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Accuracy assessment of the Cartesian grid method for
compressible inviscid flows using a simplified ghost point
treatment

M. Asif Farooq and B. Müller

Summary. We introduce a new approach to treat ghost points near embedded boundaries to
solve the 2D compressible Euler equations on a Cartesian grid. Solid wall boundary conditions
are imposed by our new approach called simplified ghost point treatment for compressible invis-
cid flows with embedded boundaries. In the simplified ghost point treatment, we assume the solid
boundary to lie in the middle between two grid points in the y-direction. Symmetry conditions
are used to determine density, pressure, wall tangential, and wall normal velocity components
at the ghost points. A cell-vertex finite volume formulation has been used to calculate transonic
internal flows over a circular arc bump in a channel.
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Introduction

In Computational Fluid Dynamics (CFD) two methods are popular in the scientific com-
munity. One is the standard body fitted grid method and the other is the Cartesian grid
method. In the former solid boundaries and grid lines conform to each other but in the
latter this is not the case. Standard body fitted grid methods both with structured and
unstructured grids successfully solved many complex problems in the past [1–4]. But these
methods involve a numerical complexity which is sometime discouraging for the scientific
community. The popularity of the Cartesian grid method [5–9] is due to its simplicity,
faster grid generation, simpler programming, lower storage requirements, lower operation
count, and easier post processing compared to body fitted structured and unstructured
grid methods. The Cartesian grid method is also advantageous in constructing higher
order methods. A disadvantage of this method shows up when it is applied to complex
domains. At curved boundaries the cells are not rectangular and these cut-cells create a
problem in time-stepping for a scheme to be implemented. The solution to this cut-cell
problem is to merge these cut-cells with neighboring cells. The main disadvantage of the
cut-cell approach is the complexity of the method in which fluxes are calculated at the
interfaces near the embedded boundary.

We avoided the cut-cell approach [10] and opt for the ghost point treatment at the
boundary [11]. The main motivation has been the simplicity of the ghost point treatment
over the more complicated cut-cell approach. The advantage of the present simplified
ghost point approach resides in its ability of implementing the method with ease and
extending it to a higher order method. In the ghost point treatment, we divide our
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domain into three types of points: fluid, ghost and solid points. Only fluid and ghost
points are treated in the scheme, and solid points are cut out of the present computation.

In [11] we successfully compared supersonic external flow results over a circular arc
airfoil with standard body fitted grid results. In this paper, we further analyse the simpli-
fied ghost point treatment for the 2D compressible Euler equations to simulate transonic
internal flow. In the simplified ghost point treatment, we assume the solid boundary to
lie in the middle between two grid points in the y-direction. Our assumption is based
on the fact that the normal to the wall boundary in slender bodies can be assumed to
lie in the y-direction. Symmetry conditions are used to determine density, pressure, wall
tangential, and wall normal velocity components at the ghost points. We employ the
local Lax-Friedrichs (lLF) method for the spatial discretization. The local Lax-Friedrichs
method is chosen over other numerical methods like Roe’s method because of its simplic-
ity. We apply the Monotone Upstream-centered Schemes for Conservation Laws (MUSCL)
approach with the minmod limiter to get a second order method except for extrema. For
time integration we use the third order Total Variation Diminishing Runge-Kutta (TVD
RK3) method with the MUSCL approach. As a test case, we consider transonic internal
flow over a circular arc bump in a channel and solve the 2D compressible Euler equations
by time stepping to the steady state. We compute a shock in the channel with the circular
arc bump and compare these results with the results presented in the literature. We need
a larger number of grid points than standard body fitted grid methods to obtain results
comparable with [12].

In the following section, we discuss the governing equations, i.e. for 2D compressible
Euler equations. In the next sections, we outline Boundary conditions, Discretization and
Approximation of boundary conditions. Simplified ghost point treatment and Results are
discussed in the next two sections. Conclusions are drawn at the end.

2D compressible Euler equations

The 2D compressible Euler equations in conservative form read

∂U

∂t
+

∂F

∂x
+

∂G

∂y
= 0, (1)

where

U =









ρ
ρu
ρv
ρE









, F =









ρu
ρu2 + p
ρuv

(ρE + p)u









, G =









ρv
ρuv

ρv2 + p
(ρE + p)v









, (2)

with ρ, u, v, E, and p denoting density, velocity components in x and y-directions, total
energy per unit mass and pressure, respectively. We employ the equation of state for
perfect gas

p = (γ − 1)(ρE −
1

2
ρ(u2 + v2)), (3)

where γ is the ratio of specific heats. We consider γ = 1.4 for air.

Boundary conditions

We consider the following boundaries: (1) subsonic inflow, (2) Subsonic outflow and (3)
lower and upper wall. At the subsonic inflow x = xa in Fig. 1, three flow variables,
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e.g. total enthalpy, entropy and velocity component v, are given as Dirichlet boundary
conditions and one numerical boundary condition is used. At the subsonic outflow x = xb,
we prescribe one Dirichlet boundary condition, e.g. atmospheric pressure, and three
numerical boundary conditions. The straight parts of the lower and upper walls are
treated as symmetry boundaries. Symmetry boundary conditions near y = yc imply:

(ρ, ρu, ρE)(x, yc + y, t) = (ρ, ρu, ρE)(x, yc − y, t)

and
ρv(x, yc + y, t) = −ρv(x, yc − y, t)

Similar symmetry boundary conditions are imposed near y = yd. On the curved part of
the lower wall, local symmetry boundary conditions with respect to the wall are employed.

0 1Lower wall

Upper wall

Inflow Outflow

xa xb

yc

yd

y

x

Figure 1. Computational domain and Cartesian grid for channel flow with a circular arc bump.

Discretization

Spatial discretization

We assume Cartesian coordinates (x, y), where xa ≤ x ≤ xb, yc ≤ y ≤ yd and a Cartesian
grid with (Nx + 1) × (Ny + 1) grid points. The grid points of the Cartesian coordinates
are denoted by (xi, yj), where xi = xa + i∆x , with i = 0, 1, ..., Nx, ∆x = (xb − xa)/Nx

and yj = yc + j∆y, with j = 0, 1, ..., Ny, ∆y = (yd − yc)/Ny. The semi-discretization of
the 2D compressible Euler equations (1) yields the following form

dUi,j

dt
= −

Fi+ 1

2
,j − Fi− 1

2
,j

∆x
−

Gi,j+ 1

2

−Gi,j− 1

2

∆y
. (4)

Ui,j is the approximation of the average of U in the cell Ωi,j = [xi −∆x/2, xi +∆x/2]×
[yj −∆y/2, yj +∆y/2], i.e.

Ui,j ≈
1

∆x∆y

∫

Ωi,j

U(x, y, t) dxdy. (5)

Thus, we have been using the cell-vertex finite volume method. We opted for this approach
to have a conservative method with the unknowns at the grid points. In (4), Fi+ 1

2
,j and
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Gi,j+ 1

2

are numerical fluxes for the 2D compressible Euler equations and Ui,j is also an

approximation of the exact solution U(xi, yj, t). The numerical fluxes Fi+ 1

2
,j and Gi,j+ 1

2

are chosen as the local Lax-Friedrichs method for F and G, which are defined as follows

F lLF
i+ 1

2
,j
=

1

2
[F (Ui,j) + F (Ui+1,j)−max(|ui+1,j|+ ci+1,j , |ui,j|+ ci,j)(Ui+1,j − Ui,j)] , (6)

GlLF
i,j+ 1

2

=
1

2
[G(Ui,j) +G(Ui,j+1)−max(|vi,j+1|+ ci,j+1, |vi,j |+ ci,j)(Ui,j+1 − Ui,j)] , (7)

where c is the speed of sound. Our choice of the local Lax-Friedrichs method has been mo-
tivated by the simplicity of its numerical flux functions (6) and (7) and its total variation
diminishing (TVD) property for scalar conservation laws with convex flux functions. The
time step restriction of the 2D compressible Euler equations is related to the Courant-
Friedrichs-Levy (CFL) number. The CFL number is defined as

CFL = ∆t max
i,j

(

sp(A1(Ui,j))

∆x
+

sp(A2(Ui,j))

∆y

)

, (8)

where sp(A1(Ui,j)) and sp(A2(Ui,j)) are the spectral radii of the Jacobian matrices A1 =
∂F (U)/∂U and A2 = ∂G(U)/∂U , respectively. We choose CFL = 0.5 for the results of
the 2D compressible Euler equations. In (6) we replace Ui,j by UL

i+ 1

2
,j
and Ui+1,j by UR

i+ 1

2
,j

using the MUSCL [13] approach with the minmod limiter to obtain higher order accuracy
and also to avoid undesired oscillations. The extrapolated variables are defined as

UL
i+ 1

2
,j
= Ui,j +

1

2
minmod(Ui,j − Ui−1,j , Ui+1,j − Ui,j), (9)

UR
i+ 1

2
,j
= Ui+1,j −

1

2
minmod(Ui+2,j − Ui+1,j , Ui+1,j − Ui,j), (10)

where

minmod(a, b) =







a if |a| ≤ |b| and ab > 0
b if |b| < |a| and ab > 0
0 if ab ≤ 0

(11)

= sign(a)max {0,min {|a| , sign(a)b}}

is the minmod limiter. The MUSCL approach is applied similarly to the numerical fluxes
Gi,j+ 1

2

in (7).

Temporal Discretization

We choose the TVD RK3 method because it has a favorable stability domain. The TVD
RK3 method [14] is given as

U
(1) = U

n +∆tR(Un),

U
(2) =

3

4
U

n +
1

4
U

(1) +
1

4
∆tR(U (1)),

U
(n+1) =

1

3
U

n +
2

3
U

(2) +
2

3
∆tR(U (2)). (12)

where Ri,j = −(Fi+ 1

2
,j − Fi− 1

2
,j)/∆x − (Gi,j+ 1

2

−Gi,j− 1

2

)/∆y is the residual of the 2D

compressible Euler equations define in equation (4).
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Approximation of boundary conditions

The inflow and outflow boundary conditions for internal subsonic flow are imposed by
means of the local Lax-Friedrichs method (6) at the edge (1 + 1

2
, j) and (Nx −

1
2
, j), re-

spectively. Since the flow at the inlet is subsonic, there is one characteristic curve (the left
going Mach line with an acoustic wave) coming from the interior and two characteristics
(the pathline with the entropy and vorticity waves and the right going Mach line with
an acoustic wave) are entering from the exterior. Therefore, we need one numerical and
three physical boundary conditions. But at the inlet we simply use freestream variables
U1,j(t) = U

∞
and let the approximate Riemann solver determine a flux approximation

(6) with the correct wave information at the cell face (1 + 1
2
, j) between the boundary

point (1, j) and its eastern neighbor (2, j) [15]. At the outlet the flow is subsonic and
two characteristics are leaving the domain from the interior and one characteristic curve
is entering from outside of the domain. So we need three numerical boundary conditions
and one physical boundary condition. As before, we use freestream boundary conditions
at the outlet UNx,j(t) = U

∞
and let the approximate Riemann solver determine a flux

approximation (6) with the correct wave information at the cell face (Nx −
1
2
, j) between

the boundary point (Nx, j) and its western neighbor (Nx − 1, j) [15]. Since the ingoing
characteristic variables at inlet and outlet are unchanged, the computation of the numer-
ical fluxes at the adjacent cell faces is based on 1D non-reflecting boundary conditions in
the x-direction [15]. In summary we use the following numerical boundary conditions at
x = xa

U1,j(t) = U
∞
, (13)

and at x = xb

UNx,j(t) = U
∞
. (14)

We emphasize that the uniform flow conditions (13) and (14) at x = xa and x = xb,
respectively, are not considered to be the natural boundary conditions, but suitable flow
conditions to get the numerical fluxes approximately correct at the adjacent cell faces, cf.
the discussion above. The symmetry boundary conditions are implemented by considering
an extra line below y = yc. There we use

Ui,1(t) = diag(1, 1,−1, 1)Ui,3(t). (15)

The symmetry boundary conditions are also implemented at an extra line above y = yd
where we use

Ui,Ny+1(t) = diag(1, 1,−1, 1)Ui,Ny−1(t). (16)

Simplified ghost point treatment at embedded boundary

In Fig. 2 we show the flagging strategy. We flag the ghost and solid points by assigning
them 0 and -1 values, respectively. The fluid points are assigned values equal to 1. In Fig.
3 we show a simplified ghost point treatment at the solid boundary [11]. A ghost point
is denoted by G. In the simplified ghost point treatment we consider the fluid point F
on the vertical grid line through G adjacent to the boundary as the mirror point. Then,
we assume the boundary is in the middle between ghost and fluid points. The density
ρ, pressure p, and the tangential velocity component at the ghost point are symmetric
with respect to the solid boundary and therefore directly determined by their values at
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F. The normal velocity component un at the ghost point is anti-symmetric and thus gets
the negative value of un at F. The mathematical description of this strategy is given as

ρG = ρF , pG = pF , uG = uF − 2(n1uF + n2vF )n1, vG = vF − 2(n1uF + n2vF )n2, (17)

where n1 and n2 are the x-and y-components of the outer unit normal n of the boundary
at the intersection with the grid line between F and G.
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-1 -1 -1 0

1
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1 1 1 1

1

1 1

1

10 0

11

0

1

1

Figure 2. Flagging strategy for fluid (1), ghost (0) and solid points (-1).

F

G

Figure 3. Simplified ghost point treatment over a circular arc bump.

If the embedded solid boundary is in the middle between ghost point G and fluid
point F, then the expected normal velocity component at the solid boundary wall (index
w below) is zero because the ghost point treatment (17) yields:

(un)w =
1

2
((un)F + (un)G) = 0. (18)

If the embedded solid boundary is not in the middle between G and F as in Fig. 4, we
do not get zero for the arithmetic average of the normal velocity components, but

(un)w =
1

2
((un)F + (un)G) = (un)F (1−

2(yF − yw)

∆y
). (19)

So, we get an error of order O(yF − yw) = O(∆y), unless yF − yW = ∆y/2 when (19)
corresponds to (18). For the tangential velocity component, density and pressure, we get
for the arithmetic averages at the solid boundary wall, e.g. for pressure, from the ghost
point treatment (17)

pw =
1

2
(pF + pG) = pF . (20)

Using Taylor’s expansion around the wall, we get

pF = (pw)exact +O(yF − yw) = (pw)exact +O(∆y) (21)
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Thus with (20) and (new formula for pF ), we see that the simplified ghost point treatment
(17) leads to a first order approximation at the embedded solid boundary when assuming
that the boundary valves are described by the arithmetic averages at the ghost and fluid
points. We see that the normal velocity component is only zero, if the embedded boundary
is in the middle between ghost and fluid points.

F

G
w

Figure 4. Detail of simplified ghost point treatment near embedded boundary.

Results

Subsonic flow in a channel with a circular arc bump flows from left to right. We use the
CFL number 0.5 and 241 × 241 grid points. We assume the lengths of the domain in
x-and y-directions are xb − xa = 3 m and yd − yc = 1 m, respectively. The height of the
circular arc bump is 10 % of its chord length which is assumed to be 1 m. The subsonic
upstream flow conditions are chosen as

M
∞

= 0.7, p
∞

= 140510 Pa, T
∞

= 316.2240 K (22)
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Figure 5. Mach number contours for channel flow over a circular arc bump with 241 × 241 grid points.

In Fig. 5 and Fig. 6, we compare the Mach number contours for internal flow over
the circular arc bump with Hirsch [12]. In Fig. 5, we clearly see a shock wave near the
downward slope of the circular arc bump. We also see that the our results are lower than
Hirsch’s results with a structured 65 × 33 grid. The subsonic region in our result shown
in Fig. 5 is smaller and further upstream than Hirsch’s result in Fig. 6. The reason
for getting lower Mach numbers and the supersonic region and the shock wave shifted in
the upstream direction is probably due to a relatively coarser grid. As we have shown
in [11], we need a larger number of grid points compared to body-fitted grid methods.
This observation is also confirmed by the results presented in the literature [6]. Probably,
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Figure 6. Mach number contours for channel flow over a circular arc bump from [12].

we could have achieved more accurate and thus less diffusive results with fewer grid points
by using e.g. Roe’s method instead of the local Lax-Friedrichs method (6) and (7).

x

y

Density ρ contour lines

 

 

−1 −0.5 0 0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Figure 7. Density contours for channel flow over a circular arc bump with 241 × 241 grid points.

In Figs. 7, 8 and 9, we present the density ρ, velocity component u and pressure p
contours for internal flow over the circular arc bump. In Figs. 7, 8 and 9, we see again the
shock wave near the downward slope of the circular arc bump. The convergence history
for our method based on the local Lax-Friedrichs method, MUSCL and TVD RK3 is
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Velocity u contour lines
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Figure 8. Velocity component u contours for channel flow over a circular arc bump with 241 × 241 grid
points.
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Figure 9. Pressure contours for channel flow over a circular arc bump with 241 × 241 grid points.

presented in Fig. 10. For the current results with the 241 × 241 grid, the steady state
is reached at n = 20000. The steady state is reached at around n = 10000 for the 121 ×
121 grid (not shown).
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Figure 10. Residual of density for channel flow over a circular arc bump with 241 × 241 grid points.
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Figure 11. Pressure coefficient for channel flow over a circular arc bump with 241 × 241 grid points at
y = 0 and on the bump surface.

In Fig. 11, we show the pressure coefficient cp for internal flow over the circular arc
bump on the x-axis y = 0 and on the bump surface. The pressure increases from the
inflow boundary to the leading edge of the circular arc bump. The pressure decreases due
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Figure 12. Mach number distribution for channel flow over a circular arc bump with 241 × 241 grid
points at y = 0 and on the bump surface.

to the acceleration over the circular arc bump and reaches a minimum downstream of the
maximum point of the bump. The shock is clearly visible in Fig. 11 and much sharper
than with a 121 × 121 grid (not shown). We observe a pressure increase over the shock
and towards the trailing edge and a subsequent decrease towards the outflow boundary.
In Fig. 12 we show the distribution of the Mach number M for internal flow over the
circular arc bump. We observe supersonic flow between x ≈ 0.3 and ≈ 0.6m. Again, the
shock at x ≈ 0.6m is clearly visible.

Conclusions

In this work, we introduced a new approach to account for ghost points at embedded
boundaries for the Cartesian grid method. At an embedded solid boundary we employ a
simplified ghost point treatment in which the fluid point F is chosen on the vertical grid
line through ghost point G adjacent to the boundary as the mirror point. We investigate
the accuracy of the Cartesian grid method for the 2D compressible Euler equations sim-
ulating transonic flow over a circular arc bump. We use the local Lax-Friedrichs method
and the MUSCL approach for spatial discretization. For time integration we use the third
order TVD Runge-Kutta method. The Cartesian grid method needs a larger number of
grid points than body fitted grid methods to get accurate results. In our Cartesian grid
results, the location of the shock is upstream compared to the body-fitted grid result.
Further grid refinement is expected to improve the shock location and the quantitative
results. This expectation is supported by our observation that the simulated Mach num-
bers and the supersonic region get larger and closer to the body-fitted grid results when
going from a coarse to a finer grid.
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[9] R. Löhner, J. Cebral, F. Camelli, S. Appanaboyina, J. Baum, E. Mestreau and O. Soto.
Adaptive embedded and immersed unstructured grid techniques. Comput.Methods
Appl. Mech. Engrg, 197(25-28): 2173–2197, 2008.
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