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Abstract 

 
Value at risk (VaR) and Expected Shortfall (ES) are commonly used risk measures in the 

financial literature. They have however not been applied to a great extent on energy 

derivatives. This paper compares the performance of several VaR and ES models for energy 

commodity futures on some of the world’s largest commodity exchanges. In total 14 different 

VaR models and nine ES models are evaluated; GARCH and GJR-GARCH with normal, 

student t, GED and skewed student t distributions and EWQR are used to obtain both VaR 

and ES forecasts. In addition, five CAViaR models are used in the VaR analysis. 

 

EWQR is by far the best ES model. It has very good test results for all markets and quantiles 

considered. The VaR results vary greatly, and there does not appear to be any clear pattern in 

which some models are better suited for certain markets or commodities. The VaR models 

with best performance overall are however EWQR, the adaptive CAViaR and GARCH and 

GJR-GARCH models with student t and skewed student t distributions.  

___________________________________________________________________________ 

Keywords: Risk Modelling, Value at Risk, VaR, Expected Shortfall, ES, Expected Tail Loss, 

ETL, Conditional Value at Risk, CVaR, Quantile Regression, Exponentially Weighted 

Quantile Regression, EWQR, Conditional Autoregressive Value at Risk, CAViaR, Generalized 

AutoRegressive Conditional Heteroskedasticity, GARCH,GJR-GARCH, Normal Distribution, 

Student t, GED, Skewed Student t, Energy Markets, Energy Commodity Futures, Carbon, 
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1. Introduction 
 

Risk management in energy markets is becoming increasingly relevant. A growing number of 

the world’s power markets have been liberalized and multinational power exchanges have 

emerged. Markets are becoming more integrated, and the trading of forward and futures 

contracts is increasing. Energy markets differ from traditional financial markets due to the 

nature of production and consumption (Pilipovic 2007); the volatility of energy commodities 

is higher, and return distributions tend to be more leptokurtic and skewed. This makes risk 

modelling a challenging and important task. Risk management is not only relevant for 

participants in financial trading; suppliers and consumers of energy commodities also have a 

need for hedging of their operations and investments.  

 

In this paper both Value at Risk (VaR) and Expected Shortfall (ES) will be used to quantify 

risk. VaR is a popular tool in risk management today. It assists in setting position limits and 

allocating resources to meet capital requirements needed to cover market risk. ES is a risk 

measure which has been introduced as a coherent supplement to VaR. 

 

We apply several different models to obtain VaR and ES estimates for the 90%, 95% and 99% 

quantiles of the loss distribution for both long and short trading positions: Exponentially 

Weighted Quantile Regression (EWQR), eight Generalized AutoRegressive Conditional 

Heteroskedasticity (GARCH) models and five models based on the Conditional 

Autoregressive Value at Risk (CAViaR) framework. The GARCH models are well-

established in risk management, but quantile regression based models such as CAViaR and 

EWQR are valid alternatives.  

 

We consider monthly, quarterly and yearly first position energy futures from four different 

markets. These markets have been chosen because of their strong position in futures contracts 

trading of energy commodities.  

 

New York Mercantile Exchange (NYMEX) is the largest energy and metals exchange in the 

world. In 2008 they became a part of the world’s largest futures market, CME Group Inc. 

(CME Group 2008).Nord Pool was the world’s largest power derivatives exchange when it 

was acquired by the NASDAQ OMX Group. In November 2010 it changed trade name to 

NASDAQ OMX Commodities Europe (Nasdaq OMX 2011). ICE Futures Europe is one of 

three futures exchanges operated by Intercontinental Exchange (NYSE: ICE), and hosts 

trading in half of the world’s crude and refined oil futures contracts traded each day (ICE 

2011). European Energy Exchange (EEX) is one of the leading trading markets in European 

energy trading, and the volume of power derivatives traded is about five times higher than the 

volume traded on the spot market for power (European Energy Exchange AG 2009). 

 

We share the view of Angelidis et al. (2004) that it is better to use risk models that have good 

out-of-sample forecasts than models that are correctly specified for the in-sample period. 

Hence, the focus when evaluating the models will be on the out-of-sample performance.  

 

Our analysis shows that the performance of the VaR models differs great between the 14 

return series considered. EWQR, the adaptive CAViaR and the GARCH and GJR-GARCH 

models with student t and skewed student t distributions are the most accurate. EWQR is the 

best ES model, clearly outperforming the other models at the two-sided tests. 
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The rest of the paper is organized as follows. Section two provides a review of relevant 

studies conducted on VaR and ES, and how our approach will complement the existing 

literature. The third section describes the methodology of estimating VaR and ES with 

GARCH, EWQR and CAViaR, and section four and five methods of testing the VaR and ES 

forecasts, respectively. In section six a description of the data samples is given, while section 

seven contains an analysis of the empirical results. Concluding remarks follow in the last 

section.  

 

2. Review of Existing Literature 
 

2.1 Models for Value at Risk 
 

There are several different approaches to estimating VaR from time series. Manganelli and 

Engle (2001) distinguish between three categories of VaR methods: parametric, 

semiparametric and nonparametric.  

 

A simple way to estimate VaR is through historical simulation (HS), which is a 

nonparametric approach where historic data is used to make sample quantile estimates. 

Kuester et al. (2006) describes two kinds of historical simulation, naive HS, which is the most 

used, and filtered historical simulation (FHS). A problem with the HS approach is that it 

assumes that the next return will be the same as one of the observed returns in the chosen 

sample, with equal probability of occurrence. A future return cannot deviate from the already 

observed returns. 

 

Boudoukh, Richardson and Whitlaw (1998) introduce what they call a hybrid approach, 

which estimates VaR of a portfolio by applying exponentially declining weights to past 

returns and then finds the appropriate percentile of the time-weighted empirical distribution. 

This allows the VaR forecasts to deviate from the observed returns, and to emphasize recent 

returns.  

 

Parametric VaR-methods, such as GARCH, use parameterization of the time-varying 

stochastic behavior of financial prices. GARCH was introduced by Bollerslev (1986), who 

based his work on the ARCH model by Engle (1982). In order to estimate the parameters in 

this model framework, an error distribution must be assumed. Originally the normal 

distribution was suggested (Bollerslev 1986). This is the easiest distribution to implement, 

and it is very often used at least as a benchmark. Even though the normal distribution 

assumption is easy and popular, it has been shown empirically that it is often unsuitable for 

real world applications (Kuester, Mittnik et al. 2006; Hung, Lee et al. 2008). The distribution 

of financial returns tend to be leptokurtic; it has heavier tails than predicted by the normal 

distribution, as well as more returns close to zero (McNeil and Frey 2000). In addition a lot of 

return series show an asymmetry that the normal distribution is unable to register (Harvey and 

Siddique 1999; Verhoeven and McAleer 2004). Therefore, other distributions may fit better 

with reality. The student t distribution (Bollerslev 1987), GED (Subbotin 1923; Nelson 1991) 

and heavy tails (Hung, Lee et al. 2008), all allow the distribution to be leptokurtic. Hansen’s 

skewed Student t distribution accounts for asymmetry in addition to leptokurtosis (Hansen 

1994; Giot and Laurent 2003). 

 

There exist a lot of extensions to the ARCH/GARCH framework. In fact there are so many of 

them that Bollerslev, Russell et al. (2010) published a reference guide to ease the navigation 
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through the “alphabet-soup of acronyms and abbreviations”. Many of the different GARCH 

models have been used in VaR studies, such as EGARCH  (Bertsimas, Lauprete et al. 2004; 

Chan and Gray 2006), APARCH  (Giot and Laurent 2003; Huang and Lin 2004) and GJR-

GARCH (Bertsimas, Lauprete et al. 2004), all of which account for asymmetry, AR-GARCH 

(Byström 2005; Kuester, Mittnik et al. 2006), which includes an autoregressive term for the 

conditional mean, and FIGARCH (Beine, Bénassy-Quéré et al. 2002; Härdle and Mungo 

2008) which includes volatility shock persistence.  

 

The semiparametric VaR models include extreme value theory (EVT) and quantile regression 

(QR). Both EVT and QR model the quantile directly instead of modelling the whole 

distribution. The problem with EVT is that it assumes that the returns are independent and 

identically distributed, which is normally not the case. To solve this, some kind of filter, for 

example a GARCH model, is applied to the returns prior to the EVT (Kuester, Mittnik et al. 

2006). Having to apply a filter removes some of the advantage of modelling the quantile 

directly. We refer to Embrechts, Klüppelberg and Mikosch (1996) and Mapa and Suaiso 

(2009) for a more comprehensive analysis on this subject.  

 

An example of a QR based model is CAViaR, introduced by Engle and Manganelli (2004). It 

suggests that the quantiles for the different periods are autoregressive. The parameters in the 

CAViaR models are estimated using quantile regression minimization. Some studies suggest 

that CAViaR performs well both for stock markets (Engle and Manganelli 2004) and 

commodities indices (Füss, Adams et al. 2010). 

 

EWQR, developed by Taylor (2008), is another QR based VaR model, in which a weighting 

parameter has been included to the quantile regression expression. Even though the EWQR 

formula generally include regressors, Taylor (2008) argues that an EWQR with an intercept 

and no regressors is reasonable and should perform well. The version without regressors is 

basically equivalent to the hybrid model by Boudoukh, Richardson and Whitlaw mentioned 

above, but perhaps with better a theoretical framework.  

 

Regardless of the popularity and extensive use of VaR, it has also been criticized. Beder 

(1995) declared VaR to be “seductive, but dangerous”, as results are very dependent on the 

method applied, the assumptions made and data considered. Acerbi and Tasche (2002) claim 

that VaR should be interpreted as “[…] the minimum loss incurred in the α% worst cases of 

our portfolio”, and that it therefore is a strange risk measure to consider. 

 

A risk measure needs to meet four axioms; it must be monotonous, sub-additive, positively 

homogenous and translation invariant (Acerbi and Tasche 2002). With a portfolio made up of 

sub-portfolios, the risk calculated by VaR will be the sum of the risks of the sub-portfolios. In 

reality the risk will be lower or at most the sum of each risk because of diversification. 

Because our study only concerns univariate cases, this doesn’t affect our result. However, it is 

an important weakness of a risk measure. 

 

2.2 Models for Expected Shortfall 
 

In order to avoid the shortcomings of VaR, Expected Shortfall (ES) was introduced. Expected 

Tail loss (ETL), Conditional Value at Risk (CVaR),  Average Value at Risk (AVaR), Tail 

Mean (TM), Average Multiple of Tail Event to Risk Measure (AMTERM), Tail Conditional 

Expectation (TCE) and Worst Conditional Expectation (WCE) are other terms which are used 

interchangeably for ES, even though there is a theoretical difference between some of them 
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(Acerbi and Tasche 2002; Rockafellar and Uryasev 2002; Alexander 2008; Härdle and 

Mungo 2008). 

 

Compared with VaR less research is done on ES, but in the last decade the number of 

published articles about ES has increased rapidly. The articles concerning ES can be divided 

into three groups: The first group compares VaR and ES, the second one uses ES as a measure 

of VaR performance, while the last group considers ES models individually, as complements 

or extensions to the VaR models. 

 

Most of the articles comparing VaR and ES focus on the differences in theoretical framework, 

and how ES is a better and coherent risk measure (Beder 1995; Acerbi and Tasche 2002; 

Bertsimas, Lauprete et al. 2004; Inui and Kijima 2005; Cai and Wang 2008; Lan, Nelson et al. 

2010). Yamai and Yoshiba (2005), on the other hand, try to decide which risk measure is best 

empirically, by comparing their performance in currency markets. They conclude that VaR 

and ES should be used together, since VaR has the problem that it ignores everything above 

the VaR, while ES has much greater estimation errors than VaR and is therefore more 

difficult to model accurately.  

 

ES can be used as a measure of VaR performance in at least two ways. First, as a comparable 

value, against which for example the average VaR forecast is compared, to verify whether the 

risk beyond VaR is great for a given market (Gupta and Liang 2005; Härdle and Mungo 

2008). Secondly, an ES based loss function can be used to choose the best VaR model 

(Angelidis and Degiannakis 2006). The problem with using ES in this way is that the 

accuracy of the ES models is not tested. Therefore more attention should be focused on the 

third group of ES articles. 

 

Among the ES models that are widely applied in stock or currency markets are EVT, the 

Stable Paretian Approach, historical simulation, and the normal distribution (McNeil and Frey 

2000; Embrechts, Kaufmann et al. 2005; Yamai and Yoshiba 2005; Harmantzis, Miao et al. 

2006; Marinelli, D'Addona et al. 2007; Alexander 2008; Chen 2008). These models have 

many of the same advantages and disadvantages as their corresponding VaR models, and 

alternative models are therefore still emerging.  

 

Some GARCH specifications have been considered as well with several different error 

distributions, as the normal distribution, student t, GED and skewed student t (Angelidis, 

Benos et al. 2004; Embrechts, Kaufmann et al. 2005; Härdle and Mungo 2008; Caillault and 

Guégan 2009). These are however either calculated numerically (Embrechts, Kaufmann et al. 

2005) or by following Dowd’s approach of slicing the distribution’s tail in many slices, 

estimating the corresponding VaR of each slice and then estimate ES as the average of these 

“tail VaRs” (Dowd 2002).  

 

Conditional AutoRegressive Expectiles (CARE) is inspired by CAViaR, but it is constructed 

in a way that it is possible to obtain ES forecasts as well as VaR forecasts. (Taylor 2008; 

Kuan, Yeh et al. 2009). EWQR is also a model that can be used both for VaR and ES 

forecasting. It have had promising ES results so far, and is therefore an interesting model for 

further research (Lin 2008; Taylor 2008).  
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2.3 Our Contribution to the Existing Literature 
 

Not much literature has been written on risk management by VaR or ES for energy 

commodity futures. Füss et al. (2010) investigated how different VaR models succeeded for 

futures indices based on commodities, one of which was an energy index. Others have 

estimated VaR for energy commodities, in particular oil, gas and oil products, but the focus 

has been on spot prices and not on futures (David Cabedo and Moya 2003; Giot and Laurent 

2003; Chan and Gray 2006; Sadeghi and Shavvalpour 2006; Costello, Asem et al. 2008; 

Hung, Lee et al. 2008; Aloui and Mabrouk 2010). Even less has work has been done on ES 

models for energy commodities; to our knowledge there has not been published such an 

article yet.  

 

The scope of this paper is to apply several VaR and ES models to a wide range of energy 

commodity futures. In this way our study will make an attribution to the existing literature, 

both in the variety of models used and the type of markets and financial instruments 

investigated. 

 

In the existing literature, the quantile regression based VaR models, CAViaR and EWQR, and 

models in the GARCH framework seem the most promising. They have mainly been applied 

to stock or currency markets. We therefore wish to compare their performance for energy 

commodity futures as well. Since there exist too many GARCH based models to consider in 

this paper, we will focus our attention on the standard GARCH(1,1) model as well as one 

model which take asymmetry into account; the GJR-GARCH(1,1,1) model. Both GARCH 

models will be implemented with four different error distributions; the normal, student t, GED 

and skewed student t distributions.  

 

We will use the same models to predict ES as VaR, except CAViaR, from which it is not clear 

how to obtain ES. It is straightforward to calculate ES with EWQR, using the expression 

derived by Taylor (2008). With GARCH, ES has so far been calculated numerically or as an 

average of many VaRs. We wish to expand the existing literature by finding analytical 

expressions for GARCH based ES models using the four mentioned error distributions. Yamai 

and Yoshiba (2005) have already derived from the standard normal distribution an ES 

expression which depends on the standard deviation. We will use the same approach to derive 

similar expressions for the other distributions and then use GARCH models to estimate the 

standard deviation in order to forecast ES.  

 

3. Value at Risk and Expected Shortfall Models 
 

14 different models are considered in this paper: GARCH(1,1) and GJR-GARCH (1,1,1) with 

four different error distributions each, five CAViaR specifications and EWQR. These models 

are used to produce day-ahead forecasts for both VaR and ES, with the exception of the 

CAViaR models, from which ES forecasts are not easily obtained. The expected value of the 

conditional mean is, for simplicity, assumed to be zero unless otherwise stated. Details 

regarding parameter estimation and derivations are left in appendix A. 

 

 

 

 

 



12 
 

3.1 Definitions 
 

The probability of experiencing a loss higher than VaRα is α percent. ES is defined as the 

expected value of the loss, given that it is greater than VaRα. Mathematically, this can be 

expressed as: 

 

        
  

*  | (    )   + 

 

     ,  |      ( )- 
 

Here xt represent the (1-α)th quantile of the distribution of the loss function X. For short 

positions the loss function is given by the return itself, while for long positions it equals the 

negative of the return.  

 

3.2 GARCH and GJR-GARCH 
 

Both GARCH(1,1) and GJR-GARCH(1,1,1) are autoregressive models for conditional 

variance that take volatility clustering into account. VaR and ES are expected to increase as 

the volatility in a market increases and vice versa. These models should therefore in theory 

provide a good basis for VaR and ES estimation. Their conditional variance expressions 

follow: 

 

GARCH(1,1):      
           

        
  

 

GJR-GARCH(1,1,1):    
           

        
  (      )        

  

 

The difference between the regular GARCH and the GJR-GARCH is that the latter allows the 

conditional variance to respond asymmetrically for positive and negative returns. In order to 

estimate the parameters in the expressions above, an error distribution needs to be assumed. 

Initially the normal distribution was suggested (Bollerslev 1986) but later more heavy tailed 

or asymmetrical distributions have been more popular, since they tend to fit empirical results 

better. In this paper four different error distributions are investigated; normal distribution, 

student t distribution, generalized error distribution (GED) and Hansen’s skew student t 

distribution. 

 

VaR is found from the following expressions, in which      is the (   )th-quantile of the 

assumed error distribution, or in other words the inverse cumulative error distribution at 

(   ): 

   ̂         ̂  

 

ES is then calculated from the following formulas: 

 

Normal distribution:   

  ̂    
 ̂ 

 √  
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Student t distribution:   
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Generalized error distribution:  
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Skew student t distribution:  
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In the previous expressions Γ(·) is the gamma function, Γ(·,·) is the incomplete gamma 

function, I(·) is the indicator function, FSST(·) is the scale family of the cumulative 

standardized student t distribution, λ and v are parameters that are estimated with maximum 

likelihood estimation, and 
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3.3 CAViaR 
 

Instead of assuming an error distribution, CAViaR estimates the relevant quantile directly by 

a form for quantile regression. The intuition of the CAViaR models is that VaR is 

autoregressive, and that it also depends on the realized losses in one way or another. The five 

specifications considered are all first-order autoregressive VaR models. 

 

In the Symmetric Absolute Value CAViaR model, VaR depends on the absolute value of the 

last period’s return. This means that positive and negative losses will have the same impact; 

hence, the specification is symmetric. The Asymmetric Slope CAViaR model, on the other 

hand, allows positive and negative losses to be weighted differently. 

 

Symmetric Absolute Value:                        |    | 
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Asymmetric Slope:                            ,      -        ,      - 
 

The Adaptive CAViaR model increases the VaR when a loss in the last period exceeds the 

corresponding VaR; otherwise it decreases the VaR slightly.  

 

Adaptive:                      [ (             )   ] 
 

The Indirect GARCH(1,1) CAViaR model works just like a GARCH(1,1) model, except that 

an error distribution is not needed to estimate the parameters. The Indirect AR(1)-

GARCH(1,1) CAViaR model, which is an extension of the indirect GARCH(1,1) CAViaR 

model, includes a first-order autoregressive term for the mean equation. 

 

Indirect GARCH(1,1):         √     (        )
 
       

  

 

Indirect AR(1)-GARCH(1,1): 

             √     (          )    (              )
 
 

 

3.4 EWQR 
 

EWQR is another quantile regression based model. The main idea is that past observations 

influence the future, and that the most resent observations are more relevant than distant ones. 

Therefore a weighting parameter λ is included in the quantile regression minimization 

formula, which can be expressed as: 

 

   
   ̂     

∑    (   ̂        ) .   (      ̂     )/

 

   

 

 

From this expression the VaR forecast follows directly and ES can easily be obtained: 
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4. Backtesting Value at Risk Forecasts 
 

To assess the accuracy and appropriateness of VaR models, we consider three different tests. 

The test for unconditional coverage, also known as the Kupiec test, checks whether the 

proportion of losses that are higher than their corresponding VaR is as expected or not 

(Kupiec 1995). This test rejects models that either overestimate or underestimate VaR (Hung, 

Lee et al. 2008).  

 

It does not, however, consider whether the extreme returns are randomly distributed or if they 

appear in clusters (Hung, Lee et al. 2008). This is of particular interest since it is far worse for 

an investor if the VaR estimates are exceeded many times in a row (Alexander 2008). The 

problem is addressed by the test for conditional coverage, which is a joint test of correct 

coverage and independence of the violations (Christoffersen 1998). This test rejects models 
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that either overestimate or underestimate VaR or that generate either too many or too few 

clustered violations (Hung, Lee et al. 2008).  

 

The third test considered in this paper is the dynamic quantile (DQ) test. For good VaR 

models, a VaR violation should be independent of the VaR estimate, as well as earlier VaR 

violations (Engle and Manganelli 2004). The DQ test checks whether or not this is the case by 

performing an artificial regression. The form of artificial regression that appears to be used 

most frequently, is the one that include four lags of VaR violations and the VaR estimate 

(Engle and Manganelli 1999; Kuester, Mittnik et al. 2006). 

 

Details regarding these tests can be found in appendix B 

 

5. Backtesting Expected Shortfall Forecasts 
 

5.1 An Expected Shortfall Test Dependent on VaR Forecasts (DV)   
 

McNeil and Frey (2000) developed a test, in which the difference between the ES forecasts 

and the realized losses is calculated for observations where the loss is greater than the VaR 

forecast. These residuals are then standardized. If the ES forecasts are appropriate, the 

residuals should now have a zero mean, be independent and identically distributed. A 

bootstrap test, which is explained in appendix B, checks whether or not the mean of the 

residuals is statistically different from zero. The test can be either one-sided or two-sided; we 

have considered both cases after following the reasoning of appendix B. 

 

McNeil and Frey (2000) standardize the residuals by the corresponding forecasts of the 

conditional volatility. Taylor (2008), on the other hand, chooses to use the conditional 

quantile estimate (the forecasted Value at Risk), since not all models estimate volatility. We 

follow Taylor’s example, and standardize with the VaR forecasts. The standardized residuals, 

zα,t, can thus be calculated from the following expression: 

 

      ,
     ̂   

   ̂   

|      ̂   -  

 

Even though this test has an attractive intuitiveness, it has a weakness; the test results have a 

strong dependence of the VaR forecasts (Embrechts, Kaufmann et al. 2005). If a model gives 

terrible VaR forecasts, the ES test results will be poor since only losses greater than the 

forecasted VaR are considered. A test that considers the ES forecasts separately would 

therefore be more appropriate.  

 

Another problem with this test rises whenever there are few VaR violations. This may be the 

case for extreme quantiles if the out-of-sample period is not large enough, or if the VaR 

forecasts are too conservative. Then there are few data to bootstrap, which makes the test 

results less reliable. In some cases a bootstrap test does not make sense at all, for example 

when the number of observations is less than two. 

 

5.2 An Expected Shortfall Test Independent of VaR Forecasts (IV) 
 

Embrechts, Kaufmann et al. (2005) introduced an ES measure that is independent of the VaR 

forecasts. They considered the α % cases in which the difference between the loss and the ES 
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forecast is the greatest, and calculate the average difference. Ideally the number should be 

zero, so it should be close to zero for good ES forecasts. Embrechts, Kaufmann et al. do not 

however state how small the measure should be for the forecasts to be considered adequate.  

 

We propose a test that follows the same intuition of looking at the α % worst cases, but 

instead of calculating the average difference, it performs a bootstrap hypothesis test for the 

differences alone. Since this test evaluates ES forecasts independent of VaR forecasts, we 

choose to keep it that way by not standardizing by the VaR forecasts as in the previous ES 

test. Another measure could be used to standardize the residuals, but the results of a bootstrap 

test will have similar results whether or not the residuals are standardized (McNeil and Frey 

2000). We therefore use the following variable as a basis for a bootstrap test. 

 

      {     ̂   |     ̂      }, where Dα is the α-th quantile of      ̂   .  

 

6. Data and Descriptive Statistics 
 

The data considered in this paper are prices of monthly, quarterly and yearly first position 

energy futures from EEX, NASDAQ OMX (Nord Pool), ICE and NYMEX; monthly peak 

electricity, brent crude oil, light crude oil, heating oil, gasoline, coal and gas futures, quarterly 

carbon futures and yearly peak electricity and carbon futures. In total this yields 14 different 

futures. The prices are gathered from the Reuters EcoWin Pro database. 

 

The focus has been on the returns rt, which can be defined as the logarithmic difference of the 

price from one day to another (Taylor 2005); rt=ln(Pt/Pt-1). Since daily returns are generally 

small in monetary units, they have been multiplied by 100 to avoid numerical errors in 

computer programs. Each price change between the last trading day of a futures contract and 

the first trading day of the subsequent contract has been excluded from the data set. This is 

because such price changes are not genuine returns; no trader will ever experience them. Each 

futures contract has its own rule for when the last trading day occur. The specific rules for the 

contracts considered in this paper are left in appendix C.  

 

The length of the return series varies between 927 and 3500 data points. In appendix D a table 

with the length, start date and end date of each series is given, together with a table with 

descriptive statistics for all series.  The last 500 observations are left as an out-of-sample 

period, against which the models’ forecasting performance is backtested.  

 

The means of all the return series are close to zero and the standard deviations are high 

compared to the means. This indicates that the returns are very volatile. Typical standard 

deviations for stocks and stock indices are between 0.7% and 2% for daily returns (Taylor 

2005). In this study the standard deviations vary between 0.9% and 5.7%. 13 of the 14 

commodity futures contracts in this paper have a standard deviation greater than 2%, which 

suggests that they are more volatile than stocks. The contract with lowest standard deviation is 

the yearly electricity futures. This makes sense, since the length of the contract makes it less 

sensitive to short term price variations. The most volatile contract, on the other hand, is the 

monthly electricity futures on NYMEX. 

 

The kurtosis of the series ranges in value from 4.6 to 40.5. This is significantly higher than the 

kurtosis of a standard normal distribution, which is 3. A distribution which has a kurtosis 

higher than 3 is called leptokurtic, which implies a high peak around the mean and fat tails. In 
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other words, there are many returns close to zero as well as numerous extreme returns. All of 

the series considered are leptokurtic, which contributes to making forecasting a more 

challenging task. 

 

Comparing the maximum and minimum values with the median supports the notion of having 

a leptokurtic distribution of the returns. With the exception of yearly electricity futures, all the 

contracts have some returns with absolute value above 10%. A few of them also display 

returns well above 30%. The median, on the other hand is very close to zero. 

 

The skewness of the returns varies between -1.4 and 1.9, which means that some of the series 

are skewed to the right and others to the left. With exception of the electricity futures, all 

futures for the same commodity are skewed to the same side regardless of which market they 

are traded on. For example do oil and all oil products have negative skewness, while both gas 

futures contracts have a positive skewness.  

 

The Jarque-Bera and augmented Dickey-Füller tests refute the null hypothesis of normality 

and unit root for all the return series, as expected both a priori and after considering the other 

descriptive statistics. 

 

According to the Ljung-Box test a majority of the futures display autocorrelation within the 

first five lags, and for the squared returns all of the futures show signs of autocorrelation. This 

is consistent with the findings of Aloui and Mabrouk (2010) on crude oil and gas commodities 

and might be explained by the characteristics of energy commodity price behavior; such as 

mean reversion and spikes (Deng 2000). 

 

Some of the return series display significant difference between the in- and out-of-sample 

periods. In appendix D the descriptive statistics for both are given. The general trend is that 

the series are less volatile in the out-of-sample period, with less extreme values and lower 

standard deviation. The financial crises occurred during the in-sample period, while the out-of 

sample period is post-crises. This might contribute to the observed difference. Most of the in-

sample periods are however larger than the out-of-sample periods, and are therefore more 

likely to include extreme values.   

 

7. Empirical Results 
 

500 day-ahead VaR and ES forecast are obtained with each of the 14 models for six different 

quantiles in the return distribution; 1%, 5%, 10%, 90%, 95% and 99%. This corresponds to 

the 90%, 95% and 99% quantiles in the loss distribution for long and short trading positions, 

respectively. The number of forecasts is consistent with Engle and Manganelli (2004) and 

Taylor (2008), and corresponds to around two years of trading. The forecasts are obtained by 

rolling the sample window and re-estimating the parameters each day for the EWQR and the 

GARCH models. The parameters are not re-estimated for the CAViaR models, because of 

limited computing capacity
1
.  

 

In the following subsections each model is evaluated for both VaR and ES results. In 

appendix E all the details regarding the test results are given for further study. There does not 

                                                             
1
To re-estimate the five CAViaR models’ parameters 500 times for each of the 14 futures would require more 

than three weeks of continuous computations with an average personal computer. 
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seem to be a clear pattern in which some models are better suited for certain markets or 

commodities. The results are therefore presented by model rather than market or commodity.  

 

7.1 VaR Results 
 

The VaR models are tested by the three tests described in section 4. Of these, we focus on the 

results from the coverage tests, since, in our opinion, it is more important for a VaR model to 

be correctly specified and thus predicting the proportion of losses that exceed VaR correctly, 

than it is that the probability of a VaR violation is independent of the VaR itself. The 

coverage tests will therefore be used to assess the appropriateness of the VaR models, while 

the DQ test will serve as a secondary comparable value in case several models have equally 

good performance in the coverage tests.  

 

The conditional coverage test does however have a weakness. For the extreme quantiles it is 

unlikely to witness two consecutive VaR violations, and the test is therefore not able to give a 

result for these. In order to use the test results in a productive way we will focus on the 

number of quantiles that pass the test at 5% significance level. The results from the 

unconditional coverage test and DQ test are more complete, and easier to use for model 

comparison. 

 

None of the models considered perform well for every return series, and it is not one model 

that clearly outperforms the others. However, there are some conclusions that can be drawn. 

The most accurate models are the EWQR, the adaptive CAViaR and the GARCH and GJR-

GARCH models with student t and skewed student t distributions. GARCH and GJR-GARCH 

with normal distribution are the two worst performing VaR models. 

 

7.1.1 VaR Results for EWQR  

 

EWQR is the model that performs best for both gasoline and heating oil on NYMEX. On five 

of the fourteen return series the model fails none of the quantiles in the unconditional 

coverage test at 10% significance level, and in total EWQR slightly outperforms the other 

models according to this test. With a 5% confidence level it fails 13 of the 84 quantiles 

considered. It is also the model with the highest number of non-failing quantiles in the 

conditional coverage test. It is on the dynamic quantile test that EWQR has its worst 

performance. Out of the fourteen models considered, it is the one with the lowest score. 

 

7.1.2 VaR Results for CAViaR 

 

The symmetric absolute value CAViaR is together with the indirect GARCH CAViaR the 

models with worst performance. The latter is the best performing model for coal on ICE and 

light crude oil on NYMEX, but falls through on the rest. Both models have only two series 

where they clear the unconditional coverage test, and they have the lowest count of reliable 

quantiles in the conditional coverage test. In the dynamic quantile test they perform in the 

mid-range. 

 

The indirect AR-GARCH CAViaR model can be categorized together with these models. It 

performs below par for both coverage tests. It is however one of the best models to make sure 

that the forecast is independent of the previous VaR estimates and violations, according to the 

dynamic quantile test. 
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The asymmetric slope CAViaR performs slightly better than the symmetric absolute value, 

which is to be expected as it can weigh positive and negative returns differently. It is the best 

model for carbon futures on NASDAQ OMX and coal futures on NYMEX and it also handles 

the dynamic quantile test well. Still, it does not perform well on the coverage tests. 

 

The adaptive CAViaR is that of the CAViaR models that is most reliable. With exception of 

the futures for brent crude oil, heating oil and light crude oil, where it fails severely, it has a 

very stable performance in the coverage tests. It is the best overall model for monthly 

electricity futures on ICE and EEX and for gas on ICE. Just like EWQR, the problem for the 

adaptive CAViaR is the dynamic quantile test, where it underperforms all the other CAViaR 

models. Much of the explanation lies in the fact that it is an adaptive model. Once the VaR is 

breached, it increases significantly, while it decreases slightly otherwise. This makes 

consecutive breaches of VaR less likely in volatile periods.  

 

Because the parameters in the CAViaR models are not re-estimated, it is natural to assume 

that they will fit worse the longer the out-of-sample period is. If the parameters were re-

estimated for every forecast, the models would probably have a better performance since it 

would adapt better to changes in the market. 

 

7.1.3 VaR Results for GARCH and GJR-GARCH 

 

The GARCH with normal distribution is the worst performing VaR model considered in this 

paper. For one of the futures, gas on NYMEX, it passes all the tests. However, several other 

models do the same, and the test results indicate that this is the easiest series to forecast. Other 

than that, it has a generally poor performance. The same can be said for the GJR-GARCH 

with normal distribution. 

 

With Student t distribution the models are significantly improved. The GARCH and GJR-

GARCH are the best models for gas futures and electricity futures on NYMEX respectively. 

The performance is stable and high, both for the coverage tests and the dynamic quantile test. 

The models with student t distribution prove to be a valid and more reliable alternative for 

VaR forecasting. 

 

There are no futures series where either of the models with GED distribution are the best 

models. Overall, they perform better than the models with normal distribution and most of the 

CAViaR models, but worse than the other models. They distinguish themselves only on the 

DQ test, where they perform better than most other models.  

 

The GARCH model with skewed student t distribution is the best model for carbon futures on 

EEX and light crude oil on NYMEX. It passes the unconditional coverage test perfectly for 

five return series, and is one of the best models both on the coverage tests and the dynamic 

quantile test. The GJR-GARCH with the same distribution has the best test results for yearly 

electricity futures on EEX and monthly electricity futures and light crude oil futures on 

NYMEX. Other than that the performance is quite similar to that of the ordinary GARCH 

model. Both have five return series where they have no p-values under 10% on the 

unconditional coverage test. 

 

In our results there is little difference between the GJR-GARCH and the ordinary GARCH 

when they have the same distribution; the GARCH model actually has a slightly better 

performance. As the GJR-GARCH is more complicated and requires more computational 
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power, this leads us to suggest that the GARCH model should be preferred for VaR 

forecasting. 

 

7.2 ES Results 
 

The ES forecasts were tested by the one- and two-sided tests described in section 5. In the 

following we denote the tests dependent on VaR by DV, and the tests that are independent of 

the VaR forecasts by IV. The two-sided tests concern whether or not the forecast is correct, 

while the one-sided tests check if the forecast is underestimated or not. If a model obtains 

good results in the one-sided tests and poor results in the two-sided tests, it is an indication of 

overestimated ES forecasts.  

 

The IV tests prove to be stricter than the DV tests, since they reject the null hypotheses more 

often regardless of which model or market is considered. When there is a great difference 

between a model’s performance in the DV and IV tests, this might be explained by the model 

having incorrect VaR forecast. 

 

The EWQR model has superior performance to the other models when the two-sided tests are 

considered. The GARCH and GJR-GARCH models with GED distribution pass almost every 

quantile for every futures contract in the traditional one-sided tests, but fail to a great extent at 

the two-sided tests. This suggests that they consistently overestimate ES.  

 

7.2.1 ES Results for EWQR 

 

EWQR is by far the model that performs best. In the DV tests it passes for every quantile for 

11 and 12 of the futures for the two- and one-sided respectively. Only for one quantile is the 

p-value below 5%. In the two-sided IV test EWQR pass every quantile for four series at a 

10% significance level. With the exception of GJR-GARCH with a skewed student t 

distribution, the other models pass every quantile for at most one series. EWQR has the worst 

performance in the one-sided IV test, which suggests that ES is underestimated. Considering 

the results from the two-sided test, the underestimation is however not large enough that the 

ES forecasts are statistically different from the realized shortfalls. Of the models considered in 

this paper, EWQR is the best at forecasting ES. 

 

7.2.2 ES Results for GARCH and GJR-GARCH 

 

The GJR-GARCH model performs slightly worse than the GARCH model for almost all the 

distributions. This further promotes the notion from the VaR analysis, that there is no point in 

using the GJR version instead of an ordinary GARCH.  

 

The GARCH model with normal distribution is surprisingly enough the one that performs 

best in the two-sided tests. With student-t distribution the GARCH model performs well for 

the one-sided tests, but falls through on both two-sided tests. The GARCH model with 

skewed student t distribution does not perform better than that with a student t.  GARCH with 

GED distribution is the model with the worst results in the two-sided tests, but it excels in the 

one-sided. In other words, the model consistently overestimates ES. An extremely risk averse 

investor could choose this model, but it would lead to unprofitable allocation of capital.  
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8. Concluding Remarks 
 

Energy markets differ from traditional financial markets due to the nature of production and 

consumption. This makes risk modelling a challenging and important task.  The approach 

taken in this paper is to consider different models for two popular risk measures, Value at 

Risk and Expected Shortfall, in an attempt to model risk for energy commodity futures. We 

have considered 14 different first position energy futures contracts from NYMEX, NASDAQ 

OMX, ICE and EEX, and estimated VaR and ES for three different quantiles for both long 

and short trading positions.  

 

This paper’s attribution to the existing literature lies both in the variety of models used and 

the type of markets and financial instruments investigated. In total 14 different VaR models 

and nine different ES models are evaluated; GARCH and GJR-GARCH with normal, student 

t, GED and skewed student t distributions and EWQR have been used to obtain both VaR and 

ES forecasts. In addition, five CAViaR models have been used in the VaR analysis.  

 

In general, the GJR-GARCH model performs slightly worse than the GARCH model, both for 

VaR and ES. As the GJR-GARCH is more complicated and requires more computational 

power, the GARCH model should be preferred. EWQR is by far the best ES model. It has 

very good test results for all markets and quantiles considered. The GARCH and GJR-

GARCH models with GED distribution perform well for the one-sided ES tests, as they do 

not underestimate ES. They are on the other hand the worst ES models according to the two-

sided tests. In other words, they are consistently overestimating ES.  

 

It is not as straightforward to generalize the VaR results, as none of the VaR models perform 

well for every return series, and there is not one model that clearly outperforms the others. 

The results vary greatly, and there does not appear to be any clear pattern in which some 

models are better suited for certain markets or commodities. The models with best 

performance overall are however EWQR, the adaptive CAViaR and GARCH and GJR-

GARCH models with student t and skewed student t distributions. GARCH and GJR-GARCH 

with normal distribution are the two worst performing VaR models. 

 

A natural extension of the analysis done in this paper would be to compare more models. 

Additional models should preferably be able to forecast both VaR and ES. A second strategy 

could be to improve the already considered models. It is possible to extend the EWQR model 

by including exogenous regressors. The CAViaR models’ performance would probably be 

better if the parameters were re-estimated in a rolling window, as for the other models. In 

order to avoid the problem of computing capacity the parameters could have been re-

estimated periodically instead of every day. There are also several other GARCH based 

models or error distributions that could be implemented. Another extension that could be 

relevant, particularly to risk managers that want to assess the risk of whole portfolios, is to 

consider multivariate VaR and ES models. 
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Appendix A: Estimating VaR and ES 
 

A.1 GARCH  
 

GARCH(1,1) can be expressed as the following two equations (assuming a conditional mean 

of zero): 

 

            (    
 ) 

 

  
           

        
  

 

In the same way, GJR-GARCH(1,1,1) can be expressed as: 
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In these expressions,         , so that the variance is non-negative. IID means “identically 

and independently distributed”, and I(·) is the indicator function, which is one when the 

expression between the parentheses are valid and zero otherwise. An error distribution needs 

to be specified in order to estimate the parameters. In this paper four distributions are 

considered: the normal distribution, student t, GED and skewed student t. In the next sections 

the log-likelihood function for each of the distributions is derived. This expression needs to be 

maximized in order to obtain parameter estimates. The maximization is done numerically. 

 

When an error distribution is assumed it is also possible to derive expressions for ES. This is 

also presented for each distribution in the following sections. 
 

A.1.1 Assuming a Normal Error Distribution 
 

Let     denote the standard normal distribution.  
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The scale-family of the standard normal distribution,   , which has a mean zero and a 

variance σt that is allowed to change with time, can then be found as: 
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Taking the natural logarithm of this yields the log-likelihood function: 
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where the relevant expression for the conditional variance is inserted for σt
2
. The derivation of 

ES from a GARCH with normal distribution follows. 
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To obtain a numerical value, the estimated volatility σt which is found from a GARCH or 

GJR-GARCH model is inserted in this expression. 

A.1.2 Assuming a Student t Error Distribution  

The student t distribution allows for the tails to be heavier than the normal distribution. Let 

     denote the standardized student t distribution, with v > 2 degrees of freedom. 
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The scale-family of the standardized student t distribution,    , which has a mean zero and a 

variance σt that is allowed to change with time, can then be found as: 
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The derivation of ES from a GARCH with student t distribution follows. 
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A.1.3 Assuming a Generalized Error Distribution 

The Generalized Error Distribution (GED) is a symmetrical distribution that allows the tails to 

be either thin or thick, and includes the normal distribution as a special case. Let       denote 

the standardized GED with v ≥ 1 degrees of freedom. 
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The scale-family of the standardized GED,     , which has a mean zero and a variance σt that 

is allowed to change with time, can then be found as: 
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From this the maximum likelihood function L follows: 
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Taking the natural logarithm of this yields the log-likelihood function: 
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The derivation of ES from a GARCH with GED follows. 
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Since VaRα,t > 0, the absolute value sign for xt is unnecessary in this interval. Thus, 
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A.1.4 Assuming a Skewed Student t Error Distribution 

Hansen’s skew student-t distribution is a heavy tailed distribution that allows for asymmetry. 

It is an extension of the student-t distribution, and includes it as a special case when λ=0 

(Hansen 1994). Let         denote standardized skewed student t distribution with v > 2 

degrees of freedom and asymmetry parameter -1 < λ < 1. 
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standardized skewed student t,       , which has a mean zero and a variance σt that is 

allowed to change with time, can then be found as: 
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The corresponding log-likelihood function follows. 
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The derivation of ES from a GARCH with Hansen’s skewed student t distribution follows: 
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distribution with v degrees of freedom, it follows that 
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where     ( ) is the scale family of the cumulative standardized student t distribution. Since 

the standardized student t distribution is symmetric,     ( )      



34 
 

      
  

  

(

 
 

 .         
   

 
/

 ( (   ) ( 
   

   
*.  (  

    
 

(   )
)

   
 

/

  (   )(        (    ))   (   ) ( 
   

   
* (  )

  (   )(     ))   .         
   

 
/

 ( (   ) ( 
   

   
*. (  

    
 

(   )
)

   
 

/   ( 

  )(      (    )))

)

 
 

 

This leads to the ES expression: 
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A.2 CAViaR 

The following five versions of CAViaR have been used in this paper. 

Symmetric Absolute Value:                        |    | 

Asymmetric Slope:                            ,      -        ,      - 

Adaptive:                      [ (             )   ] 

Indirect GARCH(1,1):         √     (        )
 
       

  

Indirect AR(1)-GARCH(1,1): 

             √     (          )    (              )
 
 

The parameters of both the Symmetric Absolute Value and Asymmetric Slope CAViaR are 

unconstrained. The Adaptive CAViaR model increases the VaR when a loss in the last period 

exceeds the corresponding VaR. Otherwise the VaR is slightly decreased. For the model to 

work correctly, the parameter β1 should be positive. If this is not the case, the model will 

perform very poorly, since it will increase VaR each time there is no VaR violation, making a 

successive VaR violation even less likely. The VaR forecasts will then diverge to infinity, 

which is obviously an undesirable property of any VaR model. For both the Indirect GARCH 

and Indirect AR-GARCH models, the parameters β0, β1 and β2 should be non-negative to 

ensure that the expression under the square root is positive.  

Engle and Manganelli (2004) also proposed an alternative version of the Adaptive CAViaR 

model, where the indicator function is replaced by a smoothed version of it. This alternative 

version is not used in this paper, but is reported here for completeness. 

                  {[     ( [             ])]
  

  } 

K is a smoothing parameter, which may be chosen or estimated. When K→∞, this version of 

the Adaptive CAViaR model converges to the other one. Engle and Manganelli (2004) do not 

give any indication of how to estimate it or choose it appropriately, but instead set K=10 for 

simplicity.  

A.3 EWQR 

Exponentially weighted quantile regression (EWQR) was introduced by Taylor (2008) as an 

extension of quantile regression, where a weighting parameter λ is included. For a specific 

value of λ the EWQR minimization formula is as follows: 
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  is a parameter vector,    is a vector of regressors, rt is the return at period t, T is the length 

of the estimation window, θ is the quantile considered and I(·) the indicator function. Even 

though the EWQR formula generally include regressors, Taylor (2008) argues that an EWQR 

with an intercept and no regressors is reasonable and should perform well. In this paper the 

case without regressors will be considered. Consequently the estimator   
   can be 

substituted with a constant  ̂     .  
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∑    (    ̂     ) .   (    ̂     )/

 

   

 

 

The expression presented in this paper has a slightly different notation: 
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To see that this is an equivalent representation of the formula, consider the two trading 

positions separately. 

 

Long trading position: 

    

   ̂ 
      ̂    

       

Here qθ denotes the θth quantile of the return distribution. Then, 
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Short trading position: 
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A key aspect to EWQR is to choose an appropriate λ. A high value of λ corresponds to giving 

past observations high weights, while with smaller λ values older observations become less 

significant (Taylor 2008). To optimize λ we follow Taylor’s approach of using a rolling 

window of 250 observations to produce day-ahead forecasts for the rest of the observations in 

an estimation sample of size n. This is done for several different λ values, and the λ with the 

lowest corresponding QR Sum is chosen and assumed to be optimal also for out-of-sample 

forecasting. QR Sum is defined as the standard quantile regression formula, but without the 

minimization; the quantile forecasts obtained with EWQR is entered instead, as in the 

expression below. 

      (   )  ∑ (    ̂   ) .   (    ̂   )/

 

     

 

 

Taylor (2008) proposes to use a grid of values of λ from 0.8 to 1 with step size 0.005, when 

optimizing λ. This is what is done in this analysis as well. As for the estimation sample, a 

rolling window of 250 observations is used to forecast out-of-sample.  From these quantile 

forecasts the out-of-sample VaR and ES forecasts can be obtained: 
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or equivalently: 
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A.3.1 Comments on the Rolling Window Size for λ Estimation 

 

In Taylor’s articles about EWQR (2007; 2008) the procedure is to use a rolling window 

corresponding to one year of observations. For financial assets a typical trading year has 250 

days which is why a rolling window of 250 observations has been chosen. The logic is that 

the window has to be big enough to include as many observations that are deemed to 

influence the current observation, but small enough that it leaves a sufficiently large number 

of observations to be forecasted. Furthermore, the larger an estimation window is, the smaller 

the sample error becomes, but a small window is desirable when the parameters should be 

able to change rapidly (Sheedy 2009). Taylor (2008) tried different window sizes for λ, but 

found that none of the other tested window sizes improved results significantly.  
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Appendix B: Backtesting VaR and ES Forecasts 
 

B.1 Backtesting Value at Risk Forecasts 
 

B.1.1 Test for Unconditional Coverage 

 

For a VaR model to be appropriate, the proportion of returns more extreme than the VaR 

estimates should equal α. The unconditional coverage test checks whether this is the case for a 

given model, by comparing the two alternative hypotheses,      [    ]    and  

     [    ]   , where       (         ), using the likelihood ratio test statistic: 

 

         .
 ( )

 ( ̂)
/       .

   (   )  

 ̂  (   ̂)  
/    

 
 
 . 

 

L(∙) denotes the binomial likelihood function, n1 is the number of VaR-violations (Hα,t = 1), n0 

is the number of non-violations (Hα,t = 0) and   ̂  
  

     
 the observed proportion of 

violations. Under the null hypothesis, LRuc asymptotically has a chi-squared distribution with 

one degree of freedom. This test rejects models that either overestimate or underestimate VaR 

(Hung, Lee et al. 2008). 

 

B.1.2 Test for Conditional Coverage 

 

The test for conditional coverage is a joint test of correct coverage and independence of VaR 

violations. (Christoffersen 1998). The test statistic is defined as follows: 

 

          (
   (   )  

 ̂  
   (   ̂  )    ̂  

   (   ̂  )   
)    

 
 
  

 

Here nij denotes the observed number of times an observation of value i is followed by an 

observation of value j, (for i,j = 0,1). For example n01 is the observed number of times an 

observation of value 0 (non-violation) is followed by an observation of value 1 (violation). n1 

= n11 + n01, while n0 = n10 + n00. The estimated probability of going from a 0 to 1, from a non-

violation to a violation, is  ̂   
   

       
 and the estimated probability of going from 1 to 1 

is  ̂   
   

       
.  

 

LRcc is compared to a chi-squared distribution with two degrees of freedom. This test rejects 

models that either overestimate or underestimate VaR or that generate either too many or too 

few clustered violations (Hung, Lee et al. 2008).  

 

A drawback of the test is that it is unable to give an answer for the extreme quantiles when 

there are not a sufficient number of forecasts. Then it becomes unlikely that two returns in a 

row will exceed the forecasted VaR, resulting in a division by 0, which is unfortunate. 

 

B.1.3 The Dynamic Quantile Test 

 

Engle and Manganelli (1999) argue that a good VaR model should not just be uncorrelated 

with Hα,t, like in the conditional coverage test, but that it also should be uncorrelated with the 
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VaR estimate for the period itself. They then propose another method for assessing VaR 

models called the dynamic quantile (DQ) test, which takes this into account. The DQ test 

considers a Hitα,t variable similar to the Hα,t in the coverage tests:  

 

       (         )    

 

By comparison Hitα,t = Hα,t – α. This variable is then regressed on its lags, the period’s 

estimated VaR and other variables if desired. This is called an artificial regression (Engle and 

Manganelli 1999). The form of artificial regression that is used most often is the one that 

include four lags and the VaR estimate (Engle and Manganelli 1999; Kuester, Mittnik et al. 

2006). This is done also for the analysis in this paper: 

 

                                                 ̂     
 

where    {
                                     
                                      

 

 

In matrix form the same expression yields:         . The null hypothesis of no 

influence by the regressors then becomes H0: β = 0. The ordinary least squares solution to this 

is  ̂   (   )         
 
   (   (   )(   )  ), from which Engle and Manganelli (1999) 

derive the DQ test statistic 

   
 ̂     ̂

 (   )
    

 
 
  

 

The DQ test statistic is asymptotically distributed as a chi-squared distribution with six 

degrees of freedom. 

 

B.2 Backtesting Expected Shortfall Forecasts 
 

B.2.1 An Expected Shortfall Test Dependent on VaR (DV)   
 

For the ES test dependent of VaR, a bootstrap test is performed on the following residuals to 

check whether the ES forecasts are correct. 

 

      ,
     ̂   

   ̂   

|      ̂   -  

 

B.2.2 An Expected Shortfall Test Independent of VaR (IV)   
 

For the ES test independent of VaR, a bootstrap test is performed on the following residuals 

instead.  

 

      {     ̂   |     ̂      }, where Dα is the α-th quantile of      ̂   .  

 

B.2.3 Bootstrapping 

 

The bootstrap hypothesis test is explained well in chapter 16.4, pages 224-227, of Efron and 

Tibshirani (1993). The idea is to find an appropriate null distribution of a test statistic 
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empirically, instead of assuming one, and then compare the test statistic with it to test the 

hypothesis of zero mean. 

 

Consider the test statistic 

 (  )  
 ̂    

 ̂ 

√  

 
 ̂ 

 ̂ 

√  

 

 

where  ̂  and  ̂  are the mean and standard deviation of the variable to bootstrap test zα,t, 

respectively, and nz is the number of losses greater than the VaR forecasts. An appropriate 

null distribution should follow the null hypothesis, which in this case is to have a zero mean. 

Since  ̂  is not necessarily zero, the following transformation is made to get a zero mean 

variable. 

 ̃          ̂  

 

By drawing random bootstrap samples   ̃ 
  of size nz from  ̃ , with replacement, and 

calculating corresponding test statistic for each sample, 

 

 ( ̃ 
 )  

 ̂ ̃ 

 ̂ ̃ 

√  ̃ 

 
 ̂ ̃ 

 ̂ ̃ 

√  

  

 

an empirical null distribution of T is obtained. The achieved significance level corresponds to 

the proportion of samples that have  ( ̃ 
 ) more extreme than  (  ) for a two-sided 

hypothesis test, or the proportion of samples for which  ( ̃ 
 ) is higher than  (  ) for a one-

sided hypothesis test of the mean being smaller than or equal to zero. 

 

B.2.4 One-sided Versus Two-sided Hypothesis Test 

 

For both the discussed ES tests it is possible to choose between performing a one-sided or a 

two-sided hypothesis test of zero mean. McNeil and Frey (2000) use a one-sided test to check 

for underestimation of ES, formulated as a hypothesis test below. 

 

                      
 

Their argument for performing a one-sided test is that it is more likely for a model to 

underestimate ES than it is to overestimate it. Another argument could be that a risk manager 

would prefer to be conservative, thus rather overestimate risk than underestimating it. On the 

other hand, a model which systematically overestimates risk is not adequate either. This 

would lead the manager to allocate unnecessary much resources to face a huge, but 

unrealistic, risk. Thus, a two-sided hypothesis test might be more appropriate, since it tests 

whether or not a model produces ES forecasts that are accurate. 

 

                      
 

In this paper we choose to implement both the one-sided and two-sided hypothesis test for 

completeness. It will then be easier to compare our results with for example those of McNeil 

and Frey (2000) or Taylor (2008), and it will also enable us to check whether McNeil and 

Frey’s expectations about ES models generally underestimating ES are supported by our 

findings. 
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Appendix C: Last Trading Day 

This appendix contains the rules for when the last trading day for each of the futures series 

considered in this paper. These are found at the home pages of the respective markets; 

www.theice.com, www.nasdaqomxcommodities.com, www.cmegroup.com and 

www.eex.com. 

 

ICE Rotterdam Coal: 
The month contracts cease trading at the close of business on the last Friday of the contract 

delivery period.  

 

ICE Natural Gas: 

Trading shall cease at the close of business two business days prior to the first calendar day of 

the delivery month. 

 

ICE Brent Crude Oil: 

Trading shall cease at the end of the designated settlement period on the Business Day (a 

trading day which is not a public holiday in England and Wales) immediately preceding: 

 

(i) Either the 15th day before the first day of the contract month, if such 15th day is a 

Business Day 

(ii) If such 15th day is not a Business Day the next preceding Business Day. 

 

NASDAQ OMX (Nord Pool) Carbon: 

The Last Trading Day for EUA/CER Futures is specified in relation to each Futures Series, 

and will normally be the last Monday of the contract month. If the last Monday of the month 

is a non-Banking Day, or there is a non-Banking Day in the four calendar days following the 

last Monday of the month, the Last Trading Day will normally be the penultimate Monday of 

the contract month. If the previously stated conditions are also in conflict with the penultimate 

Monday, the Last Trading Day will normally be the antepenultimate Monday of the contract 

month, unless stated otherwise in the Product Calendar. 

 

NYMEX Light Crude Oil 

Trading terminates at the close of business on the third business day prior to the 25th calendar 

day of the month preceding the delivery month. If the 25th calendar day of the month is a 

non-business day, trading shall cease on the third business day prior to the business day 

preceding the 25th calendar day. 

 

NYMEX Heating Oil: 

The last trading day is the last business day of the month preceding the contract month. 

 

NYMEX Gasoline: 

The last trading day is the last business day of the month preceding the contract month. 

 

NYMEX Natural Gas: 

The last trading day is the third business day prior to the first calendar day of the contract 

month. 

 

NYMEX Coal: 

Trading terminates on the fourth last business day of the month prior to the delivery month. 

http://www.theice.com/
http://www.nasdaqomxcommodities.com/
http://www.cmegroup.com/
http://www.eex.com/
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NYMEX Monthly Electricity Peak: 

Trading shall cease one business day prior to the last peak day of the contract month. 

 

EEX Yearly Electricity Peak: 

Baseload/Peakload Year Futures (Contract cascades three exchange trading days before 

beginning of the delivery year). 

 

EEX Monthly Electricity Peak: 

First day of expiry for German-Baseload/Peakload-Month-Futures and French-

Baseload/Peakload-Month-Futures (Reduction of the contract volume starts two exchange 

trading days before beginning of the delivery period). 

 

EEX Carbon Emissions: 

The last trading day is stated in the product calendar. 

The product calendar can be found at: 

http://www.eex.com/en/Market%20Data/Market%20Information/Trading%20Calendar 

 

ICE Monthly Electricity Peak: 

The last trading day is two business days prior to the first EFA calendar day of the delivery 

period. Table C1-C3 present the EFA calendar for the years 2002-2011. They are constructed 

after the following pattern: “EFA blocks have an anchor point of 31/12/01 starting with 4,4,5 

week cycles. Month contracts are based on the number of days in an EFA month, namely 28 

days in January, February, April, May, July, August, October and November; 35 days in 

March, June, September, December. Exceptions are December 2004 which will have 42 days 

and every sixth year there is an additional week added to one of the EFA periods.” 

(https://www.theice.com/productguide/ProductDetails.shtml?specId=911) 

 

  

http://www.eex.com/en/Market%20Data/Market%20Information/Trading%20Calendar
https://www.theice.com/productguide/ProductDetails.shtml?specId=911
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Appendix D: Data and Descriptive Statistics 

The prices used in this paper are gathered from the Reuters EcoWin Pro database. We have 

however discovered a couple of errors in the data set, which we have corrected. For Coal 

Rotterdam on ICE, the price was reported to be 0 on the 23.04.2007, but it turns out that it in 

reality was 71.8. The 20.04.2007 EcoWin reported the price to be 71.35 while it actually was 

72. The mentioned prices can be found at the ICE home page, by choosing the relevant dates: 

https://www.theice.com/marketdata/reports/ReportCenter.shtml?reportId=10&productId=517

&hubId=681.  

 

Table D1: Start date, end date and the length of the return series after removing the price 

changes between the last trading day of a futures contract and the first trading day of the 

subsequent contract. (See appendix C for more details) 

 CO2 

EEX 

CO2 

Nordpool 

El M 

EEX 

El M 

ICE 

El M 

NYMEX 

El Y 

EEX 

Gas ICE 

Start  05.10.05 05.07.07 08.01.03 14.09.04 01.08.06 01.07.02 31.01.97 

End 11.04.11 11.04.11 11.04.11 11.04.11 11.04.11 11.04.11 11.04.11 

Length 1391 927 1993 1597 1126 2217 3430 

 Gas 

NYMEX 

Coal ICE Coal 

NYMEX 

Oil ICE Gasoline 

NYMEX  

HO 

NYMEX 

LCO 

NYMEX 

Start 03.06.96 01.08.06 02.01.07 03.06.96 03.10.05 03.06.96 14.07.97 

End 11.04.11 11.04.11 11.04.11 11.04.11 11.04.11 11.04.11 11.04.11 

Length 3500 1152 1024 3500 1324 3500 3299 

 

  

https://www.theice.com/marketdata/reports/ReportCenter.shtml?reportId=10&productId=517&hubId=681
https://www.theice.com/marketdata/reports/ReportCenter.shtml?reportId=10&productId=517&hubId=681
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Appendix E: Test Results 
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Appendix F: Source Codes 

F.1 Overview 
 

The source codes for calculating the different VaR and ES models and tests are left in the 

attached zip-file. EWQR is programmed in EViews since it is relatively easy to perform this 

kind of quantile regression with it. The other models are implemented in MATLAB. The VaR 

tests have been implemented in both EViews and MATLAB, for easier VaR testing, while the 

ES tests have been written only in MATLAB. 

 

The parameters of GARCH and GJR-GARCH are estimated using Kevin Sheppard’s “Oxford 

MFEToolbox”, which can be downloaded together with program documentation at 

http://www.kevinsheppard.com/wiki/MFE_Toolbox. We found a bug in the file “gedinv.m”, 

which made it produce wrong answers when the input quantiles were all above or below 0.5. 

We have therefore changed the file to make sure that it works properly. When the input 

contains quantiles both above and below 0.5, there is no problem using the original file. 

Another bug was found and corrected for “skewtinv.m”. Input values for degrees of freedom 

that were too high led to the answer NaN, since the function then divided two terms that were 

infinity. We avoided this by implementing an if-statement that inserts the following limit 

value when this problem occurs. 

     
   

 .
   

 
/

√ (   ) .
 
 
/

 
 

√  
 

 

The implementation of CAViaR has been based on the public codes of Engle and Manganelli, 

found at http://www.simonemanganelli.org/Simone/Research.html, which have been 

simplified and tailored to this paper. Among the changes made are the exclusion of in-sample 

testing and the inclusion of the indirect AR-GARCH CAViaR model. 

 

In all programs “theta” refers to the quantiles considered of the return distribution. In this 

paper the 1%, 5%, 10%, 90%, 95% and 99% quantiles are considered. Values of theta greater 

than 50% have been assumed to correspond to short trading position, while values below 50% 

correspond to long trading position. This is because VaR and ES are risk measures that 

consider extreme losses. For short trading positions these are found in the right tail of the 

returns distribution, since a loss occur when the price change is positive, while for long 

trading positions these are in the left tail, since losses occur for negative price changes. The 

1%, 5%, 10%, 90%, 95% and 99% quantiles in the return distribution therefore correspond to 

the 90%, 95% and 99% quantiles in the loss distribution for long and short trading positions, 

respectively. 

 

In some of the programs random functions (“rand” and “randi”) have been used. To ensure 

reproducibility of our results, we have let the seed to the random functions be constant. In this 

paper the number 50 is used.  

 

F.2 How to Run the Programs 
 

Each of the programs calculates VaR and ES for one return series at the time. This is to 

provide the user the flexibility to easily apply the models to other time series by changing 

input, and to allow the results to be stored in separate files if desired. When working in 

http://www.kevinsheppard.com/wiki/MFE_Toolbox
http://www.simonemanganelli.org/Simone/Research.html
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MATLAB it is important to add all the relevant folders and subfolders to the path in order to 

make all functions available. In addition to the programs provided in the attached zip-file, the 

Statistics Toolbox for MATLAB needs to be added to use the GARCH program, since it calls 

some probability distribution functions from the toolbox. For the CAViaR program, some 

functions are written in C, to make the programs up to a hundred times quicker. In order to 

call them from MATLAB, they must be converted to MEX files with a C compiler. Our MEX 

files are found in the attached zip file. 

 

F.2.1 EWQR  

 

First, a work file containing the relevant return series needs to be open in EViews. This series 

needs to be named “r” for the program to run. Open the file “ewqr. prg” and click run. Among 

the variables created in the work file are then “var” and “es”, which are matrices containing 

the VaR and ES forecasts respectively. The vector “theta” contains the considered quantiles, 

and the columns of “var” and “es” correspond to the elements for “theta”.  

 

Regarding the VaR tests, the program “coverage tests” needs to be run before the “dqtest”. 

The p-values from the tests are displayed in pop-up windows, but can also be found in the 

work file as “ucpvalue” (p-value for the unconditional coverage test), “ccpvalue” (p-value for 

the conditional coverage test) and “dqpvalue” (p-value for the dynamic quantile test). Each 

row correspond to the test result for a quantile in “theta”. 

 

The ES tests are written in MATLAB. Thus, to perform them some variables need to be 

exported from EViews and imported to MATLAB. Export the return series “r” and the VaR 

and ES forecasts “var” and “es”. Import them to MATLAB and run “estest”. This test 

considers only one quantile at the time, and is done by writing the following command in 

MATLAB, where r is the out-of-sample period of the returns, THETA is the quantile to 

consider, VaR and ES are the column of “var” and “es”, respectively, that correspond to 

THETA, and nb is the number of bootstraped samples to consider (e.g. 10000).  

 
[DV1 DV2 IV1 IV2] = estest(r,THETA,VaR,ES,nb) 
 

The test results are then put in the variables: “DV1” (one-sided DV test), “DV2” (two- sided 

DV test), “IV1” (one-sided IV test) and “IV2” (two-sided DV test). 
 

F.2.2 GARCH 

 

To run the GARCH program in MATLAB, simply type one of the following two commands, 

where r is replaced by the name of a return series that is imported as a variable in MATLAB. 

 
rungarch(r,1) 

 

rungarch(r,2) 

 

Use the first line to use GARCH(1,1) to estimate VaR and ES, and the second line to use 

GJR-GARCH(1,1,1). Both of them automatically estimate VaR and ES for all of the six 

quantiles (1%, 5%, 10%, 90%, 95% and 99%) and the four distributions (normal, student t, 

GED and skewed student t) and perform the VaR and ES tests. The test results for VaR are 

saved in the variables “UCpvalue” (unconditional coverage test), “CCpvalue” (conditional 

coverage test), “DQpvalue” (dynamic quantile test), while the ES test results are names as for 

EWQR.  



94 
 

F.2.3 CAViaR 

 

A difference between the CAViaR program and the others is that the return series is not 

imported to MATLAB before running the program. Instead, the program imports it from a .txt 

file. In order to do so, it is important to change the saving path in line 39 of “CAViaR.m” and 

the loading path with corresponding variable in lines 34 and 35 of “CAViaROptimisation.m”. 

When this is done, run the program by typing: 
 
CAViaR 
 

The program automatically estimates VaR for each quantile for each of the following five 

CAViaR specifications: 

 

1: Symmetric Absolute Value 

2: Asymmetric Slope 

3: Indirect GARCH 

4: Adaptive 

5: Indirect AR-GARCH  

 

The name of the test result variables are the same as for GARCH. In addition more 

information about each model and quantile is saved in structures such as “output(x)_(y)”, 

where x refers to the CAViaR specification and y to the quantile. For example does the 

structure “output1_5” contain among other things VaR forecasts, the hit percentage, volatility 

forecasts and parameters for the first CAViaR model at the 5% quantile.  
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