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Abstract

Background: Network component analysis (NCA) became a popular tool to understand complex regulatory
networks. The method uses high-throughput gene expression data and a priori topology to reconstruct transcription
factor activity profiles. Current NCA algorithms are constrained by several conditions posed on the network topology,
to guarantee unique reconstruction (termed compliancy). However, the restrictions these conditions pose are not
necessarily true from biological perspective and they force network size reduction, pruning potentially important
components.

Results: To address this, we developed a novel, Iterative Sub-Network Component Analysis (ISNCA) for reconstructing
networks at any size. By dividing the initial network into smaller, compliant subnetworks, the algorithm first predicts
the reconstruction of each subntework using standard NCA algorithms. It then subtracts from the reconstruction the
contribution of the shared components from the other subnetwork. We tested the ISNCA on real, large datasets using
various NCA algorithms. The size of the networks we tested and the accuracy of the reconstruction increased
significantly. Importantly, FOXA1, ATF2, ATF3 and many other known key regulators in breast cancer could not be
incorporated by any NCA algorithm because of the necessary conditions. However, their temporal activities could be
reconstructed by our algorithm, and therefore their involvement in breast cancer could be analyzed.

Conclusions: Our framework enables reconstruction of large gene expression data networks, without reducing their
size or pruning potentially important components, and at the same time rendering the results more biological
plausible. Our ISNCA method is not only suitable for prediction of key regulators in cancer studies, but it can be
applied to any high-throughput gene expression data.

Keywords: Network analysis, Gene expression analysis, Iterative method, Partial least square, Gene regulation,
Dynamic modeling

Background
Gene expression is a highly regulated process and difficult
to understand without computer added tools. The rela-
tionship between target genes (TG) and their regulators,
the transcription factors (TF), is complex and even simple
gene expression studies usually incorporate hundreds of
TGs, TFs and the relationship between them. Several sta-
tistical methods including principal component analysis
(PCA), singular value decomposition (SVD), independent
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component analysis (ICA), partial least squares regression
(PLSR) and their variants were successfully applied on
expression data to extract biologically significant knowl-
edge [1–4]. However, these methods incorporate statisti-
cal assumptions, either of orthogonality and/or statistical
independence which are not true for biological data [5].
Network component analysis (NCA) attempts to over-
come these limitations [6]. The NCA integrates gene
expression and a priori TF-TG connectivity data (known
relationships obtained from previous experiments) and
computes the activities of the TFs and the connectivity
strength of each TF to their TGs. The decomposition of
the gene expression matrix (termed E) into a topology
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(termed A, relating the observed TF and TG expres-
sion covariance patterns) and a temporal score matrix
(termed P, describing the TF activity development pat-
tern), according to model:

E = AP + ε (1)

This is achieved by solving a bilinear least squares opti-
mization problem. In order to guarantee a unique solution
up to scale, the matrices A and P are subjected to three
conditions, termed as NCA criteria (see ‘Methods’) [6].
Briefly speaking, the first condition implies that there
cannot be two or more TFs with the same regulatory func-
tionality. This makes little sense, because it is well known
that redundancy is very common in living systems, as it
contributes to robustness [7]. Another condition implies
that there cannot be two or more TFs or TF combinations
with the same temporal behavior, but again it is not con-
sistent with our knowledge that TFs often work coopera-
tively [8, 9]. Therefore, these conditions imply restrictions
that do not seem plausible from biological perspective.
Moreover, these conditions pose necessary restrictions on
the size and structure of the network [6], and the problem
with the current solutions is that in order to avoid false
discovery (outcome of non-unique solutions), they usually
reduce the size of the network significantly, losing in the
process potentially important components. Therefore, we
seek to avoid these restrictions if possible.
The original NCA algorithm suffered from unstable

solutions due to ill-conditioned matrices and multiple
local solutions. Tikhonov regularization method (termed
as GNCA-r) overcomes these two issues but is compu-
tationally expensive for solving larger networks [10]. Fast
network component analysis (FastNCA) is a stable and
fast approach, up to several hundred times faster than
GNCA-r but limited to smaller networks [11]. Recently,
the robust network component analysis (ROBNCA) was
developed that offers a stable, efficient and accurate solu-
tion, by explicitly modeling the presence of outliers in
the microarray data [12]. Whereas these approaches were
focused primarily on improving the accuracy of recon-
struction, they were all subjected to the same (limiting)
criteria mentioned above, that force reduction of the net-
work size. The issues of limited network size and removal
of key TFs from the network to satisfy the NCA conditions
were the focus of several research groups [10–16]. For
instance, the division of large networks into smaller, over-
lapping NCA compliant ones helped to reconstruct some
of the shared components. However, this approach treated
the sub-networks independently, as if they were obtained
from different datasets. It ignores the inter-connections
exist between the sub-networks. More specifically, when
computing the least square of one sub-network using
this method, the contributions of the shared TGs and

TFs from all the other sub-networks are ignored, conse-
quentially loosing valuable information. It is a heuristic
approach and works only for specific network configura-
tions, but does not work for the general case [13].
We propose a novel algorithm, termed Iterative Sub-

Network Component Analysis (ISNCA), which solves
compliant sub-networks, and iterates between them in
order to provide a solution to the complete, possible
incompliant, network. The ISNCA predicts a solution
using a standard NCA algorithm on one sub-network to
update the common components in the expression matrix
of the other. Then the ISNCA predicts the solution of the
other sub-network (using the same standard NCA algo-
rithm), in order to update the first one. This is done itera-
tively until the error reconstruction of the entire network
(see ‘Methods’) convergences to a minimum. We tested
first the performance of the ISNCA algorithm against
the common GNCA-r [10] for a small synthetic network
that is compliant (i.e. satisfying the three necessary condi-
tions). Secondly, we compared the performance of ISNCA
iterating on a small, synthetic, incompliant network that
was divided into two compliant sub-networks. We applied
the ISNCA using GNCA-r, FastNCA [11] and ROBNCA
[12], to solve the entire network in an iterativemanner.We
compared also the stability of the iterations and the accu-
racy of the complete network solution. Finally we tested
our proposed algorithm on two, full scale, independent,
real biological expression data, each containing hundreds
of genes with more than 200 network configurations. We
compared the solutions of the ISNCA to standard NCA
algorithms, and showed that our proposedmethod retains
many essential components in breast cancer studies, that
otherwise were removed by standard NCA.

Methods
Network component analysis algorithms
Network component analysis algorithms decompose gene
expression data matrix into a weighted topology TF-TG
matrix and the temporal profile matrix of the TFs. The
model can be represented in the matrix form as follows:

E = AP + ε (2)

where, E ∈ R
n×m represents an expression matrix,

A ∈ R
n×l represents the initial connectivity matrix,

defining the sign and size of how each of the n target
genes involved in this network are linked to each of the
l transcription factors involved, in terms of l regulatory
patterns. P ∈ R

l×m represents the TF activity matrix,
defining how each of the l regulatory transcription factor
pattern develops over time. The indexm is the number of
time points or measurement conditions. The decomposi-
tion of E into A and P is achieved by solving a bilinear
alternating least squares optimization problem subjected
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to three conditions termed as NCA criteria: (i) the con-
nectivity matrix A should be full-column rank; this means
that each of the l transcription factor patterns in this net-
work contribute some unique variation, so that the num-
ber of independent transcription factor patterns equals
the number of TFs included. Otherwise they may be diffi-
cult to observe experimentally. (ii) If a column is removed
from A as well as TGs connected to it, the resulting matrix
still should be full-column rank; (iii) TF activity matrix P
should be full-row rank, which means that the temporal
behavior of each of the l regulatory patterns should have
different kinetics - otherwise they cannot be distinguished
experimentally.

Iterative sub-network component analysis (ISNCA)
We propose a novel algorithm, the iterative sub-network
component analysis (ISNCA), that iterates between NCA
compliant, overlapping sub-networks (Fig. 1). These sub-
networks share common TGs in order to solve larger, and
most importantly, NCA incompliant networks. In order
to apply the ISNCA, we first divide the network into two
compliant sub-networks. The expression and connectivity
matrices for each sub-network can be represented by

E1 =
[
Eu1
Ec

]
,E2 =

[
Eu2
Ec

]
(3)

and

A1 =
[
Au1
Ac1

]
,A2 =

[
Au2
Ac2

]
(4)

with Eui ∈ R
nui×m and Ec ∈ R

nc×m denote the expres-
sionmatrices of sub-networks i = 1, 2, the index c denotes
the common components, ui are the unique components
of sub-network i, and Aui ∈ R

nui×lui Aci ∈ R
nc×lui are

the partition matrices of A. Assuming no TFs are shared
between the networks, the decomposition of P is simply

Pi = Pui ∈ R
lui×m. A graphical representation of the

approach is shown in Fig. 1. In all the following, when
we write Ai, Ei or Pi, we refer to matrices of the entire
sub-network i, including both its exclusive and common
components.
The entire network can be described in the following

manner:

A =
⎡
⎣ Au1 O2
O1 Au2
Ac1 Ac2

⎤
⎦ (5)

The matrices O1 ∈ R
nu2×lu1 and O2 ∈ R

nu1×lu2 denote
zero matrices. Assuming that P does not have common
components, the corresponding partitions of E and P can
be obtained as follows:

E =
⎡
⎣ Eu1
Eu2
Ec

⎤
⎦ , P =

[
Pu1
Pu2

]
(6)

where Pui ∈ R
lui×m are the activities of the unique TFs of

sub-network i.
Example 1. Network decomposition: Consider the net-
work presented in Case Study 2 (Fig. 3a). The connectivity
matrix A can be decomposed to the exclusive components
and the common components in the following manner:

A =
⎡
⎣ Au1 O2
O1 Au2
Ac1 Ac2

⎤
⎦ =

tg2
tg5
tg6
tf4
tg1
tg3
tg7

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

tf1 tf3 tf2 tf4
1 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0
1 0 1 1
0 1 1 0
1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

Fig. 1 Graphical representation of ISNCA approach. ISNCA approach involves predict and update phases. Subscripts ui and ci represent unique and
common components of subnetwork i, respectively. See ‘Methods’ for the formulations of A, E, and T
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and partition matrices for sub-networks 1 and 2 respec-
tively are,

Au1 =
⎡
⎣ 1 1
1 0
0 1

⎤
⎦ , O1 = [

0 0
]
, Ac1 =

⎡
⎣ 1 0
0 1
0 1

⎤
⎦

Au2 = [
1 0

]
, O2 =

⎡
⎣ 0 0
0 0
0 0

⎤
⎦ , Ac2 =

⎡
⎣ 1 1
1 0
0 1

⎤
⎦

To initialize the ISNCA algorithm, we divide the expres-
sion matrix, E to Ei using Eq. 3 and connectivity matrix,
A to Ai using Eq. 4. At the start of each iteration k, we
compute solution to ‖Ei(k) − AiPi‖, separately for sub-
networks 1 and 2 using any standard NCA method, and
obtain Âi(k) and P̂ui(k). We can then proceed to construct
Â(k) and P̂(k) by combining Eqs. 4 and 5, as

Â(k) =
⎡
⎢⎣
Âu1(k) O1
O2 Âu2(k)
Âc1(k) Âc2(k)

⎤
⎥⎦ , P̂(k) =

[
P̂u1(k)
P̂u2(k)

]
(8)

and calculate the error of the entire network,

e(k) = ∥∥E − ÂP̂
∥∥
F (9)

If the error does not converge (see below), we proceed
to update the sub-networks in the following manner.
Let Ti(k) be the common TGs contribution from sub-
networks i, that is,

T1(k) = Âc1(k)P̂u1(k), T2(k) = Âc2(k)P̂u2(k)
(10)

We then update the matrices E1 and E2 for next iteration,
from Eq. 11 by subtracting the common TGs contribution
from other sub-network, that is,

E1(k + 1) =
[
Eu1
Ec − δ · T2(k)

]
,

E2(k + 1) =
[
Eu2
Ec − δ · T1(k)

]
(11)

Here, δ ∈ [ 0, 1] denotes the attenuation factor (see below
for details). Notice that Ec and Eui do not change from
iteration to iteration as they represent the original expres-
sion matrices. We then proceed to the next iteration and
predict the solution to the expression ‖Ei(k) − AiPi‖
using standard NCAmethods. We keep iterating until the
reconstruction error in Eq. 9 for the entire network is
sufficiently small, for instance by

e(k + 1) − e(k) < ε (12)

In our simulations, we set ε to be 1e-05 and maximum
number of iterations to 100.

ISNCA pseudo algorithm

Algorithm 1: ISNCA
input : Two overlapping, NCA compliant,

sub-networks, (E1,A1) and (E2,A2)
INIT E1(0), A1(0) and E2(0), A2(0) ;
SET e(0) ← 0, Ti(0) ← 0, choose δ, ε;
for K:=1 to number of iterations do

Predict:;
CALL standard NCA solver to obtain (Âi(k),
P̂i(k)) ←− NCA(Ei(k − 1),Ai(k − 1));
(Eq. 2)
CALCULATE common TGs contribution, T1(k)
and T2(k) (Eq. 10);
Exit condition:;
DETERMINE Â(k), P̂(k) (Eq. 8);
CALCULATE error, e(k) (Eq. 9);
if ‖e(k) − e(k − 1)‖ < ε then

Exit the algorithm with Â(k), P̂(k) ;
end
Update:;
CALCULATE E1(k) and E2(k) (Eq. 11);

end
;
output: Â(k), P̂(k)
;

Microarray data and preprocessing
The microarray data used in this case study was obtained
by treating the MCF7 breast cancer cells with two growth
factors (Epidermal growth factor, EGF and Heregulin,
HRG) at different time points over a period of 0–72 hours
[17]. We downloaded the data from GEO data base with
array express accession number: GSE13009. We applied
loess normalization within time points and quantile nor-
malization across time points. The expression values were
averaged over two replicatemeasurements.We conducted
t-tests to identify differentially expressed genes (DEGs).
The DEGs with p-value < 0.05 and fold change >1.5 at
more than 2 time points were selected. All the compu-
tations were performed in the MATLAB bioinformatics
toolbox.
We downloaded the experimentally verified TF-TG

interaction data from TFactS database [18]. This database
includes interaction from TRED, TRDD, PAZAR, NFIreg-
ulomeDB databases and their own experimental pre-
dictions. This database provides ≈ 7000 interactions
between 2700 TGs and 330 TFs. To test the algorithm’s
performance on an independent topology data acquired
elsewhere, we downloaded the TF-TG interaction data
from HTRIdb database developed by Bovolenta et al. [19].
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Generation of synthetic data and network configurations
We created 100 different expression matrices for
each case study, by randomly generating A and fixed
P matrices according to Eq. 2. We used Gaussian
distribution to generate random elements of A (both
positive and negative values), while keeping its null space.
We used Matlab function ′randn′ for this purpose. The
different network configurations for EGF and HRG sys-
tems are generated as follows. First, we identified two
NCA compliant sub-networks. Then, a subset of the
components of each sub-network is randomly selected
by randomly removing one or more TF, with their cor-
responding TGs. Then each of the new sub-networks
are checked for NCA criteria. In this way, we generated
100 NCA compliant network configurations for each
system.

Statistical analysis and calculations
All the calculations were performed using Matlab R12
(Mathworks Inc.). The standard NCA algorithms (GNCA-r,
FastNCA and ROBNCA) are downloaded from respec-
tive websites which are publicly available. The full ISNCA
algorithm is available for download at the corresponding
author’s website.

Gene ontology analysis
The significantly enriched gene ontology terms or bio-

logical processes are identified using the GOrilla tool
developed by Eden et al. [20].

Results
We first tested the algorithm on a small toy network con-
taining four TGs, two TFs and six interactions (Fig. 2a).
The gene expression matrix incorporated three time
points, and the TF profiles of the network was recon-
structed using Eq. 2 (see ‘Methods’). The complete net-
work satisfies the NCA conditions, and can therefore be
solved by NCA-based methods. We wanted to examine
the accuracy of our iterative approach layered on a stan-
dard NCA method (GNCA-r) and compare it with the
same standard GNCA-r method that solves the entire net-
work. We generated 100 random initial E matrices and
applied ISNCA and GNCA-r to reconstruct A, and P. The
mean reconstruction error (see ‘Methods’) of the ISNCA
method was significantly lower (p<10−12, Kruskal-Wallis
test; n= 100) compared with the GNCA-r (Fig. 2b). The
ISNCA yielded error of less than 0.04 in 91% of the
simulations (91/100), compared to 50% (50/100) by the
GNCA-r (Fig. 2c). The reconstruction errors of 100 simu-
lations converged after 3–5 iterations (Fig. 2d) and stayed
stable thereafter, with a sharp drop already after the sec-
ond iteration.
We constructed a more complex example in which the

entire network was in-compliant, i.e. the conditions that

a

c d

b

Fig. 2 Synthetic, toy case-study and comparison between ISNCA and standard NCA. a The complete network is composed of four target genes
(TGi, gray) and two transcription factors (TFi , red). The two sub-networks of the ISNCA are encircled (solid line) and share TG1 and TG2. b Comparison
of the error between the ISNCA (white) and the GNCA-r (red). The mean error of 100 simulations (see ‘Methods’) of the ISNCA was significantly lower
(p <10−12, Kruskal-Wallis test) than of the GNCA-r. The error bars are the standard error of means (SEM). c The distribution of the error of the ISNCA
(blue) and the GNCA-r (red). The errors of 91% of the ISNCA simulations were under 0.04, compared to only 50% of the GNCA-r. d The convergence
of the ISNCA mean error (n = 100) was rapid, stabilized after 3–5 iterations. Shaded area represents standard deviation at iterations
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guarantee a unique solution up to a scale matrix were
not satisfied (Fig. 3a, red shaded). The common proce-
dure of NCA basedmethods is then to reduce the network
size, for instance by removing TF4 and its corresponding
genes TG1 and TG7. We divided this complete network
into two sub-networks (Fig. 3a, green shaded), each with
two TFs, with six genes in the first sub-network and 4
genes in the second. Notice that TF4 is also a target gene
for TF2. Recall also that it is not possible to guarantee
a unique solution to the entire network using standard
NCA methods, so comparison of the ISNCA to these is
not feasible. We tested the reconstruction of the com-
plete network by the ISNCA, layered with three different
NCA methods; GNCA-r, Fast NCA and ROBNCA (see
‘Methods’). All the three ISNCA layers converged to
a stable solution with a sharp drop after 3–5 itera-
tions (Fig. 3b). The mean error of the ISNCA (GNCA-r)
and the ISNCA (Fast-NCA) were significantly lower
(p<10−4, one-way ANOVA; n = 100) than the ISNCA
(ROBNCA) (Fig. 3c). ISNCA (FastNCA) was the most
accurate approach for this network, with 68% the simula-
tions resulted in error of less than 0.001. In contrast, more
than 69% of the simulations by the ISNCA (ROBNCA)
produced error larger than 0.1.

To test the ability of the ISNCA algorithms to recon-
struct large, real biological networks, we finally used two
microarray gene expression matrices for the epidermal
growth factor (EGF) and heregulin (HRG) stimuli systems
[17]. We generated (see ‘Methods’) 100 network configu-
rations for each system, consisting of different sets of TFs
and TGs based on the interaction data downloaded from
TFactS database [18]. Each of the networks generated was
relatively large (See Table 1 for network size compari-
son reconstructed by ISNCA and any NCA algorithm,
GNCA-r) and initially (before the network reduction pro-
cedure), did not satisfy the conditions for uniqueness of
the solution. We tested our iterative algorithm with two
layouts, the GNCA-r and ROBNCA. The FastNCA algo-
rithm can reconstruct network size with maximum TFs
equal to number of experimental time points, and there-
fore could not be used to reconstruct these large networks.
Reconstruction with ISNCA was successful in all the 200
trials. The ISNCA algorithm converged relatively fast,
after about 5 iterations in all the 100 simulations tested
for each EGF (Fig. 4a) and HRG (Fig. 4b) systems. We
found that ISNCA (ROBNCA) performed better than the
ISNCA (GNCA-r), with a lower mean error for both EGF
(Fig. 4c) and HRG (Fig. 4d) systems.
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Fig. 3 An incompliant synthetic network and the two iterating sub-networks. a The red outer boundary represents the complete network that does
not satisfy the conditions for uniqueness of the solution. The two sub-networks are shaded in green are each compliant, and solved iteratively by
the ISNCA, build on GNCA-r, FastNCA and ROBNCA. Note that TF4 is also a gene. b All the ISNCA procedures converged to a stable solution after
about 10–15 iterations, with the first and second iterations have the strongest reduction. c Comparison of the mean error of 100 simulations for
each ISNCA indicates low error for ISNCA (FastNCA) for small network sizes and d Error distributions of 100 ISNCA simulations, built on the three NCA
algorithms. For this small network, mean error of the ISNCA with GNCA-r and FastNCA was significantly lower (p<10−4, one-way ANOVA) than the
ISNCA (ROBNCA)
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Table 1 The network properties of 100 generated EGF and HRG
networks. Here values are presented as range
(minimum-maximum) of 100 networks

Network EGF network HRG network

property GNCA-r ISNCA GNCA-r ISNCA

# of TGs 207–320 232–342 268–400 325–443

# of TFs 43–54 64 39–48 64

# of interactions 333–509 449–627 429–653 653–854

Selection of delta and convergence properties
We also tested the convergence properties of the ISNCA
algorithm as a function of the attenuation factor, δ (see
‘Methods’). We began δ with a fixed value in the first itera-
tion (k = 1), and changed this value at the second iteration
and onwards (Fig. 5a upper panel). We found that the
response to the values δ (k = 1) = 0.5 and δ(k >1) = 1 was
a stable and fast convergence compared with the other
functions (Fig. 5a lower panel; see also Figure S1 in the
Additional file 1). Of the functions we tested, only values
of δ larger than 1 resulted in divergence.We found that the
value of δ at the first iteration is also important, with 0.5
being the optimal value (Fig. 5b upper panel, red) yielding

best convergence (Fig. 5b lower panel, red). Other increas-
ing or decreasing values δ of with iteration were found to
yield non-optimal convergence properties (see Additional
file 1: Figure S1).

Discussion
Reconstruction of complex transcriptional networks from
expression data is a common approach that helps to
understand cellular signaling and gene regulation. These
reconstructions by existing NCA algorithms are limited to
relatively modest network sizes because of the necessary
criteria (See ‘Methods’). The most common reduction
procedure to satisfy the criteria is the pruning approach
[10]. In our case, it removed up to 34% (224/653) of
the network connections, and almost 40% (25/64) of
the initial TFs (Table 1). The ISNCA approach recon-
structed relatively the larger networks in terms of number
of TFs, TGs and interactions between them compared
to standard NCA algorithms (Table 1). We repeated the
same analysis, comparing network sizes reconstructed
by ISNCA approach with standard NCA algorithms, but
this time using an independent TF-TG topology, acquired
from HTRIdb (see ‘Methods’) [19]. The ISNCA algorithm
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Fig. 4 ISNCA applied on a real, large biological network. Comparison of the error distributions 100 generated networks of varying sizes (see Table 1
for details) with ISNCA algorithm built on two NCA methods, ROBNCA (blue) and GNCA-r (red) for EGF (a) and HRG (b) microarray data. The errors are
normalized for comparison purposes. The mean error over 100 networks is presented as thick dashed lines for both algorithms, blue for ROBNCA
and red for GNCA-r. c-d) The convergence properties of the ISNCA with ROBNCA (blue) and GNCA-r (red) algorithms for EGF (c) and HRG (d) data.
The mean error over 100 networks was stabilized after 3–4 iterations for ISNCA with GNCA-r and after 10–15 iterations for ISNCA with ROBNCA
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Fig. 5 The attenuation factor, delta(δ) and ISNCA convergence properties. The selection of attenuation factor, δ with iterations is presented for five
different scenarios (a) and four other scenarios (b). The corresponding two lower panels shows the error convergence responses to the ISNCA
algorithm with ROBNCA, for the different δ values. a The δ is fixed at 0.5 at iteration one (k = 1) in all scenarios and δ is varied (0.2, 0.5, 0.8, 1.0 and 1.2)
at subsequent iterations, k >1. The δ (k = 1) = 0.5 and δ (k >1) = 1.0 gives the best error and smooth convergence. b) The δ is fixed at 1.0 at all
iterations (k >1) in all scenarios and δ is varied (0.3, 0.5, 0.7 and 1.0) at first iteration. The delta values δ (k = 1) = 0.5 and δ (k >1) = 1.0 gives the best
error and smooth convergence (red solid line)

demonstrated again superior performance to the current
NCA algorithm (see Table S1 in Additional file 1), indicat-
ing that ISNCA performance is not limited by the quality
of the TF-TG interactions.
There is no direct manner to control which TFs are

pruned, and potentially removing TFs that may be impor-
tant for a specific study. To demonstrate the consequences
of this, we tested and compared the standard NCA algo-
rithm with the ISNCA using 100 network configurations
and microarray data obtained from breast cancer cells
treated with EGF (Fig. 4). Firstly, the transcription factor
FOXA1 (forkhead box protein A1) that is known to be
strongly involved in breast cancer [21–23] was removed
by the NCA algorithm in 84% (84/100) of the configura-
tions (it was retained 100% by the ISNCA), loosing the
ability to study its effect on the network. This occured
despite the importance of FOXA1 in process involved in
cancer development: it forms a strong network with ER-
α (estrogen receptor-alpha) and GATA-3 (GATA binding
protein 3) and controls the gene expression pattern in
luminal subtype A breast cancers [21]. In addition, it is
shown to be a potential prognosis marker and a signif-
icant predictor of good outcome in breast cancer [23].
Secondly, the activating transcription factor 2 (ATF2) is

also strongly involved in breast cancer studies [24–26] and
was removed by the NCA prior to the analysis. The active
ATF2 regulates the genes MMP-2 and MMP-9 in the
transforming growth factor (TGF-β) induced MCF10A
human breast epithelial cells, and induces migration and
invasion of MCF10A cells [26]. Additionally, ATF2 regu-
lates the transcription of maspin and GADD45-α genes
in mammary tumors [25]. Thirdly, ATF3 is known to be
strongly involved as both tumor suppressor and an onco-
gene in breast cancer cells, and was proposed as potential
therapeutic target in breast cancer treatment [27–29].
ATF3 up-regulates the genes TWIST1, fibronectin (FN)-1,
SNAIL and SLUG in MCF10A cancer cells [27]. Together
with FOXA1 and ATF2, ATF3 was completely removed
from the network, reducing the possibility that these
regulators could be analyzed and targeted. Similarly,
many other pivotal TFs in breast cancer were removed
by NCA (Table 2) but retained by ISNCA, which not only
reconstructed large gene regulatory networks, but also
retained their key components.
We repeated the same analysis on an independent

microarray data set in order to demonstrate the biolog-
ical importance of the ISNCA and its implications on
cancer studies. Here we analyzed the data set obtained
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Table 2 The list of transcription factors removed by standard NCA algorithm but retained by ISNCA in the EGF data set and its
involvement in previous breast cancer studies

TF symbol Description Breast cancer related? % removed PMIDs

ATF2 Activating transcription factor 2 Yes 92 19331149, 18677098,

17079470, 17258390

FOXA1 Forkhead box A1 Yes 84 19261198, 24528009,

25155268, 17373880

SMAD5 SMAD family member 5 Yes 91 23334326, 19096363

17786313

RARG Retinoic acid receptor-gamma Yes 91 21482774, 15375546

10928067

REL v-rel avian reticuloendotheliosis viral oncogene Yes 13 21482774, 15375546

ATF3 Activating transcription factor 3 Yes 91 23921126, 24494067,

20930144, 17952119

ETV4 ETS translocation variant 4 Yes 89 17467662, 22075993

FOS FBJ murine osteosarcoma viral Yes 84 15319566, 19925682

oncogene homolog

FOSL1 Fos-related antigen 1 Yes 93 19925682, 21570421

JUNB jun B proto-oncogene Yes 94 24073962, 8417822

MYBL2 Myb-related protein B Yes 83 25337223, 25502082,

22037783

NFIA Nuclear factor 1 A-type Yes 90 24393253, 20525248

NOTCH1 Notch homolog 1, Yes 81 25287362, 25544568,

translocation associated 24970818

PAX3 Paired box 3 Yes 89 24438019, 20525248

SMAD7 SMAD family member 7 Yes 82 22841502, 22033246

FLI1 Fli-1 proto-oncogene, Yes 79 25379017, 17727680,

ETS transcription factor 17172821

% removed indicates that number of times standard NCA failed to retain the particular transcription factor on 100 tested networks. PMID is the PubMed database
identification number

from breast cancer cells treated with HRG (see ‘Methods’
and Table 3). The ISNCA persistently retained several key
TF that we suspected were relevant to the breast cancer
studies, whereas these TF were removed by other stan-
dard NCA algorithms. By closer examination of the TGs
which are regulated by those TFs, we found (Table 4 and
Additional file 1: Table S2) that they are strongly involved
in biological processes relevant to breast cancer stud-
ies. What appears to be a simple pruning of several TFs
by the standard NCA algorithms (consequentially elimi-
nates their corresponding TGs) may impair our analysis of
the data, and weaken our understanding of the processes
involved in cancer.
In addition to the downsizing the network, the original

NCA criteria seem very harsh from biological perspective.
Condition I of full-column rank on connectivity matrix
A, means that there cannot be two or more TFs or TF
combinations with the same regulatory functionality (see
‘Methods’). Condition III of full-row rank on TF activity

matrix, P implies that there cannot be two or more TFs or
TF combinations with the same temporal behavior. Both
restrictions produce conservative solutions that are not
always acceptable in biological processes. Our approach
avoids these restrictions. Contrary to solving overlap-
ping sub-networks independently [13], our ISNCA algo-
rithm links together the sub-networks by predicting and
updating the contribution of the common components
at each iteration, and minimizes the error reconstruction
of the entire network. We tested both approaches using
a large number (>200) of network configurations using
several independent systems (see ‘Methods’). The advan-
tage of predict-update process became apparent from the
analysis of both iterating and non-iterating, overlapping
sub-networks. Firstly, we studied small synthetic network,
where the reconstructed profiles could be compared to the
original profiles (see ‘Methods’). The accuracy (Pearson’s
correlation) of the ISNCA was significantly (p< 10−4,
two-samples t-test) higher than the one computed from
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Table 3 The list of transcription factors removed by standard NCA algorithm but retained by ISNCA in the HRG data set and its
involvement in previous breast cancer studies

TF symbol Description Breast cancer related? % removed PMIDs

ATF2 Activating transcription factor 2 Yes 81 19331149, 18677098,

17079470, 17258390

FOXA1 Forkhead box A1 Yes 85 19261198, 24528009,

25155268, 17373880

SMAD5 SMAD family member 5 Yes 86 23334326, 19096363

17786313

RARG Retinoic acid receptor-gamma Yes 81 21482774, 15375546

10928067

REL v-rel avian reticuloendotheliosis viral onco-
gene homolog

Yes 71 21482774, 15375546

E2F2 E2F transcription factor 2 Yes 92 25028721, 24934442,

24362522

NFkB2 nuclear factor of kappa light polypeptide
gene enhancer in B-cells 2

Yes 89 12835724, 7478612

TCF7 transcription factor 7 Yes 91 26079538, 24401947

SP2 Sp2 transcription factor Yes 93 20382698

PAX6 Paired box 6 Yes 86 21944253, 25323813

PGR Progesterone receptor Yes 91 26277479, 26153859

% removed indicates that number of times standard NCA failed to retain the particular transcription factor on 100 tested networks. PMID is the PubMed database
identification number

independent networks (Additional file 1: Figure S2), for
all the four TFs. Secondly, we analyzed two large biolog-
ical networks (EGF and HRG systems), each subdivided
to two sub-networks. We repeated the procedure with
100 different network structures for each system. For

all large systems we tested, the mean of the reconstruc-
tion error was significantly (p<10−10, two sample t-test,
n= 100) lower (about 25% reduction) for ISNCA algo-
rithm than independent networks approach (Additional
file 1: Figure S3). Thirdly, we compared the correlation

Table 4 Significantly enriched gene ontology terms/biological processes in the genes regulated by transcription factors in Table 2
from EGF data set

GO term Description P-value

GO:0030154 cell differentiation 8.97E-04

GO:0008284 positive regulation of cell proliferation 2.00E-03

GO:0048869 cellular developmental process 4.38E-03

GO:0010557 positive regulation of macromolecule biosynthetic process 6.26E-03

GO:0031325 positive regulation of cellular metabolic process 6.06E-03

GO:0007219 Notch signaling pathway 8.35E-03

GO:0034097 response to cytokine 8.49E-03

GO:0048583 regulation of response to stimulus 8.31E-03

GO:0000904 cell morphogenesis involved in differentiation 1.65E-02

GO:0006935 chemotaxis 1.62E-02

GO:0001525 angiogenesis 1.59E-02

GO:0000902 cell morphogenesis 2.07E-02

GO:0030334 regulation of cell migration 2.92E-02

GO:0038061 NF-kappaB signaling 3.49E-02

*P-values are FDR adjusted



Jayavelu et al. BMC Bioinformatics  (2015) 16:366 Page 11 of 13

(Pearson) of the reconstructed profiles of the TF that
were shared between the two subnetworks, to evaluate
the consistency of the reconstruction. This analysis also
confirmed that the TF profiles calculated by the ISNCA
were more accurate than the ones calculated from inde-
pendent networks (Additional file 1: Figure S4). We stress
that similarly to other NCA methods, the quality of the
TF profile reconstruction depends on the noise and qual-
ity of the expression data. Together, the analysis confirms
that the link between sub-networks is necessary to obtain
more accurate (in terms of low reconstruction error and
consistent TF profiles) and feasible network reconstruc-
tion. The predict and update feature of ISNCA algorithm
is comparable to nonlinear iterative partial least squares
(NIPALS) algorithm used for PCA and PLSR modeling
[30]. In the NIPALS, the score matrix (equivelant to our A
matrix) is predicted and updated until it reaches a desired
convergence criteria.
We did not focus here on the optimal division of the

complete network into NCA compliant ones. We initially
assumed a certain set of TGs are shared between the
sub-networks. In this work, we divided the main net-
work heuristically, with the only requirement that both
sub networks are compliant, so that they can be solved by
a standard NCA method. The number of common com-
ponents, and their interconnections, will ultimately affect
the solution. In practical terms, it is possible to apply the
algorithms that choose the common components and pre-
dict the optimal configuration. One heuristic approach
[13, 31] generated overlapping sub-networks which sat-
isfy NCA compliancy criteria. This approach starts with a
randomly chosen sub-network composed of several TFs.
If this sub-network is not compliant, it removes a set of
TFs that did not satisfy the NCA criteria, and substitute
with the new set of TFs. This process is repeated until it
finds an NCA compliant sub network. Another approach
proposed [32] finds the best network structure, A, which
satisfies the NCA conditions. Here, several NCA com-
pliant network structures are generated in an intelligent
manner, based on mixed integer, non-linear programming
optimization formulation. It then checks the reconstruc-
tion error of all generated networks and chooses the
network with the minimum error. The Branch and Bound
algorithms that are implemented to solve NP-hard dis-
crete optimization problems can also be used to identify
the best network configurations [33]. It can do so by either
minimizing or maximizing the number of common com-
ponents (TGs, TFs, interactions), or focus on a search
to minimize the error of the entire network. The former
case does not require running ISNCA at every iteration,
only to test the network configurations for NCA com-
pliancy, and is a faster and easier problem to solve than
the latter. Several modeling approaches are developed for
network divisions, finding modularizations, with specific

constraints based on Branch and Bound formulations. For
instance, a branch and bound based approach to divide a
given cellular network into several, smaller sub-networks
or modules [34] or the partitioning the acyclic networks
into disjoint subnetworks [35]. It is possible to combine
these approaches with NCA criteria as constraints for
finding the optimum NCA compliant sub-networks and
ISNCA for the best feasible reconstruction. Additionally,
we proposed here network configurations sharing only
TGs, but it can be easily extended to include also TFs as
common components. We provide solutions to this prob-
lem formulation in the Additional file 1: Supplementary
information and Additional file 1: Figure S5. However,
since the ISNCA converged in all the network configu-
rations we tested, it was not necessary to include TFs as
common sub-networks components.
The ISNCA can be further expanded to reconstruct

extensively large network in a recursive manner. With
the recursive approach, we divide the network into com-
pliant or non- compliant sub-networks. These can be
further divided until each sub-network is compliant (see
Additional file 1: Figure S6). The algorithm works recur-
sively at each iteration between the parents sub net-
works, the recursive ISNCA iterates between the children
sub-networks until convergence to a local solution. This
solution is sent to the next iteration in the parents sub
networks. We can subdivide the entire network to 2n
sub-networks with n is the number of generations, all
the generations but the last may be incompliant. In this
manner, we are able to find a local solution to any large
network. Theoretically, n can be arbitrarily large, but the
computation complexity is also increased exponentially.
The iterative ISNCA is subjected to our future work.
All the networks we tested (>400) demonstrated rapid

convergence. We found that the convergence was also
dependent on the parameter δ the attenuation factor that
weights the update of the common expression matrix in
the next iteration (see Eq. 10 in ‘Methods’). We tested dif-
ferent variations of δ and found (heuristically) that the
convergence of the ISNCA was optimal when the algo-
rithm applies the weight of δ = 0.5 at the first update,
followed by consequent updates of δ = 1 (Fig. 5). We
stress that δ = 0 transforms the problem to the sim-
ple network division with no updates (independent net-
works), discussed above. Similarly to the known NIPALS
algoritms, convergence cannot be proven in general [36],
and is dependent on the topology and the network divi-
sion. However, similarly to convergence of NIPALS [30],
ISNCA was found to converged in parctice (it converged
in the houndreds of simulations and network configura-
tions we tested).

Conclusions
Taken together, we developed an iterative approach, which
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employs existing NCA algorithms to solve iteratively net-
works without reducing their size. The ISNCA is able to
i) incorporate these known properties of redundancy and
cooperative behavior of TFs, making the solution more
biological plausible, and ii) prevent undesired elimination
of potentially essential components, and iii) increase the
size of the solution, incorporating more information into
the network. We propose to apply our algorithm to study
data obtained from any biological system.

Availability of supporting data
Data supporting the results were downloaded from GEO
database, array express accession number: GSE13009 [17].
The TF-TG interaction data was downloaded fromTFactS
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