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Summary

In this thesis, we present a class of models called normalising flows. This class of
models utilises the flexibility and computational advantages offered by the deep
learning paradigm to define a general framework for modelling flexible, high-
dimensional probability densities. We motivate the use of normalising flows by
arguing that modelling flexible densities has uses within a wide range of problems in
statistics and machine learning, but concentrate our focus on normalising flows for
density estimation and approximate Bayesian inference. As a part of the introduction
to normalising flows, we conduct a set of experiments with the planar flow to help
the reader build intuition about normalising flows.

Further, we aim to give a clear exposition of the field of autoregressive normalising
Sflows, which combines classical autoregressive modelling and modern normalising
flows. This has been a highly influential class of models in the literature up until
now. We provide a coherent presentation of the necessary concepts, and fill in some
crucial details about the Gaussian MADE that are often found lacking elsewhere
in the literature. Three different autoregressive flows, the inverse autoregressive
Sflow (IAF), the masked autoregressive flow (MAF), and Real NVP, are presented and
compared, highlighting their relative strengths and weaknesses.

Heavily inspired by two of the previously presented autoregressive flows, the masked
autoregressive flow and Real NVP, we propose a novel flow for density estimation,
which we call the hybrid autoregressive flow. We conduct a variety of experiments
with MADE, Real NVP, and MAF, and successfully reproduce results from seminal
papers in the literature, before we put the novel hybrid autoregressive flow to the
test to compare it to existing models in a standardised experimental setting.

The new flow shows promising initial performance, outperforming its competitors
on one of the density estimation benchmarks, but more empirical evidence is needed
in order to draw any conclusions about the hybrid autoregressive flow. Finally, we
summarise the thesis, before we discuss how to proceed the investigations of the
hybrid autoregressive flows, and point out some directions for the future research on
normalising flows in general.






Sammendrag

I denne oppgaven presenterer vi en klasse med modeller kalt "normalising flows".
Dette er en klasse med modeller som drar nytte av fleksibiliteten og de bereg-
ningsmessige fordelene som tilbys av det moderne dyp l@rings-paradigmet, og
bruker det til & definere et generelt rammeverk for modellering av fleksible og
hgy-dimensjonale sannsynlighetstettheter. Vi motiverer bruken av normalising flows
gjennom & argumentere med at modellering av fleksible sannsynlighetsfordelinger
har anvendelser innenfor et bredt spekter av statstikk- og maskinlerings-problemer.
Vi retter fokuset vart spesielt mot tetthetsestimering og tilnzermet Bayesisk inferens.
Som en del av introduksjonen til normalising flows, gjennomfgrer vi et sett med
eksperimenter med en "planar flow", med mal om a hjelpe leseren med a bygge
intuisjon for normalising flows.

Videre gir vi en tydelig innfgring i feltet autoregressive normalising flows, som
kombinerer klassisk autoregressiv modellering med moderne normalising flow. Dette
har lenge vart en av de mest innflytelsesrike klassene med modeller i litteraturen
om normalising flows. Vi gir en sammenhengende presentasjon av de ngdvendige
konseptene for & sette seg inn i denne litteraturen, inkludert & fylle inn noen detaljer
om Gaussisk MADE som ser ut til & mangle i den gvrige litteraturen. Videre
presenterer Vi tre autoregressive flows: inverse autoregressive flow (IAF), masked
autoregressive flow (MAF), og Real NVP, og sammenligner dem, med vekt péa deres
relative styrker og svakheter.

Kraftig inspirert av to av de presenterte modellene, masked autoregressive flow
og Real NVP, foreslar vi en ny flow som egner seg til tetthetsestimering og gir
den navnet hybrid autoregressive flow. Vi gjennomfgrer en rekke eksperimenter
med modellene MADE, Real NVP, og MAF, og lykkes med a gjenskape resultater
fra flere av de mest innflytelsesrike artiklene i litteraturen. Til slutt gjennomfgrer
vi eksperimenter med var foreslatte flow, og sammenligner den med eksisterende
modeller i et standardisert eksperimentelt oppsett.

Den nye flowen viser lovende ytelse i disse innledende eksperimentene, og gjgr
det bedre enn de andre modellene i et av eksperimentene. Mer empirisk materi-
ale er ngdvendig for a kunne trekke noen sikre konklusjoner om den foreslatte
modellen. Avslutningsvis oppsummerer vi oppgaven og diskuterer hvordan hybrid
autoregressive flow bgr testes videre. Helt til slutt peker vi ut noen mulige retninger
for fremtidig forskning pa normalising flows.
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Chapter 1

Introduction

In this thesis, we investigate a family of models called normalising flows, and some of their appli-
cations within statistics and machine learning. A normalising flow is at its core a model that can
perform two simple operations; density evaluation and sampling. Use-cases can therefore be found in
any probabilistic model that requires either of these two operations. A normalising flow, often only
referred to as a flow, transforms a simple base density into a more complex density, and the parameter
values defining the transformation are learned from data. In particular, we will focus on normalising
flows for density estimation, and normalising flows for variational inference.

While normalising flows offer a powerful framework for modelling complex densities, but the basic
principle of normalising flows is strikingly simple:

i take some simple density, typically an isotropic Gaussian

ii transform it using a composition of differentiable and bijective transformations.

The initial density “flows” through a sequence of transformations, and at the end of the flow we obtain
a valid, normalised probability density. We are able to sample from, and evaluate the density of
samples under the transformed density, due to the change of variables formula. This formula is taught
in most introductory statistics courses, but the secret to why this seemingly rudimentary procedure is
so useful, lies in the way the transformations are designed, and in the power of compositionality.

A large body of the research on normalising flows revolves is about how to design these trans-
formations to achieve a flow with desirable properties. This thesis is mainly concerned with the
class autoregressive flows, which combine autoregressive modelling and normalising flows to obtain
transformations that are both highly flexible and tractable. The presented flows have applications
within density estimation, variational inference, and generative modelling. Normalising flows were
first proposed for density estimation by Tabak and Turner (2013), but were first popularised in a deep
learning context by Rezende and Mohamed (2015) as a way to parameterise flexible approximate
posterior densities for use in variational inference.

In the following years, there has been an emergence of normalising flows benefiting of neural
networks, with successful applications in density estimation (Papamakarios et al., 2017; Dinh et al.,
2014, 2017), variational inference (Kingma et al., 2016; van den Berg et al., 2018), generative
modelling of images (Dinh et al., 2017; Kingma and Dhariwal, 2018) and audio (van den Oord et al.,
2017). Applications to more traditional statistical problems include parameterising the auxiliary
distribution in importance sampling (Miiller et al., 2018), parameterising the proposal distribution in
rejection sampling (Bauer and Mnih, 2019), and reparameterising the target distribution in MCMC
sampling to make it more well-behaved (Hoffman et al., 2019).

Despite the vital role played by neural networks in these models, this is not a thesis about deep
learning per se. We use the framework offered by deep learning to tackle classical problems from
statistics, such as density estimation and approximate Bayesian inference, and the neural networks
are in this context merely a tool used to enhance the performance of already existing techniques by
adding the flexibility and learning capacity of neural networks to problems that call for modelling
flexible probability distributions.



1.1 Why normalising flows?

In the wake of the popularisation of normalising flows that followed (Rezende and Mohamed, 2015),
normalising flows have received increasing attention from the broader machine learning research
community. Last year, in 2019, the first workshop on Invertible Neural Networks and Normalising
Flows was arranged at the International Conference of Machine Learning (ICML), which, along with
NeurIPS, is considered the premier conference for machine learning research. Just before, and during
the writing of this thesis, the first comprehensive review papers on normalising flows were published
by Kobyzev et al. (2019) (August) and (Papamakarios et al., 2019) (December).

As exemplified in the previous section, the merits of normalising flows are many and diverse, but the
applications have in common that good density estimates are imperative for them to be successful. In
this thesis, we restrict ourselves to discuss normalising flows for density estimation, and normalising
flows for variational inference. Density estimation in the broad sense includes generative modelling
of high-dimensional data like images and audio, but this thesis is concerned with density estimation
that is purely quantitative, following along the lines of (Papamakarios et al., 2017).

Fundamentally, both density estimation and variational inference are concerned with estimating a
probability density function from data. In the following, we motivate why these fields are of interest,
and how normalising flows can be used to progress each field.

Density estimation

The problem of density estimation is at the heart of statistics and traditional machine learning methods.
Given a set of observed samples produced by some unknown, stationary process, we want use the
observed data to estimate the density function of the process that generated them. An estimated
density function can be used to evaluate the density of an arbitrary observation, but does also provide
a description of the generated data. A good density estimator is thus useful for many downstream
tasks, and has numerous applications. We list some of them below:

i Estimate densities from data for use in Bayesian inference, e.g., by learning suitable priors
from large datasets in an unsupervised manner.

ii Using the likelihood of the training data as a the objective function when training machine
learning models. Allows for optimising the objective of interest directly.

iii To achieve better compression. A good density estimate implies a small Kullback Leibler
divergence between the estimated model and the true model, which in turn means that
expected number of lost bits by using the approximating density decreases.

iv Model scoring using metrics like entropy or maximum likelihood, which assume that we
can evaluate the density under our model.

v Given the right model, we can generate new data very cheaply. This is useful for example
for generating estimators of high-dimensional integrals like expected values, or to generate
new samples when for training the inflow of real data is limited.

Traditional methods for density estimation like mixture models and kernel density estimators are
efficient for learning low-dimensional densities, but suffer severely from the curse of dimensionality
when dealing with data in the high-dimensional regime. Lately, density estimation models parame-
terised by neural networks have been successfully applied to density estimation problems, achieving
state of the art performance on a range of high-dimensional density estimation benchmarks.

Particularly successful are the neural density estimators that combine autoregressive density estimation
with normalising flows. Harnessing the flexibility of neural networks to learn complex dependencies in
high-dimensional data, we can design autoregressive transformations that are suitable as components
of a normalising flow. By stacking several such transformations in sequence, we can increase the
flexibility compared to a regular autoregressive model. By using neural networks to define the
transformations in the flow, we also get to easily utilise the powerful capabilities offered by modern
deep learning frameworks to optimise the models. This is explained in more detail in Section 1.4.



Variational inference

Another central topic in statistics, is the one of performing posterior inference in Bayesian models.
The gold standard in posterior inference is Markov chain Monte Carlo (MCMC) methods, but
these methods can be very computationally expensive and slow when dealing with large amount of
data and/or a large number of parameters. An optimisation-based alternative to MCMC is called
variational inference. Variational inference relies of being able to define a family of approximate
posterior densities that is flexible enough to approximate the true posterior well, while at the same
being tractable and lending itself to gradient-based optimisation.

It was to this end normalising flows were first proposed in a deep learning setting by Rezende and
Mohamed (2015). Just as when using normalising flows for density estimation, these models benefit
from the flexibility of neural networks to model flexible and tractable posterior distributions. Whereas
density evaluation typically is the primary functionality of density estimators, we are often more
interested in being able to generate new samples from a posterior density. Normalising flows facilitate
this, as sampling from the modelled distribution simply amounts to a forward pass of the flow, which
for aptly designed models can be done efficiently on parallel hardware.

1.2 What is deep learning?

The normalising flows presented in this thesis rely heavily on neural networks, and they all fit under
the umbrella of deep learning models. An introduction to neural networks is given in Section 2.2,
and in the following we provide some background on what we mean by “deep learning”.

The term “deep learning” refers to a wide range of universal learning techniques. Deep learning
models are composed of parameterised modules that are trained using gradient-based optimisation.
These modules are typically variations of neural networks, and have been successfully applied
to problems within numerous and very distinct fields, ranging from computer vision and image
generation, to natural language processing, physics and biology. The reinforcement learning (RL)
model AlphaGo made the headlines when it beat the world’s best Go! player in four out of five games
after teaching itself through self-play how to play the game.

The idea of using neural networks for learning tasks is not new, and can be traced back more than half
a century. The first mathematical model of a neuron was published by McCulloch and Pitts (1943),
a model that some years later inspired the Perceptron learning algorithm presented by Rosenblatt
(1958). This model received much attention and sparked a great deal of interest in the field, but
challenges in training the neural networks limited their success in the subsequent decades. The
definite comeback of neural network is quite recent, and is by many considered to be the moment
when Professor Geoffrey Hinton and two of his graduate students at University of Toronto won the
ImageNet Large Scale Visual Recognition Challenge (Russakovsky et al., 2015) in 2012, using a
convolutional neural network that outperformed the runner-up by a remarkable margin of 10.8%.

The breakthrough of deep learning is often assigned to the combination of (i) improved techniques
for training deep neural networks on large datasets, (ii) the exponential increase of available data, and
(iii) more computational power allowing for training of deeper networks. However, deep learning has
arguably been most successful within the supervised regime, on classical problems like regression
and classification. Such models are trained on labelled datasets with known input-output pairs. The
pool of unlabelled data is vastly larger than the available amount of labelled data. In order to make
use of the information that is in this unlabelled data, we need unsupervised learning.

The goal of unsupervised learning is to learn the structure or distribution of the data directly from
the input, clustering unlabelled data into groups in a meaningful way. The deep learning pioneer
and Turing medal winner Yann LeCun famously advocates that “The next revolution will not be
supervised” (LeCun, 2018), referring to the future of machine learning. The idea of unsupervised
learning is appealing also due its analogy to how humans learn, but more importantly, because of the
great availability of unlabelled data and the value of the information that lies therein. Both density
estimation and variational inference are examples of unsupervised learning problems.

!Go is an old Chinese board game, known to be much more complex than chess in terms of legal number of
moves per turn, and number of legal possible board positions.



1.3 Goals and structure of the thesis

This thesis aims to give an independent introduction to the field of normalising flows, with focus on
the class of autoregressive flows. We aim to give a clear exposition of normalising flows in general,
and autoregressive normalising flows in particular. The reader is assumed to have basic familiarity
with calculus, linear algebra, and probability theory, but the thesis is aimed to be self-contained when
it comes to deep learning and normalising flows.

The structure of the thesis is as follows:

Chapter 2 lays out the general theoretical foundations of the thesis, most importantly density
estimation and Bayesian inference. The chapter also contains two introductions to neural networks
and variational inference, respectively.

Chapter 3 introduces the general theory about normalising flows. It contains a discussion on how to
design a tractable normalising flow, and how normalising flows are useful for variational inference
and density estimation. The chapter is rounded off with some illustrative experiments inspired by
Rezende and Mohamed (2015) to build intuition about how normalising flows work.

Chapter 4 introduces the concepts of autoregressive density estimation and autoregressive flows,
which is the central topic of the remaining chapters of the thesis. The masked autoregressive distribu-
tion estimator (MADE) (Germain et al., 2015) is thoroughly presented, as it is the main ingredient in
two of the autoregressive flows presented in Chapter 5. Finally, we make a tiny contribution to the
existing literature by formalising how to design a MADE with Gaussian conditionals.

Chapter 5 presents the inverse autoregressive flow (IAF) (Kingma et al., 2016), the closely related
masked autoregressive flow (MAF), and the real-valued non-volume preserving (Real NVP) flow (Dinh
et al., 2017), including a comparison of the three flows. We briefly present the neural autoregressive
flow (Huang et al., 2018) to provide an example of neural networks can be utilised to design even
more expressive flows. Lastly, we present a batch normalisation layer adapted by (Papamakarios
et al., 2017) to be used as a component in a normalising flow.

Chapter 6 introduces a novel flow for density estimation. We combine the coupling layer from Real
NVP with the autoregressive layer from MAF into a crossover layer, hoping to increase the flexibility
compared to the coupling layer. We name the resulting flow hybrid autoregressive flow (HAF). The
essential theory of the HAF is presented, followed by a discussion of some of its properties in relation
to the MAF and the Real NVP.

Chapter 7 contains a variety of density estimation experiments: (i) we reproduce some experiments
from the MADE paper on the binary MNIST dataset, and extend on these by conducting a set of
new experiments, including some using the Gaussian MADE. (ii) we test the Real NVP model on a
couple of two-dimensional toy densities. (iii) We compare the performance of MADE, Real NVP,
MATF, and the new HAF on the two different datasets. These experiments include reproducing some
results from the MAF paper (Papamakarios et al., 2017).

Chapter 8 summarises the thesis, and points out some directions for future research.

1.4 Implementation

PyTorch (Paszke et al., 2019) from Facebook and TensorFlow from Google (Abadi et al., 2015) are
the two leading deep learning frameworks today. The core functionalities of a deep learning frame-
work are automatic differentiation, easy-to-build neural network modules, and making distributed
computing and training on multiple GPUs accessible for the user. A good deep learning framework
should also facilitate easy exploration of ideas and allow for rapid model iteration. Both PyTorch and
TensorFlow possess all the aforementioned qualities, but while TensorFlow still has an edge in the
industry when it comes putting deep learning models into production, PyTorch has lately become the
preferred framework for researchers (He, 2019), likely due to its flexibility and ease of use.

We chose to use PyTorch for all our experiments, because of its clean API and intuitive syntax.
PyTorch feels “pythonic” and familiar for someone used to Python programming, and integrates
seamlessly with common Python debugging tools and libraries. All models and experiments were
implemented from scratch in Python using PyTorch, and the code is publicly available at https://
github.com/e-hulten. The relevant repositories are planar-flows, made, maf, and realnvp.


https://github.com/e-hulten
https://github.com/e-hulten

Chapter 2

Preliminaries

In this chapter, we present the foundational theory that underpins the rest of the thesis. Statistics and
many applications of machine learning are fundamentally concerned with quantifying uncertainty and
probabilities. In this chapter, we formally define probability spaces and probability density functions,
and introduce concepts like density estimation and Bayesian inference which give rise to the need for
normalising flows. Lastly, we give a brief introduction to the essentials of neural networks, and to the
field of variational inference.

2.1 Statistical preliminaries

2.1.1 Probability theory

A probability space (Klenke, 2013) is defined by a sample space S, equipped with a family of events
F and a probability measure, P. This triplet denoted by (.S, F, P). The sample space S is an arbitrary,
non-empty set that contains all possible outcomes that we want to consider. An event A is a subset of
the sample space, and F denotes the family of all events in a sample space. F defines a o-algebra
over S, and is defined as a collection of subsets of .S that satisfies

i JF contains the sample space: S € F.
ii F is closed under complements: If A € F, then A € F.
iii F is closed under countable unions: If (4;):2, € F, then |J;2, A; € F.

Elements of a o-algebra are also called measurable sets, and the pair (.S, F) is called a measurable
space. To define a probability space, we need a probability measure P, i.e., a function that maps the
elements of F to the unit interval [0, 1] and assigns a likelihood to each event in F. A probability
measure satisfies the axioms of Kolmogorov:

i P(A) > 0foralleventsin A € F.
i P(S)=1.
iii Any countable sequence of disjoint events (A;);>1 satisfies P(U2, 4;) = >, P(A4;).

A real-valued random variable X is a function X : (S, F) — (R, B(R)), where B(R) is the Borel
o-algebra over the real numbers. For every Borel subset B € B(R), we denote {X € B} :=
{X~YB)} and P(B) := P({X € B}) = P(X~Y(B)). The distribution function of a random
variable X is defined as the map Fx : x — P(X < x). From adistribution function ' : RP — [0, 1],
we can define the probability density function, or just density function, as p(x) such that

i F(x)=["" - ["" p(x)dx' forx = (z1,...,2p) € RP.

o o

i p(x)>0forallx € RP.

The existence and uniqueness of the density function is ensured by the Radon-Nikodym theorem,
which ensures that two density functions can only differ over a set of measure zero. Please refer to
(Klenke, 2013) for the theorem, and a thorough introduction to probability theory.



posterior  prior X likelihood

Figure 2.1: Illustration of Bayes’ rule showing the relationship between the prior, likelihood, and
posterior. This figure is best viewed in colour.

Density functions will directly and indirectly be the underlying topic of interest for the rest of the
thesis. We will only be concerned with continuous random variables, and assume that the probability
density function always exists. Note that a random variable can also be a vector, in which case the
vector has scalar elements that are random variables on the same probability space (.5, F, P).

Notation: Throughout the thesis, we will use bold, lowercase letters and symbols like x and ¢ to
denote vectors, including random vectors. It will be made clear from the context whether a vector is a
random variable or an observation. Where necessary, we will use subscripts to indicate samples to
avoid ambiguity, so a set of observations will typically be written as {x1, ..., xy }. All vectors are
given as column vectors unless else is specified. Bold, uppercase letters like X denote matrices, and
lowercase roman symbols such as b denote scalars.

2.1.2 Bayesian inference

The Bayesian framework provides a mathematical toolbox that can be used for modelling probabilistic
systems while taking uncertainties into account. Bayesian models are formulated in terms of
probability densities used to express beliefs about unknown quantities. We consider some unobserved
parameter of interest 8. The prior beliefs about this quantity are represented through the prior
distribution p(@). Further, we assume there is some statistical relationship by the observable quantity
x and the parameter of interest. We can then use new observations of x to update our beliefs about the
parameters. The updated beliefs about the parameters are expressed through a posterior distribution.
In particular, we combine likelihood p(x | ) with the prior through Bayes’ rule:

_ o(x[0)p(6) _ p(x|8)p(6)
T 0)p(6)d6 —  pl(x)

See also Figure 2.1. The posterior distribution is the conditional distribution of the parameters given
the observed data, and represents the best information we have available about the parameters, taking
both our prior beliefs and the observations into account. When working with simple models, the
practitioner is able to choose the conjugate prior for the likelihood, in which case the posterior is
available analytically. Alas, the true posterior parameter distribution is not easily available for most
models of interest, due to the integral in the denominator of Equation (2.1) being intractable. In such
cases, we have to resort to approximate Bayesian inference methods. Some of these will be presented
more thoroughly in Section 2.3.

p(6 [ x) o p(x | 0)p(6). @1

2.1.3 Density estimation

The importance of density estimation has been properly motivated in Section 1.1. In this section,
formalise the problem of density estimation in more theoretical terms than what was done in the
introduction. Density estimation is a classical problem in statistics, and can roughly be posed as:
Given a finite set of i.i.d. samples, we want to recover the probability density function associated
with their underlying generative process. The true density function provides a description of the
joint statistical properties of the data, and an estimate of it can be used to evaluate the likelihood of
arbitrary new observations.



A finite set of samples gives limited insight into the generative process, and the job of the density
estimator is to use the information provided by the samples in conjunction with any prior knowledge
of the generative process to estimate the true density function as well as possible. Classical statistical
methods for density estimation are to a large extent concerned with fitting the data using some param-
eterised model family. Parametric models have a pre-determined number of learnable parameters, and
the problem density estimation translates into finding the set of parameters that makes the parametric
model as similar as possible to the true density. The parameters are typically learned by maximising
the average log-likelihood of the training data under the parametric model.

The space of densities that can be represented by a simple parametric family is fairly limited, and
parametric models rely heavily on prior knowledge about the data that can be incorporated through the
choices we make when modelling the probability distribution, e.g., through the parametric shape of
the estimating model. The flexibility of parametric models can be increased by combining parametric
models into mixture models. Gaussian mixtures and smoothing splines are examples of parametric
approaches that can be very flexible, and Gaussian mixtures are in fact universal density estimators in
the limit when the number of Gaussian components goes to infinity (McLachlan and Basford, 1988).

The fauna of classical density estimation models also include non-parametric approaches such as
histograms and kernel density estimators. These methods make weaker prior assumptions about
the density that is to be estimated, and their complexity grow with the complexity and shape of the
estimated density. Non-parametric methods are perhaps the most popular and widely used ones for
density estimation, but they suffer severely from the curse of dimensionality. High dimensional
spaces will in practice be very sparsely populated by data points, requiring exponentially more data
to get sufficient coverage of the data space to get a good estimate of the density function.

Neural density estimators

Recently, a new line of research using neural networks to parameterise density estimators has emerged
(Germain et al., 2015; Papamakarios et al., 2017; Dinh et al., 2017). Adapting the terminology from
(Papamakarios, 2019), we hereafter refer to such models as neural density estimators. These models
utilise the flexibility and large learning capacity of neural networks and the computational advantages
of the deep learning paradigm to approximate very high-dimensional densities.

A neural density estimator takes in some D-dimensional data x and returns a real number fg(x). A
neural density estimator is characterised by having the property:

/ exp fo(x)dx =1 2.2)
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for all sets of parameters 8. As a consequence, gg(x) = exp fy(x) is a valid density function, and
the neural network that can be used to estimate a probability density. As for other parametric model,
the parameters of the neural density estimator are learned by maximising the average log-likelihood
of the training data under the density defined by the neural density estimator:

1 1
max - Z log ge(x;) = max - Z fo(x;) (2.3)

Maximum likelihood density estimators have desirable asymptotical properties like consistency
(maximum likelihood estimators converge in probability to the true density), it is efficient (it attains
the Cramér-Rao lower bound when the number of observations goes to infinity, i.e., it gives the
lowest mean square error among all estimators), and in the limit, learning a distribution ¢ as an
approximation to a true density p through maximum likelihood estimation is equivalent to minimising
the KL-divergence between p and ¢ (Papamakarios, 2019). Being neural networks, neural density
estimators lend themselves naturally to gradient-based training. We will elaborate more on neural
density estimators, and how to design them, in Chapter 3, 4, 5, and 6.

2.2 The fundamentals of neural networks

2.2.1 The neuron

The basic unit of a neural network is for historical reasons called a neuron, reflecting that the
computational neuron is loosely inspired by how neurons operate in the brain. A neuron in a neural
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Figure 2.2: Overview of a computational neuron. The red line represents a non-linear activation
function.

network performs two operations; it computes a weighted sum of its inputs, adds a bias term, and
then passes this sum through some (usually) non-linear activation function. A neuron outputs a scalar
a, which we refer to as its activation. A neuron is depicted in Figure 2.2.

An activation function g(+) is a nonlinear function that takes the weighted sum and bias described
above and returns the scalar activation a = g(fw (X)) = g(w?x + b), where w denotes a weight
vector of the same dimensionality as x, and b denotes the scalar bias term of the given neuron. By
layer, we refer to a group of neurons operating at the same depth in a neural network. Each layer
has an associated weight matrix W with rows corresponding to the transposed weight vector of each
neuron in the layer. In general, the input to a neuron will not be the feature vector x, but rather the
activation vector from the previous layer in the network.

Common choices of activation functions are:

o The rectified linear unit (ReLU) activation function: g(x) = ReLU(x) = max(0, z).

e The sigmoid (logistic) activation function: g(x) = o(z) = H%

e The hyperbolic tangent activation function: g(x) = tanh(z).

To allow for gradient-based training of the neural network, an activation function also has to be
differentiable almost everywhere. For example, the ReLU activation function, which perhaps is the
most widely used activation function today, is differentiable everywhere but in x = 0.

Also note that for regression tasks, the "activation function" of the last layer is set to be the identity
mapping, i.e., g(x) = x. The reason for this, is that the activation functions "squash" their inputs
from R to some sub-domain of R, which is not compatible with the domain of the typical response
variable in a regression, e.g., ReLU : R — R>¢, 0 : R — [0,1], and tanh : R — [—1,1].

2.2.2 Feed-forward neural networks

Traditional linear regression can be viewed as the simplest case of a neural network, with only one
hidden unit. The activation function of this neuron is simply the identity mapping, g(z) = z. The
model assumption in linear regression is that there exists a linear function f : RP? — R between
the inputs and outputs. The model is assumed to be on the form §J; = fw (x) = w’x; + b, and the
residuals €; = y; — ¥; are usually assumed to follow a zero-mean Gaussian distribution with some
finite variance, 0. If we assume the variance to be constant for all observation pairs, we have what is
called homoscedastic noise.

During training of the network, we seek to learn the network parameters that minimise some loss
function measuring how good our current approximation is. For regression tasks, we often use the
mean squared loss (MSE) loss function. Optimising the weights and biases of the network with
respect to the MSE loss yields the maximum likelihood estimate of the weights, because minimising
the MSE loss is equivalent to minimising the negative log-likelihood of the data when we have
assumed a Gaussian likelihood' over the outputs.

"Note that minimising the MSE loss yields maximum likelihood estimates with respect to a Gaussian
likelihood over the network outputs also for deeper networks than the described minimal regression model.



Input x — Hidden layers — Output gy

Figure 2.3: A feed-forward neural network with two hidden layers.

Whereas a linear model, such as a linear or logistic regression model, is only able to learn linear
relationships in the data, we are in most real-world cases interested in learning more complex
relationships between the inputs and the outputs. This motivates the introduction of non-linearity
to the regression model, which is achieved by using nonlinear activation functions. By extending
the one-neuron model in the natural way by adding more neurons to each layer and stacking several
layers in sequence, we make a neural network that is able to capture relationships in the data that are
highly nonlinear in both data and parameters. This is opposed to linear regression (linear in both data
and parameters) and linear basis function regression (nonlinear in data, linear in parameters).

. . . . i -
For a layer with more than one neuron, we have a corresponding weight matrix W R xnl

where each row is a weight vector corresponding to the input to one neuron in the [-th layer, and
where nl"! denotes the number of neurons in the I-th layer. The activation vector from layer [ is given
by alll = gll(Wllall=1  bl!l) where the activation function gl'(-) operates element-wise on the
elements in the vector, and the superscript in brackets enumerates the layers. The activation vector of
each hidden layer becomes the input of the next one in the forward pass from the input layer to the
output layer. Both the input layer and the output layer are in general vector valued.

Each distinct way of arranging and connecting neurons in a neural network is referred to as the neural
network architecture. The feed-forward neural network as depicted in Figure 2.3 is characterised
by having no loops, such that the information only flows in one direction from the input layer to the
output layer, without intermediate outputs from the hidden layers ever being fed back into the model.
The simplest architecture is the fully connected feed-forward neural network where all outputs from
each layer are passed on to all the neurons in the next layer repeatedly from the input layer through
the hidden layers and to the output layer. A variety of more complex classes of architectures exist,
and we refer to (Goodfellow et al., 2016) for a general introduction to neural networks.

In a deep network, the information from the input layer goes through many layers of non-linear
transformations. Each layer is a function, h;, of its input vector, and by stacking the layers, we
can view the output of a feed-forward neural network as a function composition applied to the
input, namely y; = (hr o hy,—1 o -+ o h1)(x;), approximating the true mapping between inputs
and outputs. The universal approximation theorem for neural networks states that infinitely wide
one-layer feed-forward NNs are universal approximators of Borel measurable functions between
finite spaces (Hornik et al., 1989), illustrating the power of the feed-forward architecture. In practice,
deeper and narrower networks are easier to train and have shown to be incredibly much more useful
than shallow and wide networks.

The ultimate goal of training feed-forward neural networks is to approximate the true mapping
between the inputs and the outputs as well as possible. This is done by incrementally adjusting the
parameters to minimise some loss function £(§,y), where ¥ is the output from the network and
y is the true output as defined by the training data. The loss function has to be differentiable with
respect to the parameters of the network in order to update the parameter values using gradient-based
methods, as is in practice the only successful approach to training deep neural networks. Since
the model is learning from given input-output pairs, training a feed-forward neural network for a
regression or classification task is an example of what we call supervised learning.



2.2.3 Gradient-based learning

In a feed-forward neural network as described in the previous sections, we often refer to the process
from when an input x is fed to the network to when the network outputs a prediction y as the forward
pass. When the output of the network is obtained, we compute the value of a scalar cost function
L(0) using the entire training set (or mini-batch — a subset of the training set). The cost function
is the average of the loss function for all data points we have used for training, plus an optional
regularisation term. E.g., if we use the MSE loss, the cost function is:

N
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where NN is the number of training samples. The network parameters 6 are randomly initialised,
and then updated at the end of each forward pass, in order to minimise this cost function. Because
the minimum of the cost function is not available analytically, the parameters are updated through
minimisation using gradient-based methods. Basic gradient descent updates are given by:

0+ 6—d, 2.5

where d is some function describing the descent direction as a function of the gradient Vg L. In basic
gradient descent, d is simply equal to VgL where 7 is some small stepsize.

To use any variant of gradient descent, we need the numerical value of the gradients of the cost
function with respect to each network parameter. The gradients are computed using the backpropa-
gation algorithm (Goodfellow et al., 2016, Chapter 6.5), which utilises the chain rule of calculus to
recursively compute the numerical derivatives of the parameters in an efficient manner. The parameter
update in Equation (2.5) is thus referred to as the backward pass, as the error is propagated backwards
from the output layer towards the input layer when computing the gradients of the cost function.

There is a variety of different stochastic optimisation methods exist that are more commonly used than
gradient descent for training neural networks today. Such methods apply more complex strategies
for computing d than just using the current gradient, and use additional information to compute the
descent direction, like previous gradients and the current number of iterations. In particular, the
Adam optimiser (Kingma and Ba, 2014) has become very popular due to its versatility and good
performance across different domains in machine learning.

Mini-batch stochastic gradient descent

In practice, we do not loop through the entire training set for each parameter update. When working
with big datasets, looping through millions of samples for a single gradient descent update would
lead to very slow learning. Whereas vanilla, or batch, gradient descent involves averaging of the
cost gradient over all training samples per iteration, stochastic gradient descent (SGD) computes the
cost gradient of only one randomly chosen training sample per iteration. This yields a noisier path
towards the minimum, which could potentially hinder the optimisation procedure from settling down
at the optimal point, but it speeds up the learning process compared to using batch gradient descent.

A compromise between batch gradient descent and stochastic gradient descent is to compute the
gradient on a random subset of the training data. This gives a reasonable estimate of the true gradient
without the computational cost of using the entire training set to compute the gradient. Using
random subsets to compute the gradient smooths out most of the noisiness from SGD, while offering
significantly accelerated learning compared to batch gradient descent. This is called mini-batch
stochastic gradient descent. The term batch size refers to the number of training samples used to
calculate the gradient per iteration, and for mini-batch SGD, the batch size is typically or order
~ 10 — 10?. The optimisation runs until some stopping criterion is met, e.g., until a pre-determined
number of iterations through the entire training set is completed, referred to as the number of epochs.

2.2.4 Opverfitting and how to avoid it

The goal of training a machine learning model, is to learn a model that generalises well to new
and unseen data. An underlying assumption is that the unseen data we will make predictions on is
expected to follow the same data generating process as the training data. The problem of overfitting
surfaces when we fit a model too closely to the distribution of our training set. That is, we fit our
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model not only to the structure of the data, but also to the noise present in the dataset. This can lead
to a very low training loss, but a model that will fail to generalise to unseen data.

The problem of overfitting is particularly present when working with heavily parameterised neural
networks, and consequently, many solutions have been proposed in the deep learning literature to
prevent overfitting. A classical and widely used solution is to add /; or 5 regularisation to the weights
to keep them small (analogous to Lasso and Ridge regression, respectively), but more commonly
used in neural networks today are stochastic regularisation techniques (SRTs).

The most widely adopted technique is called dropout (Hinton et al., 2012). Dropout is implemented
per-layer, and can be applied to any layer except the output layer. For each iteration, each hidden unit
in the regularised layers is switched off with some dropout probability 1 — p. Consequently, we train
different configurations of the layer at each iteration. If a network has H hidden units regularised by
dropout, there are 2% different network configurations, so by using dropout in the training phase, we
train an exponential number of thinned models in parallel, with extensive weight sharing.

Training these thinned networks is believed to lead to more robust feature representation internally
in the network, as a network trained with dropout can not rely too heavily on any particular weight,
effectively spreading the weight learning between the nodes. Dropout has had a tremendous empirical
success, and has shown to prevent co-adaption between neurons, keep the weights small, and prevent
overfitting. At test time, the thinned networks are averaged by downscaling the activations of one
unthinned network by factor p, i.e., by the probability that each neuron remains in the network.

Finally, early stopping is an intuitive and easy-to-implement technique to prevent overfitting. The
technique requires that the data is split into a training set and a validation set (and preferably also a
test set). The model is trained only on the training set, but during training, the loss is also computed
on the held-out validation set with regular intervals, e.g., after each epoch. The error on the validation
set acts as a proxy for the generalisation error, and when the validation error is no longer decreasing
with more training, this is a good indicator that the model has started to overfit the training set.

As long as the validation loss keeps decreasing, we save the weights of the network after every epoch.
When the validation loss is no longer improving, we continue the training for a pre-determined
number of epochs referred to as the patience. When the patience runs out, we use the best saved
network weights as our model. If the validation loss suddenly improves (over the all-time best) after a
period without improvement, the patience counter is reset and we repeat the process described above.

2.3 Approximate posterior inference

A general challenge in Bayesian inference is to approximate the posterior parameter density p(6 | x).
We are only able to obtain the true posterior density of relatively simple models, e.g., by using
conjugate priors. For more complex problems, we have to resort to approximate posterior inference
algorithms to obtain an estimate of the true posterior density. The research on approximate posterior
is largely divided into two lines. Sampling-based Markov chain Monte Carlo (MCMC) algorithms
are considered the gold standard for many applications, but can be very computationally demanding,
particularly when working with large datasets. An alternative, optimisation-based framework for
performing posterior inference is called variational inference (VI) (Jordan et al., 1999; Blei et al.,
2016). Variational inference lacks some of the statistical rigour and guarantees that come with MCMC
methods, but it has gained popularity in recent years because it scales better to large datasets and is
compatible with the gradient based paradigm of modern machine learning. In this section, we aim to
give an introduction to variational inference and highlight its strengths and weaknesses.

2.3.1 Variational inference

We formalise variational inference in the context where we have i.i.d. samples {x, ..., Xy} coming
from some distribution p(x | z) where z is an unobserved continuous latent variable with prior p(z).
Performing Bayesian inference in this setting amounts to finding the posterior density of the latent
variables conditioned on the data as given by Bayes’ theorem:

4 1) = P 2)p(z) _ p(x|2)p(2)
p(z | %) () T o(xo)ds
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Figure 2.4: Visualising variational inference. Q denotes the variational family, and D denotes the
space of all possible distributions over z.

Alas, the integral in the denominator is usually intractable because it involves integrating over all
values of the latent variables. That means that finding the analytical (or true) posterior of the latent
variables is not feasible, and we have to perform approximate inference in order to get insights about
the posterior distribution of the latent variables.

The key idea in variational inference is to avoid the integral in the above expression as a whole,
by approximating the posterior p(z | x) directly by some simpler density. We propose a family
of approximate densities Q parameterised by the variational parameters ¢, and seek to find the
density gj (z) within this family that is most similar to the true posterior density by some dissimilarity
measure. The density that minimises this dissimilarity measure is found by minimising the divergence
between the approximate and the true posterior with respect to the parameters of the approximate
posterior. The idea is to use q;;(z) as a proxy for the true posterior and use it for downstream tasks.

Technically, variational inference includes any procedure using optimisation to approximate a density
(Wainwright and Jordan, 2008), so any dissimilarity measure between distributions can be used as
the objective function. However, most literature on variational inference focus on finding the density
q(*ﬁ(z) € Q that minimises the reverse?> Kullback-Leibler (KL) divergence (Kullback and Leibler,
1951) to the exact posterior. We will elaborate on the choice of using KL divergence as a dissimilarity
measure in Section 2.4. The reverse KL divergence between the parametric approximating density
¢¢(2z) and the target density p(z | x) is defined as:

KL Z zZ | X)) := z)1 9(2) Z 2.
(16(a) |1 () 1= | ap(a)lor 2 .6)
The KL divergence is defined if and only if for all z, p(z | x) = 0 implies g¢(z) = 0, i.e., we
require that ¢ (z) is absolutely continuous with respect to p(z | x). The KL divergence is always
non-negative, and equal to zero if and only if g4 (z) = p(z | x) almost everywhere. Although the KL
divergence shares some properties with a metric on the set of probability densities, we note that the
KL divergence is not symmetric, nor does it satisfy the triangle inequality.

We denote the approximating density that minimises the KL divergence in Equation (2.6) to the
true posterior by g (z). The (locally) optimal parameters ¢* = arg ming KL(g¢(2) || p(z | x))
are found through gradient-based optimisation with respect to the variational parameters. The
optimisation process is illustrated in Figure 2.4, where we start from some initial approximate density
qe and end up at g by minimising the Kullback-Leibler divergence to the true posterior density.
Depending on the choice of variational family O, the optimal approximation contained in this family
may be arbitrarily close to, or far away from the density that we try to approximate.

2.3.2 Deriving the variational lower bound

Recall that the posterior density we seek to approximate is given by p(z | x) = p(x|z)p(z)/p(x).
The marginal likelihood p(x) in the denominator is in the context of Bayesian statistics often referred
to as the evidence, and gives us the probability density of the observations after integrating over

2As opposed to the forward KL divergence KL(p(z | x) || g4(2)).
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the latent space. As previously mentioned, it is exactly this integral that usually makes finding the
posterior intractable. However, if we repeat the minimisation objective given in Equation (2.6):

4 (2)
KL z z | X)) = z) lo dz 2.7
(a6(a) ||l ) 1= [ agla)ton 22 @)
we see that the intractable true posterior p(z | x) is still present inside the integral that we need to
compute to obtain the KL divergence. It is therefore clear that we cannot compute the KL divergence
directly. Naively it therefore seems as if using the KL divergence does not bring us any closer to
finding an approximate posterior. To enable the use of the KL divergence as the minimisation object,
we proceed to show that the KL divergence can be minimised indirectly by maximising the marginal
probability of our observations. First, we find an expression for a lower bound for the log-evidence:

) = g [t | )p(a)s )

z

= log (/z p(XqL;;];(Z)q(ﬁ(z)dz) (2.8)

> /zlog (p(x|z)p(z)> ¢4(z)dz =: ELBO

q¢(2)

In the third line we make use of Jensen’s inequality and the concavity of the log function®. Note that
the logarithm is a monotonically increasing function with respect to its argument, so maximising the
lower bound for the log-evidence will also maximise the lower bound for the evidence itself. This
lower bound is referred to as the variational lower bound, or the evidence lower bound (ELBO).

We show how the ELBO relates to the KL divergence by expanding the expression in Equation (2.6):

KL(g¢(2) || p(z | x)) = /Q¢(z) log plgz(z))() iz

_ 2o qp(2) .
= /zq¢( o8 0 o)

= / q¢(z) log ;(4;(71)) dz + /z q4(2) log p(x)dz

d0(z) .

J ot oy o)

o px | 2l
]£q¢( ) log 20(2)

= —ELBO + log p(x)
Rearranging the last line of Equation (2.9), we obtain
log p(x) = KL(gg(2) || p(z | x)) + ELBO (2.10)

The left side of Equation (2.10) is independent of ¢, and is hence constant for any choice of variational
distribution. Because the sum of the two terms on the right side of Equation (2.10) is constant, it
follows that increasing the value of one term will decrease the value of the other term by the same
amount. In particular, maximising the ELBO with respect to the variational parameters is equivalent
to minimising the Kullback-Leibler divergence between the approximate and the true posterior. This
is an important result, because it allows us to minimise the KL divergence between the approximating
posterior distribution and the true posterior density without having explicit knowledge about the
shape of the true posterior density itself.

2.9)

dz + log p(x)

2.3.3 The variational objective

The observation that the KL divergence can be minimised indirectly by maximising the ELBO
motivates our choice of objective function to be the negative ELBO. Clearly, minimising the negative

3Jensen’s inequality is commonly presented as a result for a convex function f(-) as f(E(X)) < E(f(X)).
Recalling that a concave function g is the negative of a convex function f, we get by Jensen’s inequality
—g(E(X)) < E(—g(X)), so g(E(X)) > E(g(X)) for a concave function g.
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ELBO is the same as maximising the ELBO, but by convention in machine learning and optimisation
literature and frameworks, we prefer minimising a cost function over maximising a reward function.
We define the relevant cost function, often referred to as the variational objective, as:

,CV[(Q¢) := —ELBO

N

—/z (logp(x | z) — log ij)((zz))> qy(2)dz

= —Eg, @ (logp(x | 2)) + KL(ge(2) || p(2))-

When the cost function is written out in this form, we see that minimising the first term of Ly 7(gg)
can be interpreted as maximising the expected log-likelihood of the observations with respect to the
variational distribution over the latent variables, while the minimisation of the second term at the
same time ensures that the variational distribution does not diverge too much from the chosen prior
density over the latent variables. The second term penalises complex approximating densities and
acts as an Occam’s razor term, effectively prohibiting unnecessarily complex posteriors.

@2.11)

Monte Carlo gradient estimation

A challenge with minimising the variational objective in Equation (2.11) directly is that each evalua-
tion of the objective seemingly involves summing over the entire dataset (which may be very big) to
compute the expected log-likelihood under the variational distribution. To perform gradient-based
optimisation of the variational parameters, we need to compute V 4E, ) (log p(x | z)). Following
Graves (2011); Kingma and Welling (2013); Blundell et al. (2015), mini-batch optimisation together
with Monte Carlo gradient estimation to compute the gradient of the ELBO. Mini-batch optimisation
using stochastic gradient descent is often referred to as doubly-stochastic estimation because there
are two sources of stochastisity; one in the partitioning of the mini-batches in stochastic gradient
descent, and one in the Monte Carlo approximation of the expectation of the gradient. An extensive
survey on Monte Carlo gradient estimators has been conducted by Mohamed et al. (2019).

To compute the gradient of the ELBO in Equation (2.11) we are also reliant on being able to evaluate
or estimate the prior KL term KL(g4(2) || po(z))). If we choose the variational distribution gy (z)
and the prior distribution py(z) to have the same form (e.g. choose both to be Gaussians), then the
prior KL term has a closed form expression that can be evaluated directly. If the term cannot be
evaluated analytically, it is estimated using Monte Carlo estimation as well.

2.3.4 Limitations of variational inference

Compared to MCMC methods, variational inference is often faster and scales better to large data.
One caveat that comes with the variational inference approach is that its statistical properties are not
as well understood as the ones of traditional MCMC techniques (Blei et al., 2016). Given a suitable
Markov chain as the starting point, MCMC is guaranteed to asymptotically produce samples from
the target distribution, giving a numerical approximation of the true posterior. Variational inference
does not come with such promises, as it only provides a locally-optimal analytical approximation to
the true posterior. In fact, variational inference techniques are known to underestimate the posterior
variance, and we do in general not know how accurate our approximation is (Pati et al., 2017).

The ideal choice of variational family should be flexible enough to contain the true posterior density,
but also be simple enough to make the optimisation tractable. One of the most widely used approx-
imations, is the mean-field approximation, which compromises the flexibility of the approximate
distribution to get a convenient optimisation procedure. The method takes its name from physics and
assumes independence between all latent variables, yielding a fully factorised distribution:

M
10(z) = [ [ 90: (i) (2.12)
=1

where z; denotes the latent variables associated with the i-th observation, and ¢; denotes the
parameters of the distribution of z;. E.g., ¢, = {u;, 0;} if the i-th variational factor is a Gaussian.
By factorising, the mean-field approximation does not capture any correlations between weights,
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true posterior
variational posterior

Figure 2.5: Left: Bi-modal posterior approximated using a single Gaussian. Right: Contour plot of
a non-diagonal Gaussian approximated using a diagonal Gaussian.

and it is not clear exactly how much information is lost by ignoring all correlations between latent
variables in the model. Mean-field variational inference widely used due to its simplicity.

The sacrifice of correlations is one of the reasons why variational approximations are known to
underestimate the variance. How information about the true posterior is lost by using a mean-field
approximation is illustrated in one and two dimensions in Figure 2.5. In the two-dimensional case, a
bi-variate Gaussian with a non-diagonal covariance matrix is approximated by a factorised Gaussian
distribution. The mean of the true posterior is accurately recovered, but the variance is underestimated
because correlations are ignored by the factorised variational distribution. In the one-dimensional
case, the dominant mode of the true posterior is fitted closely, but the second mode is ignored.

In the both cases in Figure 2.5, the variational approximation will underestimate the true variance
and not reflect the behaviour of the true posterior. In the 1D case because of the second mode being
ignored, and in the 2D case because the correlations are ignored. The backward Kullback Leibler
divergence also contributes to encourage this behaviour because there is no penalty for letting the
variational posterior be zero in regions where the true posterior is non-zero. This leads to potentially
large portions of the true posterior not being approximated by the variational posterior, often referred
to as the mode-seeking or zero forcing behaviour.

One last drawback of ELBO-based variational inference worth mentioning here, is that because
the ELBO merely is a lower bound on the marginal log-likelihood, it does not necessarily have
the same maxima as the true log-likelihood, leading to biased maximum likelihood estimates. The
maximum a posteriori parameter estimates also tend to be biased, because we have no guarantees
that the variational density fits the dominant mode of the true posterior. Some of these unfavourable
behaviours can be mended by using a different divergence measure between the approximating and
true densities, e.g., by using Rényi a-divergence for variational inference as has been proposed in
(Li and Turner, 2016; Hernandez-Lobato et al., 2016). Finding alternative objective function for
variational inference is an active line of research, but these methods have yet to gain significant
traction, and we will not describe them more in detail here.

Amortised variational inference

We revisit the mean-field expression for the density over the latent variables given in Equation (2.12):

M
16(z) = [ [ 4. (1) (2.13)

i=1
If we were optimise the variational parameters over a dataset {x1, ..., Xy } naively, we would assign
a set of local parameters ¢, to each of the N observations with no parameter sharing across data
points. It follows that the set of variational parameters ¢ = {¢1, ..., ¢} grows linearly with the

number of data. This does not scale when the number of data is large. It also requires the computation
of new variational parameters by maximising for each new data point we want to evaluate at test time.

This is where the idea of inference networks (Kingma and Welling, 2013; Rezende et al., 2014) comes
in. Instead of keeping the variational parameters associated with each data point stored in memory,
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we train a neural (inference) network that takes in a data point x, and returns its local variational
parameters ¢, . This reduces the optimisation procedure to training the parameters of the neural
network, and after training we only have to store the parameters of this inference network in memory.
These are global parameters, as we use the same network parameters for all data, also at test time and
Using an inference network is strictly less expressive than assigning local parameters to each data
point, but the number of parameters saved is huge, particularly when working with big datasets. The
use of an inference network then allows for scalable and tractable inference.

2.4 Likelihood training and the Kullback-Leibler divergence

We have already shown how to perform approximate Bayesian inference using the reverse Kullback-
Leibler divergence. In this section, we show that density estimation through maximum likelihood
training can be viewed as minimising the forward Kullback-Leibler divergence. By doing so, we
show how the KL divergence relates to both of the main problems covered by this thesis, namely
variational inference and density estimation. The argument goes as follows:

Suppose we have a set of i.i.d. samples {x1, ..., Xy } coming from p,(x). In density estimation, we
want to approximate the true density p.(x) by some parameterised density pg(x). The parameters of
this density are learned by maximising the likelihood of the observations under pg(-):

N
OvLE = arg mgux Z log pe(x;)

i=1

N N
= argmax Z log pe(x;) — ; log p«(x;)

Po(z;)
P (T3)

N
= argmax N Z_:l log

N0, arg min/p*(x) log P+(2) dx =: KL(p«(x) || pe(x))
o x Do (l’ )
where the last line follows from the law of large numbers. From this observation it that maximum
likelihood training implicitly tries to fit a parameterised distribution to the true density p.(x) by
minimising the forward Kullback-Leibler divergence. This further motivates the use of likelihood as
a principled training objective for machine learning models.
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Chapter 3

Normalising Flows

In this chapter, we introduce the foundational theory about normalising flows, and show how nor-
malising flows are useful in density estimation and variational inference. We proceed to discuss
how to design a tractable normalising flow, and provide two general strategies for how to make
a transformation that is suitable for a flow. Finally, we present a simple flow from (Rezende and
Mohamed, 2015), and conduct a set of illustrative experiments to help build up intuition and showcase
its flexibility. This chapter does not assume any prior knowledge of normalising flows, and is aimed
to be so self-contained that it can serve as an introduction to normalising flows on its own

3.1 Motivation

Normalising flows provide a general approach for defining expressive probability distributions, using
only a simple base distribution that allows for easy sampling and density evaluations and a set of
bijective transformations. Modern normalising flows combine the flexibility and learning capacity of
neural networks with prior about the structure of the data to define these transformations. Distributions
defined using normalising flows can be used for modelling, inference, and sampling, and have uses
within a wide range of areas. Most research has gone into designing normalising flows for variational
inference and density estimation, including generative modelling of images and audio.

In variational inference, an intractable posterior density is approximated by a member of some
tractable variational family. As discussed in Section 2.3.4, the performance of the model depends
on how well the approximate posterior approximates the true posterior, which is directly related to
the flexibility of the variational family. When we use a limited class of variational densities like a
diagonal Gaussian, we sacrifice a lot of this flexibility at the altar of computational convenience.
To obtain an estimate of the posterior that is as close to the true posterior as possible, we want a
variational that is highly flexible — preferably flexible enough to capture the true posterior density.

A promising line of research in this regard builds on normalising flows, which were popularised in a
deep learning context by Rezende and Mohamed (2015), and later improved by others, most notably
Kingma et al. (2016) and van den Berg et al. (2018). The core idea is to make repeated use of bijective
and differentiable transformations to transform a simple base density into an increasingly complex
target density that approaches the true posterior density. The parameters of the transformations are
learned by maximising the ELBO through gradient-based training. Normalising flows can define a
richer variational family that improves the posterior estimates in variational inference.

The other main application for normalising flows, is density estimation, as first proposed by Tabak
and Turner (2013). The idea is the same as when using normalising flow for variational inference; to
learn a bijective mapping between some base density and a more complex target density, which is
represented by a set of samples. The parameters of the density estimator are learned by maximum
likelihood training. We are able to evaluate and generate new samples from this density thanks to the
change of variables formula, which lets us evaluate the exact likelihood of a given sample under the
density that is defined by the flow from the base density.
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[ px(x) = N0, 1) O px(x) = N0, 1) O px(x) = N(0, 1)

O py (y) = px(x/3) O prly) =px(x/3) - 15|

Figure 3.1: Left: Untransformed Gaussian density. Middle: Original and transformed, but not yet
normalised density. Right: Original and transformed density.

3.2 The change of variables theorem

The change of variables formula for probability is the backbone of normalising flows. Given a (scalar
or vector) random variable X with a known probability density function, and a differentiable and
bijective transformation f : X — Y, the formula lets us compute the density of the transformed
random variable Y = f(X). The theorem (Evans and Rosenthal, 2009) is given as:

Theorem. (Change of Variables Theorem) Let Qx, Qy be open subsets of RP and let f : Qx
Qy be a bijective and differentiable map. Let X be a random variable taking values in Q) x, and let
X have density px with respect to the Lebesgue measure on () x.

Then, Y = f(X) has densiry:

- of 'y
pr (o) = px( ) - [aee 2L G
with respect to the Lebesgue measure on y .
For one-dimensional densities, Equation (3.1) amounts to:
-1 d .
pr(v) =px(F W) - |7 )], (32)

where f is a strictly monotone' transformation of the random variable z. Intuitively, the last factor
of Equation (3.2) compensates for the change of area under the density function imposed by the
transformation, by scaling the transformed density function up or down accordingly. This scaling
ensures that the probability mass is invariant under the change of variables, so that the density function
still integrates to 1 over its support and remains a valid probability density after transformation. An
illustration of this process is depicted in Figure 3.1 for a transformation Y = 3X where X follows a
univariate standard Gaussian distribution.

In the following, we operate in a multivariate setting and denote random vectors by bold lowercase
letters, as this is the convention in the literature on normalising flows. Using this notation, we rewrite
Equation (3.1), so that the transformed random vector y = f(x) has a density function given by:

-1
py(y) = px(f 1) - | det W@y@)‘

=px(x) - ‘det <ag§)>l ‘
3f(><)’—1_
ox

The second equality follows from the inverse function theorem which states that the derivative of the
inverse function f ! at the point y equals the reciprocal of the derivative of f at the inverse image

= px(x) - ’det (3.3)

'The change of variables theorem on a slightly different form is applicable also to transformations that are
not strictly monotonic. We only provide the result for strictly monotonic transformations here, as this is the
theory that is relevant for understanding normalising flows.
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point x = f~1(y). The last equality follows from a property of determinants”. The term %(xx) is the

Jacobian matrix of the vector-valued function f(x) = (fi(x),..., fp(x))? with elements:
0fx)\ _ 0filx)
ox ij ai)ﬁj '

The advantage of rewriting the change of variables theorem to the form shown in Equation 3.3, is that
it becomes clearer how to compute the density of y. In particular, we do not need to compute the
magnitude of the Jacobian of f~!(y) with respect to y. Instead, we rather compute the Jacobian of
f(x) with respect to x directly, and take the reciprocal of its magnitude. This factor is analogous
to the derivative factor from Equation (3.2). While the absolute value of the derivative accounts for
change in area imposed by the transformation, the absolute value of the magnitude of the Jacobian
more generally accounts for the change in volume induced by the transformation.

3.3 Normalising flows

Normalising flows make use of the change of variables theorem to transform a simple density into
a more complex target density by applying multiple differentiable and bijective transformations in
sequence. Each transformation is normalising in the sense that it outputs a valid, normalised density.
Repeated application of thoughtfully designed transformations can capture increasingly complex
mappings between two densities, and the path traversed by the initial density through the sequence of
transformations is what we refer to as the flow.

To make a normalising flow, we start out with a random variable u in R” coming from some simple
density py(u) for which we are able to evaluate the likelihood and generate samples. We refer to this
simple density as the base density, and it is generally assumed to be a standard Gaussian density. The
parameters and shape of the base density are intuitively of lesser importance, as the transformations
in a normalising flow can shift, scale, and transform the base density arbitrarily many times in order
to approximate the desired target density. That being said, the role of the base density is flagged as an
open question by Kobyzev et al. (2019), as they point out that the choice of base density may affect
the complexity of the resulting transformations, and how easily they are learned.

Applying a differentiable and bijective transformation to u gives us a new random variable x = f(u).
Using Equation (3.3), we find that the density function of x is given by

df(u) ’_1
du '

One transformation does not make a flow, and a normalising flow is obtained by composing several
such transformations in sequence. It is a key point that as long as both transformations f; and
fo satisfy the criteria in the change of variables theorem, so does the composition of the two. In
particular, if we have x = f5 o f(u), the inverse transformation is given by:

u=fitofy (%)
and the determinant of the Jacobian is given by

det 8—X = det M = det 0f2(f1(w)) - det Oh (u)

du ou df1(u) ou

P(x) = pu(u) - | det

To motivate the necessity of applying several transformations, it is helpful to understand each
transformation as a local expansion or contraction of the initial density that only affects a small
region of the D-dimensional space. Applying more transformations allows us to transform more
of the original space, and we can approximate increasingly complex densities by applying more
transformations. To keep track of the different transformations in the flow, we overload the subscript
of f;(+). The subscript < now refers to the ¢-th transformation in the sequence, and we can write out
the transformed variable as

X:=Xg = fxk(Xg_1) = fx o---0 fi(u). (3.4)

The equation above shows that we can generate a sample from the final iterate of the transformed
density by generating a sample from the base density and simply passing it through the sequence

19



Inverse pass
V4

Forward pass
AN
4

Input — Normalising flow — Output

Figure 3.2: The forward pass and the inverse pass of a normalising flow.

of transformations. This is referred to as the noise to data transformation, or as the forward pass.
Denoting the density after k transformations as px (x), the transformed density is given by

Ofk O fr

OxXK—1 OxXp—1

—1 K

= palw) ]

i=1

-1

det det , 3.5)

Pr(XK) = pr—1 (XK-1)

where we let xo = u. To evaluate the likelihood of a sample under pg (X ) according to Equation
(3.5), we first have to calculate its pre-image under the base density as

u=filofy oo frl(xk),

using what we call the data to noise transformation, or the inverse pass through the flow. See Figure
3.2 for an illustration of the forward pass and the inverse pass. In practice, not all flows are invertible
everywhere in the X space, meaning it is not always possible to compute the likelihood of external
samples. We will illustrate this in Section 3.8 in our discussion on planar flows.

Finally, we can use the law of the unconscious statistician to compute the expectation of any function
h(xx) under px (x) without knowing the density of the random variable h(xg) explicitly. The
expectation of any function h(x ) can be taken as an expectation with respect to the base density,
and be computed using only the forward pass through the sequence of transformations

Egr (h(xK)) = Epyuy(h(fx © -+ 0 fi(u))) .

3.4 Expressivity of normalising flows

In this section, we repeat the argument presented in (Papamakarios et al., 2019) showing that even
when restricted to a simple base density, we are under some mild assumptions able to represent any
density px (x) using a normalising flow:

Suppose that px (x) > 0 for all x € R”, and that all conditional probabilities P(X; < x; | x;) are
differentiable with respect to x; and x.;. The notation x; refers to all elements of the vector x with

*Suppose M is an invertible matrix. Then, det(I) = det (MM ") = det (M)det (M™") = 1, so

det (M_l) = m
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index less than 4. The density p(x) can then be factorised using the probability product rule as

D
px(x) = [[ px (@i [ x<). (3.6)
=1

Define the cumulative distribution function of each conditional random variable as F; such that

Zq

Fi(zi | xei) = P(X; < 7 | xat) = / px (@ | x<)da!.

— o0

Consider now the vectorised transformation F' : x + z € (0, 1) such that the i-th element of F is
the transformation F; acting on the i-th element of x. Because each transformation F; is differentiable
with respect to x; and x;, F is differentiable with respect to x. Because 0F;/0xz; = 0 fori < j,
the Jacobian of the transformation will be lower triangular, and its determinant will be the product of
its diagonal elements:

OF(x) 1y O0F;
det e = Hp(zy | x<i) = px(x).

6l‘i .
1 =1

1=

Because the determinant of the transformation F' is equal to px (x) > 0, the transformation F is
clearly invertible. The density function of the transformed random variable z = F'(x) is according to
the change of variables theorem given as:

OF(x)|

det
¢ ox

det =px(x)-px(x)|7 = 1.

pz(z) = px (F~(z)) - =px(x)-

0z

OF~1(z) ‘

This implies that z has a uniform density in (0, 1), so that a flow-based model can express any density
px (x) in terms of a uniform base density on the unit cube. Note that because F' is differentiable
and invertible, the invertibility and differentiability of F'—! are both ensured by the inverse function
theorem.

This argument can be extended further in a similar manner to include mappings to different base
densities than the uniform. To do so, we use the mapping between x and z as defined above as an
intermediate step. We write out the case of a Gaussian base density below:

Assume we have a random vector y € R following a multivariate Gaussian density py (y) so that
its density is strictly greater than zero everywhere in R”. Because the conditional densities of a
multivariate Gaussian density are also Gaussian (Hirdle and Simar, 2015, Theorem 5.3), we can safely
assume that all conditional probabilities are differentiable with respect to (y;,y<;). Decomposing
py (y) as we decomposed px (x) above, we can define a map G : y — z where G satisifies the same
properties as F' above. Hence, we have:

-1

Oz

oG
det —
e dy

pz(z) = py (G_l(z)) - | det =py(y)- =py(y)- |pY(Y)|_1 =1

Thus, we have x = (F~! o G) (y), showing that we can express px (x) in terms of an arbitrary
Gaussian base density, including the standard Gaussian. Note that we have only showed that such
mappings between densities exist, not necessarily implying that we will be able to find them. In
practice, we can not directly choose the particular transformations F' and G’ when designing a flow, as
these are unknown. Instead, we will approximate the flow F'~! o G by composing multiple simpler
transformations that each has a pre-specified parameterised form. In the following, we will elaborate
on how to design such transformations.

3.5 Designing finite flows

To obtain a flow with the properties described in Section 3.3 that is also computationally feasible to
use, we have to impose some restrictions on the transformations we use. Given that we have chosen
some simple base distribution for which we can evaluate the likelihood and generate samples from,
we ideally want differentiable and bijective transformations which satisfy:
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Figure 3.3: A lower triangular Jacobian has an easily computable determinant.

efficient to compute the forward transformation (for sampling)

efficient to compute the inverse transformation (for likelihood evaluation)

efficient to compute the Jacobian and its determinant

efficient sampling and likelihood evaluation under the base distribution

o differentiable with respect to its parameters to allow for gradient-based training,

while at the same time maintaining high expressive power in a reasonable number of transformations.

A central challenge in designing practical flows is to create transformations that have a tractable
Jacobian, efficient forward pass, and efficient inverse pass at the same time. Though some notable
exceptions exist (Dinh et al., 2014, 2017; Kingma and Dhariwal, 2018), the majority of flow-based
models do not allow for both efficient forward pass and efficient inverse pass. Depending on the
problem we want to solve using normalising flows, it is in many cases sufficient to have either efficient
sampling, or to have efficient likelihood evaluation. We will explain this more in depth in Chapter 5,
and provide examples of flows of both types.

To design a transformation with a tractable det-Jacobian is crucial for the computational complexity of
the flow. Computing the determinant of a D x D matrix is generally cubic in D, which is prohibitively
expensive considering the typical dimensionality of the input. One way to reduce the computational
complexity of this computation, is to design the transformation such that the determinant of the
Jacobian is equal to one, as is done in non-linear independent component estimation (NICE) (Dinh
et al., 2014). This subclass of normalising flows is called volume preserving flows, since a det-
Jacobian equal to one implies that the transformation does not lead to a change in volume.

However, the flexibility of volume preserving transformations is very limited, and consequently,
more research has gone into designing transformations with friangular Jacobians. The computational
complexity of the determinant of a triangular matrix is only linear with respect to its dimensionality,
because the determinant of a triangular matrix is equal to the product of its diagonal elements. This
is depicted in Figure 3.3 for a lower-triangular Jacobian. Transformations with lower-triangular
Jacobians are usually achieved by using either an autoregressive transformation, or by using a
coupling layer:

e An autoregressive flow (Kingma et al., 2016; Papamakarios et al., 2017; Huang et al., 2018)
is composed by transformations y = f(x) where each each entry of the output is only
conditioned on the previous entries of the input, such that y; = f(x;;60(x1.,—1)) for some
function 6(-) parameterising the transformation. Autoregressive flows is a main topic in
Chapter 4 and 5, where the details of these flows will be presented.

e In a coupling layer (Dinh et al., 2014, 2017), the input vector x € R is partitioned
into two disjoint parts x;.4 and Xg441.p. The transformation y = f(x) is defined such
that d components remain the same, yi.q = X1.4, While the remaining components are
transformed as y; = f(x;; 0(x1.4)). The properties of the coupling layer depend on how we
design this transformation. Possible choices for the coupling layer are additive and affine
transformations, and a model based on the latter is presented in Chapter 5.

22



All the normalising flows we consider in this thesis are composed of a finite sequence of transforma-
tions, making them instances of finite flows. This is opposed to infinitesimal, or continuous-time flows
(Rezende and Mohamed, 2015; Papamakarios et al., 2019), where the number of transformations in
the flow tends to infinity. In this case, the transformation of the base density is no longer described by
discrete transformations, but by a parameterised ordinary differential equation (ODE) % = go(t, 21).

To compute the transformed variable at ¢;, we need to compute z;, = z;, + fttol 9o (t, z:)dt using an
ODE solver. The bulk of normalising flows literature is on finite flows, and we consider continuous-
time flows to be beyond the scope of this thesis.

3.6 Normalising flows for density estimation

Normalising flows provide expressive transformations and exact likelihood evaluation, making them
suitable for use in density estimation. Using normalising flows for density estimation was first
proposed by Tabak and Turner (2013), whose work despite being less known?® actually preceded,
and laid the foundations of the work of Rezende and Mohamed (2015) and later publications on
normalising flows.

Given a set of observations {x1,...,xy} we want to approximate the density function of the
unknown generative process pk(x) using a normalising flow. To do so, we want to learn the inverse
transformation u = f~!(x) that goes in the direction from data to noise, as this is the transformation
that defines the estimated density model px (x). The parameters of this inverse flow are trained using
maximum likelihood estimation, i.e., by maximising the likelihood of the data:

of ! >

By (x(x0) = By (™0 [t 22
The above objective function is maximised by using Monte Carlo approximations over mini-batches
to maximise the average log-likelihood during training:

IS -1 aof "
Ep: (x) (log px(x)) =~ N Z log | pu(f™"(x:)) - |det s
1=1 7
N K 1
— 8f}<; (Xz,k)
- N ; <logpu(u7) + ; IOg det 8Xi’k
N K
— Ofr(Xik—1)
=N ; <logpu(llz) I;log det Prre

where x; o = u. The likelihood is evaluated repeatedly during training, so the computations of the
inverse transformations and the determinant of the Jacobian have to be efficient in order for the
training to be efficient. In fact, sampling from py(x), i.e., computing the forward pass f(u), does not
have to be practically feasible in order to fit a flow model using maximum likelihood and use it for
density estimation. For density estimators, we are therefore willing to sacrifice efficient sampling for
efficient likelihood evaluation, if such a trade-off has to be made (Papamakarios et al., 2017).

3.7 Normalising flows for variational inference

The flexibility and tractability of normalising flows also make them suitable for defining approximate
posterior densities in variational inference. In this section, we will elaborate on how to train a
normalising flow for variational inference (Rezende and Mohamed, 2015; Kingma et al., 2016; van
den Berg et al., 2018) by maximising the evidence lower bound when using a normalising flow to
parameterise the approximate posterior density over the latent variables. We again adopt the notation
of the variational inference literature, with ¢(-) referring to the approximating density, and z referring
to the (latent) variable of interest. If we model the posterior using a flow of length K, we then have
44(z) = g (zx ). Using the law of the unconscious statistician, the evidence lower bound can be

348 vs. 619 citations on Google Scholar as of 7 October 2019
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rewritten as an expectation with respect to the initial density go(zo), that is:

“ELBO = - [ Iog (p<x'>p(>) 4622

q4(2)
=Ey,(2) (log 44(2)) — Eq,(2) (log (p(x | 2)p(2)))
= EQK(ZK) (IOg qK(ZK)) - EQK(ZK) (10gp(x7 ZK))

- ofi
= Eqgy(20) | 108 q0(20) — Z log det ‘
k=1

0z

D = Ego(20) (log p(x;, 20))

Afr
1

K
= qu(zo) (10g qO(ZO)) - qu(zo) (Z 1Og det ‘ aZk- )) - qu(zo) (lng(X7 ZO))
k=1 -

This objective function is optimised using a Monte Carlo approximation as described in Chapter
2.3.3, using samples from the base density qo(zo). The parameters of each transformation in the flow
are learned by minimising the negative ELBO using gradient-based optimisation.

The complexity of the true posterior is usually not known a priori, but a more flexible variational
approximation will in any case bring us closer to the true posterior behaviour because it makes the
ELBO a tighter bound on the likelihood. Normalising flows can be used to parameterise more complex
densities in this regard, giving more accurate and reliable predictions. The chances of capturing
the true behaviour increase if we choose a more flexible family for the approximating distribution.
However, there will still be an implicit bias-variance trade-off in the choice of approximating family,
because increased expressivity (more layers) comes at the cost of an increased computational cost.

3.8 Experimenting with planar flows

So far, we have written about normalising flows in general terms without explicitly specifying the
transformations in the flow. In this section, we present the planar flow, a flow proposed by Rezende
and Mohamed (2015) for variational inference, and reproduce the results from Figure 3 in (Rezende
and Mohamed, 2015). We proceed to investigate the properties of the planar flow more in-depth
than what was done in the original paper, by dissecting the model to look at each of the planar
transformations in the flow individually. These experiments provide insights and intuitions about
the inner workings of normalising flows, and we clearly motivate why longer flows are needed to
approximate complex densities. These intuitions are valid not only for planar flows, but apply also to
other classes of normalising flows.

3.8.1 The planar flow

Rezende and Mohamed (2015) proposed two normalising flows in a variational inference setting,
called planar and radial flows. Both transformations have known det-Jacobians that are computable in
linear time, but the transformations are also fairly limited and not widely used in modern normalising
flows models. We present the planar flow here nevertheless, because it serves as an illustrative
example that can help the reader gain intuition about what normalising flows are, and what they do.

Planar flows are compositions of transformations of the form:

f(z) =z+uh(wlz+b) 3.7

Gaussian N(0,1) K=1 K=2 K=3 K=4
R - ( -
‘- S “

Figure 3.4: Transformed densities after K = 1, 2, 3, 4 planar transformations of a standard Gaussian.
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Table 3.1: Potential functions with w; (z) = sin (222), wo(z) = 3exp (—3 (Zégl ), and w3(z) =

30 (zl 1) where o (-) is the sigmoid function and z is a sample from a standard bivariate Gaussian.

Potential functions U(z)
U() = & (1) —1og (e H37°T" 4 o[0T
Us(z) = § [ 254 r

g (e [])
Us(z) = —log e [F5H2] 40 [M])

2 1,21— z
Us(z) = 5 (Hzg%) — log (e—f(%ﬁ LG = Ok )

&
=
N
o
|

where u, w € R and the scalar b are the learnable parameters of the transformation, and h(-) is
some smooth and differentiable element-wise non-linearity. The planar flow belongs to the class of
residual flows because the transformation in Equation (3.7) bears similarities to the skip-connections
used in residual neural networks (He et al., 2015). Each planar transformation contracts or expands
the density of z perpendicularly to the hyperplane defined by w’'z + b = 0, hence the name planar
Sflow. This nature of the planar transformations is displayed in Figure 3.4 for ' = 4 manually (and
somewhat arbitrarily) specified transformations of a standard Gaussian density.

The Jacobian of a planar transformation is given by
0f(2)

0z
Using the matrix determinant lemma: det (A + uvT) = (1 + VTA_lu) det(A), with A =1,

u=u,andv =h' (sz + b)w, we get the determinant of the Jacobian

of(z)
Oz

=TI+ ub/(wlz+b)w?

’det

=1+ K (w'z+b)w'T 'u)det]|
=|1+ B (whz 4 b)WTu|

which can be computed in linear time O (D), where D is the dimensionality of z.

3.8.2 Showcasing the flexibility of normalising flows

In the first experiment, we follow the approach of Rezende and Mohamed (2015) and approximate
four two-dimensional non-Gaussian densities with a planar flow using a bivariate standard Gaussian
as the base density go(z). A model of length K is made by stacking K planar transformations as
defined in Equation (3.7) in sequence. Each transformation has learnable parameters, and the model
is trained by updating the parameters to minimise the negative evidence lower bound:

K

— ELBO = Egy)(z) <logq0 (zo) Zlog
k=1

1+n (whzg—1 +b)w'u

— log p(x, ZK))

The potential functions U; to Uy in Table 3.1 are the same as the ones used by Rezende and
Mohamed (2015), and represent a set of unnormalised densities p(z) «x — exp(U(z)). The densities
exhibit different characteristics like multimodality, periodicity, and bifurcations that are difficult to
approximate using the typical mean-field approximation.

The flows are trained using mini-batches of 128 samples from the respective densities and the Adam
optimiser with learning rates as given in Table 3.2. In this particular experiment, we have access
to the true generating functions for each density, so we can train the model on unlimited amounts
of data. Hence, we cheaply generate each mini-batch on the fly at each step in the optimisation,
abandoning the conventional train/test split used in settings where data is limited. Note that there is
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Table 3.2: Details about each flow model.

Potential U (z)

Flow length Learning rate

Number of iterations

U1 (Z) 32
UQ(Z) 32
U3(Z) 32
U4(Z) 32

6.0 x 10~%
6.0 x 1074
7.5 x%x 1074
6.0 x 1074

25000
25000
1000000
125000

True density exp(—U;)

()

Estimated density exp(—U;)

()

True density exp(—U)

NNV

Estimated density exp(—U,)

"AVAY

True density exp(—Us)

NN

Estimated density exp(—Us)

a4

True density exp(—Us)

2%

Estimated density exp(—Us)

N

Figure 3.5: Approximations of the densities p(z) x —exp(U(z)) using planar flows of length
K =32.

no risk of overfitting the model, because each data point used during training is unique and exactly
represents the true generative process. In the following, we refer to the training on one mini-batch as
one iteration.

We initially trained each flow model for 25000 iterations, which was sufficient to approximate the
densities defined by U; and Us very well. The model learning the density defined by Uy required
training for 125000 iterations to achieve a qualitatively similar performance, while we trained the
model approximating the density defined by Us for 1000000 iterations to achieve a sufficiently good
approximation. The results are presented in Figure 3.5 alongside the true densities.

We observe that a planar flow of length 32 is able to approximate all of the densities very well. The
approximation of the density defined by Us exhibits some irregularities, but is qualitatively more
similar to the target density than the corresponding result presented in (Rezende and Mohamed, 2015).
The observed differences are likely due to the fact that we have used the Adam optimiser rather than
the RMSprop optimiser, and trained the model for twice as many iterations as they did in the original
paper. The authors of the original paper trained each flow for 500000 iterations on all four densities.

3.8.3 The impact of increased flow length

The preceding results in Figure 3.5 are generated by planar flows of length 32. Looking at the
output of normalising flow of this size does not reveal much about what is going on under the hood.
We investigate the impact of varying the flow length, and show empirically that increased flow
length leads to better approximations of the target density. The target density is defined by potential
function Us from Table 3.1, which is different from the potential functions presented in (Rezende and
Mohamed, 2015), and can be viewed as an even more multi-modal extension of Uj.

We use this new density to illustrate the effect of adding more transformations to a planar flow model.
We train planar flows of length K = 2,4, 8, 16 in a similar manner, again using the Adam optimiser
with a learning rate of 6 x 10~%, and training all the flows for the same number of 25000 iterations.
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Figure 3.6: Approximations of the density p(z) o« — exp(Us(z)) using planar flows of length
K =2,4,8,16.

The results are presented in Figure 3.6, and we observe that the quality of the approximation is strictly
improving with increasing flow length in this experiment.

For all models but the longest one, we can see clear traces of the planar transformations in the shape
of symmetries and sharp edges. The non-smooth behaviour in the approximations with depth K = 4
and K = 8 bear resemblances to the non-smooth behaviour in the estimate of Us in Figure 3.5. The
sharp edges disappear when we double the length of the flow to 32 transformations. This indicates
that increasing the flow length beyond 32 layers in the previous experiment may give us an even
better approximation of Us. Stacking more transformations in sequence can be viewed as analogous
to stacking multiple layers in a deep feed-forward neural network, where each layer contributes with
a relatively simple non-linear transformation of its input, and the power of the model lies in the
complexity of the composition of many simple non-linear transformations.

3.8.4 Dissecting a planar flow

When looking at only the output of a sufficiently long flow, it is not evident that the final transformation
is the result of many simple planar transformations. To understand what is happening under the
hood, we dissemble the planar flow model and investigate the transformation learned by each layer
individually. Remember that each layer in a planar flow is simply a planar transformation as defined in
Equation (3.7). Figure 3.7a shows the intermediate outputs after each layer in the planar flow, starting
from zy ~ N(0,1), and all the way through to the final transformation z;6 = f16 0 --- o f1(z0).

The views of a normalising flow presented in Figure 3.7 are illuminating because they reveal how
the flow model stretches and compresses the initial Gaussian density into something that gradually
becomes similar to the target density. Most notably, Figure 3.7a shows that the output of each layer
in the model is a relatively simple transformation of its input, and that the power of the planar
flow to a large degree lies in the sheer number of transformations that we apply in sequence. The
simplicity of each transformation is perhaps even more evident when looking at Figure 3.7b where
the transformation of each layer in the flow is applied to a standard bivariate Gaussian.

3.8.5 Discussing the properties of planar flows

Based on the experiments above, it is not clear what the theoretical limits of which densities a planar
flow can learn are, if any. By extrapolating the observations we have made for the 2D densities above,
it is tempting to argue that planar flows, given enough layers, are universal density estimators in two
dimensions. Rezende and Mohamed (2015) claim that planar flows in the asymptotic regime are
flexible enough to learn any true posterior density. However, this is a claim that lacks a rigorous
proof. A different class of normalising flows called neural autoregressive flows (NAF) (Huang et al.,
2018) has later been proposed alongside a formal proof that NAFs are universal approximators for
continuous probability distributions.

At the same time as planar flows have proven to be very flexible density estimators, they are also
very limited in practice because each transformation returns a very simple transformation of its
input that only affects a small area or volume of the space that it is applied to. Because of this,
planar flows are in practice suitable for learning low-dimensional densities only. To transform a high
dimensional density into something meaningful and complex, we either need a very long flow with
many transformations, or we have to go beyond planar flows and use more powerful transformations.
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(a) Visualisations of the output of each layer of a planar flow of length 16.
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(b) Visualisations of the learned transformation of each layer of a planar flow of length 16. Each transformation
is applied to a standard Gaussian for visualisation.

Figure 3.7: A look at the internal workings of a planar flow.

Another way do gain intuition about why each planar transformation has a limited capacity, is to
think of each transformation as a feed-forward neural network with the transformation as a bottleneck
layer with one neuron and a skip-connection, as pointed out by Kingma et al. (2016). van den Berg
et al. (2018) made improvements on this end by introducing the Sylvester normalising flow. The
Sylvester normalising flow is very similar to the planar flow, but replaces the vectors u,w € R” by
matrices U, W € RP*M and the scalar bias by an M -dimensional bias vector. The planar flow is a
special case of the Sylvester flow with M = 1, and the hyperparameter M < D defines the number
of neurons in the bottleneck layer. The determinant of the Jacobian of this transformation can be
efficiently computed using Sylvester’s determinant identity.
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Chapter 4

A Precursor to Autoregressive Flows

This chapter lays out the foundations for the class of autoregressive normalising flows. As mentioned
in Section 3.5, a large body of the literature on normalising flows makes use autoregressive transfor-
mations with lower-triangular Jacobians to obtain flexible and tractable flows for use in variational
inference (Kingma et al., 2016) and density estimation (Papamakarios et al., 2017).

Before we proceed to present autoregressive flows in detail in Chapter 5, we first take a brief detour
to explain the essentials of autoregressive models in general. We will also present the Masked
Autoencoder for Distribution Estimation (MADE) (Germain et al., 2015), a neural autoregressive
distribution estimator. MADE is an interesting model worthy of its own chapter, but it is presented
here because it is the key building block in the autoregressive flows Masked Autoregressive Flow
(MAF) (Papamakarios et al., 2017) and Inverse Autoregressive Flow (IAF) (Kingma et al., 2016).

Lastly, we write out the details on how to turn MADE into a general density estimator for continuous
densities, by using Gaussian conditionals instead of Bernoulli conditionals. The Gaussian MADE is
already used in IAF and MAF, but the details on how to make the MADE output Gaussian densities
is left out of both papers. To our knowledge, this is the first time these details are explicitly written
out in the literature.

4.1 Autoregressive models for density estimation

One general approach in density modelling is to make use of what is called autoregressive models,
where we factorise the joint distribution over a random vector x using the probability product rule

D D
p(x) = plar) [[ e [ 1, in) = [ ol | x<i), (4.1)
=2 i=1

and model each scalar conditional distribution individually. In autoregressive models, the i-th element
in x is only dependent on the elements that come before it given the chosen ordering of the random
vector. We refer to this as the autoregressive property, and the autoregressive structure is illustrated
in Figure 4.1. Some random vectors, such as time series data, have a natural (temporal) ordering of
their elements, but most random vectors do not have an innate ordering of their variables, in which
case we have to choose the ordering to impose on their elements.

Having to choose an ordering is a weakness with the autoregressive approach, as there are factorially
many orderings to choose from, and it is not possible to a priori know which ordering that will work
best in practice. As illustrated in (Papamakarios et al., 2017), the performance of an autoregressive
density estimator is not invariant under the ordering of the variables, because each factorisation of
p(x) captures different dependencies between them. Autoregressive neural density estimators usually
deal with this problem by using different orderings of the variables in different layers of the model,
exactly to capture different inter-variable relationships. Another way to deal with this issue is to train
the density estimator on different orderings of the input, and combine them into an ensemble.

Using autoregressive models for neural density estimation has been an active line of research since
before normalising flows were popularised, starting with the Neural Autoregressive Distribution
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Figure 4.1: Graph showing the dependencies in an autoregressive model.

Estimator (NADE) (Larochelle and Murray, 2011) which extended on previous work by Frey et al.
(1996) on Fully Visible Sigmoid Belief Networks (FVSBN) for density estimation. Uria et al. (2014)
proposed a deeper version of NADE and a training procedure using randomised orderings of the
variables and extensive parameter sharing between the models trained for each ordering. Finally, we
mention the Masked Autoregressive Distribution Estimator (MADE) (Germain et al., 2015) which
extended on the deep NADE by offering evaluation of probabilities at test time that is an order of
magnitude faster than using deep NADE. MADE is present in Section 4.3 because it plays a central
role in several autoregressive normalising flows.

4.2 Autoregressive models as flows

The argument for normalising flows being universal density approximators laid out in Chapter
3.4 builds upon decomposing a density into a product of conditionals using the product rule of
probabilities and transform it into a uniform base density. This transformation is an instance of what
we call autoregressive transformations, and the argument for normalising flows being universal density
approximators (presented in Section 3.4) is thus simultaneously an argument about autoregressive
flows in particular being universal density approximators, motivating the search for models within
this class of flows.

Autoregressive flows are simply compositions of autoregressive transformations, and the connection
between autoregressive models and normalising flows was pointed out in (Kingma et al., 2016) and
exploited by (Kingma et al., 2016; Papamakarios et al., 2017; Huang et al., 2018) to create a new
class of normalising flows called autoregressive flows, achieving state of the art results on a variety of
benchmarks for variational inference and density estimation.

In an autoregressive flow, we model each conditional density in Equation (4.1) as a density whose
parameters only depend on the previous elements of the random vector. To transform a random vector
X using an autoregressive transformation, we specify each transformation as:

zi = f(x<i) = 7(2; ¢(x<i)) 4.2)

where 7 is the transformer, and c the autoregressive conditioner (Huang et al., 2018). The transformer
has to be invertible as a function of its input, x;. The conditioner outputs the parameters of the
transformer as a function of the previous variables x;, but does not have to be invertible. When we
have the vector x at hand, we can readily compute the parameters given by the conditioner ¢(x;)
for all elements z;, and compute the forward pass z = f(x) in parallel. As long as the criterion of
the transformer being invertible is satisfied, we can also compute x given z as:

r; =7 (255 ¢(x24)) 4.3)
This computation is not parallelisable, because we need to compute all the previous elements in x;

in order to evaluate the conditioner for x;. That makes the inverse pass inherently sequential. The
forward and the backward pass are illustrated in Figure 4.2.
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(a) Parallelisable forward pass. (b) Sequential inverse pass.

Figure 4.2: The forward pass and the inverse pass of an autoregressive transformation.

The transformation defined in Equation (4.2) has a lower-triangular Jacobian because 0z;/dz; = 0
for j > 1. The logarithm of the magnitude of the det-Jacobian is given by:

0z D
det ax‘ = ;bg

Because of the aforementioned properties; invertibility and a tractable Jacobian, the autoregressive
transformation in Equation (4.2) is suitable for making a normalising flow. By chaining several
such transformations we obtain a flow, and this lays the groundwork for the class of autoregressive
flows. The main drawback of autoregressive flows is that the inverse pass is sequential and hence not
parallelisable. The consequence of this is that we can not utilise the benefits that the use of multiple
GPUs has offered to deep learning in general when doing the inverse pass in autoregressive flows.

0
log det 8—;—1 (245 ¢(X<4)) 4.4)

Autoregressive flows can hence not provide both efficient sampling and efficient density evaluation
in the same flow. One has to make a trade-off when designing the model. For density estimation,
one should model the flow in the direction u = f(x) (Papamakarios et al., 2017) for efficient density
evaluation, while for models where efficient sampling is of importance, one should model the flow in
the direction x = f(u) (Kingma et al., 2016) with u being a sample from the base density p, (u).

4.3 Masked autoencoder for distribution estimaton

It follows from the discussion in the previous section, that while the transformer has to be invertible,
there are no such constraints on the conditioner. The only requirement is that the i-th conditioner
should only be dependent on the ¢ — 1 first inputs. Hence, the parameters specified by the conditioner
can be computed by an arbitrarily complex and not necessarily invertible function. In particular,
the conditioner is commonly modelled using a neural network. One could in principle use different
networks to output the parameters of the transformer of each scalar x;, but this becomes very
computationally expensive for larger models.

This is why the masked autoencoder for distribution estimation (MADE) (Germain et al., 2015)
has become the most popular choice of conditioner in autoregressive flows. A MADE network is
attractive for this purpose because it is able to output the parameters of all the transformers in one
single and parallelisable forward-pass. A MADE network is a modified autoencoder designed such
that each output is only dependent on the previous inputs, satisfying the autoregressive property.
Before we proceed to how these outputs can be used in autoregressive flows, we first present the
original MADE that was used for distribution estimation for binary inputs. In the original MADE,
the outputs define a set of conditional Bernoulli distributions p(x; | x<;) for a particular choice of
loss function. MADE thus offers one-pass density evaluation of an arbitrary sample.

4.3.1 Background

The idea of an autoencoder is to encode the input x € R to some (usually lower-dimensional)
latent representation z = enc(x), and to reconstruct the input from this latent representation. The

31



X Encoder Z Decoder b'e

Figure 4.3: Sketch of an autoencoder. Rectangular shapes represent vectors. The input x and the
reconstructed input X have the same dimensionality, while z is typically of a lower dimensionality.

latter process is referred to as decoding, and the reconstructed input is denoted by X = dec(enc(x)).
See Figure 4.3 for an illustration of a typical autoencoder model. The output and the input of an
autoencoder have the same dimensionality, and both the encoder and the decoder are usually modelled
as neural networks. In the following we assume both to be feed-forward neural networks.

In the case of binary observations where each x; takes on either 0 or 1, we can measure the quality of
the autoencoder (the quality of the reconstructions) using the cross-entropy loss:

D
L(x) = Z —z;log®; — (1 — z;) log(1 — ;) 4.5)

i=1

which has the same shape as the negative log-likelihood of a Bernoulli distribution. However, if this
actually was a proper negative log-likelihood of a Bernoulli, the implied data distribution would be
p(x) = Hil #%7(1 — &)=, This would not be guaranteed to be a normalised distribution, i.e, the
sum over all possible input vectors x would not sum to one'. This problem is addressed by Germain
et al. (2015) by defining the joint probability of the binary input variables x; as a product of Bernoulli
distributions using the probability chain rule:

D

D
pe) = [ [ (s | x<i) = T ™ (1 = p)' ™ (4.6)

i=1

withp = p(z; =1 | x<;) = &;and 1 —p = p(x; = 0 | x<;) = 1 — &;. By defining the joint
distribution of the input this way, each output of the autoencoder, &;, parameterises one conditional
distribution in the product in Equation (4.6). The negative log-likelihood of the joint distribution
corresponds exactly to the loss function in Equation (4.5).

This observation allows us to define a modified autoencoder that outputs a valid probability distribution
simply by minimising the regular cross-entropy loss in Equation (4.5), and use the autoencoder as a
distribution estimator for an arbitrary binary input vector. However, for this to be the case, we need
the ¢-th output of the autoencoder to only be dependent on the ¢ — 1 first elements of the input so that
the autoregressive property is conserved, and Equation (4.6) is satisfied. We describe how to achieve
this in the following.

4.3.2 Modifying the autoencoder

In a fully-connected neural network, all neurons in each layer will be connected to every neuron in
the previous layer, and hence all outputs of the network will depend on all dimensions of the input
x. Germain et al. (2015) propose an elegant solution to this problem by using binary masks to zero
out connections between neurons in the fully-connected networks. These masks have to be carefully
designed in order to satisfy the autoregressive property:

!Consider the case where the autoencoder learns the identity mapping between the input and output. Then,
the cross-entropy loss would be 0 for all inputs x, with an implied distribution that has p(x) = 1 for all x.
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Autoencoder Masks Masked autoencoder

Figure 4.4: The binary masks drop connections between neurons. The numbers inside the neurons in
the masked autoencoder on the left correspond to the numbers m!l(k), defining how many of the
input neurons the k-th neuron of the I-th layer can be connected to. We have used a randomised input
ordering. This figure is heavily inspired by Figure 1 in (Germain et al., 2015).

We assign each neuron in a hidden layer of the autoencoder an integer m that determines the maximum
number of connected inputs the k-th neuron of layer [ is allowed to have:
ml(k) ~ DiscreteUniform[m([)l] ,D—1]

where mg] = miny ml"~1(%’). This lower limit on the uniform interval ensures that there are no
unconnected units in the masked out network by avoiding to create hidden units in layer [ that are not
allowed to be connected to any of the hidden units in the previous layer. By setting the upper limit on
the uniform interval to D — 1, we have also excluded the possibility of a hidden unit being connected
to all D inputs, as such a hidden unit would be useless in modelling conditionals p(z; | x<;). An
illustration of a masked autoencoder is given in Figure 4.4.

We denote the weight matrix of the I-th layer by WU, In a standard feed-forward network, the
activation of layer [ is given by al!l = gll(Wllall=1 4 bl!l) where we define al to be the input x.
The dropped connections due to masking translates into a binary mask matrix M where we set the
entries of the connections we wish to drop to zero. The activation of the [-th layer is then given by:

all = gl @ wllalt=11 4 b 4.7

We define the entries of the mask matrix using that hidden unit % in layer ! can only be connected
to the hidden units &’ in layer [ — 1 that satisty m['~1 (k') < ml!(k). The elements of the resulting
mask MU for the I-th hidden layer then becomes:

! 1, ifml (k) > ml=Y(%
M’L’]’f' - { 0: otherw(iscz B ) forl<i<L (4.8)
By defining [ = 0 to refer to the input layer, and by defining m[”)(d) = d in order to keep the
natural ordering of the inputs, this definition is valid for all layers in the autoencoder. We have
to use a slightly different mask between the last hidden layer and the output layer to conserve the
autoregressive property of the output, i.e., that the i-th output is only connected to the input units in
X ;. This gives:

o _ [ 1, ifd>mF(K)
Mok = { 0, otherwise 4.9
The output of the network is:
X=0 ((M[O] © WOall | b[01) 4.10)
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where o(-) denotes the sigmoid function, and ensures that each output of the network can be
interpreted as a probability by mapping each output to the range (0, 1).

Each output of the MADE corresponds to the parameter of a Bernoulli distribution, so MADE
gives single-pass direct estimates of high-dimensional joint distributions by explicitly parameterising
each conditional distribution. MADE achieved state-of-the-art performance with respect to average
negative log-likelihood on the test sets of a variety of regression benchmark datasets at the time of
publication. The details about the experiments and the results are reported in (Germain et al., 2015).

4.3.3 Order-agnostic training

The authors show empirically that training the model on more than one ordering of the inputs can
be beneficial, and refer to this as order-agnostic training. Order-agnostic training is achieved by
sampling and ordering of the inputs before each mini-batch gradient update.In a MADE network, the
input ordering is defined by the vector m® = [ml(1),...,m!%(D)] where m[°(d) is the position
of the original d’th dimension. A natural ordering corresponds to the case where m[%(d) = d and
m? = [1,..., D]. A random permutation of the input ordering corresponds to randomly permuting
[1,..., D] before assigning the permuted vector to m®. This is also shown in Figure 4.4 where we
do not use the natural order of the inputs (21, T2, x3), but the permutation m® = [3, 1, 2].

Order-agnostic training allows us to create an ensemble of autoregressive models, because models
trained on different orderings of the input will correspond to different models. By reordering the
vector [1, ..., D] for each mini-batch during training, we are able to train as many models as there
are orderings of D elements, i.e., factorially many models, using only one set of parameters. Hence,
we can create an ensemble at test time by sampling a set of different orderings, compute p(x) under
each model, and average the results. This is more computationally expensive than computing p(x)
from a single forward-pass using one ordering, but using order-agnostic training was found to lower
the negative log-likelihood test results on several density estimation benchmarks.

Germain et al. (2015) also proposed what they called connectivity-agnostic training, where they
essentially resampled all masks for each mini-batch during training. This strategy lead to underfitting
in many of the experiments, and a more successful strategy was to sample a finite set of masks prior
to training, and alternate through them for each mini-batch. To obtain predictions at test time, we
make predictions for each set of masks and average the probabilities.

4.3.4 Sampling

After training the model, it will in many cases be of interest to generate new samples from the learned
density. As MADE is an autoregressive model, the sampling procedure is sequential. To sample from
a MADE model, the steps are as follows:

1. Initialise an empty vector x € RY.

2. Sample x; from an arbitrary unconditional Bernoulli distribution to get a realisation for the
first element of the vector x.

3. Fori=2,...,D:
e Feed x into the network to obtain ;. Recall that #; = p(z; = 1 | x<;).
e Sample x; ~ Bernoulli(Z;). Update x.

Sampling using MADE is hence not very efficient, as it requires D forward passes to fill the vector x.

4.4 MADE with Gaussian conditionals

The MADE presented above is the same version that is presented in the original paper (Germain et al.,
2015), only allowing for input vectors taking on discrete binary values. The version of MADE that is
used in autoregressive flows uses Gaussian conditionals, allowing the models to estimate real-valued,
continuous densities. The details on how to implement a MADE with Gaussian conditionals are not
explicitly stated in the papers by Kingma et al. (2016) and Papamakarios et al. (2017), nor in the Ph.D.
thesis by the same author (Papamakarios, 2019). We make an attempt to fill in the details below:
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Output:

Figure 4.5: Gaussian MADE with colour encoded input and outputs. x; refers to the elements of x
assigned a lower ordering than the order of element x;.

4.4.1 Increasing the size of the output layer

Assume we want to estimate the joint density of a real-valued random vector x € R” using a MADE
network. We want to model each conditional p(x; | Xx<;) as a one-dimensional Gaussian density,
rather than a Bernoulli distribution. A Gaussian density is defined by its mean and variance, so we
need the MADE to output two scalar parameters for each dimension of the input vector:

M(X<z‘) == p(z; ‘ X<i)
0(x<i) = 0(x; | X<i).

The parameters (1(X<;) and o(x«;) define the i-th conditional, and must depend on the same input
variables to ensure that the autoregressive property is retained for each conditional density. This is
done by creating the MADE network using the same procedure as before, up until last hidden layer.
Because we have twice as many outputs in a Gaussian MADE compared to in a Bernoulli MADE,
we must modify the output layer as follows:

In the MADE with Bernoulli conditionals, the weight matrix between the last hidden layer and the
output layer has dimensions (D X ny,), where we let ny, denote the number of units in the last hidden
layer. In the MADE with Gaussian conditionals, the output layer is twice as big, so the the weight
matrix between the last hidden layer and the output layer has dimensions (2D X np,), and we have to
increase the size of the mask matrix accordingly.

There are many ways to create the mask matrix for this last hidden layer. We want the outputs to
have pairwise identical dependencies on the inputs. One straightforward way to implement this, is
to create a mask for the D first outputs in the same way as for the Bernoulli MADE, and stack two
such matrices vertically. By doing so, we get a mask matrix of the appropriate dimensionality that
gives the output elements 1, ..., D pairwise the same dependencies on the inputs as output elements
D +1,...,2D. As shown in Figure 4.5, the conditional density of the i-th element is then given by
the i-th output, defining the mean, and the (D + 7)-th output, defining the standard deviation.

4.4.2 Gaussian likelihood

We leave all outputs of the network to be unconstrained, real values. For numerical stability and to
ensure that the standard deviations returned by the MADE network are non-negative, we define the
second half of the output to be the log-standard deviations a/(x;) such that o(x<;) = exp (X <;).
The elements of the mean vector are given directly by the D first outputs of the network, as the mean
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of a Gaussian is allowed to take on any real value. The log-likelihood of the joint density is then

D
log p(x) = log (Hp(xi | X<i)>

i=1

D
= log (HN (is p(x<i), 0(X<i)))
D

_ b [ (mim s
log<E 270 (X<;) p< 2( o(x<i) >>>

D D C(xo)\ 2
:—;Dlog(%r)—l—Zloga(Xq)—;Z<W> . (4.11)

i=1 i=1 o(x<i)

The computation of the log-likelihood given in Equation (4.11) can be computed efficiently by
defining the vector u € R” with elements:

r; — pu(X<q)

U; =
! O'(X<Z')

4.12)

The negative log-likelihood then becomes:

N |

D
L(x) = —logp(x) = 5 ([lul3 + Dlog(2m)) — Zlog o(x<i)-

which will be the training objective for the Gaussian MADE, replacing the cross-entropy function
used for estimating discrete, binary distributions in the original MADE.

Another viable way to implement the Gaussian MADE, is to use two separate MADEs with identical
masks to compute the means and the standard deviations. This would abandon the extensive parameter
sharing that is used in the current approach, but could potentially lead to better learning, because
the means and standard deviations are then computed using two disjoint sets of weights. As of now,
they share weights up until the last hidden layer, and the distinction between means and standard
deviations is made solely in the output layer. The training objective for the alternative approach is the
same as described above, and the two networks can be trained simultaneously with a gradient-based
optimiser. The forward pass would still be fully parallelisable. This idea is not tested here, but it
would be interesting to compare the performance of the two approaches in future work.

The flexibility of MADE can be increased further by either adding more Gaussian components
per conditional such that each conditional is represented as a mixture of Gaussians. This can be
implemented in the natural way, extending on the procedure described above. The flexibility of MADE
can also be increased by stacking multiple MADEs in sequence to get the masked autoregressive
flow. Both approaches were proposed (and combined) by Papamakarios et al. (2017), and the masked
autoregressive flow is presented in Chapter 5.2.
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Chapter 5

Autoregressive Flows

The main body of literature on normalising flows can be roughly divided into three: (i) normalising
flows for variational inference, and (ii) normalising flows for density estimation, including (iii)
normalising flows used in generative modelling.

We have already presented and experimented the planar flow for variational inference (Rezende and
Mohamed, 2015) in Chapter 3. In this chapter, we present a selection of flow-based models covering
all of the areas (i)-(iii) mentioned above, followed by a discussion of their relative strengths and
weaknesses. The flows are:

e The inverse autoregressive flow (IAF) (Kingma et al., 2016) is the first flow based on
interpreting autoregressive models as normalising flows. It allows for more flexible trans-
formations of the base density and more efficient sampling in variational inference than
previously proposed methods like planar and radial flows (Rezende and Mohamed, 2015).
IAF offers fast sampling, but slow density evaluation.

o The masked autoregressive flow (MAF) is a very similar model to IAF, but with complemen-
tary strengths and weaknesses. Fast density evaluation at the cost of slow sampling makes
MAF suitable for density estimation.

o The real-valued non-volume preserving (Real NVP) flow is the first successful flow-based
deep generative model. Unlike MAF and IAF, Real NVP makes use of a coupling layer to
achieve the elementwise invertible transformation. Offers fast density evaluation and fast
sampling at the cost of limited flexibility in each transformation.

In addtion, the neural autoregressive flow (Huang et al., 2018) is briefly presented as an example of a
non-affine flow:

e The neural autoregressive flow (NAF) offers more flexible transformations than the other
flows by using an invertible neural network to model the transformer in each autoregressive
transformation.

Finally, we present a batch normalisation layer that is suitable for use in normalising flows, as this is
perhaps the most critical implementational detail when building a deep flow. We present the batch
norm layer from the appendix of (Papamakarios et al., 2017), which in turn builds on the batch norm
layer for normalising flows by Dinh et al. (2017).

5.1 Inverse autoregressive flows for variational inference

In the context of variational inference, efficient density evaluation and efficient sampling are both
important, as both operations are performed repeatedly during training when evaluating the ELBO.
As discussed in the previous chapter, the sampling procedure for an autoregressive model is inherently
sequential and slow for high-dimensional variables because each element z; depends on all elements
Z1,...,T;—1. An autoregressive model with a sequential forward pass is hence not practical for
variational inference, because efficient sampling is crucial for the model to be deemed practical.
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Kingma et al. (2016) consider a vector-valued random variable x € R” modelled by a MADE
network with Gaussian conditionals. The network outputs the D-dimensional vectors p and o where
the i-th element of each vector is the mean p(x«;) and the standard deviation o(x«;) of the i-th
conditional density, respectively. The vectors p and o satisfy the autoregressive property with respect
to the elements in x. Sampling from such model is a transformation of a random vector u ~ N(0, I),
where the sampled vector x = f(u) is given by:

T = p(xei) + o(X<i) - uy.

where the first element is sampled randomly. This transformation is sequential and slow, but the
crucial observations made by Kingma et al. (2016) are about the inverse transformation u = f~1(x),
which exists long as o(x<;) > 0 for all i. These two observations are:

i The inverse transformation is parallelisable because the elements in u can be computed
independently of each other, and are directly computable as long as the mean and standard
deviation vectors are available. The computation can be vectorised as:

u=flx)=>_# .1)

g

where all operations are understood to be elementwise.

ii The inverse transformation has a lower triangular determinant because % = 0 and
J

% = 0 for j > 7. The det-Jacobian is thus the product of the diagonal elements, which
J
are simply given by gz? = 0(x1<v). The log-det-Jacobian is given by:
ou D
log det o ; log o(x<;) (5.2)

In other words, the inverse transformation has a tractable det-Jacobian, is parallelisable, and is a fairly
flexible affine transformation of a base density. Combined, this makes the transformation a good
building block for a normalising flow.

5.1.1 Inverse autoregressive flow

We want to use the parallelisable computation in Equation (5.1) as the forward pass in our flow, i.e.,
as the noise to data transformation, to get a flow that allows for efficient sampling. To achieve this,
we reparameterise the expression in Equation (5.1) by swapping the places of x and u.

u—p 1 12

X = =—u—— (5.3)
o o o

where p and o now are computed by a MADE using u as the input. To avoid the division, we can
rewrite this further as a more numerically stable affine transformation

x = f(u)=f+6u 5.4

with 6 = i and ot = —%. We stack several transformations as the one described in Equation (5.4)
in sequence to obtain what is known as an inverse autoregressive flow. We drop the hats from the
parameter vectors, and write each transformation in the flow as

Xp = T(Xk—1; By, Ok) = My, + O O Xp1 (5.5)

Here, we have adopted the notation from Chapter 4.2 where 7(-) denotes the transformer, and
(py,, o) denote the parameters generated by the conditioner, in this case a Gaussian MADE using
the output of the previous step in the flow as its input. The chain of transformations is initialised
using a data point that is fed into an encoder network that outputs two initial vectors p, and o¢. This
encoder network does not have to be autoregressive. The first iterate in the chain is then computed as

XO:uO+Uo®u (56)

where u is an initial sample drawn from a standard Gaussian density.
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(a) Parallelisable forward pass. (b) Sequential inverse pass.

Figure 5.1: The forward pass and the inverse pass of an inverse autoregressive transformation.

Note that the log-determinant of the Jacobian in Equation (5.2) does not change under the reparame-
terisation, but because x and u have swapped places, the log-det-Jacobian of each transformation in
the forward pass is now given by

2 1
Zloga u;) ;bga a

The flow is constructed by chaining multiple transformations as the one defined in Equation (5.5), and
we emphasise that each transformation is modelled using a different MADE network. The forward
and inverse pass of one IAF layer is illustrated in Figure 5.1.

log det

D
- Z log o (u.;) (5.7)

5.1.2 Sampling and density evaluation

Sampling from an inverse autoregressive flow amounts to a simple forward pass through the flow
x = f(u). Combining Equation (5.7) with Equation (5.6) using a Gaussian base density, the density
under the final iterate of the transformation is given by:

K
logp (xx) = log py (u) + I;logdet Oxi

D

_Z< log(27r)+log o0) >—Zzlog ok)i

k=11=1

D

K
_ Z (u + = 10g(27r) + Zlog(gk)i>
k=0

In order to evaluate a sample under the final transformed density p(xx ), we need access to its
corresponding random numbers w; and the standard deviation vectors for all transformations in the
flow. For samples generated by the model, these random numbers and vectors are readily available
because they are computed during the forward pass and can be kept to compute the density of the
generated sample at the end of the forward pass without any additional computational cost.

To evaluate the density of externally provided samples, we first need to compute the random numbers
and standard deviations recursively. This requires D backward passes through the flow, and makes
the IAF is a bad (slow) choice as a density estimator. Because of one-pass sampling and density
evaluation of its own samples, it is instead well-suited for variational inference because we are able
to use the samples and their corresponding log-likelihoods to evaluate the evidence lower bound.

5.2 Masked autoregressive flows for density estimation

The masked autoregressive flow (MAF) is closely related to the inverse autoregressive flow, and
builds upon the observations made by Kingma et al. (2016), interpreting an autoregressive model as
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Figure 5.2: The forward pass and the inverse pass of a masked autoregressive transformation.

a normalising flow. A comparison of the two algorithms is given in Section 5.4. MAF is also very
closely related to the Gaussian MADE, in fact, a one layer MAF is just a Gaussian MADE.

Papamakarios et al. (2017), like Kingma et al. (2016), consider an autoregressive model with Gaussian
conditionals modelled by a Gaussian MADE. In the inverse autoregressive flow, the i-th conditional
is parameterised by the mean p(u.;) and the standard deviation o(u<;) = exp a(uc;), i.e., as
a function of the random numbers u. In the masked autoregressive flow, the ¢-th conditional is
parameterised by (x<;) and a(x<;), i.e., as a function of the data x. In a MAF, new data x = f(u)
can be generated sequentially as

x; = p(X<i) + u; exp a(X<;) (5.8)

with u; ~ N(0,1). Equation (5.8) is a bijective transformation from noise to data, and the inverse
transformation can recover the random numbers u that was used to generate a data point x by:
T — p(X<i)
w; = 7(x4; (X<i), 0(Xej)) = ———F—= 59

i (w45 (X <i), (x<i)) exp a(X<) (5.9)
This transformation is used to evaluate the density of a known sample x, and is parallelisable because
the mean and standard deviations are computed simultaneously by forward-passing the sample x
through a Gaussian MADE.

With the elementwise transformation being as described above, we observe that Ju;/dx; =
exp(—a(x«;)) and Ou;/0x; = 0 for j > i. The Jacobian of this inverse transformation is thus
lower-triangular, and the log-det-Jacobian is given as

D

H 1

log -
- exp a(X<;)

ou
det —| =1
“ox 8

D
i=1

Following to the change-of-variables theorem, the likelihood of a data point x is thus given by

P(x) = pu(w) exp(=3_; a(x<i))-

Equation (5.9) makes up one step in a masked autoregressive flow. One such transformation is likely

not enough to get a sufficiently good data to noise mapping, starting from an arbitrarily complex data

distribution. A more powerful transformation is obtained by stacking multiple such transformations
in sequence, using the output of the previous transformation as the input to the next one.

The quality of the data to noise mapping can be used to assess how well the model fits the data. If the
model is good, the resulting noise € x should follow a D-dimensional Gaussian. If the data is one or
two-dimensional, this can be inspected visually. If the dimensionality is higher, this can be tested
formally using some normality test. A poor fit may indicate that the model needs more layers, or that
further tuning of the hyperparameters is required.

5.2.1 Sampling and density evaluation

Sampling from a MAF with one layer is the same as sampling from a MADE with Gaussian
conditionals, so sampling from a MAF with K layers is equivalent to sequentially sampling from a
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MADE with Gaussian conditionals K times. This is a very slow process, and MAF is therefore, like
MADE, not very well suited for sampling from high-dimensional densities.

Using the change of variables formula, the density of a variable x = f(u) is given by:

-1

log p(x) = log pu(f~" (%)) + log | det 0

= log pu(u) + log

Ou
det aix |

—logpa(w) = 3 alx<,)

i=1

where py(u) is some base density for which we are able to evaluate the density. For a masked
autoregressive flow with several layers, the formula simply becomes:

K D
logp(x) = logpu(u) = > > ar(x<;)

k=11=1

To evaluate this density, we only need to evaluate the inverse transformation u = f~!(x).

5.3 Real-valued non-volume preserving flow

One of the most popular and general models within unsupervised probabilistic modelling is based
on real-valued non-volume preserving (Real NVP) transformations (Dinh et al., 2017). This model
extends on earlier work by introducing a scale term to the previously proposed additive coupling
layer used by the Non-linear Independent Components Estimation (NICE) (Dinh et al., 2014). The
coupling layer used in Real NVP model is an affine coupling layer, which is a simple and tractable
bijective transformation f : u — x. In each affine coupling layer, the D-dimensional input is split
into two parts where the first d < D dimensions stay the same, and the last D — d dimensions are
transformed using an affine transformation. The output of each coupling layer is thus defined as

X1:d = U1:d

(5.10)
Xd+1:D = Ug+1:p © exp a(Ui.q) + p(X1:q),

where a, i1 : RY — RP~ are the scale and translation functions, respectively. The coupling layer
used in NICE is similar, but with & = 0. The inverse of Equation (5.10) has the same computational
complexity as the forward transformation, and can therefore be computed in one pass through the
flow as well. Using that the d first dimensions remain the same after the transformation, we find that
the inverse of Equation (5.10) is given as

U1.d = X1.d (5 11)
Ug+1:D = (Xd+1:D - N(Xlzd» © exp (—G(Xl:d))- .

The power of the seemingly simple affine coupling layer lies in the flexibility of the scale and
translation functions. Since these functions according to Equation (5.11) do not have to be invertible,
they can be arbitrarily complex. In practice, we will choose these functions to be deep neural networks.
The Jacobian of this the affine coupling layer is the triangular matrix:

ox Ly 0
_ = Xd41: 1 ]2
du (88?1;:3 diag exp (a(ulrd))> -

Since the determinant of a triangular matrix is equal to the product of its diagonal elements, the
determinant is:

0
det a—z = exp <Z a(ul:d)l) (5.13)

%

where the index 7 runs over all D — d elements of the vector a(uy.q).
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Figure 5.3: The forward pass and the inverse pass of a Real NVP coupling layer.

Since each coupling layer leaves d components of its input unchanged, it is necessary to apply more
than one coupling layer to transform the entire input vector. By composing multiple coupling layers
with alternating ordering, we ensure that all components of the input vector are transformed. The
generation of new samples is parallelisable since the computation of each element of the output vector
of the coupling layer given the input can be computed independently of the other output elements.
This is true for both the forward pass and the inverse pass, which makes Real NVP one of the few
flows that offers both efficient sampling and efficient inference.

5.3.1 Sampling and density evaluation

Because the forward pass and the inverse pass of the Real NVP have the same computational cost and
are parallelisable, it does not matter which way we define the flow. Defining the forward direction of
the flow as in Equation (5.10) so that the coupling layer is as shown in Figure 5.3, sampling from the
model amounts a single forward pass of a random vector u through the flow.

To evaluate the density of a sample or observation x, we need to compute the corresponding random
number u = f~!(x) following Equation (5.11), and use the change of variables formula to compute.

-1

log p(x) = log pu(f~"(x)) + log | det g—j

= logpu(u) = Y > (an);
k=1 1

This log-likelihood is computed during a single inverse pass. At each transformation of the flow, the
vector oy, is computed from the d first elements of the output of the previous layer.

5.4 Comparing autoregressive flows

The masked autoregressive flow makes use of the same transformation as the inverse autoregressive
flow, but inverted. This can be seen by writing out Equation (5.5) and Equation (5.8) as:

IAF : z; = p(uc;) + u; exp o(uc;)
MAF : z; = p(x<;) + u; exp a(x<;)

The difference between them is how the scale and shift parameters are computed; IAF computes them
from the previous random numbers u, while MAF computes them from previous data variables x.
Because of this, IAF and MAF have complementary strengths and weaknesses. Which flow to choose
has to be decided with the task at hand in mind. For variational inference, IAF offers fast sampling
and density evaluation of its own samples, while MAF is not suitable because MAF sampling is
sequential and slow. For density estimation, MAF is the better choice because it offers one-pass
density evaluation of any sample, while IAF density evaluation is sequential for external samples
(i.e., samples “in the wild”, not generated by the model itself).
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If we need a model that offers both efficient sampling and efficient density evaluation, we should
consider using Real NVP, which offers one-pass sampling and one-pass density evaluation (of any
sample). This computational convenience comes at the cost of using a less flexible transformation
at each step in the flow. The Real NVP paper also proposes the use of masked convolutions and a
multi-scale architecture specialised for dealing with image data, so for efficient sampling and exact
log-likelihood computation of high-dimensional image data, this implementation of Real NVP is
the better choice of the presented flows. Glow (Kingma and Dhariwal, 2018) is a more recent flow
that has extended Real NVP further with additional invertible convolutional layers, improving both
density estimation and generation of images compared to Real NVP. Glow is another example of a
flow utilising affine transformations.

Papamakarios et al. (2017) point out that Real NVP can be viewed as a MAF with only one autore-
gressive step instead of D autoregressive steps. Real NVP is a special case of the autoregressive
transformation used in IAF and MAF, which instead of using an individual affine transform that
is a function of all previous elements for all z;, uses a blockwise transformation. The first block
of d elements is simply transformed using an identity mapping. The second block with elements
d+1, ..., D is transformed using a function that is a function of the d first elements. That corresponds
to an affine transformation where the scale and shift parameters are defined as follows:

Real NVP : x; = p(ues); + u; exp a(ue;);

(1) = 0, fori=1,...,d
Hlt<e) = p(uy.g), fori=d+1,...,D
0, fortr=1,...,d

o(u<i) = {a(ulzd), fori=d+1,...,D
We observe that each element z; is only conditioned on any elements with index j < 4, so the
autoregressive property still holds.

The affine transformations utilised in these autoregressive flows presented thus far are all fairly
simple, and the expressivity of these flows come mainly from the expressivity of the conditioners,
i.e., from the the MADE networks used in IAF and MAF, and in the neural networks used to model «
and p in Real NVP. Affine transformations are popular because they are differentiable and trivially
invertible. Recently, models have been proposed that go beyond affine transformations, allowing
for more expressive transformations in each step of the flow. Examples of such models are neural
autoregressive flows (NAF) (Huang et al., 2018), and Flow++ (Ho et al., 2019). Huang et al. (2018)
formally prove that NAF is an universal density estimator, meaning it in the limit can approximate
any well-behaved density arbitrarily well. We outline the idea of this flow in the next section.

5.5 A brief intro to neural autoregressive flows

Whereas MAF, Real NVP, and IAF all use affine (scale-and-shift) transformers, Huang et al. (2018)
propose an autoregressive flow that uses an invertible neural network as the transformer function.
The model is aptly named a neural autoregressive flow (NAF), and defines an example of a non-affine
autoregressive flow. Neural networks can model a richer family of output densities than an affine
transformation can. In particular, a NAF can transform a unimodal input density into a multimodal
density using only one transformation, whereas an IAF needs more than one transformation to do so.
In a NAF layer, the transformer is a neural network, such that

7(2i; ¢(x<i)) = NN(2; e(x <)),
where the parameters of the neural network ¢(x;) are outputs from an autoregressive conditioner.

For a neural network NN(-) : R — R to be strictly monotonic (and thus invertible, as is required for
the transformer), it is sufficient that the network uses strictly positive weights and strictly monotonic
activation functions. Examples of strictly monotonic activation functions are the sigmoid, the leaky
ReLU, and tanh.

Based on this, Huang et al. (2018) propose a transformer architecture called deep sigmoidal flows
(DSF). This is a neural network with scalar input and output, with only one hidden layer of sigmoid
units and strictly positive weights. The output layer is a logits layer. Logit is an inverse sigmoid
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function, and is defined as:

logit(p) = log 7 f s

mapping its input from the domain (0, 1) to the unconstrained domain (—o0, c0). To ensure that the
input to the logits layers is in (0, 1), the outputs of the sigmoid layer are combined as a softmax-
weighted sum:

x; = logit(s” - o(w - z; + D)),

where s, w € R"*!, where n denotes the number of hidden units. The elements of s are such that
0<s;; <land),s;; = 1. Remember that we need all weights of the network to be positive to
have an invertible network, so we also require as ; > 0.

The argument for using sigmoid units, is that the sigmoid function (in addition to being strictly
monotonic) has an inflection point, which in turn induces inflection points in the transformer. It is
these inflection points that allow the transformer to readily output multimodal densities, because they
enable the transformer to expand and contract different regions of the output density in only one
transformation.

If we stack multiple DSF transformations in sequence, we get a feed-forward neural network with
bottleneck layers. Another way to improve the flexibility of the neural autoregressive flow is to
generalise the DSF transformation to several fully-connected sigmoid layers between the input and
the output while preserving the positivity of the weights. This gives the deep dense sigmoidal flow.

The authors use small transformer networks with one to two hidden layers with only 8 or 16
hidden units in each layer. These choices were found to yield good results without increasing the
computational cost too much compared to IAF and MAF. Remarkably, Huang et al. (2018) proved
formally that a deep sigmoidal flow can approximate any strictly monotonic univariate function, so
the NAF using DSF is a universal density approximator. See the original paper for details.

5.6 Batch normalisation

When training deep models in general, it is often advantageous, and in many cases necessary, to
normalise the activations of the hidden layers at each forward pass to improve the training of the
model. This is known as batch normalisation, or simply batch norm (Ioffe and Szegedy, 2015), and
is one of the most common and most crucial implementational tricks when working with deep neural
networks. Precisely why batch norm works so well is still debated (Bjorck et al., 2018), but applying
batch norm has widely demonstrated to speed up and stabilise the training of neural networks.

The technique works by normalising all dimensions of the activations of each hidden layer during the
forward pass by using statistics computed per mini-batch. Intuitively, because the weights of each
hidden layer changes during training, so does the input distribution of each layer. By normalising the
input to each layer to have zero mean and unit variance, we ensure that no activations get really big
or really small, avoiding saturated activation functions that could hamper learning.

Batch norm for normalising flows was first proposed and used in Real NVP (Dinh et al., 2017). We
choose to implement and use a slightly modified version of batch normalisation that is presented
in Appendix B of (Papamakarios et al., 2017). Batch normalisation is a non-volume preserving
transformation, so to include it in a flow, we need to be able to compute its Jacobian determinant
efficiently. Luckily, batch norm can be viewed as a composition of affine transformation, and is
straightforward to differentiate.

We consider a general autoregressive flow x = f(u) = fx o---o f1(u), and add batch norm between
all autoregressive layers and between the last autoregressive layer and the base density, such that the
flow becomes

x:f(u) :fKOBNKOfK_10-~~Of1 oBNl(u).

To simplify notation, we consider one batch norm layer and let x represent the vector closer to the
data, and we let u represent the side of the transformation that is closer to the base density. Then,

x=BN(u)=(u—08)0 (v+e)?®exp—y+m,
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The inverse transformation is given by

u=BN"'x)=(x—-m)O (v+e) 2 0expy+0

~1(x D
det 8]31\27}(() = exp (Z ("/z‘ - %log(vi + Ez))>

i=1

with determinant

The vectors m and v represent the sample mean and variance, respectively. During training these are
computed per mini-batch. The vectors 3 and -y are trainable parameters, and a small hyperparameter
€ is added to the variance ensure numerical stability in case any element of v is close to zero.

At validation and test time, we set m and v equal to sample mean and variance computed using
the entire training set. We also experiment with setting the mean and the variance equal to running
averages m and v computed during training as:

m; 1 = fm; + (1 - B)my

Vi1 = Vi + (1= B)vi,
where the subscript refers to the mini-batch index, and 5 € (0, 1) is a hyperparameter, typically close

to 1. This yielded very similar results to computing the parameters using the training set. It will
become clear in the next chapter which version of batch norm we have used for which experiments.
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Chapter 6

A Novel Hybrid Flow for Density
Estimation

In this chapter, we combine two of the previously presented layers — the Gaussian MADE, as used in
the masked autoregressive flow, and coupling layer used in Real NVP — into a new layer suitable for
use in a normalising flow. The proposed layer, which we name the hybrid autoregressive flow (HAF),
makes the same trade-offs as a MAF layer, and is thus best suited for use in density estimators. The
model can be viewed as a Real NVP that is specialised for density estimation. We present the idea
behind HAF in Section 6.1, and formalise it Section 6.2. This chapter is purely descriptive, but in
Chapter 7.5 carry out some preliminary experiments, and compare the results with the performance
of regular MAF and regular Real NVP.

6.1 Background

The starting point for the proposed flow is the observation that the expressiveness of the Real NVP
coupling layer is compromised because the coupling layer leaves a large fraction, typically 50%, of
the input elements unchanged in each transformation. As a result, we need two sequential coupling
layers using opposite orderings to transform all elements of the input, when we ideally would like to
transform every variable in every transformation in the flow, to make the transformation as expressive
as possible. Increased expressivity in each layer can reduce the length of the flow needed to achieve
the same performance, and it can allow for modelling inter-variable dependencies more efficiently.

Recall that the (inverse) transformation in each coupling layer is given as:

Ui:.d = X1:d

Ugt+1:0 = (Xa4+1:0 — H(X1:0)) @ exp (—a(x1.q)). @1
The obvious way to increase the flexibility of this transformation, is to also transform the d elements
that are currently not being transformed in the coupling layer. The transformations we can use for this
purpose must of course be bijective and differentiable, and we also want it to have a lower-triangular
Jacobian. A transformation that satisfy all the aforementioned properties can be defined by using a
Gaussian MADE in the same way that it is used in the masked autoregressive flow, but instead of
transforming the entire input to the layer, we only let the MADE transform the elements that are
not already transformed by the coupling layer in Equation (6.1). The transformation defined by the
MADE, used for the autoregressive layers in the masked autoregressive flow, is defined elementwise
by the transformation

u; = (2 — pw(X<s)) - exp(—a(x<;)). (6.2)
The means and log-standard deviations are defined by a Gaussian MADE network with x;.4 as its

input, and the elements w1, ..., ug can be computed in parallel. This is exactly what we will do in our
proposed hybrid autoregressive flow, which is presented in the next section.
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Figure 6.1: The forward pass and the inverse pass of a hybrid autoregressive transformation.

6.2 Hybrid autoregressive flow

6.2.1 Extending the coupling layer

We combine the transformations from Equation (6.1) and Equation (6.2) into a modified coupling
layer that defines the following forward transformation:

X1:d = Mpapg T U1:d © €XP OMADE

6.3
Xd+1:D = t(xlzd) + Ud+1:D O} eXP(S(Xlzd))y ( )

where pyapg = H(X1:4) and amape = a(X1.4) are the mean vector and the log-standard deviation
vector from a Gaussian MADE and have to be computed sequentially, and ¢(-) and s(-) as denote the
shifting and scaling networks of the coupling layer. These networks have previously been denoted by
1 and o, but we change the notation here to avoid ambiguity with the MADE vectors.

Note that the forward pass in Equation (6.3) is partly sequential, as the first d elements have to be
sampled sequentially using a MADE. Only when all elements x1, ..., z4 have been sampled, can the
scaling and shifting vectors be computed for the rest of the vector. We are rather interested in the
inverse transformation from x to u. This transformation is fully parallelisable, and defined by

U1,y = (X1.a — Mpape) © €XP(—QMADE)

i1 = (Xat+1:0 — H(X1:.0)) © exp (—5(X1:4))- ©4

When going in this direction, we have the vector x at hand, and can readily compute pty2pp and
amapE Using a single forward pass through the Gaussian MADE, and the same applies to the scaling
and shifting of x441.p. The final thing we need in order to use this transformation in a flow for
density estimation, is a tractable Jacobian with an easy-to-compute determinant to use the change of
variables formula:

ox

log px(x) = log pu(u) — log det
0g x(x) = log pu(u) — log det | ==

The transformation defined in Equation (6.3) has a lower-triangular Jacobian with log-determinant
given by

d

0
10g det % = Z(QMADE)i —+ Z S(Xlzd)j (65)

=1 7

where j runs over the D — d elements transformed by the Real NVP style affine transformation. A
visualisation of the Jacobian of HAF compared to the Jacobian of the Real NVP is shown in Figure
6.2. This figure is aimed at helping to understand what the differences between the proposed flow
and the Real NVP are. One HAF layer is theoretically equivalent to chaining a coupling layer and
a MAF layer that is only applied to half of the inputs. However, the HAF layer is faster because
the computation of the output when going the inverse direction can be done in parallel, motivating
collecting both transformations in one layer.
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Figure 6.2: Left: The Jacobian of the original coupling layer in the Real NVP. Right: The Jacobian
of the modified coupling layer in the HAF.

6.2.2 Discussion and properties

One of the advantages of the coupling layer in Real NVP is that the forward pass and the inverse pass
come with the same computational cost. That convenience is thrown overboard here when introducing
a sequential transformation of half of the elements in the forward pass. However, when using the Real
NVP for general purpose density estimation, the cost of the forward pass is not a primary concern, as
generating samples is not the application that the model is intended for. Trading off efficient sampling
for a more flexible transformation is acceptable, as long as the density evaluation remains efficient.
The same kind of trade-off is made in the inverse autoregressive flow and the masked autoregressive
flow as well. We argue that it is reasonable to sacrifice cheap sampling for better density evaluation.

The hope is that by using a hybrid between masked autoregressive networks (MAF/MADE) and
fully connected networks (Real NVP) to model the transformations, we will be able to capture more
complex dependencies between the variables than when using either of the models separately. The
MAPF part of the transformation captures autoregressive dependencies if there are any, and in the Real
NVP part of the transformation can an make use of arbitrarily complex neural network to transform
the remaining elements using an affine transformation.

While the forward pass in HAF is less efficient than in a pure Real NVP, it is also more efficient
than in a pure MAF model, as half of the elements can be computed in parallel, contrasting the fully
sequential sampling procedure in MAF. Also, the inverse pass is fully parallelisable and offers a
strictly more flexible transformation than the Real NVP does. Whether the proposed transformation is
more flexible than the one used in MAF is not immediately clear. To better understand the properties
of MAF vs. HAF, we investigate the number of parameters contributing to the each transformation in
the competing models. We also include Real NVP in the comparison for completeness.

Number of parameters

We compare number of connection weights in one layer in each of the three models. We ignore
the number of bias terms as it is negligible compared to the number of weights. For simplicity, we
assume all neural networks used in either model to have the same size of one hidden layer with H
hidden units. The input vector to each layer has D elements, and in the coupling layers we assume
that the input is split in to two equally sized parts.

MAF: A MAF consists of multiple MADE networks in sequence. Each MADE has a D-dimensional
input and 2D-dimensional output. The total number of weights is thus DH + 2DH = 3DH.
However, in a MADE, the sub-network modelling each conditional can be much smaller than the
the full unmasked network. Assuming that 50% of the weights are masked out due to the uniform
assignment of connections in MADE, there are %DH “active” parameters in each MAF layer.

Real NVP: The coupling layer consists of a scaling and and shifting network, both of size 1 x H
with £ inputs and £ outputs. This gives a total of 2- (3 DH + $ DH) = 2D H weights per coupling
layer. Because there is no masking in these networks, the number of active parameters is the same as
the number of total parameters
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Table 6.1: Number of weights in one layer of the different flows, given by the size of the input (D),
and the size of the hidden layer (H).

Model #parameters #active parameters
MAF 3DH SDH

Real NVP 2DH 2DH

HAF IDH ipH

HAF: The first % elements are transformed using a MADE with % inputs and D outputs, giving
a total of %DH weights. Considering that half of the weights do not contribute because they are

masked out, the number of active weights becomes %DH . The second half is transformed in the same
way as in the Real NVP described above. This adds 2D H weights to the transformation, making up
a total of %DH + 2D H = 3.5D H parameters, out of which %DH are active

A summary of the above sections is presented in Table 6.1. We see that HAF has more parameters
per layer than MAF and Real NVP. The fraction of active parameters in HAF lies by design between
the 50% of MAF and the 100% of Real NVP, and is close to 80%. Papamakarios et al. (2017) argue
that MAF makes better use of its available parameters than Real NVP. To make a fair comparison
between the flows, the size of the hidden layer in HAF should be reduced accordingly to have the
same number of active parameters as MAF and/or Real NVP.

Assuming a fixed input dimension D, we would have to reduce the size of the hidden layer in HAF
by a factor %14—1 ~ 0.5 and 2/ % ~ 0.7 to get the same number of active parameters as MAF and
Real NVP, respectively. The computations above can be easily extended to deeper networks with

more than one hidden layer, but we leave this for future work.

6.2.3 Implementation

Because our transformation is partly autoregressive and partly coupling based, we have to be extra
careful with the ordering of the intermediate inputs in the flow to make sure that all variables benefit
maximally from the autoregressive MAF transformation. As mentioned in Chapter 5, it is common to
use alternating ordering in every second layer when using MAF, and to alternate between transforming
X1.4 and xX441.p in every second layer when using Real NVP. If we naively use both approaches in
each layer, we never get to model x;.4 and x4 1.p in both directions. We need to combine the two
strategies to ensure that the MAF part transforms all elements in both the natural and reverse order.

To achieve this, we divide the input x into two disjoint parts so that the even-indexed elements are in
x1.q4 and the odd-indexed elements are in x4 1.p. In the first layer of a hybrid autoregressive flow,
the elements in x;.4 are transformed according to an autoregressive MAF style transform, while
the elements in x441.p are transformed according to a Real NVP style update, dependent on the
untransformed variables in x1.4. In the next layer it is the other way around, such that the variables
that were originally in x41.p are transformed according to an autoregressive MAF transform, while
the elements in x;.4 are transformed according to a Real NVP update, dependent on the variables in
Xq+1.p- This alternating pattern is repeated throughout the flow.

The elements that are transformed using the MAF transform are transformed using the natural input
ordering in the two first layers, and and then the reverse input ordering for the two next layers,
and so on. This is done to capture different dependencies between the dimensions of the input,
and is the same strategy applied by Papamakarios et al. (2017) and Kingma et al. (2016) in their
autoregressive flows. Note that our approach differs slightly from theirs, as we each time only change
the ordering for half of the elements in the input vector. Permutation of the rows in a vector is
a bijective transformation itself, and is hence allowed as a component of a normalising flow. In
particular, it is a volume-preserving transformation, such that the absolute value of the Jacobian of
the transformation is equal to one, so it does not show up in our log-det-Jacobian calculations.
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Chapter 7

Experiments

In this chapter, we apply the presented algorithms from Chapter 4.2 and Chapter 5 on different density
estimation tasks. First, we use the MADE and the Gaussian MADE on a selection of experiments
using the MNIST dataset. These experiments are inspired by, but also extending on the experiments
conducted by Germain et al. (2015). Then, we apply Real NVP on two two-dimensional toy datasets,
and visualise and discuss its performance. The implementations of MADE and Real NVP are found
to work satisfactory, which is crucial as these are the builiding blocks of MAF and HAF.

The preceding experiments lead up to the final set of experiments in Section 7.5, where we apply
MADE, MAF, Real NVP, and our proposed flow, HAF, on a two different general purpose density
estimation datasets. We follow the experimental setup from (Papamakarios et al., 2017), successfully
reproduce their reported results for MADE, MAF, and Real NVP, and show that HAF gives promising
initial results across the different datasets. The section is rounded off with a discussion of the results.

7.1 Datasets

The increased availability of labelled datasets has been vital to the development of machine learning
techniques, and to the growth of the machine learning community as a whole. There are now
larg datasets from a wide range of domains publicly available for anyone interested in building
and training their own machine learning models. Collecting datasets can be a tedious and costly
process, particularly if it involves labelling, so the machine learning community benefits from sharing
their datasets. Sharing allows researchers and practitioners to spend their time on research and
development of better methods, and also makes experiments in research papers reproducible, and
enables researchers to compare the performance of their algorithms by benchmarking on the same
datasets. Datasets such as MNIST (LeCun and Cortes, 2010) and ImageNet (Deng et al., 2009) have
pushed forward the rapid development in computer vision in the deep learning paradigm.

There are many publicly available sources for datasets for machine learning, including some hosted
by major research institutions, and governments around the world. Open, domain specific datasets
can now be found easily by doing some quick digging online. Below, we have listed three of the most
popular and general dataset finders:

e Kaggle is an online machine learning community. In addition to offer a platform for finding
and publishing datasets, Kaggle also lets you connect with and learn from other users, and
participate in machine learning competitions.

o UCI Machine Learning Repository is a repository by the University of California, Irvine,
containing hundreds of high quality datasets for machine learning. There are datasets
available for both classification, regression, and clustering tasks, coming from many different
domains. The datasets vary vastly in number of observations, and in number of features.

e Google Dataset Search was launched by Google in late 2018, aiming to make it easier to
find and discover new datasets by making datasets from thousands of different repositories
available through a unified search engine. The search engine came out of beta in January,
2020.
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Table 7.1: Size () and dimensionality (D) of all the pre-processed datasets.

Split
Dataset D N Niain Nyal Niest
HEPMASS 21 525123 315123 35013 174987
MNIST (and binarised MNIST) 784 70000 50000 10000 10000

Choice of datasets and pre-processing

For our density estimation experiments, we use one relatively low-dimensional dataset describing
particle collisions in a high energy physics experiment, in addition to the MNIST dataset (LeCun and
Cortes, 2010) of handwritten digits. We use the same pre-processing of these datasets that was used
in the experiments in (Papamakarios et al., 2017). This pre-processed version of these datasets has
since publication become the de facto evaluation suite for benchmarking neural density estimators
(Grathwohl et al., 2018; Huang et al., 2018; Durkan et al., 2019; Kobyzev et al., 2019). Note that
Papamakarios et al. (2017) used in total seven different datasets, and we work with only two of them
here; one dataset with 21 features, and one high-dimensional dataset with 784 features.

The first dataset listed below is taken from the UCI Machine Learning Repository. Discrete-valued
features were removed from, in addition to features with a Pearson correlation coefficient greater than
0.98. Each of the remaining features was normalised by subtracting the sample mean and dividing by
its sample standard deviation. Below, we provide a short description of the datasets we have used,
and provide additional details on the pre-processing, following Papamakarios et al. (2017):

o HEPMASS (Baldi et al., 2016) is a dataset describing the outcomes of particle collisions
in a high energy physics experiment. Positive samples in the dataset describe particle
generating collisions, while the negatives come from background noise. Five features are
removed because of to many reoccurring values that can lead to spikes in the density, giving
misleading results when performing density estimation.

e MNIST (LeCun and Cortes, 2010) is perhaps the most famous dataset in the machine
learning literature. It consists of 70000 grayscale images of handwritten digits. The
resolution of each image is 28 x 28 pixels, and they are represented as 784 dimensional
vectors where each vector element is in the range (0, 1). The images are dequantised by
adding uniform noise in the interval [0, ﬁ], and transformed to the logit space. More details
on this process are given in Section 7.3.

The UCI dataset was subsampled by Papamakarios et al. (2017) so that the product of the dimension-
ality and number of samples is approximately 107. HEPMASS was then split into training, validation,
and test sets with splits as shown in Table 7.1. The way the MNIST data is provided by LeCun
and Cortes (2010), it is already divided into a 50000/10000/10000 split for the training, validation,
and test sets. We use the splits provided by the dataset in our experiments. An overview of the
dimensionality and size of each pre-processed dataset is given in Table 7.1.

7.2 Reproducing results from the MADE paper

Because MADE is an integral part of the masked autoregressive flow presented in Chapter 5, we need
to be confident that our implementation of MADE is working well in order to implement the masked
autoregressive flows later on. As a sanity check of our MADE implementation, we try to reproduce
some of the results from the original paper (Germain et al., 2015) on the MNIST dataset (LeCun and
Cortes, 2010) of handwritten digits. Because the original MADE assumes binary inputs, we use the
binarised MNIST dataset with pixel values only taking on the exact values O and 1, as originally
curated and used by Salakhutdinov and Murray (2008).

Dataset

The dataset consists of 70000 images of handwritten digits, and is used for benchmarking models
within a wide range of machine learning applications, including generative modelling, density
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Table 7.2: Negative log-likelihood (NLL) on the test set (lower is better). Results from (Germain
et al., 2015) in parentheses.

Model Hidden units Optimiser Input ordering — logp(x)
MADE, 1 hidden layer 500 Adam Random 93.93 (94.70)
MADE, [ hidden layer 8000 Adagrad Natural 88.40 (88.40)

Figure 7.1: Random samples of handwritten digits from the binarised MNIST training set.

estimation, computer vision, and classification. The images are of size 28 x 28 pixels and are
flattened and represented as 784-dimensional vectors. Like for the original MNIST, the dataset is
randomly split into a training set of 50000 samples, a validation set of 10000 samples, and a test set
of 10000 samples. Twenty random samples from the training set are shown in Figure 7.1.

Models and training

We reproduce the first result from Figure 2 in (Germain et al., 2015) using a MADE network with a
single hidden layer of 500 units, and only one mask. In our experiments, we use an autoencoder with
the same architecture, and train the network using the Adam optimiser with a learning rate of 0.001
that is decreased to 0.0001 after 50 epochs. Though not mentioned in the original paper, we found
that using a random ordering of the inputs was necessary to achieve the reported results.

Further, we train a bigger MADE network with 8000 hidden units using the natural input ordering
to reproduce results from Table 6 in (Germain et al., 2015). The model uses only one mask, i.e.,
we make no use of order-agnostic or connectivity-agnostic training. For this problem, we use the
Adagrad optimiser with stepsize 0.001. Both models were trained using a batch size of 128, and early
stopping with a patience of 30

Results and discussion

The results of the experiments are shown in in Table 7.2, and measure up to the results reported
by Germain et al. (2015). In fact, it seems like our implementation of the smaller model slightly
outperforms the one from Germain et al. (2015) on this particular problem. This is likely because we
use the Adam rather than the Adagrad optimiser, as we found Adam to be more efficient on the 500
hidden unit version of MADE. We deem the implementation to be successful.

Hyperparameters

The authors list the sets of values they tried for each hyperparameter in their experiments, but are
not explicit about which hyperparameter settings they have used for each particular model. We
could experiment with different combinations of the listed hyperparameter values to find the optimal
combination for each model for each experiment (e.g. by using grid search or random search). Alas,
the larger model with 8000 hidden units has ~ 12 x 10° trainable parameters, making experimenting
with different hyperparameters computationally expensive and slow using the computational hardware
we had available.

Because of the aforementioned concerns, we did not prioritise searching for the optimal hyperpa-
rameter setting as soon as we had found one that yielded performance close to the reference values.
It would also be informative to report the standard deviations of the reported test results as well,
as is done in the supplementary materials of Germain et al. (2015). However, getting reasonable
empirical standard deviations would require more runs than the five we used to compute the averages
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(a) MADE, one hidden layer, 500 hidden units. (b) MADE, one hidden layer, 8000 hidden units
Figure 7.2: Samples from two different MADE models.

in Table 7.2, which would be very time consuming. All models exhibited a large degree of consistency
between runs, so extrapolating from five runs, we suspect the standard deviations to be rather small.

7.2.1 Samples from the MADEs

Figure 7.2a and 7.2b show 60 random samples from the one hidden layer models with 500 hidden
units and 8000 hidden units, respectively. Both models produce some samples that could just as
well have been part of the original MNIST dataset. As we would expect from the test likelihoods,
the quality of the samples improves with the size of the model. The bigger model produces a larger
proportion realistic looking samples, and fewer samples that are just noise (like the ones seen in the
upper right corner, row two and three).

We want to emphasise that MADE does not take the structure of an image into account. MADE is a
general purpose density estimator, and the samples are generated as a 784 column vector following the
autoregressive procedure described in Section 4.3.4 and illustrated in Figure 7.3. It is a bit artificial to
generate images pixel by pixel, starting from the top left corner. For more complex images than the
handwritten grey scale digits in MNIST (higher-dimensional, multiple colour channels, more detailed
motives), this naive approach fails to generate good samples. There are other autoregressive neural
networks with convolutional layers that are more suitable for generating images specifically, such as
PixelCNN (van den Oord et al., 2016), and PixelCNN++ (Salimans et al., 2017).

1

T2 Ty | T2 e ZTog

Reshape

T784

(784 x 1) (28 x 28)

Figure 7.3: Sampling procedure using MADE.
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Figure 7.4: Reconstructed digits.

7.2.2 MADE as an autoencoder

We carry out an additional experiment that is not conducted in the original paper. We use the masked
autoregressive autoencoder as an autoencoder in the sense that we investigate how well the MADE is
able to reconstruct its inputs. A reconstructed sample is obtained by using a sample from the test set
as input to the model, and sampling a new image from the resulting set of conditional distributions.
Strictly speaking, the outputs z; of the MADE are the reconstructed inputs. But while the input to the
model is binary, each output of the model is real on the interval (0, 1), as they represent probabilities.
To get a binary valued reconstruction, we thus sample from the corresponding conditional Bernoulli
distributions defined by each Z;.

Figure 7.4 shows ten reconstructed samples from a one hidden layer model with 8000 hidden units
using natural ordering of the inputs. The top row shows ten samples from the test set, the middle
row shows the corresponding set of conditional distributions from the MADE (dark blue indicates a
probability close to one), and the bottom row shows the sampled reconstructed inputs. The second
row is strikingly similar to the first row, as we would expect, as this is what we optimised for during
training of the model. The samples in the third row are a bit more noisy, but it is in all cases easy see
which digit each sample resembles. A comparison with existing work is not possible because this
experiment was not done in the original paper, but qualitatively the model performs well on this task
too, and we deem our implementation successful.

An artefact of the MADE model that becomes visible in this experiment is that the top left pixels
in the second row of Figure 7.4 seem to be learning slower than the other pixels. This is seen by
noticing that each top left pixel (corresponding to 21 given the natural ordering) has a stronger shade
of blue than its neighbouring pixels. This is easier seen in Figure 7.5. Revisiting Equation (4.10) and
Figure 4.4, we observe that all connections going into this neuron are masked out to, meaning that
the only trainable parameter in this particular output neuron is a scalar bias term. Because this bias
term is the only parameter contributing to estimate the output distribution p(x1), the training of this
particular unit slows down compared to the other units, which have several trainable weights.

p(Xi = 1|X<,')

Figure 7.5: Closeup of a reconstructed digit. Note the colour of the top left pixel in the reconstruction.
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Table 7.3: Details about the MADE model, and test log-likelihood in logit space. Inside the parenthesis
is the result from (Papamakarios et al., 2017) with error bars corresponding to two standard deviations.

Model Hidden units Learning rate Test log-likelihood
Gaussian MADE 1024 0.001 —1379.97 £ 1.79 (—1380.8 - 4.8)
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As p(z1) is not dependent on any variables in the input x, the parameter of p(x;) is only a property
of the trained model itself, and is therefore the same across all ten samples in Figure 7.4. This was
confirmed through inspection of the weights and biases of the model, and the particular value of
the bias was found to be b = —0.868 (corresponding to o(b) = 0.1338 being the parameter of the
Bernoulli distribution p(x1)). This non-zero probability of the pixel in the top left corner not being
black is the reason why we can see a white pixel in the top left corner of the reconstruction in Figure
7.5. This pixel clearly should have been black, but this error will occur in approximately 13% of the
reconstructed images from this model.

This observation speaks in favour of using training the model using multiple different orderings of the
inputs and averaging the outputs at test time. Because all other orderings would assign a close-to-zero
probability for the top left pixel of being white, the resulting average probability p(x1) would also be
very close to zero.

7.3 Gaussian MADE

We carry out a simple and similar experiment with the Gaussian MADE described in Section 4.4.
There are no experiments using Gaussian conditionals in the original MADE paper, as the Gaussian
MADE is not described there at all. To validate the performance of our model, we instead follow the
experimental setup from (Papamakarios et al., 2017) where a one-layer Gaussian MADE with 1024
hidden units is trained on the MNIST dataset.

Additional pre-processing

Here, the regular MNIST dataset is used instead of the binarised MNIST, because using Gaussian
conditionals allows for modelling real-valued vectors. The pixel values in the original MNIST take on
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values in the interval [0, 1), but with most values being very close to 1 (white) or very close or exactly

equal to O (black). These pixel values are actually discrete valued, because they are transformed from

an 8 bit representation of the black and white images, which allows each pixel to take on values in
25

the range [0, 255]. The transformed pixels have discrete values 0, ﬁ, -.ey 558"

To transform this discrete distribution of pixel values into a continuous distribution that lends itself to
being approximated by Gaussian densities, we first have to dequantise the pixel values by adding
noise:

where z ~ Uniform(0, 1), for each quantised image x¢. Following the approach in (Papamakarios
et al., 2017), we transform the dequantised images to the logit space as:

x = logit(A + (1 — 2)) - %)

with A = 1075, We train the model on pixel values in the unconstrained logit space instead in the
domain from O to 1, as the Gaussian conditionals have support on the entire real line. Consequently,
we evaluate the log-likelihoods in the logit space as well, and this allows us to compare our results to
the results in Table 2 in (Papamakarios et al., 2017).

Training and results

We use the Adam optimiser with a learning rate of 0.001. To prevent overfitting, we use lo regu-
larisation with coefficient A = 107°, such that the sum A ), w? is added to the training objective,
penalising large weights w;. We also use early stopping with a patience of 30, i.e., we stop training if
the validation loss has not decreased for 30 consecutive training epochs. We train the model without
batch normalisation, as this is a model with only one hidden layer.

The result of the training is shown in Table 7.3. We achieve an average test log-likelihood similar
to the one reported by Papamakarios et al. (2017), and well inside the error bars corresponding to
two standard deviations. The standard deviations are computed from the sample variance across the
test set, using one model only. This is the same way the standard deviations are computed in the
original paper. Note that the log-likelihood in Table 7.3 can not be compared with the log-likelihood
from the Bernoulli MADE on the binarised MNIST, as we have used different datasets, and different
distributions to model the pixels of the images.

We can, however, compare the sample quality between the models. Figure 7.6 shows 80 samples from
the Gaussian MADE. The samples are qualitatively more similar to the samples from the smaller
Bernoulli MADE in Figure 7.2a with 500 hidden units, than to the samples from the larger Bernoulli
MADE with 8000 hidden units in Figure 7.2b. This is as expected, considering the model size of
1024 hidden units, and that the MNIST dataset used here is more complex than the binarised MNIST
used in the previous section.

7.4 2D density estimation with Real NVP

We will proceed to use Real NVP for estimation of high-dimensional densities in the next section,
but we first learn a two-dimensional density from samples to verify that the model works for low-
dimensional cases. Working with two-dimensional densities is convenient because it allows for neat
and intuitive visualisations, but this experiment serves more as a sanity check of the model and a
stepping stone towards the large datasets we will use in the next section. In this section, we use the
“two moons” dataset, a toy 2D dataset included in the Python library SciKit-learn (Pedregosa et al.,
2011), and a more unorthodox “density”, created from the NTNU logo.

We define each coupling layer using two small neural networks with one hidden layer each to model
the scaling function s(-) and shifting function ¢(-) in each coupling layer. Both networks have 200
hidden units using the ReLU non-linearity, and these architecures are the same for the two moons
model and the NTNU model. The partitioning of a two-dimensional input vector to each coupling
layer is trivial, as there are only two possible ways to order the elements of a two-dimensional vector.
Hence, one element is copied, and the other element is transformed in each layer. The ordering of the
input is reversed for every successive layer. To model the two moons dataset, we use a flow with 32
coupling layers, and to model the NTNU dataset, we use a deeper flow with 48 coupling layers.
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(a) The two moons density.

(b) The “NTNU density”.

Figure 7.7: Left: 10000 samples from the target density. Middle: Inverse pass x — u of 2000
samples from the target density. Right: Forward pass u — x of 2000 samples from the Gaussian
base density.

R

Figure 7.8: Kernel density plots of the two densities, estimated from 10000 random samples. Target
density to the left, and estimated density to the right.

We sample 5000 samples from each density to use for training, and train each model for a fixed
number of 300 epochs using a batch size of 256. Batch norm is added after each coupling layer, using
running averages with 3 = 0.9. We use the Adam optimiser with fixed learning rates of 2 x 10~*
and 1 x 10~ for the two-moons, and the NTNU datasets, respectively. The results are shown in
Figure 7.7. The (very) astute reader will recognise the two-moons dataset from Figure 3.2 in Chapter
3, which was indeed created using the same Real NVP model that is described in this section. No
likelihood values are reported, as there are no comparable results in the literature, and these likelihood
values are also unlikely to be of value as a future reference for others.

The Real NVP models are able to learn a bijective mapping between the target density and the base
density quite well. The performance is qualitatively better on the two moons dataset compared to the
performance on the NTNU dataset. The output of the data to noise transformation in Figure 7.7b does
not seem to be exactly Gaussian, and the generated samples do not reflect the white gaps between the
“outer fram” and the inner circle in the target density very well. Scatterplots are, however, not very
good at revealing areas of high or low densities due to overlapping plotted points. For this reason, we
add an additional kernel density plot visualising the estimated densities.

These plots are shown in Figure 7.8, and the plots to the right reveal that the model has estimated
the NTNU density better than what it appears like based on the scatterplot in Figure 7.7 alone. As
desired, there is a clearly defined region with lower density around the middle circle, though the
density is not as low as it should have been when comparing with the target density. The two moons
dataset is estimated accurately, judging from both the scatterplot and the density plot, and we deem
the performance of both models to be satisfactory.
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Finally, we point out that the Real NVP is not particularly well-suited for two-dimensional density
estimation, given the simplicity of each transformation. For two-dimensional densities, traditional
approaches work just as well or better, and are likely to be more parameter-efficient than a normalising
flow. As mentioned earlier, each transformation in the coupling layer uses two neural networks to
scale and shift only one dimension of the input in each layer, which must be said to be a horribly
inefficient use of computing power. Where normalising flows shine, is in the high-dimensional
regime, i.e., when dealing with high-dimensional data, and this will be illustrated in the next section.

Remark: To create a density based on the NTNU logo, we start out with an image of the logo of size
339 by 318 pixels that we turn into a binary image with pixel values 1 and 0. We then create a grid of
the same size as the image, and obtain the coordinates of the one-valued pixels. These coordinates
are scaled and shifted to be centered around zero, and they describe the points in the plane coming
from the “NTNU density”, so that each pair of coordinates represent a sample. To avoid repetitions
when drawing samples from the NTNU density, a small amount of uniform noise from the interval
(—0.5,0,5) is added to each coordinate at the time of sampling, ensuring unique draws.

7.5 Density estimation with HAF, MAF, and Real NVP

Through the initial experiments above, we have verified that our implementations of the Gaussian
MADE and Real NVP perform as expected from the literature. We experiment with the masked
autoregressive flow and Real NVP for density estimation in the following, reproducing some results
from the masked autoregressive flow paper (Papamakarios et al., 2017) for the MNIST and HEPMASS
datasets. The authors carry out a comparison of MADE, Real NVP, and MAF on a range of density
estimation tasks. We extend two of these experiments to include our hybrid autoregressive flow, and
compare our model to the existing and closely related models.

Papamakarios et al. (2017) also include MADEs and MAFs where each conditional is modelled as
a mixture of ten Gaussians, and ten-layer MAF and Real NVPs in their comparison. Extending a
five layer model to a ten layer models is straightforward, but training the deeper models is a matter
of how much computational resources and time that is available. We restrict ourselves to the five
layer models, and a single Gaussian MADE. The MADE using a mixture of Gaussians is a natural
extension of the Gaussian MADE, which can be viewed as a special case of a Gaussian mixture with
only one component.

7.5.1 Models

MADE: We implement a single layer Gaussian MADE which serves as a baseline in each experiment.
The MADE uses the natural ordering of the inputs, and ReL.U hidden units. The implementation is
as described in Section 4.4, with no additional tricks like order-agnostic or connectivity-agnostic
training.

Real NVP: A large part of the Real NVP paper (Dinh et al., 2017) is about generative modelling
of images, incorporating knowledge about image structure into the model by using convolutional
neural networks to model both s(-) and #(-). The layers of these networks are modified with spatial
and channel-wise binary masks to generate the partitioning in each coupling layer. In this thesis, we
abandon this specialised architecture used for modelling images, and rather use an implementation of
Real NVP for general-purpose density estimation, as is done in (Papamakarios et al., 2017).

This version of Real NVP takes in, and returns a vector. We alternate between transforming the
even-indexed and the odd-indexed elements of the input in every other coupling layer. In the first layer,
the odd-indexed elements are copied and the even-indexed elements are transformed. In the next layer,
the even-indexed elements are copied, and the odd-indexed elements are transformed. This pattern
is repeated throughout the flow. Note that this approach requires a permutation of the rows before
each coupling layer to preserve the autoregressive property. This is a bijective transformation with
an abs-det-Jacobian equal to one, hence row permutation does not affect the likelihood computation
according to the change of variables formula.

We model the scaling function s(+) as a fully-connected feed-forward network using the hyperbolic
tangent activation function in the hidden layers, and we model the translation function ¢(-) as a
fully-connected feed-forward network using ReLU activation function in the hidden layers. Both
networks have unconstrained, linear outputs. This is the same choice of activation functions as used
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Table 7.4: Average test log-likelihood in logit space (higher is better) with error bars corresponding
to two standard deviations. The best performing model among the candidates is highlighted in bold.

MNIST
Model LxH Test log-likelihood Papamakarios et al.
MADE 1 x 1024 —1379.97 + 1.79 —1380.8 £ 4.8
Real NVP, 5 layer 1 x 1024 —1310.13 +4.54 —1323.2+6.6
MATF, 5 layer 1 x 1024 —1296.09 + 3.62 —1300.5 £ 1.7
HAF, 5 layer 1 x 550 —1292.91 + 2.57 —
HAF, 5 layer 1 x 700 —1297.64 +4.14 -

Table 7.5: Average test log-likelihood (higher is better) with error bars corresponding to two standard
deviations. The best performing model among the candidates is highlighted in bold.

HEPMASS
Model LxH Test log-likelihood Papamakarios et al.
MADE 1 x 512 —22.40 £ 0.05 —20.98 £ 0.02*
Real NVP, 5 layer 1 x 512 —17.80 £ 0.05 —19.62 £ 0.02
MAE, 5 layer 1 x512 —18.80 + 0.07 —17.70 £ 0.02*
HAF, 5 layer 1 x 256 —19.18 +£ 0.04 —
HAF, 5 layer 1 x 350 —19.64 £ 0.05 —

by Papamakarios et al. (2017) in their implementation of Real NVP. Both networks are of the same
size with number of hidden layers (L) and number of hidden units (H) as given in Table 7.4 and 7.5.

MAF: For the masked autoregressive flow, we reproduce the experimental setting from (Papamakarios
et al., 2017). We use a five layer MAF, where each layer is a Gaussian MADE with ReL.U activation
functions. We use the natural ordering of the data for the first layer in the flow, and reverse the order
before each of the following layers. The size L x H refers to the size of each MADE network in the
model.

HAF: We implement each layer following the procedure described above. The MADE is a single
layer MADE with ReLU hidden units, the translation network has ReL.U hidden units, while the
scaling network has hyberbolic tangent hidden units. For simplicity, all networks chosen to have
the same size L x H. The Real NVP part of the model behaves as described above, by alternating
between transforming the odd-indexed and even-indexed elements, while the MADE part of the
model reverses the order of inputs after every two layers.

On each dataset, we implement two HAFs; one with approximately 50% as many hidden units in
each network as the other models, and one with approximately 70% as many hidden units as the
other models. These choices follow from the discussion in Chapter 6, and are made to allow for a fair
comparison between the competing models.

7.5.2 Training

All models are trained using the Adam optimiser and added I, regularisation with coefficient A = 1076
to prevent overfitting. For the MAF, Real NVP, and HAF, we use a learning rate of 0.0001, whereas
for MADE, we use a larger learning rate of 0.001. We use a batch size of 100 in all experiments,
and add batch norm between all layers in the flow, and between the last layer and the base density,
which is chosen to be a standard Gaussian for all models. In the batch norm layers, we choose the
€ = 1075 to ensure numerical stability, and use mean and variance computed over the entire training
set at validation and test time.

The models are using early stopping with a patience of 30, so the training terminates after 30
consecutive training epochs without improving the performance on the validation set, and the best
performing model on the validation set is used to compute the test loss. The test loss is reported as the
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average loss over all test samples, with error bars corresponding to two empirical standard deviations.
All models were trained on exactly the same datasets with the same train/validation/test splits.

7.5.3 Results and discussion

A summary of the test results is presented in Table 7.4 and Table 7.5. The MADE result from Section
7.3 is repeated here to allow for easy comparison.

For the MNIST dataset, we observe that the MADE result is on par with the performance of the
equivalent model in the masked autoregressive flows paper, but that our versions of MAF and Real
NVP seem to yield slightly better results than their counterparts in the literature. These differences do
not change the order of the models in terms of performance, with MAF coming out on top, followed
by Real NVP and MADE. We address the reasons why the results might differ in Section 7.5.4.

We also observe that the smallest HAF model with a layer size of 550 outperformed the other models,
including the larger HAF with 700 hidden units in each layer. There is no linear relationship between
the size of a model and its performance on a given dataset, and this was also seen in (Papamakarios
et al., 2017), where the five layer MAF and Real NVP both outperformed their ten layer counterparts
on MNIST. It is still interesting to see that HAF performs better than MAF and Real NVP on this
problem, using a comparable number of parameters. This encourages further testing of the model.

On the HEPMASS dataset, both MAF and Real NVP perform better than the HAF, but the results
are still comparable. Again, our Real NVP perform better than reported by (Papamakarios et al.,
2017). An important thing to note is that the results from (Papamakarios et al., 2017) in Table 7.5 are
marked with an asterix to show that their reported results may also come from models with network
2 x 512. In their paper, all models were given two options on the HEPMASS dataset; 1 x 512 and
2 x 512. The best model was picked based on validation performance, but the paper does not state
which model that generated the reported results. We chose to only try out the shallower of the two
architectures, but it is likely that the deeper choice would yield better performance for one or more of
the models. We attribute the differences in performance for MAF and MADE largely to this fact.

Further experimentation is needed in order to be able to draw conclusions about the hybrid autoregres-
sive flow, but the model shows promising performance in these initial experiments when compared to
popular neural density estimators like MAF and Real NVP, given similar circumstances. A natural
extension would be to compare the models on the remaining five datasets in the density estimation
evaluation suite by (Papamakarios et al., 2017). The tendency in the experiments thus far, is that the
number of hidden layers should not be much larger than the number of inputs, as the smaller HAF
outperformed the larger one in both experiments.

If this is an actual effect that is valid for HAF across datasets, we suspect that it might also be valid
for Real NVP. This could have implications for the experimental setup when comparing Real NVP to
MAF. Though the setup is originally designed by Papamakarios et al. (2017) to make a fair comparison
between the MAF and Real N'VP, it might be that the experimental setup is disadvantageous for the
Real NVP'!. By using the same number of hidden units in each of the networks in Real NVP and
MAPF, it might be that the Real NVP is not set up to make the most out of its available parameters.
Not only does an overparameterisation give an inefficient use of the parameters, but it could also
directly deteriorate the performance of the model, as observed for the HAF.

Lastly, we want to emphasise that the error bars are computed from the test run of a single model, as
is also done in (Papamakarios et al., 2017). While the average test loss was observed to be consistent
across runs, the error bars fluctuated more, but remained on the same order of magnitude. Because of
this, we do not attribute too much significance to the width of the error bands.

7.5.4 Remarks on the implementation of MAF and Real NVP

The source code for the experiments carried out in (Papamakarios et al., 2017) is openly available on
GitHub. However, their implementation is written in the now-deprecated deep learning framework
Theano, which has made a direct comparison of our and their code more difficult when debugging,

'E.g., the width of the scaling and shifting networks on MNIST is set to be 1024, but there are only 392
inputs to each network. A network width of 1024 makes more sense in the MAF, as each network has a full
number of 784 inputs, resulting in what, based on our observations, might be a better relation between the size
of the input and the size of the hidden layer.
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as the syntax and structure of Theano code is very different from PyTorch code. While Theano was
deprecated back in 2017, PyTorch is a recent framework updated with the current best practices.
There might be subtle differences hidden within the frameworks (e.g., different default parameter
settings or initialisations) that are difficult to pick up, so it is not uncommon to obtain slightly different
results when implementing the same deep learning model in different frameworks.

Nevertheless, we made an attempt to trace down the differences between our implementations that
cause the differences in test results. It is likely that the differences in performance between their and
our MAF model on MNIST can be attributed to different weight initialisations. Weight initialisation
is not mentioned in the paper, but by inspecting the code of (Papamakarios et al., 2017), we find that
they have used a manually modified version of the LeCun normal initialisation (LeCun et al., 1998) in
the MADE networks that make up the MAF, whereas we have used the uniform Kaiming initialisation
(He et al., 2015) that is default for Linear (fully connected) layers in PyTorch. Considering that
using Kaiming initialisation is considered best practice when using ReLU activation functions, and
that our implementation of MAF actually perform slightly better than the ones in the paper, we stick
to using the Kaiming initialisation in all our experiments.

We also investigated their Real NVP implementation to find out what could explain the differences
in our results. In addition to using the same LeCun normal initialisation as above, Papamakarios
et al. (2017) have also implemented the coupling layers in a different way than us. We illustrate
the differences below by considering one coupling layer f~! : x — u for a D-dimensional input
x. We copy the odd-indexed elements and transform the even-indexed elements. We achieve this
partitioning by using an alternating binary mask m = (0, 1,0, 1, ...,0,1)7 on the input.

Papamakarios et al. (2017) define x; = x ® m and x2 = x ® (1 — m), so that x; and x» are still
D-dimensional, but with every second element zeroed out. They then use scaling and translation
networks s,¢ : RP? — RP with one hidden layer of 1024 hidden units. With s = s(x;) and
t = t(x1), the output of the coupling layer is defined as:

u=x;+ (1 —m)© (x2 — t) ®exp(—s).

On the other hand, in our implementation we define x; and x2 by considering m as a boolean vector.
The following is written in pseudo-code:

x1 = X[m]
Xg = X[~m],

where the tilde denotes logical negation, and the brackets are used for logical indexing of the vector.
This way, we get vectors x1,xy which are only D/2-dimensional. The scaling and translation
networks are then defined as s, t : RP/2 — RP/2. With s and t defined as before, the output of the
coupling layer is then defined as:

u < X
u[~m] < (x2 —t) © exp(—s).

This may seem like a subtle implementational difference compared to (Papamakarios et al., 2017),
but it is in fact significant in terms of memory usage. To see this, consider the number of parameters
in a one hidden layer neural network. Ignoring bias terms, the number of parameters is given by
Nin X Nhidden + Nhidden X Nout- BY reducing the size of the input and output from D to D/2, we
effectively reduce the number of parameters in the network by 50%. Multiplying this by two neural
network in each coupling layer, times the number of layers in the flow, the number of parameters
saved in our particular model is approximately:

0.5 X (2 X K X Npigden X (D4 D)) = 0.5 x 2 x 5 x 1024 x (784 4 784) ~ 8 x 10°.

Note that we still transform the same number of elements with exactly the same dependencies as
Papamakarios et al. (2017), but our implementation is much more memory and time efficient than
the original. Judging from the results, it seems like this implementation also might result in more
efficient training of the parameters, and better performance.
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Chapter 8

Summary and Outlook

Summary

In this thesis, we have motivated the use of normalising flows for improving the model performance
within a range of fields in statistics. We have built up the theory about normalising flows stone by
stone, motivated by their usefulness in variational inference and high-dimensional density estimation
in particular. We proceeded to present the highly influential class of autoregressive normalising flows,
bridging the classical field of autoregressive density modelling and modern normalising flows. We
presented the MADE, and three different, but still closely related, flows with different strengths and
weaknesses, followed by a comparison of the three, and a brief presentation of a more flexible flow,
pointing out a direction for normalising flows research going forwards.

Next, we proposed a new autoregressive flow, the hybrid autoregressive flow, heavily inspired by Real
NVP and MAF, and presented the fundamental theory concerning the proposed transformation. The
presented models for density estimation were put to the test in the following chapter, including the
proposed flow. Its performance was compared to the performance of existing flows in a standardised
experimental setting. The HAF showed competitive performance with the existing autoregressive
flows on the two datasets we have benchmarked them on. In one case, the proposed flow even
outperformed MAF and Real NVP. The hybrid autoregressive flow can be added to the toolkit of the
practitioner that seeks to use a neural density estimator for evaluation of high-dimensional densities.

Future research

Further testing of the hybrid autoregressive flow is required to draw conclusions about its capabilities
relative to the other autoregressive flows. Particularly, more experimentation with number and sizes of
hidden layers in each of the three neural networks making up the HAF layer is needed to understand
the relationships between them. We used the same number of hidden units in all networks in the
hybrid coupling layer, but this might not be the most efficient use of parameters for this model.

A deeper theoretical understanding of what the limitations of the different flows is lacking for most
models, and so also for the hybrid autoregressive flow. Whether flows such as Real NVP, MAF, and
HAF are universal density estimators remain open questions. Getting general insights about how get
the most out of each flow by tuning the hyperparameters and architectures is also challenging, as such
design choices are highly dataset specific.

The “holy grail” of research on normalising flows, is a flow that is able to efficiently evaluate densities,
efficiently generate new samples, and do both tasks with the performance of the best alternative
models out there. Current models typically sacrifice one of the three aforementioned properties to
succeed on the two others. Designing new flows is a thus still a natural avenue of future research.
Autoregressive flows has up until recently been the most successful class of models, but going
forward, it is likely that other classes will be more influential in pushing the field further. The Neural
ODE paper (Chen et al., 2018) won the prestigious best paper award at NeurIPS in December 2018
using continuous-time normalising flows, and could be an omen of what the future will bring.
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As new and better flows are proposed, the applications of flows to other fields in statistics can be
improved concurrently, also outside pure density estimation and variational inference. A range of such
applications was mentioned in Chapter 1. Considering that the interest in the field of normalising flows
is still rising and the relative youth of the field, there is reason to believe that further advancements
towards even more expressive tractable flows will be made in the near future.
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