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Background and objective 

A mathematical turbine model is essential when analyzing and doing transient simulations of 

hydro power plants. A mathematical model can be simple, or it can be complex. It can be built 

on empirical data, or equations describing the physics (1st principles approach). Often models are 

a combination of empirical relations and 1st principles approach where the focus is put on one or 

the other. The drawback with empirical models is dependence on laboratory data for a particular 

turbine. Such data are often not available for new plants, and/or they are not generally available 

due to ownership. They are considered to be sensitive corporate data, and detailed competence is 

needed to use that data correct in a model. The drawback with models based on 1st principles 

approach is the dependence on "tuning parameters" when higher accuracy is needed/wanted. The 

advantage with models based on 1st principles approach is that on a generic level, a correct 

mathematical description is obtained independent of the degree of detailing, and therefore the 

model can be used by a much larger "audience". 

 

Through the project work the candidate has intrinsic knowledge of the 1st principles approach 

model first developed by Nielsen, and about the special difficulties of simulating hydro power 

plants. In this Master thesis the candidate shall analyze the model further and look at ways to 

improve it. This work can for instance include, but not limited to; Characteristic values based on 

speed numbers of real turbines, implementing the improved model in LVTrans and/or in 

Simulink, compare results from simulations and measured data from real powerplants and so on.  

 

This Master thesis has a high degree of risk with respect to the results. It is not a given that the 

chosen procedures and analyzes will lead to the expected results. All results, good and bad, 

therefore has to be considered as valuable and should be documented in the thesis. 

 

 

The following tasks are to be considered: 

1 Make a level headed preliminary plan based on the existing status (the project work). 

2 A literature study in relevant topics with respect to the plan. 

3 Execute the plan and continuously evaluate it based on current results. 

4 Eventual adjustments of the plan taking into account the time frame, and continue with 2 and 3. 

5 Write the Master Thesis 
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Abstract

In this master thesis, analysis of the performance of a mathematical hydro turbine model
has been conducted. The model is based on a first principles approach, making it physi-
cally correct and applicable to any turbine. It was developed several years ago, and is based
on Euler’s turbine equation and the definition of turbine opening degree. It has later been
modified and simplified, as well as linearized for implementation into simulation software.

Based on experimental turbine data, runner wheels were designed and models con-
structed. Characteristic curves were plotted using the equations in order to compare model
behaviour to measured behaviour. Attention was focused on how the model captures en-
ergy loss and predicts efficiency at different operating conditions. The analysis showed
relatively good agreement of efficiency as a function of runner speed, but efficiency as a
function of flow rate is overpredicted. The equations struggle to capture hydraulic losses
caused by irreversible flow phenomena like friction, turbulence, swirl in draft tube, etc.

With the intention to correct for this weakness, so-called ”incipient efficiency”, ηi,
curves were fitted to measurements and implemented into the model. They were approxi-
mated as a function of flow rate, and can also be generalized with respect to turbine speed
number, Ω. The speed number relates nominal flow, head and rotational speed in a single
dimensionless parameter. The overall objective is to improve model accuracy without loss
of generality, and for it to remain independent from empirical relations.

The results showed how the hill shape in the performance diagram is altered by ηi.
In general, the behaviour is predicted well around the efficiency peak, and along the lines
of constant nominal speed or opening degree. This implies that the model can be used
in stability- or grid analysis. For more general transient analysis, especially for operation
far away from optimal, further work to improve model accuracy was demonstrated to be
necessary.
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Sammendrag

I denne masteroppgaven har en matematisk modell for vannkraftturbiner blitt analysert.
Modellen er basert på en ”grunnprinsipp”-tilnærming, hvilket gjør den fysisk korrekt og
anvendbar for enhver turbin. Den ble utviklet for flere år siden, og er basert på Eulers
turbinlikning og definisjonen på turbinens åpningsgrad. Modellen har senere blitt modi-
fisert og forenklet, så vel som linearisert for implementering i simuleringsprogramvare.

Basert på eksperimentelle turbindata har løpehjul blitt designet og modeller konstruert.
Karakteristiske kurver ble plottet ved hjelp av likningene for å sammenligne simuleringer
mot målinger. Det ble lagt vekt på hvordan modellen fanger opp energitap og predik-
erer turbinens virkningsgrad ved varierende driftsforhold. Analysen viste relativt god ov-
erensstemmelse for virkningsgrad som funksjon av rotasjonshastighet, mens virknings-
grad som funksjon av volumstrømning er overestimert. Likningene har problemer med
å inkludere hydrauliske tap forårsaket av irreversible strømningsfenomener som friksjon,
turbulens, virvling i sugerøret, osv.

Med hensikt å forbedre denne svakheten, ble såkalte ”incipient efficiency”, ηi, kurver
tilpasset målinger og implementert i modellen. De ble tilnærmet som en funksjon av
volumstrømning, og kan i prinsippet også generaliseres med hensyn på turbinens fartstall.
Fartstallet relaterer nominell volumstrøm, fallhøyde og rotasjonshastighet i én enkelt di-
mensjonsløs parameter. Overordnet mål er å forbedre modellens nøyaktighet uten å gå på
bekostning av generalitet, samt at den skal forbli uavhengig av empiriske sammenhenger.

Resultatene viste hvordan virkningsgradsdiagrammet endres av ηi. Generelt er ytelsen
godt predikert rundt virkningsgradstoppen, samt langs kurver for konstant optimal ro-
tasjonshastighet eller åpningsgrad. Dette innebærer at modellen kan anvendes i stabilitets-
eller kraftnettanalyse. For mer generell analyse av transienter, spesielt ved drift godt uten-
for optimale forhold, ble det vist at ytterligere arbeid for å forbedre modellens nøyaktighet
er nødvendig.
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Nomenclature

Symbol Definition Unit

t Time [s]
x Distance [m]
g Local gravitational constant [m/s2]
ρ Water density [kg/m3]
f Darcy-Weisbach friction factor [−]
a Pressure wave propagation velocity [m/s]
L Penstock pipe length [m]
A Inner pipe cross section area [m2]
D Inner pipe diameter, or turbine runner diameter (specified) [m]
r Turbine runner radius [m]
B Turbine runner inlet height [m]
ZP Number of pole pairs in the generator [−]
aij Linearization coefficient/ characteristic [−]
s Complex frequency, jω, variable of the Laplace domain [rad/s]
Z Hydraulic impedance, ratio of complex head to flow [s/m2]
C Capacitance of fluid in pipeline [m]
Ω Speed number/ specific speed [−]
ṁ Mass flow rate [kg/s]
Q Volume flow rate [m3/s]
q Per unit volume flow rate, Q/QR [−]
H Available piezometric (pressure) head [m]
h Per unit available head, H/HR [−]
n Runner rotational speed [rpm] or [rad/s]
ω Runner rotational speed [rad/s]
ω̃ Per unit runner rotational speed, ω/ωR [−]
P Mechanical power [W ]
p Per unit mechanical power, P/PR [−]
Y Guide vane opening degree [m2]
y Per unit guide vane opening degree, Y/YR [−]
η Hydraulic (also referred to as Euler) efficiency [−]
η̃ Per unit hydraulic efficiency, η/ηR [−]
ηi Incipient efficiency [−]
T Mechanical torque [Nm]
t Per unit mechanical torque, T/TR [−]
TS Starting (ω = 0) torque [Nm]
tS Specific starting torque, TS/ṁ [Nm/(kg/s)]
mS Per unit specific starting torque tS/tR [−]

vii



Symbol Definition Unit

Q11 Flow of turbine having unit head and unit outlet diameter [m1/2/s]
N11 Speed of turbine having unit head and unit outlet diameter [m1/2 rpm] or

[m1/2 rad/s]
T11 Torque of turbine having unit head and unit outlet diameter [kg/(m2s2)]
QED Dimensionless flow factor [−]
NED Dimensionless speed factor [−]
TED Dimensionless torque factor [−]
Twt Hydraulic (water) inertia time constant for the turbine [s]
Twp Hydraulic (water) inertia time constant for the penstock [s]
Ta Rotating masses (generator) inertia time constant [s]
ψ Machine constant [−]
ξ Machine constant [−]
sD Geometrical constant [m2]
σ Geometrical constant [−]
c Absolute water velocity [m/s]
u Runner peripheral velocity, ωr [m/s]
v Relative water velocity [m/s]
α Absolute flow direction [◦]
α1R Best efficiency (rated/ nominal) guide vane angle [◦]
β Relative flow direction [◦]
cm Absolute water velocity in meridional direction [m/s]
cu Absolute water velocity in peripheral direction [m/s]
vm Relative water velocity in meridional direction [m/s]
vu Relative water velocity in peripheral direction [m/s]
Rf Hydraulic friction loss coefficient [s2/m5]
Ri Incidence loss coefficient [s2/m5]
Rd Draft tube loss coefficient [s2/m5]
Rk Minor kinetic loss coefficient [s2/m5]
Rdf Disk friction loss coefficient [kgm2]
Rmf Mechanical friction loss coefficient [kgm2]
pj Polynomial coefficients [−]
aj Fourier series even (cosine) coefficients [−]
bj Fourier series odd (sinus) coefficients [−]
ω0 Fundamental frequency of the Fourier series [rad/s]
a, b, c, d Exponential function coefficients [−]
a, b, c Power function coefficients [−]
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Chapter 1
Introduction

1.1 Background and motivation

The electrical power system is undergoing great changes as technological development
and political action struggle to combat the greatest challenge of the world today, climate
change. Implementation of variable renewable energy sources (VRES) like wind and solar
is accelerating, but this involves more variability and uncertainty. Electrical production
to the grid must always match total consumption, following seasonal variations and in-
stantaneous fluctuations, in order to keep the grid frequency constant. This is necessary
to maintain power system stability and reliability [1]. The need for flexible resources and
energy storage capacity is growing fast. Hydro power can provide flexible generation, and
pumped hydro can also provide storage when there is excess production in the system [2].
Hydro power is today a sophisticated technology, and highly prevalent in Norway given
our topography. Total installed capacity in 2019 was 32 256 MW, the largest amount of
installed hydro power per country in Europe [3].

To ensure optimal design and operation of new and existing hydro power plants, mod-
elling the system is crucial. Mathematical turbine models are necessary for performing
dynamic and transient analysis of systems and system components. The overall objective
is the ability to predict behaviour and test scenarios without performing full-scale testing,
which may not be a feasible option.

A mathematical model describes the system of interest with equations, and can be dis-
tinguished according to its basis. First principles models are based on established physical
laws, without having to make any assumptions. Empirical models are based on data from
experiments or observations, not necessarily supported by theory. Most hydro turbine
models in practical use are a combination. Further classification according to the nature of
the equations includes linear versus nonlinear models, or steady versus nonsteady models.
The former involves the relationships between dependent and independent parameters, and
the latter involves dependency upon time in the equations (any transient terms).
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Chapter 1. Introduction

A turbine model strives to predict performance at different operating conditions as
accurate as possible. This includes the efficiency, generally defined as the energy trans-
formed to mechanical energy on the shaft by the runner, divided by the hydraulic energy
available in the water [4]. For a reaction turbine like Francis, the water is a continuum
from upper reservoir (or any closer open surface like a surge shaft), through the runner
to the lower reservoir. Pressure transients in the system are due to changes in the flow,
which is defined by the turbine and depends on available pressure head, angular speed of
the runner and guide vane opening. The turbine’s torque on the shaft, which defines the
mechanical power output and thus the efficiency with respect to hydraulic power, depends
on the same variables through the flow. These intrinsic functionalities between different
variables, call for accurate mathematical models.

Hill diagrams, also known as performance or characteristic diagrams, are a common
and convenient way of presenting (stationary) turbine performance for a wide operating
range. In such diagrams, the abscissa represents runner speed and the ordinate represents
flow rate, usually given in parameters incorporating also the available pressure head. Char-
acteristic curves relating flow to speed at constant guide vane opening (Francis, Kaplan,
etc.) or nozzle opening (Pelton) are plotted together with contour lines of constant effi-
ciency. These contour lines will form a hill towards the point of maximum efficiency.

To accurately present a turbine by its performance diagram, requires its complete de-
sign to be known and laboratory tests to have been performed on a geometrical similar
model turbine. To allow for system simulations in the early stages of a project for con-
structing a new plant, one must rely on diagrams from similar runners [5], or model the
turbine in another way.
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1.2 Previous work: project thesis

During the spring of 2019, the project thesis titled ”Modelling of hydro power plants” was
written. The main objective was to model and simulate a simplified hydro power plant
using turbine models of various complexity. Figure 1.1 illustrates the system of interest,
in which the turbine unit was either a Francis or a Pelton.

Figure 1.1: The simplified hydro power plant modelled in the project thesis, consisting of turbine
unit, uniform penstock pipe and upper reservoir.

The waterways, consisting of a simple penstock connected directly to a free water
surface representing the upper reservoir, was modelled by an inelastic friction-free linear
model in the frequency domain. The turbine unit was modelled by two different mathe-
matical models. The simplest was a valve model, and the more complex and emphasized
one was a model developed from Eulers turbine equation and the opening degree defini-
tion. This is a steady version of the model first developed by professor Torbjørn K. Nielsen
in his doctoral thesis [6], which has later been modified and linearized in works like [7]
or [8]. Both models are based completely on physics and involve no empirical relations, a
first principles approach. Nevertheless, measurements of a given turbine can be used for
”tuning” to increase model accuracy, making it no longer independent from experiments.

In the project work, focus was put on a thorough derivation of the equations, in order
to gain understanding of the physics behind and their validity. During derivation of an
expression for the total available specific energy gH , the opening degree definition was
substituted in, and the general efficiency function or loss term was lost. The opening de-
gree simply relates flow and head to guide vane/ nozzle opening, while the energy loss is a
constant only correct at rated speed. Mathematically, this is the ”root” of the model weak-
ness described in [5] [7] [8], and in the project thesis. The problem stated is that without
additional loss models, its capability to predict hydraulic losses at off-design conditions is
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highly inaccurate. The model simply does not comply with practical experience [5].

The model’s efficiency prediction was briefly demonstrated and attempted corrected
for in the project thesis. Using a simple set of efficiency data from prototype measure-
ments, a curve was fitted to correct for the underestimate of losses by the model.

The linearized version was also emphasized due to its simple application in exist-
ing simulation software. Analytical derivation of the characteristics (linearization coef-
ficients) was thoroughly performed for an arbitrary working point and at best efficiency
point (BEP). For simulations in SIMULINK1, characteristic values were calculated by
these expressions as well as numerically. The consistency of these values were in the
range of 10−8 to 10−14, confirming the analytical expressions with the model equations.

1Graphical programming environment for modelling, simulating and analyzing multi-domain dynamic sys-
tems. It is based in MATLAB, a numerical programming environment and language.
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1.3 Delimitation and objective of master thesis
The problem description states that the master thesis involves further analysis and im-
provement of the model of subject, but it does not specify how these parts are to be carried
out. Problem delimitation, and exactly how to perform the analysis and the improvement,
was completely up to the author (master student), supported by continuous guidance and
conversations with supervisor Bjørnar Svingen.

The first main objective of this work is to proceed the analysis of the mathematical
turbine model from the project thesis, both the original nonlinear as well as the linearized
version. The nonlinear equations can produce turbine performance characteristics. The
linear equations, by calculating the gradients in a certain operational point, can predict
behaviour for small deviations from this working point. The focus of the model analysis
will be on the nonlinear equations and their accuracy for different Francis runner designs.
Special attention will be devoted to their capability to predict losses at off-design condi-
tions, without refinements by empirical data.

The second main objective of this work is to improve the model by applying experi-
mental data. Based on accessed measurements from Rainpower2, improved incipient ef-
ficiency curves, ηi, will be proposed. Their intention is to capture off-design losses more
accurately than the first proposed parabola in [5]. There are a number of fundamental en-
ergy losses occurring when hydraulic pressure head is transformed to mechanical torque
on the shaft by the runner, these will be investigated from a modelling perspective in the
Theory section. Even though the incipient efficiency approach does not distinguish be-
tween type or location, some basic understanding is crucial.

In stead of only tuning the model to fit the measurements for a specific turbine, the
data will be used to generalize. Ideally, a large quantity of performance data from a vari-
ety of different runners should be available to do so, but such data are usually considered
sensitive corporate information, which limits the access. To demonstrate the concept, gen-
eralization will be based on three model Francis turbines of diverse optimum working
points. First, the improvement will be demonstrated for these runners specifically. Sec-
ond, generalization will be attempted based on runner type/ estimated design point. The
intention is for the model to remain independent from specific measurements after gener-
alization. Therefore, ηi should be a function of a priori known variables.

The full block diagram implementation from the project thesis will be omitted in this
work, but the linear model version is still relevant. Comparison of analytically derived
characteristics against gradients from the data will be performed at BEP. Analysis of char-
acteristic values can provide insight into the relationships of turbine variables.

2Turbine manufacturer, among other things.
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To get a better grip of this thesis’ structure and progress, the below presented flow
chart in figure 1.2 can be helpful for the reader. To facilitate continuous and easy reading,
discussion will not be treated in a separate chapter. The presented work will be discussed
along the way, however in separate subsections clearly marked with a headline.

Figure 1.2: Master thesis’ structure and progress including chapter numbers. The flow chart is
included as an aid for the reader.

1.4 Paper for the IAHR Symposium 2020
A paper about the current development on this model has been written by B. Svingen, A.
F. Reines, T. K. Nielsen and P. T. Storli. Parts of the results produced and presented in this
master thesis, has also been included in this paper. The paper was submitted and accepted
for presentation at the IAHR 30th Symposium on Hydraulic Machinery and Systems to
be held in July 2020, Lausanne in Switzerland. The paper was submitted about one week
prior to the thesis’ submission, and is therefore included in Appendix A1.
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Chapter 2
Literature Review

This chapter contains investigation into how hydro power plants are modelled in literature.
Even though closely coupled, the literature review will distinguish between modelling of
the waterway system and the hydraulic turbine. The study of turbine modelling had two
main focus. First, gain some overview over general structure of mathematical turbine
models. Second, gain understanding on how efficiency or energy losses are commonly
modelled. Given the thesis’ emphasis on performance or efficiency prediction, under-
standing of energy losses is important.

2.1 Modelling the waterway system

For a complete hydro power plant model, the waterways upstream and downstream the
turbine must be modelled. The downstream part - for reaction turbines usually consisting
of a draft tube and sometimes a discharge channel - may in some simplified models be
included in the turbine model.

Briefly discussed in the project thesis, effects of water compressibility and pipe elas-
ticity mainly depends on two factors:

1. Length of penstock, or length from turbine unit to the closest upstream open surface.

2. The intended opening or closure time of guide vanes/ nozzles, i.e. how rapid a
transient is performed.

The longer penstock or the more rapid transient, the more significant is the elasticity
of the upstream water column. This will influence the choice of model and its accuracy
for a given system.
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The starting point for most mathematical waterway models is the Water hammer equa-
tions; the equation of motion and the continuity equation. These differential equations
were presented in the project thesis taken from [9], and are frequently presented in lit-
erature. They couple the dependent variables hydraulic head H and discharge Q, using
the independent variables distance x and time t, for a fluid-filled pipe of constant cross
section. The solution procedure and any simplifications to these fundamental equations
are usually what sets different waterway models apart. The equations can be solved in the
time domain or the frequency (Laplace) domain. A few methods frequently occurring in
the literature will be presented or referenced to in the following.

2.1.1 Frequency domain solution with inelastic approximation
In the project thesis, a simplified model solving the equations in the frequency domain,
was used. Water compressibility effects and pipe friction was neglected, resulting in a
very simple transfer function relating per unit head h and flow q:

h

q
= − Twp s (2.1)

Where
Twp =

QL

gAH
(2.2)

The penstock dynamics is described purely by the ”hydraulic inertia time constant”,
also known as the ”inelastic water time constant”. Twp is given by pipe dimensions L and
A, and by flow Q and net head H at BEP. This is a ”lumped mass” model assuming rigid
pipe. As demonstrated in the project thesis, its implementation into block diagram soft-
ware in combination with some linear turbine model, is highly convenient. Its accuracy,
however, mainly depends on the two factors stated above.

2.1.2 Other frequency domain solutions
More complex solutions to the Water hammer equations in the frequency domain can in-
clude the elasticity of water and pipe. In literature like [9] ch. 12, or [10] [11], the differen-
tial equations are solved using a linear impedance method based on electrical transmission
line theory. The resulting transfer functions for head and discharge at the upstream ”U”
and downstream ”D” sections of a single pipe becomes [9]:

HD = HU cosh (ZCCLs) − QUZC sinh (ZCCLs) (2.3)

QD = −HU

ZC
sinh (ZCCLs) + QU cosh (ZCCLs) (2.4)

Where ZC is the hydraulic surge impedance, C =
gA

a2
is the capacitance of fluid in

a pipeline, L is pipe length, A is pipe cross section and a is the propagation wave speed.
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In general, hydraulic impedance Z in a fluid system is defined as the ratio of complex
head to complex discharge at that particular point; Z(x) = H(x)/Q(x), and is therefore
independent of time [9]. These equations are presented slightly different in [10] or [11].
For instance, the head transfer function in equation 2.3 can also include a head loss term.

To study the frequency response of a fluid-filled pipe, the above transfer functions for
head, discharge and hydraulic impedance, must be applied together with boundary condi-
tions presented in a suitable manner for complex number calculations [9]. For a simple
plant with a single penstock, the upstream boundary condition can for instance be the
reservoir or a surge shaft having a specified pressure head given by the water level. The
downstream boundary condition can be a lower reservoir water level, or a reaction turbine
and its associated model. For a penstock supplying a Pelton, the downstream boundary
condition can be the atmospheric pressure head at the location of the nozzle opening.

Another transfer function method is the Structure Matrix Method developed by Her-
mod Brekke in his doctoral thesis, described in detail in works like [12] [13].

There also exists Finite Element Methods (FEM) to numerically solve the governing
equations in the frequency domain. An example from literature is the fluid-structure inter-
action (FSI) analysis performed in the doctoral thesis of supervisor Bjørnar Svingen [14].

2.1.3 Time domain solutions and Method of Characteristics
Numerical solutions to the Water hammer equations in the time domain can include dif-
ferent Finite Difference Methods (FDM) or Finite Element Methods (FEM). To narrow
the literature study of waterway models, these were not investigated, only the Method of
Characteristics (MOC) was.

The characteristics method is a numerical method for solving hyperbolic partial dif-
ferential equations in time and space [6]. It is commonly used for calculating pressure
transients in hydro power systems. In the software LVTrans, which uses the turbine model
of investigation in this thesis, MOC is ”the brain” [15]. The solution is approximately
analytically exact and the method is computationally inexpensive (fast).

The procedure is applied in a so-called ”staggered grid” in space (one-dimensional
along the pipeline) and in time, a ”xt-grid”. The Water hammer equations are transformed
to a set of ordinary differential equations (ODEs), which are solved analytically to obtain
two algebraic equations. These equations describe the transient propagation of pressure
head and flow in a pipeline, and are to be solved for H and Q at a given position and time.

Even though MOC was carefully studied during the literature review, a detailed recipe
will not be included as it is somewhat outside the scope of this thesis. The method has
been well documented in literature, for example [9] or [6] (Appendix A) provide thorough
and understandable formulations.
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2.2 Modelling the turbine
Turbine models can be used when experiential data are unavailable or limited, or when
iterating in a diagram based on curve fitting of measured points [5], is too much trouble.
There exists a large number of turbine models in literature and in use. They can be linear
or nonlinear, steady or unsteady, simple or complex, and so on. The exact functionalities
between variables, any transient terms or empirical relations, are mainly what sets different
mathematical models apart. In this section, some relevant literature on turbine modelling
will be reviewed.

2.2.1 Characteristic curves in dynamic modelling
The Hill chart with its characteristic curves represents the steady performance of a tur-
bine. This is why there has been discussion about using it also for modelling the dynamic
response. The error of doing so was investigated by prof. Nielsen in his doctoral thesis
[6]. He proposed that the hydraulic inertia in the turbine, I , also expressed through the
”turbine water” time constant Twt, is the main reason for the deviation between stationary
measurements and dynamic path during a transient. He proposed a redefinition of the tur-
bine net head including the hydraulic inertia (a dynamic net head), resulting in improved
consistency between stationary and dynamic measurements when corrected for.

2.2.2 Linear models
For small disturbances from an operating point, linear models based on transfer coeffi-
cients representing the gradients (linearization coefficients), can be applied. For larger
disturbances, either the transfer coefficients must be recalculated within each subsection,
or nonlinear models must be applied [16].

Characteristic values of linear models are usually calculated based on performance
curves, and must be recalculated from the diagram for every operating point of investi-
gation. There also exists methods for calculating them based on ”internal characteristics
equations” such that prototype measurements are not needed [16] [17]. In [17], both meth-
ods for the linear model are explained and exemplified by simulations. In the project thesis,
mathematical expressions for the characteristic coefficients of the linearized model of in-
vestigation, were derived for an arbitrary linearization point and for best efficiency point.
This is a way of calculating without measurements, but their accuracy was not investigated.

2.2.3 Nonlinear models
The work of the 1992 IEEE Working Group on Prime Mover and Energy Supply Models
for System Dynamic Performance Studies [18] is frequently highlighted in literature. They
presented different formulations of linear and nonlinear turbine models taking into account
both inelastic and elastic water column. One of their main objectives was to present basic
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physics of the hydraulic turbine and its controller. This is why their proposed models are
extensively used as base models, both in literature and in industry, requiring refinements
according to the plant configuration and the intended simulation [10]. Following the work
of [18], several subsequent works have provided different formulations and improvements
to their models.

In [10], the authors state the main developments since the 1992 IEEE formulation have
been within plant control and governor models. The turbine energy transfer is still mod-
elled by a linearization around a working point or some variant of the IEEE nonlinear
model. [10] proposed a ”new” turbine formulation taking into account real sources of
major loss, eliminating the use of ambiguous correction factors. Simulations with the pro-
posed model are compared to simulations using the 1992 IEEE inelastic waterway model
[18] and the model by Kundur [19], and validated against full-scale test data. The pro-
posed model shows the most consistency with respect to the measurements.

2.2.4 The Euler turbine equation

It is common to use the Euler turbine equation as a starting point when formulating model
equations, as performed in works like [5] [6] [8] [10] [20], among many. The Euler equa-
tion is correct for any turbomachine and holds in its entire operating range, but the exact
functionality for the ”Euler efficiency” (or hydraulic efficiency) making it hold, is not
specified. In [20], the authors presented simulations using three very simple models. All
three having the Euler equation as a starting point, formulating the same torque equation
but different head equations. They are independent from measurements, i.e. contain no
empirical relations and require no tuning. None of them can be used directly for modelling
a turbine as they are all too simple and inaccurate. However, the investigation provided
insight into the actual physics and illustrated the importance of including additional loss
models when using Euler’s equation. Especially the importance of ”incipient loss” (also
called incidence or shock loss) at runner inlet was highlighted.

The simplest of the models in [20] was also used in [10], however they subtracted from
the theoretical available specific energy (given by Euler) a number of loss terms based on
empirical formulas. As expected, this significantly improved accuracy with respect to real
turbine performance.

2.2.5 Physics-based versus empirical based

One tendency from the literature seems evident; Mathematical models based on a first
principles approach are always correct as they are based purely on fundamental physical
laws. However, they can become quite inaccurate when applied to a specific system, or
they may require tuning, which can be challenging without detailed knowledge about the
system and its behaviour.
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The complexity of physically based models can vary. For example Euler theory simpli-
fies the complex three-dimensional runner blade structure to a two-dimensional axisym-
metric geometry, and applies to this control volume the law of conservation of angular
momentum using the velocity components at inlet and outlet (for some streamline). In
comparison, solving the Navier-Stokes equations for the three-dimensional flow field in-
side the turbine using computational fluid dynamics (CFD) techniques, are also a way of
modelling based on first principles approach. The latter example is significantly more
complex and usually very computational expensive (slow). Analysis involving CFD has
not been studied in this Literature review as it was considered outside the thesis’ scope.

It appears from the literature that most industrially applied turbine models are also
based on empirical relations. This makes them dependent on experimental data for the
specific unit, or on previous works on empirical relations. An example of such work is
[21], which examined scale effects of a Francis turbine away from its optimum operating
condition. Based on analysis of component losses of performance measurements from a
number of Francis turbines, loss coefficients of an ”efficiency conversion formula” were
determined. [10] used the work in [21] to determine specific energy loss components.

2.2.6 Steady versus unsteady
Several of the models encountered in literature are steady, but the significance of includ-
ing transient terms is also discussed in some references. In [11], two turbine models were
compared, one using an algebraic equation for the torque and the other using a differential
equation. In the latter formulation, they obtain transfer coefficients similar to the char-
acteristics of traditional linear models. Unlike the linearization coefficients, their transfer
coefficients are calculated analytically using the dynamic parameters of the turbine during
transients. Based on a single step response simulation, they conclude the two models to
behave very similar and thus the transient version to be unnecessary. They state the dy-
namic of the torque to mainly be determined by the dynamic of the hydraulic system at
turbine inlet, emphasising the importance of a good model for the upstream waterways.

2.2.7 An alternative derivation method
Similar to several other models, [6] has a 1D approach using Euler’s turbine equation and
includes empirical correction terms for modelling the losses. The method to obtain the
governing differential equations stands out by using Bond Graph Theory. In the hydraulic
and mechanical systems intended to model, prof. Nielsen recognizes effort or flow sources
and sinks, resistance, compliance and inertia elements. He obtains from the system bond
graph the differential equations by using simple bond graph laws. The same equations
excluding the empirical loss terms, are presented in his more recent work [5], which are
the unsteady version of the model equations being studied in this thesis.
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2.3 Modelling the energy losses
Modelling the turbine involves modelling the losses when hydraulic energy is converted to
mechanical energy. The Euler equation as presented in works like [10] represents the the-
oretical maximum specific energy transfer, but in reality, a number of losses will prevent
the real specific energy transfer from being equal to this. In [20], certain shortcomings
related to capturing losses when using Euler’s equation directly, were demonstrated.

To understand the physics behind different types and under what operating conditions
they are present, works like [4] were useful. In [22], typical percentages for different types
are presented. Further theoretical background of the main energy losses occurring in a
reaction turbine is included in Theory section 3.5.

2.3.1 Scale effects
It appears essential to distinguish between scalable and non-scalable losses, as some types
do not scale proportionally to size for geometrically similar turbines. Such losses and
scaling formulas are discussed in works like [22] [23], and more. When using model tur-
bine efficiency data to improve a turbine model, which may later be applied to prototype
turbines, scale effects can impact the accuracy of such improvement. Nevertheless, for
simplicity of the work, this topic has not been studied in more detail.

2.3.2 Modelling the Hill diagram
Since Hill charts are a convenient way to present turbine performance, to calculate the Hill
diagram with a certain desired accuracy can be the objective of a turbine model. This is
the case in [24], where diagrams for two low specific speed (high head) Francis turbines
of equal main dimensions but different designs, were calculated by a simplified 1D ap-
proach based on runner inlet and outlet velocity diagrams. Unlike many other 1D models,
the calculations in [24] are based on the shroud streamline in the meridional section, not
on the mean one. Four simple loss models intended to capture inlet incidence loss, out-
let residual swirl loss, runner blade friction loss and finally friction and diffuser losses in
the draft tube, are included. These models are functions of vector components from the
diagrams and include empirical coefficients. Surely, other losses present could have been
included to increase accuracy, but these four types were considered most decisive for the
general shape and inclination of the turbine Hill chart. The relatively good correspondence
in diagram shape between calculations and measurements confirms so.

2.3.3 Functionalities and empirical relations
It appears from the reviewed literature that many turbine loss models include coefficients
or terms based on empiricism (experiments or observations). They can be formulated as
a head [m] or specific energy [J/kg] loss, or as a power [W ] loss, subtracting them from
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some expression for the ideal (theoretical maximum) energy or power transfer.

Further, it appears common to divide the losses according to type, as performed for
example in [6] [10] [11] [16] [24], and more. Alternatively or additionally, losses may be
divided according to flow domain where they occur, i.e. location in the system, as per-
formed for example in [10] [24]. They identify the different losses in spiral casing, stay
vanes, guide vanes (or collectively in the distributor), runner and draft tube. [10] further
distinguish between frictional and kinetic losses. The former are continuous and present to
various degrees in all flow fields, while the latter are ”singularities” like wake loss, residual
swirl in the draft tube, losses due to bends, channel divergence/ convergence, etc.

Depending on type and location, the loss models often functionally depend on velocity
vector components, flow rate or flow rate deviation from nominal flow rate, no-load flow
rate or runner rotational speed. Which, indirectly, means they all depend on different ve-
locity vector components at specific locations of a certain streamline.

In [6], losses are modelled by resistance elements in the system bond graph and from
this included in the differential equations. In the hydraulic domain, there is one element
for so-called Bernoulli losses and one for diffusion losses. In the mechanical domain,
there is one element for all turbine losses, which is divided further into head loss, leakage
loss and mechanical loss. Functionalities were determined according to physics, but also
including empirical coefficients. The per unit version of these loss coefficients are tuned
by a trial-and-error method based on peak efficiency operational point, starting torque and
runaway speed. That is, the loss modelling in [6] is dependent on experimental data.

The dependency upon at least some empirical relations seems to be a trend for many
mathematical turbine models. What distinguishes them is mainly the degree of detailing
(number of loss terms) and the calibration methods for determining these. An example of
such calibration procedure is given in [16].
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Chapter 3
Theory

This chapter contains mathematical and physical definitions and relations relevant to the
subsequent work. Basic theory on dimensionless numbers and turbine similarity is relevant
for the processing of experimental data and model inputs/ outputs. Hill diagrams will
be briefly explained and visualized. Following this background, the turbine model of
investigation is presented, including all governing equations and input definitions. The
efficiency prediction is investigated from a mathematical point of view. Entering the world
of energy loss, some theoretical background on the most important types occurring in a
reaction turbine, will be presented.
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Chapter 3. Theory

3.1 Dimensionless numbers

3.1.1 Reduced properties and speed number
When classifying or dimensioning hydraulic turbines, it is useful to work with reduced
values and dimensionless numbers. A reduced parameter is achieved by dividing with the
reference velocity defined as the maximum water velocity possible to achieve for a given
system,

√
2gH . It represents all available energy, and can be obtained if total net head

available to the turbine is transferred without losses to kinetic energy [4] [25]. Dividing
all velocities, including flow rate and angular speed, by this value results in the reduced
properties, denoted by underlined letters.

A highly relevant parameter is obtained by combining the reduced rotational speed
with the reduced flow rate [4]:

Ω = ω
√
Q =

ω√
2gH

√
Q√
2gH

=
ω Q1/2

(2gH)3/4
(3.1)

This dimensionless number is called the speed number or the specific speed. It implies
design condition, meaning that all parameters in 3.1 are rated/ nominal values correspond-
ing to BEP. Some references also use the definition:

Ω =
ω Q1/2

(gH)3/4
(3.2)

Either way, Ω relates nominal speed, flow and head in a single parameter, and can be
used as a reference value for classification. It can in most cases be calculated early in the
design phase of a new turbine, and may assist in deciding appropriate type, size and shape
[4] [25]. In this thesis, the speed number Ω will be calculated according to equation 3.1.

3.1.2 Geometrical similarity
Geometrical similar turbines have similar velocity diagrams, i.e. equal shape (angles), and
equal reduced velocities, in the same operating mode. They also have equal speed number
Ω, but equal speed number in itself does not guarantee similarity of the velocity diagrams.
The Euler equation using reduced velocities expresses the hydraulic efficiency as [4]:

ηh = 2 ( cu1 u1 − cu2 u2 ) (3.3)

If the reduced velocities of geometrical similar turbines are equal, this implies their
efficiency to be equal, however scaling effects due to non-equal Reynolds numbers will
make this statement inaccurate in reality. Friction losses will in general be smaller for
larger turbines due to larger Reynolds numbers, shifting the efficiency slightly for geomet-
rical similar turbines [4] [22]. The main example is scale-up of turbine efficiency from
model to prototype. Scaling effects may also result in a slightly shift in BEP [22].
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Regardless the phenomena of scaling effects, which can be corrected for by scaling
laws, turbine similarity sure has its usefulness.

3.1.3 Unit parameters
It is appropriate to present the definitions of the unit parameters, which are the flow, speed
and torque for a turbine having unit outlet diameter D2 = 1m and unit net available head
H = 1m [6] [25]:

Q11 =
Q

D2
2

√
H

(3.4)

N11 =
nD2√
H

(3.5)

T11 =
Tm
D3

2H
(3.6)

Speed n can be given in rad/s or rpm, mechanical torque Tm is in Nm. It can easily be
demonstrated that these unit parameters are not dimensionless. Defining the mechanical
or hydraulic efficiency η as mechanical output to hydraulic input, it can be expressed as:

η =
Pm

Ph
=

Tm ω

ρgQH
=

T11N11

ρgQ11
(3.7)

The speed number can be expressed in unit parameters as well by substitution into
equation 3.1:

Ω =

(
N11

√
H

D2

)
(Q11D

2
2

√
H)1/2

(2gH)3/4
=

N11 Q
1/2
11

(2g)3/4
(3.8)

For equations 3.7 and 3.8, if speed n is given in rpm in stead of rad/s, a factor
π

30
must

be included in the nominator to achieve correct dimensions.

Notice how the net available head H appears in equations 3.4 to 3.6. A varying 11-
parameter can not only reflect variation in its associated parameter, but also variation in
head. For example variation in N11 can represent variation in speed at constant head, but
also variation in head at constant speed (like at synchronous speed). Physically, variation
in pressure head has the same effect as variation in speed, since the runner is then spinning
too fast or too slow compared to the pressure head [4]. This concept is part of what makes
the unit parameters convenient.

When performing model tests in a lab, it can be difficult to vary the head as this is
determined by the lab configuration. The rotational speed on the other hand can easily be
altered, and by presenting the measurements in this format, the speed can also represent
variation in head. Since most prototypes are suppose to run steady at synchronous speed
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for most of its operation, the speed range of its associated model tests in unit parameters
can also reflect the variation in pressure head the prototype is meant to operate within.
What variation to consider is simply a processing choice.

In theory, unit parameters will result in identical performance characteristics (Hill dia-
grams) for geometrical similar turbines, independent of actual size and net head [6]. This
implies that for turbines of equal speed number Ω and similar velocity diagrams at design
point, one can scale measurements presented in unit values according to rated head H and
outlet diameter D2.

The above parameters are slightly outdated compared to the following unit parameters,
defined and used for instance in [5]:

QED =
Q

D2
2

√
gH

(3.9)

NED =
nD2√
gH

(3.10)

TED =
Tm

D3
2ρgH

(3.11)

Which for n given in rad/s becomes dimensionless, unlike the 11-parameters. Today,
these definitions appear to be more common. The 11- or the ED-parameters can be used
for similar purposes, it is only a matter of definition.
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3.2 Hill diagrams

The illustration below is taken directly from [4] (p.33), and displays a typical turbine
performance diagram.

Figure 3.1: Complete performance diagram having relative speed and relative flow referring to best
efficiency values on the x- and y-axis. Constant guide vane opening lines are plotted together with
contour lines of constant efficiency, forming a hill towards the maximum efficiency.

Hill diagrams are obtained by performance tests on scaled models in a laboratory. The
guide vane opening and rotational speed are changed successively, while the head, flow
and torque are measured. Performance charts can cover the entire operating range, also
outside what is possible in steady state operation for prototypes. This is useful for deter-
mining runaway conditions and behaviour for the case of load rejection [26]. Up-scaling
from model to prototype is regulated by scaling conventions or laws set by the Interna-
tional Electrotechnical Commission (IEC). This is required due to scaling effects, mainly
on the efficiency because of different Reynolds number [22]. In practice, the up-scaled
Hill diagram from model to prototype can only be verified in a small part of its total oper-
ational range, since prototype turbines are designed to run at synchronous speed. Usually,
runaway speed is also allowed for, such that the range between synchronous and runaway
can also be measured if the turbine is disconnected from the grid [6].

Performance diagrams are commonly presented with some version of reduced or unit
parameters for the axes. In this way, the net available head is also incorporated. Non-
dimensionalization by best efficiency values such that the peak appears in (1,1), is often
done. It is relevant to notice how different turbine types or designs will generate quite
different Hill charts. To demonstrate, the below figure 3.2 from [27] also presented in
[26], shows four different turbine performance diagrams.
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Figure 3.2: Hill charts for four different turbine types: Pelton (top left), low speed number (high
head) Francis (top right), high speed number (low head) Francis (bottom left) and Kaplan (bottom
right). The x- and y-axis of these diagrams are reduced quantities relative to best efficiency values.

Notice how flow-speed characteristic curves are completely flat for a Pelton turbine
(top left). Flow is only influenced by nozzle opening and head, runner speed is irrelevant.
The flow-speed characteristics for a Kaplan turbine (bottom right) shows highly unstable
self-governing properties, since increasing runner speed will increase the flow rate. For
this work, the top right and bottom left diagrams of two different Francis runners, are the
most relevant. Notice the differences in gradients of the flow-speed characteristics; the
low speed number one decreasing while the high speed number one slightly increasing
in certain parts of the chart. Also, the general hill shape as well as the shape of the zero
efficiency curve, the ”runaway curve”, is worth noticing.

Even though the Hill diagram describes steady performance, it is often used for dy-
namic modelling, assuming it may represent the turbine in stationary as well as dynamic
performance [6]. A common way to construct a model for the entire plant is to use the Hill
chart (often not directly but transformed) as a boundary condition between models for the
penstock and the draft tube (upstream and downstream waterways).

20



3.3 Mathematical hydro turbine models

3.3 Mathematical hydro turbine models
Structure and complexity of a few turbine models were studied in Chapter 2. Only the
model of investigation, which is the steady version of a nonlinear turbine model based
on physical laws, is considered from this point on. Since Euler’s equation is part of the
starting point for its derivation, a few remarks on this equation will first be included.

3.3.1 The Euler efficiency
Turbine loss involves all energy lost between spiral casing inlet and draft tube outlet, as this
is the usual geometrical definition of the reaction turbine. The hydraulic power removed
from the flowing water is ρgQH , where Q is the water discharge rate, and net pressure
headH is the difference in energy grade line (sometimes referred to as total head) between
the defined turbine inlet and outlet. In an ideal machine, the theoretical available specific
energy given by Euler’s equation, u1cu1 − u2cu2, times the mass flow rate of water ṁ =
ρQ, is exactly equal to the extracted hydraulic power:

ρ g Q H = ṁ (u1 cu1 − u2 cu2) =⇒ g H = (u1 cu1 − u2 cu2) (3.12)

The Euler or hydraulic efficiency, often named ηh or just η, is defined as the deviation
from this ideal machine, that is, the difference between left and right side of equation 3.12:

ηh =
u1 cu1 − u2 cu2

g H
(3.13)

Equation 3.13 is correct for any turbomachine and holds in its entire operating range.
There will always be a numerical value for ηh making it hold [7]. But the Euler equation
does not specify what the efficiency function should be for the relation to hold. The accu-
racy of turbine models based upon Euler’s equation depends on how to model this so far
unknown loss function. A Hill diagram can surely be used, but might not be available.
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3.4 Model derived from Euler and the opening degree

3.4.1 Nonlinear version

The turbine model under investigation is the same as in the project thesis. It is the steady
version of the model proposed by prof. Nielsen in [6], excluding the empirical loss cor-
rection terms as in [5] [7] [8]. It is worth mentioning that the model is one-dimensional
and based on the velocity diagrams at runner inlet and outlet for the mean streamline. A
thorough derivation starting from Euler’s turbine equation and the opening degree defini-
tion including consideration about equation validity, was performed in the project thesis
and will not be repeated. Only the resulting governing equations for p.u. flow and torque
are presented below:

q = y
√
h− σ (ω̃2 − 1) = f(h, y, ω̃) (3.14)

t = q (mS − ψ ω̃) = g(q, y, ω̃) (3.15)

Where q, h, y, ω̃ and t are p.u. turbine flow rate, net head, opening degree (also
denoted as κ in several works), rotational speed and torque, respectively. α1 is defined as
the angle between guide vanes and peripheral direction and is equal to the absolute flow
angle at runner inlet assuming absolute flow velocity c1 leaves the guide vane perfectly
aligned. For a Francis, α1 relates to the p.u. opening degree y (or κ) according to:

y =
sinα1

sinα1R
(3.16)

The geometrical constant σ is:

σ =
ω2
R

8 g HR
(D2

1 −D2
2) (3.17)

The non-dimensional specific starting (when ω̃ = 0) torque mS is:

mS = ξ
q

y
(cosα1 + tanα1R sinα1) (3.18)

The two machine constants ψ and ξ are defined by the velocity vectors at BEP as:

ψ =
u22R

ηR g HR
(3.19)
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ξ =
u1R c1R
ηR g HR

(3.20)

For ξ, it was derived an expression for calculating it from ψ and α1R, which is neces-
sary for calculations in this work:

ξ = (1 + ψ) cosα1R (3.21)

Subscript ”R” denotes rated/ nominal values, which are assumed to correspond to BEP.

3.4.2 Linear version and characteristic coefficients
In the linearized model version, deviation in the dependent variables q or t, can be esti-
mated from deviation in the independent variables times the partial derivatives with respect
to these at the point of linearization. The steady state point is denoted with subscript ’0’
and the variation around it as ∆x = x− x0. The linearized equations are on the form:

∆q = a11 ∆h + a12 ∆y + a13 ∆ω̃ (3.22)

∆t = a21 ∆q + a22 ∆y + a23 ∆ω̃ (3.23)

Where the partial derivatives are the characteristic coefficients of the linear equations,
aij for i = 1, 2, j = 1, 2, 3:

a11 =
∂q

∂h

∣∣∣∣
0

a12 =
∂q

∂y

∣∣∣∣
0

a13 =
∂q

∂ω̃

∣∣∣∣
0

(3.24)

a21 =
∂t

∂q

∣∣∣∣
0

a22 =
∂t

∂y

∣∣∣∣
0

a23 =
∂t

∂ω̃

∣∣∣∣
0

(3.25)

Mathematical expressions for these characteristics were thoroughly derived both for
Francis and Pelton in the project thesis by performing partial derivation of equations 3.14
and 3.15. The resulting expressions for Francis only are repeated in Appendix A2.

Since the dependent variable q is an independent variable in the torque expression,
equation 3.23 (or its nonlinear version 3.15) can be rewritten to have the same independent
variables as the flow equation. Substituting equation 3.22 into 3.23 yields:

∆t = (a21 a11) ∆h + (a21 a12 + a22) ∆y + (a21 a13 + a23) ∆ω̃ (3.26)
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Equation 3.26 implies that:

a21 a11 =
∂t

∂h

∣∣∣∣
0

a21 a12 + a22 =
∂t

∂y

∣∣∣∣
0

a21 a13 + a23 =
∂t

∂ω̃

∣∣∣∣
0

(3.27)

All of the partial derivatives presented above implies the other independent variables in
the equation as constant during differentiation. Physically, guide vane opening y and flow
rate q are closely coupled. It is nonphysical for one parameter to change without affecting
the other, but this is in fact what the characteristic coefficients a21 and a22 implies. Even
though easily calculated analytically, they are more difficult to extract in reality. The pur-
pose of including the above reformulation will be more clear when gradients are extracted
from experimental data later.

Continuing, a linear version of the p.u. mechanical power p = tω̃, must be included:

∆p = a31 ∆t + a32 ∆ω̃ (3.28)

Where the characteristics for an arbitrary linearization point ”0” are the gradients:

a31 =
∂p

∂t

∣∣∣∣
0

= ω̃

∣∣∣∣
0

a32 =
∂p

∂ω̃

∣∣∣∣
0

= t

∣∣∣∣
0

(3.29)

3.4.3 Block diagram representation

Combining equations 3.22, 3.23 and 3.28 with the simplest transfer function penstock

model from section 2.1.1,
∆h

∆q
= −Twps, yields the block diagram presented below. This

waterway model was the simple incompressible friction-free pipe model also used in the
project thesis. In the below diagram, deviation from linearization point can be assumed
implicit such that ’∆’ can be omitted, this is only a matter of definition.
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Figure 3.3: Block diagram representation of the waterway and turbine linear models for an arbitrary
point of linearization.

This can easily be implemented into existing simulation software, as performed in the
project thesis in SIMULINK.

3.4.4 Efficiency prediction
The accuracy of the presented equations in predicting real turbine performance, will be
investigated. It will first be investigated analytically/ mathematically in this section as part
of the theoretical background.

In the project thesis, p.u. hydraulic efficiency η̃ was found as:

η =
T ω

ρ g Q H
=

t TR ω̃ ωR

ρ g q QR h HR
= ηR

t ω̃

q h
(3.30)

=⇒ η̃ =
η

ηR
=

t ω̃

q h
(3.31)

Substituting for p.u. head h and torque t resulted in:

η̃ =
(mS − ψ ω̃) ω̃(
q

y

)2

+ σ (ω̃2 − 1)

(3.32)

Assuming geometry, machine constants and guide vane angle at BEP to be constants
for a given unit. For any operating point, the efficiency have the following functionality:

η̃ = f(q, y, ω̃) (3.33)
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The direct functional dependency upon pressure disappeared, but q is functional de-
pendent upon h such that it is included indirectly. For a given opening degree, efficiency
is a function of flow (or head) and rotational speed. It can be visioned like a 3D surface in
a 3D diagram, which is the Hill diagram where contour lines represent constant efficiency
levels. It is common to present the abscissa and ordinate axes using unit speed and unit
flow, such that the head is also included, as explained previously.

To investigate the model’s efficiency prediction, one may look at the functionality of
equation 3.32 when each of the independent variables are held constant at their rated value.
As before, we assume σ, ψ, ξ and α1R to be known constants for a given unit.

• Constant rated guide vane angle; α1 = α1R =⇒ y = 1

η̃

∣∣∣∣
y=1

=

(
ξ q

cosα1R
− ψ ω̃

)
ω̃

q2 + σ (ω̃2 − 1)
= f(q, ω̃) (3.34)

In the Hill diagram, we are moving along the curves of constant opening degree,
also known as the flow-speed characteristic curves. The shape of these depend on
turbine self-governing properties. For a Pelton turbine, keeping the opening con-
stant is equivalent to keeping the flow constant (if head is also constant). That is,
η̃|y=1 = f(ω̃) for impulse turbines. This does not hold for a Francis where also
runner speed impacts the flow (or the head), not just the opening.

According to [5] [7] [8], along constant y lines losses are mainly determined by the
speed of the turbine, spinning too slow or too fast compared to optimal inlet and
outlet angles (velocity diagrams). Such effects are already included to a great extent
in the model equations, due to the Euler turbine equation being the starting point for
derivation. It can be seen as a strong mathematical dependency of η̃ with respect to
ω̃ in relation 3.34 above.

• Constant rated flow; q = 1

η̃

∣∣∣∣
q=1

=

(
ξ

y
(cosα1 + tanα1R sinα1) − ψ ω̃

)
ω̃(

1

y

)2

+ σ (ω̃2 − 1)

= f(y, ω̃) (3.35)

In the Hill diagram, we are moving horizontally along the x-axis. Opening degree,
head and speed may vary for a constant flow rate to hold for a reaction turbine.

26



3.4 Model derived from Euler and the opening degree

• Constant rated rotational speed; ω̃ = 1

η̃

∣∣∣∣
ω̃=1

=
mS − ψ(
q

y

)2 =

ξ
q

y
(cosα1 + tanα1R sinα1)− ψ(

q

y

)2 = f(q, y) (3.36)

In the Hill diagram, we are moving vertically along the y-axis. This is simply the
performance measured on site when runner is kept at synchronous speed and the
flow is varied by changing position of the guide vanes. The head may also vary with
the flow according to the valve equation when ω̃ = 1:

q = y
√
h =⇒ h =

(
q

y

)2

(3.37)

Therefore, at rated speed the efficiency may also be expressed as a function of pres-
sure head h and guide vane angle α1 or opening y:

η̃

∣∣∣∣
ω̃=1

=
ξ
√
h (cosα1 + tanα1R sinα1)− ψ

h
= f(h, α1) = f(h, y)

(3.38)

• Constant rated rotational speed and flow; ω̃ = 1, q = 1

For most operation in real plants, runner speed is constant since it is connected
to the grid. If also flow rate is kept constant, the efficiency may only vary as a
consequence of variation in pressure head. Since q = 1, ω̃ = 1 in the flow equation
yields y = 1/

√
h, and α1 = arcsin (y sinα1R), this can be substituted into the

above equation 3.38 to yield:

η̃

∣∣∣∣
ω̃=1,q=1

=

ξ
√
h

(
cos (arcsin (

sinα1R√
h

)) +
tanα1R sinα1R√

h

)
− ψ

h
= f(h)

(3.39)

The net head available for the turbine is the difference between spiral casing inlet
and draft tube outlet energy grade lines (EGL). The inlet EGL is equal to the up-
per reservoir water level minus head losses in the waterways. These head losses
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Chapter 3. Theory

are typically friction and component single losses, and they are increasing with the
flow squared. The outlet EGL is equal to the lower reservoir water level plus head
losses due to the (usually low but still finite) water velocity at the draft tube exit [28].

For constant rotational speed and flow thus constant head losses, in theory, only
change in upstream or downstream reservoir levels can change the head and there-
fore change the efficiency. If water levels are constant, we are at a single working
point in the Hill diagram and η̃ is constant.

• Constant rated rotational speed and net head; ω̃ = 1, h = 1

If we picture being able to keep the net head approximately constant at its rated
value for varying flow by minor changes to the reservoir levels, while also running
av constant rated speed, the p.u. efficiency simplifies to:

η̃

∣∣∣∣
ω̃=1,h=1

= mS − ψ = ξ(cosα1 + tanα1R sinα1)− ψ = f(α1) (3.40)

In 3.40, the only dependency on varying discharge is through the guide vane angle
in mS , as also stated in [5]. Substituting for α1 = arcsin (y sinα1R) and using that
q = y when h = 1 and ω̃ = 1, yields:

η̃

∣∣∣∣
ω̃=1,h=1

= ξ(cos (arcsin (q sinα1R)) + q tanα1R sinα1R)−ψ = f(q) (3.41)

The dependency upon q in equation 3.41 is present, but very weak. This was illus-
trated in the project thesis where it was used for plotting efficiency versus flow rate
for three different turbines, two Francis of different design heads and one Pelton.
The curve was unrealistically flat for the Francis turbines and completely flat for the
Pelton, clearly illustrating the need for model improvement on this matter.

The model equations’ strengths and weaknesses will be further analysed in Chapter 6
by comparison to experimental data. But in order to understand more about the physics
of this issue, some more theoretical background about energy loss in reaction turbines is
crucial.
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3.5 Energy loss in reaction turbines

3.5 Energy loss in reaction turbines

In this section, different energy loss contributions in a Francis turbine will be reviewed
from a physical and mathematical perspective. The objective is to uncover the most rele-
vant contributions with respect to the considered model drawback. That is, which are more
significant when discharge is at off-design conditions. The classification is similar to [4]
[6] and several other references cited previously. The different types will be reviewed and
common loss model functionalities presented.

3.5.1 Friction loss

Viscous effects of water flowing through different turbine components will result in energy
losses in all flow domains, analogous to continuous frictional head losses in a pipe. Some
references like [16], refer to these as ”hydraulic losses”, but this name can become too
general. Expressed as a head loss ∆H , frictional losses are typically expressed as [6]:

∆H = Rf Q
2 (3.42)

or even more general:

∆H = f [Q2] (3.43)

Thus being non-zero also at optimum design flow, Q = QR.

Because of the complex geometry of the flow fields, the proportionality constant or
function is challenging to determine. For a simple pipe of constant diameter, the propor-

tionality constant becomes
8fL

gπ2D5
[28]. For the converging spiral casing, the distributor,

the runner flow channel or the diverging and usually elbow-shaped draft tube channel, the
calculation becomes far more complex. According to [22], flow friction typically accounts
for 2.0 - 2.5 % loss in a high head Francis.

3.5.2 Incidence loss

Also referred to as shock or impact loss in literature, incidence loss are present whenever
there is mismatch between relative flow direction and runner blade orientation at inlet.
The incidence angle is defined in 2D as the difference between runner blade angle at inlet
(fixed) and relative inflow angle β1. Incidence losses are assumed to be zero whenever the
incidence angle is zero [6]:
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Chapter 3. Theory

Figure 3.4: Best efficiency operation corresponding to optimal guide vane setting. The optimal
velocity diagrams have zero incidence angle at runner inlet (1) and zero rotational component of the
absolute velocity at runner outlet (2).

The turbine is designed to have zero incidence angle at optimum operating conditions.
Expressed as a head loss ∆H , these losses typically have the following functionality:

∆H = Ri (Q−QR)2 (3.44)

or even more general:

∆H = f [(Q−QR)2] (3.45)

An alternative is to distinguish between positive and negative incidence angles (de-
pending on definition, corresponding to lower or higher flow than design), and express
incidence loss as a function of the difference in tangential components of the relative fluid
velocities squared, as in [10]. Alternatively, one can use directly the vector difference be-
tween real and optimal relative fluid velocity for the same discharge squared, as in [24].

3.5.3 Residual swirl in draft tube

In some references simply referred to as ”draft tube losses”, but this can become too gen-
eral. The considered energy loss is due to swirling of the water at runner outlet, that is, the
peripheral ’u’ component of the absolute flow velocity is non-zero. The energy lost is the
kinetic energy of this velocity vector component, i.e. ∝ cu2

2
.
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3.5 Energy loss in reaction turbines

Figure 3.5: (a) Low flow operation (low guide vane angle) and (b) high flow operation (high guide
vane angle) velocity diagrams at runner inlet (1) and outlet (2). The former yields positive outlet
rotational component, cu2 > 0, the latter yields negative, cu2 < 0, defined according to runner
rotational direction. There are energy losses associated with both operational modes.

The turbine is designed to have zero swirl at runner outlet such that this loss is zero at
optimum conditions, as in figure 3.4. Some references use the peripheral velocity compo-
nent directly in defining this head loss:

∆H = Rd c
2
u2 (3.46)

Others use the flow rate in a similar functionality as for the incidence loss:

∆H = Rd (Q−QR)2 (3.47)

or even more general:

∆H = f [(Q−QR)2] (3.48)

Some references like [16], choose to categorize the two losses, inlet incidence and
outlet swirl, together for modelling purposes. This seems reasonable given that both are
present when velocity diagrams deviate from design operation, illustrated in figure 3.5.

3.5.4 Minor kinetic losses

Even for zero incidence angle, there will be some wake effect from the guide vanes on the
flow. The stay vanes are designed to not disturb the flow (streamlined), but can still impose
a minor loss. In the draft tube, diffusion and bend losses will also be present [10]. These
are all examples of minor kinetic head losses. They can cause flow separation and mixing,
but for a well-designed turbine should be minor compared to other losses like viscosity or
mechanical friction. In several reviewed references, minor kinetic losses are completely
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neglected in the turbine loss model. If they are included, one may express them as a head
loss having similar functionality as single losses in a pipe [28]:

∆H = Rk Q
2 (3.49)

Where the loss coefficient Rk must be specified for each considered component, anal-
ogous to KL in [28] (ch. 8-6).

3.5.5 Leakage loss
Also referred to as volumetric loss, water which escapes the runner wheel will not pro-
duce any work. This energy loss cannot be considered as a head loss, but it is directly
proportional to the flow rate of water leaked, Qleakage, and should be included in the total
efficiency. According to [16], it depends on the sealing method, and according to [6], it is
also a function of local pressure differences in the turbine. Usually, one can assume leak-
age loss to only alter the efficiency level, not the shape, as this loss is relatively constant
for varying speed or flow [6]. It appear common to assume a constant percentage for the
leakage flow, ranging from about 0.25 % as in [16] to about 1.5 % as in [22].

3.5.6 Disk friction loss
Since the runner is installed close to stationary components separated by a layer of water,
there will be disk friction present on the outside of the runner, both at the runner band
(side) and crown plate (top). According to [22], disk friction typically accounts for 1.5 %
loss in a high head Francis. [29] specifically investigated disk friction and leakage loss in
a Francis model turbine using CFD. Among other findings, they found that the total disk
friction power loss is proportional to the rotational speed cubed:

∆P = Rdf n
3 (3.50)

Similar functionality is stated also in [4] [6], but in [6] as a loss in torque and thus∝ n2.

[29] investigated other effects on disk friction and leakage loss as well, including clear-
ance size, rotor-stator interactions, and looked at differences near the runner band versus
crown as well as pressure versus suction side of the blade.

3.5.7 Mechanical friction loss
External mechanical friction in bearings, shaft seals and wear rings are also present. [10]
provide a simple estimation method for this loss by measuring the power required to spin
the runner at synchronous speed in air (drained from water). They assume this power
loss ∆P to be constant over its operating range. Other references like [6] [16] assume
the mechanical friction to be a function of rotational speed, thus relatively constant for a
prototype running at synchronous speed. [6] proposes the same functionality as for disk
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3.5 Energy loss in reaction turbines

friction and categorizes these types together. Expressed as a power loss ∆P , the typical
functionality can be:

∆P = Rmf n
3 (3.51)

Based on the above presented functional dependencies, hydraulic friction, incidence,
draft tube swirl and minor kinetic losses, appear to be most relevant for the subsequent
work of improving model efficiency prediction for constant speed varying flow condi-
tions. Leakage, disk and mechanical friction losses appear to be less relevant, as these are
relatively constant for constant rotational speed.
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4.1 Data access and anonymization

Experimental data from Rainpower were accessed to analyze model performance with re-
spect to real turbine performance, and produce incipient efficiency ηi curves based on the
data. Rainpower is a specialized hydro power business which deliver different equipment
necessary in a hydro power plant, from runners to governor systems. They are a project
organization based on Norwegian technology [30]. Aside from thesis supervisor Bjørnar
Svingen, the author’s contact person in Rainpower was Henning Lysaker, CTO of the tur-
bine laboratory in Trondheim. As requested by Rainpower, their data will be presented
anonymously throughout the thesis.

Measurements covering a certain operational range were given for three different model
Francis turbines. One designed for very low pressure head operation (high specific speed),
one for medium pressure head (medium specific speed) and one for very high pressure
head (low specific speed). A ”typical” classification for low, medium and high head Fran-
cis can be <100 m, 100-300 m and >300 m, respectively. The accessed data are for the
extreme of these heads, but exact values are excluded in the thesis.

Measurements of mechanical efficiency ηm (also referred to as hydraulic efficiency)
were given with measurements of flow Q, speed n, mechanical torque Tm and guide vane
opening angle α1. Flow, speed and torque were presented as unit properties, Q11, N11 and
T11, such that also variation in head is included, as explained in the theory. The design
prototype heads were given, and the point of best efficiency was easily located. The best
efficiency measurements will not be presented in numerical values, but denoted with sub-
script ’R’. All data will be presented in per unit with respect to these. Only presented in
numerical values are the estimated speed numbers since these are highly relevant. They
will be presented in Chapter 5.

The design of a Francis runner depends greatly on the ranges of pressure head and
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discharge it is suppose to operate within, as well as the synchronous speed. Since experi-
mental data were given for three turbines designed to operate under very different heads,
this will allow us to analyze model performance for three very different designs.

4.2 Assumptions and restrictions
When dividing by rated value, notice how the net head ratioH/HR will appear when using
11-parameters (or any version of reduced parameters):

Q11

Q11R
=

√
HR

H

Q

QR
=

q√
h

(4.1)

N11

N11R
=

√
HR

H

n

nR
=

ω̃√
h

(4.2)

T11
T11R

=
HR

H

Tm
TmR

=
t

h
(4.3)

Where h, q, ω̃ and t are the ”real” p.u. head, flow, speed and torque, respectively, as
referred to in previous chapters and the project thesis. If all measurements are assumed
at rated head, h = 1, p.u. 11-parameters are equivalent to p.u. real parameters. In real-
ity, the pressure head will vary with reservoir levels (less relevant for lab experiments but
more relevant for prototypes), with flow rate (head losses are a function of flow) and with
runner speed. For measurements in a certain operational range of speed and flow, a certain
variation in head will also occur depending on the plant.

When presenting the data graphically, one can choose to keep certain parameters con-
stant while letting others vary. This will be clearly specified. For several of the charac-
teristics of interest, the net head is assumed constant equal to its rated value, H = HR

or h = 1, such that p.u. 11-parameters can be used directly. It will also be of interest to
present the data for runner speed assumed constant equal to its rated value, n = nR or
ω̃ = 1. The p.u. expression for head then becomes:

N11

N11R
=

√
HR

H
1 =⇒ h =

H

HR
=

(
N11R

N11

)2

(4.4)

Equation 4.4 gives a basis for evaluating head variation using unit speed N11 values.
The p.u. flow and torque becomes:

q =
Q

QR
=
√
h
Q11

Q11R
=

N11R

N11

Q11

Q11R
(4.5)

t =
Tm
TmR

= h
T11
T11R

=

(
N11R

N11

)2
T11
T11R

(4.6)
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Expressions 4.4 to 4.6 can be used for example when plotting variation in flow q with
head h at constant speed for different constant guide vane openings.

It will become evident that these data capture a limited range with respect to high flow
operation. For example at rated head and speed, the low head turbine captures up to about
1.20 in p.u. flow, medium head about 1.48 and high head about 1.57, of useful data. The
relevant speed ranges varied as well. For example, the medium head turbine was tested
up to runaway conditions, while these were only partly or not at all covered for the low
and high head turbines. Model analysis and improvement based on these data will only be
valid in the operational ranges of available data, outside can at best be commented on.

4.3 Data processing
The experimental data were loaded from Excel into MATLAB where most processing took
place. Scripts were written to sort appropriately, perform interpolation, produce relevant
plots, estimate gradients, and so on. All relevant MATLAB scripts are described in Ap-
pendix A3 and the executable m-files given as attachments to the thesis.

Some of the data contained measurements from operation in so-called ”turbine brake
mode”. This mode is in the first quadrant of a speed-flow characteristics such that speed
and flow are still in the direction corresponding to normal turbine operation. However,
operation is below the zero efficiency line and the generator will need to deliver energy
to surpass this line in steady state operation. Turbine brake mode is unstable and outside
of normal operating procedures for prototypes, but may be deliberately entered in the lab-
oratory [31]. Measurements of negative efficiencies and negative torque are considered
irrelevant for the objective of this work (to model normal turbine operation and calculate
Hill charts), and therefore filtered out during the processing.

4.4 Characteristic curves
The following performance curves are extracted by interpolation of the experimental data,
and will be presented in Chapter 6:

1. Flow - speed at different guide vane openings under constant pressure head

2. Torque - speed at different guide vane openings under constant pressure head

3. Output power - speed at different guide vane openings under constant pressure head

4. Efficiency - speed at different guide vane openings under constant pressure head

5. Torque - guide vane opening at different runner speeds under constant pressure head
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6. Efficiency - flow at different runner speeds under constant pressure head

7. Flow - head at different guide vane openings at constant rated speed

Several other combinations can easily be extracted, but the above listed curves were
considered the most relevant. Clearly, combining plots 4. and 6. as a contour plot of con-
stant efficiency levels together with the curves of plot 1, yields a Hill diagram. Complete
performance diagrams were also generated, but for the purpose of capturing even more
details, 2D-plots are very useful. Hill charts from the experimental data will be presented
in section 7.4 together with Hill charts calculated by the model equations.

4.5 Characteristic coefficients
The characteristic values of a linear model are the partial derivatives of the dependent
variables with respect to the independent variables. To obtain these from measurements
involves finding the gradients of different parameters while others are kept constant. This
was achieved by interpolation of the data depending on the gradient of interest. Evaluat-
ing this interpolant, one can numerically estimate its first derivative in any point in the data.

From Theory section 3.4, the coefficients a11, a12 and a13 in any working point can be
extracted directly from the flow-head, flow-opening and flow-speed diagrams, respectively.
From relation 3.27, the coefficient a21 must be calculated from the torque-head and flow-
head diagrams, coefficient a22 from the torque-opening, torque-head, flow-head and flow-
opening diagrams, and finally coefficient a23 from the torque-speed, torque-head, flow-
head and flow-speed diagrams. To summarize, the relevant gradients necessary to obtain
all six characteristic coefficients aij of the linear model in this work, are:

∂q

∂h

∣∣∣∣
y,ω̃ const

∂q

∂y

∣∣∣∣
h,ω̃ const

∂q

∂ω̃

∣∣∣∣
h,y const

∂t

∂h

∣∣∣∣
y,ω̃ const

∂t

∂y

∣∣∣∣
h,ω̃ const

∂t

∂ω̃

∣∣∣∣
h,y const

(4.7)

To check the accuracy of the numerically estimated gradients, the derivative was cal-
culated both using a central difference scheme and the inbuilt function gradient(). Prior
to the calculations, the data were smoothed using inbuilt function smooth() to ”filter out”
smaller irregularities from general curve shape. The grid size (∆h, ∆y or ∆ω̃) for the cen-
tral difference scheme was originally 0.01, but also doubled, tripled and halved, to check
for convergence in the numerically estimated gradient. An accuracy of two decimal places
was considered adequately.

Because of the extensive analysis for the nonlinear model, only characteristics at BEP
were investigated for the linear model. The mathematical expressions for aij from the
model will be compared to numerical gradients from the experiments in section 6.2.
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To set up and perform simulations with the model in per unit only requires σ, α1R, ψ and
ξ as inputs. σ is the geometrical constant, containing information about self-governing
properties (stability) among other things. α1R is the optimal guide vane angle resulting
in zero incidence angle at rated speed. Machine constant ψ contains information about
the torque-speed relationship, and machine constant ξ is given by ψ and α1R according to
relation 3.21. These input parameters are equal for geometrical similar turbines, that is,
turbines of equal speed number and reduced velocity diagrams at BEP.

To make the comparison between model and experimental data valid, the correct input
values must be given to the model. These correspond to a turbine design geometrical sim-
ilar to the turbine of the measurements. As explained in Chapter 4, no information about
turbine geometry was given by Rainpower. The appropriate designs had to be obtained by
”reverse engineering” based on the best efficiency points from the experimental data.

To design turbines which are geometrical similar to those from the data turned out to
be ambiguous and challenging. Two main approaches of ”tuning” the design according to
the measurements was performed. Even though one approach resulted in more accurate
simulations (characteristics) than the other, better understanding about the model and its
inputs was achieved after performing both. Interesting observations on runner design pro-
cedure also resulted from the process. For these reasons, both methods will be described in
detail and resulting simulations presented and discussed. For clarity, the two approaches
will be denoted as ”Method 1” and ”Method 2”.

The model-to-measurement comparison can be performed in p.u. or scaled by rated
values when these are known. The former is preferred to maintain generality in the analy-
sis, but also since the data were given in scalable unit parameters.
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5.1 Method 1: Turbine design based on measured best
efficiency point

The first approach is based on the assumption that measured best efficiency point should
correspond to design point. Only knowing the highest efficiency and associated 11-parameters
at this point, speed number was calculated by equation 3.8. It was considered essential to
design runners with the same speed numbers, and to obtain α1R not too far off the mea-
sured ones, as similarity also implies equal velocity diagram angles.

5.1.1 Francis runner design

The Francis runner wheel design recipe used, is according to student courses at NTNU,
described for example in [4] [8] [26], developed by professor Hermod Brekke. The pro-
cedure was also described in Appendix A4 of the project thesis. It is a simple recipe to
obtain approximate main runner dimensions. Knowing the nominal head and flow, one
starts with the outlet, making reasonable assumptions about peripheral velocity u2 and
relative flow angle β2 according to necessary submergence with respect to cavitation lim-
its. Outlet dimensions are calculated and adjustments made to achieve rotational speed
synchronous with the grid frequency. Design of runner inlet also begins with empirically
based assumptions. The relation between reduced peripheral velocities, u1 and cu1, should
minimize shock loss for varying guide vane angle. According to [26], u1 should be 0.7 -
0.76. Acceleration of meridional velocity is another necessary assumption. Since slightly
accelerated flow reduces the chance of flow separation, 10% acceleration is often assumed
in Norway [26]. u1 = 0.73 and cm2 = 1.1cm1 was assumed in this design.

The starting point of ”Method 1” is the measured BEP in unit parameters and the as-
sumption that this should equal design point. Prototype design heads were also given, but
this is a matter of scaling and we are free to choose different heads. Since the objective
is to design three very different runners, design heads should comply reasonably with the
usual classification of low, medium and high head Francis. Therefore, the prototype heads
were used directly, but will remain anonymous in the thesis.

Different from the recipe, this starting point does not specify a design flow rate or
synchronous speed, they are given implicitly in the best point Q11 and N11 values for a
certain outlet diameter and head (a matter of scaling). The scaling is performed firstly by
choosing the head, and secondly by choosing the number of pole pairs in the generator.
A larger number gives a larger runner and a larger power output. Since these runners are
not designed for some expected discharge or desired output, but mainly since the similar-
ity is conserved and the model input parameters are completely unaffected by the scaling,
the choice is quite arbitrary in this case. The number of pole pairs gives the synchronous
speed which from the best point N11 specifies the outlet diameter. The design flow rate
and torque are then specified by the best point Q11 and T11 values.

Following, outlet velocity diagrams can be calculated assuming zero outlet swirl at de-
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sign point, cu2 = 0. This procedure does not guarantee a good design, every value should
be compared to empirical values. u2 should in general be between 35 - 43 m/s however
not exceed

√
2gH by too much (this applies to all velocities). β2 should in general be

between 13 - 22◦ [26]. The empirical relations for the inlet stated above are used together
with measured maximum efficiency to determine inlet velocity diagrams. The resulting
design α1 should not be too far off the measured one, if so, the design should be reviewed.
At this point, inlet dimensions D1 and B1 can be calculated. One may check the turbine’s
self-governing properties by comparing inlet and outlet diameters; D1 > D2 implies sta-
ble self-governing and D1 < D2 implies unstable. Nevertheless, we can expect to achieve
D1 < D2 (considering average D1 as it will vary across inlet section) slightly for a Fran-
cis runner operating under a very low pressure head [5].

Finally, σ, ψ and ξ can be calculated from design values, and together with α1R, they
make up the model input. Knowing all the rated values makes it possible to convert from
non-dimensional to dimensional values later.

An Excel sheet was developed to design according to this recipe, but is not included in
the thesis to protect Rainpower’s data. MATLAB scripts read from this sheet the relevant
model inputs in order to plot characteristics, etc. The Excel sheet ’francis design.xls’ pro-
vided by Bjørnar Svingen (attachment to the LVTrans Manual [15]) was used to check the
design afterwards. This sheet is based on the same procedure, but having nominal head
and flow as starting point. There was no problem to design reasonable high and medium
head turbines by this approach, but the low head caused some challenges, discussed in the
following section.

5.1.2 Discussion of the low head turbine design
Problems arose when trying to design a low head (high Ω) Francis runner by this recipe
based on the low head measurements’ BEP. The prototype design head is very low, and the
speed number calculated from measured best point, about 1.14, is very high. According
to references like [4] (p. 29) it is in the ”transition region” between Francis and Kaplan.
Such combination of nominal head, flow and speed can also belong to a Kaplan turbine,
and both choices could be adequate during a design process.

Such low head Francis can have a high inlet height B1 with varying diameter D1

across the inlet section. Recall that Kaplan is an axial flow machine while Francis is a
mix of radial inflow and axial outflow. In the attempted procedure, the velocity diagrams
are based on the assumption of radial inflow and axial outflow, but the former can be-
come inaccurate for a very low head Francis. Further, the outlet diameter can be slightly
larger than the average inlet diameter. In the turbine model, this implies a negative σ value.

In general, the design procedure by Hermod Brekke does not work for Kaplan turbines
[15], and may not work too well for very low head Francis either. It was evident when
trying to dimension according to this recipe, that the resulting runner will have a very
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unstable design. The ratio of D1 to D2 becomes too low (σ too negative) to make much
sense when given as input to the model.

One problem is the recommendation of u2. A very low design head gives a very
low corresponding maximum water velocity

√
2gH . The peripheral runner speed is not

restricted by this, but exceeding it too much may result in water velocity components ex-
ceeding

√
2gH , which is physically impossible. The ”quick fix” in ’francis design.xls’ is

to choose u2 equal to the lower of 40 m/s and
√

2gH . Violating the recommended speed
range can be necessary, but a low u2 may result in β2 larger than its recommended range.
From the outlet velocity diagram, a larger β2 will give a larger cm2 which will give a
larger cm1 and thus larger design α1, which may be far off the one at measured best point.
The ratio of D1 to D2 becomes more reasonable, i.e. not too unstable, but the velocity
diagrams are not optimal anymore, the angles are very large and the design point do not
match measured BEP anymore. More reasonable (lower) design angles for β2 and α1 will
give higher u2 and more unstable diameter ratio. Based on this reasoning, the recipe ap-
pears to not work so well for designing very low head Francis runners.

To quickly check the resulting design, the same nominal head, flow and speed were
given as inputs to the more sophisticated design software ALAB. The resulting ALAB
design actually got D1 slightly larger than D2, however also this resulting in somewhat
nonphysical simulations with the model equations. This implies that σ alone is not the
sole cause for errors, also the other input parameters, α1R, ψ or ξ, can cause trouble. In
general, all three becomes larger for low head than high head runners, evident in table 5.1.
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5.1.3 Model input values
The model inputs resulting from the three turbine designs, are presented below in table
5.1. The unstable low head runner is included and will also be simulated to demonstrate
the challenges of applying this design in the model of the analysis.

High head Francis Medium head Francis Low head Francis

α1R [◦] 9.674 12.29 25.47

σ [−] 0.3997 0.1057 -0.6835

ψ [−] 0.2856 0.9029 2.582

ξ [−] 1.267 1.859 3.234

Table 5.1: Model inputs from turbine design based on measured best efficiency point, using the
design recipe by Hermod Brekke.

5.1.4 Design speed numbers
Since measured unit values at best point are used directly in this approach, calculating the
speed number from equations 3.1 or 3.8 will give equal values, which are presented below
in table 5.2.

High head Francis Medium head Francis Low head Francis

Ω =
ωQ1/2

(2gH)3/4
[−] 0.2238 0.4566 1.137

Table 5.2: Speed numbers resulting directly from measured best efficiency point.
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5.2 Method 2: Direct tuning input parameters to mea-
sured best efficiency point

An alternative approach in order to obtain the necessary model inputs, is tuning them di-
rectly to the measurements’ BEP. This can only be performed when experimental data are
available, which implies that the method presented in this section is based on empiricism.
To design a runner according to a procedure like Brekke’s, has more of a first principles
based approach. In fact, his recipe is a mix of first principles and empirical relations. For
the objective of model analysis, tuning the inputs directly can obtain a better basis for
comparing model to experimental data.

Tuning the input parameters to the experimental data was performed by the following:

1. Optimal guide vane angle α1R is extracted directly from measured BEP.

According to the turbine model equations, the characteristic coefficients at BEP can
be calculated from the four model inputs, demonstrated in Appendix A2. Reversely,
we may use measured gradients of flow and torque with respect to runner speed at
BEP, to estimate the model input parameters σ and ψ:

2. σ = − a13 = − ∂q

∂ω̃

∣∣∣∣
BEP

3. ψ = − a23 = − ∂t

∂ω̃

∣∣∣∣
BEP

The gradients must be estimated by a numerical scheme for the experimental data.
The other independent variables must be kept constant in this point.

4. Finally: ξ = (1 + ψ) cosα1R

5.2.1 Francis runner design
Even though redundant for the purpose of modelling, a complete runner design can be
derived from these input values. It will not be unique, different turbines can be designed
from the same values of α1R, σ and ψ. They will however be geometrical similar, that
is, equal speed number Ω and reduced velocity diagrams at best efficiency point. The
resulting design is a matter of scaling by choosing rated design head HR and number of
pole pairs for the generatorZp, the same scaling choices as for the procedure in section 5.1.

The chosen Zp gives the synchronous speed of the unit. The outlet peripheral velocity
at this speed is calculated from the definition of machine constant ψ:
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ψ =
u22R

ηR g HR
=⇒ u2R =

√
ψ ηR g HR (5.1)

Where rated efficiency ηR is known as the experimental best point at which the gradi-
ents defining σ and ψ, was extracted. One should check that the resulting velocity is not
too much larger than

√
2gHR. This should be no problem as long as ψ times ηR is not

much larger than 2. Both diameters can now be calculated, firstly D2 from u2R and ωR,
and secondly D1 from the definition of geometrical constant σ:

σ =
ω2
R

8 g HR
(D2

1 −D2
2) =⇒ D1 =

√
D2

2 + σ
8 g HR

ω2
R

(5.2)

Inlet peripheral velocity u1R can be calculated from D1 and ωR, and one should check
its value with respect to

√
2gHR.

Subsequently, the complete inlet and outlet velocity diagrams at design point can be
calculated, but must be based on a few assumptions. First, design point implies zero outlet
swirl, and second, 10% acceleration of the meridional velocity through the runner. The
first assumption combined with Euler’s equation gives:

ηR =
u1R cu1R − 0

g HR
=⇒ cu1R = ηR

g HR

u1R
(5.3)

Knowing already α1R from measurements, the remaining velocity components and an-
gles at the inlet can be calculated. The second assumption combined with the first enables
calculation of the remaining velocity components and angles at the outlet. β2R should
generally be between 13− 22◦ [4] [26].

Finally, design discharge QR is calculated from meridional velocity and outlet cross
section area, and inlet height B1 is calculated from continuity. The speed number Ω is
calculated from HR, QR and ωR. From table 5.4, these values of Ω are not equal to those
obtained directly from the best point unit values in table 5.2. The two different tuning
approaches do not achieve geometrical similar runners, as expected and intended.

Evidently, tuning the inputs directly as described above, avoids the challenges encoun-
tered when designing the very low head runner ”from scratch”, described in section 5.1.2.
It is not given that the design resulting from direct tuning is good. After all, it is derived
from very little information in only one operational point measured. Empirical relations
should be used to check the resulting dimensions and velocity diagrams. That being said,
excessive instability of the low head runner is avoided, since σ is extracted directly from
the flow-speed measurements, and used when determining the diameter ratio.
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5.2.2 Model input values
The model inputs extracted directly from the experimental data are presented below in ta-
ble 5.3. The gradients are numerical estimates obtained using a central difference scheme
on the interpolated data after filtering out smaller deviations from general curve shape. As
explained in section 4.5, they were considered accurate with two decimal digits. Since
the model inputs (except α1R) are based on four of these gradients, also the inputs and
speed numbers (resulting from the design based on the inputs), will be presented with two
decimal place accuracy.

High head Francis Medium head Francis Low head Francis

α1R [◦] 10.52 15.99 27.15

σ [−] 0.69 0.46 0.01

ψ [−] 0.20 0.45 1.12

ξ [−] 1.18 1.39 1.89

Table 5.3: Model inputs tuned directly to measured best efficiency point.

5.2.3 Design speed numbers
The speed numbers resulted from equation 3.1 after performing a runner design as de-
scribed in section 5.2.1, and are presented below in table 5.4.

High head Francis Medium head Francis Low head Francis

Ω =
ωQ1/2

(2gH)3/4
[−] 0.18 0.35 0.78

Table 5.4: Speed numbers resulting from turbine design based on model inputs tuned directly to
measured best efficiency point.
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Chapter 6
Model Analysis

In this chapter, the mathematical turbine model will be further analyzed.
Two main aspects will be addressed:

• Compare characteristic curves resulting from the governing equations to real turbine
behavior extracted from the measurements. Model performance in predicting loss
with respect to real efficiency data, will be emphasized.

• Compare characteristic coefficients calculated by the model to gradients numerically
estimated from the measurements, at the point of best efficiency.

Keep in mind that the turbine model subjected to analysis consists of the following
governing equations presented in Chapter 3, but repeated below for clarity (in per unit):

q = y
√
h− σ (ω̃2 − 1) (6.1)

t = q (mS − ψ ω̃) (6.2)

The mechanical power on the shaft is:

p = t ω̃ (6.3)

And the hydraulic efficiency of the turbine:

η̃ =
t ω̃

q h
(6.4)

So far, the model remains completely first principles based and independent from mea-
surements. In this chapter, it will be analyzed before altering it with incipient efficiency
ηi(q). This improvement will be proposed and implemented in Chapter 7. Relevant simu-
lations will then be repeated and compared to the measurements and to the model without
the improvement, to check for better consistency.
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6.1 Characteristic curves
In Theory section 3.4.4, the model’s efficiency expression was investigated for its func-
tional dependencies and ability to predict general hill shape in a performance diagram.
This mathematical analysis of the equations serves as relevant background for this section.
Further analysis of the nonlinear model will consist in evaluating how well characteristic
curves are predicted. A number of different graphs can be plotted from the equations or
extracted from the data. The characteristics considered most interesting were listed in sec-
tion 4.4. The measurements (raw version without smoothing) and the two different model
simulations will be presented in different plots next to each other. The main objective is
to compare general curve shapes and the physics they entail. Given the simplicity of the
model, and the unknown Rainpower turbine designs, exact agreement between model and
experiments is not expected.

Since both runner design approaches (method 1 and 2) are modelled, we may assess
how well they match the Rainpower runners, that is, to what extent geometrical similarity
seem to have been achieved. It is important to distinguish between behaviour caused by
the model inputs, and behaviour caused by the model itself. In other words, certain inaccu-
racies can be corrected for by correcting the inputs (tuning), while other inaccuracies will
exist regardless of input accuracy, simply because of the nature of the governing equations.

Emphasis will be on general model behaviour irrespective of input accuracy, but the
analysis will also try to distinguish between these two ”types” of errors. Surely, since
only two different designs and associated input parameters have been produced (per head
classification high/ medium/ low), the basis for assessing this is limited. Since the thesis’
objective is also model improvement, the analysis part is limited to the described scope.

The MATLAB scripts written to generate turbine characteristics are described in Ap-
pendix A3 and the executable m-files given as attachments to the thesis. Each script gen-
erates 14 different plots, only the 7 considered most relevant are included here (figures
1, 2, 3, 4, 6, 11 and 12 in the scripts). Adjustments in legends and axes were made to
enhance comparison to the experimental data. For plotting the model equations, correct
inputs must be specified. The code reads from the turbine design Excel sheet, but the user
must specify which column to read according to what design to model. Plots (b) and (c)
were produced by the same scripts reading different model inputs.

By accessing the model inputs (σ, α1R, ψ and ξ) together with these scripts, the reader
can easily generate the exact same model characteristic curves as presented in this section.
Including all plots in full size would make the thesis extensively long, which is why they
are presented in a compact 3x3 layout. Clearly, the measured characteristics in plots (a)
are not possible nor intended for the reader to be able to generate on his or her own.
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Chapter 6. Model Analysis

6.1.1 High head Francis turbine

Figure 6.1: Flow - speed characteristics for different guide vane openings under constant rated head
for high head turbine. From the left: (a) measurements, (b) simulations for model inputs by method
1 and (c) simulations for model inputs by method 2.

Figure 6.2: Torque - speed characteristics for different guide vane openings under constant rated
head for high head turbine. From the left: (a) measurements, (b) simulations for model inputs by
method 1 and (c) simulations for model inputs by method 2.

Figure 6.3: Mechanical power - speed characteristics for different guide vane openings under con-
stant rated head for high head turbine. From the left: (a) measurements, (b) simulations for model
inputs by method 1 and (c) simulations for model inputs by method 2.
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6.1 Characteristic curves

Figure 6.4: Efficiency - speed characteristics for different guide vane openings under constant rated
head for high head turbine. From the left: (a) measurements, (b) simulations for model inputs by
method 1 and (c) simulations for model inputs by method 2.

Figure 6.5: Torque - opening degree characteristics for different rotational speeds under constant
rated head for high head turbine. From the left: (a) measurements, (b) simulations for model inputs
by method 1 and (c) simulations for model inputs by method 2.

Figure 6.6: Efficiency - flow characteristics for different rotational speeds under constant rated head
for high head turbine. From the left: (a) measurements, (b) simulations for model inputs by method
1 and (c) simulations for model inputs by method 2.
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Chapter 6. Model Analysis

Figure 6.7: Flow - net head characteristics for different guide vane openings at constant rated speed
for high head turbine. From the left: (a) measurements, (b) simulations for model inputs by method
1 and (c) simulations for model inputs by method 2.

Discussion

Firstly, comparing plots (b) and (c) of the above figures together with the high head
columns of the input tables in Chapter 5, these two runner designs are somewhat similar.
This is confirmed by their speed numbers, approximately 0.22 and 0.18 by method 1 and
2, respectively. Minor differences are observed, for example in predicted self-governing
properties (steepness of flow-speed characteristics) and predicted runaway speeds (high
speed values at which zero efficiency is reached). For the self-governing, the lower speed
number yields the steeper characteristics, as expected. The σ values or diameter ratios con-
firm so. For the runaway speeds, experiments were not performed at high enough speeds
to assess which design is more correct.

On a general note, the model seem to predict flow-speed characteristics quite well in
the data range as both show stable (decreasing) behaviour. Curve shape of the torque-
speed and the mechanical power-speed characteristics also seem to agree quite well with
the measurements. Model behaviour outside of the given data range will generally not be
commented on.

From figure 6.4, efficiency variation with runner speed is predicted well at rated guide
vane opening (y = 1 curves), as expected from works like [7] [8], and from Theory section
3.4.4. Losses caused by the runner spinning too slow or too fast with respect to nominal
speed are mostly kinetic energy not utilized by the turbine [8]. Since Euler’s equation was
the starting point for derivation, such losses are expected to be captured quite well. How-
ever, the model fails to predict variations in curve shape and especially levels for different
constant openings. Different levels when taking different 2D sections along constant y
lines in a Hill chart, are not accurately captured by the equations. The drawback appear to
be independent from model input accuracy. Even so, general curve shape is not too bad.

To plot the mechanical torque from the water on the shaft against the guide vane open-
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6.1 Characteristic curves

ing as in figure 6.5, is perhaps very intuitive, but can be a good check. Obviously, the
torque should increase with the flow allowed through the runner when spinning at con-
stant speed. The model captures this as a linear relation even though the measurements
show less linearity, especially at higher openings. At α1 higher than optimal, incidence
loss will increase because of flow separation from the runner blades since the relative inlet
flow does not match the (fixed) orientation of the runner blade at inlet. At h = 1 and
constant ω̃, according to equation 6.4, a deviation from linearity between t and q (which is
linear with y at constant head and speed) will decrease the efficiency, that is, capture the
presence of energy losses. The fact that the model predicts the torque to increase linearly
with opening degree for all opening degrees (or with the flow for all flows, this plot is
excluded but looks very similar), implies that it struggles to capture such incidence losses.
This seem to exist independent of input values, it is a weakness of the torque equation.

The next figure 6.6 confirms this implication. The equations struggle to capture losses
for constant speed, varying flow rate. The Euler efficiency of the model predicts unre-
alistically flat behaviour for all speeds included, and does not at all tend to zero for low
and high flow, as expected. However, for the runner design by method 2 (plot (c)), there
is a certain band around q = 1 where the efficiency is predicted quite well as the model
manages to capture different levels for different speeds. Nevertheless, the prediction when
flow tend to zero is highly erroneous regardless of model input. Accurate input values
might improve the ”level error” around q = 1, but the ”shape error” for varying q appears
to originate from the equations, as was demonstrated mathematically in section 3.4.4.

Finally, flow-head characteristics at ω̃ = 1 for different constant guide vane openings
are included in figure 6.7. This plot might also seem intuitive - a larger available net pres-
sure head will increase the discharge through the runner when spinning at constant speed.
Nevertheless, the plot is included to check that the model predicts this behaviour correctly.
At ω̃ = 1, the flow equation reduces to the valve equation; q = y

√
h. Since the effect of σ

disappears, the flow equation becomes equal for all turbines regardless of geometry. This
is why the two simulations of figure 6.7 are identical, and also equal to the lower head tur-
bines, as will be illustrated. In fact, the flow equation at ω̃ = 1 predicts the same behaviour
as for a Pelton turbine at any rotational speed. Comparing simulations to measurements
of figure 6.7, flow-head characteristics for the high head turbine are modelled well by the
valve equation in the given region.
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6.1.2 Medium head Francis turbine

Figure 6.8: Flow - speed characteristics for different guide vane openings under constant rated head
for medium head turbine. From the left: (a) measurements, (b) simulations for model inputs by
method 1 and (c) simulations for model inputs by method 2.

Figure 6.9: Torque - speed characteristics for different guide vane openings under constant rated
head for medium head turbine. From the left: (a) measurements, (b) simulations for model inputs by
method 1 and (c) simulations for model inputs by method 2.

Figure 6.10: Mechanical power - speed characteristics for different guide vane openings under
constant rated head for medium head turbine. From the left: (a) measurements, (b) simulations for
model inputs by method 1 and (c) simulations for model inputs by method 2.

52



6.1 Characteristic curves

Figure 6.11: Efficiency - speed characteristics for different guide vane openings under constant
rated head for medium head turbine. From the left: (a) measurements, (b) simulations for model
inputs by method 1 and (c) simulations for model inputs by method 2.

Figure 6.12: Torque - opening degree characteristics for different rotational speeds under constant
rated head for medium head turbine. From the left: (a) measurements, (b) simulations for model
inputs by method 1 and (c) simulations for model inputs by method 2.

Figure 6.13: Efficiency - flow characteristics for different rotational speeds under constant rated
head for medium head turbine. From the left: (a) measurements, (b) simulations for model inputs by
method 1 and (c) simulations for model inputs by method 2.
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Figure 6.14: Flow - net head characteristics for different guide vane openings at constant rated
speed for medium head turbine. From the left: (a) measurements, (b) simulations for model inputs
by method 1 and (c) simulations for model inputs by method 2.

Discussion

Differences in the two runner wheel designs are more evident for the medium head turbine.
This is concluded from comparing plots (b) and (c) of the above figures, together with the
medium head columns of the input tables in Chapter 5.

Comparing simulations to measurements in figure 6.8, the gradient of the decreasing
flow-speed characteristics especially at faster rotation, is highly under-predicted for the
design by method 1. The model will predict decreasing curves as long as σ > 0 (which
both designs got), but the steepness is determined by the value of σ. Recall its definition:

σ =
ω2
R

8 g HR
(D2

1 −D2
2) (6.5)

Not only the difference in main diameters determines its value, also rated speed and
design head. As explained in section 5.1, the design by method 1 was based on the assump-
tion that measured BEP is also the design point of the model turbines, thus our design point
as well. Comparing plots (a) and (b) in figure 6.8 indicates that this design is not geomet-
rical similar to the turbine of the experiments. The larger σ and associated larger diameter
ratio in the design by method 2 in plot (c), seem to match significantly better.

From figure 6.9, measured torque reaches zero (which gives zero power output and
zero efficiency) at different speeds for different guide vane openings. In a Hill diagram,
this is where the flow-speed characteristics reach the zero efficiency line (runaway curve).
Also referred to as runaway speed, it is the speed for a certain guide vane opening which
the runner will accelerate towards if the generator ”falls off” the grid (load rejection). At
this speed, efficiency is zero since all the power from water to runner is balancing losses
in the unit - all the energy is transformed to heat. Runaway operation may damage the
generator and one will usually begin to shut down the turbine after such incident [4].
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From figures 6.9, 6.10 or 6.11, the model predicts the same runaway speed for all guide
vane openings, which contradicts the measurements. This applies to both runner designs,
indicating it to be a general weakness of the model and not an issue solved by correct
inputs. This was also observed when modelling the high head Francis, but it was not mea-
sured to its runaway conditions. For the medium head design by method 1, the single
modelled runaway speed is higher than those in the measurements, but for the design by
method 2, the runaway speed for y = 1 agrees quite well with the experimental one.

Similar as for high head, the model seem to predict efficiency-speed shape well enough
especially for y = 1, but different levels for different openings are not captured. This is ev-
ident when comparing simulations to measurements of figure 6.11. The real performance
curves are slightly steeper than modelled, this indicates again that the second runner is
more similar to the experiments. It also indicates that curve shape can - to a certain extent
- be corrected for by correcting the inputs, but the level inaccuracy cannot.

Already discussed for the high head, hydraulic losses related to a sub-optimal inflow
angles can result in deviation from linearity between torque and opening degree when
spinning at constant speed. This is evident from the measurements of figure 6.12. Such
losses are poorly captured by the model as is, which is why the torque equation predicts
linear t − y relation. Also observable in figure 6.12, is that the model fails to predict the
different guide vane openings for different rotational speeds at which torque is zero. It
simply predicts zero torque at zero opening for all speeds regardless model inputs, which
contradicts the measurements. This is related to the shape of the runaway curve, and indi-
cates that the model predicts it imprecisely.

From the efficiency-flow plots of figure 6.13, the model captures different levels, but
the second design overpredicts the losses around q = 1, especially at higher speeds. Fur-
ther, the shape of the curves does not at all match the experimental ones, nor the expec-
tations that efficiency will tend to zero when flow tend to zero. These results confirm
previous observations about this being a general model drawback.

Finally, comparing simulations to measurements in figure 6.14, the valve equation
seems to model the flow-head relation quite well also for the medium head turbine, at least
for about h > 0.6.
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6.1.3 Low head Francis turbine

Figure 6.15: Flow - speed characteristics for different guide vane openings under constant rated
head for low head turbine. From the left: (a) measurements, (b) simulations for model inputs by
method 1 and (c) simulations for model inputs by method 2.

Figure 6.16: Torque - speed characteristics for different guide vane openings under constant rated
head for low head turbine. From the left: (a) measurements, (b) simulations for model inputs by
method 1 and (c) simulations for model inputs by method 2.

Figure 6.17: Mechanical power - speed characteristics for different guide vane openings under
constant rated head for low head turbine. From the left: (a) measurements, (b) simulations for model
inputs by method 1 and (c) simulations for model inputs by method 2.
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6.1 Characteristic curves

Figure 6.18: Efficiency - speed characteristics for different guide vane openings under constant
rated head for low head turbine. From the left: (a) measurements, (b) simulations for model inputs
by method 1 and (c) simulations for model inputs by method 2.

Figure 6.19: Torque - opening degree characteristics for different rotational speeds under constant
rated head for low head turbine. From the left: (a) measurements, (b) simulations for model inputs
by method 1 and (c) simulations for model inputs by method 2.

Figure 6.20: Efficiency - flow characteristics for different rotational speeds under constant rated
head for low head turbine. From the left: (a) measurements, (b) simulations for model inputs by
method 1 and (c) simulations for model inputs by method 2.
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Figure 6.21: Flow - net head characteristics for different guide vane openings at constant rated speed
for low head turbine. From the left: (a) measurements, (b) simulations for model inputs by method
1 and (c) simulations for model inputs by method 2.

Discussion

From Chapter 5, the two tuning approaches to the low head measurements resulted in very
different turbine designs. As explained in section 5.1.2, setting design point equal to mea-
sured BEP and performing a design according Brekke’s recipe (method 1) yielded highly
unstable diameter ratio and large values for the machine constants, compared to what was
achieved by direct tuning (method 2). The design differences are confirmed by comparing
plots (b) and (c) of the above characteristics. The design by method 1 appears to be so off
target that the equations sometimes struggle to predict reasonable behaviour, observed in
several of the (b) plots above.

Looking at the measurements from Rainpower in figure 6.15, in the given range their
low head runner is only slightly unstable for higher openings and quite unaffected or
slightly stable for lower openings. The flatness of these curves indicates that the inlet
and outlet diameters are almost equal. Clearly, the design by method 2 is much more
similar to Rainpower’s than the design by method 1. Based on this and the flow-speed
curves of the higher head turbines, the model can be tuned by σ to predict quite accurate
flow-speed characteristics.

From the torque equation 6.2, wrongly estimated machine constants ψ and ξ can cause
large errors in predicting the torque. Since ξ is calculated from ψ and α1R, ψ is the root
of the issue. In reality, change of torque with increasing speed is always negative, the
turbine will resist changes in rotational speed (negative feedback) [8]. If torque is wrong,
consequential errors in predicting power and efficiency, will follow. The erroneous torque
characteristics in plot (b) in figure 6.16 propagates to plots (b) of figures 6.17 and 6.18.

Comparing only (a) and (c) of figures 6.16, 6.17 and 6.18, clearly, model performance
can be much better for a better design. Its weakness in predicting runaway speeds accu-
rately, is present also for the low head Francis. The equations manage to capture different
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efficiency levels for different guide vane openings slightly better for the low head turbine
than they did for the higher head ones. This is evident comparing plots (a) and (c) in figure
6.18, and looking at the corresponding figures 6.4 and 6.11 for the high and medium head
ones, respectively.

From figure 6.19, the torque-opening graphs are not too bad as they include some non-
linearity for higher y. However, the curves for low to slightly past rated speed are quite
overpredicting. As discussed, the model’s struggle to predict runaway curve shape cor-
rectly, is seen as the torque reaching zero at exactly closed guide vane position (zero flow)
for all speeds. This is simply a drawback to the torque equation.

Looking at figure 6.20 plot (b), the turbine p.u. efficiency exceeds 1.0 when ω̃ > 1.
This confirms previous statements about the method 1 design being unreasonable. For the
design in plot (c), the curvature is better than for the higher head turbines, yet still far from
the sharp curvature of the experiments. The model still struggles to capture irreversible
hydraulic losses for high and low flow conditions.

The model’s efficiency-speed curves of figure 6.18 can be related to its efficiency-flow
curves of figure 6.20. Since the curvature of the latter are more apparent for the low head
turbine, this will appear as more distinguished levels for the former curves, compared to
the higher head turbines. In fact, the ”level error” in the η̃ − ω̃ plots, is the same problem
as the ”shape error” in the η̃−q plots. Therefore, it is reasonable to believe that improving
model accuracy of efficiency-flow will also improve model accuracy of efficiency-speed.
This will be checked in Chapter 7.

Comparing figure 6.21 to 6.14 and 6.7, accuracy of the q − h relation at ω̃ = 1 seem
slightly better for the higher head than for the low head turbine. Even so, the general curve
shape in figure 6.21 is still well captured in the given region.
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6.2 Characteristic coefficients
Analysis of the linear turbine model will consist in analysing the characteristic coefficients
aij , i = 1, 2, j = 1, 2, 3. The mathematical formulas presented in Appendix A2 are phys-
ically correct as they are simply partial derivations of the physics-based model equations.
This does not guarantee that they are accurate for any turbine, and in this section, they will
be compared to gradients from the experiments. It is difficult to extract from measure-
ments the change in torque for changing guide vanes while flow is held constant, or vice
versa. Therefore, the reformulations presented in equations 3.26 and 3.27 in the theory,
are convenient when estimating a2j from measurements.

The accuracy of the numerical gradients was achieved to about two decimal places
by smoothing the data before applying a central difference scheme. In this way, smaller
irregularities were eliminated from the general curve shape, and more precise gradients
were obtained. Since the experimental coefficients will be presented with only two deci-
mal digits, so will the analytically calculated ones and their absolute error with respect to
the experimental.

The gradients of q, a11, a12 and a13, are independent of any ηi as it will be inserted
into the torque equation. However the gradients of t, a21, a22 and a23, will change for lin-
earization points other than best efficiency. At BEP, any ηi curve should be 1 and have first
derivative 0, thus the coefficients are unaffected by the presence or choice of curve. As for
the nonlinear model in section 6.1, the linear model will be analyzed without any incip-
ient efficiency in this section, therefore, only the coefficients at BEP will be presented here.

From Appendix A2, the general functionalities for the q and t characteristics at an
arbitrary linearization point are:

a1j = f(h, y, ω̃, σ), a2j = g(q, y, ω̃, ηi, ξ, ψ, α1R, σ) (6.6)

Where h, q, y, ω̃, ηi depends on the point of linearization, and ξ, ψ, α1R, σ depends on
turbine geometry and optimal design point (closely related). At linearization point equal
to design point, the general functionality becomes:

aij = h(ξ, ψ, α1R, σ) (6.7)

for all six coefficients. This is demonstrated mathematically in Appendix A2.

Since model input parameters were tuned by two different methods and the characteris-
tic coefficients depend on these, obviously different values will result from these methods.
Based on the improvement of the simulations observed for method 2 compared to method
1, one may assume that the second turbine design is more similar to Rainpower’s model
turbines than the first. For this reason, only coefficients from this approach will be pre-
sented and compared to measurements. Recall that method 2 was based on choosing σ and
ψ equal to (negative) a13 and a23 experimental gradients at BEP. This is why the absolute
error between model and experiments at this point is exactly zero.
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6.2.1 High head Francis turbine

a11 a12 a13 a21 a22 a23 Check: a21 + a22

Measurements 0.87 1.01 -0.69 2.15 -1.17 -0.20 0.98

Mathematical model 0.50 1.00 -0.69 2.20 -1.20 -0.20 1.00

Absolute error 0.37 0.01 0 0.05 0.03 0 0.02

Table 6.1: Numerical gradients from measurements versus mathematical characteristic values from
model for the high head turbine, both at BEP.

Discussion

The error in a11 can be observed in figure 6.7. The measurements have slightly steeper
slope than the model predicts around h = 1 for the y = 1 graph. Apart from this, the
model predicts characteristic values for a12, a21 and a22 at BEP very well compared to the
experimental gradients.

6.2.2 Medium head Francis turbine

a11 a12 a13 a21 a22 a23 Check: a21 + a22

Measurements 0.74 1.03 -0.46 2.40 -1.42 -0.45 0.98

Mathematical model 0.50 1.00 -0.46 2.44 -1.45 -0.45 0.99

Absolute error 0.24 0.03 0 0.04 0.03 0 0.01

Table 6.2: Numerical gradients from measurements versus mathematical characteristic values from
model for the medium head turbine, both at BEP.
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Discussion

These coefficients show similar agreement with measured gradients as was observed for
the high head turbine. The slope of the flow-head relation at BEP, a11, is still underpre-
dicted by the model, but slightly less for this turbine.

6.2.3 Low head Francis turbine

a11 a12 a13 a21 a22 a23 Check: a21 + a22

Measurements 0.49 0.73 -0.01 3.20 -1.59 -1.12 1.61

Mathematical model 0.50 1.00 -0.01 3.13 -2.12 -1.12 1.01

Absolute error 0.01 0.27 0 0.07 0.53 0 0.60

Table 6.3: Numerical gradients from measurements versus mathematical characteristic values from
model for the low head turbine, both at BEP.

Discussion

For the low head turbine, the model predicts flow-head slope at BEP much better than for
the higher head ones, as a11 matches significantly better. Details like exact gradients are
hard to detect simply be looking at the curves in section 6.1. From the graphs, the valve
equation seemed to be a slightly better fit for high head than low head Francis, but the
above a11 gradients suggests the opposite around the point of best efficiency.

The flow-opening degree slope in BEP, a12, is overpredicted by the model, this was
not an issue for the higher head turbines. The torque-opening degree slope, a22, is over-
predicted in absolute value as well. This cannot be observed from the experiments since
torque versus opening degree for constant flow is nonphysical. As explained in section
4.5, a22 is calculated from flow-head, torque-head (constant opening and speed) and flow-
opening, torque-opening (constant head and speed) gradients. The accuracy of a22 is
therefore difficult to anticipate simply by looking at the curves. This goes for a21 as well,
and is why the a21 + a22 check is more ”physically applicable”. Collectively (added),

62



6.2 Characteristic coefficients

a21 and a22 shows how well the torque can be controlled by opening or closing the guide
vanes [8]. For this low head turbine, the model underpredicts this relation with respect
to the experiments. The response in torque for increasing the flow by opening the guide
vanes is in fact steeper than predicted.

Clearly, the error in a12 and a22 is connected. The response in flow for increasing guide
vane opening impacts the response in torque for increasing flow (by increasing guide vane
opening). This comes from the model equations’ functional dependencies.
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Chapter 7
Model Improvement

In this chapter, improvement of how the model predicts the hydraulic efficiency is pre-
sented, implemented and discussed. The concept of this improvement has already been
mentioned several times in the master thesis, and was briefly investigated in the project
thesis. It is the incipient efficiency ηi function, intended to collectively include all the
irreversible hydraulic losses that the governing equations do not include on their own.

Chapter 7 contains six main parts. In section 7.1, the concept including assumptions
and restrictions will be presented. In section 7.2, different curve models are fitted to the
experimental data and three specific curves proposed for the three turbines. Model imple-
mentation is demonstrated in sections 7.3 and 7.4 for these turbines. First, by presenting
relevant characteristic curves, and second, by presenting the complete Hill diagrams. Fol-
lowing this, section 7.5 investigates the idea of generalizing ηi curves with respect to
turbine speed number Ω. Finally, section 7.6 will provide a general discussion of the in-
cipient efficiency improvement based on all the findings of this chapter.
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7.1 Incipient efficiency concept

The idea is the same as in [5] [7] [8], but using experimental data as in the project the-
sis. A much larger quantity of data was accessed and several different curve fitting models
investigated this time. The turbine model strive to capture real behaviour as precise as pos-
sible. Observed in Chapter 6, the efficiency is in general predicted better along the speed
axis than along the flow axis. Energy losses caused by irreversible flow phenomena like
friction, flow separation, turbulence, etc., were not fully captured. The incipient efficiency
curve, ηi(q), intend to correct the model efficiency for this inaccuracy, that is:

η̃model ηi(q) ≈ η̃real (7.1)

The p.u. model efficiency is as stated before; η̃ = tω̃/qh, inserted for t and h. η̃real
represents the efficiency measurements on site or in the lab at constant runner speed for
varying flow, non-dimensionalized by the measured maximum efficiency.

The intention of this work is to develop new ηi(q) curves more accurate than the sec-
ond degree polynomial, ηi(q) = q(2−q), proposed in [5], based on Rainpower’s data. The
curves should remain simple to implement, and can be applied in the model for turbines
similar to those from the measurements.

7.1.1 Requirements

The proposed ηi(q) curves should fulfill the following:

1. Be equal to 1 in q = 1

2. Have first derivative in (1,1) equal to 0 (maximum at BEP)

3. Be differentiable in its entire q range (have continuous first derivatives)

4. Adapt to the data points smoothly with as little oscillatory behaviour as possible

5. Monotonically decrease for q < 1 and q > 1

The first two requirements are self-explanatory given the definition of BEP and per
unit values. The first derivative of ηi(q) appears in a21 of the linear model, thus needs to
be defined for all working points one may want to linearize around. Number 4. and 5. are
based on expected behaviour from real efficiency curves.
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7.1.2 Influence of varying speed

The ηi implementation as in [5] [7] [8] is independent of speed and depends solely on flow
rate. Efficiency-speed curves at different openings might not be symmetric around rated
speed, or the shape of efficiency-flow curves at different speeds can be very dissimilar.
Such tendencies are seen as asymmetry of contour lines in the performance diagram, such
that implementing the same ηi(q) curve for different speeds might be inaccurate.

The measurement plots in section 6.1 featuring efficiency versus flow at constant rated
head for different speeds, figures 6.6, 6.13 and 6.20, can indicate the accuracy of imple-
menting only one curve. The three sets of turbine data were given for quite different speed
ranges, i.e. the width of the region in a Hill chart in which performance data were given,
differs. Taking this into account when studying the plots, one may argue that for each
turbine the general shape of the efficiency curves are somewhat similar in a certain band
around rated speed.

To not over-complicate the implementation in this work, only one ηi(q) curve will be
constructed for each turbine. The curve will be fitted to the η̃ − q data corresponding to
rated speed and head, i.e. N11/N11R = ω̃/

√
h = 1.0. These are the ω̃ = 1 curves of

the measurements in figures 6.6, 6.13 and 6.20. The accuracy of this simplification will be
further discussed after implementation into the model, mainly in section 7.6.

7.1.3 Flow rate validity range

The ηi(q) curve needs only to be defined between the low flow value corresponding to
zero efficiency and some high flow value limiting the area of interest. The data for curve
fitting are extracted at ω̃ = 1, assuming h = 1. At constant speed and head, flow is in-
creased by opening the guide vanes. There is a physical limit to the flow area defined by
the guide vanes. When in their maximum opening position, from continuity, further flow
rate increase must be due to flow velocity in the meridional direction increasing further.
However, such acceleration would require a larger pressure head in order to ”push” the
water through the runner at a faster rate. From this reasoning, at constant speed and head,
the upper flow is restricted by the upper guide vane opening.

The parabola from [5], q(2 − q), is 0 in q = 0 and q = 2. Multiplied into the torque
equation, also output power and turbine efficiency will become 0 at these p.u. flow values,
irrespective of runner speed.

To study a couple of Francis Hill diagrams can be useful, for example those depicting
low and high specific speeds in figure 3.2, presented again in figure 7.1 below [27]. The
2D section of relevance going through BEP is drawn as a red line in the diagram.
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7.1 Incipient efficiency concept

Figure 7.1: (a) Low specific speed (high head) and (b) high specific speed (low head) Francis
runner’s typical Hill charts.

First of all, it appears that zero efficiency (the runaway curve) is reached for a flow rate
slightly higher than zero, exactly how much depending on turbine type and the speed of
investigation. The gradient of the runaway curve varies, but the steeper, the larger error to
assume η = 0 in q = 0 also at higher speeds.

Second, the diagrams are only constructed up to a certain high flow value associated
with a certain high guide vane opening (perhaps the maximum setting), and do not reach
any line of zero efficiency at some high flow value. We cannot know exactly what be-
haviour to expect for discharges larger than restricted by the maximum guide vane open-
ing (neither is it particularly interesting). We can only assume that the efficiency would
continue to decrease, i.e. the hill slope to proceed.

In theory, an ηi(q) curve can only be valid in the flow range it was based on. Approx-
imate data ranges given in p.u. flow q were for the high head turbine 0.06 - 1.57, for the
medium head 0.08 - 1.48 and for the low head 0.32 - 1.20. Measurements were not given
all the way down to zero efficiency for the low head, which is a weakness of these data.

To summarize, we will expect the ηi(q) curve to reach zero for some low flow value.
Also for the low head turbine without knowing exactly at what value this should happen.
Based on figure 7.1, we do however expect it to happen at a slightly higher flow than for
the high head one. Since we expect the efficiency curve slope to proceed for flow rates past
the upper limit of the data, we will require the ηi(q) curve to do the same. To make sure
it continues to decrease monotonically for flow rates slightly past the upper flow limit, an
extra data point, for example (2,0), can be added before curve fitting. This point of zero
is not justified by physics, it is included solely to achieve good curve behaviour. When
included, it will be stated clearly.
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7.1.4 Curve fitting models
In the project thesis, prototype efficiency data were given at synchronous speed, there were
only nine data points and no interpolation were performed. Cubic splines in each interval
were created in MATLAB, resulting in a smooth curve. Although easily evaluated using
computer programs, analytically, it is easier to handle only one, or perhaps two, curves
on the entire flow range. This was the main reason for looking into the following types,
which are all applicable for curve fitting in MATLAB:

1. Polynomial function of degree n

y(x) = p1 x
n + p2 x

n−1 + p3 x
n−2 + ...+ pn x+ pn+1 (7.2)

2. Fourier series function of n harmonics

y(x) = a0+a1 cos (ω0x)+b1 sin (ω0x)+...+an cos (nω0x)+bn sin (nω0x) (7.3)

3. Two-term exponential functions, one for x ≤ 1 and one for x ≥ 1

y(x) = a ebx + c edx (7.4)

4. Two-term power functions, one for x ≤ 1 and one for x ≥ 1

y(x) = a xb + c (7.5)

Restricted by MATLAB’s library models for curve fitting, a polynomial could at most
have degree 9, and a Fourier series could at most have 8 number of harmonics. For the last
two options, it is required that the two functions meet in (1,1) and for their first derivative
to be equal or close to 0 in that point. The latter goes for all models.

Different curve fittings were performed using the inbuilt MATLAB function fit(), spec-
ifying model type and optionally using weights to emphasize the best point (1,1). There
was no inbuilt functionality to guarantee that the constraints f(1) = 1, f ′(1) = 0 are met
when fitting to the data. In stead, the data point (1,1) was heavily weighted, and the first
derivative of the resulting curve in this point was checked afterwards. In addition for the
curve to be continuous with continuous first derivatives, we want the curve fitting to disre-
gard minor irregularities in the data. The inbuilt MATLAB function smooth() was used to
filter out smaller discrepancies before curve fitting.

The polynomial or Fourier series can have various degree of oscillatory behaviour.
Testing up to the respective limits, increasing the degree for the polynomial or the number
of harmonics for the Fourier, tend to increase accuracy and reduce oscillatory behaviour.
Even so, there is a trade-off between curve complexity and desired accuracy. By complex-
ity is meant the number of terms and corresponding coefficients (for Fourier series also the
fundamental frequency ω0) which are necessary to determine.

The scripts testing these curve fitting models are described in Appendix A3 and the
executable m-files given as attachments to the thesis.
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7.2 Curve proposals

In this section, the fitted curves will be discussed with respect to each other, and to the
following options:

1. No model modification (equivalent to ηi = 1), presented already in section 6.1

2. The parabola in [5]: ηi(q) = q(2− q)

From section 7.1, there are several criteria for evaluating and not necessarily only one
best fitted curve for each data set. Discussion of curve options for the different turbines
will be included, before stating final choice including function coefficients at the end of
each section.

In order for ηi to correct the model with respect to the measurements, the curve fitting
should be based on measured efficiency divided by model efficiency (both in p.u.). Even
though model efficiency turned out quite flat for all designs, it must be clarified that the
inputs by tuning method 2 were used for this purpose. These turbine designs were more
similar to the experiments, and caused no issues like we saw for the low head runner by
method 1. From this point on, only the designs by method 2 are given as model inputs.

7.2.1 High head Francis turbine

Efficiency measurements from the high head turbine were quite flat for a wide flow range,
with a steep decrease towards zero efficiency at very low flow. This made the model effi-
ciency surprisingly accurate in a certain band around q = 1. Implementing q(2−q) would
correct for its lack of reaching zero efficiency, but for a certain flow range, may give a
larger overprediction of hydraulic losses than the underprediction occurring without ηi.
The parabola is simply too steep compared to the measurements.

Obtaining curves with first derivative close to zero in (1,1) was not a problem for this
turbine because of the flatness around BEP. All four proposed curve types could easily
achieve derivative in absolute value less than 0.1. Fitting by a polynomial or Fourier se-
ries can have some oscillatory behaviour. Trial-and-error resulted in minimum oscillations
achieved by choosing degree 8 or higher for the polynomial, or number of harmonics 5 or
higher for the Fourier series.

Both a higher degree polynomial (like n = 8) or a Fourier series of a larger number of
harmonics (like n = 6) were very good fits in the flow range of the data. Curve behaviour
for even higher q varied. To demonstrate, below are presented curve fits by 7th, 8th and
9th degree polynomials, respectively, including their behaviour outside the data range.

69



Chapter 7. Model Improvement

Figure 7.2: Polynomial curve fittings for the high head turbine having (a) degree 7, (b) degree 8 and
(c) degree 9. Curves (a) and (c) struggle to predict reasonable behaviour for high flow.

Since we require the curve to decrease monotonically for flow rates slightly past the
upper limit of the data, the 8th degree polynomial must be chosen. Alternatively, to add
the data point (2,0) can remarkably improve the 9th degree polynomial:

Figure 7.3: Polynomial curve fitting for the high head turbine having degree 9. The extra data point
of (2,0) is included to improve curve behaviour outside the data flow range.

Below are presented curve fits by Fourier series of 5, 6 and 7 harmonics, respectively,
including their behaviour outside the data range.
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Figure 7.4: Fourier series curve fittings for the high head turbine having (a) 5 harmonics, (b) 6
harmonics and (c) 7 harmonics. Curve (b) struggles to predict reasonable behaviour for high flow.

The Fourier series of 5 and 7 harmonics are basically identical and decrease rapidly
outside the data range. For simplicity, the 5 harmonics is preferred. Adding the extra data
point (2,0) will improve these Fourier curves, exemplified below for the 6 harmonics one:

Figure 7.5: Fourier series curve fitting for the high head turbine having 6 harmonics. The extra data
point of (2,0) is included to improve curve behaviour outside the data flow range.

The power function for q ≤ 1 resulted in slightly overprediction of loss, while the
exponential function had both a range of slightly over- and underprediction in the same
region, observed in figure 7.6. The power and exponential functions for q ≥ 1 were
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similar and both good fits in the valid high flow region. Outside, their decrease towards
zero efficiency is quite slow.

Figure 7.6: (a) Power and (b) exponential curve fittings for the high head turbine.

Also for these, the additional data point (2,0) can change the q ≥ 1 curve behaviour.

Both the polynomial in figure 7.3 and the Fourier series in figure 7.5, are considered
very good options for the high head turbine. The two-term power or exponential functions
in figure 7.6 are considered quite good options as well.

For the purpose of demonstrating the model improvement, a choice was made. The
9th degree polynomial is on the following form:

ηi(q) = p1q
9 + p2q

8 + p3q
7 + p4q

6 + p5q
5 + p6q

4 + p7q
3 + p8q

2 + p9q + p10 (7.6)

Having the following coefficients:

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

5.6718 -52.528 207.27 -456.12 615.25 -526.61 286.34 -96.278 18.782 -0.7765

Table 7.1: Coefficients for a 9th degree polynomial fitted to the high head turbine measurements.
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7.2.2 Medium head Francis turbine

The medium head turbine for ω̃ = 1 also has a wide flow region of relatively flat efficiency
data, and a rapid decrease towards zero for low flow. After filtering out minor irregulari-
ties, the general curve shape is more similar to the curve of the high head rather than the
low head runner. From their speed numbers and geometrical similarity, this resemblance
is expected.

Tendencies of oscillating behaviour for the polynomials were slightly more evident
for the medium head turbine. Similar trends as for the high head were observed when
testing: Higher degrees will reduce oscillations, and odd degrees will give unreasonable
curve behaviour for flow rates higher than the given range. For Fourier series curves
having a larger number of harmonics, less oscillation was achieved. When testing different
number of harmonics, certain numbers gave unreasonable behaviour for higher flow rates.
A Fourier series of 5 harmonics seem to be a good fit with minimum oscillatory behaviour,
and it decrease monotonically (however very fast) for flow past the upper limit of the data:

Figure 7.7: Fourier series curve fitting for the medium head turbine having 5 harmonics.

In general for the different curve models, adding the extra data point (2,0) did not im-
prove curve behaviour as much as it did for the high head turbine. The only improvement
worth including was for a 9th degree polynomial:
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Figure 7.8: Polynomial curve fitting for the medium head turbine having degree 9. The extra data
point of (2,0) is included to improve curve behaviour outside the data flow range.

Strengths and weaknesses of having two different exponential or power functions are
similar as observed for the high head. For q ≥ 1, these curves continue to decrease
monotonically also past the upper flow of the data:

Figure 7.9: (a) Power and (b) exponential curve fittings for the medium head turbine.
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All of the above presented curves in figures 7.7, 7.8 and 7.9, are considered good op-
tions for the medium head turbine.

Choosing the 5 harmonics Fourier series, the function is on the following form:

ηi(q) = a0 + a1 cos (ω0q) + b1 sin (ω0q) + a2 cos (2ω0q) + b2 sin (2ω0q) + a3 cos (3ω0q)

+b3 sin (3ω0q) + a4 cos (4ω0q) + b4 sin (4ω0q) + a5 cos (5ω0q) + b5 sin (5ω0q)

(7.7)

Having the following coefficients and fundamental frequency:

ω0 a0 a1 b1 a2 b2

0.8655 -22977 26587 27975 1165.1 -22545

a3 b3 a4 b4 a5 b5

-6702.8 5712.9 2058.5 227.92 -133.35 -179.00

Table 7.2: Coefficients for a 5 harmonics Fourier series fitted to the medium head turbine measure-
ments.
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7.2.3 Low head Francis turbine
The steep efficiency data with a sharper peak was a little more challenging to fit a curve,
especially since we want the first derivative close to zero at BEP. Additionally, the flow
range of the given data was very limited for this turbine. Both a higher degree polynomial
or a Fourier series of a larger number of harmonics were good fits in the considered range,
but curve behaviour outside varied a lot. Below are presented curve fits by 7th, 8th and 9th
degree polynomials, respectively, including their behaviour outside the data range.

Figure 7.10: Polynomial curve fittings for the low head turbine having (a) degree 7, (b) degree 8
and (c) degree 9. They all struggle to predict reasonable behaviour outside the data range.

None of the above polynomials fulfill the requirements of reaching zero for low flow
and monotonically decrease for flow rates higher than the upper limit of the data.

Below are presented curve fits by Fourier series of 5, 6 and 7 harmonics, respectively,
including their behaviour outside the data range.

Figure 7.11: Fourier series curve fittings for the low head turbine having (a) 5 harmonics, (b) 6
harmonics and (c) 7 harmonics. Curves (b) and (c) struggle to predict reasonable behaviour outside
the data range.

The Fourier series of 7 harmonics works better than the 6 harmonics, but since we
require the curve to reach zero for some low flow, the 5 harmonics curve must be chosen.
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Because of the shape of the experimental data, it was difficult to improve curve be-
haviour outside of given flow ranges simply by adding (2,0), or any other data point. This
was evident from testing different curve models. The curves still have the tendency of
”turning” at locations where we expect the real efficiency to monotonically decrease, sim-
ilar to the behaviour of the above graphs.

Because of the sharp and asymmetrical BEP, it was challenging to make two curves
meet in (1,1) with first derivatives equal to zero, while still providing good fits for the
remaining data. The advantage of exponential or power functions is that they both mono-
tonically decrease outside the data range. The exponential was considered a better fit:

Figure 7.12: Exponential curve fitting for the low head turbine. The right figure provides a zoom-in
of the best efficiency peak from the left figure.

For the low head turbine, the model efficiency was only slightly curved, while the real
efficiency decreases rapidly at off-design conditions. Also included in the above figures is
the parabola from [5], q(2− q), which in fact is more accurate for this turbine than it was
for the higher head ones. The low head runner is the only case where the parabola actually
underpredicts the losses (overpredicts the efficiency) slightly. For both high and medium
head runners, the parabola lies below the data for most of the flow range. A curve fitted to
measurements is the most accurate option, but when such data are unavailable, q(2 − q)
seem to agree quite well for a low head turbine like this one.

Based on this observation, polynomials of lower degree were investigated for fitting
to these data. Below are presented curve fits by 3rd, 4th and 5th degree polynomials,
respectively, including their behaviour outside the data range.
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Figure 7.13: Polynomial curve fittings for the low head turbine having (a) degree 3, (b) degree 4
and (c) degree 5. They are all remarkably better behaved outside the data range.

The 4th degree polynomial in plot (b) above is considered a surprisingly good fit, es-
pecially considering how simple it is. Also the 5 harmonics Fourier series or the two-term
exponential functions are considered good alternatives for the low head turbine.

Choosing the 4th degree polynomial, the function is on the following form:

ηi(q) = p1q
4 + p2q

3 + p3q
2 + p4q + p5 (7.8)

Having the following coefficients:

p1 p2 p3 p4 p5

-2.9752 9.0639 -10.912 6.6182 -0.8079

Table 7.3: Coefficients for a 4th degree polynomial fitted to the low head turbine measurements.
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7.3 Implementation into the model
The main purpose of ηi(q) is to improve model accuracy in capturing irreversible hydraulic
losses along the q-axis. As first performed in [5], implementation is simply to multiply the
efficiency with the incipient efficiency expression. As performed in [7] [8], this is ensured
by inserting it into the torque equation:

t = ηi(q) q (mS − ψ ω̃) (7.9)

Consequently, it will appear in the nominator of the efficiency expression, as desired:

η̃ =
ηi(q) t ω̃

q h
=

ηi(q) (mS − ψ ω̃) ω̃(
q

y

)2

+ σ (ω̃2 − 1)

(7.10)

Where ηi(q) can be any suitable function. According to [7], inserting it into the torque
equation is mathematically equivalent to inserting it into the denominator of the head equa-
tion. Expression 7.10 will be the same.

Demonstration of the the ηi implementation will consist in presenting characteristic
curves in this section, but also in presenting full Hill charts in the following section 7.4.

ηi will alter the modelling of torque, power and efficiency, the flow model remains
unchanged. From the 7 different characteristic curves presented in section 6.1, the torque-
speed, power-speed, efficiency-speed, torque-opening degree and efficiency-flow diagrams,
will be affected. Since ηi depends on q, its impact on plots having ω̃ on the x-axis is minor
compared to those having y or q on the x-axis. When including ηi, the t − ω̃ and p − ω̃
characteristics only show minor changes for low or high opening degree curves, and will
therefore be omitted in this section. Given the close coupling between efficiency-speed
and efficiency-flow, it is highly relevant to include both plots. The hypothesis was that
implementing ηi(q) will improve η̃ − ω in addition to η̃ − q. Finally, the t − y plots are
also included mainly to look for nonlinearity.

As in section 6.1, experimental and simulated turbine characteristics will be presented
in different plots next to each other. Simulations without the improvement already pre-
sented in the analysis will be included for comparison. All relevant MATLAB scripts are
described in Appendix A3 and the executable m-files given as attachments to the thesis.
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7.3.1 High head Francis turbine

The ηi(q) curve implemented in the characteristics of plots (c) below, is the 9th degree
polynomial presented already in section 7.2.1. The graphics demonstrate the model im-
provement, similar results can be achieved with other curves as well.

Figure 7.14: Efficiency - speed characteristics for different guide vane openings under constant
rated head for high head turbine. From the left: (a) measurements, (b) simulations without ηi and
(c) simulations with ηi (both for model inputs by method 2).

Figure 7.15: Efficiency - flow characteristics for different rotational speeds under constant rated
head for high head turbine. From the left: (a) measurements, (b) simulations without ηi and (c)
simulations with ηi (both for model inputs by method 2).
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Figure 7.16: Torque - opening degree characteristics for different rotational speeds under constant
rated head for high head turbine. From the left: (a) measurements, (b) simulations without ηi and
(c) simulations with ηi (both for model inputs by method 2).

Discussion

The improvement in curve shape for the efficiency-flow characteristics in figure 7.15 is
expected, and the ω̃ = 1 curve should correspond almost completely. The analysis in
section 6.1 showed that correct model inputs can improve accuracy of efficiency levels for
different speeds, but that that efficiency shape for varying flow was predicted poorly by the
equations. It becomes the opposite issue in the efficiency-speed diagram. Correct model
inputs can improve accuracy of efficiency shape for varying speed, but the efficiency lev-
els for different guide vane openings was predicted poorly by the equations. This is the
same problem: hill shape for vertical movement in the diagram is predicted poorly by the
equations. Studying plots (c) of figures 7.14 and 7.15 above, ηi(q) improves this issue.

The high head runner data were given for a narrow speed range not including runaway
operation. Even so, we do expect q − ω̃ characteristics to intersect the runaway curve in
different points. Since only one ηi curve was constructed and implemented for all speeds,
the zero efficiency intersection point remains the same. This can be seen in figure 7.14,
where both plots (b) and (c) intersect the ω̃-axis for only one value irrespective of guide
vane opening. In a Hill diagram, this implies that the runaway curve is vertical in the re-
gion where these q− ω̃ curves intersect it. It can also be seen in figure 7.15, where plot (c)
intersect the q-axis for only one value irrespective of runner speed. In a Hill diagram, this
implies that the runaway curve is horizontal in the region containing these speeds.

For the torque-opening characteristics in figure 7.16, deviation from linearity is better
captured by the model with ηi than without. There is less impact of ηi on the high speed
curves, these did already agree quite well with the measurements, but the curves for low
to slightly past rated speed are affected more. Since ηi(q) was multiplied into the torque
equation, obviously its curve shape will impact curve shape of torque characteristics.
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7.3.2 Medium head Francis turbine

The ηi(q) curve implemented in the characteristics of plots (c) below, is the 5 harmonics
Fourier series presented already in section 7.2.2. The graphics demonstrate the model im-
provement, similar results can be achieved with other curves as well.

Figure 7.17: Efficiency - speed characteristics for different guide vane openings under constant
rated head for medium head turbine. From the left: (a) measurements, (b) simulations without ηi
and (c) simulations with ηi (both for model inputs by method 2).

Figure 7.18: Efficiency - flow characteristics for different rotational speeds under constant rated
head for medium head turbine. From the left: (a) measurements, (b) simulations without ηi and (c)
simulations with ηi (both for model inputs by method 2).
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Figure 7.19: Torque - opening degree characteristics for different rotational speeds under constant
rated head for medium head turbine. From the left: (a) measurements, (b) simulations without ηi
and (c) simulations with ηi (both for model inputs by method 2).

Discussion

Some of the same observations as for the high head turbine can be made also for the
medium head. Its data were given in a much larger operational area, including runaway
operation. Since its speed range is so wide, the error of implementing only one ηi curve
for all speeds becomes more evident. The efficiency-flow curve shape in plot (a) of fig-
ure 7.18 is similar for different speeds, but higher speeds includes higher flow value for
which efficiency is zero (horizontal shift). This implies that the runaway curve has a finite
positive slope in the Hill chart, as expected. By implementing only one ηi(q) curve going
through zero for only one low flow value, this is not modelled.

It was observed in the analysis how the model fails to predict the different guide vane
openings for different speeds at which torque is zero, and how this is also related to the
shape of the runaway curve. From figure 7.19, including ηi in the torque equation shifts
the intersection slightly, but variations are not captured.

As for the high head turbine, the t − y curves for low to slightly past rated speed are
more affected by ηi than the high speed curves. Tendencies of overprediction of curva-
ture is observed. Considering that ηi is fitted to η̃ − q data, multiplying it into the torque
equation can generate some errors. For improvement of torque prediction solely, a curve
should be fitted to t − q or t − y data in stead. This is basically direct tuning of model to
measurements, and not really the objective here. The intention is to investigate what only
one curve can do to overall model performance for varying operating conditions.
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7.3.3 Low head Francis turbine

The ηi(q) curve implemented in the characteristics of plots (c) below, is the 4th degree
polynomial presented already in section 7.2.3. The graphics demonstrate the model im-
provement, similar results can be achieved with other curves as well.

Figure 7.20: Efficiency - speed characteristics for different guide vane openings under constant
rated head for low head turbine. From the left: (a) measurements, (b) simulations without ηi and (c)
simulations with ηi (both for model inputs by method 2).

Figure 7.21: Efficiency - flow characteristics for different rotational speeds under constant rated
head for low head turbine. From the left: (a) measurements, (b) simulations without ηi and (c)
simulations with ηi (both for model inputs by method 2).
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Figure 7.22: Torque - opening degree characteristics for different rotational speeds under constant
rated head for low head turbine. From the left: (a) measurements, (b) simulations without ηi and (c)
simulations with ηi (both for model inputs by method 2).

Discussion

In the analysis, model behaviour for the low head turbine differed from the higher head
ones. The biggest difference was the efficiency-flow curvature and the small level dif-
ferences for efficiency-speed curves. The model equations capture some losses along the
q-axis, yet not enough. Studying plots (c) of figures 7.20 and 7.21, including a suitable
ηi can improve this. Similar to the preceding turbines, different runaway speeds are not
captured.

The proposed 4th degree polynomial for ηi(q), is sharp and decreases monotonically
and rapidly for flow rates past the upper limit of the data. Studying the t−y characteristics
of figure 7.22, the aggressive ηi shape results in overprediction of curvature for increasing
guide vane openings. The model characteristics with ηi are improved up to about y = 1.2,
but become more inaccurate for higher openings. Choosing a less steep ηi curve, for ex-
ample the parabola by Nielsen [5], may improve this. It is a matter of curve choice and
area of interest i.e. how high flow rate intended to model.
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7.4 Hill diagrams
Complete Hill diagrams from the measurements, the turbine model without any efficiency
improvements, as well as with the ηi curve implementations, will finally be presented in
this section. They do not contribute any new information, model performance compared
to the experimental data have already been discussed based on the 2D plots. The diagrams
are a compact and convenient presentation format, and are mainly included to confirm and
summarize previous findings.

As discussed in section 7.1.3, the ηi curve was required to decrease monotonically
slightly past the upper flow range limit, but we cannot know for sure what behaviour to
expect in this area. Depending on the turbine there is an upper limit to the guide vane
setting, such that flow rates corresponding to openings past this limit are nonphysical and
unnecessary to include in a Hill chart. The dashed rectangle defines the operating area
where experimental data were given. Evaluating the model’s ability to predict hill shape
can be done in the entire diagram, but validation against the measurements can only be
done inside the dashed rectangle (the ”validation area”).

Separate MATLAB scripts were written to generate Hill charts. These are described in
Appendix A3 and the executable m-files given as attachments to the thesis.

86



7.4 Hill diagrams

7.4.1 High head Francis turbine

Figure 7.23: Hill diagram from the measurements for high head turbine.

Figure 7.24: Hill diagram from the model without ηi for high head turbine. Dashed rectangle
defines the area where measurements were given (validation area).
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Figure 7.25: Hill diagram from the model with ηi for high head turbine. Dashed rectangle defines
the area where measurements were given (validation area).

Discussion

Comparing figure 7.23 to 7.25, inside the validation area, the Hill diagram is predicted
very well by the model including ηi. The model without ηi in figure 7.24, does not capture
much slope for vertical movement in the diagram. These results are quite as expected.

Clearly, the issues of modelling the runaway curve remain also with the improvement.
The speeds where the q − ω̃ characteristics intersect the zero efficiency line are the same,
since the runaway curve is vertical in this region. Its horizontal region results from im-
plementing only one ηi curve going through zero in one low flow value, for all speeds.
These vertical and horizontal regions were anticipated already in section 7.3 (the vertical
region already in section 6.1) based on the 2D plots. The rectangular curve shape does not
resemble runaway curves of real Francis turbines.
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7.4.2 Medium head Francis turbine

Figure 7.26: Hill diagram from the measurements for medium head turbine.

Figure 7.27: Hill diagram from the model without ηi for medium head turbine. Dashed rectangle
defines the area where measurements were given (validation area).
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Figure 7.28: Hill diagram from the model with ηi for medium head turbine. Dashed rectangle
defines the area where measurements were given (validation area).

Discussion

Comparing figure 7.26 to 7.28, inside the validation area and in proximity to the efficiency
peak, the Hill diagram is predicted quite well by the model including ηi. The farther away
from the peak, the more imprecise is the model with respect to these experimental data.
Nevertheless, figure 7.28 is clearly more similar to figure 7.26 than what 7.27 is.

Runaway operation was well included in the experimental data. From rated guide vane
opening characteristic, y = 1.0 (dark blue), the measured runaway operation assuming
constant rated head h = 1, is at ω̃ ' 1.56, q ' 0.53. The same runaway operation is
predicted by the model (with or without ηi, it does not affect) to be at ω̃ ' 1.62, q ' 0.51,
for rated head h = 1. The model predicts reasonable runaway operation at y = 1, yet not
for other openings. Also in the area around ω̃ = 1 for very low q or y, the runaway curve
agrees quite well. It is mainly the shape in the region between these two areas which does
not resemble the real runaway curve.
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7.4.3 Low head Francis turbine

Figure 7.29: Hill diagram from the measurements for low head turbine.

Figure 7.30: Hill diagram from the model without ηi for low head turbine. Dashed rectangle defines
the area where measurements were given (validation area).
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Figure 7.31: Hill diagram from the model with ηi for low head turbine. Dashed rectangle defines
the area where measurements were given (validation area).

Discussion

From figure 7.29, the area of experimental data is rather limited. Runaway operation is
only included for a few low opening values, but in the measured speed-flow range, the
runaway curve increases with a slope of about 1. Since only one ηi curve was imple-
mented for all speeds in figure 7.31, the runaway curve is modelled as horizontal in the
same speed range. From the model without ηi in figure 7.30, there were already tenden-
cies of curvature along the q-axis, just not enough. Figure 7.31 shows how including ηi
increases the slope drastically.

Investigating the measured Hill chart closely, in the upper left corner there are ten-
dencies of efficiency increase when moving away from BEP. Since this happens around
ω̃/
√
h = 1.0, a section of data for q/

√
h > 1.20 were filtered out before curve fitting.

Looking at the hill slope slightly to the right indicates that in reality, it is less steep than
what we anticipated based solely on the q range 1.00 − 1.20. As a result, the chosen ηi
curve is too steep for higher flow values. Comparing figure 7.29 to 7.31 and disregarding
for a while that the runaway curve is not reached. Inside the validation area, the Hill dia-
gram is predicted relatively good for lower flow rates by the model with ηi, but less good
for higher flow rates. This results from choosing a too steep incipient efficiency curve.

If we were to perform the curve fitting for this low head runner again, a few extra data
points to ensure its efficiency slope for q > 1.0 is less steep, would have been performed.
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7.5 Generalization of the model improvement
The improved agreements in characteristic curves in section 7.3, or the changes in hill
shapes in section 7.4, are expected. It is interesting to investigate whether the model can
be improved also for other Francis turbines, by producing general incipient efficiency
ηi(q) curves. That is, propose the improvement without loss of generality for the model.

In this section, the concept of generalizing the curve, as well as a specific approach to
do so, is described.

7.5.1 Dependency on speed number
Presented below are the p.u. measured efficiency divided by model efficiency versus p.u.
flow rate, which was the basis for the ηi curve fittings. The figure is included to empha-
size expected ηi curve shapes for different Francis turbines; the low head should have a
much sharper curve than the high head, which should have a wider shape with a larger flat
region. This generalization is as also consistent with references like [25] [32]. In [32],
normalized efficiency-flow curves at constant rotational speed and head (as was our case),
show sharper curves for higher specific speeds.

Figure 7.32: Measured efficiency data divided by model efficiency at nominal speed and head,
ω̃ = 1 and h = 1, the basis for fitting ηi(q) curves. The speed numbers, Ω, are estimates from the
design by tuning method 2.
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The speed numbers from the design by method 2 are included in figure 7.32 to indi-
cate Francis turbine type. The absolute values are less relevant than the values relative to
each other. For generalization of ηi(q) curves based on turbine speed number Ω, increas-
ing Ω should ”sharpen” the curve (green), while decreasing Ω should ”widen” it (red).
Consequently, increasing Ω should slightly increase the zero efficiency flow rate, while
decreasing Ω should slightly decrease it. This is the basic idea we want a general ηi(q)
curve dependent on speed number, to fulfill.

Coefficients of the different curve fitting models were plotted against Ω for the turbines
to investigate any correlations. With only three turbines, a correlation can at best be found
as linear. However, the correlations turned out rather weak. Only the polynomials showed
some tendencies of linearity between coefficients and speed number when fitting by the
same degree polynomial. To obtain curve coefficients by linear interpolation for a certain
Ω did not generate any nice curves, and after several attempts, the idea was rejected. If
more experimental data had been available, perhaps correlations (not necessarily linear
ones) could have been found.

7.5.2 Linear interpolation between functions
A first order approximation to obtain the ηi curve for a given speed number, is to lin-
early interpolate between two curves corresponding to a lower and a higher speed number.
That is, the resulting curve function is a combination of two curve functions, where the
weighting is based on Ω:

ηi(q) = (1− x) f1(q) + x f2(q) = f1(q) + x (f2(q)− f1(q)) (7.11)

Where

x(Ω) =
Ω− Ω1

Ω2 − Ω1
(7.12)

Ω1 and f1(q) correspond to the lower speed number, i.e. the high head turbine, and Ω2

and f2(q) correspond to the higher speed number, i.e. the low head turbine. For any speed
number in this range, Ω1 ≤ Ω ≤ Ω2, the resulting ηi(q) curve will be a linear combination
of the two curves. The f1(q) and f2(q) functions do not have to be of similar type. Any
suitable mathematical curve will do, but the resulting function becomes a simpler expres-
sion if they are.

Taking the high head runner’s 9th degree polynomial and the low head runner’s 4th
degree polynomial presented in equations 7.6 and 7.8, together with their estimated speed
numbers of 0.18 and 0.78, respectively, as an example. For any speed number in this range,
a curve can be obtained as:
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ηi(q) = (1− x) (p1q
9 + p2q

8 + p3q
7 + p4q

6 + p5q
5 + p6q

4 + p7q
3

+p8q
2 + p9q + p10) + x (p1q

4 + p2q
3 + p3q

2 + p4q + p5)
(7.13)

Where the coefficients pj for the 9th and the 4th degree polynomials were given in
tables 7.1 and 7.3, respectively. x is determined by the speed number:

x(Ω) =
Ω− 0.18

0.78− 0.18
, 0.18 ≤ Ω ≤ 0.78 (7.14)

The resulting incipient efficiency curve from relation 7.13 will be a 9th degree poly-
nomial (unless Ω = 0.78 which gives the 4th degree polynomial). Figure 7.33 below is
included to illustrate the concept for different speed numbers in this range.

Figure 7.33: Proposed polynomial ηi(q) curves for speed numbers in the range 0.18 ≤ Ω ≤ 0.78.
The curves are a linear combination of the innermost curve in red (4th degree polynomial) and the
outermost curve in blue (9th degree polynomial).

The curves of figure 7.33 can be implemented in the model by multiplication into the
torque equation, and will improve performance for the drawbacks addressed.
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7.6 General discussion of the incipient efficiency
The model including an ηi(q) curve going from 0 through 1 and back to 0, will produce
a Hill diagram shaped similar to a cone with a rectangular base. Towards zero efficiency,
hill shape is more rectangular, while towards BEP, more oval. In a certain area around
the peak, the model appears to predict general shape well, but towards zero efficiency, it is
more off target. Such hill shape, especially the charts modelling the medium and high head
turbines, resembles the Pelton Hill chart in figure 3.2. This is quite interesting, considering
that ηi was fitted with the intention to correct for losses related to varying flow, constant
speed operation. A Pelton does not have losses associated with sub-optimal inflow angles
when y 6= 1 (incidence and draft tube swirl losses, see section 3.5). A Pelton’s efficiency-
flow curve for constant speed is generally wide and flat, especially for several jets [26].

In the doctoral thesis of professor Torbjørn Nielsen [6], the origin of these model equa-
tions, the same hydraulic losses which ηi intend to capture, were modelled as head losses
with empirical coefficients Rf , Rc and Rd. These losses are subtracted from the torque
equation, unlike ηi which is multiplied into the torque equation. The purpose of ηi was
to avoid empirically based coefficients like the R-terms, and to collectively model irre-
versible hydraulic losses by only one function.

Rf , Rc and Rd represents viscosity (friction), incidence loss and draft tube swirl loss,
respectively. The last two are due to wrong (sub-optimal) inflow angles. His loss models
for these two contain (Q−Qc)

2, where Qc is the discharge when incidence angle is zero.
He derives an expression for Qc depending on guide vane angle α1 and rotational speed
ω. Therefore, Nielsen’s loss models related to wrong inflow angles depend on flow, guide
vane angle and rotational speed. In comparison, ηi(q) as it was produced in this work or
in [5], is simplified to completely disregard the effect of varying speed, and was fitted to
data for ω̃ = 1 as a function of flow q solely. Based on the shape of the Hill charts, this
simplification seems more appropriate for Pelton than for Francis turbines.

When implementing the same ηi(q) curve for all speeds, it will not capture any addi-
tional losses along the speed axis. The analysis in Chapter 6 showed that the equations
manage this quite well on their own. Prediction along the flow axis was the main weak-
ness, which is why ηi is produced to depend solely on flow. The analysis also showed that
runaway conditions are not captured too well by the model. In [6], a term representing
disk- and mechanical friction losses is also subtracted from the torque equation. Since
it depends on runner speed squared, it is constant for ω̃ = 1, but will increase when ω̃
increase. The loss coefficients included in the torque equation (the R’s) are tuned to mea-
surements, more precisely by peak efficiency location, starting torque and runaway speed.

Based on the above discussed factors, neglecting the impact of varying speed on losses
due to wrong inflow angles, can possibly be the reason why the model struggles to capture
runaway conditions for a Francis turbine accurately. Not including any additional models
for disk- and mechanical friction as [6] did, might also have a certain impact. Given the
physics of energy losses in a Francis described in section 3.5, only one ηi(q) curve for all
speeds appears to be too simple to completely correct also the runaway curve.
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Conclusion

The mathematical turbine model studied in this master thesis, was developed from Euler’s
turbine equation and the opening degree definition. It is based on a first principles ap-
proach, and requires very few inputs; σ, ψ and α1R. The input parameters can be found
from the main dimensions and nominal operating point of a turbine. This can be obtained
by measuring the geometry, or by performing a simplified design ”from scratch”, as con-
ducted in section 5.1 by Brekke’s method. An alternative approach to obtain model inputs,
given that the Hill chart is known around the point of best efficiency, was developed in
section 5.2. Based solely on measured gradients of flow and torque with respect to speed
and head at BEP, σ and ψ can be obtained. Knowing also α1R from measurements, the
model is complete. This demonstrated a quick procedure to set up a physical correct math-
ematical turbine model from only one measured operating point.

Analysis of model performance compared to real Francis behaviour, was conducted
before and after incipient efficiency, ηi, curves were proposed. General hill shape along
constant y curves were already quite good, but irreversible hydraulic losses along the q-
axis were not captured to the same extent. Even though the basic physics of the governing
equations are correct, these losses are not intrinsically a part of the 1D model, and should
be modelled separately. For this purpose, an ηi curve depending on q and fitted to data at
ω̃ = 1, h = 1, was developed and implemented.

The flow equation is unaffected by ηi as it is inserted into the torque equation. Ge-
ometrical constant σ proved to be very decisive for predicting flow-speed characteristics.
To a certain extent, the model can be tuned by σ to yield quite accurate characteristics. At
ω̃ = 1, the effect of σ and thus of runner main dimensions, is lost. The relation between
head, flow and guide vane opening is reduced to the valve equation.

This work demonstrates that the general hill shape is highly affected by the choice of
ηi(q) curve, and that it can, when chosen wisely, be greatly improved. The performance
diagram is well predicted around the efficiency peak, but the curves towards zero effi-
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ciency tend to be almost rectangular. Prediction of runaway conditions can be relatively
good around ω̃ = 1 and y low, and around y = 1 and ω̃ high, but for the region in between,
modelled runaway curves deviate from measured ones.

Despite the inaccuracies observed when both ω̃ and y differ largely from 1, the ηi(q)
improvement appears to be very promising. For stability- or grid analysis around ω̃ = 1
for any q and y, the model is considerably improved. As shown, it already performs well
around y = 1 for any ω̃, as long as inputs are precise. That said, for the purpose of pre-
dicting all parts of the Hill diagram accurately, for example for general transient analysis
including load rejection, start-up or shut-down, further model improvement is necessary.
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Chapter 9
Further Work

Since Rainpower did not provide runner geometry with the data, two approaches to obtain
reasonable designs based on the data (reversed engineering), were attempted. The first
approach caused challenges in obtaining a reasonable low head Francis design. Further
work can involve a closer look at the issues discussed in section 5.1.2, and to improve the
low head runner design based on measured BEP.

The analysis in Chapter 6 attempted to distinguish between general model behaviour
and input behaviour. Future work can be to design more turbines for model application
in order to back up the analysis. In regards to distinguish these two types of errors, more
simulations could improve the quality of the analysis.

The proposed improvement was based on model turbine data, but is intended to be
applicable to prototypes. Scale effects, especially for frictional losses, may shift efficiency
curve and BEP from model to prototype [22]. Future work can include investigating these
effects and possibly incorporate the appropriate scaling formulas.

In order to achieve a runaway curve with finite positive slopes, several ηi functions
could have been implemented. Developing a few curves for certain values of ω̃, inter-
polation can be used in between. This implies that the process of deciding ηi based on
Ω should generate preferably three (or at least two) curves, corresponding to lower and
higher speed values of interest as well as rated. This can increase accuracy of the runaway
curve by avoiding non-physical horizontal and vertical sections. Alternatively, one can
develop multivariate incipient efficiency functions; ηi(q, y, ω̃) or ηi(q, ω̃). These should
be valid and smooth in the entire operating area. Such functions can be intricate to develop
based on experimental data, not to mention difficult to generalize based on Ω. To keep it
one-dimensional, ηi(q), and develop a few different ones for different ω̃ and interpolate in
between, is perhaps more realistic. Any approach to obtain variation in ηi along also the
ω̃-axis, can be included in further work.

99



Chapter 9. Further Work

For the purpose of stability analysis along ω̃ = 1 and y = 1, the linearized model
is convenient. Future work can involve more investigation into this version including ηi.
Only characteristic values at BEP were calculated in this work, but these are not affected
by ηi. Linear model behaviour at other operating points can also be investigated.

To generalize the improvement with respect to Ω as described in section 7.5, or by any
other appropriate method, can also be performed. Following this, software implementation
for application to real plants can be the next step. LVTrans already uses the turbine model
studied in this work, but including the empirical R-terms which must be tuned. The ηi, as
an alternative way of modelling losses, can be implemented into LVTrans.

Last but not least, to develop ηi curves appropriate for other turbine types like Pelton
or Kaplan, can also be part of the scope for future work.
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Abstract. When doing transient and dynamic analysis of powerplants, a mathematical 

representation of the turbine is needed. These models can be fully based on empirical data, or 

they can be based on a first principles approach. A first principles approach is practical in many 

circumstances because any known and unknown turbine can be modelled, and the model can 

easily be simplified and linearized without losing generality or physical correctness. The model 

can be used for general transient studies, also where the turbines are not yet specified, or when 

doing control system analysis and analysis of the grid. 

Using the Euler turbine equations together with the definition of the turbine opening degree, one 

obtains a model that is geometrically and physically correct. The development of this model 

started several years ago, and this paper presents the current development. The model shows 

good agreement of the efficiency as a function of speed, as part of the Euler turbine equation. 

However, the efficiency as a function of flow is over predicted because hydraulic loss 

phenomenon such as turbulence and dissipation are not inherently included. There are several 

ways to include the hydraulic losses. This can be done in a simplified manner, or more elaborate, 

which also could involve empirical relations for exact fit with a measured turbine. This paper 

discusses these possibilities, along with some examples. 

1.  Introduction 

When doing analysis of hydropower plants, a mathematical model of the turbine is needed. The accuracy 

and detail of the model needed, varies according to the accuracy and detail required for the results. 

Typical analysis are analysis of the grid (including hydropower plants); stability analysis of the turbine 

and turbine governor, and transient analysis of the turbine and waterways. The required detail and 

accuracy of the turbine model will typically increase accordingly. In later years, the addition of so called 

digital twins and similar concepts, with their own sets of requirement regarding accuracy and detail, 

have emerged[3][4]. 

In 1990, Nielsen introduced a new model[6]. This model has been studied and developed ever since,  

for instance, but not limited to [5][8][9][10][11][12]. This is also the main model used in LVTrans[1][2]. 

This model is based on a first principles approach using the Euler Turbine equation and the equation for 

the opening degree. Being a first principles approach, it lends itself naturally to studying and modelling 

of the details of the physical losses in a turbine. 

The Nielsen model includes "Euler losses". These losses are caused by the turbine spinning too fast 

or too slow in relation to nominal speed. The model also includes effects due to geometry. However, in 

its most basic form, the model does not include losses caused by irreversible phenomenon, such as 

turbulent losses, losses in draft tube etc. This makes the basic model able to accurately predict turbine 



 

 

 

 

 

 

behaviour along constant opening curves and along the "speed axis", but not the irreversible losses that 

typically occur along the "flow axis"[8][9][11][12]. Whether these losses are of importance depends on 

the nature of the analysis. The implication of these losses, as well as modelling alternatives are presented 

and discusses in this paper. The discussion is mainly about Francis turbines, but is also relevant for 

Pelton turbines. It does not include Kaplan turbines as of the time being. 

. 

2.  Governing equations 

The derivation of the model, which is not trivial, can be found in[6][8][9][12], and in particular[11]. The 

main starting point is the Euler turbine equation and the related inlet/outlet diagrams, Figure 2.1 
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Figure 2.1 Inlet and outlet diagrams for a Francis runner 

 

He is the total head between two points where the efficiency, ηh is defined, for instance: 
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Figure 2.2 Sketch of a Francis turbine roughly 

showing the numbered positions. 

 

Here ηh is a general, but unknown loss function (typically the efficiency). The next starting point is the 

opening degree, 𝜅, defined as: 
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Combining the above 3 equations yields one equation for the flow and head (4) and one equation for the 

torque (5). 
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𝑇 = 𝜌𝑄(𝑐𝑢1𝑟1 − 𝑐𝑢2𝑟2) = 𝜌𝑄(𝑡𝑠 − 𝑟2

2𝜔𝑡) 
𝑡𝑠 = 𝑟1𝑐1𝑐𝑜𝑠(𝛼1) + 𝑟2𝐴𝑧𝑐𝑜𝑡(𝛽2)𝑐1𝑠𝑖𝑛(𝛼1) 

(5) 

 

Here 𝑡𝑠 is the starting torque when 𝜔𝑡 = 0 [7]. 𝐴𝑧 is the inlet area divided by the outlet area 

perpendicular to the shaft. 

Equation (4) and (5) are made non-dimensional to form equation (6) and (7) respectively. A term, 

𝜂𝑖, called the incipient efficiency, is included[5][8][12]. This incipient efficiency can be regarded as a 

general term describing all the irreversible losses in the turbine model. This term is the focus of this 

paper. It's worth noting that equation (6), (7) and (8) are capable of fully describing a turbine hill chart 

as long as a suitable 𝜂𝑖 is constructed and included. 
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3.  Model behaviour with 𝜼𝒊 = 𝟏 

When 𝜂𝑖 is set to the numerical constant value 1, then no effect of this terms is included. This is useful 

because it will show what is missing in the basic model. 

 

 

Figure 3.1 Hill chart with constant lines for ῆ 

and κ, and with ϖ and q as axis. ηi = 1. 

 

Figure 3.1 shows a sketch of a hill chart. With ηi = 1, the model is able to give a good prediction of all 

the variables along the line that represents a constant opening degree, κ = 1. The reason for this is that 

along this line, the losses are mostly represented by the turbine running too fast or too slow, and this 

already included in the basic model from the Euler turbine equation. For a Pelton turbine, this also 

extends where the flow is different from 1, or κ ≠ 1. 



 

 

 

 

 

 

What is missing for Francis turbines, are mainly two different irreversible losses: Losses due to 

wrong inflow angles, and losses due to spin in the draft tube. Other losses such as friction and turbulence 

can implicitly be included but are considered minor in comparison. 

For a Pelton, the hill chart is already rather good for ηi = 1, which is not unreasonable knowing that 

a Pelton does not suffer from wrong inflow angles or swirl in a draft tube. There still are errors compared 

with measured diagrams, particularly for q > 1. This can be explained by too much flow for each bucket 

to empty before it enters a new jet, and/or the jet becomes too wide for each bucket. 

Also worth discussing is when the basic turbine equations in general can be used, even with ηi = 1. 

For both Francis and Pelton, the equations can be used "as is", at least when going along the line where 

κ = 1. Thus for most grid analysis and stability analysis, the model will be a substantial improvement 

from using a simple valve equation, as is often used[14][15]. Specifically the model will include the 

variation of flow with respect to speed, which is important for stability analysis. The model/equations 

can be used without any knowledge of the actual turbine, other than nominal flow and head[8][9][12]. 

 

4.  Previous model improvements 

Already in Nielsen[6] several first principle improvements of the model were made. Specifically, the 

losses due to wrong inflow angles and draft tube losses were addressed. Both these losses were modelled 

as head losses using the same basic equation: 

 

 ℎ𝑙𝑜𝑠𝑠 = 𝑅(𝑄 − 𝑄𝑐)
2 (9) 

where 

 𝑄𝑐 = 𝐹(𝜅,𝜔) (10) 

 

The function, F, itself is an analytical function describing the flow q at BEP. Equation (9) is subtracted 

from equation (7) to include this in the model. However, several such losses make verifications very 

difficult, as they are impossible to differentiate from each other. It all becomes very convoluted for 

practical calculations when model tests or site measurements are needed to find good values for all the 

Rs, and at the same time they are all related to a head loss. 

 

5.  Different forms of ηi 

In Nielsen[5] the first use of the incipient efficiency was found. This made it possible to clearly divide 

the "pure" model equations from all the irreversible losses. In addition, the incipient efficiency modified 

the turbine efficiency instead of the head losses[8][9]. This resulted in the basic equations (6), (7) and 

(8), and where the incipient efficiency, ηi, is an arbitrary loss function that can take any shape and form. 

Moreover, it makes the model equations more consistent, in the sense that for any turbine, there should 

exist an ηi that will make the model equations fit with measurements[9]. 

As shown in [8][9][11][12], even the simplest and fully generic 1D function of ηi will make huge 

improvements. 

From a more fundamental point of view, this kind of model is interesting. The basic physics is correct, 

as far as one can be certain, but there are certain loss terms that must be modelled separately because 

they are not intrinsically a part of the model. This is similar to turbulence modelling in CFD or the 

Moody diagram in pipe flow. The losses cannot be modelled in the domain of the model, 1D in this case, 

but they can be approximated by simpler functions that are part of the same domain. 

 

5.1.  The simplest ηi 

The simplest form of ηi is found in [5][8][11]. It is expressed as: 



 

 

 

 

 

 

 

 𝜂𝑖 = 𝑞(2 − 𝑞) (11) 

 

This is a function of the flow, q where: ηi = 0 for q = 0; ηi = 1 for q = 1; ηi = 0 for q = 2. The shape is 

based on the observation from measurements that the efficiency must go towards zero when q 

approaches zero[6]. The efficiency must be equal to nominal efficiency when q = 1 (nominal flow), and 

it should decrease when q > 1. This is shown in the figures below comparing real measurements with 

the mathematical model. 

 

 
Figure 5.1 Measured vs calculated efficiency for 

a high head Francis turbine 

 
Figure 5.2 Measured vs calculated efficiency for 

a medium head Francis turbine  

 

 
Figure 5.3 Measured vs calculated efficiency for a low head Francis turbine 

This very simple generic ηi improves the basic model considerably[8]. However, it is a bit "too generic" 

for the entire range from low head Francis, Figure 5.3, to high head Francis, Figure 5.1, and further to 

Pelton[12]. It must be noted that equation (11) is a rather good approximation for low head Francis, 

Figure 5.2. The curve for ηi = 1 in the figures above represents the basic model with no irreversible loss 

terms. 

 

 

 



 

 

 

 

 

 

5.2.  Best fit incipient efficiency ηi for low head to high head Francis 

Assuming that ηi can be approximated by a function of q, then finding the best ηi that fits to several 

different turbines with different specific speeds, it should be possible to create generic curves that fit 

with those speeds and interpolate between them. 

Further, there are some pure practical considerations that has to be considered. When installing new 

turbine governors on existing plants, the complete hill chart usually cannot be found. Even if it is found, 

it is an elaborate process to transfer paper charts to a well-behaved interpolating function for analysis. 

A more efficient method would be to simply use readily available nominal values, and to build a 

mathematical model automatically from that. 

As shown in [12] this is indeed possible. Measured hill charts from 3 model turbines: high head 

Francis; medium head Francis; low head Francis, were used to find the best curve for each. 

 

 
Figure 5.4 High head Francis, best fit of ηi with 

measured model turbine at nominal speed[12] 

 
Figure 5.5 Medium head Francis, best fit of ηi 

with measured model turbine at nominal 

speed[12] 

 

 
Figure 5.6 Low head Francis, best fit of ηi with measured model turbine at nominal speed[12] 

 

With this method the hill chart will be accurate for all κ and q when ω = 1 and for all ω when κ = 1. 

The model can be used for any analysis where ω ≈ 1, for instance grid analysis and stability analysis. 

Since it is also accurate for all ω at κ = 1, it can be used for simple transient analysis.  



 

 

 

 

 

 

The model is slightly inaccurate where both ω and κ are largely different from 1 at the same time. 

Regarding transient analysis, this would typically be along the curve of the runaway speed, which is 

important when calculating load rejection. This can be seen comparing Figure 5.7 and Figure 5.8. 

However, it is worth noting that for κ = 1 or for ω = 1, assuming constant head, h = 1 also for the 

measured chart, the runaway curve is quite correct in these points. 

 

 
Figure 5.7 Measured hill chart for a medium head 

Francis 

 
Figure 5.8 Medium head Francis hill chart using 

the turbine model and ηi from Figure 5.5 and 

representing the model tests in Figure 5.7 

 

6.  Discussion 

Using the simplified design procedure as shown in [9] and [12] together with the incipient efficiency as 

a function of q and speed number, any unknown (Francis) turbine can easily be modelled just using 

nominal values as flow, speed and head. This is useful for grid analysis and stability analysis of turbine 

governors, as no additional information is needed[8][12]. The model is easy to linearize, even 

analytically[9][11]. 

Data from only 3 model tests were used: low head, medium head and high head Francis. The 

assumption is therefore that these three specific Francis turbines give representative curves for all other 

Francis turbines. This may seem as a rather big assumption. However, when studying how turbine 

characteristics changes with speed number, and noting the fact that the basic equations already include 

most of these characteristics, this cannot be considered an unreasonable assumption. Still, including 

many more model tests would of course be one of the next steps further with this model.   

More work must be done with the ηi function to make it fully usable for general transient analysis 

including load rejection, since the runaway curve is not represented well[12]. 

LVTrans has used the original model[6] with the R functions and Qc ,Equation (9), with very good 

results for more than 15 years[1][2][4], although the problem of easily and methodically finding suitable 

R values for arbitrary turbines do remain. The idea to use an incipient efficiency function of the form: 

 

 𝜂𝑖 = 𝐹(𝑞, 𝑞𝑐) = 𝐹(𝑞, 𝜅, 𝜔) (12) 

 

is therefore tempting and should be investigated. It is believed that simple but effective forms may be 

found that are adequate for the purpose of anticipating the runaway curve when this is needed. 



 

 

 

 

 

 

Linearizing this model is straight forward[9][11]. The block diagram will change slightly in 

comparison to a traditional diagram. The reason for this can be seen directly from equation (7) and (6) 

where ω is an independent parameter. This creates the block diagram as shown in Figure 6.1. 

 

 
Figure 6.1 Block diagram showing the speed as an input to the “Waterway and turbine” block. 

 

7.  Conclusion 

The turbine equations with the incipient efficiency seems to be very promising. Most of the 

shortcomings with the original simple form, equation (11), has been solved by using more elaborate 

forms as shown in Figure 5.4, Figure 5.5 and Figure 5.6. These new forms do not add any complexity 

in practical numerical calculations. 

This new form of incipient efficiency is accurate around best efficiency point and along the curves 

of nominal speed and nominal turbine opening in the turbine hill chart. Thus, the turbine equations can 

be used for grid calculations and stability analysis, as well as simple transient calculations for Francis 

turbines of literally the full range of speed numbers.  

As found in [12] and seen in when comparing Figure 5.7 and Figure 5.8, the new form of incipient 

efficiency does not give a good representation of the runaway curve for Francis turbines. Further work 

is needed in this area. 
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A2 Mathematical derivation of the characteristic coefficients of the
linear model

Model without incipient efficiency

Partial derivation is performed to the following governing equations applicable to a Francis
turbine:

q = y
√
h− σ (ω̃2 − 1) = f (h, y, ω̃) (9.1)

t = q (mS − ψ ω̃) = g (q, y, ω̃) (9.2)

where

mS = ξ
q

y
(cosα1 + tanα1R sinα1) = h (q, y) (9.3)

When differentiating the dependent variables q or t with respect to each of their re-
spective independent variables, the other independent variables are kept constant.

a11 =
∂q

∂h

∣∣∣∣
0

=
y

2
√
h− σ(ω̃2 − 1)

∣∣∣∣
0

(9.4)

a12 =
∂q

∂y

∣∣∣∣
0

=
√
h− σ(ω̃2 − 1)

∣∣∣∣
0

(9.5)

a13 =
∂q

∂ω̃

∣∣∣∣
0

= − y σ ω̃√
h− σ(ω̃2 − 1)

∣∣∣∣
0

(9.6)

a21 =
∂t

∂q

∣∣∣∣
0

= (mS − ψ ω̃) + q
∂mS

∂q

∣∣∣∣
0

= (2 mS − ψ ω̃)

∣∣∣∣
0

(9.7)

since
∂mS

∂q

∣∣∣∣
0

= ξ
1

y
(cosα1 + tanα1R sinα1)

∣∣∣∣
0

=
mS

q

∣∣∣∣
0

(9.8)

a22 =
∂t

∂y

∣∣∣∣
0

= q
∂mS

∂y

∣∣∣∣
0

(9.9)

where

∂mS

∂y

∣∣∣∣
0

= ξ
q

y2

(
− cosα1 − tanα1R sinα1 + y

∂α1

∂y
(− sinα1 + tanα1R cosα1)

)∣∣∣∣
0

(9.10)
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where

∂α1

∂y

∣∣∣∣
0

=
∂

∂y
(arcsin (y sinα1R))

∣∣∣∣
0

=
sinα1R√

1− y2 sinα1R
2

∣∣∣∣
0

(9.11)

a23 =
∂t

∂ω̃

∣∣∣∣
0

= − q ψ
∣∣∣∣
0

(9.12)

Subscript ’0’ denotes the point of linearization.

Model with general incipient efficiency

Partial derivation is performed to the following governing equations applicable to a Francis
turbine:

q = y
√
h− σ (ω̃2 − 1) = f (h, y, ω̃) (9.13)

t = ηi(q) q (mS − ψ ω̃) = g (q, y, ω̃) (9.14)

The partial derivatives of the flow equation, a11, a12 and a13, are not affected by the
implementation of incipient efficiency, only the partial derivatives of the torque equation,
a21, a22 and a23. The differentiation is performed for an arbitrary incipient efficiency
function ηi(q), assumed to depend solely on p.u. flow.

a21 =
∂t

∂q

∣∣∣∣
0

=

(
(mS − ψ ω̃) (q

∂ηi
∂q

+ ηi(q)) + q ηi(q)
∂mS

∂q

) ∣∣∣∣
0

(9.15)

a22 =
∂t

∂y

∣∣∣∣
0

= ηi(q) q
∂mS

∂y

∣∣∣∣
0

(9.16)

a23 =
∂t

∂ω̃

∣∣∣∣
0

= − ηi(q) q ψ
∣∣∣∣
0

(9.17)

Subscript ’0’ denotes the point of linearization.
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Characteristic coefficients at best efficiency point (BEP)

At BEP corresponding to rated/ nominal values, h = q = y = ω̃ = 1 holds.

The expressions for mS ,
∂mS

∂q
,
∂mS

∂y
and

∂α1

∂y
simplifies to:

mS

∣∣∣∣
BEP

=
ξ

cosα1R
(9.18)

∂mS

∂q

∣∣∣∣
BEP

=
ξ

cosα1R
(9.19)

∂mS

∂y

∣∣∣∣
BEP

= − ξ

cosα1R
(9.20)

∂α1

∂y

∣∣∣∣
BEP

= tanα1R (9.21)

At q = 1, any ηi(q) expression should be 1 and have first derivative equal to 0. Hence,
aij coefficients will reduce to the same expressions regardless the presence of an ηi curve,
the proof is omitted but could easily have been included. For the proposed incipient effi-
ciency functions of Chapter 7, the first derivatives are only approximate equal to 0. This
inaccuracy will be disregarded and we may approximate the characteristic values at BEP
to be independent of the choice of ηi(q) curve. The mathematical expressions for aij at
BEP are summarized below:

Characteristic values
a11 0.5
a12 1.0
a13 −σ
a21 2 ξ/ cosα1R − ψ
a22 −ξ/ cosα1R

a23 −ψ

Table A2.1: Characteristic coefficients of the linear model at best efficiency point.

To obtain numerical values, simply insert σ, ψ, ξ and α1R for the considered turbine
into the above expressions.
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A3 MATLAB scripts

All relevant MATLAB scripts are delivered as m-files with the master thesis at hand-in.
In this way, the reader can run them at his or her own request. As already mentioned, the
Excel sheet containing experimental data and model input values from the designs, are not
included in order to protect the data from Rainpower. If the reader wants to run any of the
model application scripts, just specify the model inputs at the top of the script.

In this Appendix, all script names are presented together with an explanation to what
they do. Most scripts were produced in three versions, for the high, medium and low head
turbine. These are similar with respect to data handling, inputs/ outputs, calculations, etc.,
only titles, axis dimensions, legends and query vectors for interpolations may differ. To
prevent the Appendix from becoming too long, only scripts which are either general for
all turbines, or if such does not exist, specific for the high head one, will be included here.
They will be presented in a compact 4x4 format. For more detailed study of any of these
MATLAB scripts, the author strongly suggests the reader to open the associated m-file.
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Experimental data processing

• Script name: meas characteristics highH.m,meas characteristics medH.m,
meas characteristics lowH.m

• Purpose: Plots 14 different characteristic curves from interpolating the Rainpower
measurements or any set of experimental data, which are loaded into MATLAB from
Excel. Calculates numerically aij gradients at BEP, and the error of these values
with respect to the analytical calculations, which are loaded in from the turbine
design Excel sheet. When all smooth functions are commented out, ”raw” data
are being plotted, but the visual difference is minor. However the smoothing is
necessary for good accuracy (two decimal places was obtained) of the numerically
estimated gradients.

meas characteristics highH.m:
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Model application

• Script name: characteristics model no eta i.m

• Purpose: Reads model input column from the turbine design Excel sheet, and plots
14 different characteristic curves using the model equations without ηi. It calculates
also aij coefficients at BEP based on gradients from the plots. This script was
the starting point (base script) for all model simulations with the nonlinear turbine
model without ηi.

• Script name: characteristics model with eta i.m

• Purpose: Reads model input column from the turbine design Excel sheet, and plots
14 different characteristic curves using the model equations with a general ηi. The
ηi(q) function must be specified by commenting out all the other functions one
do not want to apply, at the bottom of this script. Before running, the correct
eta i xxx.m script must be run first to set all necessary curve coefficients as global
variables. It calculates also aij coefficients at BEP based on gradients from the
plots. This script was the starting point (base script) for all model simulations with
the nonlinear turbine model with a general ηi.

Based on these two scripts, specific versions were constructed. These are custom-made
to the turbine of subject, such that legends, axes, query vectors, etc. match and facilitate
comparison to the experimental data. The design column input is kept constant.

• Script name: characteristics model no eta i highH.m,
characteristics model no eta i medH.m, characteristics model no eta i lowH.m

• Purpose: Specific versions of characteristics model no eta i.m for high, medium
and low head turbine, respectively.

• Script name: characteristics model with eta i highH.m,
characteristics model with eta i medH.m, characteristics model with eta i lowH.m

• Purpose: Specific versions of characteristics model with eta i.m for high, medium
and low head turbine, respectively.
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characteristics model no eta i.m:
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characteristics model with eta i.m:
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Model improvement

• Script name: eta i highH.m, eta i medH.m, eta i lowH.m

• Purpose: Scripts for curve fitting ηi(q) functions to measurements. Reads both
experimental data and turbine design parameters from Excel sheet, and curve fits a
polynomial, a Fourier series, two exponential functions and two power functions,
to these data (smooth version). One must specify degree for the polynomial and
number of harmonics for the Fourier. All ηi(q) curves are plotted together with the
basis for curve fitting, as well as together with each other, for comparison. The
script calculates also first derivative in (1,1) for all functions to check if it is close
to 0. Finally, all curve coefficients are set as global variables for ηi implementation
into the model by scripts of type characteristics model with eta i.m.

• Script name: curve relationships.m

• Purpose: Investigates correlations between coefficients of the four different curve
fitting models, and the turbine speed numbers Ω. All the same curve fittings as in
eta i xxx.m are redone to obtain all the coefficients. It also compares curve fitting
basis of the three turbines, that is, general ηi(q) shapes, in relation to speed number.
The approach to linearly interpolate between curve functions to obtain ηi based on
Ω, is demonstrated at the end of this script .

eta i highH.m:
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curve relationships.m:
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Hill diagram construction

• Script name: hillchart meas all turbines.m

• Purpose: Generates Hill charts from the Rainpower measurements or any set of
experimental data, which are loaded into MATLAB from Excel. Elevation levels
for the contour lines must be specified. This script constructs diagrams for all three
turbines: Figure 1, 2 and 3 corresponds to the high, medium and low head runner,
respectively.

• Script name: hillchart model no eta i all turbines.m

• Purpose: Reads model input columns from the turbine design Excel sheet, and gen-
erates Hill charts from the model equations without ηi. Elevation levels for the
contour lines must be specified. This script constructs diagrams for all three tur-
bines: Figure 1, 2 and 3 corresponds to the high, medium and low head runner,
respectively.

• Script name: hillchart model with eta i highH.m,
hillchart model with eta i medH.m, hillchart model with eta i lowH.m

• Purpose: Reads model input column from the turbine design Excel sheet, and gen-
erates a Hill chart from the model equations with a general ηi. The ηi(q) function
must be specified by commenting out all the other functions one do not want to
apply, at the bottom of the script. Before running, the correct eta i xxx.m script
must be run first to set all necessary curve coefficients as global variables. Elevation
levels for the contour lines must be specified. ”Validation areas” (unit speed and
flow ranges) corresponding to the Rainpower data are clearly marked as a dashed
rectangle.
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hillchart meas all turbines.m:
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hillchart model no eta i all turbines.m:
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hillchart model with eta i highH.m:
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