
RESEARCH ARTICLE

A neuro-inspired general framework for the evolution of stochastic
dynamical systems: Cellular automata, random Boolean networks
and echo state networks towards criticality

Sidney Pontes-Filho1,2 • Pedro Lind1 • Anis Yazidi1 • Jianhua Zhang1 • Hugo Hammer1 •

Gustavo B. M. Mello1 • Ioanna Sandvig3 • Gunnar Tufte2 • Stefano Nichele1,4

Received: 30 December 2019 / Revised: 8 May 2020 / Accepted: 14 May 2020
� The Author(s) 2020

Abstract
Although deep learning has recently increased in popularity, it suffers from various problems including high computational

complexity, energy greedy computation, and lack of scalability, to mention a few. In this paper, we investigate an

alternative brain-inspired method for data analysis that circumvents the deep learning drawbacks by taking the actual

dynamical behavior of biological neural networks into account. For this purpose, we develop a general framework for

dynamical systems that can evolve and model a variety of substrates that possess computational capacity. Therefore,

dynamical systems can be exploited in the reservoir computing paradigm, i.e., an untrained recurrent nonlinear network

with a trained linear readout layer. Moreover, our general framework, called EvoDynamic, is based on an optimized deep

neural network library. Hence, generalization and performance can be balanced. The EvoDynamic framework contains

three kinds of dynamical systems already implemented, namely cellular automata, random Boolean networks, and echo

state networks. The evolution of such systems towards a dynamical behavior, called criticality, is investigated because

systems with such behavior may be better suited to do useful computation. The implemented dynamical systems are

stochastic and their evolution with genetic algorithm mutates their update rules or network initialization. The obtained

results are promising and demonstrate that criticality is achieved. In addition to the presented results, our framework can

also be utilized to evolve the dynamical systems connectivity, update and learning rules to improve the quality of the

reservoir used for solving computational tasks and physical substrate modeling.

Keywords Dynamical systems � Implementation � Reservoir computing � Evolution � Criticality

Introduction

Every day, humans produce exabytes of data and this trend

is growing due to emerging technologies, such as 5G and

the Internet of Things (McAfee et al. 2012). Given that the

main computing technology is based on von Neumann

architecture, the analysis of enormous amounts of data is

challenging even for the popular deep learning methods

(Oussous et al. 2018). Deep learning is a powerful data

analysis tool, but it has some problems, including high

energy consumption, and lack of scalability and flexibility.

Therefore, a new type of architecture may be required to

alleviate such problems, in particular energy efficiency,

scalability, adaptability, and robustness. The brain, or

rather, an architecture inspired by the brain, can be this new

architecture. This computing organ is energy efficient,

& Sidney Pontes-Filho

sidneyp@oslomet.no

1 Department of Computer Science, Oslo Metropolitan

University, Oslo, Norway

2 Department of Computer Science, Norwegian University of

Science and Technology, Trondheim, Norway

3 Department of Neuromedicine and Movement Science,

Norwegian University of Science and Technology,

Trondheim, Norway

4 Department of Holistic Systems, Simula Metropolitan, Oslo,

Norway

123

Cognitive Neurodynamics
https://doi.org/10.1007/s11571-020-09600-x(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-0489-5652
http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-020-09600-x&domain=pdf
https://doi.org/10.1007/s11571-020-09600-x

adaptable, robust, and can perform parallel processing

through local interactions (Markram et al. 2011).

Artificial systems with similar dynamical properties to

the brain exist, such as cellular automata (Wolfram 2002),

random Boolean networks (Gershenson 2004), and artifi-

cial neural networks (Jaeger and Haas 2004; Maass and

Markram 2004). However, their dynamics are difficult to

program or control in order to perform useful computation.

In such systems, Langton (1990) suggests that computa-

tional properties are connected to the ‘‘edge of chaos’’

behavior, a range of dynamical behaviors between order

and disorder. In other words, they are systems critically

near a phase transition. If the attractors of the system are in

the critical state, this characteristic is called self-organized

criticality (Bak et al. 1987). Systems with self-organized

criticality have a common feature, i.e., power-law corre-

lations in time or space that extend over several scales.

Moreover, biological neural networks have been shown to

self-organize into criticality, which is evaluated by the

power-law distribution of neuronal avalanches (Heiney

et al. 2019; Tetzlaff et al. 2010; Yada et al. 2017). Another

important aspect of the computation performed in a

dynamical system is the trajectory of system states tra-

versed during the computation (Nichele and Tufte 2010).

Such a trajectory may be guided by system parameters

(Nichele and Tufte 2012).

Table 1 presents some computing systems that are

capable of giving rise to the emergence of complex

dynamics. The approaches in such a table (and the work

presented herein) are extensions to previous works (Pontes-

Filho et al. 2019a, b). Dynamical systems with complex

behavior can be availed by reservoir computing, which is a

paradigm that resorts to dynamical systems to simplify

complex nonlinear data. Such simplification means that

reservoir computing utilizes the nonlinear dynamical sys-

tem to perform a nonlinear transformation from nonlinear

data to higher dimensional linear data. Such linearized data

can be applied in linear machine learning methods which

are faster for training and computing because they have

less trainable variables and operations. Hence, reservoir

computing is more energy efficient than deep learning

methods and it can even yield competitive results, espe-

cially for temporal data (Schrauwen et al. 2007; Tanaka

et al. 2019). Basically, reservoir computing exploits a

dynamical system that possesses the echo state property

and fading memory, where the internals of the reservoir are

untrained and the training only happens at the linear

readout stage (Konkoli et al. 2018).

Reservoir computers are most useful when their sub-

strates’ dynamics are at the ‘‘edge of chaos’’ (Langton

1990). A simple computing system used as a reservoir is a

cellular automaton (CA) (Nichele and Gundersen 2017;

Nichele and Molund 2017). A CA consists of a grid of cells

with a finite number of states that change according to

simple rules depending on the neighborhood and own state

in discrete time-steps. Other systems can also exhibit

similar dynamics. The coupled map lattice (Kaneko 1992)

is very similar to CA, the only exception is that the coupled

map lattice has continuous states which are updated by a

recurrence equation involving the neighborhood. A random

Boolean network (RBN) (Gershenson 2004) is a general-

ization of CA where random connectivity exists. An echo

state network (ESN) (Jaeger and Haas 2004) is an artificial

neural network (ANN) with random topology. A spiking

cellular automaton (Bailey 2010) is a CA whose cells are

spiking neurons that communicate through discrete-events

(spikes) over continuous time. A spiking neuron is a model

of the biological neuron found in the brain. A lattice of

ordinary differential equations (Chow et al. 1996; Larter

et al. 1999) is a cellular automaton where state and time are

continuous and updated by ordinary differential equations

(ODEs). A liquid state machine (Maass and Markram

2004) is an echo state network with spiking neurons. ODEs

in complex topology are similar to the lattice differential

equations, but the connectivity is random. Moreover,

computation in dynamical systems may be carried out in

physical substrates (Tanaka et al. 2019), such as in-vitro

networks of biological neurons (Aaser et al. 2017) or in

nanoscale materials (Broersma et al. 2017). Finding the

correct abstraction for the computation in a dynamical

system, e.g. CA, is still an open research problem (Nichele

et al. 2017).

Table 1 Examples of dynamical

systems
Dynamical system State Time Connectivity

Cellular automaton Discrete Discrete Regular

Coupled map lattice Continuous Discrete Regular

Random Boolean network Discrete Discrete Random

Echo state network Continuous Discrete Random

Spiking cellular automaton Discrete Continuous Regular

Lattice differential equations Continuous Continuous Regular

Liquid state machine Discrete Continuous Random

ODEs in complex topology Continuous Continuous Random

Cognitive Neurodynamics

123

One of our goals is to simulate all of these computing

systems in a single general framework. Since generalization

affects performance, we counterbalance it by using an opti-

mized parallel library, such as the TensorFlow deep neural

network framework (Abadi et al. 2016). To be able to exploit

this library, a dynamical system is represented by a weighted

adjacency matrix, such as a graph, and calculated as an

artificial neural network, then taking advantage of the

library’s optimization. Moreover, the weighted adjacency

matrix of a dynamical system with complex dynamics is

normally sparse. Thus, the choice of TensorFlow is advan-

tageous because of its optimized methods and data types for

sparse matrices or tensors. Another goal is to tune dynamical

systems to reach the critical point at the ‘‘edge of chaos’’,

criticality, or even to search for systems with self-organized

criticality. Systems in self-organized criticalitymay be better

suited for performing useful computation in reservoir com-

puting. To accomplish our goals, the presented general

framework for dynamical systems, called EvoDynamic1,

aims at evolving (i.e., using evolutionary algorithms) the

connectivity, update and learning rules of sparsely connected

networks to improve their usage for reservoir computing

guided by the echo state property, fading memory, state

trajectory, and other quality measurements. Such improve-

ment of reservoirs is similarly applied in (Subramoney et al.

2019), where the internal connectivity of a reservoir is

trained to increase its performance to several tasks. To verify

that, we evolved three different stochastic dynamical sys-

tems, namely a cellular automaton, random Boolean net-

work, and echo state network, towards criticality using a

genetic algorithm. In the previous works (Pontes-Filho et al.

2019a, b), only cellular automaton is investigated and the

fitness function for the genetic algorithm in (Pontes-Filho

et al. (2019a) is less effective than the one proposed in this

work. The evolution of these three stochastic dynamical

systems was guided by fitting a power-law model into the

distributions of avalanche size and duration. Moreover, for

futurework, evolutionwillmodel the dynamics and behavior

of physical reservoirs, such as in-vitro biological neural

networks interfaced with microelectrode arrays, and nano-

magnetic ensembles. These two substrates have real appli-

cability as reservoirs. For example, the former substrate is

applied to control a robot, in effect making it a cyborg, a

closed-loop biological-artificial neuro-system (Aaser et al.

2017), and the latter possesses computation capability as

shown by a square lattice of nanomagnets (Jensen et al.

2018). These substrates are the main interest of the

SOCRATES project (https://www.ntnu.edu/socrates) which

aims to explore a dynamic, robust, and energy efficient

hardware for data analysis.

This paper is organized as follows. Section 2 describes

our method of computing dynamical systems in a gener-

alized manner and the approach of evolving three

stochastic dynamical systems towards criticality. Section 3

presents the results obtained from the methods. Section 4

discusses the experimental results. Section 5 states the

initial advances and future plan for the EvoDynamic

framework and Sect. 6 concludes this paper.

Methods

There are two main methods described in this section. One

method is to simulate dynamical systems in a general

manner, which is very similar to simulating an artificial

neural network, and no training is needed. The other

method is to evolve three stochastic dynamical systems

towards criticality. The three systems are based on cellular

automata, random Boolean networks, and echo state net-

works, respectively.

General framework for dynamical systems

Generalization is necessary to be able to simulate several

dynamical systems with a single implementation. There-

fore, our idea is to procedurally modify the computation of

an artificial neural network to fit the dynamics of the

desired dynamical system. In order to do that, modifica-

tions are introduced in the weighted adjacency matrix A

and the mapping function f. A and f are analogous,

respectively, to the weight matrix and activation function

of artificial neural networks. The weighted adjacency

matrix A and the mapping function f are used to compute

the next state in time t þ 1 from the current state in time t

of the components of the dynamical system that are called

cells c. The equation for that is

ctþ1 ¼ f ðA � ctÞ: ð1Þ

This is similar to the equation of the forward pass of an

artificial neural network but without the bias. The next

states of the cells ctþ1 are calculated from the result of the

mapping function f which receives as argument the dot

product between the weighted adjacency matrix A and the

current states of the cells ct. The vector c is always a

column vector of size lenðcÞ � 1, and A is a matrix of size

lenðcÞ � lenðcÞ. Hence the result of A � c is also a column

vector of size lenðcÞ � 1 as c.

Dynamical systems that possess a critical regime are

often sparsely connected networks. Since the EvoDynamic

framework is implemented on TensorFlow, the data type of

the weighted adjacency matrix A is preferably a

SparseTensor. A dot product with such a data type can

result in up to 9 times faster execution than the dense

1 EvoDynamic open-source repository on https://github.com/Socra

tesNFR/EvoDynamic.

Cognitive Neurodynamics

123

https://www.ntnu.edu/socrates
https://github.com/SocratesNFR/EvoDynamic
https://github.com/SocratesNFR/EvoDynamic

counterpart. However, this depends on the configuration of

the tensors (or, in our case, the adjacency matrices) (https://

www.tensorflow.org/api_docs/python/tf/sparse/sparse_

dense_matmul).

The details of how this general framework is used for

the three stochastic dynamical systems that are evolved

towards criticality are described in the following sections.

Cellular automata in the general framework

The implementation of a cellular automaton in our general

framework requires the procedural generation of the

weighted adjacency matrix of its grid. In this way, any

lattice type or multidimensional CAs can be implemented

using our framework. Algorithm 1 generates the weighted

adjacency matrix for one-dimensional CA, such as the

elementary cellular automaton (Wolfram 2002), where

widthCA is the width or number of cells of a unidimen-

sional CA and the vector neighborhood describes the

region around the center cell. The connection weights

depend on the type of update rule as previously explained.

For example, in the case of an elementary CA,

neighborhood ¼ ½4 2 1� (acquired from (2)). indexNeigh-

borCenter is the index of the center cell in the

neighborhood whose starting index is zero.

isWrappedGrid is a Boolean value that works as a flag for

adding a wrapped grid or not. A wrapped grid for one-

dimensional CA means that the initial and final cells are

neighbors. With all these parameters, Algorithm 1 creates

an adjacency matrix by looping over the indices of the cells

(from zero to numberOfCells� 1) with an inner loop for

the indices of the neighbors. If the selected currentNeigh-

bor is a non-zero value and its indices do not affect the

boundary condition, then the value of currentNeighbor is

assigned to the adjacency matrix A in the indices that

correspond to the connection between the current cell in the

outer loop and the actual index of currentNeighbor.

Finally, this procedure returns the adjacency matrix A.

Minor adjustments need to be made to the algorithm to

procedurally generate an adjacency matrix for 2D CA

instead of 1D CA. Algorithm 2 shows the procedure for

two-dimensional CA, such as Conway’s Game of Life. In

this case, the height of the CA is an argument passed as

heightCA. Neighborhood is a 2D matrix and

indexNeighborCenter is a vector of two components

meaning the indices of the center of Neighborhood. This

procedure is similar to the one in Algorithm 1, but it

contains one more loop for the additional dimension.

Cognitive Neurodynamics

123

https://www.tensorflow.org/api_docs/python/tf/sparse/sparse_dense_matmul
https://www.tensorflow.org/api_docs/python/tf/sparse/sparse_dense_matmul
https://www.tensorflow.org/api_docs/python/tf/sparse/sparse_dense_matmul

The update rule of the CA alters the weights of the

connections in the adjacency matrix. For example, Con-

way’s Game of Life (Rendell 2002) is a CA whose cells

have two states meaning ‘‘dead’’ (zero) or ‘‘alive’’ (one),

and the update rule is based on the number of ‘‘alive’’ cells

in the neighborhood. Therefore, for counting the number of

alive ‘‘neighbors’’, the weights in the adjacency matrix are

one for connection and zero for no connection, as in an

ordinary adjacency matrix. Such a matrix facilitates the

description of the update rule for counting the number of

‘‘alive’’ neighbors because the result of the dot product

between the adjacency matrix and the cell state vector is

the vector that contains the number of ‘‘alive’’ neighbors

for each cell. This is shown in Fig. 1 for a 2D CA of 16

cells (4� 4), wrapped grids and modification in the origi-

nal neighborhood (Fig. 1a), cells’ indices and von Neu-

mann neighborhood (Fig. 1b), and its weighted adjacency

matrix (acquired from Algorithm 2) which is used to

compute the number of ‘‘alive’’ neighbors for this CA

(Fig. 1c).

Another example where the CA’s update rule affects the

weighted adjacency matrix is when the pattern of the

neighborhood influences the update rule, such as in an

elementary cellular automaton (Wolfram 2002). To do that,

each cell has its neighbors encoded as a n-ary string where

n means the number of states that a cell can have. Hence,

the weights of the connections with the neighbors are n-

base identifiers and are calculated by

neighbori ¼ ni; 8i 2 f0::lenðneighborsÞ � 1g ð2Þ

where neighbors is a vector of the cell’s neighbors. In the

adjacency matrix, each neighbor receives a weight

according to (2). The result of the dot product with such a

weighted adjacency matrix is a vector that consists of

unique integers per neighborhood pattern. Thus, the map-

ping function is a lookup table from integer (i.e., pattern

code) to next state. This is depicted in Fig. 2 for a 1D

elementary cellular automaton of 16 cells and wrapped

grids (Fig. 2a), cells’ indices and neighborhood (Fig. 2b),

and its weighted adjacency matrix (acquired from Algo-

rithm 1) being used to calculate the values for the mapping

function (Fig. 2c).

The mapping function for CA is different from the

activation function used for ANN. For CA, it contains the

update rules that verify the vector returned by the dot

product between the weighted adjacency matrix and the

vector of states. Normally, the update rules of the CA are

implemented as a lookup table from neighborhood to next

state. In our implementation, the lookup table maps the

resulting vector of the dot product to the next state of the

central cell.

Random Boolean networks in the general framework

A random Boolean network (RBN) is an extension of

cellular automata (Gershenson 2004) where the regular

grid is replaced by random connections between the nodes

or cells. An RBN has a similar update function to a CA

whose cells consider the states of each of its neighbors,

such as the neighborhood pattern of an elementary CA.

Basically, a weighted adjacency matrix of a random Boo-

lean network is acquired by shuffling the rows of the matrix

for an elementary CA. Figure 3 illustrates the weighted

adjacency matrix and the graph of a random Boolean net-

work whose cells are randomly connected to three other

cells. The difference between Figs. 2c and 3a shows how

the method for elementary CA is adjusted for a random

Boolean network.

Echo state networks in the general framework

Our general framework for dynamical systems is based on

the computation of artificial neural networks. Since an echo

state network (ESN) (Jaeger and Haas 2004) is a type of

Cognitive Neurodynamics

123

artificial neural network, the weighted adjacency matrix is

the usual weight matrix and the mapping function is one of

the several activation functions that can be used for the

neurons in an artificial neural network, such as sigmoid,

hyperbolic tangent and rectified linear unit (LeCun et al.

2015). Note that in an ESN, the connection weights are

randomly initialized. This is depicted in Fig. 4 where an

echo state network of 10 cells or neurons are randomly

connected with a certain sparsity. The color of the cells

shows their states between 0 and 1 in grayscale. The edges

are colored as red and blue to represent the negative and

positive weights, respectively. The thickness of the edges is

proportional to the weight value of the connections.

Evolution of stochastic dynamical systems
towards criticality

Using the previously explained general framework, we

simulate three stochastic dynamical systems, namely

cellular automata, random Boolean networks, and echo

state networks. The evolution through genetic algorithm

aims to find systems with criticality (Bak et al. 1987), in

order to improve computational capacity (Langton 1990).

The stochastic dynamical systems

The first stochastic dynamical system towards criticality is

a modified version of stochastic elementary cellular auto-

mata (SECA) introduced by Baetens et al. (2016). Our

stochastic elementary cellular automaton is a modification

of a 1D three neighbors elementary CA. Such modification

is in the mapping function of the CA and the next state in

time t þ 1 of the central cell ci is defined by a probability

p to be 1 and a probability 1� p to be 0 for each of the

eight different neighborhood patterns this CA has. For-

mally, probability p is represented by

Fig. 1 Example of using matrix multiplication for computing a 2D

cellular automaton with 16 cells (4� 4) and wrapped grid. a Example

of the grid of cells with states. State 0 means dead or non-occupied

cell and state 1 stands for alive or occupied cell. b Indices of the cells

and von Neumann counting neighborhood of 2D CA where thick

border means the current cell and thin border means the neighbors.

c Illustration of matrix multiplication between adjacency matrix of the

2D CA and the state vector of the flattened 2D CA, resulting in a

vector that contains the number of alive neighbors for each cell.

Please note that an alive cell does not count itself as an alive neighbor

Cognitive Neurodynamics

123

p ¼ Pðci;tþ1 ¼ 1jNðci;tÞÞ; ð3Þ

where the neighborhood pattern Nðci;tÞ is denoted as

Nðci;tÞ ¼ ðci�1;t; ci;t; ciþ1;tÞ: ð4Þ

The second stochastic dynamical system that we evolve is

based on random Boolean networks (RBNs). Basically, this

is a modification of our stochastic cellular automata, but

with the connectivity between the cells being random.

Our third and last stochastic dynamical system is based

on echo state networks (ESNs). As its activation function,

we use the sigmoid function denoted as

sigmoidðxÞ ¼ 1

1þ e�x
: ð5Þ

Since our echo state network is stochastic, the probability

pESN of next state being 1 is calculated by the sigmoid

function in (5). This is given formally by

pESN ¼ Pðci;tþ1 ¼ 1Þ ¼ sigmoidðA � ctÞ: ð6Þ

Evolution through genetic algorithm

The evolution towards criticality is performed by a genetic

algorithm. As described in the previous section, three dif-

ferent stochastic dynamical systems are evolved: CA, RBN

and ESN. The genotype (or genetic code) for CA and RBN

is the same. It contains one probability (value between 0.0

and 1.0) for each of the eight possible neighborhood con-

figurations (three binary neighbors). The genome of the

ESN consists of six values denoting mean and standard

deviation of the weights of the positive connections

(meanþ and stdþ), mean and standard deviation of the

negative connections (mean� and std�), probability of

positive connections (probþ), and sparsity. The range of

meanþ and mean� is between 0.2 and 4.0, the values of

stdþ and std� are determined by meanþ and mean�, and
their genes geneStdþ and geneStd� (values between 0.0

and 1.0). The equations for stdþ and std� are

Fig. 2 Example of using matrix multiplication for computing a 1D

elementary cellular automaton with 16 cells and wrapped grid.

a Example of the grid of cells with states. State 0 means dead or non-

occupied cell and state 1 stands for alive or occupied cell. b Indices of

the cells and 3-neighbors pattern neighborhood of 1D CA where thick

border means the current cell and thin border means the neighbors.

c Illustration of matrix multiplication between adjacency matrix of the

1D CA and the state vector of the 1D CA, resulting in a vector that

contains the pattern code of the neighborhood for each cell. Important

to consider that an alive cell counts itself as an alive neighbor and that

is why the diagonal of the adjacency matrix is fulfilled with weight 2

Cognitive Neurodynamics

123

stdþ ¼ 0:2�meanþ � geneStdþ; ð7Þ

std� ¼ 0:2�mean� � geneStd�: ð8Þ

The standard deviation values have a minimum of 0.0 and a

maximum of 20% of their corresponding mean. Such a

maximum value for the standard deviation reduces the

chances of sampling negative weights from the positive

weight normal distribution, and vice-versa. However, in

case this occurs, the absolute function is applied.

The fitness function which guides the stochastic

dynamical systems towards criticality mainly verifies

whether the probability distributions of avalanche size and

duration follow a power-law distribution. The avalanche

size and duration are acquired by the cluster size of iden-

tical states, which means the number of repetitions of a

state that happened consecutively without the interruption

of another state. The avalanche size stands for the clusters

in the states in the same time-step and the avalanche

duration consists of the clusters in the same cell through the

Fig. 3 Example of a weighted adjacency matrix and graph for a random Boolean network with 16 cells and neighborhood of 3 cells. Self-

connections are not shown in the graph

Fig. 4 Example of a weighted adjacency matrix and graph for an echo

state network with 10 cells or neurons. Red edges mean negative

connections and blue edges mean positive connections. The thickness

of the edges indicates the weight values. Self-connections are not

shown in the graph

Cognitive Neurodynamics

123

time-steps of the simulation. The power-law distribution

verification of the probability distributions of avalanche

size and duration can be done in several ways. In our task,

evolution is based on the verification of linearity in a log-

log plot and the model comparison between power-law and

exponential by the log-likelihood ratio (Clauset et al.

2009). The model comparison is an addition to the previous

version of the fitness function for criticality in (Pontes-

Filho et al. 2019a), which facilitates the convergence

towards such a goal. After the evolution is completed, we

test the best genome or individual with goodness-of-fit tests

based on the Kolmogorov-Smirnov (KS) statistic (Clauset

et al. 2009). To do that, the p-value of goodness-of-fit test

is calculated using 1000 randomly generated data with

10,000 samples applying the power-law model estimated

by maximum likelihood estimation method with minimum

x of the distribution fixed to 1. The p-value measures the

percentage of the KS statistic of the generated data when it

is greater (worse) than the KS statistic of the empirical

distribution. Therefore, a p-value of 1.0 or 100% is the best

possible value and, to be accepted as power-law, the p-

value must be greater than 0.1 (Clauset et al. 2009). The

fitness function does not have goodness-of-fit test because

it is computationally intensive. In our code, the log-like-

lihood ratio, generation of data from power-law model, and

maximum likelihood estimation method are imported from

the powerlaw Python library (Alstott et al. 2014).

The fitness function, used during evolution to calculate

the genome’s fitness score, estimates the power-law model

of the four distributions (avalanche size and duration for

the state 0 and 1) acquired from the simulation of the

stochastic binary dynamical system produced by the gen-

ome. The simulation runs 1,000 time-steps of a system with

1000 cells. The power-law model estimation is performed

by linear fitting of the first 10 points of the log-log plot

using least squares regression, which was verified to be

unbiased and gives a fast and acceptable estimation of the

slope of the power-law distribution (Goldstein et al. 2004).

Their power-law models and empirical probability distri-

butions are subsequently compared with the KS statistic

and coefficient of determination (Wright 1921). The

advantage of using the KS statistic with a model estimated

by a linear 10-points fitting is that it reports a large error

when the empirical distribution does not follow a power-

law distribution. Another objective in the fitness function is

the number of non-zero bins of size one in the raw his-

togram (empirical probability distribution). The number of

non-zero bins is then normalized by dividing it with the

maximum number of bins, which is 1000 for our case

because 1000 cells are simulated through 1000 time-steps.

Another objective is the percentage of unique states during

the simulation (value between 0.0 and 1.0). In summary,

the fitness function has scores calculated from the four

probability distributions, which are the normalized number

of non-zero bins bin; coefficient of determination R2 of

complete linear fitting; and KS statistic D. All these values

are vectors of four elements. The fitness score s for those

objectives is then calculated by the following equations:

bins ¼ tanhð5 � ð0:9 �maxðbinÞ þ 0:1 �meanðbinÞÞÞ;
ð9Þ

R2
s ¼ meanðR2Þ; ð10Þ

Ds ¼ expð�ð0:9 �minðDÞ þ 0:1 �meanðDÞÞÞ: ð11Þ

The fitness score which is based on the simulation result is

the percentage of unique states, which is denoted by

uniques ¼
#uniqueStates

#timesteps
: ð12Þ

The Eqs. (9)–(12) are all objective values for calculating

the temporary fitness score stemp. Those values are real

numbers between zero and one. Some important scores are

squared, such as R2
s and Ds. The following equation

denotes how the temporary fitness score stemp is calculated:

stemp ¼ bins þ ðR2
s Þ

2 þ ðDsÞ2 þ uniques: ð13Þ

The final fitness score includes the log-likelihood ratio

which compares the power-law model with the exponential

model for estimating the probability distribution. This

process is computationally intensive. Therefore, such a

score is only computed when the temporary fitness score

stemp reaches a certain value. If the stemp is greater than this

threshold value of 3.5, then the log-likelihood ratio is

calculated for the four distributions and stored in the vector

l. The log-likelihood ratio which is not trustworthy (p-value

of ratio greater or equal to 0.1) are ignored (set as zero).

The score for the log-likelihood ratio ls is then calculated

by

ls ¼ sigmoidð10�2 � ð0:9 �maxðlÞ þ 0:1 �meanðlÞÞÞ:
ð14Þ

After describing all the objectives and their scores of our

fitness function, the final equation is

s ¼
stemp þ ls; stemp [3:5

stemp; otherwise.

�
ð15Þ

The configuration of the genetic algorithm consists of 40

individuals evolving through 100 generations. We run the

genetic algorithm five times for each of the three dynam-

ical systems. The goal of the genetic algorithm is to

maximize the fitness score. The selection of two parents is

done by deterministic tournament selection of two indi-

viduals (Goldberg and Deb 1991), which means that all

individuals are assigned for the tournaments. Afterwards,

Cognitive Neurodynamics

123

the crossover between the genomes of the selected parents

may occur with probability 0.8, and then each gene can be

exchanged with probability 0.5. After that, a mutation can

modify a gene with probability 0.1. This mutation adds a

random value from a normal distribution with mean and

standard deviation equal to 0 and 0.2, respectively. The

mating process of the two parents produces an offspring of

two new individuals who replace the parents in the next

generation.

Experimental results

The results of the methods described for a general frame-

work for dynamical systems are described and explained in

this section. The results of the genetic algorithm for criti-

cality in three stochastic dynamical systems are also

described and explained.

Results of general framework

Figure 1 shows the result of Algorithm 2. It describes a

wrapped 2D CA (similar to Game of Life but with a lower

number of neighbors) and shows the resulting adjacency

matrix. Figure 1a illustrates the desired two-dimensional

CA with 16 cells (i.e., widthCA ¼ 4 and heightCA ¼ 4).

Figure 1b presents the von Neumann neighborhood with-

out considering the center cell (Toffoli and Margolus 1987)

which is used for counting the number of ‘‘alive’’ neigh-

bors (the connection weights are only zero and one, and

defined by Neighborhood argument of Algorithm 2). It

also shows the index distribution of the CA whose order is

preserved after flattening it to a column vector. Figure 1c

contains the generated adjacency matrix of Algorithm 2 for

the described 2D CA. Figure 1b shows an example of a

central cell with its neighbors, the index of this central cell

is 5 and the row index 5 in the adjacency matrix of Fig. 1c

presents the same neighbor indices, i.e., 1, 4, 6 and 9. Since

this is a symmetric matrix, the columns have the same

connectivity of the rows. This implies that the neighbor-

hood of a cell considers the cell itself as a neighbor.

Therefore, the connections are bidirectional and the adja-

cency matrix represents an undirected graph. The wrapping

effect is also observable. For example, the neighbors of the

cell index 0 are 1, 3, 4 and 12. So the neighbors 3 and 12

are the ones that the wrapped grid allowed to exist for cell

index 0.

Figure 2 contains the result of Algorithm 1 together with

(2). It illustrates a wrapped elementary CA and its gener-

ated weighted adjacency matrix. Figure 2a shows the

appearance of the desired elementary CA with 16 cells

(widthCA ¼ 16). Figure 2b describes its 3-neighborhood

pattern and the indices of the cells. Figure 2c shows the

result of Algorithm 1 with the neighborhood calculated by

(2) for pattern matching in the activation function. In

Fig. 2c, we can verify that the left neighbor has weight

equal to 4 (or 22 for the most significant bit), central cell

weight is 2 (or 21) and the right neighbor weight is 1 (or 20

for the least significant bit) as defined by (2). Since the CA

is wrapped, we can notice in row index 0 of the adjacency

matrix in Fig. 2c that the left neighbor of cell 0 is cell 15,

and in row index 15 that the right neighbor of cell 15 is cell

0.

Figure 3 sets out the result of (2). The neighborhood is

defined as n-ary string for the purpose of identifying the

states of each neighbor. The neighbors of a cell are selected

randomly and are represented in the matrix row of the

cell’s index. Therefore, the neighbor identifiers, which are

in this case 1, 2 and 4, are assigned to their corresponding

neighbor.

Results of evolving dynamical systems
towards criticality

After five independent runs of the CA evolution, the best

genome solutions turn out to be unstable, i.e., the test score

of the best genome differs significantly when compared to

the score obtained during evolution. For this reason, the

2nd best solution is selected, as its test score shows

Table 2 Selected 2nd best CA in fitness score

Neighborhood Nðci;tÞ Probability p

(0,0,0) 0.394221

(0,0,1) 0.094721

(0,1,0) 0.239492

(0,1,1) 0.408455

(1,0,0) 0.000000

(1,0,1) 0.730203

(1,1,0) 0.915034

(1,1,1) 1.000000

Table 3 Fitness score of the selected 2nd best CA. Testing simula-

tions were performed 5 times and ‘‘std.’’ stands for standard deviation.

Numbers are rounded to three decimal places

Objective Evolution score Test score mean Test score std.

R2
s

0.870 0.866 0.006

Ds 0.961 0.961 0.003

bins 0.966 0.980 0.007

uniques 1.000 1.000 0.000

ls 0.728 0.733 0.016

s 4.376 4.387 0.015

Cognitive Neurodynamics

123

Fig. 5 Test sample of the 2nd best evolved stochastic elementary CA

of 1,000 cells (horizontal axis) randomly initialized with wrapped

boundaries and run through 1,000 time-steps (vertical axis), and its

avalanche size and duration of the two states 0 (black) and 1 (white).

Fitness score of this simulation is 4.383

Cognitive Neurodynamics

123

stable results. The genome of the stable solution is pre-

sented in Table 2. Its fitness score and all objective scores

during evolution and testing are in Table 3. It can be

observed that the CA results are stable because of the low

standard deviation of the scores in the five testing execu-

tions. This is further supported by the mean test score being

larger than the score during evolution. Fig. 5 contains the

image produced by the entire simulation, by the first 200

cells and 200 time-steps, and by the four probability dis-

tributions with their corresponding power-law model esti-

mated by maximum log-likelihood and p-value of the

goodness-of-fit test. The empirical probability distributions

(depicted in Figs. 5c–f) which fit to a power-law model are

the probability distributions of avalanche size and duration

of state 1 (Figs. 5e and 5f). This can be concluded quan-

titatively by the p-values of their goodness-of-fit test being

equal to 1.0, which to be considered a power-law distri-

bution p-value must be greater than 0.1 (Clauset et al.

2009). Moreover, the large number of samples confirms

that these p-values are reliable; and qualitatively by the

similarity of their power-law estimated models (black

dashed line) and the empirical distributions (blue solid

line). Therefore, we can conclude that the presented CA

shows criticality for state 1.

Repeating the same procedure used for CA, the RBN’s

1st best individual presented a high score as the 2nd best

CA score, but the 1st best RBN is unstable. The following

best individuals are also showing instability. Hence, we

keep the selection of the 1st best individual. Table 4 con-

tains the genome of the selected RBN. Table 5 has the

scores acquired during evolution and the mean and stan-

dard deviation of the five test runs. Figure 6 illustrates the

simulation of the RBN and their avalanche distributions. It

can be noted that none of the distributions qualitatively

resembles a power-law, but Fig. 6c shows the distribution

of avalanche size of state 0 which has a p-value of good-

ness-of-fit test equal to 1.0 which means that it is classified

as power-law according to this evaluation method. Nev-

ertheless, if we consider that such RBN does not achieve

criticality, we can hypothesize that the random connections

may be a bottleneck to achieving this behavioral regime

while, with a regular grid, CA more easily achieved a

critical behavior through its evolution.

The ESN results are presented in Table 6, Table 7, and

Fig. 7. The 1st best ESN was found to be unstable as the

1st best CA. Therefore, the selected genome is the 2nd best

which presents stable results. The CA and ESN’s selected

best individuals possess two distributions which are con-

sidered power-laws by the p-value of goodness-of-fit test.

However, the ESN’s avalanche distributions with p-value

equal to 1.0 are the avalanche duration of state 0 and 1.

This means that avalanches that present criticality do not

occur within the states through the simulation. The

criticality occurs only by combining the cluster sizes of

each of the cells in the system during the simulation.

We consider that the evolved stochastic dynamical

system achieved criticality when at least one of the prob-

ability distributions of the avalanche size and duration is a

power-law distribution. That is, quantitatively evaluated by

the p-value of the goodness-of-fit test. Table 8 contains the

mean and standard deviation of the p-value of the four

avalanche distributions. Through this result, we can affirm

that two out of the four presented distributions for the CA

and ESN show a power-law distribution, i.e., at criticality.

The presented results also show that the tested RBN pos-

sesses only one avalanche distribution which can be con-

sidered as a power-law; the avalanche size distribution of

state 0. Moreover, the p-value of this distribution of RBN is

not as stable as the two critical avalanche distributions of

CA and ESN with mean equaling 1.0 and standard devia-

tion equaling 0.0.

Discussion

The results of the evolution of the three stochastic

dynamical systems show the potential of such systems to

produce criticality. Evaluating these systems, we can

Table 4 Selected 1st best RBN in fitness score

Neighborhood Nðci;tÞ Probability p

(0,0,0) 1.000000

(0,0,1) 0.844143

(0,1,0) 0.950141

(0,1,1) 0.314001

(1,0,0) 0.527704

(1,0,1) 0.314433

(1,1,0) 0.109056

(1,1,1) 0.015699

Table 5 Fitness score of the selected 1st best RBN. Testing simula-

tions were performed 5 times and ‘‘std.’’ stands for standard deviation.

Numbers are rounded to three decimal places

Objective Evolution score Test score mean Test score std.

R2
s

0.886 0.905 0.002

Ds 0.953 0.867 0.050

bins 0.867 0.864 0.007

uniques 1.000 1.000 0.000

ls 0.706 0.145 0.291

s 4.266 3.583 0.353

Cognitive Neurodynamics

123

Fig. 6 Test sample of the 1st best evolved stochastic RBN of 1000 cells (horizontal axis) randomly initialized and run through 1000 time-steps

(vertical axis), and its avalanche size and duration of the two states 0 (black) and 1 (white). Fitness score of this simulation is 3.315

Cognitive Neurodynamics

123

deduce that the stochastic cellular automaton is the system

that can become critical most easily. This is followed by

the stochastic echo state network, which in our results

presented an unexpected behavior where the only ava-

lanche distributions that can be considered critical are the

two avalanche duration distributions. This result is unex-

pected if compared to the presented CA, which presents

only one state (state 1) as critical in both avalanche size

and duration. The stochastic random Boolean network is

very similar to the stochastic CA, with the difference that

the connectivity is randomized instead of regular. Such

modification may make it more difficult to evolve the RBN

into a critical system behavior. The RBN only shows a

single critical avalanche distribution and is not stable like

the two critical avalanche distributions of CA and ESN.

Ongoing and future applications
with EvoDynamic

The generalization of representations for different dynam-

ical systems presented in this work is beneficial for the

further development of the EvoDynamic framework. Cel-

lular automata, random Boolean networks, and echo state

networks are already implemented in our Python library.

The implementation of the other described dynamical

systems in the EvoDynamic framework is ongoing. In

addition, the EvoDynamic framework will incorporate the

possibility to evolve the connectivity, the update rules and

the learning rules of the dynamical systems, in order to

allow the dynamical systems to be used efficiently for

reservoir computing, as well as for physical substrate

modeling. The introduced general representation facilitates

the evolution of such systems and models through methods

that measure the quality of a reservoir system or the sim-

ilarity to a given input dataset. The following subsection

will further document an additional method under devel-

opment, which can be used to assess the quality of a

dynamical system model or substrate for reservoir

computing.

State trajectory

A method that can guide dynamical systems’ evolutionary

search is the state trajectory. This method can be used to

cluster similar states for model abstraction and to measure

the quality of the reservoir. For this purpose, a graph can be

generated and analyzed by searching for attractors and

cycles in the obtained state space. For visualization of the

state trajectory, we apply principal component analysis

(PCA) to reduce the dimensionality of the states consid-

ering the entire dynamical system simulation (each time-

step produces a sample for PCA). An example of the

produced visualization is depicted in Fig. 8, where every

produced state is shown as a state transition diagram. The

chosen dynamical system shown in the Figure is a CA

using Conway’s Game of Life’s rules with 5 x 5 cells and

wrapped boundaries. The CA is initialized with a glider

configuration as the initial state (Fig. 8a) and, subse-

quently, the CA cycles over 20 unique states, as illustrated

in the state transition diagram in Fig. 8l.

Conclusion

In this work, a general framework for simulating dynamical

systems is described, which utilizes the computation of

artificial neural networks as a general method for executing

different dynamical systems. The presented framework,

called EvoDynamic, is built on the Tensorflow deep

learning library, which allows better performance and

parallelization while keeping a common general represen-

tation based on operations on sparse tensors. The applica-

tion of this framework is used in the work herein to evolve

three different dynamical systems, i.e., cellular automata,

random Boolean networks, and echo state networks,

towards criticality. The presented results are promising for

CA and ESN evolution, while further analysis and exper-

iments are required to confirm critical behavior in the

evolved RBNs. As future work, our goal is to evolve

dynamical systems towards self-organized criticality, i.e., a

dynamical system that self-organizes into a critical state

Table 6 Selected 2nd best ESN

in fitness score
Genome Value

meanþ 4.000000

stdþ 0.800000

mean� 0.100000

std� 0.007792

probþ 0.064934

sparsity 0.963955

Table 7 Fitness score of the selected 2nd best ESN. Testing simu-

lations were performed 5 times and ‘‘std.’’ stands for standard devi-

ation. Numbers are rounded to three decimal places

Objective Evolution score Test score mean Test score std.

R2
s

0.891 0.891 0.006

Ds 0.903 0.885 0.038

bins 0.968 0.965 0.004

uniques 1.000 1.000 0.000

ls 0.613 0.479 0.239

s 4.190 4.024 0.282

Cognitive Neurodynamics

123

Fig. 7 Test sample of the 2nd best evolved stochastic ESN of 1000 cells (horizontal axis) randomly initialized and run through 1,000 time-steps

(vertical axis), and its avalanche size and duration of the two states 0 (black) and 1 (white). Fitness score of this simulation is 4.158

Cognitive Neurodynamics

123

without the need to tune control parameters. Ongoing and

future implementations of EvoDynamic are presented and

discussed, such as the visualization and usage of state

trajectories, as well as the possibility of physical substrate

modeling. EvoDynamic is an open-source framework cur-

rently under development that primarily targets applica-

tions in reservoir computing and artificial intelligence. We

envision that the generalization and parallelization of the

described dynamical systems will enable our Python

library to be widely used by the research community.

Acknowledgements Open Access funding provided by OsloMet -

Oslo Metropolitan University. We thank Kristine Heiney for

thoughtful discussions about self-organized criticality. This work was

supported by Norwegian Research Council SOCRATES project

(Grant Number 270961).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

Table 8 Goodness-of-fit test of the three evolved stochastic dynam-

ical systems. Avalanche size (AS) and avalanche duration (AD) are

followed by the state from which they were calculated. Testing

simulations were performed 5 times and p-values are denoted as

‘‘mean ± standard deviation’’. The p-values in bold are the ones that

are considered a power-law distribution. So, p-value[0:1

System p-value of AS p-value of AD p-value of AS p-value of AD

of state 0 of state 0 of state 1 of state 1

CA 0.0 ± 0.0 0.0 ± 0.0 1.0 – 0.0 1.0 – 0.0

RBN 0.969 – 0.021 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ESN 0.0 ± 0.0 1.0 – 0.0 0.0 ± 0.0 1.0 – 0.0

(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4

(e) Step 11 (f) Step 12 (g) Step 13 (h) Step 14

(i) Step 18 (j) Step 19 (k) Step 20 (l) Step 21

Fig. 8 States of Conway’s Game of Life in a 5 x 5 wrapped lattice

alongside their PCA-transformed state transition diagrams of the two

first principal components. a Initial state is a glider. a–d Four first

steps in this CA. e–h Four intermediate steps in this CA while

reaching the wrapped border. i–l Four last steps in this CA before

repeating the initial state and closing a cycle

Cognitive Neurodynamics

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

References

Aaser P, Knudsen M, Ramstad O.H, van de Wijdeven R, Nichele S,

Sandvig I, Tufte G, Stefan Bauer U, Halaas Ø, Hendseth S,

Sandvig A, Valderhaug V (2017) Towards making a cyborg: A

closed-loop reservoir-neuro system. The 2018 Conference on

Artificial Life: A Hybrid of the European Conference on

Artificial Life (ECAL) and the International Conference on the

Synthesis and Simulation of Living Systems (ALIFE) (29),

430–437. https://doi.org/10.1162/isal_a_072.https://www.mit

pressjournals.org/doi/abs/10.1162/isal_a_072

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M,

Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga

R, Moore S, Murray D.G, Steiner B, Tucker P, Vasudevan V,

Warden P, Wicke M, Yu Y, Zheng X (2016) Tensorflow: A

system for large-scale machine learning. In: 12th USENIX

Symposium on Operating Systems Design and Implementation

(OSDI 16), pp. 265–283. USENIX Association, Savannah, GA.

https://www.usenix.org/conference/osdi16/technical-sessions/pre

sentation/abadi

Alstott J, Bullmore E, Plenz D (2014) Powerlaw: a python package

for analysis of heavy-tailed distributions. PLoS ONE 9(1):1–11.

https://doi.org/10.1371/journal.pone.0085777

Baetens JM, Van der Meeren W, De Baets B (2016) On the dynamics

of stochastic elementary cellular automata. J Cellular Automata

12:63–80

Bailey J.A (2010) Towards the neurocomputer: an investigation of

vhdl neuron models. Ph.D. thesis, University of Southampton

Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an

explanation of the 1/f noise. Phys. Rev. Lett. 59:381–384. https://

doi.org/10.1103/PhysRevLett.59.381

Broersma H, Miller JF, Nichele S (2017) Computational matter:

evolving computational functions in nanoscale materials.

Springer, Cham, pp 397–428

Chow SN, Mallet-Paret J, Van Vleck ES (1996) Dynamics of lattice

differential equations. Int J Bifurcation Chaos 6(09):1605–1621

Clauset A, Shalizi CR, Newman ME (2009) Power-law distributions

in empirical data. SIAM Rev 51(4):661–703

Gershenson C (2004) Introduction to random boolean networks. arXiv

preprint nlin/0408006

Goldberg D.E, Deb K (1991) A comparative analysis of selection

schemes used in genetic algorithms. In: Foundations of genetic

algorithms, Elsevier, vol 1, pp 69–93

Goldstein ML, Morris SA, Yen GG (2004) Problems with fitting to

the power-law distribution. European Phys J B-Condens Matter

Complex Syst 41(2):255–258

Heiney K, Ramstad O.H, Sandvig I, Sandvig A, Nichele S (2019)

Assessment and manipulation of the computational capacity of

in vitro neuronal networks through criticality in neuronal

avalanches. arXiv preprint arXiv:1907.13118

Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting chaotic

systems and saving energy in wireless communication. Science

304(5667):78–80.https://doi.org/10.1126/science.1091277

Jensen J.H, Folven E, Tufte G (2018) Computation in artificial spin

ice. The 2018 Conference on Artificial Life: A Hybrid of the

European Conference on Artificial Life (ECAL) and the

International Conference on the Synthesis and Simulation of

Living Systems (ALIFE) (30), 15–22. https://doi.org/10.1162/

isal_a_00011.https://www.mitpressjournals.org/doi/abs/10.1162/

isal_a_00011

Kaneko K (1992) Overview of coupled map lattices. Chaos An

Interdisciplinary J Nonlinear Sci 2(3):279–282

Konkoli Z, Nichele S, Dale M, Stepney S (2018) Reservoir computing

with computational matter. Springer, Cham, pp 263–293

Langton CG (1990) Computation at the edge of chaos: phase

transitions and emergent computation. Phys D Nonlinear

Phenomena 42(1):12–37https://doi.org/10.1016/0167-

2789(90)90064-V

Larter R, Speelman B, Worth RM (1999) A coupled ordinary

differential equation lattice model for the simulation of epileptic

seizures. Chaos An Interdisciplinary J Nonlinear Sci

9(3):795–804. https://doi.org/10.1063/1.166453

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature

521(7553):436–444

Maass W, Markram H (2004) On the computational power of circuits

of spiking neurons. J Comput Syst Sci 69(4):593–616. https://

doi.org/10.1016/j.jcss.2004.04.001

Markram H, Meier K, Lippert T, Grillner S, Frackowiak R, Dehaene

S, Knoll A, Sompolinsky H, Verstreken K, DeFelipe J, Grant S,

Changeux JP, Saria A (2011) Introducing the human brain

project. Procedia Comput Sci 7:39–42

McAfee A, Brynjolfsson E, Davenport TH, Patil D, Barton D (2012)

Big data: the management revolution. Harvard Bus Rev

90(10):60–68

Nichele S, Gundersen MS (2017) Reservoir computing using

nonuniform binary cellular automata. Complex Syst

26(3):225–245https://doi.org/10.25088/complexsystems.26.3.

225

Nichele S, Molund A (2017) Deep learning with cellular automaton-

based reservoir computing. Complex Syst 26(4):319–339https://

doi.org/10.25088/complexsystems.26.4.319

Nichele S, Tufte G (2010) Trajectories and attractors as specification

for the evolution of behaviour in cellular automata. In: IEEE

Congress on evolutionary computation, pp. 1–8. https://doi.org/

10.1109/CEC.2010.5586115

Nichele S, Tufte G (2012) Genome parameters as information to

forecast emergent developmental behaviors. In: Durand-Lose J,

Jonoska N (eds) Unconventional computation and natural

computation. Springer, Berlin, pp 186–197

Nichele S, Farstad SS, Tufte G (2017) Universality of evolved

cellular automata in-materio. Int J Unconvent Comput 13(1):1-

34

Oussous A, Benjelloun FZ, Lahcen AA, Belfkih S (2018) Big data

technologies: a survey. J King Saud Univ Comput Information

Sci 30(4):431–448. https://doi.org/10.1016/j.jksuci.2017.06.001

Pontes-Filho S, Lind P, Yazidi A, Zhang J, Hammer H, Mello GB,

Sandvig I, Tufte G, Nichele S (2019a) Evodynamic: a framework

for the evolution of generally represented dynamical systems and

its application to self-organized criticality. Tech. rep, EasyChair

Pontes-Filho S, Yazidi A, Zhang J, Hammer H, Mello G.B, Sandvig I,

Tufte G, Nichele S (2019b) A general representation of

dynamical systems for reservoir computing. In: Workshop on

Novel Substrates and Models for the Emergence of Develop-

mental, Learning and Cognitive Capabilities

Rendell P (2002) Turing universality of the game of life. Springer,

London, pp 513–539https://doi.org/10.1007/978-1-4471-0129-

1_18

Schrauwen B, Verstraeten D, Van Campenhout J (2007) An overview

of reservoir computing: theory, applications and implementa-

tions. In: Proceedings of the 15th European Symposium on

Artificial Neural Networks. pp. 471-482

SOCRATES Self-Organizing Computational substRATES. https://

www.ntnu.edu/socrates

Subramoney A, Scherr F, Maass W (2019) Reservoirs learn to learn.

arXiv preprint arXiv:1909.07486

Tanaka G, Yamane T, Hroux JB, Nakane R, Kanazawa N, Takeda S,

Numata H, Nakano D, Hirose A (2019) Recent advances in

physical reservoir computing: a review. Neural Netw

115:100–123https://doi.org/10.1016/j.neunet.2019.03.005

Cognitive Neurodynamics

123

https://www.mitpressjournals.org/doi/abs/10.1162/isal_a_072
https://www.mitpressjournals.org/doi/abs/10.1162/isal_a_072
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1371/journal.pone.0085777
https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1103/PhysRevLett.59.381
http://arxiv.org/abs/1907.13118
https://doi.org/10.1126/science.1091277
https://doi.org/10.1162/isal_a_00011.
https://www.mitpressjournals.org/doi/abs/10.1162/isal_a_00011
https://www.mitpressjournals.org/doi/abs/10.1162/isal_a_00011
https://doi.org/10.1016/0167-2789(90)90064-V
https://doi.org/10.1016/0167-2789(90)90064-V
https://doi.org/10.1063/1.166453
https://doi.org/10.1016/j.jcss.2004.04.001
https://doi.org/10.1016/j.jcss.2004.04.001
https://doi.org/10.25088/complexsystems.26.3.225
https://doi.org/10.25088/complexsystems.26.3.225
https://doi.org/10.25088/complexsystems.26.4.319
https://doi.org/10.25088/complexsystems.26.4.319
https://doi.org/10.1109/CEC.2010.5586115
https://doi.org/10.1109/CEC.2010.5586115
https://doi.org/10.1016/j.jksuci.2017.06.001
https://doi.org/10.1007/978-1-4471-0129-1_18
https://doi.org/10.1007/978-1-4471-0129-1_18
https://www.ntnu.edu/socrates
https://www.ntnu.edu/socrates
http://arxiv.org/abs/1909.07486
https://doi.org/10.1016/j.neunet.2019.03.005

TensorFlow: tf.sparse.sparse_dense_matmul | tensorflow core r1.14 |

tensorflow. https://www.tensorflow.org/api_docs/python/tf/

sparse/sparse_dense_matmul

Tetzlaff C, Okujeni S, Egert U, Wörgötter F, Butz M (2010) Self-

organized criticality in developing neuronal networks. PLoS

Comput Biol 6(12):e1001013

Toffoli T, Margolus N (1987) Cellular automata machines: a new

environment for modeling. MIT press, Cambridge

Wolfram S (2002) A new kind of science, vol 5. Wolfram media,

Champaign

Wright S (1921) Correlation and causation. J Agric Res 20:557–580

Yada Y, Mita T, Sanada A, Yano R, Kanzaki R, Bakkum DJ,

Hierlemann A, Takahashi H (2017) Development of neural

population activity toward self-organized criticality. Neuro-

science 343:55–65

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Cognitive Neurodynamics

123

https://www.tensorflow.org/api_docs/python/tf/sparse/sparse_dense_matmul
https://www.tensorflow.org/api_docs/python/tf/sparse/sparse_dense_matmul

	A neuro-inspired general framework for the evolution of stochastic dynamical systems: Cellular automata, random Boolean networks and echo state networks towards criticality
	Abstract
	Introduction
	Methods
	General framework for dynamical systems
	Cellular automata in the general framework
	Random Boolean networks in the general framework
	Echo state networks in the general framework

	Evolution of stochastic dynamical systems towards criticality
	The stochastic dynamical systems
	Evolution through genetic algorithm

	Experimental results
	Results of general framework
	Results of evolving dynamical systems towards criticality

	Discussion
	Ongoing and future applications with EvoDynamic
	State trajectory

	Conclusion
	Acknowledgements
	References

