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Abstract— We analyze the relationship between the system price 
in the Nordic electricity market and inflow to three different 
Norwegian power producers. Price and inflow are the main 
drivers of uncertainty in the hydroelectric scheduling problem 
and in principle their relationship needs to be captured for 
ensuring a high quality in the planning process. Our experiments 
indicate that regarding the value of revenues, the influence of the 
relationship between price and inflow is relatively minor. For the 
three power plants we studied, the difference in expected 
revenues from dependent and independent modeling of price and 
inflow is from 2-4%, on a two-year horizon.  

Keywords-reservoir operations; electricity markets; stochastic 
programming; state space models 

I.  INTRODUCTION  
Scheduling the release of water from reservoirs in order to 

generate power must be done under uncertainty of electricity 
prices and inflow or runoff from upstream precipitation. In 
power systems with a significant share of hydropower, there is 
a relationship between the local inflow and the market price: 
both weather patterns and price patterns are regional, so local 
inflow is correlated with regional inflow, which is a significant 
factor explaining prices. In theory, hydroelectric scheduling 
should be performed respecting such relationships, i.e. 
planning models should include joint stochastic modeling of 
prices and inflow. In practice, this is challenging, and this 
paper contributes to the scheduling literature by investigating 
the effect of capturing such relationships versus ignoring them. 
As it turns out, for the three power plants we investigate, the 
effect is in the order of 2-4%, measuring the expected revenue 
on a two-year horizon, i.e. on a medium to long term 
scheduling scale. On the other hand, capturing the price-inflow 
correlation is important in risk management studies, since the 
variance of revenues is very much affected by the price-inflow 
correlation.  

Hydroelectric scheduling is reviewed in [1] and later in [2], 
which focuses on implementations and with an emphasis on the 
US context. [3] reviews stochastic programming models in 
energy, and [4] the same, focusing on short term bidding and 
scheduling. Of particular interest to us is a situation where 
market power is of minor concern, and where the power plant 
owners perform the operations at their discretion. In short, the 
context of the problems we discuss is most relevant for the 
Scandinavian electricity market. [5] and [6] explain how 

scheduling is performed in practice using decision support 
models that includes stochastic models for price and inflow. 

We develop models for inflow and spot price based on the 
factor models in [6]. In addition we explore an alternative 
based on state space modeling [7]. An analysis of the 
correlation between price and inflow is also conducted, and we 
suggest a set of intuitive approaches to match inflow and price. 
Fan scenarios are generated based on the factor and state space 
models, and these are subsequently reduced to scenario trees. A 
stochastic optimization model is then finally solved as a 
deterministic equivalent using linear programming [8]. 

The remainder of the article is organized as follows. 
Chapter II explains the data, Chapter III presents the price and 
inflow models and their estimation, and Chapter IV explains 
the results. Chapter V concludes.  

II. DATA 

A. Data context: The Nordic Power Market 
 Nord Pool ASA is the Nordic power exchange and consists 

of both a physical and a financial market. Nord Pool’s role in 
the power market is to provide a wholesale marketplace for 
electricity, where the electricity is traded between generators 
and users (such as industry) or distribution. The consumer 
market consists of electricity distributors who sell power to 
consumers. The differences between spot and consumer prices 
are due to different distribution models in the Nordic countries. 
It is the most liquid marketplace for electricity in Europe and 
accounts for 63 % of the total value of the Nordic regions 
power consumption. 

The market for physical contracts is organized by Nord 
Pool Spot AS. This is an auction based market that trades 
electrical power contracts for each hour the following day. The 
physical market forms the basis for all trading in the Nordic 
power market, and sets the reference price in the financial 
market. Players at the physical market need to have an 
agreement with Nord Pool in advance in order to place bids. 
Bids from the individual producers are prepared and submitted 
to Nord Pool before 12.00, consisting of tables with the amount 
of energy wanted bought or sold at different market prices for 
the coming day. Market clearing is calculated from the total 
demand and sales bids for every hour which then constitute 
next day’s spot prices for the respective hours. 
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All the players at the exchange are linked to certain areas in 
the Nordic region depending on their geographical location. 
The different power producers have to report their buy/sales 
bids in the area where they are connected to the grid. In each 
area a unique spot price is developed as a reference price for 
the whole area. The reason why we get different prices in 
different areas is due to transmission restrictions, which 
prevents transfer of enough electric power as is demanded from 
an unconstrained market. These bottlenecks in the system 
generally create higher prices in deficit areas, and lower prices 
in surplus areas. The total system price, which also serves as 
the reference price in the financial market, is calculated without 
considering congestions and is the average of the 24 spot prices 
calculated for the respective day.  

B. Data context: Hydropower scheduling 
 

The objective of power generation scheduling can be 
defined as maximizing the value of operational cash flows 
subject to the physical constraints including reservoir balance, 
and reservoir and flow bounds. The water flows to the 
reservoirs at no cost and the variable cost of hydro production 
is very low, and is ignorable in this context. However, the 
amount of water available is limited and uncertain, and so the 
water has an opportunity cost. Production of 1 MWh more in 
the present period prevents the production of 1 MWh in a later 
period when prices might be higher. The marginal cost of the 
water, also known as the water value, is therefore dependent on 
both reservoir volume and production capacity in own system, 
inflow expectations to the reservoir and future spot market 
prices.  

The Nordic power system has roughly 50% hydropower, 
and its scheduling is usually separated into a long, seasonal and 
short term planning [5]. Long term scheduling has a weekly 
resolution and a horizon of up to 5 years. For all but the very 
largest producers, a price taker assumption is employed, and 
prices are considered exogenous. Seasonal and short term 
scheduling employ separate models which contain more 
technically detailed relationships of the physical system. We 
focus on medium to long-term in this paper.  

In systems with a large share of hydro power, such as the 
Nordic, the inflow variations are one of the main drivers of 
uncertainty. The expected annual hydro generation is 119 TWh 
in a normal year, but actual generation may vary between 95 
TWh and 140 TWh, depending on precipitation to the water 
reservoirs. By microeconomic reasoning, prices and inflow 
should be negatively correlated, suggesting that in a year with 
above average inflow to the reservoirs, the price of electricity 
should be lower than the average price level. 

Intuitively the correlation between system price and inflow 
is stronger on an aggregated national level, than between the 
inflow of a certain power plant and the system price. This 
because it is the total inflow of water to the power plants that 
decide if we will have an electric energy surplus or if we need 
to import energy, use rationing or other energy sources with a 
higher marginal cost, resulting on average in higher prices. 
This picture is of course a bit simple since we have reservoirs 
in the Nordic system that can store water over several years 

from wet periods to dry. Other factors such as temperature and 
climate also affect the total demand for energy and further 
complicate the relationship. Some correlation does however 
exist between temperature and precipitation. Wet winters are 
typically warmer than normal, and vice versa, [10]. Thus 
during cold winters with little precipitation, demand for 
electricity is high and further stimulate higher prices. 

Supply-side reasoning and empirical observations also 
imply that a high degree of precipitation one day does not 
affect electricity spot prices as much if it is followed by several 
days of drought. Low inflows to hydro reservoirs are positively 
correlated with high market prices and low temperatures 
(resulting in higher end-user sales), [11]. For hydro producers 
the correlations between accumulated inflow for the whole 
season or year and market prices are much more important than 
the correlations between weekly inflow and market prices be-
cause of storage capacity. It is the accumulated precipitation 
over a period of time that affects prices, and for example less 
than expected inflow over a long period of time will typically 
result in higher electricity prices, all else held constant. [12] 
suggests using a 26 week aggregation of inflow data when 
modeling the relationship between inflow and price. Direct 
correlations between inflow at local power plants and system 
prices can however be justified noticing that high inflow at 
individual power plants is probably strongly correlated with 
high inflow at an aggregated national level, and so indirectly 
correlated with the system price. 

C. Inflow data Producer 1 
The inflow series of power plant 1 consists of weekly 

observations in the period 1990(1) – 2006(52). It shows a 
predictable seasonal pattern with a mean annual inflow of 99.3 
GWh. The abnormally high observation in week 34 in 2002 is 
due to the correction of an observation error and will be 
addressed later when modeling the inflow. The plant has a 
reservoir size of 177.4 Mm3, a maximum production capacity 
of 28 MW and an average energy equivalent of 0.67kWh/m3. 
The plant has a capacity factor of 49 % and a degree of 
regulation of 1.22, i.e. the reservoir can store more water than a 
year’s worth of average inflow. This makes this plant relatively 
flexible in terms of power generation. Fig. 1 displays the 
historic inflow characteristics for this power plant. 

 

Figure 1.  Inflow data producer 1. The figure shows the time series of inflow 
for power producer 1 on a weekly resolution over the period from 1990 to 

2006.  



D. Inflow data Producer 2 
The inflow series of power plant 2 consists of weekly 

observations in the period 1990(1) – 2006(52). The time series 
show a very seasonally dependent inflow, and has a mean 
annual inflow of 275.3 GWh. The plant has a reservoir size of 
204 Mm3, a maximum production capacity of 68 MW and an 
average energy equivalent of 1.25kWh/m3. The plant has a 
utilization factor of 59 % and a degree of regulation of 1.67, 
which is the highest among the plants considered in this paper. 
Fig. 2 displays the historic inflow data for this power plant. 

 

Figure 2.   Inflow data producer 2. The figure shows the historic inflow for 
power producer 2 on a weekly resolution over the period from 1990 to 2006. 

E. Inflow data Producer 3 
The inflow series of power plant 3 consists of weekly 

observations in the period 2000-2006. The time series has a 
low degree of seasonal dependence but the highest average 
annual inflow of 1 247.3 GWh. The plant has a reservoir size 
of 869.4 Mm3, a maximum production capacity of 210 MW 
and an average energy equivalent of 1.46 kWh/m3. The plant 
has a utilization factor of 47 % and a degree of regulation of 
0.7. Fig. 3 displays the historic inflow data for this power plant. 

 

Figure 3.  Inflow data producer 3. The figure shows the historic inflow for 
power producer 3 on a weekly resolution over the period from 1990 to 2006.  

F. Electricity price data 
The time series of system prices consists of weekly 

observations from the period 1993(week 1) – 2006(week 52), 
obtained from Nord Pool’s FTP server. System prices are used 
instead of local area prices to simplify the analysis. 

 

Figure 4.  Electricity price data, weekly, 1993-2006 

The time series shows signs of a seasonal trend with 
relatively lower prices during the filling season in summer 
compared to the depletion season in winter. The trace also 
indicates an increasing trend. Certain extreme years can be 
noticed in the period around 2002/2003 and in 2006, which 
both were considered as very dry periods with little 
precipitation. 

Prices are controlled by supply and demand and show 
seasonal, weekly and daily variations. In the Nordic market 
prices are usually higher during winter since a lot of the 
precipitation comes as snow, and the demand for electricity for 
heating and lighting is higher. 

Electricity prices also display mean reversion. This means 
that if we get shocks in the electricity price, for instance supply 
or demand shocks, the price tends to revert back to a long run 
equilibrium level. This and the previous characteristics of the 
electricity prices will be considered when the electricity spot 
price is modeled later in this paper. 

G. Correlation between inflow and price 
Theory suggests negative correlation between system price 

and inflow at a national level, but for a local power producer 
we need to examine if there is any correlation between local 
inflow and the system price. The correlation between local 
inflow and price and the 26 week aggregate local inflow and 
price is given in the table below. 

TABLE I.  ESTIMATED PARAMETERS FOR THE SYSTEM PRICE – INFLOW 
CORRELATION. AGGREGATE INFLOW IS 26 WEEK MOVING SUM. THE TIME 

SERIES IS ALSO DIVIDED IN TWO TO EXAMINE STABILITY.  

 
System Price 

  Total 1st half Last half 
Inflow 1 -0,227 -0,400 -0,233 
Aggregate infl. 1 -0,109 -0,182 -0,146 
Inflow 2 -0,208 -0,315 -0,247 
Aggregate infl. 2 -0,126 -0,166 -0,239 
Inflow 3 -0,217 -0,327 -0,490 
Aggregate infl. 3 -0,448 -0,654 -0,474 

 



In the first two power plants the weekly inflow is stronger 
correlated with the system price than the aggregated inflow. 
For power plant 3 however the correlation between the system 
price and the 26 weeks aggregate inflow is -0.45, about twice 
as large as for the weekly inflow. This is puzzling, but might be 
associated with low degree of seasonality in the inflow series 
of power plant 3.  

 

III. MODELS FOR PRICE AND INFLOW 
  

This paper uses two classes of models when modeling 
future inflow and price series, namely stochastic factor models 
and state space models (STAMP). The stochastic models used 
in this paper are mainly based on the ones described in [7]. 

All the one and two factor models used in this paper to 
explain the stochastic processes for price and inflow contain a 
deterministic part. This part attempts to explain predictable 
components of the time series such as level and seasonality. 
The level is modeled as a constant and the seasonality is 
captured in a sinusoidal function. The deterministic function 
takes the following form: 

2( ) cos ( )
52

f t t πα γ τ = + + 
 

   (1) 

where t is measured in weeks, and hence the cosine 
function tries to capture annual seasonality. The parameters α, 
γ and τ are estimated as shown below. 

 

A. One factor model for inflow 
The inflow represented by At is modeled as the sum of two 

components. The first being the predictable deterministic 
function presented in eq. (1) and the second a mean-reverting 
stochastic process.  

( )t tA f t X= +      (2)  

The stochastic term, Xt, follows the stochastic process given 
by  

t tdX X dt+ dZκ σ= −    (3) 

where κ > 0, X(0) = x0, and dZ represents an increment to a 
standard Brownian motion. This is a mean-reverting 
process/Ornstein-Uhlenbeck process with a zero long run mean 
and a speed of adjustment of κ. Eq. (2) and (3) can be rewritten 
as 

( ( )) ( ( ) )t td A f t f t A dt dZκ σ− = − +  (4)  

 
showing the mean reverting nature of the process. As At 
deviates from the deterministic part, f(t), it is pulled back at a 
rate that is proportional to the deviation, and the speed of 
reversion is given by the mean reverting factor κ.  

 

The distribution of At conditional on x0 is normal with mean 
and variance equal to (using x0 = A0 - f(0)):  

0 0 0( ) ( / ) ( ) ( (0)) t
t tE A E P X f t P f e κ−= = + −   (5) 

2
2

0 0( ) ( / ) (1 ), 0
2

t
t tVar P Var P X e κσ κ

κ
−= = − >

  (6) 
 

 

TABLE II.  ESTIMATED PARAMETERS FOR THE INFLOW MODELS. 

Power station Α γ τ κ 
 1 (week 1-18) 1009 -546 -16,1 998 

 1 (week 18-40) 1185 
 

3016 
 

-32,5 
 

65,72 
 

 1 (week 40-52) 1603 
 

-1256 
 

20,9 
 

45,38 
 

 2 (week 1-18) 1235 
 

483 
 

-13,6 
 

989 
 

 2 (week 18-40) -1183 16131 -32,5 26,32 

 2 (week 40-52) 2172 -3436 19,9 37,73 

 3 (week 1-18) 45935 -39734 -14,1 73,23 

 3 (week 18-40) 44449 27337 -32,2 65,36 

 3 (week 40-52) 12196 -15039 19,7 61,79 
 

 

B. Two factor model for price 
A two factor model based on [2] is also used to describe the 

price behavior in which the one factor model is expanded with 
an additional stochastic term. The stochastic price behavior of 
the spot price is modeled with one short-term mean reverting 
component and one long-term equilibrium price level 
component in the equation below: 

( )t t tP f t X ε= + +     (7) 

where 

t t x xdX X dt dZκ σ= − +     (8) 

td dt dZε ε εε µ σ= +     (9) 

xdZ dZ dtε ρ=      (10) 

The stochastic term Xt is the short run component which 
follows a mean reverting Ornstein-Uhlenbeck process, and εt is 
the long term equilibrium and follows an arithmetic Brownian 
motion. The two stochastic processes (dZx and dZε) are 
correlated through eq. (10). 

 

TABLE III.  ESTIMATED PARAMETERS FOR THE TWO FACTOR SPOT PRICE 
MODEL 

α* κ με* α γ τ 
-51,5 0,0321 -0,0082 151,47 25,179 -2,1137 

 



C. STAMP model for inflow and price 
In this paper we will also model inflow and price time 

series using state space methodology. The state space 
methodology is described in [8]. The following general model 
has been used in this paper as a starting point for the analysis: 
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Here yt is the dependent variable (price) that we are 
modeling. This model have stochastic level (μ), trend (v), 
explanatory variables(x), intervention variables(w) and 
seasonal parameters (γ), all of which are normally and 
independently distributed with zero mean and the respective 
variances given above. The models are estimated in the 
software OxMetrics using iterative procedures based on 
Kalman filtering. In order to capture the correlation between 
inflow and price, the inflow is used as an explanatory variable 
describing the price. This way the correlation is directly 
modeled when estimating the parameters in the model. Both 
inflow and a 26 week aggregation of inflow is used in the 
model and compared out of sample to see if any contain 
superior explanatory power. 

When creating scenario trees from these models a time 
series for inflow is first simulated based on the inflow model. 
Then a price series is simulated using the inflow series as an 
explanatory variable. This way we introduce stochasticity in 
both series and the correlation is introduced through the coef-
ficient of the explanatory variable. With a negative coefficient 
a simulated “high” inflow series will therefore tend to create a 
“low” price series since the high value of inflow will reduce the 
price series by an amount related to the coefficient above.  

IV. ANALYSIS AND RESULTS 
Unfortunately, using weekly correlations between the error 

terms in our models to correlate different scenarios for price 
and inflow is not suitable, as our analysis indicates the 
correlation is not stable over time. This was done plotting time 
series of rolling window correlations for the error terms, using 
26 and 40 week window sizes.  

A. Matching price and inflow scenarios 
When performing simulations the random numbers drawn 

for each week does not have a constant correlation and so they 
could be drawn independently, much as is done in existing 
methods [5], and the scenarios then arranged afterwards based 
on some sort of matching rule. Descriptions of a few of these 

methods are given below together with certain intuitive 
drawbacks. 

B. Method 1  
A simple and very intuitive form of such a rule is to 

calculate the average of the price and inflow for the different 
series, and match the price series with the highest average price 
with the lowest average inflow series. A problem with this 
method is that since we are simulating more than two years 
ahead with this procedure we could end up drawing two 
scenarios with high inflow and price the first year and then low 
inflow and low price the second year, and matching these two 
together since their average match. The method also simplifies 
the relationship by assuming perfect negative correlation. 

Only this method has been implemented; the methods 2-4 
below are simply ideas. 

C. Method 2  
The problem described in the model above can be solved 

by simulating price and inflow series for one year at the time 
and then putting them together to form a longer time series. 
This way we can use the same procedure above but matching 
the scenarios for every year and not based on the whole series. 
Which series that follows each other every year should be 
random, since there is no reason why a very dry year should 
have a higher tendency of being followed by another dry year. 
One could however argue for some kind of correlation between 
the years since we do have reservoirs that can hold water for 
more than a year and so a very wet year could tend to reduce 
prices in the following if it turns out to be a dry year. It is also 
possible to further separate the year into periods such as 
winter/summer or the three periods used in this paper for 
modeling inflow based on the factor model. 

D. Method 3  
The two methods above are very strict in terms of their 

matching, and a year with high inflow does not necessary need 
to be a year with low prices. If we look at nationally aggregated 
inflow this is more correct, but for a local power plant this does 
not necessary have to be true. Occurrences of high inflow and 
high prices could occur if national aggregate inflow is low that 
year. In order to capture more of this randomness we could 
separate either every year as in method 2 or the whole set as in 
method 1 into equal sized groups of series based on their 
average inflow and price level. Each year could then be 
separated into e.g. 5 equal groups (extreme, high, normal, low, 
dry) based on their average inflow and price, and the different 
price scenarios be matched randomly with scenarios from the 
corresponding inflow group. 

E. Method 4  
Another procedure that could be attempted is to calculate 

average price and inflow for the series either for each year or 
the whole period and then assigning probability distributions to 
each series. Series with a high average price/inflow would be 
given a distribution with a high probability of sampling a high 
number. The price series would then be arranged in a 
descending order based on one sampling from the probability 



function of the individual price series. The opposite would be 
done for the inflow series and the series would then be matched 
based on the new order. As an example, the price series which 
drew the highest number from its probability distribution 
would be matched with the inflow series that drew the smallest 
number etc. A high probability of sampling a high number is 
given for series with high average value. The series are then 
arranged based on one sampling for each series based on their 
respective distribution. This way high inflow series will tend to 
be matched with low inflow series but there is still some 
randomness in how the scenarios are arranged. This would be a 
time consuming procedure when simulating many scenarios 
and also include the problem of assigning correct probabilities. 

These decision rules should be adjusted to each producer 
since they might have different correlations with the national 
aggregated inflow. A producer with strong positive correlation 
between local inflow and the system price would tend to have 
high inflow in dry years when the prices are high and so the 
use of method 1 and 2 for instance would be wrong. They 
should therefore be adjusted to fit the specific case. 

When running the optimization in this paper we have used 
method 1 to match the scenarios for the factor models for sim-
plicity. The Matlab algorithm is however constructed in such a 
way that it is easy to include new matching rules/algorithms. 

F. Simulation and optimization scheme  
The flow chart of the computation process used in this 

paper is given in the figure below. It lists the programs used in 
the boxes together with a short descriptions of the tasks 
performed in the respective programs. 

 

 
 

Figure 5.  Flow chart of computation process. The figure displays a flow 
chart of the underlying computation process used in this paper. Each box 

represent a software program and a description of how the software is used is 
described. 

The different models used to describe the dynamics of the 
inflow and price series are estimated in Excel for the one- and 
two-factor models from [2], and in OxMetrics for the state 
space models. The model parameters and all the input from the 
different producers are gathered in an Excel input file. The 
input file is read by Matlab, and the parameters from the 
different models are used to simulate price and inflow series 
resulting in fan scenarios. The inflow and price series are then 
matched together based on a matching rule described in chapter 
6, except from the STAMP models where price and inflow are 
already linked. Matlab then generates a text file that can be 
read by Scenred [13], which reduces the amount of scenarios 

and creates a scenario tree. The output file is then read by 
Matlab and a file that can be read by Xpress is generated 
containing the scenarios from the scenario tree and all the 
relevant input parameters from the individual producers. A 
deterministic equivalent of the stochastic programming 
problem is then run in Xpress MP. The optimization model 
used is described by [9]. 

G. Results 
When generating the fan scenarios by Monte Carlo 

simulation, 122 weeks are simulated. The initial stages have 
weekly resolution, but we aggregate the stages into monthly 
and then quarterly lengths. For all the analysis conducted, 1000 
fan scenarios are generated and this is repeated 20 times. The 
factor model gives expected revenues (standard deviations) of 
102 (1.24), 231 (2.33) and 101 (2.03), for power plants 1, 2 and 
3 respectively. Numbers are in million NOK. Method 1 above 
is employed, giving in some way stronger correlation than is 
realistic. When the same runs are performed with unmatched 
scenarios, the results are 105 (6.21), 240 (2.50) and 103 (1.92) 
million NOK for the three power plants respectively. The 
difference in the value of revenues are 2.9 %, 3.9 % and 2.0 % 
respectively, so pretty modest.  

 

V. CONCLUSIONS 
Although price and inflow is related both theoretically and 

empirically, joint modeling of these factors as stochastic 
processes is challenging. Somewhat surprisingly, we find that 
such joint modeling has modest value with respect to expected 
revenues in a stochastic programming model for three 
Norwegian hydropower plants. As current methods in practical 
use in the industry relies on separate modeling of price and 
inflow, our results may indicate that new modeling efforts 
should concentrate on other aspects of the hydroelectric 
scheduling problem.  
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