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ABSTRACT Human-related issues play an important role in accidents and causalities in demanding
maritime operations. The industry lacks an approach capable of preventively assessing maritime operators’
mental fatigue and awareness levels before accidents happen. Aiming to reduce intrusiveness, we focused
on improving the mental fatigue assessment capabilities of a combination of electroencephalogram and
electrocardiogram sensors by investigating the optimization of convolutional neural networks by Bayesian
optimization with Gaussian process. We proposed a mapping function to optimize the network structure
without the need for a tree-like structure to define the domain of variables for the optimization process.
We applied the proposed approach in a simulated vessel piloting task. Even though the mental fatigue
assessment for the cross-subject case is a complex classification task, the trained convolutional neural
network could achieve good generalization performance (97.6% test accuracy). Finally, we also proposed a
method to improve the depiction of themental fatigue build up process. The framework presented in this work
can contribute for reducing accident risk in maritime operations by improving the accuracy and assessment
quality of neural network-based mental fatigue assessment tools.

INDEX TERMS Electrocardiography, electroencephalography, human factors, mental fatigue, neural net-
works.

I. INTRODUCTION
Humans and human-related issues are the leading causes of
causalities in the maritime industry [1]–[3]. While the indus-
try is increasingly moving towards automation, completely
removing humans from the operational loop is probably
impossible. Although moving human operators from vessels
to onshore control centers does reduce accidents risk, it does
not entirely eliminate it. Thus addressing human-related
issues is of extreme importance.

Mental fatigue (MF) is a key source of human error
that accumulates with time, decreasing maritime opera-
tors’ capacity to react to unexpected events and under-
stand and solve problems. Besides some regulations and
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recommendations [4], the maritime domain lacks objec-
tive methods to assess MF and mitigate its effects on
operations. Subjective methods such as questionnaires and
surveys [5], [6] have limited value as they are usually biased
and do not provide real-time tools to approach the problem.
In this context, more objective methods are desired.

Among objective approaches, monitoring physiological
signals is considered as one of the most reliable ways
of assessing MF, since changes in these signals manifest
before any other external sign of MF can be captured [7].
Physiological sensors commonly used in MF assessment
include electrocardiogram (ECG) [8] and electroencephalo-
gram (EEG) [9] due to the relation between variations in
the MF state levels and heart rate variability and changes
in the energy spectrum of brain signals. The data gathered
by each individual physiological sensor can be considered a
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time-series. They can be analyzed together as a multivariate
time-series, providing complementary information to a more
precise MF assessment task.

It also provides relevant information about fatigue, since a
person’s heart rate varies significantly while in different states
of tiredness

EEG is probably the most used physiological measurement
of MF due to the clear relation between the power spectrum
characteristics in different frequency bands and MF levels

In general, time-series are noisy, highly dimensional, and
non-stationary [10], which make the MF state assessment
complicated. One very popular approach to assess this kind
of data in classification tasks is the use of neural networks
(NN). Several state-of-the-art algorithms are variations of the
traditional convolutional neural network (CNN) [11], mod-
ified to reach a high level of robustness and perform well
in several kinds of applications. Higher levels of robustness
increase the complexity of the model and might be unnec-
essary for less general implementations of CNN. We would
like to investigate how to tailor a simple CNN algorithm
to perform optimally in our MF state assessment problem.
NN in general are very complex black box functions. Their
performance is defined by a set of hyperparameters that
dictates how they learn, regularize, generalize, etc. The map-
ping between hyperparamters and performance is in general
complex, unknown, and noisy. Thus optimizing NN is not
easy. Themost commonly used techniques for optimizingNN
include random search, grid search, and manual inspection.

Random search can lead to good results, but it is not guar-
anteed to find even local optima. Grid search tries exhaus-
tively all possible combinations of hyperparameter ranges
defined by the user, which can be very computationally
expensive as the number of hyperparameters and size of
their ranges increase. Manual inspection relies on experts’
knowledge to make informed decisions about how to change
the hyperparameters for the next iteration of the optimiza-
tion process. This approach may leave some regions of the
hyperparameters space unexplored, making it difficult to find
global optima.

The current paper implements an approach capable of
balancing prior knowledge about different combinations of
hyperparameters and a good exploration of the hyperparam-
eter space to improve on more commonly used approaches.
Bayesian optimization (BO) is a well-established probabilis-
tic optimization approach that is effective for finding global
optima of complex and noisy functions [12]. As a new step
in the optimization process, BO takes into account all previ-
ously performed optimization steps, favoring promising solu-
tions without neglecting less promising ones via a trade-off
between exploitation and exploration of the hyperparameters
space. In this context, we investigate the use of BO to enhance
CNN performance on MF classification using physiological
sensors by means of optimizing the selection of the network’s
hyperparameters. We also propose an approach to condition-
ally optimize the CNN structure parameters without the need
for a tree-structured BO algorithm.

The rest of the paper unfolds as follows. Section II briefly
introduces BO. Section III presents our case study and dis-
cusses its implementation details. Section IV presents the
results obtained from our case study. Section VI concludes
the paper and discusses plans for further work.

II. BAYESIAN OPTIMIZATION
BO is a powerful global optimization technique to optimize
complex and noisy black box functions. It is especially advan-
tageous when the objective function to be optimized is com-
putationally expensive to evaluate [13]. This technique draws
on Bayes’ theorem. Let’s consider the arbitrary objective
function to be optimized f : X → IRD that can be evaluated
at xi ∈ X , yielding observation yi. The accumulated observa-
tions of f can be described as D1:t = {x1:t , y1:t }. Following
the Bayes’ theorem we can write:

P(f |D1:t ) =
P(D1:t |f ) · P(f )

P(D1:t )
(1)

Equation 1 states that the posterior probability of f given
a set of observations D1:t is conditioned to the likelihood
P(D1:t |f ), to the prior P(f ), and to the evidence P(D1:t ). The
prior expresses our knowledge about the function prior to see-
ing the data and the evidence expresses the probability of the
observations without considering the function. The posterior
distribution expresses our current belief about the objective
function, which can be considered as an approximation of
the real objective function. This approach can be applied
repeatedly in an iterative way as we amass new observations
in order to improve the approximation of the real objective
function.

A. SEQUENTIAL MODEL-BASED OPTIMIZATION
Sequential model-based optimization (SMBO) is a formal-
ization of the BO approach. The SMBO algorithm iter-
atively approximates f with a surrogate model which is
cheaper to evaluate. Then the SMBO algorithm maxi-
mizes an acquisition function over the surrogate in order
to find the next best point to evaluate on f . Then the
set of accumulated observations D is updated and the
algorithm is run again. This procedure is summarized
in Algorithm 1.

Algorithm 1 Sequential Model-Based Optimization
1: procedure BAYESIAN OPTIMIZATION
2: Random sample objective function t times
3: D← Initialize: {x1:t , y1:t }
4: loop:
5: Fit a surrogate model to D
6: Optimize acquisition function: x∗← argmaxxu(x|D)
7: Evaluate objective function: y∗ = f (x∗)
8: Add {x∗, f (x∗)} to D
9: goto loop.

VOLUME 8, 2020 40403



T. G. Monteiro et al.: Optimizing CNN Hyperparameters for Mental Fatigue Assessment in Demanding Maritime Operations

SMBO models rely on five main components. They are:
• A domain of hyperparameters from where we
draw combinations of hyperparameters to optimize the
objective.

• An objective function that takes in the hyperparameters
as input and outputs the score we want to maximize.

• A surrogate model of the objective function, which
is a simpler to evaluate approximation of the objective
function.

• An acquisition function that is optimized over the sur-
rogate model in order to find the next point to evaluate
the objective function.

• A history of pre-evaluated points that is used to fit a
surrogate model of the objective function.

Different takes on SMBO differ mostly on how the sur-
rogate model is generated and which kind of acquisition
function is optimized on the surrogate model [14]. These two
aspects of SMBO will be considered next.

B. BAYESIAN OPTIMIZATION WITH GAUSSIAN PROCESS
BO approaches rely on a prior function to express our knowl-
edge about the function before seeing the data. Several mod-
els can be used to derivate this prior, and the Gaussian
process (GP) priors are among the most commonly used.
Mockus [15] showed that GP priors are well-suited for BO
approaches, ensuring the conditions for convergence of the
method.

A GP is a generalization of a multivariate Gaussian distri-
bution (MGD) to function (or continuous) space. In fact, any
finite subset of a GP is an MGD. A GP is completely defined
by its mean function m : X → IRD and positive definite
covariance function K : X × X → IRD. So the GP prior can
be written as:

f ∼ GP(m,K ) (2)

When we draw samples from this prior, i.e., evaluating
f (xi), the function returns the mean and variances of a normal
distribution of the possible value of f at xi. A very popular
choice for the mean function is m = 0, since it simplifies
the formulation of the GP while still leading to good per-
formance [16]. In this way, the prior distribution is solely
defined by the covariance function (also known as kernel
function). The correct choice of kernel function is essential
for the good performance of the BO algorithm since it defines
the smoothness of samples drawn from the GP.

One very common family of kernel functions for machine
learning problems is the Matérn covariance function, which
describes the covariance between variable base on the dis-
tance d between these variables. These functions have the
form:

Kmatern(d) =
21−ν

0(ν)

(√
2νd
l

)ν
Kν

(√
2νd
l

)
(3)

where 0 is the standard gamma function and Kν is a modified
bezel function [17]. l is a hyperparameter that controls the

width of the kernel and for anisotropic models it is usually
defined by a vector of automatic relevance determination
(ARD) [18].

Matérn kernels become specially interesting when ν = p+
0.5, where p is a non-negative integer. In this case the function
evaluation becomes very simple since it is the product of an
exponential and a polynomial of order p, which is p times
differentiable. Themost common value used for ν onmachine
learning problems is ν = 2.5 since it keeps a good balance
between the very smooth (ν = 3.5) and very rough (ν = 0.5)
kernels [19].

The GP can be used as the prior for our Bayesian infer-
ence. We can use this prior to make predictions about our
distribution and define a posterior. Knowing the observation
{x1:t , f1:t }, a next observation ft+1 can be predicted by con-
sidering that f1:t and ft+1 are jointly Gaussian. This can be
written as:[

f1:t
ft+1

]
∼ N

([
m1:t
mt+1

]
,

[
K1:t K
KT Kt+1

])
(4)

which, using the matrix inversion lemma [20], reduces to:

ft+1|f1:t∼N (mt+1+KTK−11:t (f1:t−m1:t ),Kt+1−KTK−11:t K )

(5)

This posterior formulation is used by the BO to guide the
optimization process. The BO algorithm optimizes a metric
defined by an acquisition function over the posterior to decide
which point xt+1 to evaluate next with the objective function.

C. ACQUISITION FUNCTIONS
The correct choice of acquisition function is essential for
good results when using SMBO approaches. The acquisi-
tion function determines which point the SMBO algorithm
should evaluate next on the objective function, dictating the
directions of the optimization. When doing so, the acqui-
sition function deals with two opposing goals. Firstly, it is
designed to incentivize the exploration of regions of the
hyperparameters space that were not explored yet. Secondly,
it is designed to incentivize the exploitation of regions of the
hyperparameters space that have high likelihood of leading
to high evaluation scores of the objective function. The most
commonly used acquisition functions for BOGP are probabil-
ity of improvement (POI), expected improvement (EI) [21],
and upper confidence bound (UCB) [22].

1) PROBABILITY OF IMPROVEMENT
This acquisition function favors increasing the probability of
improving the current best objective function evaluation. POI
can be formulated as:

uPOI (x;D, θ) = P(f (x;D, θ) > f (xbest)) (6)

where θ is a vector with the BOGP hyperparameters.
POI tends to favor only exploitation, which can lead the

optimization to local optima. This negative impact can be
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FIGURE 1. Proposed framework for mental fatigue assessment. The proposed approach aims to make the system as least invasive as
possible by applying a reduced number of sensors and optimizing the CNN performance in detecting mental fatigue levels.

reduced by adding a trade-off parameter ξ ≥ 0 to balance
exploration and exploitation:

uPOI (x;D, θ) = P(f (x;D, θ) > f (xbest)+ ξ ) (7)

2) EXPECTED IMPROVEMENT
This acquisition function rewards the objective function
based on the relative magnitude of improvement. EI can be
formulated as:

uEI (x;D, θ) = E(max{f (x;D, θ)− f (xbest), 0}|D) (8)

where E represents the expectation. EI naturally provides a
good balance between exploration and exploitation. However
it can be further controlled by using trade-off parameters
similar to the one applied on the POI function:

uEI (x;D, θ) = E(max{f (x;D, θ)− f (xbest)− ξ, 0}|D) (9)

3) UPPER CONFIDENCE BOUND
This acquisition function explores the upper confidence
bound of the surrogate model, rewarding optimism in the face
of uncertainty. Consequently, the function tends to explore
areas where the uncertainty is the highest. UCB can be
formulated as:

uUCB(x;D, θ) = µ(x;D, θ)+ βσ (x;D, θ) (10)

where µ is the mean function, σ is the standard deviation and
β is a trade-off parameter between exploration and exploita-
tion. UCB explicitly defines exploitation (µ(x;D, θ)) and
exploration (σ (x;D, θ)) terms, which can be balanced using
the trade-off parameter β.
The performance of these three acquisition functions on

our CNN optimization problem is compared and discussed in
Section IV.

III. MATERIALS AND METHODS
In order to investigate the performance of a BO algorithm in
optimizing CNN for MF assessment in the demanding mar-
itime operations we performed a simulated navigation exper-
iment. In this experiment we apply a mixedmethod approach,
where questionnaires and scenario-based experiments are
used simultaneously. Fig. 1 shows the framework used to

assess the fatigue state of human operators during demand-
ing maritime operations. It presents three main phases: data
acquisition, data preprocessing, and MF assessment.

This section describes our experimental setup and the most
relevant points regarding data acquisition, preprocessing, and
labeling. We also define a CNN as our MF assessment tool
and discuss the implementation of BO for CNN structure
selection.

A. CASE STUDY AND EXPERIMENTAL SETUP
The simulated navigation experiment was performed in col-
laboration with the Numerical Offshore Tank (TPN-USP) in
São Paulo, Brazil, via the INTPART Subsea project. The
experiment was conducted on a general purpose ship bridge
simulator. The task consisted in navigating a large container
vessel to an unloading berth on the Port of Niteroi, Brazil. The
task took around 80 minutes to be completed and required
moderated levels of attention from the participants due to
local vessel traffic and weather conditions. At the end of the
task, a complex mooring maneuver was necessary to place
the vessel in the correct berth.

Six participants performed a simulation run during the
morning period. All participants were males, aged 19 to 48.
All were trained personnel from the Brazilian Navy, which
ensures that their decisions and behavior during the exper-
iment followed standard navigation procedures. In order to
reduce the impact of external factors on the participants’ MF
state, we asked them to try to get 8 hours of sleep the night
before the experiment and avoid the consumption of stimu-
lants (including caffeine) or any kind of drug that could affect
cognitive or motor capacities 8 hours prior to the beginning
of the experiment.

During the experiment we used a set of sensors to col-
lect physiological data from the participants. The data is
collected from disparate sensors and is centralized by a
micro-controller. In this case study we recorded six EEG
channels and one ECG channel using the 14-channel EEG
headset Emotiv Epoc+ [23] and the Electrocardiogram Sen-
sor PRO for MySignals (eHealth Medical Development Plat-
form) [24]. Our experiment followed the principles and
guidelines of the Declaration of Helsinki and participants’
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data was handled following the recomendations of the Nor-
wegian Centre for Research Data [25].

Besides the scenario-based experiment the Karolinska
Sleepiness Scale (KSS) questionnaire was used as a
self-assessment tool for sleepiness estimation. Although
sleepiness and MF are different concepts, they are corre-
lated since MF is a precursor of sleepiness. Each partici-
pant indicated his self-assessed sleepiness state twice, first
immediately before the beginning of the experiment and later
immediately after the end of the experiment. This information
was later used during the data labeling process.

B. DATA PREPROCESSING
The preprocessing stage includes filtering, smoothing, resam-
pling, and discrete wavelet transform (DWT). During the
filtering phase, artifact removal algorithms can be applied to
remove unwanted perturbation from the signal. This step is
not essential when using CNN, since the network provides
very robust features. Any noise contaminating the data, such
as power line noise, can be removed during the smoothing
phase. If necessary, the channels from different sensors can
be resampled to a desired frequency and aligned to ensure
temporal correlation between different signals.

The ECG and EEG channels were sampled at 128 Hz. The
EEG channels were decomposed using DWT to obtain the
main frequency bands of clinical interest for MF assessment:
delta (δ), theta (θ ), alpha (α), and beta (β) [26]. Working
with wavelets is advantageous in this case since this approach
allows a frequency domain analysis while conserving the
temporal characteristics of the data.

C. SENSOR FUSION
Although we have one ECG and six EEG channels available,
there is no need to use all seven channels for the MF clas-
sification task. From the EEG channels, we select the beta
sub band of electrodes AF4, F4, and O2 due to their high
relevance for MF assessment [26]. We do not apply artifact
removal techniques on the EEG data since CNN can extract
robust features from the input data that mitigate the need for
this kind of specific treatment to the EEG signals. The ECG
signal acts as a complementary information source to the
EEG channels, since it carries correlated MF data but in a
completely uncorrelated form.

The selected channels were fused using low-level (or raw
data) fusion. All data channels were aligned and the input
signals were generated using a sliding window 6 seconds long
with 2 seconds of overlap. The corresponding inputs from
each channel were concatenated as one-dimensional input
vectors (Fig. 2). From all available data in each experiment,
we only used the first and last fifths of the data from each
channel for training the CNN. This was due to the availability
of labels for the input vectors. The labels were assigned as
‘‘non-fatigue’’ and ‘‘fatigue’’, based on the KSS question-
naire answers participants gave at the beginning and end of
the experiment. The input-label pairs are fed to the CNN

FIGURE 2. Raw data fusion scheme. Data from the different channels is
aligned and segmented using a sliding window of length 6 s, with overlap
of 2 s between consecutive segments. The obtained segments are then
concatenated as an one-dimensional input for the CNN.

as the input and output data during the network training,
validation, and testing.

D. MENTAL FATIGUE STATE CLASSIFICATION
TheMF state classification will be performed by a CNN. The
CNN was initially designed to handle image classification,
which requires dealing with large input data and identify-
ing very complex features. The applications of CNN have
evolved through the years and nowadays it is commonly used
for time-series classification [11]. The general structure of a
CNN includes an input layer, one or more feature extraction
blocks, and a classification (or output) layer. Each feature
extraction block is generally composed of a convolutional
layer, followed by an activation function and a pooling layer.
The convolutional layer applies filters to the input data,
and is responsible for the features extraction. The activation
function makes the extracted features non-linear, which is
very important to ensure that the network can learn complex
features. The pooling layer is responsible for dimensional
reduction, reducing the amount of parameters and computa-
tions in the network.

TABLE 1. Hyperparameters ranges for CNN optimization.

In our optimization process we are going to work with
the following hyperparameters: number of layers, number of
filters per layer, kernels sizes in each layer, dropout rate, and
batch normalization (Table 1). The ranges tested for each
hyperparameter during the optimization procedure are based
on our previous experiences manually tuning CNNs for this
kind of application.
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E. BAYESIAN OPTIMIZATION FOR NEURAL NETWORK
STRUCTURE SELECTION
The implementation of a BO approach to optimize CNN
parameters is not straightforward when one considers the
optimization of hyperparameters defining the CNN structure,
i.e. number of layers, number of filters in each layer, and
filter size. First, the acquisition function maps the bounded
set to real and positive numbers, while the structural hyperpa-
rameters are always integer values. Second, the choices with
respect to number of layers, number of filters in each layer,
and filter sizes need to be coherent, since one CNN with two
layers, number of filters = {32} and kernel sizes = {9, 7, 5}
is not well defined. The first problem can be easily solved
by using a floor-type function, which maps real and positive
numbers to integer and positive values. The second problem
requires a more elaborate treatment.

A common approach for optimizing NN structures is to
define a tree structure in the optimization variable space that
accounts for all possible network configurations. The draw-
back of this approach is that it increases the dimensionality
of the optimization problem. Alternatively, we propose the
use of mapping functions to map three variables to the full
network structure. Consider optimizing a CNNwith themaxi-
mumnumber of layers given by lmax . In light of the previously
presented four possible options for the number of filters per
layer and four possible options for the kernel sizes in each
layer, there is a total of 4lmax possible combinations of number
of filters per layers and 4lmax possible combinations of kernel
sizes. The possible combination of number of filters per layer
can be mapped to the integer interval [1 : 4lmax ]. From
this mapping, the number of filters in the jth layer of the
ith combination can be recovered by:

nfij = 2{b(j−1)/4
(lmax−i)c)−4·b(j−1)/4(lmax+1−i)c)+5} (11)

where ba/bc denotes the integer division of a for b.
A similar equation can be derived for the kernel sizes. The

possible combination of kernel sizes can be mapped to the
integer interval [1 : 4lmax ]. From this mapping, the kernel size
in the jth layer of the ith combination can be recovered by:

ksij=3+2·(b(j−1)/4(lmax−i)c−4·b(j− 1)/4(lmax+1−i)c) (12)

These mapping functions always return a lmax-sized vector.
The last elements of these vectors are trimmed off as neces-
sary, according to the number of layers of the current network
being evaluated.

As an example, from Equations 11 and 12, for a four-layer
CNN with lmap = 758 and kmap = 500, the network structure
is defined by:

nf758,1:5 = {128, 256, 256, 64, 64}

ks500,1:5 = {5, 9, 9, 3, 9}

CNN (4, 758, 500) = {128(5), 256(9), 256(9), 64(3)}

IV. RESULTS AND DISCUSSION
Physiological signals can present different patterns when
comparing data from different individuals. This is especially

true for signals of low amplitude and susceptible to noise such
as EEG data. In order to take this factor into consideration
in our analysis, we are going to perform two kinds of study:
single-subject and cross-subject analysis.

A. SINGLE SUBJECT ANALYSIS
For the single-subject analysis we are going to use the CNN
structure presented on Fig. 3. The network training followed
a nested 20-fold cross validation approach. The input vectors
for each subject were shuffled and divided into five groups.
In each fold of the cross validation, three groupswere selected
as a training set, one group as a validation set, and one group
as a test set. In this way, 20 folds are needed so all possible
combinations of training, validation, and test sets are used for
training the network. The results for all folds are averaged out
in order to obtain the final validation and test accuracies for
the network. This approach reduces the bias of a favorable
selection of training, validation, and test sets and ensure a
more fair analysis.

Back propagation was used to train the CNN and the train-
ing algorithm was carried out for at least 15 epochs. The val-
idation accuracy was used for adjusting the dynamic learning
rate and as a termination criteria for the training. If after five
epochs of training no improvement on the validation accuracy
was obtained, the learning rate would be reduced by 20%.
After 15 epochs if no improvement on the validation accuracy
was obtained, the training process would be terminated. After
termination, the set of weights that performed the best on
the validation set would be reloaded on the CNN model in
order to evaluate the network test accuracy using a test set the
network has never seen before. This ensures a fair assessment
of its classification and generalization capabilities.

FIGURE 3. CNN structure for single-subject classification (deactivated
Batch Normalization blocks) and cross-subject classification (activated
Batch Normalization blocks).

For the BO, the average validation accuracy was selected
as the optimization metric. The optimization variables were,
first, random sampled for 40 epochs and then the BOGP was
run for 400 epochs. In order to choose among the different
acquisition functions presented on Section II, we performed
a comparison on the performance of these three acquisition
functions on optimizing the CNN for the MF state classifi-
cation of Subject 1. We set up the three acquisition functions
to perform with a good equilibrium between exploration and
exploitation. All the cases sampled during the three optimiza-
tion procedures were ranked from best to worst validation
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TABLE 2. Optimization results (single subject case).

FIGURE 4. Performance of different acquisition functions on Optimizing
the CNN for MF assessment of Subject 1. The plot shows the top 50 CNN
results for each acquisition function, ranked by validation accuracy.

FIGURE 5. CNN training progression for single subject cases, comparing
BOGP and random search for hyperparameters selection.

accuracy (Fig. 4). As we can see, although POI achieves
the best validation accuracy, its overall performance is less
stable than those of UCB or EI. We decided to stick with
UCB as the acquisition function of choice throughout the rest
of the analysis due to its overall better performance when
compared to EI.

The performance of the optimizer on the CNN for clas-
sifying MF for each test subject is shown in Table 2 and
Fig. 5. The BOGP optimization procedure was compared
with random search for hyperparameter selection. With the
same computational budget, random search is superior to
other uninformed optimizers, such as grid search, and can
also surpass manual search, especially in high dimensional
problems. This way random search provides a natural base-
line to compare against other optimization algorithms [27].

In Table 2 we present the maximum validation and test
accuracies for both BOGP and random search optimization
for each test subject. Since the CNN response surface is
extremely noisy we also present the average of the top 20 val-
idation and test accuracies. The best results between the cor-
respondent BOGP and random search cases are highlighted
in bold. We can see that BOGP leads to network configu-
rations that achieved best validation accuracies for all test
subjects. Random search only presented better results for the
maximum test accuracy of test subject 4 and for average test
accuracy for test subject 1. Here it is important to remember
that the test accuracy wasn’t the optimization metric, as it is
only a consequence of evaluating the CNN with the chosen
hyperparameters.

Fig. 5 shows how the validation accuracy for each test
subject progressed during the optimization process for both
BOGP and random search. For clarity we only present the
boundary of the scatterplot for each test subject. It is notice-
able that random search achieves best validation accuracies
during the initial stages of training, but BOGP surpasses it
in all cases after the algorithm gathers more information to
guide the optimization process.

B. CROSS-SUBJECT ANALYSIS
In cross-subject analysis, the differences in physiological
signals for different individuals need to be taken into con-
sideration. Since this is a more complex classification task
than single-subject analysis, we are going to experiment with
batch normalization as an extra regularization technique.

We will also evaluate two different cases for the cross-
subject analysis. Case 1 uses the same network structure
as the single-subject analysis (Fig. 3). Case 2 includes the
possibility for batch normalization, but lets the optimizer
choose whether or not a batch normalization block is active
by means of an extra optimization parameter (Table 1).

The network training followed a five-fold, cross-validation
approach. The data from one subject is kept out of train-
ing to be used as a test set on the trained CNN. The data
from the other five subjects is used for the cross-validation
procedure, where in each fold one of the subjects is used
as a validation set and the others are used as a training set.
The training algorithm is based on back propagation and
follows the same criteria used for the single-subject case.
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The results for all folds are averaged out in order to obtain
the final validation and test accuracies for the network. This
approach reduces the bias of a favorable selection of training,
validation, and test sets and produces a more fair analysis.
For the BOGP, the average validation accuracy was selected
as the optimization metric. The optimization variables were
first random sampled for 40 epochs and then the BOGP was
run for 360 epochs using UCB as the acquisition function.

TABLE 3. Optimization results (cross subject case).

FIGURE 6. Validation accuracy progression for CNN training for
cross-subject cases for hyperparameters selection. The plot compares
BOGP and random search with and without batch normalization.

The optimization results for both cases are shown
in Table 3 and Fig. 6 and 7. From Table 3 we can see that
BOGP presented the best performances for validation and test
accuracies. For Case 1 (no possibility of batch normalization)
BOGP reached the best individual and average validation
accuracies. For Case 2 (the optimizer chooses whether to use
batch normalization) BOGP reached the best individual and
average test accuracies. Fig. 6 show how the use of batch nor-
malization impacts the validation accuracy by reducing the
network overfitting while Fig. 7 shows how the regularization
power of batch normalization can help the network to achieve
a more general configuration that is able to perform better
on new data. In both BOGP and random search, the batch
normalization provided a significant increase in performance
when compared with the cases without batch normalization.

C. OPTIMIZATION VARIABLES BEHAVIOR
BOGP can produce good MF classification for both single-
and cross-subject cases. Although CNN are very noisy

FIGURE 7. Test accuracy progression for CNN training for cross-subject
cases for hyperparameters selection. The plot compares BOGP and
random search with and without batch normalization.

functions, we can gain valuable insights about their behavior
by analyzing how the optimization variables are related to
each other during the optimization process. Since the second
case used to analyze the cross-subject classification is the
more complex and general case study, we will analyze its
hyperparameters optimization in this section.

In Case 2, the optimization variable space is defined on
X → IR6. The relation between variables on such high
dimensional space is hard to visualize. In Fig. 8 we present
a parallel coordinate plot showing the relation between the
five optimization variables (dropout rate, batch normaliza-
tion, number of layers, number of filters per layer, and kernel
sizes per layer), the optimization metric (validation accuracy)
and the evaluation of the optimized CNN on new data (test
accuracy). The darker blue lines represent configuration with
the highest validation accuracy. On this plot we excluded
the 40 random samples used to initialize the optimization
process.

FIGURE 8. Parallel coordinate plot showing the relation between
optimization variables, optimization metric (validation accuracy) and test
metric (test accuracy). Darker hues represent cases with higher validation
accuracy.

When analyzing Fig. 8 we can see that there is a clear
relation between the validation and test accuracies. Also,
the CNN structures with five layers are clearly the best. The
dropout rate is in general chosen as 0 (no dropout) or 0.5
(maximum dropout rate available), with intermediate values
being neglected. There is a relation between dropout rate
and batch normalization variables, which is hard to see since
batch normalization is a discrete variable and, consequently,
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different configurations overlap each other on the plot. Addi-
tionally, for this variable space it is hard to comprehend the
behavior of the filter and kernel variables, since their real
meanings are hidden by the mapping function presented in
Section III. We can try to clarify these points by analyzing
the correlation matrix between the CNN hyperparameters.

FIGURE 9. Correlation matrix for CNN hyperparameters and validation
and test accuracies. The matrix includes data for the CNNs with the top
20 highest validation accuracy. Darker hues represent bigger positive
correlation, while lighter hues represent bigger negative correlation.

Fig. 9 presents the correlationmatrix for the 20 best-ranked
CNN configurations (based on the validation accuracy).
Restricting the analysis to only the best models is important
when evaluating the correlation matrix, since non-optimal
configurations would contaminate the correlation analysis
with irrelevant data. As we can see, there is a negative cor-
relation between the dropout rate and batch normalization,
which indicates that these two variables in general are not
active at the same time for a model. When analyzing the
correlation between validation accuracy and dropout rate,
we note an even stronger negative correlation, showing that
top validation accuracies are achieved with no dropout.

Regarding the filters distribution per layer, we can see that
better validation accuracies configurations tend to present
more filters on the first layers, with the number of filters
slightly decreasing with the depth of the layers. For kernel
sizes, we find the opposite pattern, with smaller kernels on the
first layer and bigger kernels on deep layers. A similar opposi-
tion is evident when comparing the correlation between filters
and kernels and also by checking the crossing lines between
filter and kernel variables on Fig. 8.

V. ASSESSING MENTAL FATIGUE LEVEL
After the optimization process, a good network structure can
be select for the CNN responsible for the MF assessment
process. After trained, the CNN can be used in real-time to
assess the MF level of operator during maritime operation.
As explained in Section III-C, the first fifth of the time-series
from each sensor was labeled using the KSS score assigned
by the participants in the beginning of each experiment and

the last fifth of the time-series from each sensor was label
using the KSS score assigned by the participants in the end of
the experiment. This means that we do not have information
about transition states between the non-fatigue and fatigue
states. When using the trained CNN to assess the MF state of
one operator during the whole experiment period, we obtain
the result presented in Fig. 10-a.

FIGURE 10. Several steps on the proposed MF level assessment
approach. (a) Performance of MF assessment using the trained CNN
output in new data. (b) Performance of MF assessment using the trained
CNN output and a 15 step averaging window in new data.
(c) Performance of MF assessment using the trained CNN probabilistic
output and a 15 step averaging window in new data.

This result is unsatisfactory in two ways. First, the MF
assessment is noisy due to the natural dynamic of the ECG
and EEG signals and noise levels presented in the sensors
data. Second, the CNN was capable of assessing the initial
and final MF states very well, but there is no gradual transi-
tion between these two states. This is not the result we expect
to see, since MF is a cumulative process and, therefor, should
build up with time.

In order to address the first issue, a simple solution can be
applied. Since we are interested in the general trend of theMF
state rather than the exactly value in each time step, we can
apply an average moving window that considers the current
and previous N time steps. This averaging window is applied
after the output from the CNN. The result of such approach
considering a 15 time steps window is presented in Fig. 10-b.

For addressing the second issue we also propose a sim-
ple solution. But before approaching the proposed solution,
we need to first understand how the CNN performs the clas-
sification task. The CNN output is the result of the Softmax
activation function. This function maps logits input values to
probabilities of that input belonging to each one of the classes
in the classification problem (in this case the two MF levels).
It basically represents how certain the CNN is that the input
data from the physiological sensors represents each one of
the MF states. The final class assigned by the CNN is the one
with the highest probability.

Our proposal is to, instead of using the final class assign-
ment to assess the MF state, use the probability distribution
from the Softmax function. Is this case, with only two classes,
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FIGURE 11. Mental fatigue level assessment for all test subjects using CNN probabilistic output and 15 time steps
averaging window.

the probabilities of each class are complementary, so we
just need to focus on the probability of one of the classes.
Fig. 10-c present the MF assessment using the probability
that the input data represents the ‘‘fatigue’’ class and a 15 time
steps averaging window. A smoother transition between the
two MF states is captured using this approach.

Fig. 11 shows the MF assessment for each one of the
6 Subjects in our experiments. All the cases, except for Sub-
ject 6, present a very well defined distinction between the
‘‘non-fatigue’’ and ‘‘fatigue’’ states. As we can see, the CNN
has difficulties distinguishing between the two MF state for
Subject 6. This may be an indication that the progression
of the MF during the experiment was not very accentuated
for this specific case. Besides that, the MF progression for
Subject 6 is still captured in the analysis.

VI. CONCLUSION AND FUTURE WORK
Although monitoring the development of MF in maritime
operators is important in order to reduce human-related acci-
dents and causalities, the use of physiological sensors can be
intrusive and hinder effective operation of equipment and sys-
tems. Thus, reducing the number of sensors and optimizing
the use of data collected by them is very important.

In this work we investigate the optimization of CNN for
assessing MF on vessel pilots using only EEG and ECG
sensors. The optimization procedure was conducted using
BOGP due to its good performance in optimizing black box
functions. We also propose the use of mapping functions to
provide optimization of the CNN structure while reducing
the dimensionality of the optimization problem. The opti-
mization process achieved good results on both single- and
cross-subject analysis; as the more complex case, the latter
is the one that really matters. On the cross-subject case the
obtained average test accuracy was 95.1%.

The MF assessment using the optimized CNN did not pro-
vide a satisfactory results, since the classification was noisy
and did not account for the intermediate conditions between
the ‘‘fatigue’’ and ‘‘non-fatigue’’ states. In order to assess the
MF level in a more gradual manner, we propose an approach
based on the probabilistic output of the CNN combined with
an averaging sliding window. This method showed consistent
results across all test subjects and was capable of providing a
MF assessment that accounts for the continuous progression
of the MF state with time.

In a future work we plan to better explore the BOGP
hyperparameters selection and expand the boundaries of the
CNN hyperparameters space used for the optimization, since
the optimizer kept variables like dropout rate and number
of layers to their superior limits, which suggests that there
is space for further exploration of these variables. A better
discretization of the MF scale is also desirable. This can be
achieved by making the participants answer the KSS ques-
tionnaire several time during the duration of the task, besides
only getting the answers for the beginning and end of the
experiment. Finally, we also would like to extend our case
study and include more test subjects in order to ensure the
obtained results are statistically significant and the proposed
approach can be applied as a general tool to assess mental
fatigue.
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