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Abstract: Geospatial information has been indispensable for many application fields, including
traffic planning, urban planning, and energy management. Geospatial data are mainly stored in
relational databases that have been developed over several decades, and most geographic information
applications are desktop applications. With the arrival of big data, geospatial information applications
are also being modified into, e.g., mobile platforms and Geospatial Web Services, which require
changeable data schemas, faster query response times, and more flexible scalability than traditional
spatial relational databases currently have. To respond to these new requirements, NoSQL (Not only
SQL) databases are now being adopted for geospatial data storage, management, and queries.
This paper reviews state-of-the-art geospatial data processing in the 10 most popular NoSQL
databases. We summarize the supported geometry objects, main geometry functions, spatial indexes,
query languages, and data formats of these 10 NoSQL databases. Moreover, the pros and cons of these
NoSQL databases are analyzed in terms of geospatial data processing. A literature review and analysis
showed that current document databases may be more suitable for massive geospatial data processing
than are other NoSQL databases due to their comprehensive support for geometry objects and data
formats and their performance, geospatial functions, index methods, and academic development.
However, depending on the application scenarios, graph databases, key-value, and wide column
databases have their own advantages.

Keywords: geospatial data; NoSQL databases; spatial index; geospatial functions; data models

1. Introduction

The amount of personal location data is forecast to increase by 20% every year, and location-aware
information occupies a large proportion of the data generated every day: 2.5 quintillion bytes [1,2].
The advent of the geospatial big data era requires new applications and creates new challenges [3,4].
How to store, manage, and query geospatial data effectively have become the focus of research and
are problems that must be solved [3,5–7]. At present, the main geospatial databases are divided into
two types: relational databases and NoSQL databases. Relational databases are the most widely used
and the most mature database systems, and they have been applied in various industries for decades.
To enrich geospatial functions and geospatial processing capability, some modern relational databases
have made some changes and updates. Examples of relational databases for geographic information
include PostGIS [8], WebGIS [9], Oracle 19c [10], the Microsoft Azure SQL Database [11], and the SQL
Server [12]. These relational databases can define geospatial objects, support the main spatial data
types (for geometry), and adopt different indexes for fast spatial queries (Binary Tree in SQL Server,
Binary Tree, R-Trees, and Generalized Search Tree in PostGIS). Additionally, most applications using
spatial relational databases are desktop systems (such as ArcGIS) or have map server software (such as
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GeoServer). Traditional relational databases adopt fixed structure/data schemas, and their scalability
is limited.

NoSQL databases are general distributed database systems, which may not require structured
data, are typically designed for scaling horizontally, and may be open source [5,13]. For horizontal
scalability, NoSQL databases do not provide the standard ACID properties (atomicity, consistency,
isolation, and durability) that are provided by relational databases. However, NoSQL databases exhibit
the ability to store, manage, and index arbitrarily big datasets while supporting a large number of
concurrent user requests [14]. Currently, NoSQL databases are now being widely used in various
application fields [4,15–17].

With the development of mobile communications, the IoT, and high-speed network access
technologies, the need for geographic information applications for mobile services and web services
has become increasingly strong [2–4]. New geospatial applications require more flexible data schema,
a relatively fast query response time, and more elastic scalability than traditional spatial relational
databases currently have. For example, when the streaming requests from clients to servers suddenly
increase, it might cause significant response delays and service unavailability. To solve this scalability
problem, a scalable framework was proposed based on MongoDB to implement elastic deployment
for geospatial information sharing with the client users growing in number [14]. In this framework,
MongoDB is chosen because it is a distributed database and supports a flexible storage schema suitable
for massive map tile storage [14].

Several studies have found that relational database management systems (RDBMS) have some
disadvantages in terms of big data storage and queries in some specific areas, such as in high
concurrent or large-scale data access environments in geospatial applications [4,5]. In one qualitative
comparison of experiments, it was found that document databases have faster response times
and line intersection queries than SQL databases when the number of records in the databases is
large [5,18]. Other studies have indicated that NoSQL databases have more advantages in geospatial
data processing than relational databases [6]. In testing of the most used spatial query functions
in different databases, NoSQL databases performed better than did relational databases, especially
mobile-GIS and Web-GIS [18,19]. Currently, most NoSQL databases are viewed as not being well
designed for geospatial data [6,20]. One of the most obvious deficiencies of NoSQL databases in terms
of geospatial data is that NoSQL databases only have basic spatial functions, far fewer than relational
databases have [6]. Fortunately, research on NoSQL databases is a burgeoning field, attracting more
and more attention from enterprises and academics, and improvements and innovations have rapidly
emerged. Moreover, some NoSQL databases have some spatial functions and spatial indexes [18,21].
In recent years, some academic articles have summarized and analyzed the applications of SQL and
NoSQL databases in geographic data fields, including one study of geospatial big data [3], a summary
of the best practices for publishing spatial data on the web [22], an experimental comparison between
two geospatial data platforms [19,23], comparisons between relational databases and NoSQL databases
in geospatial applications [5,18], and a study on geospatial semantic data management [24]. However,
there have been few comprehensive analyses of state-of-the-art geographic data processing in popular
NoSQL databases.

To elaborate on state-of-the-art geographic data processing in popular NoSQL databases, in this
paper, we first introduce the geospatial data characteristics and related concepts and then review
state-of-the-art geospatial data processing in the 10 most popular NoSQL databases. Moreover,
we analyze the pros and cons of these NoSQL databases for geospatial data processing. The paper
structure is as follows. Section 2 introduces the geospatial data characteristics and related concepts.
Section 3 introduces the research methodology adopted for this paper. State-of-the-art geospatial
processing in NoSQL databases is presented in Section 4. Section 5 compares the performances of
the different NoSQL databases in terms of geospatial data storage and queries. Section 6 includes
a brief conclusion.
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2. Geospatial Data Characteristics and Related Concepts

Before discussing geospatial data processing, here we introduce the basic geospatial concepts and
characteristics of geospatial science.

Generally, there are two main ways to represent geospatial data: raster and vector data.

• Raster data are made up of a matrix of cells (grain or pixels), in which a cell has an associated
value representing information, such as a brightness value or temperature, and are arranged into
rows and columns (or a grid).

• Vector data consist of individual points that are stored as pairs of (x, y) in 2D cases or (x, y, z) in 3D
cases. The points are connected through certain orders/rules to create lines, polygons, surfaces,
and solids. In this paper, most of the discussions refer to vector data.

Features and geometries are the two main foundational concepts. A feature can be any object
with a given spatial location, such as an airport or a mountain.

• According to ISO 19109:2015, a feature is defined as the “abstraction of real-world phenomena”.
Features may have attributes, e.g., spatial attributes giving the location/extent of the feature,
thematic attributes giving descriptive characteristics of the feature, and also other kinds of
attributes, such as metadata/quality.

• The geometry is any geometric shape that can represent a feature’s spatial attribute, such as a point
(0D), line (1D), polygon/surface (2D), or solid/volume (3D). The geometries can be embedded in
1D space, 2D space, or 3D space. The dimension of the geometry must be smaller than or equal to
the dimension of the embedded space. For simple cases such as visualization using traditional 2D
maps (2D space), points, lines, and polygons might be sufficient for user needs. For more complex
cases requiring 3D space, surfaces and volumes/solids are also required.

In NoSQL databases, the main geometry types include Point, MultiPoint, LineString, MultiLineString,
Polygon, MultiPolygon, and GeometryCollection.

In relational databases, based on the international standard ISO/IEC 13249: 2016, SQL Multimedia
Application Packages provide 27 geometry types, of which 24 geometry types are instantiable and
have constructor functions. The geometry types and methods in relational databases are obviously
more abundant than in NoSQL databases.

To handle the features’ spatial locations and relationships, coordinate reference systems are needed.

• A coordinate reference system (CRS), or a spatial reference system (SRS), is a coordinate-based
system for locating geographical entities and establishing their relationships. Popular coordinate
reference systems include the geocentric coordinate system, geographic coordinate system (WGS84
datum), Universal Transverse Mercator (UTM), and Cartesian coordinate system.

• In coordinate reference systems, Well-known Text (WKT) is a text markup language that represents
coordinate reference systems and conversions between different coordinate reference systems,
as defined by the Open Geospatial Consortium (OGC).

• The EPSG Geodetic Parameter Dataset (also called the EPSG registry), which was developed by
the European Petroleum Survey Group (EPSG) in 1985, is a public collection of the definitions of
coordinate reference systems and coordinate transformations. The EPSG code is widely used in
geographic information systems and GIS libraries.

Additionally, topological relationships are critical to geospatial processing and data queries.
Some issues with instance relationships can be solved through features’ topological relationships.
In addition to the traditional graph topology, there are three popular topological relation principles:
implicit topology as in simple features [25] and point-set topology as in Egenhofer nine-intersection
relations [26] and in RCC8 relations [27]. Battle et al. summarized the equivalence between the three
spatial relations, as shown in Table 1 [28].
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Table 1. The equivalency relationships between simple features, Egenhofer, and RCC8.

Simple Features Egenhofer RCC8

equals equal EQ
disjoint disjoint DC

intersects disjoint DC
touches meet EC
within inside + coveredBy NTPP + TPP

contains contains + covers NTPPi + TPPi
overlaps overlap PO

The special characteristics of geospatial data (especially multi-dimensionality and the large size
of datasets) make processing them different than processing other data. These data require different
platforms, flexible scalability, and the ease of modification, update, and query, such as large-scale
spatiotemporal query scenarios [29] and huge access requests based on mobile platforms [14].

3. The Research Methodology

Many NoSQL databases and related products are developed and updated continually currently.
To compare and discuss the geospatial development of NoSQL databases effectively, the 10 most
popular NoSQL databases (as ranked by DB-Engines [30]) were chosen to analyze their characteristics
and performances in terms of geospatial data processing. These NoSQL databases fall into six types of
database models: document databases, graph databases, wide column databases, key-value databases,
multi-model databases, and search engine, as listed in Table 2. We used the name of each of the
10 databases and “geospatial OR spatial” as search keywords to search for articles in general academic
databases, including the Web of Science Core Collection, Google Scholar Citations, and the Scopus
database. After filtering some duplicated and unrelated articles, we obtained our final set of articles;
how many were found in each database is shown within round brackets in Table 2. Through an analysis
of NoSQL databases and related research, we explored the state-of-the-art of geospatial information
processing in NoSQL databases. Few NoSQL databases support 3D data scenes, so if there is no special
annotation, the geometry functions and indexes indicate 2D data scenes.

Table 2. Mainstream NoSQL databases and the number of related articles found within them.

Database Model NoSQL Databases

Document MongoDB (21), Couchbase (1)
Graph Neo4j (6)

Wide column Cassandra (5), HBase (24)
Key-value Redis (2)

Multi-model Amazon DynamoDB (0)
Search engine Elasticsearch (3), Splunk (0), Solr (3)

4. State-of-the-Art Geospatial Processing in NoSQL Databases

In this section, basic information about these databases is shown in Table 3. After that, some succinct
information about the geospatial characteristics in these databases is introduced. Additionally,
related research from the different databases is also summarized.
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Table 3. Basic information about the 10 NoSQL databases. DBMS, relational database management system.

Database
Name

Primary Database
Model

Secondary
Database Models Website Developer Server Operating

Systems APIs and Other

MongoDB Document www.mongod
b.com MongoDB, Inc OS X, Windows Proprietary protocol

using JSON

Couchbase Document Key-value http://www.co
uchbase.com

Couchbase,
Inc. OS X, Windows

Native language
bindings for CRUD,
query, search and

analytics APIs

Neo4j Graph neo4j.com Neo4j, Inc. Linux, Unix,
Windows

Bolt protocol,
Cypher query

language, Java API,
Neo4j-OGM,

RESTful HTTP API,
Spring Data Neo4j

Cassandra Wide column cassandra.ap
ache.org

Apache
Software

Foundation
BSD, Linux, Proprietary protocol

HBase Wide column hbase.apache
.org

Apache
Software

Foundation
Linux, Java API, RESTful

HTTP API, Thrift

Redis Key-value
Document, graph

DBMS, search
engine

redis.io Salvatore
Sanfilippo

Linux, OS X,
Solaris, Windows Proprietary protocol

Amazon
DynamoDB

Document,
Key-value

aws.amazon.c
om/dynamod

b/
Amazon Hosted RESTful HTTP API

Elasticsearch Search engine Document
https://www.

elastic.co/elast
icsearch/

Elastic Linux, OS X,
Solaris, Windows

Java API, RESTful
HTTP/JSON API

Splunk Search engine www.splunk.c
om Splunk Inc. BSD, Linux,

OS X, Windows HTTP REST

Solr Search engine
https:

//lucene.apach
e.org/solr/

Apache
Software

Foundation
All OS with a Java

VM
Java API, RESTful
HTTP/JSON API

4.1. MongoDB

MongoDB is a document database that stores data in scalable, flexible, JSON-like documents,
with different data fields and a changeable data structure. MongoDB does not support a declarative
query language: queries in MongoDB are built and issued by proprietary API or drivers. MongoDB
supports storing and querying geospatial data. To describe GeoJSON data, MongoDB uses an embedded
document with a GeoJSON object type and then the object’s coordinates, listing the longitude first and
then the latitude:

<field>: {type: <GeoJSON type>, coordinates: <coordinates> }
For example, to specify a GeoJSON Point:
location: {
type: “Point”,
coordinates: [-43.342412, 54.678421]

}

MongoDB supports multiple geometric objects, as listed in Table 4. Additionally, MongoDB uses
the WGS84 reference system for geospatial queries of GeoJSON objects. Valid longitude values are
between −180 and 180 (inclusive), and valid latitude values are between −90 and 90 (inclusive).

MongoDB stores object location data as legacy coordinate pairs and supports spherical surface
calculations via a 2dsphere index, of which there are two data representations: an array (MongoDB
preferred) and an embedded document in legacy coordinate pairs:

An array: <field>: [ <x>, <y> ]
An embedded document: <field>: {<field1>: <x>, <field2>: <y> }.

www.mongodb.com
www.mongodb.com
http://www.couchbase.com
http://www.couchbase.com
neo4j.com
cassandra.apache.org
cassandra.apache.org
hbase.apache.org
hbase.apache.org
redis.io
aws.amazon.com/dynamodb/
aws.amazon.com/dynamodb/
aws.amazon.com/dynamodb/
https://www.elastic.co/elasticsearch/
https://www.elastic.co/elasticsearch/
https://www.elastic.co/elasticsearch/
www.splunk.com
www.splunk.com
https://lucene.apache.org/solr/
https://lucene.apache.org/solr/
https://lucene.apache.org/solr/
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Table 4. A Comparison of NoSQL databases in terms of their geospatial features. WKT, Well-known
Text; KMZ, Keyhole Markup Zipped; KML, Keyhole Markup Language.

Database Supported
Geometry Objects

Main Supported
Geometry Functions

Supported
Spatial Indexes

Declarative
Query Language Data Format

MongoDB

Point, LineString,
Polygon, MultiPoint,

MultiLineString,
MultiPolygon,

GeometryCollection

$geoIntersects,
$geoWithin, $near,

$nearSphere

2dsphere index,
2d index based

on geohash
not supported

GeoJSON
objects,
Legacy

Coordinate
Pairs

Couchbase

Point, LineString,
Polygon, MultiPoint,

MultiLineString,
MultiPolygon,

GeometryCollection

BBox R-Tree, designed
by users N1QL GeoJSON

Amazon
DynamoDB Point

GeoPoint, putPoint
deletePoint,
updatePoint

queryRectangle,
queryRadius

geohash not supported GeoJSON

Cassandra Point, LineString,
Polygon

intersects, contains,
is_within (provided

by a plug-in)

Lucene index
(provided by a

plug-in)
Cassandra Query
Language (CQL) WKT

HBase No No No not supported No

Neo4j

Only Point in Neo4j;
Point, LineString,

Polygon, MultiPoint,
MultiLineString,
MultiPolygon,

GeometryCollection
in Neo4j Spatial

Library

distance(),
point()-WGS 84 2D,
point()-WGS 84 3D,

point()-Cartesian 2D,
point()-Cartesian 3D

B+Tree, R-Tree
(default) Cypher Graph

Model, RDF

Elasticsearch

Point, LineString,
Polygon, MultiPoint,

MultiLineString,
MultiPolygon,

GeometryCollection

geo_shape,
geo_bounding_box,
geo_distance, and

geo_polygon

GeohashPrefixTree
and

QuadPrefixTree
Domain Specific
Language (DSL)

GeoJSON
and WKT

Redis Point
geoadd, geodist,
geohash, geopos,

georadius and
georadiusbymember

geohash not supported GeoJSON

Solr

points, circles,
envelopes, line

strings, polygons,
and “multi” variants

of these

convexHull,
enclosingDisk,

Prefix tree,
geohash, and

quadtree

“Lucene” query
parser

(default)
WKT or

GeoJSON

Splunk

Point, LineString,
Polygon, MultiPoint,

MultiLineString,
MultiPolygon,

GeometryCollection

Geom inputlookup Summary
indexing

Splunk Process
Language (SPL)

KMZ or
KML

MongoDB provides two geospatial index types: geohash for 2dsphere and 2d. Within 2dsphere
indexes, relevant queries are implemented through a calculation of geometries on an Earth-like sphere.
Within 2d indexes, queries are implemented through a calculation of geometries on a two-dimensional
plane. For spherical queries, 2dsphere indexes should be used, because the use of 2d indexes for
spherical queries may lead to incorrect results. Four topological query operations are provided in
MongoDB for geospatial data: $geoIntersects, $geoWithin, $near, and $nearSphere.

In a quantitative comparison of geospatial big data processing between the PostGIS and MongoDB
databases, MongoDB had some advantages with its “within” and “intersection” queries [18,31] and in
terms of its response time for loading big geospatial data [32]. Meanwhile, in a comparison between
ArcGIS and MongoDB, the spatial retrieval performance of MongoDB was better than that of ArcGIS,
and this advantage was more obvious with an increase in the point set [33].

In related research on MongoDB, attention has focused on geospatial data management and
storage [34–43] and on index development methods [29,44–46]. Using MongoDB, several platforms and
frameworks have been designed to solve diverse application demands. Although NoSQL databases can
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store JSON objects, a standard query language is still missing, so individuals who are not programmers
have a hard time managing, analyzing, and correlating geospatial data. To solve these problems,
a framework and a query language were designed to manipulate JSON objects and provide spatial and
non-spatial operations across heterogeneous datasets [34]. To provide a multi-user collaborative work
environment, a prototype system was developed based on open-source web technologies, in which
geospatial data were processed according to the OGC standard and modified as a GeoJSON format to be
stored in MongoDB [43]. When multiuser requests to servers increase to a certain extent, response times
and service might be subpar or unavailable. For this scale problem, a scalable Web Map Tile Services
(WMTS) framework was designed with a high-performance cluster to implement elastic deployment as
user requests grow in number [14]. Aside from the problems of multiple user requests, the management
of very large geospatial datasets is also an urgent problem. A software, called GeoRocket, has been
created to manage very large geospatial datasets in the cloud [36]. GeoRocket splits large datasets into
chunks and processes chunks individually. GeoRocket has adopted Elasticsearch to index and query
large datasets and uses MongoDB for data storage [36].

Although MongoDB provides index methods, research is still being done to find faster indexes.
Xiang et al. proposed a method of implementing an R-Tree index, which combines spatial range query
and nearest neighbor query in MongoDB [44]. Using a tabular document structure, they flattened the
R-Tree index into MongoDB collections, and the experiment showed that the new method performed
better than the 2dsphere index (MongoDB’s built-in spatial index) [44]. The other method used for
R-Tree in MongoDB was proposed by Li et al., while a geohash-based spatial index has been applied in
location-based queries for a medical monitoring system, which combined nested minimum boundary
rectangles (MBRs), an R-Tree as a global tree for real-time locations, and a geohash-based B-Tree as
a local tree for historical data [45]. Additionally, some researchers have also made contributions using
MongoDB to the spatiotemporal index design of massive trajectory data [29,47].

MongoDB provides a wide and flexible platform for different geospatial applications. Moreover,
MongoDB adopts some tactics to improve performance and availability, such as asynchronous replica
updates and load balance across replicas, but these tactics can affect the consistency of one or multiple
objects. This also happens with other NoSQL databases, such as HBase, Cassandra, and Neo4j.

4.2. Couchbase

The Couchbase Server is an open-source, distributed, document-oriented database with fast
key-value storage and a powerful query engine for executing an SQL-like query language (N1QL) [48].
The Couchbase Server is designed for some specific environments to provide low-latency data
management services, such as a large-scale interactive web, a mobile terminal, or IoT applications.
The Couchbase Server supports some geometry primitives, as does MongoDB. For geospatial queries,
it has two location representation models: radius-based and box-based. In the radius-based location
representation model, location data are shown as locations with longitude–latitude coordinate pairs
and the distance in miles. This distance is the length of the radius, and the location of an object is in the
center of the circle. If the query location is within the circle, documents are returned. In the box-based
location representation model, two longitude–latitude coordinate pairs are required, which are located
at the top-left and bottom-right corners of a box. If the query location is within the box, JSON documents
are returned, and they contain the location within the box. The Couchbase Server provides R-Tree
indexes for location-aware applications. Additionally, spatial indexes can also be defined by users
before a geospatial query. Depending on which of the two location representation models are used
(a location or a bounding box), the spatial indexes are different. Couchbase only provides queries based
on location coordinate data, which can limit its applications.

There was one article about the Couchbase database in the search results, which is mentioned in
Section 3. In it, an information-centric network was adopted to federate MongoDB and Couchbase
databases [35]. The functional architecture of the designed federated database included a federation
front-end for effective connection between a query processor and users; the query processor for
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interacting with local and remote DBSes; and a DBMS adapter for translating the federated query into
the local query language in a local DBMS [35].

4.3. Neo4j

Neo4j is the most popular graph database and uses Cypher as its query language, but it supports
only one type of spatial geometry, Point, in the latest Version 3.5. Each point in Neo4j can have 2D
or 3D presentation and can be specified as a geographic coordinate reference system or a Cartesian
coordinate reference system. Because Neo4j has only one spatial geometry type, the database provides
spatial functions related to the point, such as distance(), point()-WGS 84 2D, point()-WGS 84 3D,
point()-Cartesian 2D, and point()-Cartesian 3D. An example from Cypher’s manual [49] is:

WITH point ({latitude:toFloat(’13.43’), longitude:toFloat(’56.21’)}) AS p1,
point ({latitude:toFloat(’13.10’), longitude:toFloat(’56.41’)}) AS p2
RETURN toInteger(distance(p1, p2)/1000) AS km

There is a utility library called Neo4j Spatial that facilitates the spatial manipulation of data.
Neo4j Spatial supports seven common geometry types: Point, LineString, Polygon, MultiPoint,
MultiLineString, MultiPolygon, and GeometryCollection and topology operations. Additionally, Neo4j
Spatial adopts an R-Tree index for spatial queries and provides multiple spatial procedures [50].

In related research, Sarwat et al. implemented a reachability query with a spatial range predicated
on the Neo4j graph database, trying to find whether an input point can reach any spatial point that lies
within an input spatial range [51]. Because of the lack of optimization of spatial predicates in existing
graph query processors, Sun et al. proposed a query operator, GEOEXPAND, which adds spatial
data awareness into a graphics DBMS to execute graph queries with spatial predicates efficiently [52].
Additionally, a carpool matching system was designed to recommend carpools based on vehicles’
weekly frequent trajectories [53]. A time series of locations in a trajectory was connected while building
a time tree through the use of the GraphAware Neo4j TimeTree library. For spatial data, the Neo4j
Spatial library was used to model and query trajectory data. Using a carpool matching strategy,
the efficiency and efficacy of the proposed system were evaluated [53]. Neo4j has also been applied
in agriculture and animal husbandry applications, for example, using web technology and a Neo4j
shell to evaluate the condition of the crops on the basis of geospatial data [54] and identifying relations
between the members of a cattle herd based on spatial and graph databases [55].

Because Neo4j only supports the point geometry type and point-based spatial functions, it is
generally used in location-related applications.

4.4. Apache Cassandra

Apache Cassandra is an open source, distributed, wide column storage database management
system. Cassandra and the Cassandra Query Language (CQL) do not support spatial queries.
Cassandra‘s main method for supporting geospatial data is Stratio’s Lucene Index for Cassandra,
a plugin for Apache Cassandra, which supports geospatial data indexing (point, lines, polygons, etc.),
geospatial transformations (bounding box, centroid, convex hull, buffer, union, difference, intersection),
and geospatial operations (intersects, contains, etc.). Lucene indexes, an extension of Cassandra
secondary indexes, can be created through a CQL CREATE CUSTOM INDEX statement. The syntax is:

CREATE CUSTOM INDEX (IF NOT EXISTS)? <index_name>
ON <table_name> ()
USING 'com.stratio.cassandra.lucene.Index'
WITH OPTIONS = <options>

In Cassandra, the main geometry objects include Point, LineString, and Polygon, while Cassandra
itself does not provide a spatial index.
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Cassandra is a highly scalable and high-performance data store, but it provides limited capabilities
for data analyses and limited scalable functions, including a lack of adequate support for spatial
data operations. To surmount these problems, research into an extension for the Cassandra Query
Language was developed to implement spatial queries in the Cassandra database [56]. This extension
research mainly converted the latitudinal/longitudinal values into a numeric geohash attribute and
associated them with the data during data storage operations. Then, a spatial query parser and spatial
syntax were designed and defined as a CQL spatial extension. After that, an aggregation algorithm
was executed to reduce the search space and optimize the sub-queries sent to the cluster nodes.
The stored data can be indexed through a geohashing technique [56]. Moreover, a novel approach used
to couple Cassandra with Secondo DBMS was proposed by Nidzwetzki et al. to support all DBMS
functions, including models of spatial and moving object data with high availability and scalability [57].
Using that work, Nidzwetzki et al. further expanded this approach [58] to build a DBMS that was
distributed, general-purpose, fault-tolerant, and parallel. Similarly, to solve issues with spatial queries
in the Cassandra database, a framework was developed by integrating of Hadoop and Cassandra
for spatial query data stored in Cassandra [59]. The experimental results showed that a user-defined
partitioning technique, called prefix-based partitioning, performed better in a geospatial search than
did Cassandra’s default partitioning algorithm [59].

For similar purposes, another framework combining Spark and Cassandra was proposed to
provide data loading and data retrieval solutions for spatial data [60]. This framework includes a spatial
data storage layer (based on Cassandra), a Spark core layer (using standard Spark core APIs), a spatial
data processing layer (as an interface to query spatial and non-spatial data), and an application
layer, in which a Spark-Cassandra connector [61] provides seamless integration between Spark and
Cassandra [60].

Cassandra provides limited geometry types, geometry indexes, and functions, so extra design
workings or tools/components are required in geospatial data processing, such as an index extension [56]
and the combination with other tools [59–61].

4.5. Apache HBase

Apache HBase is an open source, distributed, versioned, and disk-based architecture database.
HBase does not support a declarative query language, and queries in HBase are achieved through
proprietary APIs. HBase does not have special geospatial functions to support geospatial data
storage and querying [62]. However, researchers developed some methods and applications for
processing geospatial data in HBase [63–70], such as a geographical database with geohash-based
spatial indexes [63,71], big spatial data processing with Apache Spark [72], a geospatial data model [64],
and a new spatial query method based on primary keys’ indexing [73]. Additionally, an open source
suite of tools, GeoMesa, was designed to implement large-scale geospatial analytics and querying in
the cloud or in conjunction with the HBase and Cassandra databases [74].

Besides the above-mentioned research about geospatial processing in HBase, there has been other
research related to geospatial processing. The first is based on the MapReduce mechanism [75,76].
Hadoop MapReduce is a software framework through which designers can easily write applications to
process huge amounts of data in-parallel in large clusters of commodity hardware [77], while HBase
uses base classes to support MapReduce jobs with HBase tables [76]. The central idea of MapReduce
is that massive datasets are first divided into independent chunks stored in the clusters, and these
chunks are processed by matching different tasks and methods in parallel [75,76].

Other researchers have designed a new index structure to manage data for HBase [69,70,78,79].
Du et al. proposed a novel hybrid index structure to organize data by developing a statistical grid-based
R-Tree for indexing space and by using a Hilbert curve for neighbor finding [78]. In HBase, a novel
spatial index structure with geohash encoding was designed [69,80]. Additionally, Jo et al. developed
a hierarchical index structure for effective spatial query processing in HBase, called a Q-MBR
(quadrant-based minimum bounding rectangle) tree [79]. Through Q-MBR, the space is split into
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quadrants, and MBR is created in each quadrant. Then, the spatial objects are accessed through an index
tree in a hierarchical manner. Based on the Q-MBR tree, different algorithms have been designed for
different query operations [79].

The third research direction is to build storage models/schemas of spatial data in HBase [67,73,81–83].
Wang et al. proposed a Z storage schema with row keys based on a Z curve for massive spatial vector
data in HBase [67]. After that, Zhang et al. improved this Z storage schema, and their experiments
showed that the Z storage schema had a higher spatial query efficiency than did a tree-based storage
schema (Quadtree storage and R-Tree storage schema) [83].

Furthermore, Zhai et al. combined the distributed HBase database and a global subdivision grid
to manage data effectively: with their method, grid geocodes presented the spatial position of an object
and were regarded as a key-value in HBase [81]. Meanwhile, Zheng et al. considered spatial adjacency
and proposed a spatial data storage optimization strategy for the HBase database: their method stores
adjacent spatial objects in the same data fragment [84].

Because HBase does no support geometry types, geometry indexes, or functions, extra design
workings or tools/components are required to process geospatial data.

4.6. Redis

Redis is an open source (BSD licensed), in-memory key-value database that supports multiple
data structures, including strings, hashes, lists, sets, bitmaps, geospatial indexes with radius queries,
and streams. Redis implements queries through specific APIs and provides six geospatially related
commands: geoadd, geodist, geohash, geopos, georadius, and georadiusbymember. These commands
are easy to implement in geospatial data operations. For example, the geoadd command format is
“GEOADD (set name) latitude longitude (object name)”, and the user adds the specified geospatial
object (latitude, longitude, name) to the specified key. Data are stored in the key as a sorted set,
and in this way, the object can be retrieved using a query of the radius with the georadius or
georadiusbymember commands.

An example is:

GEOADD building 15.45244 -76.78506 my-house

To delete a member from the Geo Set, Redis provides the ZREM command:

redis.zrem (building, my-house)

Redis is an in-memory, but persistent on disk database. When an important change in the data is
generated, it is required to instruct Redis to save the change to disk. Additionally, Redis has a limited
ability to create relationships between data objects.

Due to its characteristics, Redis is generally used for quick response tracking systems, such as
ship tracking [16] and public transportation vehicle tracking [85], in which real-time data need to be
displayed or processed in a timely manner, while the snapshot memory data are not required to be
stored immediately.

4.7. Amazon DynamoDB

Amazon DynamoDB is a NoSQL database providing fast and predictable performance with
seamless scalability, document storage, key-value storage, and low-level APIs (protocol-level interface)
for managing database tables and indexes. In order to easily build location-based applications, the Geo
Library for Amazon DynamoDB was designed, so that a GeoPoint (with a latitudinal value and
a longitudinal value) is encoded in a GeoJSON string. Further, geohash indexes for fast location-based
queries are used, including box queries and radius queries. Moreover, DynamoDB provides multiple
geospatial operations functions, such as GeoPoint, putPoint, deletePoint, updatePoint, queryRectangle,
and queryRadius. No related academic articles were found on geospatial processing based on research
on DynamoDB.
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4.8. Elasticsearch

Elasticsearch is a search engine and Document database that was developed in Java. Elasticsearch
provides a query language, Domain Specific Language (DSL), based on JSON to define queries and
supports. It also supports two Geo datatypes, including a Geo-point datatype (latitude and longitude
pairs) and a Geo-shape datatype, which supports Points, Lines, Circles, Polygons, MultiPolygons, etc.
In terms of queries, Elasticsearch has four functions: geo_shape, geo_bounding_box, geo_distance,
and geo_polygon, and provides multiple PrefixTree, including GeohashPrefixTree and QuadPrefixTree.
Additionally, geospatial data can be represented using either GeoJSON or Well-Known Text (WKT)
format. An example of GeoJSON is shown here:

POST /example/_doc
{
“location” : {
“type” : “point”,
“coordinates” : [-77.03653, 38.897676]
}

}

We found some articles on Elasticsearch, including one on the usage of Elasticsearch for queries
and the storage of local geographic information [86] and one on Elasticsearch as-a-service in Elastic’s
Elastic Cloud [87]. Elasticsearch is also used for indexing and querying big geospatial datasets in the
GeoRocket system [36].

4.9. Splunk

Splunk Inc. has many software products with powerful search and analysis abilities for enterprise
data management. One of them is Splunk Enterprise, which can fetch data from websites and the IoT
(Internet of Things) and has excellent data management and mining performances. Splunk’s query
language is called the Splunk Process Language (SPL). In Splunk software, geospatial lookups should
be used first to generate queries, and the query results are illustrated by a choropleth map visualization.
A geospatial lookup maps event/object location coordinates in a geographic feature collection, called
a Keyhole Markup Zipped (KMZ) file or a Keyhole Markup Language (KML) file. A format for creating
a geospatial lookup is defined below:

[<lookup_name>]
external_type = geo
filename = <name_of_KMZ_file>
feature_id_element = <XPath_expression>

Splunk Enterprise provides two geospatial lookups for the United States and for other countries.
No related academic article was found on geospatial processing based on Splunk applications
and research.

4.10. Solr

Solr is an open-source search platform with high reliability, scalable indexing, search functions,
fault tolerance, and load-balanced querying. Its default query parser is the “Lucene” query parser.
To store spatial data, Solr supports the WKT and GeoJSON format, but the data format needs to be
designated through a “format type name” before data can be stored. There are two inner parameters:
f for the field name and w for the format name.

An example is:

geojson: [geo f=mySpatialField w=GeoJSON].



ISPRS Int. J. Geo-Inf. 2020, 9, 331 12 of 20

For geospatial data queries, Solr provides indexing points or other shapes, searching results from
a bounding box or circle or other shapes, sorting research results in terms of distance, or even boosting
results in terms of distance. Moreover, Solr supplies four main field types for spatial searches, including:

1. LatLonPointSpatialField: this is most commonly used for latitude–longitude point data;
2. RptWithGeometrySpatialField: for indexing and searching for non-point data (it can do points,

as well, but it cannot do sorting/boosting);
3. BBoxField: for indexing bounding boxes, queries using a box, or specifying a search predicate

(Intersects, Within, Contains, Disjoint, Equals);
4. LatLonType (now defunct): it still exists, but has been replaced by LatLonPointSpatialField.

Here, we give two examples for searching for a store within 5 km of a location (45.15, −93.85):

&q=*:*&fq={!bbox sfield=store} & pt=45.15,-93.85 & d=5
&q=*:*&fq={!geofilt sfield=store} & pt=45.15,-93.85 & d=5

The parameters mean the following:

d is the radial distance, usually in kilometers;
pt is the center point using the format “latitude, longitude”;
sfield is a spatial index field;
the geofilt filter retrieves results based on the geospatial distance (circle distance) using a given point as
the center of a circle and d as the radius;
the bbox (bounding box) filter uses the bounding box of the geofilt circle.

Because the bounding box is loose, some stores that are actually more than 5 km away may be
found, but the geofit is accurate at 5 km.

As a back-end server, Solr has been used to index and search metadata services in the index
node of the Earth System Grid Federation (ESGF), which can access distributed geospatial data [88].
In terms of geospatial data processing, Solr is widely used as a research engine, rather than for data
storage [89,90], so combining it with other databases is required.

5. Comparisons of Geospatial Data Processing in NoSQL Databases

To compare 10 different NoSQL databases, their geospatial features are summarized in Table 4,
which includes geometry primitives, the main geometry functions, spatial indexes, query language,
and data format. In Table 4, it can be seen that nine out of the 10 databases support geospatial data
and have special functions or procedures, except for HBase. However, perhaps due to the absence
of geospatial features and geospatial functions in HBase, geospatial research is often done in the
HBase database.

In terms of geometry objects, most NoSQL databases support multiple geometry objects, except for
Amazon DynamoDB, HBase, Neo4j, and Redis. DynamoDB and Redis only support the point object,
while the HBase database does not support any geometry objects. Neo4j also only supports the point
geometry object, but an extended library, Neo4j Spatial, supports seven geometry objects. MongoDB,
DynamoDB, and Elasticsearch support more comprehensive geometry functions than do other NoSQL
databases and contain the operations of point, distance, and range. For spatial indexing, the geohash is
the most common method and has been adopted in document databases, column-oriented database,
and key-value databases. The tree structure is another common structure employed for indexing
spatial data in NoSQL databases. In terms of query language, some NoSQL databases do not
support a declarative query language, including MongoDB, HBase, Redis, and Amazon DynamoDB.
They support REST queries and a proprietary API for building and issuing queries. In terms of
supported geospatial data formats, eight out of 10 databases provide general GeoJSON or WKT data
formats, except for HBase and Splunk.



ISPRS Int. J. Geo-Inf. 2020, 9, 331 13 of 20

In NoSQL databases, data models (including multi-models and search engines) can be classified
into four major categories: key-value, graph model, wide column, and document stores. In fact, all of
these data models can handle and manage geospatial data. However, different NoSQL databases can
store and represent geospatial data in different ways according to the specific data model.

Graph databases are based on nodes (0D) and edges (1D), similar to the graph topology model
relevant for spatial data. Two nodes and an edge (connection between the two nodes) can expediently
represent two road crossings and a road between the two crossings in a topology relationship. However,
graph databases do not support graph topological faces (2D), i.e., the space limited by an edged.
Since Neo4j is a graph database, it can natively handle the 0D and 1D graph topological properties of
geospatial data and can provide fast traversal operations [21].

In key-value mode (Redis), a historical building (building name) and this building’s location
(longitude and latitude), history, and construction information can also be easily stored in Redis
(the building name is a key, and the other information is the stored values). The key-value database is
an in-memory store where data loading and workload execution are incredibly fast [13]. Due to its
in-memory store, the Redis database is generally applied in specific systems that require the illustration
of data in real time and do not require the persistent storage of all data, such as in ship tracking [16].

However, because of the characteristics of these two data models, Neo4j and Redis mainly
support the point geometry object. Therefore, key-value databases (Redis) [7,91] and graph databases
(Neo4j) [53–55] only provide limited geospatial queries and functions, including distance calculations
and location queries. Restricted geospatial data models hinder the applications for which key-value
databases (Redis) and graph databases (Neo4j) are useful due to the complexity of geospatial data,
especially that of polyline and polygon objects.

Document databases can differ in the details, but all document databases encode and encapsulate
information into documents in a certain standard format. The common standard encoding formats
include Extensible Markup Language (XML), JavaScript Object Notation (JSON), and Binary JSON
(BSON). For geospatial data, the document databases use GeoJSON format, such as MongoDB,
Couchbase, Amazon DynamoDB, and Elasticsearch.

Document databases have complex relationships with other NoSQL databases. For example,
the search engine Elasticsearch provides ample operations for documents and is considered to be
a document-oriented database. Additionally, a document database can sometimes be viewed as
a key-value database, such as Redis, Couchbase, and Amazon DynamoDB. MongoDB is not a key-value
database, but it uses the concept of key-value pairs, and documents are accessed using a key. Although
document databases are intimately related to key-value databases, document-oriented databases,
such as MongoDB, Couchbase, and Elasticsearch, process and manage geospatial data more effectively
than do key-value databases [7]. This is mainly because document databases have more flexible queries
for retrieving geospatial data than do key-value databases, including proximity queries and embedded
topology analysis functions [17], and through the GeoJSON format, many document databases easily
support or extend geospatial data management. Furthermore, document databases perform well in
geospatial data queries [18,31], spatial data retrievals [33], and in terms of response times for loading
big geospatial data [32]. MongoDB also has the best query time for node queries compared to Neo4j
and PostgreSQL [92].

The wide column databases, Cassandra and HBase, store data tables in columns instead of in rows,
and they are open-source, non-relational, distributed databases. HBase does not support geospatial
processing; however, through MapReduce [75,76,93] and by designing new index structures [69,70,78,79]
and storage models/schemas [67,73,81–83], the HBase database can now process geospatial data for
different applications. As with Hbase, Cassandra can also use Hadoop MapReduce for geospatial
data processing [59]. However, HBase is a column-oriented key-value data store, and Cassandra is
essentially a hybrid between a key-value and a tabular database management system. Neither supplies
a way to query by column and value, and query performance mainly depends on limited keys,
so the column-family databases can be used efficiently for some special geospatial applications
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that need simple geospatial queries, mass data insertion, and fast data retrieval [21]. Additionally,
most research based on HBase has focused on vector spatial data [66,67,83,93,94], while document
databases can handle raster data [7] and vector spatial data [36]. Because wide column databases do
not have sufficient functions and queries to support geospatial data processing, another weakness of
wide column databases (HBase) is that they require extra work for geospatial indexes and functions
design [69,78,94]; this may cause limitations in the interoperability and sharing of designs compared
to the indexes and functions of built-in databases. The spatial indexes and functions of the built-in
database provide convenience and efficiency in design works, but fixed indexes and functions might
limit their flexibility in some applications. Designers and developers must balance the convenience and
flexibility of a design project, as well as considerations of the workload and complexity of the design.

Furthermore, geospatial indexing is vital for geospatial queries in NoSQL databases. For better
query performance, some researchers have extended current indexing methods for different
NoSQL databases, including R-Tree for MongoDB [44,46], geohash extensions for MongoDB [45,47],
a graph-based expansion tree (GET) for Neo4j [95], and a new hybrid indexing scheme called HB+-trie
for key-value storage [96].

Currently, document and wide column databases receive more academic attention than do graph
and key-value databases in terms of geospatial data processing. The research on document databases
has mainly concentrated on index improvement [44,45], performance analysis [18,23], and practical
applications [38–40]. Additionally, due to the high performance of data insertion and retrieval in
HBase, many researchers have designed systems and applications for geospatial data based on
HBase [63,73,79,82,94].

A basic comparison of the geometry objects, main geometry functions, spatial indexes, and data
formats supported by these NoSQL databases is shown in Table 4. A summary of geospatial data
processing in different NoSQL databases (based on our literature review and analysis) is listed in
Table 5. Of the NoSQL databases, document databases handle geospatial data processing the most
effectively, considering the geometry objects they support, their data formats, their query performance,
their geospatial functions, their index methods, and the amount of academic attention they receive.
The other databases have their own advantages for specific scenarios.

Table 5. A summary of geospatial processing in NoSQL databases.

Data Models Main Characteristics in Terms of
Geospatial Processing Main Applications Academic Attention

Graph database

1. Fast graph traversal
2. Distance calculations and location
query applications
3. Limited geospatial indexes, queries,
and functions

Spatio-temporal data
(moving object) Low

Document
databases

1. Good and stable performance in
geospatial spatial data queries and
retrievals
2. Wide application scenarios
3. Abundant and effective geospatial
management, indexes, queries, and
functions

Widely (distributed or
web/cloud platform) High

Wide column
databases

1. Fast mass data insertion and data
retrieval
2. Require users to design or construct
indexes and query functions
3. Limited geospatial queries and
functions, but provide basic classes’
extension

Widely (distributed or
web/cloud platform) High
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Table 5. Cont.

Data Models Main Characteristics in Terms of
Geospatial Processing Main Applications Academic Attention

Key-value
database

1. Fast data loading and workloads
execution
2. In-memory storage and specific
application scenario
3. Limited geospatial queries and
functions

Tracking applications Low

6. Conclusions

In this paper, we summarized the state-of-the-art geospatial data processing used in the 10 most
popular NoSQL databases and compared their performances based on geometry objects supported,
geometry functions, spatial indexes, data formats, query languages, and use in academic research.
Moreover, we analyzed the pros and cons of these NoSQL databases in geospatial data processing.
Graph databases and key-value databases tend to express the geometry point object, without enough
support for other geometric structures. This limits their geometric functions and applications. Moreover,
these two types of databases have received little academic attention in terms of geospatial data
processing. Document databases support a variety of geometric structures and provide a richer set of
geospatial functions than do graph and key-value databases. Wide column databases only support
a limited number of geospatial queries and functions; however, wide column databases have been
adopted for many applications and have been studied extensively by academics, as have document
databases. On the basis of our literature review, which included a systematic comparison of NoSQL
database characteristics, we conclude that document databases are the best platform for geospatial data
processing, as they load fast and have a good execution time, good query performance, and abundant
geospatial functions and index methods. They have also received much academic attention.

Depending on the application scenario, graph databases, key-value databases, and wide column
databases also have their own advantages. Additionally, geometry surface calculations and volume
processing are not handled in the existing NoSQL databases. This could be a new direction for spatial
processing research.
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