612 94.4921 -0.985 %
ATR product cooling MW 185.299 183.595 0.928 %
Exhaust cooling MW 488.404 488.477 -0.015 %
LP steam superheating MW 0 0 - %
HP steam boiling MW 223.523 223.523 -0.000 %
HP steam superheating MW 152.296 152.296 -0.000 %
IP steam reheating MW 75.4303 76.9975 -2.035 %
Methane preheating MW 35.241 35.2993 -0.165 %
Cooling water pump work MW 0.0176 0.0131 34.131 %

55

The actual work of the syngas compressor should be zero, while the
model reports 0.15 MW. This has only a negligible impact on the efficiency,
but it is worth examining how good the modeling of this compressor really
is, as this error is large in relative terms. If we take a look at the formula
used in calculating the syngas compression work, we will see that this,
in relative terms, bad fit is only occurring when the compression work is
close to zero. As can be seen from table 4.2, the regression function do
only depend on the feed pressure (input variable number 3), and the plot
of simulation results versus the fitted curve in figure 5.5 shows that the
approximating function actually fits the data quite nicely.

The 5.4 % deviation for the LP steam turbine power output is more
serious, as these 5.5 MW would change the plant efficiency with almost 0.5
percentage points. This deviation is caused by some conservative modeling.
The inlet temperature to the LP turbine is in reality the mixing temperature
of the superheated LP steam, and the steam out of the IP steam turbine,
while the calculations are based on the superheated LP steam temperature,
which is always the lower of the two. As higher temperature yields higher
power output, this is an underestimation, and particularly so for these
results, as there is no LP steam production in the optimized process design.
However, modeling it more accurately would complicate the model, and as
it is believed that this would not change the overall structure of the solution,
this underestimation is kept as it is.

Another deviation worth noticing is that of the heat flow rate of the
steam reheater. The reheater is modeled with one fixed number for spe-
cific heat capacity, while in reality this is a variable of both temperature
and pressure, and steam extraction at a high pressure in the solution, the
pressure and temperature of the reheater are high, and the number used
for heat capacity in the model is too low. However, the deviation is accept-
ably low, given the savings in model complexity of assuming constant heat
capacity.

Finally, the relative deviation for cooling water pump work is large
because external cooling is determined by a difference of much higher num-
bers, like the exhaust cooling of 488 MW, and with this in mind, this is not
troubling at all, and the effect on the efficiency is minimal.

56

15 20 25 30
0

0.5

1

1.5

2

2.5

3

F
ue

l c
om

pr
es

si
on

 [M
W

],
as

su
m

in
g

10
 0

00
 k

g/
s

of
 C

H
4 fe

ed

Feed pressure [bar]

Simulated data
Fitted curve

Figure 5.5: Simulation data versus fitted curve for syngas compression

57

It is worth noting that the efficiency of the optimized process corrected
according to the HYSYS simulation is 49.97 %, which is 1.3 % or 0.62
percentage points higher than the efficiency calculated in the optimization
model.

5.4 Comparison with other IRCCs

It is always difficult to compare efficiencies of different plants, as there is
a wide range of parameters and assumptions that might differ, but we will
however look at some related processes from the literature as a basis for
comparison. All efficiencies reported in the following are based on LHV.

Nord and Bolland (2011) report an efficiency of 45.3 % for an IRCC
plant with CO2 capture similar to ours, with two steam levels. The focus
of their work is on the HRSG design, including heat integration with the
WGS coolers, but they do also use supplementary firing for the steam cycles.
The reformer is an ATR, while the carbon is capture with a hot potassium
carbonate absorption process. The IRCC plant of Nord et al. (2009) is
also similar to ours, and have a net plant efficiency of 41.9 %, but their
work is more focused on operability. This process do also use autothermal
reforming, and an amine absorption process for capture.

Manzolini et al. (2011a,b) present results for another kind of IRCC,
which uses sorption enhanced water gas shift (SEWGS) to combine water-
gas shift and CO2 capture. In this process, the reforming is done both with
a gas-heated reformer (GHR) and an ATR. With a high level of heat inte-
gration, they reach an electric efficiency of 50.9 %, while efficiencies of 49.9
% and 50.3 % are reported for reference plants with post-combustion and
pre-combustion capture, respectively, both using amine-based absorption.
The reference plant with pre-combustion capture is interesting, as it is very
similar to our process, except that the is a combination of GHR and ATR.

When comparing the results of our model with these works, it is im-
portant to be aware of some major differences. The process of Nord and
Bolland (2011) is very relevant as it considers heat integration on a process
very similar to ours, except the hot potassium carbonate absorption, which

58

should not change the results dramatically. The precombustion reference
process of Manzolini et al. (2011b) is also very relevant for comparison, and
it is interesting to note the large difference in efficiency, with 5 percentage
points more for the latter process. The high efficiency might come from
the heat integration of the ATR product stream with the GHR in Man-
zolini et al. (2011b), and this high-temperature heat exchange might lead
to metal dusting.

The efficiency of our optimized IRCC is much higher than that of Nord
and Bolland (2011), but slightly lower than the reference plant of Manzolini
et al. (2011b). If the high temperature heat integration of the latter is a
problem, we might have found a very promising solution. However, in our
model we assume maximum possible heat integration, without considering
the actual heat exchanger network, and this is quite optimistic, even with
the conservative choice of HRAT at 20 ◦C. Our model is also slightly limited
because we look at a simplified process. Additionally, issues related to
operability, controllability and flexibility are not considered in the design
of our process, as this is outside the scope of this work.

5.5 Results for alternative scenarios
Table 5.4 shows the results for the four different scenarios described in
section 5.5, with numbering as for the headlines. Flow-sheets, compos-
ite curves and grand composite curves for each scenario are available in
appendix D.

5.5.1 Maximizing power

When maximizing the net power output instead of the efficiency, we do
indeed get higher power output. This is accomplished by using even more
methane, which reduce the efficiency. Interestingly, the ATR pressure is 18
bar in this solution, which is the lower bound, and not the maximum 30
bar as for the base case. The resulting steam to carbon ratio is at its upper
bound of 2, which is also the opposite of the other cases. The reason for
this is that, as more methane is supplied, the temperature in the combustor

59

Table 5.4: Results for alternative scenarios
Scenario Base case 1 2 3 4 5 Unit
Gas turbine power (gross) 707.04 750.90 583.07 663.48 707.35 705.23 MW
Main air compressor work -288.76 -288.76 -288.76 -288.76 -288.76 -288.76 MW
Second air compressor work -0.00 -0.00 -13.73 -0.00 -0.00 -0.00 MW
Extra air compressor work -71.76 -79.80 -0.00 -63.71 -71.95 -71.23 MW
HP steam turbine power 74.05 128.46 60.81 68.19 77.22 73.20 MW
IP steam turbine power 90.55 84.57 74.47 79.62 59.26 90.51 MW
LP steam turbine power 97.84 114.83 80.46 87.99 110.25 97.79 MW
CO2 compression -19.95 -24.70 -16.41 -18.07 -19.98 -18.59 MW
GT fuel compression work -0.15 -19.89 -0.12 -1.06 -0.15 -0.15 MW
Auxiliary power consumption -4.51 -5.93 -3.71 -4.04 -4.81 -4.47 MW
Net power output 584.35 659.68 476.07 523.63 568.42 583.53 MW
Energy input (CH4 LHV) 1183.89 1408.32 973.43 1071.81 1185.37 1171.47 MW
Efficiency 49.36 46.84 48.91 48.85 47.95 49.81 %
Cold utilities (external cooling) -8.39 -19.89 -6.80 -9.15 -8.40 -7.29 MW
Hot utilities (external heating) -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 MW
CO2 capture ratio 90.00 93.64 90.00 90.02 90.00 84.74 %
ATR pressure 30.00 18.00 30.00 28.69 30.00 30.00 bar
Steam to carbon ratio 1.07 2.00 1.06 1.00 1.07 1.00

60

will rise because the amount of air supplied to the combustor is limited to
640 kg/s. This must be compensated for, and by adding relatively more
steam to the ATR, more air is needed there to reach the specified ATR
temperature of 1000 ◦C, which give more nitrogen in the gas turbine fuel.
The lower ATR pressure is chosen because increased steam supply to the
ATR means that more power is lost if the stream is extracted from the HP
steam cycle at a high pressure, thus it is more efficient to compress the
syngas because this is done after the water removal, such that the steam
does not need to be compressed. The higher steam to carbon ratio also
leads to a higher CO2 capture ratio.

The mechanisms behind these results are not necessarily wanted, but
arise because only the size of the main air compressor is limited. To make
the model more realistic when maximizing power, a cost should be assigned
to the usage of methane, or limits should be given for the methane supply
or flow through the gas turbine. Such changes are easy to implement.

There is also significantly more cooling in this solution, although this
do not impact the objective much. As this solution was not proven optimal,
these results are not necessarily the best possible, but the optimum is not
likely to be very different as the gap between the upper and lower bounds
was very low.

5.5.2 No choice of ATR air compressor

In the other solutions, the air to the ATR is compressed with the extra
air compressor. When considering only the main air compressor and a
second compressor to compress the air further, the net power output and
the fuel consumption are naturally reduced, as not all the air from the
main compressor can be used in the combustor. This choice of compressor
reduces the efficiency by 0.45 percentage points.

5.5.3 Lower turbine inlet temperature

With a turbine inlet temperature of 1285 ◦C instead of 1350 ◦C, more air
is needed per amount of fuel to keep the temperature down, and this is

61

reflected in the solution with less fuel consumption leading to lower power
output. The outlet temperature of the turbine is reduced from 630 to 589
◦C, which means less heating for the steam cycles, such that also the steam
turbines generate less power, even though the steam to the ATR is extracted
at a slightly lower pressure. For this scenario, the steam to carbon ratio
is at its lower bound of 1, and this is possible because the HTS have a
lower inlet temperature to enhance the water gas shift. As expected, the
efficiency for this process is lower, and the reduction is of 0.51 percentage
points.

5.5.4 Higher steam pressure levels

Choosing 130 bar for HP and 8 bar for the LP steam cycle instead of 120 and
4, respectively, was expected to improve the efficiency slightly, as the heat
from the syngas coolers and the gas turbine exhaust could be recovered
at somewhat higher temperatures. However, the solution found for this
scenario was different, with the efficiency reduced by 2.4 percentage points.
The power output from the steam turbines is actually lower than in the
base case, and changes in the low pressure level from 4 to 8 bar cause less
power generated in the IP turbine and relatively more in the LP turbine.

The reason for the reduced efficiency should be investigated, but it
should also be noted that the same temperatures were used for HP steam
superheating and reheat as for the base case, and these temperatures have
a larger impact on the efficiency than the pressure.

5.5.5 Lower limit for CO2 capture

For the scenario without the constraint for minimum 90 % CO2 captured,
only 84.7 % is captured. Omitting the capture constraint lets both WGS
reactors be operated at their highest temperatures to get more high tem-
perature heat for integration, and the steam to carbon ratio is at its lower
bound to get more steam through the IP turbine. The efficiency is, natu-
rally, slightly higher than in the base case.

62

5.6 Computational performance

When trying to solve the complete model without relaxation, it does not
converge after 24 hours. Moreover, the gap between lower bound and best
solution found is 22.4 %, and have not improved during the last four hours.
The best solution in these 24 hours was found after almost nine hours, with
an objective value of 48.24 (% efficiency), while a solution of 45.62 % was
found after less than seven minutes, and poorer solutions were found within
seconds.

As these results were not satisfying, the relaxation of section 4.1.4 was
made to get better bounds and solutions. With the iterative algorithm, the
unrelaxed model was run for five minutes in step 1. In the intermediate
solution found after five minutes, the pinch was at the inlet of the LP
steam economizer, and thus LPE was added as the first member of the
pinch candidate subset.

The relaxed problem considering only LPE as a pinch candidate, was
solved to optimum in 7:09 minutes, but it was not feasible in the original
problem. In this solution, the stream actually causing pinch was the CCU
reboiler, and consequently this was added to the pinch candidate subset.
With this relaxation, there were only two binary variables that could affect
the solution.

The relaxed problem with SP∗ = {LPE,CCUreboiler} took 4:24 hours
to solve, and the LPE was responsible for pinch again, thus the solution
must be optimal. This relaxation had four binary variables in effect.

The alternative scenarios were also solved with relaxation with only the
LPE and the CCU reboiler considered as pinch candidates. The scenario for
maximizing power required manual branching on the ATR pressure variable
to find the optimal solution, as there were some problems as discussed in
the next section, while the solution times for the other scenarios are as
follows: Lower TIT: 1:48 hours, no extra air compressor: 24:25 minutes,
higher steam pressures: 2:34 hours, less CO2 capture: 47:45 minutes.

63

5.6.1 Reliability of BARON

BARON is a global solver, hence it should be able to find global optima,
or at least not stop solving before it is known whether the solution is the
global optimum, and in this work we have assumed that it is so. However,
there might be errors in any computer code, and during the work with
the IRCC optimization model, some situation questioning the reliability of
BARON have occurred.

For an earlier instance of the model, BARON stated that it found
the (global) optimum, while a better solution could be found by stopping
BARON and letting CONOPT finish with local optimization around the
current best solution found by BARON. This solution was better than
the lower bound calculated by BARON in the first run. In another case,
BARON actually found a solution itself which was better than the lower
bound it had calculated.

These issues are distressing, but the difference between the lower bound
and the better solution was never large, and the results of BARON are still
assumed to hold.

Another peculiar issue is that in some cases, BARON ends just after
presolving, and returns a solution, usually of low quality, which is reported
to be optimal. This was the case for the scenario of maximizing power.
This strange behavior was avoided by dividing the feasible interval for the
ATR pressure, and solving the problem with for each sub-interval, but why
the issue was avoided with this manual branching procedure is a mystery.

64

Chapter 6

Conclusion

The goal of this work was to make an optimization model for designing an
IRCC with reduced energy consumption, including some use of metamod-
eling based on process simulation to approximate difficult relations.

The optimization model was successfully made and implemented. Its
results are quite accurate, with a deviation in the objective value of about
1 % compared to process simulations in HYSYS. The optimization model is
hard to solve for BARON, but with a relaxation procedure based on pinch
analysis insights, optimal solutions was found and proven globally optimal
within a few hours for different sets of input data. In other words, the
balance between reality representation and solution speed is satisfactory,
but further improvements are possible, as discussed in the next section.

The optimized IRCC process resulting from our model, with a CO2
capture ratio of 90 percent, has an efficiency of 49.97 % when adjusted
for approximating errors, and this is quite good compared to other IRCCs
in the litterature. With extensive heat integration, the optimized process
do not need any external heating or supplementary firing, and the utility
cooling demand is less than one percent of the total cooling demand in the
process. These results suggest that the optimization model of this work
might become fruitful if more research is done to confirm the results under
less idealistic assumptions.

65

6.1 Further work

There are many possible modifications that could improve the model, but
it is important to accept that, with the technology of today, it is impossible
to make an optimization model which both represents the process precisely
and allows for optimal solutions to be found within short time.

An important piece of work that has to be done for exploiting the ca-
pability of this model, is to design a more detailed version of the optimized
process. By designing a less simplified process, closer to what might be ap-
propriate to build, based on the results from the IRCC optimization model,
it is possible to see if the results are beneficial, or if the model do not rep-
resent the reality good enough. A large part of this work will consist of the
heat exchanger network synthesis. Furthermore, it is important to account
for operability, controllability and flexibility issues.

With respect to the heat integration model, it should be investigated
whether the model of Grossmann et al. (1998) may enhance the compu-
tational performance, and whether the approximating functions used by
Duran and Grossmann (1986) are acceptably accurate. The model is im-
plemented in a way that makes such a substitution simple.

Another possible way of improving the model is applying metamodeling
on a larger part of the model, with the gas turbine and the air compressors
as apparent candidates, as the physical modeling of these include the most
challenging equations for the solver. If the metamodeling is to be extended,
higher order polynomials and possibly other regression functions should be
considered.

As the current model is hard to solve without the relaxation, and will
probably be harder if more features are added to the model, it could be
worth looking at heuristics like multi-start local search, simulated annealing
or other methods for solving the model. The issues with BARON discussed
in section 5.6.1 are additional arguments for using heuristics.

If a successful solution method is found, more accurate modeling of the
actual IRCC process should be investigated, for example by modeling the
LP steam turbine and the CCU more accurately, considering natural gas
with the associated pre-processing instead of pure methane and including

66

multiple stages and intercooling for the air compressors. Some of these
improvements might not even complicate the model.

Finally, an improvement that will inevitably complicate the model, but
is in line with the holistic ideal behind this work, is including more pa-
rameters as variables, for example the steam levels and the combustion
temperature, thus making the model more general. While this could lead
to better designs, it is important to work with the solving if the model is
to be extended.

67

68

Bibliography

Aspen HYSYS Tutorials and Applications. Aspen Technology, Cambridge,
MA, USA, 2006.

O. T. Berglihn. Hysyslib, May 9, 2011. URL http://www.pvv.org/
~olafb/software/hysyslib/.

O. Bolland. Power Generation: CO2 Capture and Storage. Draft
manuscript for a coming book, September 2010.

A. Brooke, D. Kendrick, A. Meeraus, R. Raman, and R. E. Rosenthal.
GAMS, A User’s Guide. GAMS Development Corporation, Washington,
DC, USA, 2003.

P. Chiesa, G. Lozza, and L. Mazzocchi. Using hydrogen as gas turbine fuel.
Journal of Engineering for Gas Turbines and Power, 127:73–80, 2005.

J. David and H. Herzog. The cost of carbon capture. In Fifth interna-
tional conference on greenhouse gas control technologies, Cairns, Aus-
tralia, pages 13–16, 2000.

M.A. Duran and I.E. Grossmann. Simultaneous optimization and heat
integration of chemical processes. AIChE journal, 32(1):123–138, 1986.

F. Emun, M. Gadalla, T. Majozi, and D. Boer. Integrated gasification
combined cycle (IGCC) process simulation and optimization. Computers
& Chemical Engineering, 34(3):331–338, 2010. ISSN 0098-1354.

69

M.C. Ferris, R. Jain, and S. Dirkse. GDXMRW: Interfacing GAMS and
MATLAB, 2010.

J. Gibbins and H. Chalmers. Carbon capture and storage. Energy Policy,
36(12):4317–4322, 2008. ISSN 0301-4215.

HJ Grabke, R. Krajak, and JC Nava Paz. On the mechanism of catas-
trophic carburization: metal dusting. Corrosion science, 35(5-8):1141–
1145, 1993.

I.E. Grossmann, H. Yeomans, and Z. Kravanja. A rigorous disjunctive
optimization model for simultaneous flowsheet optimization and heat in-
tegration. Computers & chemical engineering, 22:S157–S164, 1998.

T. Gundersen. A process integration primer. Technical report, SINTEF
Energy Research and International Energy Agency, Trondheim, Norway,
2000.

E. L. Johnsen. Metamodeling approach for optimization of an integrated
reforming combined cycle with CO2 capture, focusing on process inte-
gration. Project thesis in the course TIØ4500, NTNU, 2010.

B. Linnhoff and E. Hindmarsh. The pinch design method for heat exchanger
networks. Chemical Engineering Science, 38(5):745 – 763, 1983. ISSN
0009-2509. doi: DOI:10.1016/0009-2509(83)80185-7. URL http://www.
sciencedirect.com/science/article/pii/0009250983801857.

G. Manzolini, E. Macchi, M. Binotti, and M. Gazzani. Integration of sewgs
for carbon capture in natural gas combined cycle. part a: Thermody-
namic performances. International Journal of Greenhouse Gas Control,
5:200–213, 2011a.

G. Manzolini, E. Macchi, M. Binotti, and M. Gazzani. Integration of
SEWGS for carbon capture in natural gas combined cycle. part b: Refer-
ence case comparison. International Journal of Greenhouse Gas Control,
5:214–225, 2011b.

70

E. Martelli. Numerical optimization of heat recovery steam cycles for highly
integrated energy systems & application to low carbon emission plants.
PhD dissertation, Politecnico di Milano, Department of energy, 2010.

B. A. McCarl, A. Meeraus, P. van der Eijk, M. Busseck, S. Dirkse, P. Steacy,
and F. Nelissen. McCarl GAMS User Guide. GAMS Development Cor-
poration, Washington, DC, USA, 2011.

M.D. McKay, R.J. Beckman, and WJ Conover. A comparison of three
methods for selecting values of input variables in the analysis of output
from a computer code. Technometrics, 21(2):239–245, 1979.

B. Metz, O. Davidson, H. de Coninck, M. Loos, and L. Meyer. IPCC
special report on carbon dioxide capture and storage. Technical report,
Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2005.

L.O. Nord and O. Bolland. Hrsg design for integrated reforming combined
cycle with co capture. Journal of Engineering for Gas Turbines and
Power, 133:011702, 2011.

L.O. Nord, R. Anantharaman, and O. Bolland. Design and off-design anal-
yses of a pre-combustion CO2 capture process in a natural gas combined
cycle power plant. International Journal of Greenhouse Gas Control, 3
(4):385–392, 2009. ISSN 1750-5836.

B. Nygreen, M. Christiansen, K. Haugen, T. Bjørkvoll, and Ø. Kristiansen.
Modeling Norwegian petroleum production and transportation. Annals
of Operations Research, 82:251–268, 1998. ISSN 0254-5330.

K. Palmer and M. Realff. Metamodeling Approach to Optimization of
Steady-State Flowsheet Simulations: Model Generation. Chemical Engi-
neering Research and Design, 80(7):760–772, 2002a. ISSN 0263-8762.

K. Palmer and M. Realff. Optimization and validation of steady-state flow-
sheet simulation metamodels. Chemical Engineering Research and De-
sign, 80(7):773–782, 2002b. ISSN 0263-8762.

71

C. Rhodes, G.J. Hutchings, and A.M. Ward. Water-gas shift reaction:
finding the mechanistic boundary. Catalysis Today, 23(1):43–58, 1995.
ISSN 0920-5861.

C. Rhodes, B. Peter Williams, F. King, and G.J. Hutchings. Promotion
of Fe3O4/Cr2O3 high temperature water gas shift catalyst. Catalysis
Communications, 3(8):381–384, 2002. ISSN 1566-7367.

J. Sadhukhan and X.X. Zhu. Integration strategy of gasification technology:
A gateway to future refining. Ind. Eng. Chem. Res, 41(6):1528–1544,
2002. ISSN 0888-5885.

N. Sahinidis. BARON — Branch And Reduce Optimization Navigator.
University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2000.

N. Sahinidis and M. Tawarmalani. BARON. GAMS Development Corpo-
ration, Washington, DC, USA, 2010.

72

List of Figures

3.1 Flow-sheet for the metamodeling part of the process 20
3.2 Simulated and approximated mass specific power for HP and

IP steam turbines . 21
3.3 Simulated and approximated outlet temperatures for HP and

IP steam turbines . 21

4.1 Structure of the implementation and software interaction . 44

5.1 Flow-sheet with data for the optimized process 49
5.2 Composite curves for optimized IRCC 50
5.3 Grand composite curve for optimized IRCC 51
5.4 Heat exchange to avoid metal dusting 54
5.5 Simulation data versus fitted curve for syngas compression . 57

D.1 Flowsheet for process with maximized power output 88
D.2 Composite curves and grand composite curve for process

with maximized power output 88
D.3 Flowsheet for process with no extra ATR air compressor . . 89
D.4 Composite curves and grand composite curve for process

with no extra ATR air compressor 89
D.5 Flowsheet for process with lower TIT 90
D.6 Composite curves and grand composite curve for process

with lower TIT . 90
D.7 Flowsheet for process with higher steam pressures 91

73

D.8 Composite curves and grand composite curve for process
with higher steam pressures 91

D.9 Flowsheet for process with less CO2 captured 92
D.10 Composite curves and grand composite curve for process

with less CO2 captured . 92

74

List of Tables

4.1 Ranges for input variables 40
4.2 Output variables . 41
4.3 Signs of regression coefficients 42
4.4 Software versions . 45

5.1 Summary of power output and consumption for optimized
IRCC . 48

5.2 Heat integration stream data 52
5.3 Model outputs compared with simulation in HYSYS 55
5.4 Results for alternative scenarios 60

B.1 Minumum and maximum values for simulation output variables 81
B.2 Regression coefficients, part 1 82
B.3 Regression coefficients, part 2 83

75

76

Appendix A

The complete IRCC
optimization model

From section 3.2.2:

minimize z (A.1)
subject to

QLHV,CH4 fin(ATR),CH4 z =
∑
e∈EP

we −
∑
e∈EW

we (A.2)

From section 3.3:

xd −

αd,0 +
∑
i∈I1,d

αd,i xi +
∑
i∈I2,d

∑
j∈Jd,i

βd,i,j xi xj

 fin(ATR),CH4

= 0 ∀d ∈ DF

(A.3)

xd −
∑
i∈I1,d

αd,i xi −
∑
i∈I2,d

∑
j∈Jd,i

βd,i,j xi xj = αd,0 ∀d ∈ DS (A.4)

we −We fin(e),H2O = 0∀e ∈ ET0 (A.5)

we − (BW,e +AW,e pin(ATR))fin(e),H2O = 0 ∀e ∈ ET1 (A.6)
te − (BT,e +AT,e pin(ATR)) = 0 ∀e ∈ ET1 (A.7)

77

From section 3.4:∑
s∈SIN,e

∑
k∈KF,s

QLHV,k fs,k =
∑

s∈SIN,e

∑
k∈Ks

Qs,kfs,k ∀e ∈ ER (A.8)

fout(e),k =
∑

s∈SIN,e

∑
l∈Ks

Ge,k,l fs,l ∀k ∈ Kout(e), e ∈ ER (A.9)

we −
∑

k∈Kin(e)

ηe fin(e),k

5∑
n=1

Hk,n(Tin(e)
n − tI,en) = 0 ∀e ∈ ET2 (A.10)

tI,e − Tin(e)

(
pout(e)

Pin(e)

)ae

= 0 ∀e ∈ ET2 (A.11)

tout(e) − |ηe| tI,e = (1− |ηe|) Tin(e) ∀e ∈ ET2 (A.12)

ae we − ηe (Tin(e) − tI,e)
∑
k∈Ke

Rk fk,in(e) = 0 ∀e ∈ ET2 (A.13)

fin(e),k =
∑

s∈SOUT,e

fs,k ∀e ∈ ES , k ∈ Kin(e) (A.14)

fout(e),k =
∑

s∈SIN,e

fs,k ∀e ∈ EM , k ∈ Kin(e) (A.15)

tout(e)

∑
k∈Kout(e)

fout(e),k =
∑

s∈SIN,e

ts
∑
k∈Ks

fs,k ∀e ∈ EM (A.16)

fs,k = Ve,s,k fin(e),k ∀e ∈ ESE , s ∈ SOUT,e, k ∈ Kin(e) (A.17)
qCCU = QCC,CO2 fCC,CO2 (A.18)
wCCU = WCCU fCC,CO2 (A.19)

fCC,CO2 ≥ U fin(ATR),CHg (A.20)

From section 3.5.1:

qH ≥
∑
c∈C

CP,c(tOUT,c − tM,c,p)fC,c +
∑
c∈CI

fQP,c,p −∑
h∈H

CP,h(tIN,h − tM,h,p)fC,h −
∑
h∈HI

fQP,h,p
∀p ∈ SP (A.21)

78

qC − qH =
∑
s∈SN

(tIN,s − tOUT,s)fC,s +
∑
h∈HI

fQ,h −
∑
c∈CI

fQ,c (A.22)

tM,h,p ≥ tOUT,h ∀h ∈ H, p ∈ SP (A.23)
tM,h,p ≥ tIN,p + TADJ,p − TADJ,h −M1,h,pyh,p ∀h ∈ H, p ∈ SP (A.24)
tM,h,p ≥ tIN,h −M2,h,p(1− yh,p) ∀h ∈ H, p ∈ SP (A.25)
tM,c,p ≤ tOUT,c ∀c ∈ C, p ∈ SP (A.26)
tM,c,p ≤ tIN,p + TADJ,p − TADJ,c −M1,c,p(1− yc,p)∀c ∈ C, p ∈ SP (A.27)
tM,c,p ≤ tIN,c −M2,c,pyc,p ∀c ∈ C, p ∈ SP (A.28)

tIN,h ≥ tIN,p + TADJ,p − TADJ,h −M1,h,pyh,p ∀h ∈ HI , p ∈ SP (A.29)
tIN,c ≤ tIN,p + TADJ,p − TADJ,c +M1,c,p(1− yc,p)∀c ∈ CI , p ∈ SP (A.30)
fQP,h,p ≤M2,h,p(1− yh,p) ∀h ∈ HI , p ∈ SP (A.31)
fQP,h,p ≤ fQ,h ∀h ∈ HI , p ∈ SP (A.32)
fQP,c,p ≥ fQ,c −M2,c,pyc,p ∀c ∈ CI , p ∈ SP (A.33)

tIN,s = tp∀(s, p) ∈ SS,TI (A.34)
tOUT,s = tp∀(s, p) ∈ SS,TO (A.35)

fC,s =
∑
k∈Kp

CP,p,k fp,k∀(s, p) ∈ SS,F1 (A.36)

fC,s = fC,p∀(s, p) ∈ SS,F2 (A.37)
fQ,s = qe∀(s, e) ∈ SE,Q, (A.38)

Qp,H2O fC,s = CP,s,H2OfQ,p∀(s, p) ∈ SS,Q (A.39)

ys,p ∈ {0, 1} ∀s ∈ S, p ∈ SP (A.40)
qH , qC , tIN,s, tOUT,s, tM,s,p, fC,s, fQ,s, fQP,s,p ≥ 0 (A.41)

79

Upper and lower bounds:

xi ≤xi ≤ xi ∀i ∈ I ∪ D (A.42)
we ≤ee ≤ we ∀e ∈ WP ∪ EW (A.43)

f
s,k
≤fs,k ≤ fs,k ∀s ∈ S1, k ∈ Ks (A.44)

p
s
≤ps ≤ ps ∀s ∈ S1 (A.45)

ts ≤ts ≤ ts ∀s ∈ S1 (A.46)
tI,e ≤tI,e ≤ tI,e ∀e ∈ ET2 (A.47)
ae ≤ae ≤ ae ∀a ∈ ET2 (A.48)
ts ≤ts ≤ ts ∀s ∈ S1 (A.49)
q
e
≤qe ≤ qe ∀e ∈ {CCU} (A.50)

tIN,s ≤tIN,s ≤ tIN,s ∀s ∈ S (A.51)
tOUT,s ≤tOUT,s ≤ tOUT,s ∀s ∈ SN (A.52)
tM,s,p ≤tM,s,p ≤ tM,s,p ∀s ∈ SN , p ∈ SP (A.53)

f
C,s
≤fC,s ≤ fC,s ∀s ∈ SN (A.54)

f
Q,s
≤fQ,s ≤ fQ,s ∀s ∈ SI (A.55)

f
QP,s,p

≤fQP,s,p ≤ fQP,s,p ∀s ∈ SI , p ∈ SP (A.56)

80

Appendix B

Regression coefficients

The regression coefficients resulting from the metamodeling approach are
presented in tables B.2 and B.3. It is important to be aware of that these
coefficients are for the variables scaled to the interval

〈
−1

2 ,
1
2

〉
between the

maximum and minimum values of tables 4.1 and B.1.

Table B.1: Minumum and maximum values for simulation output variables
d Variable unit Minimum Maximum
1 Mass flow of CO2 after LTS kg/s 22.6 27.3
2 Mass flow of CO after LTS kg/s 0.0562 2.89
3 Mass flow of H2 after LTS kg/s 2.93 3.29
4 HTS product temperature ◦C 342 537
5 LTS product temperature ◦C 172 316
6 GT fuel preheating MW/◦C 0.0105 0.0281
7 HTS product heat capacity flow MW/◦C 0.0344 0.0489
8 LTS product heat capacity flow MW/◦C 0.0393 0.135
9 ATR product heat capacity flow MW/◦C 0.036 0.0517

10 Syngas compressor outlet temperature ◦C 30 134
11 Mass flow of H2O after WR kg/s 0.144 0.328
12 Mass flow of CO after WR kg/s 0.0562 2.89
13 Mass flow of CO2 after WR kg/s 22.6 27.3
14 Mass flow of H2 after WR kg/s 2.93 3.29
15 Mass flow of CH4 after WR kg/s 0.0064 0.166
16 Mass flow of N2 after WR kg/s 42.2 54.4
17 GT fuel compression work MW 0 2.83

81

Table B.2: Regression coefficients, part 1
d 1 2 3 4 5 6 7 8 9
αd,0 0.367 -0.377 0.095 0.030 - 0.104 - -0.141 -
αd,1 -0.054 0.050 0.337 - - - -0.090 -0.055 -0.089
αd,2 -0.255 0.269 -0.151 - 0.642 - - -0.148 -
αd,3 - - -0.067 - - 0.909 - - -
αd,4 -0.094 0.099 -0.056 0.913 0.219 - - -0.046 0.051
αd,5 0.496 -0.482 -0.251 -0.082 -0.230 - 0.814 0.736 0.815
αd,6 -0.043 0.041 0.280 - - - -0.075 -0.046 -0.074
αd,7 - - 0.088 - - - - - -
βd,1,1 - - 0.067 - - - - - -
βd,2,2 -0.090 0.096 -0.054 - - - - 0.081 -
βd,3,3 - - - - - -0.484 - - -
βd,4,4 - - - - - - - - -
βd,5,5 -0.812 0.814 -0.554 - - - - 0.124 -
βd,6,6 - - - - - - - - -
βd,7,7 - - - - - - - - -
βd,1,2 - - - - - - - - -
βd,1,3 - - - - - - - - -
βd,1,4 - - - - - - - - -
βd,1,5 0.157 -0.151 0.107 - - - - - -
βd,1,6 - - - - - - - - -
βd,1,7 - - - - - - - - -
βd,2,3 - - - - - - - - -
βd,2,4 - 0.070 -0.042 - - - - - -
βd,2,5 0.404 -0.426 0.241 - 0.108 - - -0.341 -
βd,2,6 - - - - - - - - -
βd,2,7 - - - - - - - - -
βd,3,4 - - - - - - - - -
βd,3,5 - - 0.049 - - - - - -
βd,3,6 - - - - - - - - -
βd,3,7 - - - - - - - - -
βd,4,5 0.201 -0.215 0.120 0.102 -0.091 - - -0.085 -
βd,4,6 - - - - - - - - -
βd,4,7 - - - - - - - - -
βd,5,6 0.117 -0.121 0.121 - - - - - -
βd,5,7 - - 0.109 - - - - - -
βd,6,7 - - - - - - - - -

82

Table B.3: Regression coefficients, part 2
d 10 11 12 13 14 15 16 17
αd,0 -0.138 -0.191 -0.377 0.367 0.095 -0.350 -0.015 -0.145
αd,1 - -0.022 0.050 -0.054 0.337 0.069 -0.295 -
αd,2 - - 0.269 -0.257 -0.151 - - -
αd,3 -0.968 -0.866 - - -0.067 0.307 - -0.954
αd,4 - - 0.099 -0.094 -0.056 - - -
αd,5 - 0.051 -0.482 0.488 -0.251 -0.379 0.473 -
αd,6 - -0.020 0.041 -0.043 0.280 0.055 -0.244 -
αd,7 - - - - 0.088 - -0.076 -
βd,1,1 - - - - 0.067 0.033 -0.069 -
βd,2,2 - - 0.096 -0.090 -0.054 - - -
βd,3,3 0.512 0.720 - - - 0.100 - 0.514
βd,4,4 - - - - - - - -
βd,5,5 - - 0.814 -0.817 -0.554 0.427 - -
βd,6,6 - - - - - - - -
βd,7,7 - - - - - - - -
βd,1,2 - - - - - - - -
βd,1,3 - - - - - 0.092 - -
βd,1,4 - - - - - - - -
βd,1,5 - - -0.151 0.158 0.107 -0.135 - -
βd,1,6 - - - - - - - -
βd,1,7 - - - - - - - -
βd,2,3 - - - - - - - -
βd,2,4 - - 0.070 - -0.042 - - -
βd,2,5 - - -0.426 0.406 0.241 - - -
βd,2,6 - - - - - - - -
βd,2,7 - - - - - - - -
βd,3,4 - - - - - - - -
βd,3,5 - - - - 0.049 -0.503 - -
βd,3,6 - - - - - 0.078 - -
βd,3,7 - - - - - - - -
βd,4,5 - - -0.215 0.202 0.120 - - -
βd,4,6 - - - - - - - -
βd,4,7 - - - - - - - -
βd,5,6 - - -0.121 0.117 0.121 -0.097 - -
βd,5,7 - - - - 0.109 - -0.074 -
βd,6,7 - - - - - - - -

83

84

Appendix C

The exponents ae

In equation (3.14), the exponents ae, corresponding to the expression κ−1
κ

in equations (2.7) and (2.9), are used. In the following the expression for
ai used in equation (3.16) is derived.

The heat capacity ratio κ is defined as

κ = cp
cv
, (C.1)

where cp is the specific heat capacity for constant pressure, and cv is the
specific heat capacity at constant volume, and for an ideal gas, cv = cp−R,
where R is the gas constant. As the assumpion of ideal gas is necessary for
modeling turbines and compressors with equations (2.7)–(2.10), we can use
this. Then we have

κ = cp
cv

= cp
cp −R

κ− 1
κ

=
cp

cp−R − 1
cp

cp−R
=

cp
cp−R −

cp−R
cp−R

cp
cp−R

=
R

cp−R
cp

cp−R
= R

cp
. (C.2)

The average gas constant for a mixed stream is found as the mass av-
erage,

R =
∑
k∈K fk Rk∑
k∈K fk

, (C.3)

85

where the notation is as earlier, but with the stream index skipped. The
average heat capacity is found as enthalpy change divided by temperature
change, and again mass average:

cp = ∆h
∆T =

∑
k∈K fk

∆hk
∆T∑

k∈K fk
=
∑
k∈K fk (hk(TIN)− hk(TOUT))

(TIN − TOUT)
∑
k∈K fk

=∑
k∈K fk

∑5
n=1Hk,n (TINn − TOUT n)

(TIN − TOUT)
∑
k∈K fk

(C.4)

Recalling from equation (3.13) that w =
∑
k∈K η fk

∑5
n=1Hk,n(TINn − tOUT n),

we can substitute the numerator with w/η, and get

cp = w

η (TIN − TOUT)
∑
k∈K fk

. (C.5)

Assembling, we get that

a = κ− 1
κ

= R

cp
=

∑
k∈K fk Rk∑
k∈K fk
w

η (TIN−TOUT)
∑

k∈K fk

= η (TIN − TOUT)
∑
k∈K fk Rk

w
,

(C.6)
and rearranging to avoid any division, we get

a w = η (TIN − TOUT)
∑
k∈K

fk Rk, (C.7)

which is the same as (3.16) if we add subscripts for stream and equip-
ment.

86

Appendix D

Figures for alternative
scenarios

This appendix include flowsheets, composite curves and grand composite
curves for the alternative scenarios presented in sections 4.4 and 5.5.

87

ATR LTSHTS WR CCU

Air

Waste
water

 CO2

Waste

'Cold'
exhaust

Water

 CH 4
1000C

30C
30C

30C

200C1350C

32C
143.6C 143.6C

230C

324.6C 324.6C
560C

560C

415C

20C

2(S2C)

63kg/s
283C

412C

200C
368C 250C

436C 267C

18.0bar

0.51% CO2
9.4% H2O
10% O2
80% N2

0.32% H2O
32% CO2
0.45% CO
0.017% CH4
63% N2

315MW 88MW 230MW

20MW

104C

640kg/s

ATR product HTS product LTS product

CCUreboiler

exhaust

GT fuel

RH

LPSLPBLPE

HPE HPB HPS

preheat

0MW
415C
0kg/s

128MW
283C

85MW
339C

115MW

0kg/s

 751MW
629C

15C

25 bar

18 bar

1.03 bar

0.048 bar

120 bar

4 bar

1.013 bar

15MW80MW
412C
192kg/s

249kg/s

186kg/s

4 bar

28kg/s

preheat

Figure D.1: Flowsheet for process with maximized power output

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

Q [MW]

T
 [o C

]

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

900

1000

Q [MW]

T
 [o C

]

Figure D.2: Composite curves and grand composite curve for process with
maximized power output

88

ATR LTSHTS WR CCU

Air

Waste
water

 CO2

Waste

'Cold'
exhaust

Water

 CH 4
1000C

30C
30C

30C

200C1350C

32C
143.6C 143.6C

230C

324.6C 324.6C
560C

560C

415C

20C

1(S2C)

23kg/s
347C

527C

500C
433C 180C

499C 235C

30.0bar

0.81% CO2
9.1% H2O
11% O2
79% N2

0.2% H2O
35% CO2
1.3% CO
0.15% CH4
59% N2

156MW 83MW 75MW

0MW

31C

529kg/s

ATR product HTS product LTS product

CCUreboiler

exhaust

GT fuel

RH

LPSLPBLPE

HPE HPB HPS

preheat

14MW
527C
111kg/s

61MW
347C

74MW
276C

80MW

0kg/s

 583MW
630C

15C

25 bar

18 bar

1.03 bar

0.048 bar

120 bar

4 bar

1.013 bar

32MW0MW
467C
0kg/s

153kg/s

130kg/s

4 bar

19kg/s

preheat

Figure D.3: Flowsheet for process with no extra ATR air compressor

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

800

900

1000

Q [MW]

T
 [o C

]

0 50 100 150 200
0

100

200

300

400

500

600

700

800

900

1000

Q [MW]

T
 [o C

]

Figure D.4: Composite curves and grand composite curve for process with
no extra ATR air compressor

89

ATR LTSHTS WR CCU

Air

Waste
water

 CO2

Waste

'Cold'
exhaust

Water

 CH 4
1000C

30C
30C

30C

200C1285C

32C
143.6C 143.6C

230C

324.6C 324.6C
560C

560C

415C

20C

1(S2C)

24kg/s
340C

505C

500C
391C 180C

466C 229C

28.7bar

0.74% CO2
8.3% H2O
12% O2
79% N2

0.21% H2O
35% CO2
1.3% CO
0.14% CH4
59% N2

182MW 82MW 78MW

1MW

35C

640kg/s

ATR product HTS product LTS product

CCUreboiler

exhaust

GT fuel

RH

LPSLPBLPE

HPE HPB HPS

preheat

0MW
516C
0kg/s

68MW
340C

80MW
283C

88MW

0kg/s

 663MW
589C

15C

25 bar

18 bar

1.03 bar

0.048 bar

120 bar

4 bar

1.013 bar

33MW64MW
505C
123kg/s

166kg/s

142kg/s

4 bar

21kg/s

preheat

Figure D.5: Flowsheet for process with lower TIT

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

800

900

1000

Q [MW]

T
 [o C

]

0 50 100 150 200
0

100

200

300

400

500

600

700

800

900

1000

Q [MW]

T
 [o C

]

Figure D.6: Composite curves and grand composite curve for process with
lower TIT

90

ATR LTSHTS WR CCU

Air

Waste
water

 CO2

Waste

'Cold'
exhaust

Water

 CH 4
1000C

30C
30C

30C

200C1350C

32C
170.4C 170.4C

230C

330.8C 330.8C
560C

560C

415C

20C

1(S2C)

28kg/s
335C

515C

500C
450C 180C

512C 237C

30.0bar

0.81% CO2
9.1% H2O
11% O2
79% N2

0.2% H2O
35% CO2
1.3% CO
0.15% CH4
59% N2

186MW 106MW 94MW

0MW

31C

640kg/s

ATR product HTS product LTS product

CCUreboiler

exhaust

GT fuel

RH

LPSLPBLPE

HPE HPB HPS

preheat

0MW
527C
0kg/s

77MW
335C

59MW
312C

110MW

0kg/s

 707MW
630C

15C

25 bar

18 bar

1.03 bar

0.048 bar

130 bar

8 bar

1.013 bar

39MW72MW
515C
137kg/s

187kg/s

158kg/s

8 bar

24kg/s

preheat

Figure D.7: Flowsheet for process with higher steam pressures

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

900

1000

Q [MW]

T
 [o C

]

0 50 100 150 200
0

100

200

300

400

500

600

700

800

900

1000

Q [MW]

T
 [o C

]

Figure D.8: Composite curves and grand composite curve for process with
higher steam pressures

91

ATR LTSHTS WR CCU

Air

Waste
water

 CO2

Waste

'Cold'
exhaust

Water

 CH 4
1000C

30C
30C

30C

200C1350C

32C
143.6C 143.6C

230C

324.6C 324.6C
560C

560C

415C

20C

1(S2C)

26kg/s
347C

515C

500C
450C 250C

513C 300C

30.0bar

1.3% CO2
8.8% H2O
11% O2
78% N2

0.2% H2O
33% CO2
2.6% CO
0.16% CH4
60% N2

181MW 82MW 108MW

0MW

31C

640kg/s

ATR product HTS product LTS product

CCUreboiler

exhaust

GT fuel

RH

LPSLPBLPE

HPE HPB HPS

preheat

0MW
527C
0kg/s

73MW
347C

91MW
276C

98MW

0kg/s

 705MW
630C

15C

25 bar

18 bar

1.03 bar

0.048 bar

120 bar

4 bar

1.013 bar

39MW71MW
515C
135kg/s

184kg/s

158kg/s

4 bar

23kg/s

preheat

Figure D.9: Flowsheet for process with less CO2 captured

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

700

800

900

1000

Q [MW]

T
 [o C

]

0 50 100 150 200
0

100

200

300

400

500

600

700

800

900

1000

Q [MW]

T
 [o C

]

Figure D.10: Composite curves and grand composite curve for process with
less CO2 captured

92

Appendix E

Data

The model is based on the following specifications:

ATR Temperature 1000 ◦C
Pressure loss 1 bar

ATR product cooling Pressure loss 1 bar
Inlet temperature 1000 ◦C

HTS Pressure loss 0.5 bar
HTS product cooling Pressure loss 1 bar
LTS Pressure loss 0.5 bar
LTS product cooling Pressure loss 1 bar

Outlet temperature 30 ◦C
WR Temperature 30 ◦C
CCU CO2 capture rate 96.03 %

Fuel outlet temperature 30 ◦C
Fuel compressor Efficiency (isentropic) 86 %

Outlet pressure 25 bar
GT fuel preheating Outlet temperature 200 ◦C
Combustor Temperature 1350 ◦C

Outlet pressure 17.5 bar
Gas turbine Efficiency (isentropic) 91 %

Inlet temperature 1350 ◦C
Inlet pressure 17.5 ◦C
Outlet pressure 1.03 bar

Main air compressor Efficiency (isentropic) 92 %
Outlet pressure 18 bar
Outlet temperature 415 ◦C

93

Mass flow rate 640 kg/s
Effect 288.76 MW

Second air compressor Efficiency (isentropic) 88 %
Inlet pressure 18 bar
Inlet temperature 415 ◦C

Extra air compressor Efficiency (isentropic) 88 %
Inlet pressure 1.013 bar
Inlet temperature 15 ◦C

LP steam pump Outlet pressure 4 bar
Outlet temperature 32 ◦C
Specific work 0.403 kJ/kg

HP steam pump Outlet pressure 120 bar
Outlet temperature 143.6 ◦C
Specific work 16.65 kJ/kg

LPE Mass specific heating 470 kJ/kg
Inlet temperature 32 ◦C
Outlet temperature 143.6 ◦C

LPB Mass specific heating 2134 kJ/kg
Temperature 143.6 ◦C

LPS Mass specific heating 186 kJ/kg
Outlet temperature 230 ◦C

HPE Mass specific heating 880 kJ/kg
Inlet temperature 143.6 ◦C
Outlet temperature 324.6 ◦C

HPB Mass specific heating 1198 kJ/kg
Temperature 324.6 ◦C

LPS Mass specific heating 816 kJ/kg
Outlet temperature 560 ◦C

RH Outlet temperature 560 ◦C
HP steam turbine Efficiency (isentropic) 94 %
IP steam turbine Efficiency (isentropic) 92 %
LP steam turbine Efficiency (isentropic) 88 %

Outlet pressure 0.048 bar
MORE TEMPERATURES and (∆)P

Methane feed Temperature 15 ◦C
Cooling water Inlet temperature 10 ◦C

Outlet temperature 25 ◦C
Pressure loss 1 bar

Cooling water pump Work per MJ of cooling 2.1 kJ/MJ
CO2 compression Mass specific work 342 kJ/kg

Outlet pressure 110 bar

94

CCU reboiler Heating per kg of CO2 captured 1500 kJ/kg
Temperature 120 ◦C

95

96

Appendix F

Source code

In this appendix, the code used for the implemented model is presented.
The first section shows the GAMS code for the optimization, which is the
most important part. The MATLAB code used for handling data, calling
HYSYS for process simulations, regression, calculations and solution output
is included below. It is lengthy, but the code would be incomplete if some
of these parts were left out. A large amount of code, including that used
for the accuracy comparison with HYSYS, and many scripts for testing and
analyzing results, is not presented here, as this is not central parts of the
work and this appendix is already long enough.

F.1 The optimization model written in GAMS
F.1.1 The main file — ircc.gms
**
* ircc.gms - Integrated Reforming Combined Cycle
**
* OTHER FILES NEEDED:
* GAMS SCRIPTS:
* combustion.gms, air.gms, turbo.gms, hrsgconnected.gms (using hr.gms)
* GDX DATA FILES:
* masterset.gdx, regcoeffs.gdx, modelparameters.gdx,
* (and indirectly: combustion.gdx, air.gdx, turbo.gdx, hrsgconnected.gdx)
**

97

*Reading sets and parameter values from gdx files
*Reading the full set...
$Gdxin masterset.gdx
Set v_all indices for ALL variables;
$load v_all
Set v_bounded(v_all) the variables with bounds;
$load v_bounded
Parameters

lower(v_all) lower bounds
upper(v_all) upper bounds
objcoeffs(v_all) objective function coefficients
objtype the type of objective (power or efficiency)
maxtime maximum solution time;

$load lower, upper, objcoeffs, objtype, maxtime
$Gdxin
*Reading regression coefficients and related sets and parameters
$Gdxin regcoeffs.gdx
Set v(v_all) indices for all variables in regression;
$load v
Sets

iv(v) indices for the independent variables
dv(v) indices for the dependent variables
dv_all(v_all)
b indices for all regression coefficients;

$load iv, dv, b
Parameters

betas(b,dv) regression coefficients
high(v) highest value of variables in the data set
low(v) lowest value of variables in the data set;

Sets
lb(iv,b) indices for linear regression coefficients
qb(iv,b) indices for quadratic regression coefficients
bb(iv,iv,b) indices for bilinear regression coefficients;

$load betas, lb, qb, bb, high, low
$Gdxin
*Reading objective coefficients ("costs"), upper and lower bounds, linear
*constraint coefficients and bounds and starting point, with related sets
$Gdxin modelparameters.gdx
Sets

feedflow(v_all) the flow rate of the methane feed
lc indices for the linear constraints

98

ec indices for linear equality constraints
pr indices for product constraints;

$load lc, feedflow, ec, pr
alias(v_all, v_all2, v_all3);
Parameters

linconstr(lc, v_all) coefficient matrix for linear constraints
linconstrbound(lc) vector of bounds for the linear constraints
eqconstr(ec, v_all) coefficient matrix for linear equality constrs.
eqconstrconst(ec) vector of constants for the lin. eq. constrs.
prodconstr(pr,v_all,v_all2, v_all3) coefficients for product constrs.
startingpoint(v_all) starting values
feedflowdep(dv) variables directly depending on feedflow;

$load linconstr, linconstrbound, eqconstr, eqconstrconst, prodconstr
$load startingpoint, feedflowdep
$Gdxin
*End of reading

*Declaring variables and equations
Variables

x(v_all) all variables
z objective;

Equations
interpol(dv) relations between independent and dependent variables
linear(lc) linear constraints
eqlin(ec) equality constraints
product(pr, v_all, v_all2, v_all3) products
powerobjective objective for maximizing power
effobjective objective for maximizing efficiency;

dv_all(v_all)=yes; dv_all(iv)=no;
alias(iv, iv2);
* Setting the dependent variables with the regression equations
interpol(dv) .. x(dv) =e= (.5*(high(dv)+low(dv))+(high(dv)-low(dv))*

(betas("beta_0",dv) + sum(lb(iv,b), x(iv)*betas(b, dv)) +
sum(qb(iv,b), x(iv)*x(iv)*betas(b, dv)) +
sum(bb(iv,iv2,b), x(iv)*x(iv2)*betas(b,dv))))
*(1 - feedflowdep(dv) + feedflowdep(dv) * sum(feedflow,x(feedflow)));

* Setting the linear constraints
linear(lc) .. sum(iv$(linconstr(lc,iv)<>0),

(x(iv)*(high(iv)-low(iv))+.5*(high(iv)+low(iv)))*linconstr(lc,iv)) +

99

sum(dv_all$(linconstr(lc,dv_all)<>0), x(dv_all)*linconstr(lc, dv_all))
=l= linconstrbound(lc);

eqlin(ec) .. sum(iv$(eqconstr(ec,iv)<>0),
(x(iv)*(high(iv)-low(iv))+.5*(high(iv)+low(iv)))* eqconstr(ec,iv)) +
sum(dv_all$(eqconstr(ec,dv_all)<>0), x(dv_all)*eqconstr(ec, dv_all))=e=
eqconstrconst(ec);

Parameter coeff(v_all), const(v_all);
coeff(v_all)=1; const(v_all)=0;
coeff(iv)=high(iv)-low(iv); const(iv)=.5*(high(iv)+low(iv));
* Setting product equality constraints
product(pr,v_all,v_all2, v_all3)$(prodconstr(pr,v_all,v_all2, v_all3)<>0) ..

coeff(v_all)*x(v_all)+const(v_all) =e=
prodconstr(pr,v_all,v_all2, v_all3)*
(coeff(v_all2)*x(v_all2)+const(v_all2))*
(coeff(v_all3)*x(v_all3)+const(v_all3));

* Lower and upper bounds
x.lo(v_bounded)=lower(v_bounded);
x.up(v_bounded)=upper(v_bounded);
*Normalizing the bounds for the input variables
x.lo(iv) = (lower(iv) - .5*(high(iv)+low(iv))) / (high(iv)-low(iv));
x.up(iv) = (upper(iv) - .5*(high(iv)+low(iv))) / (high(iv)-low(iv));

* Starting values
x.l(feedflow)=lower(feedflow);
x.l(iv) = (startingpoint(iv)-.5*(high(iv)+low(iv)))/(high(iv)-low(iv));
x.l(dv) = (1 - feedflowdep(dv) + feedflowdep(dv) * x.l("feedflow"))

.5(high(dv)+low(dv))+(high(dv)-low(dv))*(betas("beta_0",dv) +
sum(lb(iv,b), x.l(iv)*betas(b, dv)) +
sum(qb(iv,b), x.l(iv)*x.l(iv)*betas(b, dv)) +
sum(bb(iv,iv2,b), x.l(iv)*x.l(iv2)*betas(b,dv)));

* Including scripts for "other modules"
$include combustion.gms
$include air.gms
$include turbo.gms
$include hrsgconnected.gms

* Setting the objective
*** Net power output
powerobjective$(objtype eq 1) ..z =e= sum(v_all, objcoeffs(v_all)*x(v_all))

100

+ Q_H*Q_Hcost + Q_C*Q_Ccost + sum(s, flow(s)*flowcost(s));
*** Net efficiency
effobjective$(objtype eq 2) .. z*x("feedflow") =e=

sum(v_all, objcoeffs(v_all)*x(v_all)) +
Q_H*Q_Hcost + Q_C*Q_Ccost + sum(s, flow(s)*flowcost(s));

* Defining the model (with all equations)
model ircc /all/;

* Treat fixed variables as constant
ircc.holdfixed=1;
* Max solution time
ircc.reslim=maxtime;
* Some options
ircc.optcr=1e-9;
option sys12 = 1;
option limrow = 50;
option limcol = 50;
option minlp=baron;

* Setting bounds for the ATR pressure (used for manual branching)
*x.lo("feedpressure")=-.307;
*x.up=.5;

*Solving the optimization model
Solve ircc using minlp minimizing z;

*Preparing the solution to be written to file
Parameter x_opt(v_all);
x_opt(v_all)=x.l(v_all);
x_opt(iv)=.5*(high(iv)+low(iv))+(high(iv)-low(iv))*x.l(iv);

*Preparing information about the solution
Parameters z_opt

exectime
iterations
modelstatus;

z_opt=z.l;
exectime=-5.0;
exectime=ircc.Resusd;
iterations=-5.0;

101

iterations=ircc.Iterusd;
modelstatus=ircc.ModelStat;

*Writing output to file
Execute_unload "irccoptimum.gdx" x_opt, z_opt, exectime, iterations, modelstatus
*** Heat integration solution
Parameters Tin(streams), Tout(streams), mCp(streams);
Tin(s)=T_in.l(s);
Tout(s)=T_out.l(s);
mCp(s)=flow.l(s);
Execute_unload "hrsgopt.gdx" Tin, Tout, mCp, HRAT, Q_H, Q_C, z.l;

F.1.2 Combustion modeling — combustion.gms
**
* combustion.gms
**

*Reading sets and parameter values from gdx file
$Gdxin combustion.gdx
Set v_comb(v_all) Set of variables related to combustion;
$load v_comb
Sets

exhcomp(v_comb) The componets in the exhaust
comb_airflow(v_comb) Air flowrate to the combustor;

$load exhcomp, comb_airflow
Parameter combreaction(v,exhcomp) Reaction stoichiometry

air(exhcomp) Air composition
q_comb_air Heating of air to combustion temp.(TIT)
LHV(v) Lower heating values
CpDT(exhcomp) Heating of combustion products to TIT
tempscale Scaling factor for some temperatures;

$load combreaction, air, q_comb_air, LHV, CpDT
$load tempscale
$Gdxin
*End of reading

Equations
combustion(exhcomp, comb_airflow) combustion reactions
heatbalance(comb_airflow) heat balance to determine air excess;

102

heatbalance(comb_airflow) ..
sum(exhcomp, CpDT(exhcomp)*(x(exhcomp)-air(exhcomp)*x(comb_airflow)) +
air(exhcomp)*x(comb_airflow)*q_comb_air) =e= sum(v, LHV(v) * x(v));

combustion(exhcomp, comb_airflow) .. x(exhcomp) =e=
sum(v$(combreaction(v,exhcomp)<>0), combreaction(v,exhcomp)*x(v)) +
air(exhcomp)*x(comb_airflow);

F.1.3 Air distribution modeling — air.gms
**
* air.gms
**

*Reading sets and parameter values from gdx file
$Gdxin air.gdx
Set v_air(v_all) Set of variables related to air supply;
$load v_air
Sets p_feed(iv) Feed pressure

T_airfeed(iv) Air feed temperature
flow_ATRair(v_air) Air flowrates to the ATR
p_ATRair(v_air) Pressure of the air flows to the ATR
T_ATRair(v_air) Temperature of the air flows to the ATR;

$load p_feed, T_airfeed, flow_ATRair, T_ATRair, p_ATRair
Sets flow_ATRair_2nd(flow_ATRair) air flows into the ATR

ATRair(p_ATRair, T_ATRair, flow_ATRair) (connecting variables);
Parameters ATR_air(v) stoichiometry for reforming reactions

p_and_T(p_ATRair, T_ATRair) (used for connecting cariables)
airflow flow rate through main compressor;

$load ATRair, flow_ATRair_2nd, ATR_air, p_and_T,
$load airflow

$Gdxin
*End of reading

Equations
airbalance determining the amount of ATR air needed
ATRpressure(p_ATRair, p_feed) ATR pressure=air compression pressure
airtemperaturesum(T_airfeed) mixing temperature
AF balance for air flow from main compr.;

103

airbalance .. sum(flow_ATRair, x(flow_ATRair)) =e=
sum(v$(ATR_air(v) <> 0), x(v)*ATR_air(v));

ATRpressure(p_ATRair, p_feed).. x(p_ATRair) =e=
.5*(high(p_feed)+low(p_feed))+(high(p_feed)-low(p_feed))*x(p_feed);

airtemperaturesum(T_airfeed) .. sum(ATRair(p_ATRair, T_ATRair, flow_ATRair),
tempscale*x(T_ATRair) * x(flow_ATRair)) =e= (273.15+.5*(high(T_airfeed)
+low(T_airfeed))+(high(T_airfeed)-low(T_airfeed))*x(T_airfeed)) *
sum(flow_ATRair, x(flow_ATRair));

AF.. sum(comb_airflow,x(comb_airflow))+sum(flow_ATRair_2nd,x(flow_ATRair_2nd))
=e= airflow;

F.1.4 Turbo-machinery modeling — turbo.gms
**
* turbo.gms
**

Sets trb set of turbines
trb1(trb) turbomachinery modeled physically
trb2(trb) turbomach. modeled from simulations
trbflows(v_all) turbomach. flow variables
p_out(v_all) outlet pressure variables
T_trb_out(v_all) outlet temperature variables
Ti_trb_out(v_all) ideal outlet temperature variables
W(v_all) power or work variables
kappafrac(v_all) (kappa-1) divided by kappa exponents
exp set for temperature exponents;

Parameter
eff(trb) turbine efficiencies
turboflows(trb,trbflows) which flows for which turbomachine
Cpcoeffs(trbflows,exp) specific heat equation coefficients
T_trb_in(trb) inlet temperatures
p_in(trb) inlet pressures
kappafracsign(trb) (used for changing p_in with p_out)
R(trbflows) gas constants
exponents(exp) exponents for specific heat eqn.
w0(trb2) work for p_ATR=0 (constant term)
dwdp(trb2) coefficient for pressure in work eqn.
T0(trb2) temperature for p_ATR=0 (constant term)
dTdp(trb2) coefficient for pressure in temp. eqn.;

$GDXIN turbo.gdx

104

$load trb,trb1,trb2,trbflows, p_out, T_trb_out,Ti_trb_out, W, kappafrac, exp
$load eff, turboflows, Cpcoeffs, T_trb_in, p_in, kappafracsign, R, exponents
$load w0, dwdp, T0, dTdp
$GDXIN

Equations
turbine1(trb1, Ti_trb_out, W) power for trb1
turbine2(trb2,W,p_feed) power for trb2
idealturbinetemp(trb, Ti_trb_out, p_out, kappafrac) ideal outlet temp.s
turbinetemp(trb1, T_trb_out, Ti_trb_out) trb1 outlet temp.s
turbinetemp2(trb2, T_trb_out, p_feed) trb2 outlet temp.s
comprexp(trb1,Ti_trb_out,kappafrac,W) exponents in idealturbinetemp

;
*Variable deltaH(trb);

turbine1(trb1, Ti_trb_out, W)$(ord(Ti_trb_out) eq ord(trb1) and
ord(W) eq ord(trb1)) .. x(W) =e= eff(trb1)*
sum(trbflows$(turboflows(trb1,trbflows) eq 1), x(trbflows)*
sum(exp, Cpcoeffs(trbflows,exp) *
(T_trb_in(trb1)**exponents(exp)-x(Ti_trb_out)**exponents(exp)) /
exponents(exp)));

turbine2(trb2,W,p_feed)$(ord(W) eq ord(trb2)+card(trb1)) .. x(W) =e=
sum(trbflows$(turboflows(trb2,trbflows) eq 1), x(trbflows)*
(w0(trb2) + dwdp(trb2)*(const(p_feed) + coeff(p_feed)*x(p_feed))));

idealturbinetemp(trb1,Ti_trb_out,p_out,kappafrac)$(ord(Ti_trb_out) eq ord(trb1)
and ord(p_out) eq ord(trb1) and ord(kappafrac) eq ord(trb1)) ..
x(Ti_trb_out) =e=
T_trb_in(trb1) * (x(p_out)/p_in(trb1))**x(kappafrac);

turbinetemp(trb1,T_trb_out,Ti_trb_out)$(ord(T_trb_out) eq ord(trb1)
and ord(Ti_trb_out) eq ord(trb1)) .. x(T_trb_out) =e=
abs(eff(trb1))*x(Ti_trb_out)+(1-abs(eff(trb1)))*T_trb_in(trb1);

turbinetemp2(trb2, T_trb_out, p_feed)$(ord(T_trb_out) eq ord(trb2)+card(trb1))..
x(T_trb_out) =e=
T0(trb2) + dTdp(Trb2)*(const(p_feed)+coeff(p_feed)*x(p_feed));

comprexp(trb1,Ti_trb_out,kappafrac,W)$(ord(Ti_trb_out) eq ord(trb1) and
ord(kappafrac) eq ord(trb1) and ord(W) eq ord (trb1)) ..
eff(trb1) * sum(trbflows$(turboflows(trb1, trbflows) eq 1),

105

x(trbflows)*R(trbflows)) * tempscale*(T_trb_in(trb1)-x(Ti_trb_out)) =e=
x(kappafrac) * x(W);

F.1.5 Connecting to the heat integration model — hrsgcon-
nected.gms

Set streams set of all heat integration streams;
Sets noniso(streams) set of non-isothermal streams

iso(streams) set of isothermal streams
cold(noniso) set of cold non-isothermal streams
hot(noniso) set of hot non-isothermal streams
isocold(iso) set of cold isothermal streams
isohot(iso) set of hot isothermal streams
allcold(streams) set of all cold streams
allhot(streams) set of all hot streams
pc(streams) set of pinch candidate streams;

Parameters
T_in_up(streams) upper bound for inlet temperatures
T_in_lo(streams) lower bound for inlet temperatures
T_out_up(streams) upper bound for outlet temperatures
T_out_lo(streams) lower bound for outlet temperatures
flow_lo(streams) upper bound for flows (heat capacity or heat)
flow_up(streams) lower bound for flows (heat capacity or heat)
HRAT heat recovery approach temperature
Q_Hcost cost for hot utilities
Q_Ccost cost for cold utilities
flowcost(streams) costs for streams
T_inconn(streams,v_all) coefficients for connecting T_in variables
T_outconn(streams,v_all) coefficients for connecting T_out variables
flowconn(streams,v_all) coefficients for connecting flow variables
flowconn2(streams,streams) coefficients for internally connecting flows
T_inconnconst(streams) (constant terms for T_in connections)
T_outconnconst(streams) (constant terms for T_out connections);

* Reading data from GDX file
$GDXIN ’hrsgconnected.gdx’
$load streams, noniso, iso, cold, hot, isocold, isohot, allcold, allhot, pc
$load T_in_up, T_in_lo, T_out_up, T_out_lo
$load flow_up, flow_lo, HRAT, Q_Hcost, Q_Ccost, flowcost
$load T_inconn, T_outconn, flowconn, flowconn2, T_inconnconst, T_outconnconst

106

$GDXIN

* Defining subsets without the dummy stream
Sets s(streams)

h(hot)
c(cold)
ni(noniso)
i(iso)
ih(isohot)
ic(isocold)
p(pc)
ah(allhot)
ac(allcold);

s(streams)=yes; s("dummy")=no;
h(hot)=yes; h("dummy")=no;
c(cold)=yes; c("dummy")=no;
ni(noniso)=yes; ni("dummy")=no;
i(iso)=yes; i("dummy")=no;
ih(isohot)=yes; ih("dummy")=no;
ic(isocold)=yes; ic("dummy")=no;
p(pc)=yes; p("dummy")=no;
ah(allhot)=yes; ah("dummy")=no;
ac(allcold)=yes; ac("dummy")=no;

* Defining variables
Positive variables

T_in(streams) inlet (supply) temperatures
T_out(streams) outlet (target) temperatures
flow heat capacity or heat flows
Q_H hot utility usage
Q_C cold utility usage;

Equations
T_inconnection(streams) connecting T_in with other temperatures
T_outconnection(streams) connecting T_out with other temperatures
flowconnection(streams) connecting heat int. flows with other flows
flowconnection2(streams) connecting heat integration flows;

T_inconnection(s)$(sum(v_all, T_inconn(s,v_all)**2)>0 or T_inconnconst(s)<>0)..
T_in(s) =e= sum(v_all$(T_inconn(s,v_all) <> 0),
T_inconn(s,v_all)*x(v_all)) + T_inconnconst(s);

107

T_outconnection(s)$(sum(v_all, T_outconn(s,v_all)**2)>0 or T_outconnconst(s)<>0)
.. T_out(s) =e= sum(v_all$(T_outconn(s,v_all) <> 0),
T_outconn(s, v_all)*x(v_all)) + T_outconnconst(s);

flowconnection(s)$(sum(v_all, flowconn(s,v_all)**2)>0) ..
flow(s) =e= sum(v_all$(flowconn(s,v_all) <> 0),
flowconn(s, v_all)*x(v_all));

flowconnection2(s)$(sum(streams, flowconn2(s,streams)**2)>0) ..
flow(s) =e= sum(streams$(flowconn2(s,streams) <> 0),
flowconn2(s,streams)*flow(streams));

T_in.up(s)=T_in_up(s);
T_out.lo(s)=T_out_lo(s);
flow.up(s)=flow_up(s);

T_in.lo(s)=T_in_lo(s);
T_out.up(s)=T_out_up(s);
flow.lo(s)=flow_lo(s);

* Including the heat integration model
$include hr.gms

F.1.6 The heat integration model — hr.gms
Parameters

M1(streams,pc) big M constant
M2(streams,pc) big M constant
Tadj(streams) constant for adjusting for HRAT;

Variables
T_m(streams,pc) (see t_M in Model chapter)
Qp(iso,pc) (see f_QP in Model chapter);

Binary variables
y_hr(streams,pc);

Equations
Q_H_eqn(pc) Heating above pinch for every pinch candidate
Q_balance Total heat balance
T_m1h(hot,pc) these next equations are used to set T_M such that
T_m2h(hot,pc) Q_H_eqn accounts for only the heating and
T_m3h(hot,pc) cooling above pinch...

108

T_m1c(cold,pc)
T_m2c(cold,pc)
T_m3c(cold,pc)
Tisoh(isohot,pc) likewise for isothermal streams...
Tisoc(isocold,pc)
Qpeqnh(isohot,pc)
Qpeqn2h(isohot,pc)
Qpeqnc(isocold,pc);

*Adjust cold streams with HRAT
Tadj(allcold)=HRAT;
Tadj(allhot)=0;

*Setting the big M constants
M1(streams,p)=1000;
M2(streams,p)=1000;
M1(ah,p) = T_in_up(p) + Tadj(p) - T_in_lo(ah) - Tadj(ah);
M2(h,p) = T_in_up(h) + Tadj(h) - T_in_lo(p) - Tadj(p);
M1(ac,p) = -T_in_lo(p) - Tadj(p) + T_in_up(ac) + Tadj(ac);
M2(c,p) = -T_in_lo(c) - Tadj(c) + T_in_up(p) + Tadj(p);
M2(i,p) = flow_up(i);
M1(s,p)$(M1(s,p)<0)=0;

Q_H_eqn(p) .. Q_H =g= sum(c, flow(c)*(T_out(c)-T_m(c,p)))
- sum(h, flow(h)*(T_in(h)-T_m(h,p)))
+ sum(ic, Qp(ic,p)) - sum(ih, Qp(ih,p))
;

Q_balance .. Q_C - Q_H =e=
sum(ni,(T_in(ni)-T_out(ni))*flow(ni))
+ sum(ih, flow(ih)) - sum(ic, flow(ic))
;

T_m1h(h,p) .. T_m(h,p) =g= T_out(h);
T_m2h(h,p) .. T_m(h,p) =g= T_in(p) + Tadj(p) - Tadj(h) - y_hr(h,p)*M1(h,p);
T_m3h(h,p) .. T_m(h,p) =g= T_in(h) - (1 - y_hr(h,p)) * M2(h,p);

T_m1c(c,p) .. T_m(c,p) =l= T_out(c);
T_m2c(c,p) .. T_m(c,p) =l= T_in(p) + Tadj(p) - Tadj(c) + (1-y_hr(c,p))*M1(c,p);
T_m3c(c,p) .. T_m(c,p) =l= T_in(c) + y_hr(c,p) * M2(c,p);

*sametempchange(s) .. T_in(s) - T_out(s) =e= T_in_up(s) - T_out_up(s);

109

Tisoh(ih,p) .. T_in(ih) =g= T_in(p) + Tadj(p) - Tadj(ih) - y_hr(ih,p)*M1(ih,p);
Tisoc(ic,p) .. T_in(ic) =l= T_in(p) + Tadj(p)-Tadj(ic)+(1-y_hr(ic,p))*M1(ic,p);
Qpeqnh(ih,p) .. Qp(ih,p) =l= (1-y_hr(ih,p)) * M2(ih,p);
Qpeqn2h(ih,p) .. Qp(ih,p) =l= flow(ih);
Qpeqnc(ic,p) .. Qp(ic,p) =g= flow(ic) - y_hr(ic,p)*M2(ic,p);

Parameter ord2(streams) (help parameter for the next equations);
ord2(streams)=ord(streams);

* Applying logic to fix binary variables
y_hr.fx(ah,p)$(ord2(ah) eq ord2(p))=1;
y_hr.fx(ac,p)$(ord2(ac) eq ord2(p))=0;
y_hr.fx(s,p)$(T_in_up(s)<T_in_lo(p)) = 1;
y_hr.fx(s,p)$(T_in_lo(s)>T_in_up(p)) = 0;

* Setting bounds for the ’constructed variables’
Qp.lo(i,p)=0;
Qp.up(i,p)=flow_up(i);
T_m.lo(h,p)=T_out_lo(h);
T_m.up(h,p)=max(T_in_up(h),T_in_up(p));
T_m.lo(c,p)=min(T_in_lo(c),T_in_lo(p));
T_m.up(c,p)=T_out_up(c);

F.2 Data handling and regression code in MAT-
LAB

F.2.1 Main file — ircc.m

%%%
% OPTIMIZATION OF IRCC
%
% Functions/scripts used:
% "HOME MADE":
% − regcoeffs.m (using polyreg2.m)
% − setmodelparameters.m
% − solveircc.m
% − combustion.m
% − air.m

110

% − turbo.m
% − findpos.m
% GDXMRW package:
% − writegdx.m (using wgdx.m)
% − readgdx.m (using rgdx.m)
% − sp2full.m (and full2sp.m?)
%%%
clear all

%%%
% Control parameters
%%%
tighterbounds=0; % 0: no tightening, 1: tighten bounds, 2: tighten more
tempscale=800; % Scaling of temperatures in turbines and compressors
flowscale=3600e3; % Scaling of all mass and energy flows
rungams=false; % Run GAMS from MATLAB or not
maxtime=30; % Max. solution time in seconds
runsimulation=false;% Do the HYSYS simulations or use saved simulation file
runregression=false;% Do regression or use saved regression coefficients
if runsimulation

runregression=true;
end

objtype=2; % 1: Maximize power, 2: Maximize efficiency
aircompressorfix=0; % 0: Try both, 1: Only second, 2: Only extra
lowerTIT=1285; % 0: TIT = 1350 C, else TIT = lowerTIT [C]
otherLP=0; % 0: LP = 4 bar, 8: LP = 8 bar
otherHP=0; % 0: HP = 120 bar, 130: HP = 130 bar
relax=1; % 0: No relaxation, 1: Include fewer pinch candidates

%%%
% Setting some basic parameters
%%%
irccdata

if objtype==2
objscale=1/CH4_in/LHV_CH4*100; % Scaling of the objective function

else
objscale=1;

end

%%%
% Calling simulation to do run LHS sampling and HYSYS process simulations
%%%
if runsimulation

simulation
end

111

%%%
% Calling regcoeffs to fit data to 2nd order polynomials and provide GAMS
% with the regression coefficients
%%%
regcoeffs

%%%
% Starting point
%%%
startingpoint=[

feedtemp 500
LTStemp 250
feedpressure 30
HTStemp 300
S2C 1
airtemp 500
steamtemp 345
feedflow 8.7482];

%%%
% Calling setmodelparameters to provide GAMS with some linear constraints,
% linear equality constraints, product constraints and a starting point
%%%
setmodelparameters

%%%
% Setting parameters related to combustion
%%%
combustion

%%%
% Setting parameters related to air supply
%%%
air

%%%
% Setting parameters related to turbines and compressors
%%%
turbo

%%%
% Setting the objective function coefficients (the objective funtction is
% linear in the form cost*variable)
%%%
objective=[...
% feedflow 8e7/flowscale; ...

CCU_CO2 w_CO2compr*split.CO2(2); ...
fuelcompr 1; ...

112

W_GT −1; ...
W_2ndcompr 1; ...
W_extcompr 1; ...
W_HPturb −(1−STcondensercooling); ...
W_IPturb −(1−STcondensercooling); ...
comb_airflow w_air; ...
flow_ATRair_2nd w_air];

objective(:,2)=objscale*objective(:,2);

%%%
% Setting lower and upper bounds for the variables
%%%
bounds

%%%
% Including sets and parameters related to heat integration
%%%
hrsg

%%%
% Writing objective, bounds and the set of all parameters to GDX file
%%%
writegdx('masterset.gdx', ...

'set', 'v_all', v_all, ...
'set', 'v_bounded', v_all, ...
'parameter', 'lower', [v_all lowerbound(v_all')'], ...
'parameter', 'upper', [v_all upperbound(v_all')'], ...
'parameter', 'objcoeffs', objective, ...
'parameter', 'objtype', objtype, ...
'parameter', 'maxtime', maxtime, ...
uels);

%%%
% Solving the model with GAMS/BARON
%%%
gamsdir='C:\Programfiler\GAMS23.6\'; %The directory where GAMS is installed
filepath='';
gamsfile=['"' filepath 'ircc.gms"']; %The gams file for the optimization
gamsoption=' MINLP BARON'; %Using BARON as MINLP solver
if rungams

dos([gamsdir 'GAMSKEEP ' gamsfile gamsoption]);
end
%%%
% Reading the solution
%%%
getsolution

%%%

113

% Calculating other variables (postprocessing) and displaying the solution
%%%
irccoutput

F.2.2 Input of basic data — irccdata.m

%%%
% irccdata.m
%%%

% Including the gdxmrw package
addpath 'C:\Programfiler\GAMS23.6';
% Including the hysyslib toolbox
addpath 'C:\Users\Erik\Documents\MATLAB\hysyslib';

% The components present in the process
components={'CO' 'CO2' 'H2O' 'H2' 'CH4' 'O2' 'N2'};
% Molar mass of the components
M=struct('CO', 28.01, 'CO2', 44.01, 'H2O', 18.0153, 'H2', 2.0159,...

'CH4', 16.042, 'O2', 31.9988, 'N2', 28.0134);
% Air composition
airO2=.21; airN2=.79;
airO2mass=airO2*M.O2/(airO2*M.O2+airN2*M.N2);
airN2mass=airN2*M.N2/(airO2*M.O2+airN2*M.N2);
% Lower heating values
LHV_CO=10.9*1000; % [kJ/kg]
LHV_H2=120.1*1000; % [kJ/kg]
LHV_CH4=50.1*1000; % [kJ/kg]
% CCU Splitting factors [H2 rich Syngas, CO2 to compression, Waste stream]
% (Copy/paste from HYSYS)
split.CH4=[0.996000000000000 8.50000000000000e−004 3.14999999999999e−003];
split.H2O=[7.99000000000000e−002 0.916690000000000 3.41000000000002e−003];
split.CO= [0.997200000000000 4.40000000000000e−004 2.36000000000003e−003];
split.H2= [0.997100000000000 4.60000000000000e−004 2.44000000000000e−003];
split.CO2=[3.15000000000000e−002 0.960330000000000 8.17000000000001e−003];
split.N2= [0.998100000000000 2.20000000000000e−004 1.68000000000001e−003];
split.O2= [1.00000000000000 0.000000000000000 0.000000000000000];
% Flowrate of methane into the reformer
CH4_in=10000/flowscale;

% Some temperatures
T_refprod = 1000; % Reformer product temperature [C]
T_WRfeed = 30; % Water removal feed temperature [C]
CCUoutlettemp = 30; % Temperature at the CCU outlet [C]
C2K = 273.15; % Difference between Celsius and Kelvin scales

114

% Minimum capture ratio
mincapture=.9;

iv = 7; % Number of independent variables
dv =17; % Number of dependent variables
v =iv+dv;
uels=cell(v,1);

% 'Independent variables'
feedtemp = 1; uels{feedtemp} = 'feedtemp';
LTStemp = 2; uels{LTStemp} = 'LTStemp';
feedpressure= 3; uels{feedpressure}= 'feedpressure';
HTStemp = 4; uels{HTStemp} = 'HTStemp';
S2C = 5; uels{S2C} = 'S2C';
airtemp = 6; uels{airtemp} = 'airtemp';
steamtemp = 7; uels{steamtemp} = 'steamtemp';

% 'Dependent variables'
CS_CO2 = 1+iv; uels{CS_CO2} = 'CS_CO2';
CS_CO = 2+iv; uels{CS_CO} = 'CS_CO';
CS_H2 = 3+iv; uels{CS_H2} = 'CS_H2';
HTStemp2 = 4+iv; uels{HTStemp2} = 'HTStemp2';
LTStemp2 = 5+iv; uels{LTStemp2} = 'LTStemp2';
mCp_GTfuel = 6+iv; uels{mCp_GTfuel} = 'mCp_GTfuel';
mCp_HTSprod = 7+iv; uels{mCp_HTSprod} = 'mCp_HTSprod';
mCp_LTSprod = 8+iv; uels{mCp_LTSprod} = 'mCp_LTSprod';
mCp_refprod = 9+iv; uels{mCp_refprod} = 'mCp_refprod';
GTfueltemp = 10+iv; uels{GTfueltemp} = 'GTfueltemp';
CCU_H2O = 11+iv; uels{CCU_H2O} = 'CCU_H2O';
CCU_CO = 12+iv; uels{CCU_CO} = 'CCU_CO';
CCU_CO2 = 13+iv; uels{CCU_CO2} = 'CCU_CO2';
CCU_H2 = 14+iv; uels{CCU_H2} = 'CCU_H2';
CCU_CH4 = 15+iv; uels{CCU_CH4} = 'CCU_CH4';
CCU_N2 = 16+iv; uels{CCU_N2} = 'CCU_N2';
fuelcompr = 17+iv; uels{fuelcompr} = 'fuelcompr';
regvarflows=[CS_CO2 CS_CO CS_H2 mCp_GTfuel mCp_HTSprod ...

mCp_LTSprod mCp_refprod CCU_H2O CCU_CO CCU_CO2 CCU_H2 CCU_CH4 ...
CCU_N2 fuelcompr];

feedflowdep=[CS_CO2 CS_CO CS_H2 mCp_GTfuel mCp_HTSprod mCp_LTSprod ...
mCp_refprod CCU_H2O CCU_CO CCU_CO2 CCU_H2 CCU_CH4 CCU_N2 fuelcompr];

CCU_set=[CCU_H2O CCU_CO CCU_CO2 CCU_H2 CCU_CH4 CCU_N2];
v_set=(1:v)';
iv_set=(1:iv)';
dv_set=(1:dv)'+iv;

% Other variables (more are defined in combustion.m and air.m)
feedflow = 1+iv+dv; uels{feedflow} = 'feedflow';

115

steamfeed = 2+iv+dv; uels{steamfeed} = 'steamfeed';
V=steamfeed;

% Combustion
exh_H2O = 1+V; uels{exh_H2O} = 'exh_H2O';
exh_CO2 = 2+V; uels{exh_CO2} = 'exh_CO2';
exh_O2 = 3+V; uels{exh_O2} = 'exh_O2';
exh_N2 = 4+V; uels{exh_N2} = 'exh_N2';
exhaust_set=(exh_H2O:exh_N2)';
V=exh_N2;

% Turbo
T_GT = 1+V; uels{T_GT} = 'T_GT';
T_ATRair_2nd= 2+V; uels{T_ATRair_2nd}='T_ATRair_2nd';
T_ATRair_ext= 3+V; uels{T_ATRair_ext}='T_ATRair_ext';
T_HPturb = 4+V; uels{T_HPturb} = 'T_HPturb';
T_IPturb = 5+V; uels{T_IPturb} = 'T_IPturb';
T_ATRair_set= [T_ATRair_2nd; T_ATRair_ext];
outlettemp_set=(T_GT:T_IPturb)';
V=T_IPturb;

W_GT = 1+V; uels{W_GT} = 'W_GT';
W_2ndcompr = 2+V; uels{W_2ndcompr}= 'W_2ndcompr';
W_extcompr = 3+V; uels{W_extcompr}= 'W_extcompr';
W_HPturb = 4+V; uels{W_HPturb} = 'W_HPturb';
W_IPturb = 5+V; uels{W_IPturb} = 'W_IPturb';
W_set=(W_GT:W_IPturb)';
V=W_IPturb;

p_GT = 1+V; uels{p_GT} = 'p_GT';
p_ATRair_2nd= 2+V; uels{p_ATRair_2nd}='p_ATRair_2nd';
p_ATRair_ext= 3+V; uels{p_ATRair_ext}='p_ATRair_ext';
p_HPturb = 4+V; uels{p_HPturb} = 'p_HPturb';
p_IPturb = 5+V; uels{p_IPturb} = 'p_IPturb';
p_ATRair_set= [p_ATRair_2nd; p_ATRair_ext];
p_out_set = (p_GT:p_IPturb)';
V=p_IPturb;

kappafrac_GT=1+V; uels{kappafrac_GT}='kappafrac_GT';
kappafrac_2ndcompr=2+V;uels{kappafrac_2ndcompr}='kappafrac_2ndcompr';
kappafrac_extcompr=3+V; uels{kappafrac_extcompr}='kappafrac_extcompr';
kappafrac_HPturb=4+V; uels{kappafrac_HPturb}='kappafrac_HPturb';
kappafrac_IPturb=5+V; uels{kappafrac_IPturb}='kappafrac_IPturb';
kappafrac_set=(kappafrac_GT:kappafrac_IPturb)';
V=kappafrac_IPturb;

flow_ATRair_2nd=1+V; uels{flow_ATRair_2nd}='flow_ATRair_2nd';
flow_ATRair_ext=2+V; uels{flow_ATRair_ext}='flow_ATRair_ext';

116

flow_ATRair_set=[flow_ATRair_2nd; flow_ATRair_ext];
HPsteamflow =3+V; uels{HPsteamflow} = 'HPsteamflow';
IPsteamflow =4+V; uels{IPsteamflow} = 'IPsteamflow';
trbflows_set=[exhaust_set; flow_ATRair_set; HPsteamflow; IPsteamflow];
V=IPsteamflow;

comb_airflow= 1+V; uels{comb_airflow}='comb_airflow';
V=comb_airflow;

Ti_GT = 1+V; uels{Ti_GT} = 'Ti_GT';
Ti_ATRair_2nd=2+V; uels{Ti_ATRair_2nd}='Ti_ATRair_2nd';
Ti_ATRair_ext= 3+V; uels{Ti_ATRair_ext}='Ti_ATRair_ext';
Ti_HPturb = 4+V; uels{Ti_HPturb} = 'Ti_HPturb';
Ti_IPturb = 5+V; uels{Ti_IPturb} = 'Ti_IPturb';
Ti_ATRair_set= [Ti_ATRair_2nd; Ti_ATRair_ext];
idealoutlettemp_set=(Ti_GT:Ti_IPturb)';
V=Ti_IPturb;

v_all=(1:V)';

temperatures=[feedtemp LTStemp HTStemp airtemp steamtemp LTStemp2 ...
HTStemp2 GTfueltemp T_GT T_ATRair_2nd T_ATRair_ext T_HPturb T_IPturb];

massflows=[CS_CO2 CS_CO CS_H2 CCU_H2 CCU_CO CCU_CO2 CCU_H2O CCU_N2 ...
CCU_CH4 feedflow steamfeed exh_H2O exh_CO2 exh_O2 exh_N2 ...
flow_ATRair_2nd flow_ATRair_ext HPsteamflow IPsteamflow comb_airflow];

energyflows=[mCp_GTfuel mCp_HTSprod mCp_LTSprod mCp_refprod W_GT ...
W_extcompr W_2ndcompr W_HPturb W_IPturb fuelcompr];

pressures=[feedpressure p_GT p_ATRair_2nd p_ATRair_ext p_HPturb p_IPturb];

F.2.3 Handling the HYSYS process simulations — simula-
tion.m

%%%
% simulation.m − running similations in HYSYS based on LHS sampling
%%%
% Functions and scripts used:
% HOME MADE: sampling.m making Latin hypercube sampling scheme
% hywait.m waiting for HYSYS to be ready (necessary?)
% − using hyissolving.m from hysyslib
% HYSYSLIB: hyconnect.m connecting to HYSYS case
% hyspread.m connecting to spreadsheet in HYSYS case
% hycell.m connecting to cell in HYSYS spreadsheet
% hyvalue.m getting value of a HYSYS spreadcheet cell
% hyunits.m getting unit for a HYSYS spreadcheet cell
% hyrelease.m releasing the HYSYS case
%%%

117

% If run separately, remember to run irccdata first

% Connecting to HYSYS case and spreadsheet
hysys=hyconnect([pwd '\ircc7.hsc']);
sheet=hyspread(hysys,'I/O');

hywait(hysys)

% Connecting to cells of the HYSYS spreadsheet
hc=cell(1,v);
for i=1:v

hc{i}=hycell(sheet,['A' num2str(i)]);
end

% Defining feasible ranges for input variables
low=zeros(1,iv);
high=zeros(1,iv);
step=ones(1,iv);
low(feedtemp)=200;
high(feedtemp)=500;
low(LTStemp)=180;
high(LTStemp)=250;
low(feedpressure)=18;
high(feedpressure)=30;
low(HTStemp)=300;
high(HTStemp)=450;
low(S2C)=1;
high(S2C)=2;
low(airtemp)=410;
high(airtemp)=530;
low(steamtemp)=280;
high(steamtemp)=345;

% Changing units
unitmult=ones(1,iv);
if strcmp(hyunits(hc{feedpressure}{1}),'kPa')

unitmult(feedpressure)=100;
end
unitmult(S2C)=10000*M.H2O/M.CH4/3600;
low=low.*unitmult;
high=high.*unitmult;

% Widening the ranges to avoid bad fit around the bounds
a=.2;
high=(1+a)*high−a*low;
low=(1+a)*low−a*high;

118

% Setting the number of simulations to be done
sims=5000;

%%%
% Calling the function sampling.m to make a latin hypercube sampling scheme
%%%
sample=(sampling(sims,iv)−rand(sims,iv))./sims*diag(high−low) ...

+ones(sims,1)*low;

% Running HYSYS for the different values of the input variables, and
% saving the results for all regression variables in the matrix A
A=zeros(sims,v);
ii=1;
sample(:,feedpressure)=sample(:,feedpressure)− ...

(sample(:,feedpressure)>3000).*(sample(:,feedpressure)−3000);
for si=1:sims

for j=1:iv
hyset(hc{j},sample(si,j));

end
hywait(hysys)
for jj=1:v

A(ii,jj)=hyvalue(hc{jj});
end
ii=ii+1;

end
hyrelease(hysys);

% Modifying the A matrix
% Changing from kPa to bar
A(:,feedpressure)=A(:,feedpressure)*.01;
% Scaling mass and energy flows
A(:,regvarflows)=A(:,regvarflows)/flowscale;
% Going from steam flow rate to steam−to−carbon ratio
A(:,S2C)=A(:,S2C).*M.CH4./(M.H2O*CH4_in*flowscale);
% Going from cooling/heating duty to mCp−flow [HRSG]
A(:,mCp_refprod)=A(:,mCp_refprod)./(T_refprod − A(:,HTStemp))*3600;
A(:,mCp_HTSprod)=A(:,mCp_HTSprod)./(A(:,HTStemp2) − A(:,LTStemp))*3600;
A(:,mCp_LTSprod)=A(:,mCp_LTSprod)./(A(:,LTStemp2) + C2K − T_WRfeed)*3600;
A(:,mCp_GTfuel)=A(:,mCp_GTfuel)./(200−30)*3600;
% Changing from kW to kJ/h
A(:,fuelcompr)=A(:,fuelcompr)*3600;

% Saving the matrix A in A_matrix7.mat
save('A_matrix7', 'A')

F.2.4 Making Latin hypercube sampling scheme — sam-
pling.m

119

function sample=sampling(n, m)
% SAMPLING(n,m) returns a [n x m] matrix with rows representing different
% combinations of numbers (a Latin Hypercube)

% Initializing
M=cell(m,1);
for j=1:m

% List of unused intervals for each variable
M{j}=1:n;

end
sample=zeros(n,m);

for i=1:n
for j=1:m

% Picking an unused interval for each sample
sample(i,j)=M{j}(ceil(rand*(n−i+1)));
% Removing the picked interval from the list of unused ones
M{j}=setdiff(M{j},sample(i,j));

end
end

return

F.2.5 Dealing with regression coefficients and related sets
— regcoeffs.m

%REGCOEFFS fits second order polynomial curves to variables represented
%by the columns in A (containing simulation results), and writes the
%regression coefficients and other information to a .gdx file

%%%
%
% Functions used:
% "HOME MADE":
% − polyreg2.m
% GDXMRW package:
% − writegdx.m (using wgdx.m)
%%%

%%%
% Input variables which theoretically cannot impact the output variable
%%%
noreg=zeros(v−iv, iv);
% HTS product temperature does not change as the LTS feed temperature
% is changed (because the latter is downstream of the former)
noreg(HTStemp2−iv,LTStemp)=1;

120

% Reformer product cooling does not change as the LTS feed temperature
% is changed (because the latter is downstream of the former)
noreg(mCp_refprod−iv,LTStemp)=1;

%%%
% Reading simulation data from file
%%%
load A_matrix7

vars=length(uels);

% Specifying the file to write to
filetowriteto='regcoeffs.gdx';

% Normalizing all values to the interval [−.5 , .5]
high=zeros(1,v);
low=high;
for i=1:v

high(i)=max(A(:,i));
low(i)=min(A(:,i));
A(:,i)=(A(:,i)−.5*(high(i)+low(i)))./(high(i)−low(i));

end

% Fitting the data to a second order polynomial function of the dependent
% variables
nbeta=1+iv*(1.5+.5*iv);
if runregression

y_hat=zeros(v−iv,nbeta);
RSS=zeros(v−iv,1);
for i=iv+1:v

[y_hat(i−iv,:) RSS(i−iv,1)]=polyreg2(A(:,1:iv),A(:,i), noreg(i−iv,:));
end
save('regressioncoefficients','y_hat','RSS')

else
load regressioncoefficients

end

% Writing the calculated regression coefficients to a .gmx−file
uels{vars+1}='beta_0';
i=1;
y_hat_gdx=zeros(nbeta*(v−iv),3);
for j=1:nbeta

for k=1:dv
y_hat_gdx(i,1)=j+vars;
y_hat_gdx(i,2)=k+iv;
y_hat_gdx(i,3)=y_hat(k,j);
i=i+1;

end

121

end
linbeta=zeros(iv,2);
quadbeta=linbeta;
for i=1:iv

linbeta(i,1)=i;
linbeta(i,2)=i+1+vars;
quadbeta(i,1)=i;
quadbeta(i,2)=i+1+iv+vars;
uels{vars+1+i}=['beta_' num2str(i)];
uels{vars+1+iv+i}=['beta_' num2str(i) ',' num2str(i)];

end
bilinbeta=zeros(.5*iv*(iv−1),3);
k=1;
for i=1:iv

for j=i+1:iv
bilinbeta(k,1)=i;
bilinbeta(k,2)=j;
bilinbeta(k,3)=k+1+2*iv+vars;
uels{k+1+2*iv+vars}=['beta_' num2str(i) ',' num2str(j)];
k=k+1;

end
end
high_gdx=zeros(v,2);
low_gdx=high_gdx;
for i=1:v

high_gdx(i,1)=i;
high_gdx(i,2)=high(i);
low_gdx(i,1)=i;
low_gdx(i,2)=low(i);

end

b_set=(1:nbeta)'+vars;
writegdx(filetowriteto, ...

'parameter', 'betas', y_hat_gdx,...
'set', 'v', v_set, ...
'set', 'iv', iv_set, ...
'set', 'dv', dv_set, ...
'set', 'b', b_set, ...
'set', 'lb', linbeta, ...
'set', 'qb', quadbeta, ...
'set', 'bb', bilinbeta, ...
'parameter', 'high', high_gdx, ...
'parameter', 'low', low_gdx, ...
uels);

F.2.6 Regression — polyreg2.m

122

function [betas RSS] = polyreg2(x,y, varargin)
%POLYREG2 2nd order polynomial regression
% POLYREG2(x,y) performs a second order polynomial regression, trying to
% fit the data as, y_hat=f(beta_hat,x)
% x(s,v) = value of input variable v in simulation s
% y(s) = value of the output variable from simulation s
% POLYREG2(x,y,noreg) performs the regression "without" the variables
% represented by noreg)
% POLYREG2(x,y,noreg,limit) does the same as POLYREG2(x,y,noreg), but
% eliminating betas with lower absolute value than specified by limit

%Setting up the C matrix (with 2nd degree polynomials)
[sims iv]=size(x);
n=1+iv*(1.5+.5*iv); % number of betas (regression coefficients)
C=zeros(sims,n);
for s=1:sims

C(s,1)=1; % Constant term
for v=1:iv

C(s,1+v)=x(s,v); % First−order terms
C(s,iv+1+v)=x(s,v)^2; % Second−order terms

end
jj=2+2*iv;
for v1=1:iv−1;

for v2=v1+1:iv
C(s,jj)=x(s,v1)*x(s,v2); % Bilinear terms
jj=jj+1;

end
end

end

% The limit to be used if not specified by optional argument
limit=5e−2;

% Dealing with optional arguments
if size(varargin,2)>=1

% Removing regression coefficients as set by 'noreg'
if sum(varargin{1})>0

for v=1:iv
check{v}=[v+1 v+iv+1];

end
jj=2+2*iv;
for v1=1:iv−1;

for v2=v1+1:iv
check{v1}=union(check{v1},jj);
check{v2}=union(check{v2},jj);
jj=jj+1;

end
end

123

for i=find(varargin{1},iv)
C(:,check{i})=0;
for j=check{i}

sims=sims+1;
C(sims,j)=1;
y(sims)=0;

end
end

end
% Setting the limit to the corresponding optional argument
if size(varargin,2)>=2

limit=varargin{2};
end

end

for loop=1:5
% Solving with respect to least squares
betas = C\y;
% betas is now the solution (with respect to least squares)
% of the equation set C*betas=y.
RSS = (y−C*betas)'*(y−C*betas); %The residual sum of squares

% Removing "insignificant" coefficients
% 1. Adjusting the coefficients to account for that the
% variables are in the range [−.5, .5]
betas_adj=[betas(1)*4;betas(2:iv+1)*2;betas(iv+2:2*iv+1);...

betas(2*iv+2:n)];
% 2. Determining which coefficients too keep
keep=abs(betas_adj)>max(betas_adj)*limit;
if sum(betas.*(1−keep))==0

return;
end
for i=1:n

if keep(i)==0 & betas(i)~=0
% Removing the impact of beta(i) from the regression
% equations
C(:,i)=0;

% Making a new constraint to make sure beta(i) is
% set to zero (when minimizing least squares)
sims=sims+1;
C(sims,:)=zeros(1,n);
C(sims,i)=1;
y(sims)=0;

end
end

end

124

% In case there are more "insignificant" regression coefficients left
% after the loops: show it.
for i=1:n

if abs(betas(i))<1e−12
betas(i)=0;

end
end
if sum(betas~=betas.*keep);
disp('WARNING: There are still insignificant regression coefficients.')
disp(betas.*(1−keep))
end

F.2.7 Setting some model parameters and basic equations
— setmodelparameters.m

%%%
% setmodelparameters.m − setting some general equations and parameters
%%%
% Functions and scripts used:
% GDXMRW: writegdx.m writing data to gdx file
%%%

% Setting (some) linear inequality constraints
% (linconstr * x <= linconstrbound)
% Minimum 90 % CO2 captured:

CO2captureconstr=1+length(uels); uels{CO2captureconstr}='CO2capture';
linconstr_set=(CO2captureconstr:CO2captureconstr)';
linconstr=[CO2captureconstr CCU_CO2 −split.CO2(2)/M.CO2;

CO2captureconstr feedflow CH4_in/M.CH4*mincapture];
linconstrbound=[CO2captureconstr 0];

% Setting (some) linear equality constraints (eqconstr * x = eqconstrconst)
% HP steam flow = LP steam flow + ATR steam flow:

HPsteambalanceconstr=1+length(uels);
uels{HPsteambalanceconstr}='HPsteambalance';

% Intermediate pressure = ATR pressure:
IPconstr=1+HPsteambalanceconstr; uels{IPconstr}='IP=feedpressure';
IPconstr2=1+IPconstr; uels{IPconstr2}='IP=p_HPturb_out';

% HP turbine outlet temperature = temperature of steam to ATR:
steamtempconstr=1+IPconstr2; uels{steamtempconstr}='steam temperature';

eqconstr_set=(HPsteambalanceconstr:steamtempconstr)';
eqconstr=[HPsteambalanceconstr HPsteamflow 1;

HPsteambalanceconstr IPsteamflow −1;
HPsteambalanceconstr steamfeed −1;
IPconstr feedpressure 1;
IPconstr p_HPturb −1;

125

IPconstr2 p_IPturb 1;
IPconstr2 p_HPturb −1;
steamtempconstr steamtemp 1;
steamtempconstr T_HPturb −tempscale];

eqconstrconst= [HPsteambalanceconstr 0;
IPconstr 0;
IPconstr2 0;
steamtempconstr −C2K];

% Setting (some) product constraints (x1=k*x2*x3)
% Steam feed flow = methane feed flow * steam−to−carbon ratio * M.H2O/M.CH4

steamfeedconstr=1+length(uels); uels{steamfeedconstr}='Steam feed';
prodconstr_set=(steamfeedconstr:steamfeedconstr)';
prodconstr=[steamfeedconstr steamfeed S2C feedflow CH4_in*M.H2O/M.CH4];

% Dependent variables that are a function of the feed flow rate
feedflowdep=[feedflowdep' ones(length(feedflowdep), 1)];

% Writing data to file
writegdx('modelparameters.gdx', ...

'set', 'lc', linconstr_set, ...
'set', 'ec', eqconstr_set, ...
'set', 'pr', prodconstr_set, ...
'set', 'feedflow', feedflow, ...
'parameter', 'feedflowdep', feedflowdep, ...
'parameter', 'linconstr', linconstr, ...
'parameter', 'linconstrbound', linconstrbound, ...
'parameter', 'eqconstr', eqconstr, ...
'parameter', 'eqconstrconst', eqconstrconst, ...
'parameter', 'prodconstr', prodconstr, ...
'parameter', 'startingpoint', startingpoint, ...
uels);

F.2.8 Calculating combustion parameters — combustion.m

%%%
% combustion.m − setting parameters and sets related to combustion
%%%
% Functions and scripts used:
% GDXMRW: writegdx.m writing data to gdx file
%%%

% Heat capacities (based on enthalpy equations)
% From HYSYS H = a+bT+cT^2+dT^3+eT^4+fT^5 [kJ/kg], T [K]
% Valid for T between −270 and 5000 C. [b c d e f]
HCp_coeffs.H2O=[1.9145 −3.9574e−4 8.76206e−7 −4.95055e−10 1.03846e−13];

126

HCp_coeffs.CO=[1.0739 −1.7265e−4 3.02226e−7 −1.37526e−10 2.00356e−14];
HCp_coeffs.CO2=[0.618139 4.84485e−4 −1.49353e−7 2.2905e−11 −1.37045e−15];
HCp_coeffs.H2=[13.8376 2.999806e−4 3.458931e−7 −9.712927e−11 7.731201e−15];
HCp_coeffs.CH4=[2.36459 −2.13247e−3 5.6618e−6 −3.72476e−9 8.60896e−13];
HCp_coeffs.N2=[.982747 9.71424e−5 −4.15795e−10 −3.65548e−12 4.05013e−16];
HCp_coeffs.O2=[.952 −2.81129e−4 6.55206e−7 −4.52296e−10 1.08756e−13];
for j = components

i=char(j);
eval(['HCp_coeffs.' i '=HCp_coeffs.' i '.*[1 2 3 4 5];']);

end

TIT=1350+C2K;
if lowerTIT>0

TIT=lowerTIT+C2K;
end
T_air=415+C2K;
T_fuel=200+C2K;

% Calculating the amount of heat needed to heat one kg of air from the
% temperature out of the compressor to TIT
a=HCp_coeffs.O2;
q_comb_air=airO2mass*(a(1)*(TIT−T_air)+.5*a(2)*(TIT^2−T_air^2)+...

a(3)/3*(TIT^3−T_air^3)+.25*a(4)*(TIT^4−T_air^4)+...
.2*a(5)*(TIT^5−T_air^5)); % [kJ/kg]

a=HCp_coeffs.N2;
q_comb_air=q_comb_air+airN2mass*(a(1)*(TIT−T_air)+...

.5*a(2)*(TIT^2−T_air^2)+a(3)/3*(TIT^3−T_air^3)+...

.25*a(4)*(TIT^4−T_air^4)+.2*a(5)*(TIT^5−T_air^5)); % [kJ/kg]

% Calculating the amount of heat needed to heat one kg from the preheat
% temperature to TIT for each combustion component
for j=components

i=char(j);
eval(['a=HCp_coeffs.' i ';']);
q=(a(1)*(TIT−T_fuel)+.5*a(2)*(TIT^2−T_fuel^2)+...

a(3)/3*(TIT^3−T_fuel^3)+.25*a(4)*(TIT^4−T_fuel^4)+...
.2*a(5)*(TIT^5−T_fuel^5));

eval(['CpdeltaT.' i '=q;']); % [kJ/kg/K]
end
CpDT=[CpdeltaT.H2O; CpdeltaT.CO2; CpdeltaT.O2; CpdeltaT.N2]; %[kJ/kg/K]

% q=[CpdeltaT.H2O % H2O
% CpdeltaT.CO2−.5*CpdeltaT.O2 % CO
% CpdeltaT.CO2 % CO2
% CpdeltaT.H2O−.5*CpdeltaT.O2 % H2
% CpdeltaT.CO2+2*(CpdeltaT.H2O−CpdeltaT.O2) % CH4
% CpdeltaT.N2]; % N2

127

% Stoichiometry of the combustion reactions
combreaction=zeros(v,4);
combreaction(CCU_H2O,1)=1 *split.H2O(1);
combreaction(CCU_CO,:)=[0 1*M.CO2 −.5*M.O2 0] /M.CO *split.CO (1);
combreaction(CCU_CO2,2)=1 *split.CO2(1);
combreaction(CCU_H2,:)=[1*M.H2O 0 −.5*M.O2 0] /M.H2 *split.H2 (1);
combreaction(CCU_CH4,:)=[2*M.H2O 1*M.CO2 −2*M.O2 0] /M.CH4*split.CH4(1);
combreaction(CCU_N2,4)=1 *split.N2 (1);

% The composition of air, with respect to exhaust components
aircomp=[exh_O2 airO2mass;

exh_N2 airN2mass];

% Lower heating value in the gas turbine fuel
LHV=zeros(v,1);
LHV(CCU_CO)=LHV_CO*split.CO(1); %[kJ/kg]
LHV(CCU_H2)=LHV_H2*split.H2(1); %[kJ/kg]
LHV(CCU_CH4)=LHV_CH4*split.CH4(1); %[kJ/kg]

% Set of exponents for Cp (or H) equations
expset=(1:5)'+length(uels);
uels(expset)={'exp1', 'exp2', 'exp3', 'exp4', 'exp5'};

% Set of combustion related variables
v_comb=union(exhaust_set, [outlettemp_set; W_set; comb_airflow]);

% Writing data to file
combreaction_gdx=zeros(v*length(exhaust_set),3);
k=1;
for i=1:v

for j=1:4
combreaction_gdx(k,1)=i;
combreaction_gdx(k,2)=exhaust_set(j);
combreaction_gdx(k,3)=combreaction(i,j);
k=k+1;

end
end
writegdx('combustion.gdx', ...

'set', 'v_comb', v_comb, ...
'set', 'exhcomp', exhaust_set , ...
'set', 'T_out', outlettemp_set, ...
'set', 'W', W_set, ...
'set', 'comb_airflow', comb_airflow, ...
'parameter', 'combreaction', combreaction_gdx, ...
'parameter', 'q_comb_air', q_comb_air, ...
'parameter', 'air', aircomp, ...
'parameter', 'LHV', [(1:v)' LHV], ...
'parameter', 'CpDT', [exhaust_set CpDT], ...

128

'parameter', 'tempscale', tempscale, ...
uels);

F.2.9 Calculating parameters for air distribution — air.m

%%%
% air.m − setting parameters and sets related to air distribution
%%%
% Functions and scripts used:
% GDXMRW: writegdx.m writing data to gdx file
%%%

% The amount of air needed in the ATR per mass flow of CO2, CO and H2 in
% the cooled syngas
ATR_air=zeros(v,1);
ATR_air(CS_CO2)=2/M.CO2;
ATR_air(CS_CO)=1.5/M.CO;
ATR_air(CS_H2)=−.5/M.H2;
ATR_air=ATR_air*M.O2/airO2mass;

% The amount of air compressed in the main (large−scale) air compressor
airflow=640*3600/flowscale;

% Air related variables
v_air=union(flow_ATRair_set, [p_ATRair_set; T_ATRair_set]);

% Writing data to file
writegdx('air.gdx', ...

'set', 'v_air', v_air, ...
'set', 'p_feed', feedpressure, ...
'set', 'T_airfeed', airtemp, ...
'set', 'flow_ATRair', flow_ATRair_set, ...
'set', 'flow_ATRair_2nd', flow_ATRair_2nd, ...
'set', 'p_ATRair', p_ATRair_set, ...
'set', 'T_ATRair', T_ATRair_set, ...
'set', 'ATRair', [p_ATRair_set T_ATRair_set flow_ATRair_set],...
'parameter', 'p_and_T', [p_ATRair_set, T_ATRair_set, ones(2,1)],...
'parameter', 'ATR_air', [v_set ATR_air], ...
'parameter', 'airflow', airflow, ...
uels);

F.2.10 Calculating parameters for modeling of turbo-machinery
— turbo.m

%%%

129

% turbo.m − setting parameters and sets related to turbines and compressors
%%%
% Functions and scripts used:
% GDXMRW: writegdx.m writing data to gdx file
% and indirectly the home made script HPturbCp.m for simulations and
% regression for HP and IP steam turbines
%%%

% Fixed temperatures
T_air= 415+C2K; % [K]
TIT= 1350+C2K; % [K]
T_fuel=200+C2K; % [K]
T_air_2nd=T_air; % [K]
T_air_ext=15+C2K;% [K]
T_HP = 560 + C2K;% [K]
T_RH = 560 + C2K;% [K]
p_air_2nd=18; %[bar]
p_air_ext=1.01; %[bar]
HP=120; %[bar]
LP=4; %[bar]

if lowerTIT>0
TIT=lowerTIT+C2K;

end

Cpcoeffs=[HCp_coeffs.H2O
HCp_coeffs.CO2
HCp_coeffs.O2
HCp_coeffs.N2
airO2mass*HCp_coeffs.O2+airN2mass*HCp_coeffs.N2
airO2mass*HCp_coeffs.O2+airN2mass*HCp_coeffs.N2
HCp_coeffs.H2O
HCp_coeffs.H2O];

%TEMPSCALE
Cpcoeffs=Cpcoeffs*diag(tempscale.^(1:5));
TIT=TIT/tempscale;
T_air_2nd=T_air_2nd/tempscale;
T_air_ext=T_air_ext/tempscale;
T_HP=T_HP/tempscale;
T_RH=T_RH/tempscale;

% Some constants
Combustionpressure=18; %[bar]
Outletpressure=1.03; %[bar]
Pressureloss=.5; %[bar]
Turbineefficiency=.91;
Compressorefficiency=.88;

130

HPturbineefficiency=.94;
IPturbineefficiency=.92;
Mainaircompressorefficiency=.92;

% The work of CO2 compression, per kg of CO2 captured
w_CO2compr=95*3.6; % [kJ/kg]

% Calculating the work of compressing 1 kg of air to 18 bar
a=HCp_coeffs.O2;
T1=20+C2K; T2=415+C2K;
w_air=airO2mass*(a(1)*(T2−T1)+.5*a(2)*(T2^2−T1^2)+...

a(3)/3*(T2^3−T1^3)+.25*a(4)*(T2^4−T1^4)+...
.2*a(5)*(T2^5−T1^5)); % [kJ/kg]

a=HCp_coeffs.N2;
w_air=w_air+airN2mass*(a(1)*(T2−T1)+.5*a(2)*(T2^2−T1^2)+...

a(3)/3*(T2^3−T1^3)+.25*a(4)*(T2^4−T1^4)+...
.2*a(5)*(T2^5−T1^5)); % [kJ/kg]

w_air=w_air/Mainaircompressorefficiency;

Cpcoeffs_gdx=zeros(length(expset)*(length(trbflows_set)),3);
k=1;
for i=1:length(trbflows_set);

for j=1:length(expset)
Cpcoeffs_gdx(k,1)=trbflows_set(i);
Cpcoeffs_gdx(k,2)=expset(j);
Cpcoeffs_gdx(k,3)=Cpcoeffs(i,j);
k=k+1;

end
end

GT_set=length(uels)+1;
secondcompressor_set=GT_set+1;
extracompressor_set=secondcompressor_set+1;
HPsteamturb_set=extracompressor_set+1;
IPsteamturb_set=HPsteamturb_set+1;
uels{GT_set}='Gas turbine';
uels{secondcompressor_set}='Second compressor';
uels{extracompressor_set}='Extra compressor';
uels{HPsteamturb_set}='HP steam turbine';
uels{IPsteamturb_set}='IP steam turbine';

% The set of turbomachinery to be modelled with thermodynamics equations
trb1_set=[GT_set secondcompressor_set extracompressor_set]';
% The set of turbomachinery to be modelled with linear regression from
% simulations
trb2_set=[HPsteamturb_set IPsteamturb_set]';
% The set of turbines and compressors modelled in one of these ways
trb_set=[trb1_set; trb2_set];

131

% Connecting flowrates to turbines/compressors
turboflows=[GT_set*ones(4,1) exhaust_set ones(4,1);

[secondcompressor_set;extracompressor_set] flow_ATRair_set ones(2,1);
HPsteamturb_set HPsteamflow 1;
IPsteamturb_set IPsteamflow 1];

% Efficiencies for the turbines/compressors
efficiency=[GT_set Turbineefficiency;

secondcompressor_set −1/Compressorefficiency;
extracompressor_set −1/Compressorefficiency;
HPsteamturb_set HPturbineefficiency;
IPsteamturb_set IPturbineefficiency];

% Inlet pressures for the turbines/compressors
p_in=[GT_set Combustionpressure−Pressureloss;

secondcompressor_set p_air_2nd;
extracompressor_set p_air_ext;
HPsteamturb_set HP;
IPsteamturb_set LP]; %This is really the outlet pressure

% Inlet temperatures for the turbines/compressors
inlettemps=[GT_set TIT;

secondcompressor_set T_air_2nd;
extracompressor_set T_air_ext;
HPsteamturb_set T_HP;
IPsteamturb_set T_RH];

% Parameter to modify turbo−equations
kappafracsign=[GT_set 1;

secondcompressor_set 1;
extracompressor_set 1;
HPsteamturb_set 1;
IPsteamturb_set −1]; %This interchanges p_in and x(p_out)

% Universal gas constant [kJ/kmol/K]
R=8.314472;
% 'Molar mass of air' [kg/kmol]
M.air=airO2*M.O2+airN2*M.N2;
% Gas constants with adjusted for molar mass [kJ/kg/K]
R_m=[trbflows_set R./[M.H2O M.CO2 M.O2 M.N2 M.air M.air M.H2O M.H2O]'];

% Setting regression coefficients for the turbines/compressors modelled
% with linear regression and simulation. The numbers are calculated in
% HPturbCp.m
% The equations are on the form w(p) = w0 + dwdp*p and T(p) = T0 + dTdp*p.
w0=[HPsteamturb_set 694.90347928384426;

IPsteamturb_set 279.90610444742094];
dwdp=[HPsteamturb_set −9.937395471077858;

IPsteamturb_set 9.7361026004373343];

132

T0=[HPsteamturb_set (186.53771204510576+C2K)/tempscale;
IPsteamturb_set (432.07460037381867+C2K)/tempscale];

dTdp=[HPsteamturb_set 5.3325971476587695/tempscale;
IPsteamturb_set −5.1884382644666687/tempscale];

% Changing these data if the a different high pressure level is chosen
if otherHP==130

w0=[HPsteamturb_set 704.5183;
IPsteamturb_set 57.0137];

dwdp=[HPsteamturb_set −9.6975;
IPsteamturb_set 10.5734];

T0=[HPsteamturb_set (178.3142+C2K)/tempscale;
IPsteamturb_set (478.5753+C2K)/tempscale];

dTdp=[HPsteamturb_set 5.2336/tempscale;
IPsteamturb_set −5.5605/tempscale];

end

% Coefficient to find condenser cooling work
STcondensercooling=.005; % 0.5 percent of power from steam turbines

% Writing data to file
writegdx('turbo.gdx', ...

'set', 'v_all', v_all, ...
'set', 'trb', trb_set, ...
'set', 'trb1', trb1_set, ...
'set', 'trb2', trb2_set, ...
'set', 'T_trb_out', outlettemp_set, ...
'set', 'Ti_trb_out', idealoutlettemp_set, ...
'set', 'W', W_set, ...
'set', 'trbflows', trbflows_set, ...
'set', 'p_out', p_out_set, ...
'set', 'exp', expset, ...
'set', 'kappafrac', kappafrac_set, ...
'parameter', 'turboflows', turboflows, ...
'parameter', 'T_trb_in', inlettemps, ...
'parameter', 'p_in', p_in, ...
'parameter', 'exponents', [expset (1:5)'], ...
'parameter', 'Cpcoeffs', Cpcoeffs_gdx, ...
'parameter', 'R', R_m, ...
'parameter', 'eff', efficiency, ...
'parameter', 'kappafracsign',kappafracsign, ...
'parameter', 'w0', w0, ...
'parameter', 'dwdp', dwdp, ...
'parameter', 'T0', T0, ...
'parameter', 'dTdp', dTdp, ...
uels);

133

F.2.11 Setting and calculating upper and lower bounds —
bounds.m

%%%
% bounds.m − setting upper and lower bounds for each variable
%%%
% Functions and scripts used: none
%%%

% 'Independent variables'
lowerbound(feedtemp) = 200; upperbound(feedtemp) = 500;
lowerbound(LTStemp) = 180; upperbound(LTStemp) = 250;
lowerbound(feedpressure) = 18; upperbound(feedpressure) = 30;
lowerbound(HTStemp) = 300; upperbound(HTStemp) = 450;
lowerbound(S2C) = 1; upperbound(S2C) = 2;
lowerbound(airtemp) = 410; upperbound(airtemp) = 530;
lowerbound(steamtemp) = ...

(T0(1,2)+lowerbound(feedpressure)*dTdp(1,2))*tempscale−C2K;
upperbound(steamtemp) = ...

(T0(1,2)+upperbound(feedpressure)*dTdp(1,2))*tempscale−C2K;

% 'Dependent variables'
lowerbound(CS_CO2) = 0; upperbound(CS_CO2) =CH4_in/M.CH4*M.CO2;
lowerbound(CS_CO) = 0; upperbound(CS_CO) =CH4_in/M.CH4*M.CO;
lowerbound(CS_H2) = 0;
upperbound(CS_H2)=CH4_in/M.CH4*M.H2*(2+upperbound(S2C));

lowerbound(HTStemp2) = lowerbound(LTStemp); upperbound(HTStemp2) = 1000;
lowerbound(LTStemp2) = T_WRfeed; upperbound(LTStemp2) = 500;

lowerbound(mCp_refprod) = low(mCp_refprod);
upperbound(mCp_refprod) = high(mCp_refprod);
lowerbound(mCp_HTSprod) = low(mCp_HTSprod);
upperbound(mCp_HTSprod) = high(mCp_HTSprod);
lowerbound(mCp_LTSprod) = low(mCp_LTSprod);
upperbound(mCp_LTSprod) = high(mCp_LTSprod);
lowerbound(mCp_GTfuel) = low(mCp_GTfuel);
upperbound(mCp_GTfuel) = high(mCp_GTfuel);

lowerbound(GTfueltemp) = CCUoutlettemp;
upperbound(GTfueltemp) = T_fuel−C2K;

lowerbound(CCU_H2O) = 0;
upperbound(CCU_H2O)=CH4_in/M.CH4*M.H2O*(2+upperbound(S2C));
lowerbound(CCU_CO) = 0; upperbound(CCU_CO) = CH4_in/M.CH4*M.CO;
lowerbound(CCU_CO2) = 0; upperbound(CCU_CO2)=CH4_in/M.CH4*M.CO2;

134

lowerbound(CCU_H2) = 0;
upperbound(CCU_H2)=CH4_in/M.CH4*M.H2*(2+upperbound(S2C));
lowerbound(CCU_CH4) = 0; upperbound(CCU_CH4)=CH4_in*split.CH4(1);
lowerbound(CCU_N2) = 0;
upperbound(CCU_N2)=CH4_in/M.CH4*M.O2/airO2mass*airN2mass*2;

lowerbound(fuelcompr) = 0;
upperbound(fuelcompr) = CH4_in*LHV_CH4*.1;

% ATR inlet flow variables
lowerbound(feedflow) = airflow/CH4_in*.02;
upperbound(feedflow) = airflow/CH4_in*.05;

lowerbound(steamfeed)=lowerbound(S2C)*lowerbound(feedflow)*CH4_in*M.H2O/M.CH4;
upperbound(steamfeed)=upperbound(S2C)*upperbound(feedflow)*CH4_in*M.H2O/M.CH4;

% 'Combustion related variables'
lowerbound(exhaust_set) = 0;
upperbound(exh_H2O)=airflow*airO2mass*.5*M.H2O*M.O2;

%upperbound(feedflow)*CH4_in*(upperbound(S2C)+2)*M.H2O/M.CO2;
upperbound(exh_CO2)=upperbound(feedflow)*CH4_in*M.CO2/M.CH4;
upperbound(exh_O2)=airflow*airO2mass;
upperbound(exh_N2)=airflow*airN2mass + ...

upperbound(feedflow)*CH4_in*(2)*M.O2/M.CO2/airO2mass;

% 'Air related variables'
lowerbound(comb_airflow) = 0;
upperbound(comb_airflow) = airflow;

% Turbo
lowerbound(W_GT) = .2*lowerbound(feedflow)*CH4_in*LHV_CH4;
upperbound(W_GT) = upperbound(feedflow)*CH4_in*LHV_CH4;
lowerbound(W_2ndcompr) = 0;
upperbound(W_2ndcompr) = upperbound(W_GT);
lowerbound(W_extcompr) = 0;
upperbound(W_extcompr) = upperbound(W_GT);
lowerbound(W_HPturb) = 0;
upperbound(W_HPturb) = upperbound(W_GT);
lowerbound(W_IPturb) = 0;
upperbound(W_IPturb) = upperbound(W_HPturb);

lowerbound(T_GT) = 500+C2K;
upperbound(T_GT) = 700+C2K;

lowerbound(Ti_GT) = 500+C2K;
upperbound(Ti_GT) = 600+C2K;

lowerbound(T_ATRair_2nd) = T_air_2nd*tempscale;
lowerbound(T_ATRair_ext) = T_air_ext*tempscale;
upperbound(T_ATRair_set) = 600+C2K;

135

lowerbound(Ti_ATRair_2nd) = T_air_2nd*tempscale;
lowerbound(Ti_ATRair_ext) = T_air_ext*tempscale;
upperbound(Ti_ATRair_set) = 600+C2K;

lowerbound(T_HPturb) = lowerbound(steamtemp)+C2K;
upperbound(T_HPturb) = upperbound(steamtemp)+C2K;

lowerbound(Ti_HPturb) = 100+C2K;
upperbound(Ti_HPturb) = T_HP*tempscale;

lowerbound(T_IPturb) = 100+C2K;
upperbound(T_IPturb) = T_RH*tempscale;

lowerbound(Ti_IPturb) = 100+C2K;
upperbound(Ti_IPturb) = T_RH*tempscale;

lowerbound(p_GT) = Outletpressure;
upperbound(p_GT) = Outletpressure;
lowerbound(p_ATRair_set) = lowerbound(feedpressure);
upperbound(p_ATRair_set) = upperbound(feedpressure);
lowerbound(p_HPturb) = lowerbound(feedpressure);
upperbound(p_HPturb) = upperbound(feedpressure);
lowerbound(p_IPturb) = lowerbound(feedpressure);
upperbound(p_IPturb) = upperbound(feedpressure);

lowerbound(flow_ATRair_2nd) = 0;
upperbound(flow_ATRair_2nd) = ...

upperbound(feedflow)*CH4_in/M.CH4*M.O2/airO2mass*2;
lowerbound(flow_ATRair_ext) = 0;
upperbound(flow_ATRair_ext) = ...

upperbound(feedflow)*CH4_in/M.CH4*M.O2/airO2mass*2;
lowerbound(HPsteamflow) = 0;
upperbound(HPsteamflow) = ...

upperbound(W_HPturb)/(w0(1,2)+upperbound(feedpressure)*dwdp(1,2));
lowerbound(IPsteamflow) = 0;
upperbound(IPsteamflow) = upperbound(HPsteamflow);

if aircompressorfix==1;
upperbound(W_extcompr)=0;
upperbound(flow_ATRair_ext)=0;

elseif aircompressorfix==2
upperbound(W_2ndcompr)=0;
upperbound(flow_ATRair_2nd)=0;

end

lowerbound(kappafrac_GT) =R/M.CO2/(HCp_coeffs.CO2*(TIT*tempscale).^(0:4)');
upperbound(kappafrac_GT) = R/M.N2/(HCp_coeffs.N2*lowerbound(T_GT).^(0:4)');
lowerbound(kappafrac_2ndcompr) = (airO2mass*R/M.O2+airN2mass*R/M.N2)/ ...

(airO2mass*HCp_coeffs.O2*upperbound(Ti_ATRair_2nd).^(0:4)'+...
airN2mass*HCp_coeffs.N2*upperbound(Ti_ATRair_2nd).^(0:4)');

upperbound(kappafrac_2ndcompr) = (airO2mass*R/M.O2+airN2mass*R/M.N2)/ ...
(airO2mass*HCp_coeffs.O2*(T_air_2nd*tempscale).^(0:4)'+...

136

airN2mass*HCp_coeffs.N2*(T_air_2nd*tempscale).^(0:4)');
lowerbound(kappafrac_extcompr) = lowerbound(kappafrac_2ndcompr);
upperbound(kappafrac_extcompr) = (airO2mass*R/M.O2+airN2mass*R/M.N2)/ ...

(airO2mass*HCp_coeffs.O2*(T_air_ext*tempscale).^(0:4)' + ...
airN2mass*HCp_coeffs.N2*(T_air_ext*tempscale).^(0:4)');

lowerbound(kappafrac_HPturb) =.1;
%R/M.H2O/(HCp_coeffs.H2O*(T_HP*tempscale).^(0:4)');

upperbound(kappafrac_HPturb) =.5;
%R/M.H2O/(HCp_coeffs.H2O*lowerbound(T_HPturb).^(0:4)');

lowerbound(kappafrac_IPturb) =.1;
%R/M.H2O/(HCp_coeffs.H2O*(T_RH*tempscale).^(0:4)');

upperbound(kappafrac_IPturb) =.5;
%R/M.H2O/(HCp_coeffs.H2O*lowerbound(T_IPturb).^(0:4)');

for i=feedflowdep(:,1)
lowerbound(i)=lowerbound(i)*lowerbound(feedflow);
upperbound(i)=upperbound(i)*upperbound(feedflow);

end

%TEMPSCALE
upperbound(outlettemp_set)=upperbound(outlettemp_set)./tempscale;
lowerbound(outlettemp_set)=lowerbound(outlettemp_set)./tempscale;
upperbound(idealoutlettemp_set)=upperbound(idealoutlettemp_set)./tempscale;
lowerbound(idealoutlettemp_set)=lowerbound(idealoutlettemp_set)./tempscale;

%%%
% The following part is included mainly because there have been problems
% with too wide bounds, and is meant to deal with solver stability problems
%%%
% Tightening bounds around the best solution found so far
if tighterbounds>0

if tighterbounds==2
load boundsfile

end
a=0;
b=.1;
for i=v_all'

lowerbound(i)=max((1−a)*x_opt(i)+a*lowerbound(i), x_opt(i)/(1+b));
upperbound(i)=min((1−a)*x_opt(i)+a*upperbound(i), x_opt(i)*(1+b));

end
end
% Saving the bounds in case they need to be tightened
save('boundsfile', 'lowerbound', 'upperbound')

F.2.12 Setting and calculating parameters for heat integra-
tion — hr.m

137

%%%
% hr.m − setting and calculating parameters for heat integration
%%%
% Functions and scripts used:
% GDXMRW: writegdx.m writing data to gdx file
%%%

% Defining streams (index and name)
h1=length(uels)+1; uels{h1}='h1';
h2=h1+1; uels{h2}='h2';
h3=h2+1; uels{h3}='h3';
h4=h3+1; uels{h4}='exhaust';
c1=h4+1; uels{c1}='c1';
LPE=c1+1; uels{LPE}='LPE';
LPB=LPE+1; uels{LPB}='LPB';
LPS=LPB+1; uels{LPS}='LPS';
HPE=LPS+1; uels{HPE}='HPE';
HPB=HPE+1; uels{HPB}='HPB';
HPS=HPB+1; uels{HPS}='HPS';
RH=HPS+1; uels{RH}='RH';
preheat=RH+1; uels{preheat}='preheat';
CCUreboiler=preheat+1; uels{CCUreboiler}='CCUreboiler';
dummy=CCUreboiler+1; uels{dummy}='dummy';

% Steam sets
hot=[h1 h2 h3 h4]'; % Hot non−isothermal streams
cold=[c1 LPE LPS HPE HPS RH preheat]'; % Cold non−isothermal streams
isohot=[]'; % Hot isothermal streams
isocold=[LPB HPB CCUreboiler]'; % Cold isothermal streams
iso=union(isohot', isocold')'; % All isothermal streams
noniso=union(hot', cold')'; % All non−isothermal streams
allhot=union(hot', isohot')'; % All hot streams
allcold=union(cold', isocold')'; % All cold streams
streams=union(iso', noniso')'; % All streams
st=length(streams);
%Set of pinch candidates
if relax==0

pinchcandidates=[h1 h2 h3 h4 c1 LPE LPB HPE HPB RH preheat CCUreboiler]';
else

pinchcandidates=[LPE CCUreboiler]';
end %LPE usually causes pinch (or CCUreboiler)

% Heat recovery approach temperature
HRAT=20;

% Limits for the exhaust outlet temperature
T_HRSG_out_lo=80;
T_HRSG_out_up=320;

138

% Given temperatures for the HRSG
T_water=32;
T_LPB=143.6;
T_HPB=324.6;
T_LPS=230;
T_HPS=560;
T_reheat=560;
T_CCUreboiler=120;

T_CH4supply=15;

% Calculating representative Cp values for the exhaust
T_exh1=630+C2K;
T_exh2=T_HRSG_out_lo+C2K;
Cp_H2O=HCp_coeffs.H2O./(1:5)*((T_exh1).^(1:5)'−(T_exh2).^(1:5)')/ ...

(T_exh1−T_exh2);
Cp_CO2=HCp_coeffs.CO2./(1:5)*((T_exh1).^(1:5)'−(T_exh2).^(1:5)')/ ...

(T_exh1−T_exh2);
Cp_O2=HCp_coeffs.O2./(1:5)*((T_exh1).^(1:5)'−(T_exh2).^(1:5)')/ ...

(T_exh1−T_exh2);
Cp_N2=HCp_coeffs.N2./(1:5)*((T_exh1).^(1:5)'−(T_exh2).^(1:5)')/ ...

(T_exh1−T_exh2);

Cp_RH=2.2318361545918672; %Calculated from HYSYS simulations
Cp_preheat=3.0748993810388652; %From HYSYS with feedtemp = 500 C

q_CCU=1500;
% Steam heating [kJ/h] per kg/h, calculated in HYSYS
q_LPE=470.418064578476;
q_LPB=2133.53929895280;
q_LPS=185.560334573640;
q_HPE=879.958181216821;
q_HPB=1197.71574220887;
q_HPS=816.054958821273;

w_LP=618.016839336527;
w_LPpump=.403;
w_HPpump=16.65;

if otherLP~=0
if otherLP==8;

T_LPB=170.4;
T_LPS=230;
q_LPE=586.4;
q_LPB=2047;
q_LPS=139.1;

139

w_LP=696.2;
w_LPpump=.9361;

else
disp(['Numbers for this pressure level LP = ' ...

num2str(otherLP) ' not found.'])
end

end
if otherHP~=0

if otherHP==130;
T_HPB=330.8;
T_HPS=560;
T_reheat=560;
q_HPE=793.2;
q_HPB=1135;
q_HPS=828.3;
Cp_RH=2.2381677011670842;
if otherLP==8

w_HPpump=18.14;
else

disp(['Numbers for HP = ' num2str(otherHP) ...
' not available for LP = ' num2str(otherLP)])

end
else

disp(['Numbers for this pressure level HP= ' ...
num2str(otherHP) ' not found.'])

end
end

% Bounds on temperatures and flows
T_in_lo=[h1 T_refprod;

h2 lowerbound(HTStemp2);
h3 lowerbound(LTStemp2);
h4 lowerbound(T_GT)*tempscale−C2K;
c1 lowerbound(GTfueltemp);
LPE T_water;
LPB T_LPB;
LPS T_LPB;
HPE T_LPB;
HPB T_HPB
HPS T_HPB;
RH lowerbound(steamtemp);
preheat T_CH4supply;
CCUreboiler T_CCUreboiler];

T_in_up=[h1 T_refprod;
h2 upperbound(HTStemp2);
h3 upperbound(LTStemp2);
h4 upperbound(T_GT)*tempscale−C2K;

140

c1 upperbound(GTfueltemp);
LPE T_water;
LPB T_LPB;
LPS T_LPB;
HPE T_LPB;
HPB T_HPB;
HPS T_HPB;
RH upperbound(steamtemp);
preheat T_CH4supply;
CCUreboiler T_CCUreboiler];

T_out_lo=[h1 lowerbound(HTStemp);
h2 lowerbound(LTStemp);
h3 T_WRfeed;
h4 T_HRSG_out_lo;
c1 T_fuel−C2K;
LPE T_LPB;
LPS T_LPS;
HPE T_HPB;
HPS T_HPS;
RH T_reheat;
preheat lowerbound(feedtemp)];

T_out_up=[h1 upperbound(HTStemp);
h2 upperbound(LTStemp);
h3 T_WRfeed;
h4 T_HRSG_out_up;
c1 T_fuel−C2K;
LPE T_LPB;
LPS T_LPS;
HPE T_HPB;
HPS T_HPS;
RH T_reheat;
preheat upperbound(feedtemp)];

flow_lo=[h1 lowerbound(mCp_refprod);
h2 lowerbound(mCp_HTSprod);
h3 lowerbound(mCp_LTSprod);
h4 CH4_in*lowerbound(feedflow);%Not so good...
c1 lowerbound(mCp_GTfuel);
preheat lowerbound(feedflow)*CH4_in*Cp_preheat;
CCUreboiler lowerbound(CCU_CO2)*split.CO2(2)*q_CCU];

flow_up=[h1 upperbound(mCp_refprod);
h2 upperbound(mCp_HTSprod);
h3 upperbound(mCp_LTSprod);
h4 airflow+CH4_in*(1+upperbound(S2C)*M.H2O/M.CH4 + ...

M.O2/M.CH4/airO2mass)*upperbound(feedflow);
c1 upperbound(mCp_GTfuel);
LPE upperbound(W_GT);
LPB upperbound(W_GT);
LPS upperbound(W_GT);

141

HPE upperbound(W_GT);
HPB upperbound(W_GT);
HPS upperbound(W_GT);
RH upperbound(W_GT);
preheat upperbound(feedflow)*CH4_in*Cp_preheat;
CCUreboiler upperbound(CCU_CO2)*split.CO2(2)*q_CCU];

%Linking T_in variables with other temperature variables (or a constant)
T_inconn=[h2 HTStemp2 1;

h3 LTStemp2 1;
h4 T_GT tempscale;
c1 GTfueltemp 1;
RH T_HPturb tempscale];

T_inconnconst=[h4 −C2K;
LPE T_water;
LPB T_LPB;
LPS T_LPB;
HPE T_LPB;
HPB T_HPB;
HPS T_HPB;
RH −C2K];

%Linking T_out variables with other temperature variables (or a constant)
T_outconn=[h1 HTStemp high(HTStemp)−low(HTStemp);

h2 LTStemp high(LTStemp)−low(LTStemp);
preheat feedtemp high(feedtemp)−low(feedtemp)];

T_outconnconst=[h1 .5*(high(HTStemp)+low(HTStemp));
h2 .5*(high(LTStemp)+low(LTStemp));
LPE T_LPB;
LPS T_LPS;
HPE T_HPB;
HPS T_HPS;
RH T_reheat;
preheat .5*(high(feedtemp)+low(feedtemp))];

%Linking flow variables from the heat recovery model with other flow
%variables
flowconn=[h1 mCp_refprod 1;

h2 mCp_HTSprod 1;
h3 mCp_LTSprod 1;
h4 exh_H2O Cp_H2O;
h4 exh_CO2 Cp_CO2;
h4 exh_O2 Cp_O2;
h4 exh_N2 Cp_N2;
c1 mCp_GTfuel 1;
HPE HPsteamflow q_HPE/(T_HPB−T_LPB);
RH IPsteamflow Cp_RH;
preheat feedflow CH4_in*Cp_preheat;
CCUreboiler CCU_CO2 split.CO2(2)*q_CCU];

%Linking flow variables from the heat recovery model with eachother

142

flowconn2=[LPE LPB q_LPE/(T_LPB−T_water)/q_LPB;
LPE HPE q_LPE/(T_LPB−T_water)/q_HPE*(T_HPB−T_LPB);
LPB LPS q_LPB/q_LPS*(T_LPS−T_LPB);
HPE HPB q_HPE/(T_HPB−T_LPB)/q_HPB;
HPB HPS q_HPB/q_HPS*(T_HPS−T_HPB)];

% Costs for utilities and streams
Q_Ccost=2.09793063613580e−3*objscale;
Q_Hcost=1*objscale;
flowcost=[LPB −(w_LP*(1−STcondensercooling)−w_LPpump)/q_LPB;

HPB (w_LPpump+w_HPpump)/q_HPB;
RH −w_LP*(1−STcondensercooling)/Cp_RH];

flowcost(:,2)=objscale*flowcost(:,2);

% Writing data to GDX file (hrsgconnected.gdx)
writegdx('hrsgconnected.gdx', ...

'set', 'streams', [streams; dummy], ...
'set', 'hot', [hot; dummy], ...
'set', 'cold', [cold; dummy], ...
'set', 'noniso', [noniso; dummy], ...
'set', 'iso', [iso; dummy], ...
'set', 'isohot', [isohot; dummy], ...
'set', 'isocold', [isocold; dummy], ...
'set', 'allhot', [allhot; dummy], ...
'set', 'allcold', [allcold; dummy], ...
'set', 'pc', [pinchcandidates; dummy], ...
'parameter', 'T_in_lo', T_in_lo, ...
'parameter', 'T_in_up', T_in_up, ...
'parameter', 'T_out_lo', T_out_lo, ...
'parameter', 'T_out_up', T_out_up, ...
'parameter', 'flow_lo', flow_lo, ...
'parameter', 'flow_up', flow_up, ...
'parameter', 'T_inconn', T_inconn, ...
'parameter', 'T_outconn', T_outconn, ...
'parameter', 'flowconn', flowconn, ...
'parameter', 'flowconn2', flowconn2, ...
'parameter', 'T_outconnconst', T_outconnconst, ...
'parameter', 'T_inconnconst', T_inconnconst, ...
'parameter', 'HRAT', HRAT, ...
'parameter', 'Q_Hcost', Q_Hcost, ...
'parameter', 'Q_Ccost', Q_Ccost, ...
'parameter', 'flowcost', flowcost, ...
uels);

F.2.13 Reading solution from file — getsolution.m

143

%%%
% getsolution.m − reading the solution of the model from irccoptimum.gdx
%%%
% Functions and scripts used:
% GDXMRW: readgdx.m reading data from.gdx files
% sp2full.m changing matrix from 'sparse' to 'full' format
%%%

% Specifying the file to read from
filetoreadfrom='irccoptimum.gdx';

% Reading the solution from a gdx file produced by GAMS
x_opt=readgdx(filetoreadfrom,'x_opt');
x_opt(:,1)=v_all(x_opt(:,1));
x_opt=sp2full(x_opt,'parameter')';

try
info(1)=sp2full(readgdx(filetoreadfrom,'z_opt'),'parameter')';

catch
disp('No information about objective')
info(1)=NaN;

end
try
info(2)=sp2full(readgdx(filetoreadfrom,'exectime'),'parameter')';
catch

disp('No information about execution time')
info(2)=−5;

end
try

info(3)=sp2full(readgdx(filetoreadfrom,'iterations'),'parameter')';
catch

disp('No information about iterations')
info(3)=−5;

end
try

info(4)=sp2full(readgdx(filetoreadfrom,'modelstatus'),'parameter')';
catch

disp('No information about model status')
info(4)=−5;

end

x_opt(length(x_opt)+1:length(uels))=0;
%Saving the solution if the model found one
if info(4)==1 || info(4)==2

tid=datestr(now);
save('A_matrix', 'x_opt', 'tid', '−append')

end

144

F.2.14 Post-processing and output of the solution — irc-
coutput.m

%%%
% irccoutput.m − processing and displaying results (and reading some heat
% integration results)
%%%
% Functions and scripts used:
% GDXMRW: readgdx.m reading data from.gdx files
% sp2full.m changing matrix from 'sparse' to 'full' format
%%%

% Names of structs
% in = Reformer feed
% CSg = Cooled Syngas
% SCC = Syngas to CCU
% Con = Condensate
% GTf = Gas Turbine fuel
% CC = Carbon Capture stream (CO2 to compression)
% Ws = Waste stream
% Unit: kmol/h

CH4_IN=CH4_in*x_opt(feedflow);

%Fixed values
in.CH4=CH4_IN/M.CH4;
CSg.O2=0/M.O2;
SCC.O2=0/M.O2;

% Values from x_opt
in.H2O=x_opt(S2C)*in.CH4;
CSg.CO=x_opt(CS_CO)/M.CO;
CSg.CO2=x_opt(CS_CO2)/M.CO2;
CSg.H2=x_opt(CS_H2)/M.H2;
SCC.CO=x_opt(CCU_CO)/M.CO;
SCC.CO2=x_opt(CCU_CO2)/M.CO2;
SCC.H2=x_opt(CCU_H2)/M.H2;
SCC.CH4=x_opt(CCU_CH4)/M.CH4;
SCC.H2O=x_opt(CCU_H2O)/M.H2O;
SCC.N2=x_opt(CCU_N2)/M.N2;

% Atom balance over reformer and shift reactors
CSg.CH4=in.CH4−CSg.CO−CSg.CO2; % Carbon balance
CSg.H2O=in.H2O−CSg.H2+2*(in.CH4−CSg.CH4); % Hydrogen balance
in.O2=CSg.O2+CSg.CO2+.5*(CSg.CO+CSg.H2O−in.H2O);% Oxygen balance
in.N2=.79/.21*in.O2; % Air composition

145

CSg.N2=in.N2; % Nitrogen balance

% Calculating the streams after the CCU split, and the condensate
for j=components

i=char(j);
% Condensate from water removal/separator
eval(['Con.' i '=CSg.' i '−SCC.' i ';']);
% Streams out of CCU
eval(['GTf.' i '=SCC.' i '*split.' i '(1);']);
eval(['CC.' i '=SCC.' i '*split.' i '(2);']);
eval(['Ws.' i '=SCC.' i '*split.' i '(3);']);

end

% Displaying the solution
frmt='%35s %10.4g %12.4g %8s \n';
obj=sp2full(objective,'parameter');
if length(obj)<V

obj(V)=0;
end
disp('Variable Obj.coeff. Optimal value')
for i=v_all'

if upperbound(i)==lowerbound(i)
te='Fixed';

elseif x_opt(i)==upperbound(i)
te='UPPER';

elseif x_opt(i)==lowerbound(i)
te='lower';

else
te=num2str((x_opt(i)−lowerbound(i))/ ...

(upperbound(i)−lowerbound(i)),'%6.4f');
end
fprintf(frmt, uels{i}, obj(i), x_opt(i),te);

end

% Displaying molar flow of components in GT fuel and carbon capture stream
GTf
CC
disp('[kmol/h]')

% Calculating and displaying excess air ratio
disp(['Excess air ratio: ' ...

num2str(x_opt(exh_O2)/(x_opt(comb_airflow)*airO2mass−x_opt(exh_O2)))...
' (' num2str(x_opt(exh_O2)/sum(x_opt(exhaust_set))*100) ...
' % O2 by mass in exhaust)']);

% Displaying results for turbines and compressors
disp('Turbines and compressors')

146

frmt='%16s %16s %16s %16s %16s \n';
fprintf(frmt,uels{trb_set})
frmt='%16.6g %16.6g %16.6g %16.6g %16.6g \n';
fprintf(frmt,x_opt(outlettemp_set)*tempscale−C2K)
fprintf(frmt,x_opt(p_out_set))
fprintf(frmt,x_opt(W_set))
fprintf(frmt,x_opt(kappafrac_set))
fprintf(frmt,sum(x_opt(exhaust_set)), x_opt(flow_ATRair_set), ...

x_opt(HPsteamflow), x_opt(IPsteamflow))

% Reading some heat integration results
mCp_opt=sp2full(readgdx('hrsgopt.gdx','mCp'),'parameter')';
try

Q_H_opt=readgdx('hrsgopt.gdx','Q_H')';
if length(Q_H_opt)<1;Q_H_opt=0;end

catch
Q_H_opt=0;

end
try

Q_C_opt=readgdx('hrsgopt.gdx','Q_C')';
if length(Q_C_opt)<1;Q_C_opt=0;end

catch
Q_H_opt=0;

end

% Calculating power output and consumtions
W_air=w_air*airflow;
W_LP=w_LP*(mCp_opt(LPB)/q_LPB+x_opt(IPsteamflow));
W_CO2compr=w_CO2compr*split.CO2(2)*x_opt(CCU_CO2);
condenserpumpwork=STcondensercooling*(x_opt(W_HPturb)+x_opt(W_IPturb)+W_LP);
pumpwork=(w_HPpump+w_LPpump)*x_opt(HPsteamflow)+w_LPpump*mCp_opt(LPB)/q_LPB;
poweroutput = x_opt(W_GT)−W_air−x_opt(W_2ndcompr)−x_opt(W_extcompr)+ ...

x_opt(W_HPturb) + x_opt(W_IPturb) + W_LP − x_opt(fuelcompr) − ...
condenserpumpwork − pumpwork − W_CO2compr − ...
Q_C_opt*Q_Ccost/objscale − Q_H_opt*Q_Hcost/objscale;

W_aux=condenserpumpwork + pumpwork +...
Q_Ccost*Q_C_opt/objscale + Q_Hcost*Q_H_opt/objscale;

disp('POWER OUTPUT SUMMARY')
frmt='%36s %9.2f %4s \n';
unit='MW';
captureratio= x_opt(CCU_CO2)*split.CO2(2)/M.CO2*M.CH4./CH4_IN;
powertabledata=[x_opt(W_GT) −W_air −x_opt(W_2ndcompr) −x_opt(W_extcompr)...

x_opt(W_HPturb) x_opt(W_IPturb) W_LP −W_CO2compr −x_opt(fuelcompr) ...
−W_aux poweroutput LHV_CH4*CH4_IN poweroutput/(LHV_CH4*CH4_IN)*100 ...
−Q_C_opt −Q_H_opt captureratio x_opt(feedpressure) x_opt(S2C)]';

fprintf(frmt, 'Gas turbine power (gross):', x_opt(W_GT), unit)
fprintf(frmt, 'Main air compressor work:', −W_air, unit)
fprintf(frmt, 'Second air compressor work:', −x_opt(W_2ndcompr), unit)

147

fprintf(frmt, 'Extra air compressor work:', −x_opt(W_extcompr), unit)
fprintf(frmt, 'HP steam turbine power:', x_opt(W_HPturb), unit)
fprintf(frmt, 'IP steam turbine power:', x_opt(W_IPturb), unit)
fprintf(frmt, 'LP steam turbine power:', W_LP, unit)
fprintf(frmt, 'CO2 compression:', −W_CO2compr, unit)
fprintf(frmt, 'GT fuel compression work:', −x_opt(fuelcompr), unit)
fprintf(frmt, 'Condenser cooling (work)', −condenserpumpwork, unit)
fprintf(frmt, 'Pumps for LP and HP water:', −pumpwork, unit)
fprintf(frmt, 'Cooling water pumps:', −Q_Ccost*Q_C_opt/objscale, unit)
fprintf(frmt, 'External heating:', −Q_Hcost*Q_H_opt/objscale, unit)
disp('−−')
fprintf(frmt, 'Net power output:', poweroutput, unit)
disp('==')
fprintf(frmt, 'Energy input (CH4 LHV):', LHV_CH4*CH4_IN, unit)
disp('==')
fprintf(frmt, 'Efficiency:', poweroutput/(LHV_CH4*CH4_IN)*100, '%')
disp('==')
fprintf(frmt, 'Cold utilities (external cooling):', −Q_C_opt, unit)
fprintf(frmt, 'Hot utilities (external heating):', −Q_H_opt, unit)
disp('==')
fprintf(frmt, 'CO2 capture ratio:', captureratio*100, '%')
fprintf(frmt, 'ATR pressure:', x_opt(feedpressure), 'bar')
fprintf(frmt, 'Steam to carbon ratio:', x_opt(S2C), '')

disp(info(1));
modelstat={'Optimal', 'Locally Optimal', 'Unbounded', 'Infeasible', ...

'Locally Infeasible', 'Intermediate Infeasible', ...
'Intermediate Nonoptimal', 'Integer Solution', ...
'Intermediate Non−Integer', 'Integer Infeasible', ...
'Licencing Problems − No Solution', 'Error Unknown', ...
'Error No Solution', 'No Solution Returned', 'Solved Unique', ...
'Solved', 'Solved Singular', 'Unbounded − No Solution', ...
'Infeasible − No Solution'};

disp(['Model status ' num2str(info(4)) ' − ' modelstat{info(4)}]);

F.2.15 Post-processing and output of heat integration re-
sults — cascade.m

%%%
% cascade.m − analyzing heat integration results
%%%
% Functions and scripts used:
% GDXMRW: readgdx.m reading data from.gdx files
% sp2full.m changing matrix from 'sparse' to 'full' format
%%%

148

%Reading the solution
try

filetoreadfrom='hrsgopt.gdx';
T_in=sp2full(readgdx(filetoreadfrom,'Tin'),'parameter')';
T_out=sp2full(readgdx(filetoreadfrom,'Tout'),'parameter')';
mCp=sp2full(readgdx(filetoreadfrom,'mCp'),'parameter')';
HRAT=sp2full(readgdx(filetoreadfrom,'HRAT'),'parameter');
cost=sp2full(readgdx(filetoreadfrom,'z'),'parameter');
if length(mCp)<streams(st)

mCp(streams(st))=0;
end

catch
disp(['COULD NOT READ FROM ' filetoreadfrom])

end

% Adjusting to get right dimension
if length(T_in_up)<streams(st)

T_in_up=sp2full(T_in_up,'parameter')';
T_in_lo=sp2full(T_in_lo,'parameter')';
T_out_lo=sp2full(T_out_lo,'parameter')';
flowcost=sp2full(flowcost,'parameter')';
file='ircc.gdx';
if length(T_in)<streams(st)

T_in(streams(st))=0;
end
if length(T_in_lo)<streams(st)

T_in_lo(streams(st))=0;
end
if length(T_in_up)<streams(st)

T_in_up(streams(st))=0;
end
if length(T_out)<streams(st)

T_out(streams(st))=0;
end
if length(T_out_lo)<streams(st)

T_out_lo(streams(st))=0;
end
if length(flowcost)<streams(st)

flowcost(streams(st))=0;
end

end
T_out(iso)=T_in(iso);
T_out_lo(iso)=T_in_lo(iso);
% Adjusting for HRAT
T_in(allcold)=T_in(allcold)+HRAT;
T_out(cold)=T_out(cold)+HRAT;

% Calculating heating and cooling for each stream for each temperature

149

% interval
T=unique([T_in(streams) T_out(noniso)]); % All unique temperatures
t=length(T)−1;
Qcold=zeros(1,t);
Qhot=Qcold;
Qisocold=Qcold;
Qisohot=Qisocold;
for i=1:t;

Qcold(i)=sum((T_in(cold)<=T(i)).*(T_out(cold)>=T(i+1))*mCp(cold)')*...
(T(i+1)−T(i));

Qhot(i)=sum((T_in(hot)>=T(i+1)).*(T_out(hot)<=T(i))*mCp(hot)'*...
(T(i+1)−T(i)));

Qisocold(i)=sum((T_in(isocold)==T(i))*mCp(isocold)');
Qisohot(i)=sum((T_in(isohot)==T(i))*mCp(isohot)');

end
% Calculating residuals
demand=Qhot−Qcold+Qisohot−Qisocold;
Qisocold(t+1)=sum((T_in(isocold)==T(t+1))*mCp(isocold)');
Qisohot(t+1)=sum((T_in(isohot)==T(t+1))*mCp(isohot)');
demand(t+1)=Qisohot(t+1)−Qisocold(t+1);
for i=t:−1:1

demand(i)=demand(i)+demand(i+1);
end
% Finding actual utility usage
[Q_H, p]=max([−demand 0]);
Q_C=(T_in(noniso)−T_out(noniso))*mCp(noniso)'+Q_H + sum(mCp(isohot)) − ...

sum(mCp(isocold));
% Finding the pinch temperature
T_pinch=[T(p) T(p)−HRAT];
Q=demand+Q_H;
demand=Qhot−Qcold;

% Calculating and drawing composite curves and grand composite curve
coldcomposite=zeros(1,2*t+2);
coldcomposite(1)=Q_C;
hotcomposite=zeros(1,2*t+2);
Temps=zeros(1,2*t+2);
for i=1:t

Q(2*i)=Q(2*i−1)+Qisocold(i)−Qisohot(i);
Temps(2*i−1)=T(i);
Q(2*i+1)=Q(2*i)+Qcold(i)−Qhot(i);
Temps(2*i)=T(i);
coldcomposite(2*i)=coldcomposite(2*i−1)+Qisocold(i);
coldcomposite(2*i+1)=coldcomposite(2*i)+Qcold(i);
hotcomposite(2*i)=hotcomposite(2*i−1)+Qisohot(i);
hotcomposite(2*i+1)=hotcomposite(2*i)+Qhot(i);

end
Temps(2*t+1)=T(t+1);

150

Q(2*t+2)=Q(2*t+1)+Qisocold(t+1)−Qisohot(t+1);
coldcomposite(2*t+2)=coldcomposite(2*t+1)+Qisocold(t+1);
hotcomposite(2*t+2)=coldcomposite(2*t+1)+Qisohot(t+1);
Temps(2*t+2)=T(t+1);
grandcomposite=coldcomposite−hotcomposite;
figure(1)
plot(grandcomposite,Temps−.5*HRAT,'o−')
xlabel('Q [MW]')
ylabel('T [^{o}C]')
xlim([min(grandcomposite) max(grandcomposite)])
figure(2)
frmtc='b−';
frmth='r−';
evalstring='plot(';
for i=2:2*t+2;

if coldcomposite(i)~=coldcomposite(i−1)
evalstring=[evalstring '[' ...

num2str(coldcomposite(i−1)) ',' num2str(coldcomposite(i)) ...
'],[' num2str(Temps(i−1)−HRAT) ',' num2str(Temps(i)−HRAT) ...
'],frmtc,'];

end
if hotcomposite(i)~=hotcomposite(i−1)

evalstring=[evalstring '[' ...
num2str(hotcomposite(i−1)) ',' num2str(hotcomposite(i)) ...
'],[' num2str(Temps(i−1)) ',' num2str(Temps(i)) '],frmth,'];

end
end
evalstring(length(evalstring))=')';
eval(evalstring)
xlabel('Q [MW]')
ylabel('T [^{o}C]')
xlim([min([coldcomposite hotcomposite]) max([coldcomposite hotcomposite])])

% Calculating data for a detailed heat cascade (could have been based on
% previous code)
ho=length(hot);
co=length(cold);
hc=max([ho co]);
Qcold=zeros(hc,t);
Qhot=Qcold;
for i=1:t;

for j=1:co
Qcold(j,i)=(T_in(cold(j))<=T(i)).*(T_out(cold(j))>=T(i+1))*...

mCp(cold(j))*(T(i+1)−T(i));
end
for j=1:ho

Qhot(j,i)=(T_in(hot(j))>=T(i+1)).*(T_out(hot(j))<=T(i))*...
mCp(hot(j))*(T(i+1)−T(i));

151

end
end
% Re−adjusting for HRAT
T_in(allcold)=T_in(allcold)−HRAT;
T_out(cold)=T_out(cold)−HRAT;
% "Drawing" a detailed heat cascade
frmt='%9s'; frmtl='%−9s';
bl=9;
disp(['Q_H = ' num2str(Q_H)])
disp([num2str(Qisohot(t+1)) blanks(2*bl+7) num2str(−Qisocold(t+1))])
if t+1==p

disp(' Pinch')
end
for i=t:−1:1

disp([' ' sprintf(frmt,num2str(T(i+1))) '_________' ...
sprintf(frmtl,num2str(T(i+1)−HRAT))])

disp([blanks(bl+2) '|' sprintf(frmt,num2str(demand(i))) '|'])
for j=1:hc

disp([sprintf(frmt,num2str(Qhot(j,i))) ' −|' blanks(bl) '|− ' ...
sprintf(frmtl,num2str(Qcold(j,i)))])

end
disp([blanks(bl+2) '|_________|'])
disp([num2str(Qisohot(i)) blanks(2*bl+7) num2str(−Qisocold(i))])
if i==p

disp([blanks(bl) 'Pinch'])
end

end
disp([' ' sprintf(frmt,num2str(T(1))) blanks(bl) ...

sprintf(frmtl,num2str(T(1)−HRAT))])
disp(['Q_C = ' num2str(Q_C)])

% Displaying stream data
Qflow=zeros(1,st);
Qflow(noniso)=(T_in(noniso)−T_out(noniso)).*mCp(noniso);
Qflow(isohot) =mCp(isohot);
Qflow(isocold)=−mCp(isocold);
frmt='%11s %10.4g %10.4g %10.4g %12.4g %10.4g %10.4g \n';
disp(' Stream T_in T_out mCp Qflow')
for i=streams'

fprintf(frmt, uels{i}, T_in(i), T_out(i), mCp(i), Qflow(i), ...
T_in_up(i)−T_in(i), T_out(i)−T_out_lo(i));

end
disp(['Cost: ' num2str(mCp*flowcost'+Q_H*Q_Hcost+Q_C*Q_Ccost) ...

' (calculated from "optimal" stream data)'])
if strncmp('hrsg', file, 4)

disp(['Cost: ' num2str(cost) ' (optimal objective value from ' ...
file ')'])

end

152

	Title Page
	masteroppgave.pdf

