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Can redox reactions be studied
with RETIS?

Abstract: Simulating chemical reactions can be time consuming to the point
where some reactions can be impossible to simulate. The aim of this thesis is to
compare different simulation methods, such as ab initio molecular dynamics (ab
initio MD) to classical MD, and brute force ab initio MD to replica exchange
transition interface sampling with ab initio MD. In comparing ab initio MD to
classical MD, it was not possible to use classical MD for chemical- or redox
reactions. This is because of the difficulties in getting accurate results, even
when using force fields such as ReaxFF, because of the difficulties in
parameterizing the force fields. RETIS with ab initio MD is also compared to
brute force ab initio MD for dissossiation of water, oxidation of iron, and
simulating aqueous silicate condensation, in which it proved to be faster by a
factor of roughly 100 000 times for the condensation. RETIS also yielded more
accurate result using decorrelated moves which reduces statistical error.
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Introduction

Computational simulation is becoming increasingly more relevant for studying the
different properties of chemical reactions. This is because computational power is
increasing, meaning it is possible to simulate over longer time scales and gain more
insight about different properties of atoms and molecules, and how they interact.

Still, we have not reached the point where it is possible to simulate the full time
scale of every chemical reaction. With brute force molecular dynamics (MD) you
might have to spend centuries simulating just to get information about the crossing
of the transition between two states in a chemical reaction. This is because most
of the time the system want to be in the reactant state or the product state.
This means it is very difficult to gain information about what goes on during
a transition between two states. Luckily there are techniques that can help us
out! Events that happen rarely are appropriately named rare events[1]. There
are several available algorithms that can help us gain information about these rare
events such as crossing the transition states in a reaction. In addition to molecular
simulations, rare event simulation is also applicable in other fields.

Rare event simulation can be used for everything that is defined as a rare occur-
rence. It can be used to compute failure probability of a building under earthquake
excitation[1], estimation of probabilities for future possible terrorist events|2],
studying packet loss in real-time video traffic in a packet-switched telecommu-
nication network. In the insurance field where most of the cases are rare events
where you have to take into account the wealth of the company, income, and
outcome due to insurance claims[3] and especially relevant now, the spreading of
diseases[4]. As shown, there are myraids of applications for rare event simulation.
Albeit these different fields each require different algorithms than the ones that
will be discussed in this paper, the idea of rare event simulation still applies to a
wide range of fields.

In this paper, the basics of computational simulations such as MD and Monte
Carlo simulations will be presented along with different rare event sampling meth-
ods, such as transition path sampling (TPS), transition interface sampling (TIS)
and replica exchange transition interface sampling (RETIS). Some basic theory
on electron transfer reactions (redox reactions) and reaction rate theory will be
introduced. Finally the different methods presented in the thesis will be compared
in terms of usefulness for different types of reactions.
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1 Molecular simulations

For advanced systems, it can be hard to predict different states and outcomes. For
these systems, applying mechanics and simplified methods, and then just let the
simulations run makes it possible to observe the changes in a system. There are
two common simulation techniques: Molecular dynamics (MD) and Monte Carlo
(MC). This chapter will explain how these methods work, where, and when they
are applied.

1.1 Molecular dynamics

MD is a method that generates the conformation of a system by integrating New-
ton’s laws of motion. By solving the differential equation it is possible to obtain
the different trajectories. ,

O _ I (1.1)

ot? m;
Where i is the index for a given particle, x; is position for particle i, ¢ is time,
m; is the mass of the particle ¢, and F; is the force affecting particle i.[5]. As
seen in equation 1.1, this is a time dependent function. After applying Newton’s
laws of motion on the system, MD then simulates what would happen at a given
time step. A time step is the time between each calculated state of the system.
The importance of having a suitable time step is that a too small time step will
make the simulation time unnecessarily long, and too large of a time step can
cause instabilities in the integration algorithm used, which will give inaccurate
information about the system in return|5].

In general, an MD step is between 1 and 10 femtoseconds (107'® second), and
a typical MD system consists of 100 to 100 000 molecules with a time scale of
nanoseconds to microseconds[6]. The size of an MD system depends on the com-
putational power and the type system. The D.E. Shaw group have the record for
classical MD calculations in which a Joint AMBER-CHARMM benchmark system
containing 23 558 atoms (dihydrofolate reductase surrounded by water) was sim-
ulated 16.4 ps (107¢ second) per day[7]. A system using a version of the NAMD
software has managed to produce 100 ns (10~ second) per day for a 30 000 atom
system|[8].

1.1.1 Ab initio MD

Ab initio means from the beginning[9] in Latin and is a special case of MD. Clas-
sical MD is calculating the intramolecular forces using premade potentials such as
the Lennard-Jones potential[5] to speed up the calculations. Meanwhile ab initio
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MD calculates all the intramolecular forces from scratch at every MD step. This
method is more computationally demanding, but can be necessary for some cal-
culations, especially to study a process in which chemical bonds are formed or
broken.

Ab initio MD offers some advantages over classical MD. Because classical MD
uses empirical potentials to describe the forces on pairs of atoms or molecules
there are some cases where classical MD has difficulties describing the physical
behavior of the system. For example, in liquids where the force between two
atoms or molecules can be affected by the presence of one or more other atoms
or molecules, meaning the complete electronic state can change. There are force
fields that takes these cases into account (many body potentials), but making these
force fields is difficult[9].

Because ab inito MD requires more processing power, the systems and time scales
is smaller. A system with 100-300 atoms is possible to simulate with a time scale
of 10-100 ps (10~ second)[10].

1.2 Monte Carlo

In contrast to MD, MC is a technique which is not time reliant. In MD, the
conformation and velocities of the system is calculated at discrete time intervals,
while in MC you do not get the time evolution of the system, but you get the
statistical distribution of the different conformations.

The method is based on attempting to make a random change in the system, then
either accept or discard the change. When a change is made, the energy of the
new conformation is calculated. If the energy is lower than the old conformation,
the change is accepted. If the energy is higher, a random number between 0 and
1 is generated and compared with Boltzmann factor given below

—v(rhew) V(T )

e BT (1.2)
where v(r") is the potential energy of the conformation as a function of the re-
action coordinate r, the subscript new and old refers to the new and old confor-
mations before the attempted move, kg is the Boltzmann constant and 7' is the
temperature. If the random number is higher than the one generated in eq. 1.2 |
the change is rejected, if it is lower, the change is accepted[5].
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2 Rare event simulation techniques

Rare events is a term used for events occuring with a low frequency[1]. This does
not imply that the event seldom occurs, but compared to the time scale of an
MD simulation it will count as a rare event. A way to visualize this is a chemical
reaction where you have molecule at a low energy state, S;, that has to pass a
higher energy barrier to end up at a lower energy state, S;. The molecule does
not want to be in the transition state, but rather in the stable states (S; or Ss),
meaning it is difficult to sample the crossing of the transition state. Rare event
simulation can help describe these situation, such the transition state between .S,
and S in a computationally efficient way.

This thesis will focus on two different approches of simulating rare events. One is
based on free energy calculations and the other is based on path sampling

2.1 Free energy based methods

Free energy based methods sample the free energy of the system as a function
of a reaction coordinate. A reaction coordinate is ”an abstract one-dimensional
coordinate which represents progress along a reaction pathway. It is usually a ge-
ometric parameter that changes during the conversion of one or more molecular
entities”(Tuckerman, 2008)[11]. Free energy methods sample the conformation
space along the full scale of the reaction coordinate including the reaction barrier.
The energy profile then provides the reaction’s free energy and the free energy
barrier. There are two main methods for obtaining the free energy profile, ther-
modynamic integration and umbrella sampling[12].

2.1.1 Thermodynamic integration

Thermodynamic integration is a free energy based method where the free energy
is calculated by assuming that the Hamiltonian is defined as a function of a con-
tinuously varying parameter giving

AF(N) = F(\) = F(Ay) = /Ai d/\’<%[j> | (2.1)

where F' is the Helmholtz free energy, A4 and \* represents respectivly start state
and local free energy maximum (free energy barrier). The brackets refers to an
ensemble average, H is the Hamiltonian for the complete system, A is the reaction
coordinate (varying parameter) and the subscript indicates fixed values for reaction
coordinate \'[9].
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2.1.2 Umbrella sampling

Another way to sample the free energy barrier is a method called umbrella sam-
pling. This method is meant to overcome the issue of insufficient sampling of
energetically unfavorable states. It is possible to perform umbrella sampling using
either MC or MD. Umbrella sampling is based on limiting the possible moves a
particle in the system can make by hindering ergodicity from the system[13]. Er-
godicity is a concept that impiles it should be possible to visit all the conformation
points in the system.

By removing ergodicity the system is forced into unfavorable positions, so it is
possible to sample these conformations. It is then possible to limit the conforma-
tions to a certain area, so we can sample the energy maxima in a transition state.
By sampling the probability distribution of the conformations within the umbrella
sampling window, we can obtain the local probability distribution. By repeating
this procedure for different regions along the reaction coordinate, using different
umbrella sampling windows, we get a set of probability distributions that can be
matched to get the overall probability distribution[14].

2.2 Path sampling methods

In addition to free energy based methods, there are path sampling methods. These
methods use MC sampling on MD generated paths. This paper will not go into
great detail about how these methods work, but will explain the general. Because
it is time consuming to generate many trajectories, therefore it is important to
have an efficient algorithm to generate these trajectories.

2.2.1 Transition path sampling

Transition path sampling (TPS) is a path sampling method, in which the rare oc-
curence where a system moves between stables states is heavily sampled. TPS is
nowadays considered just as a method for sampling trajectories from a state A to
state B. The original article also included an approach to calculate the probability
of passing from state A to state B (which is essencial to compute the reaction
rate[15]. This approach was later improved by other methods such as transi-
tion interface sampling (TIS) and replica exchange transition interface sampling
(RETIS)[12].

There are two types of MC moves in TPS, shooting move and shifting move[15]. In
the shooting, move a point in a trajectory is selected at random. As shown in fig.
2.1, a point with particles having the momenta P on trajectory (o) is selected, and
a random change (AP) is applied to the momenta of all the particles at the specific
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Figure 2.1: Illustration of a shooting move. A trajectory is generated between state A and
state B, where a random change (AP) is made to the momenta P of all particles in a given
point, to generate the new trajectory with momenta P’. Afterwards we integrate forwards and
backwards in time to generate the trajectory from state A to state B. This figure taken from ref.

[9].

time slice. This creates the new momenta P’ from the old point. Afterwards we
integrate forwards and backwards in time to generate a new trajectory (n) to
complete the shooting move. In TPS the shifting move is also employed, but
we will not discuss this, as this move is redundant in the more advanced path
sampling simulations techniques such as TIS and RETIS[16]. There also exist other
moves such as web throwing and stone skipping, which can increase the efficiency
of factor 10 in some cases[17], but the explanation of these moves involves complex
mathematical exposure which is beyond the scope of this thesis.

2.2.2 Transition interface sampling

TIS is a development of the TPS method. Here a set of interfaces (Mg, A1,...,An)
are defined, between the two states, A and B. Using these interfaces, we can
use the same algorithms as in TPS (e.g. shooting move) to attempt to generate
trajectories[17]. For example, an ensemble of 1 000 trajectories can be generated,
where the trajectories are required to pass from state A through at least \g, where
we reject every move that does not pass the interface. We refer to the collection
of paths that we generate in this way as [0%] ensemble, which imples all the tra-
jectories that have been sampled cross the )y interface. As a general expression,
we can refer to the [iT] ensemble as the collection of paths which we can generate,
that crosses the )\; interface[12].

To generate trajectories in the [it] ensemble, we reject any path that fail to cross
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A, so by definition the paths that sampled in this ensemble will all cross \;. From
the generated trajectories in the [07] ensemble, we can calculate the probabilities
of passing through the next interface, \;, given that it passed \g. The trajectories
that were sampled in the [07] ensemble all cross A\, but some might go further
along the reaction coordinate. The fraction that cross A\; will be the conditional
crossing probability (crossing A; given that is crosses A\g). Once we have simulated
1 000 trajectories in the [07] ensemble we will move on and try to simulate 1 000
trajectories in the [17] ensemble. To initiate this simulation in the [17] ensemble,
we need to have an initial trajectory that crosses A;. We can pick this initial
trajectory by picking a trajectory from the [07] ensemble that also crossed ;.
Once we have a trajectory we use the MC moves in the same way as in TPS and
generate trajectories. Any trajectory not passing through A\; will be rejected. All
trajectories generated in the simulation for [1*] will then have crossed the interface
A1. This simulation of [17] allows us to generate the probability of going from state
A to Ay given it crosses ;.

By getting these conditional probabilities of crossing a given interface from another
interface, it is possible to compute the overall probability of going from state A to
state B. The TIS method was shown to be more efficient than TPS by a factor of
5 for a simple two-state dimer molecule immersed in a solvent by allowing flexible
path langths and the introduction of interface path ensemble averages.[18]. The
relative efficiency increase is expected to be even higher for complex systems.

2.2.3 Replica exchange transition interface sampling

Replica exchange transition interface sampling (RETIS) is a combination of TIS
and the replica exchange method[19]. This method gave a factor 20 improved in ef-
ficiency compared to TIS in studying denaturation of a mesoscopic DNA model[20].
The method is more efficient than TIS because it still generates the trajectories
with MD and the ensemble using MC (mainly shooting move), but it also uses
special MC move called swapping move, also known as replica exchange[12]. This
move attempts to swap two generated paths into different path ensembles as shown
in fig 2.2 along with the shooting move and time reversal/shifting move from TPS.

Consider the interfaces A\; and Ay, and the assosiated path ensembles [17] and [27].
If we were to simulate both path ensembles at the same time, and updated each
path ensemble by a full move, it is then possible to attempt to swap these moves
betweeen these two ensembles. If the path from the [17] ensemble crosses A it is
a valid path for the [2*] ensemble and the move is accepted. If it does not pass \s,
it is rejected. The path in the [27] ensemble is required to cross A;, so this swap
is automatically accepted. Swapping these two paths gives us two new paths with
very little computational cost. In addition, this method helps making the moves
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Figure 2.2: Illustration of the moves for generating trajectories with RETIS. First the MC
shooting move, then the time reversal/shifting move and lastly the swapping move. This figure
taken from ref. [12]

uncorrelated. TIS generates new paths by making small changes to a previous
accepted path, therefore these paths will in general look similar. With RETIS it
is possible to swap two uncorrelated paths. Because the set of the trajectories in
each path ensemble are more decorrelated this gives a lower statistical error after
generating a fixed number of trajectories compared to the TIS method.

The downside to RETIS is that since you are doing the swapping moves, it is hard
to parallellize the simulations[12]. The RETIS algorithm is also more difficult to
implement than standard TIS, therefore it is not as frequently used as it should be
considering the performance upgrade from regular TIS. Recently the two groups
in NTNU and University of Amsterdam has developed codes, PyRETIS[21] and
open path sampling (OPS)[22] that should make this easier.

2.3 Other path sampling methods

There are several other path sampling methods that are worth mentioning. These
include forward flux sampling (FFS)[23], adaptive multiple splitting (AMS)[24],
milestoning[25] and partial path transition interface sampling (PPTIS)[16]. These
are all methods for sampling the reaction paths, however some of these methods
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use approximations to increase the efficiency, but in turn makes them no longer
an exact method (milestoning and PPTIS). Other methods such as FFS and AMS
only work for special types of dynamics (stochastic dynamics). For this reason the
paper will not focus on these methods.

3 Reactions theory

3.1 Redox reactions

Redox reactions are electron transfer reactions. These are reactions in which elec-
trons moves from an electron donor (oxidized part) to an electron acceptor (re-
duced part). These types of reactions can be divided into two categories called
inner sphere electron transfer and outer sphere electron transfer[26]. The
inner sphere reactions occur between a donor and an acceptor that is covalently
bonded, for example

[CoC1(NH3)5)*" 4 [Cr(H50)g)*T — [Co(NH3)5(H,0)]*" 4+ [CrCl(H,0)5]*T (3.1)

where Co goes from Co(III) to Co(II) and Cr goes from Cr(II) to Cr(III), meaning
Co gets reduced and Cr gets oxidized. In addition HyO goes from being bonded to
Cr to being bonded to Co and Cl goes from being bonded to Co to being bonded
to Cr.

The outer sphere electron transfer does NOT involve the rearrangement of bonds.
This transfer can be observed in for example two metal ions in aqueous solution.

Mn+ + M*(n—l—l)—‘r N M(n+1)+ + M*H+ (32)

Here we can see that M donates one electron to M*, and the oxidation states of
both M and M* are changed[26].

3.2 Chemical kinetics

The reaction rate is "the change in concentration of a reactant or a product with
time”[27]. For a simple equation

A—B (3.3)
the reaction rate is given by
_ _A[A]_A[B]
rate = —W = W (34)



B. Welfler KJ2900

where At is the change in time and A[A] and A[B] are the changes in the con-
centration over the given period of time. If we have a more general reaction given
as

aA +bB — cC+dD (3.5)

where a, b, ¢ and d are coefficients and A, B, C and D are atoms or molecules in
a reactions. The reaction rate is given by
LA[A]  1A[B] 1A[C] 1A[D]

rate == AT T b AL e A d A

(3.6)

A rate constant k is introduced to explain the proportionality between the reaction
rate and the concentration of the reactants. This gives us

rate = k[A]*[B]Y (3.7)

where [A] and [B] are the concentration of the reactants and x and y is the reaction
order[27]. Eq. 3.7 reflects how many transition events are expected per second,
per mol reactants. The rate can be translated into the rate of a specific system,
with a specific number of molecules. In that case, the rate of the system will have
the unit of s71. The inverse of the rate of the system will then be the expected

time for a reactive event.

4 Comparing methods

Choosing correct a method is important as it can differ in months or years in
simulation time. The method can also affect the accuracy of the results. In this
section the applicability of the different of the different methods will be analyzed
for redox reactions.

4.1 Classical MD vs. ab initio MD

As explained in chapter 1.1 and 1.1.1 we have two types of MD, classical MD
and ab initio MD. So what dictates the choice of method? Classical MD uses a
premade potential. This makes it very hard to simulate bond breaking and bond
formation because it is difficult to parametrize these cases. A possible way to use
classical MD for these reactive events, would be to use ReaxFF force field, which
is designed for describing reactive systems. This method is faster than quantum-
chemical and semi-empirical quantum methods currently used[28]. However even
using a specialized force field such as ReaxFF it is still difficult to parameterize and
the optimal parameterized potential can often give unreliable results[29]. Redox
reactions are even harder to simulate than normal breaking and forming of bonds.

10
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This is because the transfer of electrons happends very quickly, so there is hardly
any change in the coordinates of the nuclei.

Because of the aforementioned reasons, it is not possible to use classical MD to
accurately study redox reactions. It is therefore required to use ab initio MD.
Because ab initio MD is more computationally expensive, it requires a significant
reduction, meaning only small systems with short simulation time can be studied.
Systems for studying redox reactions do not have to be as big as other systems,
for example protein folding[19]. Hence, redox reactions needs to use ab initio MD
over classical MD.

4.2 Studying redox reactions with RETIS

The electron transfer reactions behave similar to other chemical reactions. They
both can be described by concepts such as free energy barriers, reaction coordi-
nates etc. Since redox reactions are often rare events, it should be possible to use
RETIS to study these reactions. Redox reactions have been studied with several
computational methods[18, 26, 30]. One of them is very relevant for us, which is
Toward accurate simulation of electrocatalyzed water splitting by Tiwari|[26], where

the reaction
Ru*" + Ru*" — Ru®t + Ru** (4.1)

is studied using ab initio MD with TPS. This approach does not compute any
quantitative properties regarding reaction rates, because TPS is not able to com-
pute the probability for the rare event. This could have been done with TIS or
RETIS. The latter is preferred as it allows you to get more efficient calculations
for the reaction rates than with TIS.

As stated earlier, it should be possible to study redox reactions using RETIS, but
it is beneficial to make an analysis of the computational cost for doing a RETIS
reaction with ab initio MD and a brute force MD simulation with ab initio MD.
Since we already found out it is not possible to use classical MD for these types of
reactions.

4.3 Brute force MD vs. RETIS at the ab initio level

A specific water molecule in liquid water takes 10 hours before it dissociates to
hydronium (H30") and hydroxide (OH™) ions[31]. Using brute force ab initio
MD, with time steps of 1 femtosecond these 10 hours would require 3.6 - 10
steps. This is an astronomical amount of steps, however because over 99.9999% of
the these steps give no information related to the dissosiation of water into H3O™
and OH™, a smarter algorithm can reduce the computational cost without loss of
information, which is why RETIS can be used.

11



B. Welfler KJ2900

To give an estimate of the CPU time needed to simulate 3.6 - 10! steps with
present day computational resources. For a similarly sized system with 64 water
molecules and 1 chloride ion, using a cluster of 4 nodes with 32 cores, it took about
45 minutes to simulate 1 ps (30. April 2020. Personal information. Mogadam,
M.). 1 ps of simulation would then require 1 000 MD steps. This means if we
assume that the system for water dissosiation is similar to the system above, it
would take 1.62 - 10*® minutes to simulate the occurence of the water dissosiation,
which is roughly equal to 3 trillion years. The dissociation of water molecules is
a rare case among rare cases, therefore this is not the most representative result,
therefore we will give another example where we compare brute force MD and
RETIS at the ab initio level.

Another article compared path sampling using RETIS with ab initio MD to investi-
gate mechanicsms and rate of silicate dimerization reactions in aqueous phase[18].
It was found that the rare event occured once per 50 000 ps of simulation time,
this means a brute force simulation would have to simulate 50 000 ps of simulation
time to observe the event once. This would require 2 250 000 minutes of CPU
time, which is slightly more than 4 years. Using RETIS it was possible to generate
2 000 reactive trajectories, which would have required to simulate 100 ps using
brute force ab initio MD.

Using the same system as previously it would require 4.5 - 10° minutes, which

equates to 8562 years of simulation, just to get the same amount of trajectories
as with RETIS. Comparing brute force ab initio MD using a timestep of 1 fs to
RETIS, it would require 2.0 - 10'* force evaluation with brute force ab initio MD.
According to the article RETIS requires a number of force evaluations equating to
between 1 000 and 1 400 ps of MD simulation, which equates to between 1 000 000
and 1 400 000 force evaluations. Comparing the efficiencies in force evaluations
RETIS produces roughly a 100 000 times speed increase, meaning it would take
RETIS close to 31 days instead of 8562 years.

Now let us look at how RETIS and brute force MD compares for redox reactions.
Given the redox reaction

Fe’t 4+ OH® — Fe*" + OH™ (4.2)

where the reaction rate constant, k, is 3 - 108 —£—[32]. In a system with one Fe(II)

ion and one OH*® radical in a water solution consisting of 64 molecules it is possible
to calculate the reaction rate using eq. 3.7 to get

rate = (3 - 108m0L.S)[F62+][OH'] (4.3)

To get the rate for this system it is necessary to take into account the size of the

12
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system, so for the proposed system the rate becomes

L [ ]
rategys = (3 - 108m)[F62+][OH ]+ Viys - Na (4.4)
where Vg, is the volume of the system and N4 is avogadro’s number. Using the
density of water[33] and disregarding repulsion forces and the volume occupied by

OH and Fe, we get

rateg,s = (3-10° )-(0.87mol L™)?-1.92-107%*L-6.022-10%*mol ! = 2.60-10%s"

(4.5)
The expected time for the event to happend is given by the inverse of the rate
of the system, which then becomes 3.84 - 1072 seconds, which is about 3840 ps
of simulation time. Using the same system as assumed earlier where it took 45
minutes to simulate 1 ps, it would take about 172 800 minutes to run these simula-
tions, which equate to about 120 days. This is a long time, but simulation time of
4 months are not unusual in the field of computational modelling. However there
is no reason to waste computational resources in a situation like this, if better
algorithms are available and provide the same information.

mot - S

It is difficult to know how much RETIS would have sped up these calculations
because it differs depending on the type of system being sampled. Previous it
was 100 000 times faster, but RETIS gives better results compared to brute force
MD when the event sampled is more rare. In the case of 120 days brute force
ab initio simulation a RETIS simulation of several weeks to generate enough tra-
jectories to be able to calculate e.g. the rate constant (30. April 2020. Personal
communication. van Erp, T.S).

Conclusion

There are many approaches to simulating different properties of a chemical reac-
tions. Choosing the correct method for the right application is crucial as in worst
case scenarios simulation can take trillions of years, however with a smart method
this can be dramatically reduced as these standard methods would sample mostly
the stable states, and not the transition events. For reactions such as breaking
and forming of bonds, or redox reactions it is necessary to use ab initio MD over
classical MD because even specialized force fields still struggle to produce accurate
results compared to ab initio MD. For redox reactions it is even more important
to use ab initio MD over classical MD because the coordinates of the nuclei only
changes slightly during the electron transfer, which makes it nearly impossible to
parameterize reactive classical force fields for this event.

13
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For simulating the transition state between redox reactions it is both possible,
and recommended to use RETIS because of the short time scale of brute force ab
initio MD and because redox reactions spend most of the time in either reactant
or product state.

We have seen for standard reactions in comparing brute force ab initio MD with
RETIS on ab initio level. The brute force MD would require 8 562 years of CPU
time in one of the examples, while RETIS at ab initio level would only require
31 days. For redox reactions we did a similar calculation which proved that brute
force ab initio MD would require 120 days to observe a single event, it is likely
that RETIS could have simulated enough trajectories to calculate properties such
as rate constant in a couple of weeks.

14
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