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Fundamental risk analysis and VaR forecasts of the Nord Pool system price

Abstract

This paper compares the Value at Risk (VaR) forecasting performance of
different quantile regression models to conventional GARCH specifications on
the Nord Pool system price. The sample covers hourly data from 2005-2011.
In order to identify significant explanatory variables, we use a linear quantile
regression to characterize the effects of fundamental factors on the system price
formations. From our analysis we are able to show how the sensitivity of the
variables change over the range of price quantiles and detect how these sensitivities
vary over the hours of the day. Our findings suggest that the demand forecast
and the price volatility is the most important determinants of the price in the
tails of the distribution. We use these variables in the further analysis and test
the out-of-sample VaR performance of linear quantile regression, exponentially
weighted quantile regression (EWQR) and conditional autoregressive value at risk
(CAViaR) models on the system price. We extend the CAViaR models to account
for asymmetrical response to returns and are innovative in including explanatory
variables in the CAViaR specification. Our results show that the I-GARCHX
CAViaR model with demand forecast as explanatory variable outperform the
other models, and that CAViaR models in general perform well. The linear
quantile regression with price volatility as explanatory variable also provides good
results. The computational complexity of CAViaR models favors a linear quantile
regression, so market participants have to make a tradeoff between the level of
accuracy in the forecasts and the complexity of the model. Our findings are useful
for producers, consumers and traders, as well as clearinghouses, as they provide
an accurate measure of the price risk.

Keywords: Nord Pool; Value at Risk; Quantile Regression; EWQR; CAViaR
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1 Introduction

The liberalization of the electricity markets has fundamentally changed the way power
companies do business. Vertical integration characterizes the current structure, and
retail sales has been separated from production. Due to fierce competition in the market,
pressure has been put on improved operational efficiency and cost reduction. More
competition has increased the price volatility and the use of complex contract portfolios,
enhancing the need of an accurate assessment of the exposure to price risk. Value at
Risk (VaR) is the most prominent measure of risk in the financial industry. VaR puts
a single number on the potential change of an asset/portfolio value, over a determined
time horizon. Increasing the accuracy of VaR forecasts is interesting for two reasons; it
will improve risk management and reduce costs.

In this paper we compare the day-ahead out-of-sample forecasting performance of
well-known parametric and semi-parametric VaR models, and our own extensions of
these. Based on a thorough fundamental analysis we introduce an I-GARCHX CAViaR
model with demand forecast as explanatory variable, and find that this model outper-
forms its peers. The CAViaR models generally perform well in modeling the VaR. A
linear quantile regression with price volatility also provides good forecasts and has the
advantage of not being as complex as the CAViaR models.

The explanatory variables are selected using linear quantile regression to character-
ize the effect of fundamental factors over the entire range of Nord Pool system price
quantiles. We find that factors such as demand forecast and price volatility are impor-
tant determinants of the price, with stronger relations in the tails than in the interior
of the distribution. The relation between the price and demand forecast is especially
strong in the tails of the intraday price, with opposite effects during peak periods and
off-peak periods. The price volatility shows significant effects for all periods analyzed,
however of smaller magnitude than the demand forecast. Other factors such as hydro-
logical balance, lagged system prices, gas and coal price, wind production forecasts,
temperature and inflow, all show significant effects of smaller magnitude.

In the out-of-sample analysis our parametric models, GARCH-N and skew-t GARCH-
GJR, are included for benchmarking purposes. We refer to Bollerslev (1986) for a gen-
eral GARCH introduction, and Glosten et al. (1993) for the GARCH-GJR extension.
For an example of these models used on power markets, see Escribano et al. (2002).

The semi parametric models include both linear and nonlinear quantile regressions.
Koenker and Basset (1978) first introduced the linear quantile regression. It models
the quantile directly with no distributional assumptions, which is an advantage when
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the distribution is unknown or time varying. We implement two linear quantile regres-
sion models, one using demand forecast, and one using price volatility as explanatory
variable. Quantile regression using an intercept and no explanatory variables gives an
unconditional VaR estimate and we therefore exclude this from our analysis. The expo-
nentially weighted quantile regression (EWQR) introduced by Taylor (2008) provides
a conditional VaR estimate using only a constant as independent variable. We include
this EWQR in our out-of-sample VaR models.

Manganelli and Engle (2004) prove that the performance measure applied in linear
quantile regression is applicable to nonlinear quantile models. They propose a new
nonlinear quantile regression specification; Conditional Autoregressive Value at Risk
(CAViaR). We find that CAViaR specification is theoretically promising for two main
reasons; like linear quantile regression it makes no distributional assumption, and its au-
toregressive nature respond well to volatility clustering. Manganelli and Engle (2004)
provide four examples of specific CAViaR models. Out of these we have chosen to
work with the Indirect GARCH (I-GARCH) CAViaR model. We extend this model
to account for explanatory variables.1 The motivation behind this are the findings of
Contreras et al. (2003) and Garcia et al. (2005). They find that a GARCH model with
demand as the explanatory variable outperforms general time series ARIMA models in
day-ahead forecasting. Our fundamental analysis using linear quantile regression sup-
ports this conclusion. Therefore, we extend the I-GARCH CAViaR model to include
demand forecast as explanatory variable. Based on Manganelli and Engle’s asymmetric
slope model we also extend the I-GARCH CAViaR specifications to respond asymmet-
rically to returns. We re-estimate the parameters for each run to make our results closer
to what one might expect from real world implementation.

This paper is structured as follows: section 2 presents background on the Nord
Pool market setting and section 3 describes the data set. In section 4 we provide an
overview of the models used in this paper. The results where we describe the effect of
fundamental factors on the price and compare the different out-of-sample models are
found in section 5. In section 6 we present our conclusions. The appendix at the end
of the paper includes additional theory and results.

1We also extended the model to account for autoregressive (AR) time series (continuing the work
of Kuester et al. (2006)). The motivation behind the AR extension is the highly autoregressive nature
of power market prices. However, we experience a significant drop in performance and choose not to
include these models in our results.
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2 Background

2.1 The Nord Pool market setting

The liberalization of the Nordic energy market was initiated by the Norwegian govern-
ment and the Energy Act of 1990. Following trends in Chile, UK and other European
countries, the Energy Act formed the basis for the deregulation of the Nordic countries,
opening the electricity sector to competition. The new structure was characterized
by the unbundling of the previously vertically integrated activities such as generation,
transmission and retail sales. Market participants, in a larger extend than earlier,
recognized the value in the retail end of the supply chain.

Established in 1993, Nord Pool started as an electricity pool covering the Norwegian
market only. In 1996 it became the world’s first multinational exchange for electricity
contracts, as Sweden was included in the market. In the succeeding years, Finland
joined the market in 1998, Western Denmark in 1999 and Eastern Denmark in 2004. In
recent years Nord Pool has been launched in Germany and Estonia. Today, Nord Pool
is the largest electricity market in the world and most of the consumption of electricity
in the Nordic countries is traded through the exchange.

Energy source Denmark Finland Norway Sweden Sum Share [%]

Wind power 6.7 0.3 1.0 2.5 10.5 2.8
Other renewables 2.4 8.2 0.0 11.1 21.7 5.9
Fossil fuels 25.3 24.9 3.5 4.8 58.5 15.8
Nuclear power 0.0 22.6 0.0 50.0 72.6 19.6
Hydro power 0.0 12.6 128.3 65.3 206.2 55.7
Non-identifiable 0.0 0.6 0.0 0.0 0.7 0.2

Total production 34.5 69.2 132.8 133.7 370.2 100.0

Table 1: The Nord Pool electricity production by country and energy source. Numbers in
TWh per year, except right column. Source: www.nordpoolspot.com.

The total production in the Nordic area during 2009 was 370 TWh. Nord Pool
had a turnover of 288 TWh, a market share of 77%, representing a value of EUR 10.8
billion. Table 1 shows the production from various energy sources across the Nordic
countries. Hydropower alone is 56% of the total production. Nuclear power is 20% of
total production while fossil fuels and renewables are 16% and 9% respectively.

Nord Pool organizes three different markets, the day-ahead market (Elspot), the
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cross border intraday market (Elbas)2 and the financial market. The real time or
balancing market is organized by the transmission system operators (TSO) for short
term upward or downward regulation. Both demand-side and supply-side bids are
posted in the balancing market, stating prices and volumes. These prices are known
to the market first after the hour of delivery and are highly volatile. Positions in the
balancing market therefore carries high risk.

Elspot is the spot market where hourly power contracts trade daily for physical
delivery in the next 24-hour period. This is a non-mandatory day-ahead market. The
demand and supply curve is aggregated from bids and offers made by market partici-
pants and the intersection point between these curves sets the system price. The system
price is the price the market is willing to pay for electricity for the given hour with no
capacity constrains (bottlenecks) in the market. Market participants place their bids
and offers each morning for the different hours the following day. Trading ends 12:00
(noon), called gate closure, and prices are published 14:00 in the afternoon. The system
price is also the reference price in settlements at Nord Pool’s financial market.

In order to handle bottleneck situations, Nord Pool is geographically divided into
bidding areas. Bottlenecks between these areas are managed using pricing mechanisms
in the spot market. As a result prices must be adjusted and zonal prices are calculated
besides the system price. Internal bottlenecks is managed within the bidding area and
handled by the respective TSO.

Nord Pool’s financial market is a commercial center for trading of financial contracts.
In 2009 the financial market had a turnover of 1218 TWh. The high turnover compared
to the physical market underlines the importance of derivatives as a hedging tool in
electricity markets and the need of an accurate assessment of price risk.

2Elbas is a continuous cross border intraday market that trades from the time where the day-ahead
prices are published until one hour prior to delivery. This market fills the gap between the day-ahead
market and the balancing market and allows the market participants to adjust their market exposure.
Elbas gives the participants access to the whole Nordic, German and Estonian market and reduces
the risk in the balancing market. It also provides opportunity for power consumers to sell back power
bought in the day-ahead market. Elbas is a relatively small marked with a turnover of 2.4 TWh
compared to Elspot’s 286 TWh in 2009.

10



Fundamental risk analysis and VaR forecasts of the Nord Pool system price

3 Data

3.1 Variable description

We obtain Nord Pool spot prices from Nord Pool Spot’s historical data reports.3 It
includes 24 hourly data points of the system price for each day, seven days a week. The
prices are stated in Euro per MWh and cover the period January 1st 2005 to January
23rd 2011, totaling 53136 data points over 2214 days.4 This is a satisfactory sample
size for both in- and out-of-sample analysis of the outer 1% and 99% quantiles.

Nord Pool uses the arithmetic average of the hourly prices in a day as the reference
price in the cash-settlement calculations of derivative contracts in the financial market.
Due to this we calculate the arithmetic average of all intraday prices and refer to this
price as the daily average price. We also examine the intraday effects by analyzing three
periods of the daily 24, namely period 4, 9 and 18. As figure 1 shows, these periods
represent off-peak (period 4), super-peak (period 9) and peak time (period 18). We
have chosen these periods as we want to observe how the effects of the fundamental
factors vary over the different periods of the day, expecting them to be clearest in the
extremes, and test the forecasting models on time series with different characteristics.
We will refer to these time series as period 4, period 9 and period 18 respectively. This
leaves us with four time series to study.

30	  

35	  

40	  

45	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	   12	   13	   14	   15	   16	   17	   18	   19	   20	   21	   22	   23	   24	  
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e	  
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e	  
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M
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h]
	  

Hour	  of	  the	  day	  

Figure 1: Intraday average prices for the whole sample period (2005-2011).

3Source: www.nordpoolspot.com.
4We have chosen not to use earlier data as Eastern Denmark was included in 2004, potentially

changing the price structure.
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In addition to the spot price, the total intraday data set includes actual demand and
wind production forecast. For factors such as gas price, coal price, hydrological balance,
temperature- and inflow forecasts, we have daily data. All price data in other currencies
are converted to Euro using the respective exchange rate for the day in question. In
cases of missing data or extreme outliers we use linear interpolation. For gas and coal
prices this is done for all weekends.

We calculate hourly demand forecasts using feed-forward neural networks5 with the
following inputs; temperature forecast, one-day (24 hour) lagged demand, last days
average demand, seven-day (168 hour) lagged demand, day of week [1:7], and week-
end/holiday dummy. The parameters are found using 1000 in-sample data, and we do
not re-estimate the model. This is a simplified version of the forecasting model pro-
posed by Malki et al. (2004), a well-known method for short term load forecasting. For
theory on neural networks, and its use in load forecasting we refer to Liu et al. (1996)
and Weron (2006), as this is beyond the scope of this paper.

Another explanatory variable in the analysis is the price volatility. This is calcu-
lated separately for each of the periods and for the daily average price, using a skew-t
GARCH-GJR(1,1) model on the price returns. GARCH modeling is well known and
tested, leading us to choose this fairly simple and accurate estimate of volatility. We
refer to section 7.1 in the appendix for a more detailed description of all the variables
used in this paper.

The Box-Cox power test (Box and Cox, 1964) indicates a variance stabilization
transformation by taking the natural logarithm of the spot prices. This is performed on
all prices and variables, making it possible to interpret the coefficients in the regression
as elasticities. See appendix section 7.2 for results from the Box-Cox test.

3.2 Descriptive statistics

The descriptive statistics in table 2 reveals that for both price, log price, change in price
and log returns we have skewed time series with high sample kurtosis and volatility.
It is significant difference in skewness, kurtosis and price range between the four series
analyzed. This indicates quite erratic behavior of the system price. The changes are
large both within the day, with an average difference of EUR 11 per MWh between
period 4 and 9, and over the entire period with a difference between lowest and highest
price of close to EUR 300 per MWh.

5The network is a two-layer feed-forward network with 20 sigmoid hidden neurons and linear output
neurons trained with the Levenberg-Marquardt backpropagation algorithm in Matlab.
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Fundamental risk analysis and VaR forecasts of the Nord Pool system price

As we can see from the standard deviation in table 2, the spot prices are highly
volatile. The standard deviation of the daily average log-returns is 0.10. This translates
to an annualized volatility of 195%.6 The same value for the super-peak period 9 is
443%. We observe a clear difference between the periods analyzed, with period 4 and
9 being the most volatile.

The skew coefficients vary across the time series and we observe both positive and
negative coefficients for price change, log returns and log prices. All skew coefficients
for the spot price are positive. This effect is as anticipated for electricity markets and
reveals that extreme price outliers occur on the upside of the average. We also observe
positive skew for the log-return in period 9 and 18, and negative skew for the log-return
in period 4. This implies that extreme absolute returns are more likely to be positive
than negative in the peak periods 9 and 18, with the opposite effect in the off-peak
period 4.
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Figure 2: Daily average system price. The figure shows the average daily price (top) and
changes in average price (bottom) for the whole period (2005-2011).

Extreme prices are common in the Nord Pool spot market. This is found in the
kurtosis coefficients, as all values are way above three, which is the value for a normal
distribution. Non-normality is also confirmed by the Jerque-Bera statistic. The kurtosis
for the daily average price is 4.8, while the same value for the daily average log-return
is 16.6. This indicates that spikes and jumps are present in the spot prices as extreme

6This is obtained by multiplying the standard deviation with the square root of 365.

15



Fundamental risk analysis and VaR forecasts of the Nord Pool system price

positive or negative returns have high probability of occurrence. Lucia and Schwartz
(2002) find that most of these extreme events occur during the cold season. The largest
spike in price is observed on February 22nd 2010 with an increase of 228 EUR/MWh
from the previous day. This was during one of many extreme cold periods during the
winter of 2009/2010. Most of the larger jumps occur due to temporary shocks in the
demand, frequently linked to sudden and pronounced changes in temperature (Lucia
and Schwartz, 2002). Figure 2 shows that prices generally are higher during winter and
that the largest spikes also occur during this season.

Another observation from figure 2 is the volatility clustering in the price changes.
We clearly observe periods of large changes followed by periods of small changes. The
large changes occur during winter and spring and are results of shocks in demand and
uncertainty related to snow melting and precipitation.

To test for stationarity we use the augmented Dickey-Fuller test for unit root (see
table 3). It shows that all series are stationary for two lags at the 5% significance level.
From this we conclude that both prices and returns are stationary.
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Figure 3: Hourly average price patterns. The figure shows the average intraday prices
throughout the week for the whole period (2005-2011).

The autocorrelation coefficients and the Q-statistic in table 3 clearly indicate that
there is severe serial correlation in the data. This is as expected, especially for the prices.
For the changes in price the test statistics are generally lower, but all are well above
the 5% critical value, so we conclude that the price returns are also serially correlated.
These features of the spot price display signs of predictability. All autocorrelation
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coefficients of lag one are positive for the price (log-price) and negative for the change
in price (log-return). For lags multiple of seven, both the price (log-price) and change
in price (log-returns) have a positive coefficient. This is due to consistent intra-day
and intra-week price patterns mainly determined by business activity (figure 3). Note
the significant lower prices during weekends. Yearly price patterns (figure 2) are also
present in the time series due to seasonal variations in temperature and reservoir inflow.

The descriptive statistics reveals quite erratic behavior of the system price with a
time varying and complex distribution. This motivates an analysis of advanced time
series techniques such as linear and nonlinear quantile regressions.

4 Models

In this section we present the models applied in the paper. The first model is used for
variable selection, and examines how explanatory variables influence the spot price over
its range of quantiles. For this we make use of a linear quantile regression. Secondly we
describe the models used to forecast VaR out-of-sample. This includes linear quantile
regression models with different explanatory variables, one EWQR model, and different
CAViaR specifications. We compare the performance of these models to two GARCH
models; the GARCH-N(1,1) and the skew-t GARCH-GJR(1,1), both with ARMA(7,7)
filtering. We refer to section 7.3 in the appendix for a more thorough description of the
GARCH models implemented. To backtest the performance of the out-of-sample anal-
ysis we use the conditional and unconditional coverage test, and the dynamic quantile
(DQ) test.

4.1 Linear quantile regression

Introduced by Koenker and Basset (1978) quantile regression seeks to estimate condi-
tional quantile functions. Its asymptotic behavior is not as favorable as least squares, so
it is solved as a minimization problem. This was known to be time consuming, leading to
a lack of interest in the method. However, the linear programming technique suggested
by Koenker and D’Orey (1987), and the interior point method for linear programming
by Koenker and Park (1996) and Koenker et al. (1997) has made it comparable to least
squares in computation. Hence, the quantile regression approach is competitive in VaR
estimation.

The variable selection model is a linear quantile regression with a set of explanatory
variables, defined as V aRt(θ) = x′tβ(θ) . V aRt is the quantile value, xt is a vector
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of explanatory variables and β(θ) is a vector of parameters for different values of θ,
0 < θ < 1. Equation (1) presents the model with explanatory variables. See appendix
7.1 for variable description.

V aRt(θ) = β0(θ) + β1(θ)Pricet−1 + β2(θ)AvePricet−7 + β3(θ)PriceV ol
+β4(θ)GasPrice+ β5(θ)CoalPrice+ β6(θ)DemandForecast
+β7(θ)WindForecast+ β8(θ)HydBal + β9(θ)DevTemp
+β10(θ)DevInflow + β11(θ)Weekend

(1)

The sample quantile V aRt(θ) is defined as the solution to the minimization problem:

RQ = min
V aRt∈R

 ∑
t∈{t:yt≥V aRt}

θ|yt − V aRt|+
∑

t∈{t:yt≤V aRt}
(1− θ)|yt − V aRt|

 (2)

Where yt is the price/return and θ = 1/2 gives the least absolute error estimate, i.e.
the regression median. We minimize the RQ criterion (2) on the natural logarithm
of prices with the explanatory variables in (1) to characterize the sensitivities of the
variable coefficients over the quantiles. The quantile regression is run in Stata and we
include a regular OLS regression for reference purposes.

The out-of-sample analysis utilizes the same model to forecast VaR. The only dif-
ference from the first model is the number of explanatory variables and the use of log
returns instead of log prices, making the methodology identical. We forecast using
the betas found on data up to time t. This makes V aRt+1 estimation using quantile
regression quite straightforward. We refer to the quantile regression models as Qreg.

ˆV aRt+1(θ) = x′t+1β̂(θ) (3)

Where β̂(θ) is found solving (2) with values ranging [1 : t].

4.2 Exponentially weighted quantile regression

Taylor (2008) introduced Exponentially Weighted Quantile Regression (EWQR), also
referred to as discounted quantile regression. For a specified value of the weighting
parameter, λ, the RQ criterion in (2) takes the form:

min
V aRt∈R

λT−t( ∑
t∈{t:yt≥V aRt}

θ|yt − V aRt|+
∑

t∈{t:yt≤V aRt}
(1− θ)|yt − V aRt|)

) (4)

With 0 < λ < 1 this method puts a higher weight on more recent data than data in the
past. Taylor proves that this minimization problem has the same features as the linear
quantile regression. Hence, the method of forecasting V aRt+1 will be equivalent to the
linear quantile regression in equation (3). We will refer to this model as EWQR.
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4.3 Conditional Autoregressive Value at Risk

Engle and Manganelli (2004) note that the quantile is tightly linked to the variance.
As the variance has shown autoregressive properties, they propose a conditional au-
toregressive specification that models the VaR as an autoregressive process and call the
model Conditional Autoregressive Value at Risk (CAViaR).

V aRt(β) = β0 +
q∑
i=1

βiV aRt−i(β) +
r∑
j=1

βjl(xt−j), (5)

Where p = q + r + 1 is the dimension of β and l is a function of a finite number of
lagged values of observables.

They suggest four different CAViaR specifications. We use their Indirect-GARCH
(I-GARCH) model (6),

V aRt(β) = (β0 + β1V aR
2
t−1(β) + β2y

2
t−1)1/2, (6)

and extend the model to account for asymmetrical response to returns. We call this
model I-GJR-GARCH CAViaR (7).

V aRt(β) = (β0 + β1V aR
2
t−1(β) + β2y

2
t−1 + β3I(yt−1<0)y

2
t−1)1/2, (7)

The main innovation in this paper is the extension of the CAViaR model to respond
to fundamental market factors. To include the significant relations linking explanatory
variables to power market tail price behavior, we adjust the model to account for ex-
planatory variables. We call these models I-GARCHX CAViaR and I-GJR-GARCHX
CAViaR.

V aRt(β) = (β0 + β1(V aRt−1 − β3zt−1)2 + β2y
2
t−1)1/2 + β3zt, (8)

V aRt(β) = (β0 + β1(V aRt−1 − β4zt−1)2 + β2y
2
t−1 + β3I(yt−1<0)y

2
t−1)1/2 + β4zt, (9)

Where zt is an explanatory variable known at time (t− 1). Note that the explanatory
variable models the quantile and not the return. This is deliberate as we have found
stronger relations to fundamental factors in the tails. If this is not the case, we rec-
ommend using a model where the explanatory variable is linked to the return. This is
exemplified in section 7.4 in the appendix.
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4.4 Backtesting models

”The coverage probability of a confidence interval is the proportion of the time that the
interval contains the true value of interest.”7 Hence, for a θ tail of a distribution the
coverage probability is θ. Kupiec’s test for unconditional coverage is a likelihood ratio
test where the null is an accurate forecast (Kupiec, 1995).

LRuc =
πn1
exp(1− πexp)n0

πn1
obs(1− πobs)n0

(10)

where πexp is the expected proportion of exceedances, πobs is the observed proportion of
exceedances, n1 is the observed number of exceedances and n0 = n− n1 where n is the
sample size of the backtest. The asymptotic distribution of −2ln(LRuc) is chi-squared
with one degree of freedom (Alexander, 2008).

A flaw of the unconditional coverage test is that it does not punish a model for suc-
cessive exceedances of the predicted VaR. A proper modeling of the VaR would result
in the exceedances following a Bernoulli process. The conditional coverage test devel-
oped by Christoffersen (1998) is able to incorporate this by also testing for clustering
of exceedances. Hence, the test combines a check for autocorrelation and uncondi-
tional coverage. The null is that the forecast is accurate and there is no clustering of
exceedances.

LRcc =
πn1
exp(1− πexp)n0

πn01
01 (1− π01)n00πn11

11 (1− π11)n10
(11)

As before, n1 is the observed number of exceedances and n0 = n − n1 is the number
of ’good’ returns. n00 is the number of times a good return is followed by another
good return, n01 the number of times a good return is followed by an exceedance, n10

the number of times an exceedance is followed by a good return, and n11 the number
of times an exceedance is followed by another exceedance. So, n1 = n11 + n01 and
n0 = n10 + n00. Also,

π01 = n01

n00 + n01
and π11 = n11

n10 + n11
(12)

The asymptotic distribution of −2ln(LRcc) is chi-squared with two degrees of freedom
(Alexander, 2008).

The conditional coverage test checks for clustering, but it only uses consecutive data
points. In other words, it only tests the clustering of one lag. Engle and Manganelli
(2004) propose another test, the dynamic quantile or DQ test:

Hit(yt, θ) ≡ Hitθt ≡ I(yt < −V aRt)− θ (13)
7The Oxford Dictionary of Statistical Terms (2003).
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They define a Hit function that takes the value (1 − θ) every time yt is less than
V aRt and (−θ) otherwise. For a good model the expected value of Hit is zero and
Hitt will be uncorrelated with any lag Hitt−k, with the forecasted V aRt and with any
constant. If these conditions are satisfied, there will be no autocorrelation in the hits,
no measurement error and there will be the correct fraction of exceedances. To test the
independence of Hitt we regress Hitt on a constant and the lagged Hitt−k up to k = 4:

Hitt = δ0 + δ1Hitt−1 + δ2Hitt−2 + δ3Hitt−3 + δ4Hitt−4 + ut (14)

or Hitt = Xδ + ut (15)

A good model should produce a sequence of unbiased and uncorrelated hits, so the
regression coefficients should be zero. Hence, the following is true for ut:

ut =

 −θ prob(1− θ)
(1− θ)/2 prob(θ)

(16)

To test the performance of the model we want to test the null hypothesis H0 : δ = 0.
The asymptotic distribution of the OLS estimator under the null is defined as

δ̂OLS = (X ′X)−1X ′Hit ∼ N
(

0, θ(1− θ)(X ′X)−1
)

(17)

From this Engle and Manganelli (2004) derive the DQ test statistic:

DQ = δ̂′OLSX
′Xδ̂OLS

θ(1− θ) (18)

The asymptotic distribution of DQ is chi-squared with six degrees of freedom.

5 Results

In order to find appropriate explanatory variables to use in the out-of-sample VaR
forecasts, we perform an in-depth analysis of the effect of fundamental factors on the
Nord Pool system price. Based on the variable selection we extend the quantile regres-
sions and CAViaR specifications to include one variable with high explanatory power
in the tails. Finally, we perform out-of-sample VaR forecasts and test the ability of the
different models in making accurate assessments of the price risk.
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5.1 Variable selection

We find that both the daily average price level and the intraday prices show strong
correlation with the variables defined in the model. The effects vary over the price
distribution, so a regular OLS regression will not be able to capture the full effects
from the fundamental factors on the Nord Pool system price. We present the results
from the fundamental analysis in figure 4 to 14 in this section. The solid black line in
the figures is the value of the coefficient in the quantile regression, while the shaded
grey area is the 100 reps bootstrapped 95% confidence interval for the coefficient. The
dotted straight lines are the OLS coefficient and its 95% confidence interval.

5.1.1 Lagged prices
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Figure 4: One-day (24 hour) lagged price variable - sensitivities over quantiles.

For the one-day lagged (figure 4) and seven-day average prices (figure 5) we find
significant effects for most quantiles. The one-day lagged price decreases its explanatory
power over the quantiles for the daily average price and for period 4. Period 9 and 18
show stable effects with some changes on the upper tail. The coefficients are positive for
all periods with increasing uncertainty in the tails. The seven-day average price shows
signs of decreased explanatory power over the quantiles with some positive effect in the
upper tail of the daily average price and for period 18. All periods have increased effect
in the lower tail and all values are positive. In general the seven-day lagged price shows
large confidence intervals, indicating uncertainty in the estimates.

The results indicate that period 4 is closer linked to the last day’s price and that
period 9 and 18 is more linked to the average price of the last week. Period 9, being
the most volatile data set with large deviation in prices, shows weaker correlation with
lagged prices, especially in the upper tail of the price. This is logical as price shocks often
are results of changes in other fundamental factors such as temperature and demand.
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Figure 5: Seven-day (168 hours) average price variable - sensitivities over quantiles.

Lucia and Schwartz (2002) conclude that the Nord Pool system price tend to be
mean reverting. This means that prices will continue to return to the long-term average,
despite fluctuations above or below the average price. The further away from average
the price gets, the higher is the probability for the price to move back towards the
average. Our findings do not reject the mean reverting hypothesis as the lagged price
coefficients are smaller than one in absolute value.

5.1.2 Price volatility

Figure 6 shows that the price volatility coefficient moves from negative to positive over
the quantiles. The effects are significant with small confidence intervals. As expected,
this indicates that increased volatility increases the absolute value of the VaR in both
the upper and lower quantile. The effect has the highest magnitude in the lower tail of
period 4 and in the upper tail of period 9. Period 18 shows close to symmetrical results,
with signs of higher magnitude in the upper quantile.
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Figure 6: Price volatility variable from the skew-t GARCH-GJR - sensitivities over quantiles.

These asymmetries indicate a negative skew in period 4 and positive skew in period
9 and 18. In other words, the absolute value of the VaR is more sensitive to changes in
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volatility on the downside of period 4 and on the upside of period 9 and 18.

5.1.3 Gas and coal prices

Both gas prices (figure 7) and coal prices (figure 8) show increased coefficient value
over the price quantiles. Period 4 has a negative effect in the lower tail and a positive
effect in the upper tail, while period 9 only has the positive effect in the upper tail.
Period 18 is stable over the quantiles with a value close to zero. The effect from gas
and coal on the daily average price is smaller than for the intraday periods, but shows
a negative effect in the lower tail and a positive effect in the upper tail. The coal price
differs from the gas price in the upper tail of period 9 and 18 with decreased effect
in this region. Both series show increased uncertainty in the outer quantiles with few
significant values.
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Figure 7: Gas price variable - sensitivities over quantiles.

The effect of gas price on the system price is small and close to zero for low prices
and spikes when prices get high. This is because little or no energy is produced from
gas during base load conditions, but kicks in at some level of demand. We observe that
the price is more sensitive to gas price in period 9 than period 18. This is probably
because most gas plants that are ramped up to cover the demand in period 9 are kept
running until period 18.

Denmark and Finland have some coal production mainly used to cover the base load.
However, expensive coal power is also imported from Europe during peak periods. This
explains why the coal price shows some of the same effects as the gas price. The smaller
effects in the upper tail of period 9 and 18, compared to gas, is a result of less flexibility
in up- and downward regulation of coal fired power plants.
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Figure 8: Coal price variable - sensitivities over quantiles.

5.1.4 Demand forecast

Figure 9 shows that the demand forecast has significant estimates and high coefficient
values, with some uncertainty in the lower quantiles. The off-peak period 4 shows a
decreasing trend over the quantiles. The coefficient has a negative slope and flats out
in the upper tail. For period 9 and 18 we observe the opposite effect, with a positive
and steep increasing slope in the upper quantile. Hence, the demand forecast is an
important determinant of the price in the upper tail during peak periods and in the
lower tail during off-peak periods of the day. For the daily average price we observe some
positive effects in both tails, but of smaller magnitude than in the intraday periods.
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Figure 9: Demand forecast variable - sensitivities over quantiles.

In the low price, low demand period 4, we observe a significant reduction in downside
risk associated with an increase in the demand forecast, and vice versa. This stems from
the fact that a drop in demand in this period can bring the production down to base load
were the marginal cost is close to zero, and therefore decrease the price significantly.
For period 9 and 18, where demand is already high, a spike in demand will bring the
demand closer to its capacity and increase the probability of shortage in the system.
This is the nature of the inelastic supply curve in electricity markets. The effect is
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smaller for the daily average price as the average demand forecast will be further off
base load and the capacity than the forecasts within the day.

5.1.5 Wind production forecasts

Figure 10 shows that wind production forecast has a negative effect on the price and
that this effect increases in the tails. The estimates carry some uncertainty in the
extremes with wide confidence intervals. For period 4 the effect is largest in the lower
tail. Period 9 and 18 has an increased effect in the upper tail, and the daily average
effects are similar.
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Figure 10: Wind production forecast variable - sensitivities over quantiles.

It is not possible to regulate the production upwards from wind power plants, as
the plants produces only when the wind blows. It is therefore neither considered base-
or peak-load. Still, forecasts of high wind production will lower the prices, especially
during peak prices. Wind power is therefore important in deflecting peaks and reducing
extreme spikes in the Nord Pool market.

The magnitude of the wind coefficient is small. Observations in the market indicate
that this effect is larger than the figure shows.8 This could be due to the increased use
of wind power over the period analyzed in this paper. In recent years and in the future
the effect from wind production can be larger than the effects found here.

5.1.6 Hydrological balance

The hydrological balance shows a negative and decreasing slope over the price quantiles
for all periods analyzed in figure 11. The effect is most significant for period 4 and
smaller for period 9 and 18. In both tails the estimates are generally not significant.
The high percentage of electricity produced from hydropower plants in Nord Pool makes

8Observations made by TrønderEnergi.
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this factor a determinant of the price. Low hydrological balance will result in high
electricity prices, as the risk of future scarcity in energy supply increases. The results
indicate that the price is more sensitive to hydrological balance in period 4 than in
period 9 and 18, with a clear increase in magnitude in the upper tail of period 4.
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Figure 11: Hydrological balance variable - sensitivities over quantiles.

The regression median is slightly negative for all periods and for the daily average
price, indicating that an increase in the hydrological balance will put downward pressure
on the price. This is as expected. The form of the curve for the daily average price
and period 4, indicate less risk with higher values of the hydrological balance, both on
the up- and downside. Reduced upside risk combined with higher hydrological balance
is logical. We also observe this in period 9. The reduced downside risk however, we
believe originates from the price curve turning more and more elastic with increasing
hydrological balance in an already low demand hour of the day. Another explanation
is the low water values in this range of prices, providing producers with incentives to
postpone their production. This will have a positive effect on the price.

5.1.7 Deviation in temperature and inflow
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Figure 12: Temperature deviation variable - sensitivities over quantiles.
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The deviation between forecasted and normal temperature (figure 12) shows a con-
sistent negative value with a negative spike in the upper tail of period 9 and 18. Most
values are significant with some uncertainties in the 1% and 99% quantiles. When fore-
casted temperature is higher than normal this will lower the price and vice versa. This
is because a large part of the electricity in the Nordic market is used for heating, and
a higher temperature indicates less demand. In period 4 we observe a similar effect as
we did for the hydrological balance: an increase in the temperature will put downward
pressure on the price and make the price curve more elastic, i.e. reducing upside risk.
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Figure 13: Inflow deviation variable - sensitivities over quantiles.

The negative effect is also present for the deviation between forecasted and normal
inflow (figure 13); however, with large confidence intervals in the tails. When inflow is
lower than normal this will increase the price and vice versa.

5.1.8 Weekend effects

Figure 14 presents a clear negative effect on the median price during weekends. The
effect is larger in the lower tail, indicating more downside risk entering weekends. Lower
industry activity during weekends is one explanation of this effect.
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Figure 14: Weekend effects variable - sensitivities over quantiles.
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5.1.9 Main findings from the variable selection

The above figures and description reveal a mean reverting system price with strong
intraday correlation to fundamental market factors. For the daily average price the
correlation to fundamental factors is weaker. Demand forecast is the most significant
factor with the highest explanatory power in the tails of the intraday periods. The price
volatility shows significant effects for both the daily average price and the three periods,
but of smaller magnitude than the demand forecast. Other factors such as lagged
system prices, gas and coal price, hydrological balance, wind production forecasts, and
temperature and inflow deviation, all show some significant effects of smaller magnitude
than the demand forecast and price volatility.

Moving to the out-of-sample analysis, our findings from the variable selection sug-
gest that the demand forecast is the best factor to use in models including explanatory
variables. Price volatility is another factor that can provide good out-of-sample fore-
casts.

5.2 Out-of-sample Value at Risk analysis

To perform out-of-sample analysis on the models presented in section 4, we use a sample
of 2214 daily prices from Nord Pool for hours 4, 9 and 18, as well as the average daily
price. We compute the log returns, and use these in all our models. We use a fixed
starting point increasing window with initial size of 1000 in-sample days, and estimate
1%, 5%, 95% and 99% VaR 1-day ahead. This leaves us with 1213 forecasts for each
time series, model and quantile, with their corresponding realized returns. An event is
flagged if the realized return exceeds the given VaR forecast, and the events are used
in our coverage, conditional coverage and DQ tests. All models are run in Matlab, and
parameters for all models are re-estimated in every step.9

The GARCH model parameters are found using maximum likelihood, and the VaR
forecast is produced from the GARCH parameters and the last day’s return.

Based on our findings in the variable selection we test two linear quantile regressions,
one with demand forecast as explanatory variable (Qreg DF) and one with price volatil-
ity as explanatory variable (Qreg Vol). Both models include a constant (intercept). For
the Qreg DF model, the parameters are found using the in-sample window. The fore-
cast is produced using the demand forecast for the next day and the parameters. Qreg
Vol first estimates the GARCH model parameters using maximum likelihood, and then

9Except for λ in the EWQR model.
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uses the GARCH volatility as explanatory variable in linear quantile regression. We
forecast volatility from the GARCH model parameters and the last day’s return, and
use the forecasted volatility with the beta from the quantile regression to forecast the
next day’s VaR.

The EWQR model is different from the other models in that it uses a moving window
of 250 in-sample days, and the only independent variable is a constant. Optimal λ is
estimated using the sample spanning from day 250-1000. RQ criterion for λ from 0.7
to 1 with step size .002 is found, and we pick the one yielding the lowest RQ. In some
cases the λ is radically lower than the others and is set to the median of the rest. We
do not re-estimate λ weights (these are included in section 7.5 in the appendix). The
day-ahead VaR forecast from the EWQR is the result of the regression on the last 250
day’s log returns.

The CAViaR models’ parameters are found using the in-sample window. Day-ahead
VaR is forecasted using the estimated parameters, the last day’s estimated VaR, the last
day’s return, and in the case of the I-GARCHX CAViaR, the demand forecast. We set
the starting VaR to the empirical quantile of the first 300 observations, and estimate
the parameters using the following optimization routine: i) n random uniform(0,1)
distributed vectors are generated. We calculate in-sample RQ criterion using each of
the vectors as model parameters, and select the m vectors with lowest RQ as initial
values for the optimization routine.10 ii) We run the simplex algorithm (once for every
m initial conditions), feed the resulting parameters to the quasi-Newton algorithm, and
return the results back into the simplex algorithm. We repeat this procedure until it
converges.11 The vector yielding the lowest RQ criterion is finally selected. As this is
very time-consuming, i) is only run for every 100 samples. For all samples in between,
the optimal parameters found in the last step is used as initial conditions. As a result,
following sudden shocks in the data, the CAViaR model may temporarily settle on
suboptimal parameters. However, we find this to be a good time/result tradeoff.

5.2.1 Empirical results

We present the detailed performance of the out-of-sample forecast for the different
models in table 6 and 7 at the end of this section. Table 4 and 5 summarize the
number of test rejections, while figure 15 present the sum of test rejections at 5% and

10We follow Manganelli and Engle (2004) and set n = [104, 105, 105, 106] and m = [10, 15, 15, 20] for
the I-GARCH, I-GJR-GARCH, I-GARCHX and I-GJR-GARCHX models respectively.

11Tolerance levels for function and parameter values are set to 10−10.
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1% significance level respectively. The model that performs best is the I-GARCHX
CAViaR model with demand forecast as explanatory variable.

All the models outperform the GARCH-N model that was included for benchmark-
ing purposes. This model is punished for assuming normally distributed returns, thereby
missing the kurtosis and skewness in the data. It also assumes that the volatility re-
sponds similarly to an increase/decrease in price. The model fails the DQ test in 13 out
of 16 cases at 5% level and has similarly poor results in the other less strict tests. The
skew-t GARCH-GJR model corrects for the mentioned shortcomings, and we observe
a clear improvement in performance. It is rejected 6 out of 16 times by the DQ test
on the 5% level, and only 4 out of 16 times by the conditional coverage test. We also
observe that the model passes all the tests for the daily average price. This makes the
skew-t GARCH-GJR model a sufficient performer.

DQ CC UC P4 P9 P18 DA Total
(Number of tests) (16) (16) (16) (12) (12) (12) (12) (48)

GARCH-N 13 12 13 7 12 7 12 38
Skew-t GARCH-GJR 6 4 2 8 1 3 0 12
Qreg DF 13 4 1 6 1 5 6 18
Qreg Vol 4 1 1 5 1 0 0 6
EWQR 14 5 1 7 3 4 6 20
I-GARCH CAViaR 2 1 1 1 0 3 0 4
I-GJR-GARCH CAViaR 2 2 1 4 0 1 0 5
I-GARCHX CAViaR 2 0 0 0 1 1 0 2
I-GJR-GARCHX CAViaR 4 3 3 5 1 3 1 10

DQ is the number of rejections of the DQ test, CC the conditional coverage test and
UC the unconditional coverage test, aggregated for all periods. P4, P9, P18 and DA
are the sum of rejections for all three backtesting models in period 4, 9, 18 and for
the daily average price. Total is the sum of rejections for the three backtesting models
over all periods. The numbers in parenthesis is the number of tests performed on the
model.

Table 4: Summary of the VaR results in table 6 and 7. Number of test rejections at 5%
significance level. Note: Smaller values are better.

Qreg DF fails the DQ test 13 out of 16 times and the CC test 4 out of 16 times
at the 5% level. However, it fails only one time in period 9. This indicates that the
demand forecast is a better determinant of the risk during peak periods than during
off-peak periods of the day. Qreg Vol performs best of our linear quantile regressions,
failing the DQ test only 4 out of 16 times, and the conditional coverage test one time
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at the 5% level. This model passes all the tests both for period 18 and for the daily
average price and is rejected only one time for period 9 at 5% level. It passes all periods
except period 4 at 1% level. Hence, Qreg Vol is one of the top performers.

The EWQR model performs quite poorly, failing 14 out of 16 DQ tests, and 5 out
of 16 CC tests at the 5% level. At the 1% level it fails the DQ test 9 out of 16 times.
One obvious drawback with the model is the fact that its VaR forecast is bound by the
past 250 days of returns. Consecutive record returns will increase the autocorrelation
in the violation of VaR forecasts, making the DQ test and CC test fail.

DQ CC UC P4 P9 P18 DA Total
(Number of tests) (16) (16) (16) (12) (12) (12) (12) (48)

GARCH-N 11 10 10 3 12 7 9 31
Skew-t GARCH-GJR 3 2 0 3 0 2 0 5
Qreg DF 9 3 1 5 1 4 3 13
Qreg Vol 2 1 1 4 0 0 0 4
EWQR 9 3 0 5 1 3 3 12
I-GARCH CAViaR 1 1 1 0 0 3 0 3
I-GJR-GARCH CAViaR 1 1 0 2 0 0 0 2
I-GARCHX CAViaR 0 0 0 0 0 0 0 0
I-GJR-GARCHX CAViaR 3 1 0 1 0 3 0 4

DQ is the number of rejections of the DQ test, CC the conditional coverage test and
UC the unconditional coverage test, aggregated for all periods. P4, P9, P18 and DA
are the sum of rejections for all three backtesting models in period 4, 9, 18 and for
the daily average price. Total is the sum of rejections for the three backtesting models
over all periods. The numbers in parenthesis is the number of tests performed on the
model.

Table 5: Summary of the VaR results in table 6 and 7. Number of test rejections at 1%
significance level. Note: Smaller values are better.

The I-GARCH CAViaR model performs well, failing the DQ test only two times and
the CC test one time at 5% level. Extending the model to account for asymmetrical
response to returns does not improve the model performance. Both CAViaR specifica-
tions without explanatory variables pass all tests for period 9 and for the daily average
price. These results indicate that all time series have autocorrelation in the VaR es-
timate, with stronger effects in period 9 and for the daily average price. This makes
CAViaR models in general well suited for out-of-sample VaR forecasts.

The innovation in this paper of including explanatory variables in the CAViaR
models improves the performance slightly. By using demand forecast as the explanatory
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variable in the I-GARCHX CAViaR model, we get a model that fails the DQ test 2 out
of 16 times and that passes both coverage tests for all periods and all quantiles at the 5%
level. At 1% level it passes all tests for all periods and quantiles. This proves that the
strong relation between prices and demand forecasts found in section 5.1, combined with
the superior performance of the CAViaR models, provides accurate out-of-sample VaR
forecasts. Extending the model to account for asymmetrical response to returns does
not improve the model performance. This might be due to the increase in parameters
leading to overfitting.
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Figure 15: The total number of test rejections for the three backtesting models in table 4
and 5, at 5% and 1% significance level. The potential number of test rejections is 48 for all
models and each significance level, the same as the total number of tests performed on each
model. Note: Smaller values are better.
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5.3 Practical implications

Electricity trading includes both the spot and the financial market. The derivatives
traded on Nord Pool’s Financial Market comprise base load and peak load futures,
forwards and options. These are all based on the system price. It is therefore important
for market participants to obtain knowledge on the system price formations to make
good trading decisions. Insight in how the tail is formed is a part of this knowledge.
Hence, an accurate forecast of price risk is important for participants in the financial
market.

VaR is a risk measure that is useful for the clearinghouse in determining its margin
levels. Nord Pool sets margin requirements and adjusts these after changes in the
market. With accurate VaR forecasts these adjustments can be done at an earlier
stage and thereby increase the predictability of the margin deposits required by market
participants with positions in the financial market.

Risk forecasting, both in the short- and the long-term, could also be useful for
producers and consumers to determine their respective bidding strategies. The amount
of production or consumption reported by participants in the market depends on the
price. A producer will place bids of high production when prices are high and low
production when prices are low. Producers and consumers can take advantage of sudden
changes in price by measuring the risk. An electricity producer that gets forecasts of
high upside risk can offer a high volume to take advantage of the potential spike in
price. For a forecast of high downside risk, a producer would restrict its production and
offer a lower volume, as the risk of a price lower than the cost of production increases.
The opposite will apply for an electricity consumer in the market.

In addition to accurate VaR forecasts, our linear quantile regression model makes it
possible to gain insight on how fundamental factors affect the electricity price in various
price ranges and for different periods of the day. Measuring these factors can provide
useful information about the price risk.

Simple models reduce the computational complexity and increase the probability
for models to be adopted by market participants. Linear quantile regression is easy
to use and does not require time consuming analysis and deep knowledge in statistics.
CAViaR models are more sophisticated and complex. This might cause linear quantile
regression to be favored among market participants, in spite of CAViaR models’ superior
performance.
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6 Conclusions

In this paper we discuss tail behavior of the Nord Pool system price and, in particular,
the forecasts of the market risk measure Value at Risk (VaR). We compare linear- and
nonlinear quantile regression models to different GARCH specifications.

First we run a linear quantile regression to characterize the effects of fundamental
factors on the system price formations. We find that demand forecast and price volatil-
ity are the most dominant factors influencing the spot price. In general, the parameters
show high significance in the tails with decreasing effect in the interior of the distribu-
tion. Based on these findings we develop a CAViaR specification taking in explanatory
variables.

Secondly, we run out-of-sample testing of VaR forecasts. We find that the nonlin-
ear quantile regression models, CAViaR, outperform the linear quantile regression and
GARCH models. Of the CAViaR specifications, our I-GARCHX CAViaR innovation
with demand forecast as explanatory variable is the best performer. A quantile regres-
sion with price volatility as explanatory variable also performs well, and outperforms
the skew-t GARCH-GJR model.

The results indicate that quantile regression has a significant potential in giving
accurate forecasts of VaR. A linear quantile regression model is easy to use and do not
require deep knowledge in statistics; increasing the probability of market participants to
adopt the method. The most accurate method, the I-GARCHX CAViaR, however, is a
more sophisticated model, which may inhibit its use in spite of its superior performance.

Our findings have important implications for participants in both the auction and
financial electricity market, as they provide insight on how fundamental factors affect
the price and provide accurate forecast of the price risk. Financial market participants
can adjust their positions in the derivatives market based on information from the
models. Clearinghouses can provide more accurate margin requirements. In other
words, our results can help market participants to tune their position in the market
and reduce their exposure to risk.

Further research can develop the quantile regressions to get more sophisticated mod-
els. CAViaR models have shown the strength of nonlinear models in VaR forecasting.
One can extend the CAViaR models further to get more accurate forecasts of the VaR.
This will potentially be of greater value for the participants in the market, but the
complexity of the model will increase. One can also apply the same analysis on Nord
Pool area prices or enter new markets such as the European Energy Exchange (EEX)
and the UK power market, to gain insight of market fundamentals in different markets.
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7 Appendix

7.1 Variable description

Nord Pool system price
The spot price is the hourly Elspot day-ahead price from the Nord Pool Spot
exchange. We analyze the natural logarithm of the daily average price/return and
the intraday prices/returns for period 4, 9 and 18 with data covering the period
January 1st 2005 to January 23rd 2011. Period 4 is the hour from 03:00-03:59,
period 9 is the hour from 08:00-08:59 and period 18 is the hour from 17:00-17:59.
The daily average price is the arithmetic average of the 24 intraday day-ahead
prices.

Lagged prices
Lagged values of the spot price are included; price in the same trading period the
previous day, and the average price of the same trading period of the last weeks
(seven days) prices. This provides a link between the price today, yesterday and
the price level the last week.

Price volatility
The price volatility is calculated separately for each of the periods and for the
daily average price, using a skew-t GARCH-GJR(1,1) model on the price returns.
Descriptive statistics for the price volatility is found in table 8 below. The results
indicate high standard deviation, positive skew and high kurtosis for all series,
especially for period 4 and 9. Period 4 and 9 also have high maximum values.
The high kurtosis indicate fat tails and the positive skew indicate positive spikes
in volatility.

Descriptive Statistics

No. Obs. Mean Median Minimum Maximum St. Dev. Skewness Kurtosis

Period 4 2213 0.06 0.00 0.00 9.65 0.36 14.84 295.33
Period 9 2213 0.06 0.02 0.02 8.31 0.25 21.68 627.66
Period 18 2213 0.02 0.01 0.00 0.40 0.04 4.68 25.35
Daily Ave 2213 0.01 0.00 0.00 0.33 0.02 6.97 62.36

Table 8: Descriptive statistics for the price volatility.
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Gas price
The gas price used is the daily UK natural gas one-day forward price, from the
main National Balancing Point (NBP) hub. The prices are converted from GBP
to EUR using the exchange rate for the actual day. Weekend prices are calculated
with linear interpolation.

Coal price
The coal price used is the daily API2 coal index for ARA (Amsterdam, Rotterdam,
and Antwerp), taking into account the USD/EUR exchange rate. Weekend prices
are calculated with linear interpolation.

Demand forecast
The demand forecasts is calculated using feedforward neural networks. The net-
work is a two-layer feed-forward network with 20 sigmoid hidden neurons and
linear output neurons trained with the Levenberg-Marquardt backpropagation
algorithm. The following variables is used in the model; temperature forecast,
one-day lagged demand, last days average demand, seven-day lagged demand,
day of week [1,7], and weekend/holiday dummy. The parameters are found using
1000 in-sample data, and we do not re-estimate the model.

Descriptive Statistics

No Obs Mean Median Minimum Maximum St. Dev. Skewness Kurtosis

Period 4 2213 38.10 37.58 24.54 58.35 7.14 0.29 -3.99
Period 9 2213 47.39 46.53 26.42 73.61 9.25 0.14 -3.76
Period 18 2213 47.38 45.37 29.59 72.54 9.25 0.26 -4.14
Daily Ave 2213 44.50 43.43 27.96 67.77 8.08 0.23 -3.97

Table 9: Descriptive statistics for the demand forecast.

Descriptive statistics for the demand forecast is found in table 9. We observe
that the demand forecasts vary across the periods and that period 9 and 18 have
larger standard deviation with extreme maximum values. All series are positive
skewed with negative kurtosis. This indicate that spikes occur rarely compared
to the normal distribution, and that spikes happens more on the upside than on
the downside.
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Wind production forecast
To measure the amount of wind energy in the market, we use the forecasted
production of wind energy for Denmark, provided by SKM Market Predictor12.

Hydrological balance
Hydrological balance is "actual" deviation from normal magazine- and snow-
reservoir levels calculated by SKM Market Predictor. It includes factors such
as weather forecasts, reservoir level and inflow. This value can be both positive
and negative, so we add a constant to get all values positive, as we take the natural
logarithm of all variables.

Deviation temperature
The deviation between forecasted temperature and the normal (average over the
last years) temperature for the next day. To avoid problems of multicollinearity
with hydrological balance we use deviation from normal instead of actual forecasts.
This value can be both positive and negative, so we add a constant to get all values
positive, as we take the natural logarithm of all variables.

Deviation inflow
The deviation between forecasted inflow and the normal (average over the last
years) inflow for the next day. To avoid problems of multicollinearity with hy-
drological balance we use deviation from normal instead of actual forecasts. This
value can be both positive and negative, so we add a constant to get all values
positive, as we take the natural logarithm of all variables.

Weekend dummy
The weekend dummy captures effects on the prices during weekends different than
those during weekdays. It is constructed as a dummy variable taking the value
one for saturdays and sundays and zero otherwise.

12SKM Market Predictor is an independent provider of power system analysis for the power market.
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7.2 Box-Cox power transformation

Period	  18	   Daily	  Average	  

Period	  9	  Period	  4	  

Figure 16: The results from the Box-Cox power transformation test.

Value of λ Transfromation

-1.0 1
Pt

-0.5 1√
Pt

0.0 lnPt

0.5
√
Pt

1.0 Pt

Table 10: The Box-Cox transformation based on calculated λ.

We want to perform the same transformation on all time series. The average λ is
close to zero, so we take the natural logarithm.
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7.3 ARMA and GARCH models

An ARMA(p,q) model use autoregressive and moving average terms to approximate
the given data, and is defined by Wei (2005) as13:

(1−
p∑
i=1

φLi)yt = c+ (1 +
q∑
i=1

ΘiL
i)εt (19)

Where L is the backshift operator, so that Lkyt = yt−k This makes the model suited for
autocorrelated time series. Traditional assumptions on the error term are E(εt) = 0,
E(ε2

t ) = σ2
ε , and E(εtεs) = 0. To account for heteroskedasticity in the variance, ARCH

specifications to model autocorrelation in squared residuals have been developed.
The generalized autoregressive conditional heteroskedasticity (GARCH) model is

the most popular ARCH (Engle, 1982) specification in empirical research and was in-
troduced by Bollerslev (1986). The model is specified in equation (20).

εt|ψt−1 ∼ N(0, ht)

ht = α +
s∑
i=1

αiε
2
t−i+

r∑
i=1

βiht−i
(20)

Equation (21) presents the conditional volatility from one of the most used ARCH
specifications, the GARCH-N(1,1).

ht = (1− α− β)σ2+αε2
t−1 + βht−1 (21)

This model captures the volatility clustering of returns that is often experienced with fi-
nancial asset returns. To achieve this, the model forecast the volatility to be a weighted
combination of the unconditional variance, the previous squared residuals and the pre-
vious conditional variance. We include this model in the backtesting, and it will be
referred to as GARCH-N. To find the model’s VaR, we turn to the more general case.
If X has distribution function F (x) and density function f(x) then:

V aR(θ) = F−1(θ) (22)

Under the assumption of normality, with mean µ and conditional variance σt this trans-
lates to the VaR for the GARCH-N(1,1) model (McNeil et al., 2005):

V aRt(θ) = Φ−1(θ)
√
ht + yt (23)

13We deviate from the regular notation θ, for the moving average weights, as it is used for quantiles
throughout the paper
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The GARCH-N(1,1), assumes that the returns are symmetrically distributed, an
assumption that for most practical applications have been proved wrong. As skewed
distributions with fat tails are common in financial asset returns (the same for the
power market returns), a skew-t distribution modeling the returns could be of interest.
However, a problem with the GARCH(1,1) model (irrespective of distribution) is that
the conditional variance responds symmetrically to returns. Glosten et al. introduced
the GJR-GARCH in 1993 and this ARCH specification models the asymmetry in the
GARCH process. Equation (24) shows the GJR-GARCH(1,1) model.

ht = (1− α− β)σ2 + α(rt−1 − µ)2 + βht−1 + φ(rt−1 − µ)2It−1

where It−1 = 0 if (rt−1 − µ) ≥ 0

and It−1 = 1 if (rt−1 − µ) < 0

(24)

This model has the same advantages as the GARCH introduced by Bollerslev, but also
allow for the conditional volatility to respond asymmetrically to returns. Used with
an assumption of skewed-t distributed returns, the model should be quite robust. We
include this model with assumed Hansen skew-t distributed returns in the backtesting,
and refer to it as the skew-t GJR-GARCH model. We proceed to find VaR and ETL
under the model assumptions. From Hansen (1994) in equation (25) we have our density
function:

g(z|η, λ) =

bc
(
1 + 1

η−2( bz+a
1−λ )2

)−(η+1)/2
z < −a/b,

bc
(
1 + 1

η−2( bz+a
1+λ )2

)−(η+1)/2
z ≥ −a/b,

(25)

with 2 < η <∞, −1 < λ < 1, and constants;

a = 4λc(η − 2
η − 1), (26)

b2 = 1 + 3λ2 − a2, (27)

c =
Γ(η+1

2 )√
π(η − 2)Γη

2

(28)

The distribution and specializes become the student’s t distribution with λ = 0. For
proof that this is a proper density function with zero mean and unit variance, see
appendix in Hansen (1994). With the distributions PDF given by (25), and the CDF
G(x) =

∫ x
−∞ g(z|η, λ) dx, the VaR follows from equation (22):

V aRt(θ) = G−1(θ)
√
ht + yt (29)
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7.4 CAViaR models with explanatory variables modeling the
return

An I-GARCHX CAViaR and I-GJR-GARCHX CAViaR model with explanatory vari-
ables modeling the return instead of the quantile as we do in this paper, will take the
form of the equations below.

V aRt(β) = (β0 + β1(V aRt−1 − β3zt−1)2 + β2(yt−1 − β3zt−1)2)1/2 + β3zt, (30)

V aRt(β) =(β0 + β1(V aRt−1 − β4zt−1)2 + β2(yt−1 − β4zt−1)2

+β3I(yt−1<0)(yt−1 − β4zt−1)2)1/2 + β4zt,
(31)

7.5 EWQR lambda estimates

Quantile, θ Period 4 Period 9 Period 18 DailyAve

0.01 0.998 0.998 0.990 0.998
0.05 0.998 0.998 0.998 0.982
0.95 0.998 0.998 0.998 0.998
0.99 0.998 0.998 0.998 0.998

Table 11: The estimated λ weights used in the EWQR model.
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