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Abstract

Background: Many centrality measures have been proposed to mine and characterize the correlations between
network topological properties and protein essentiality. However, most of them show limited prediction accuracy,
and the number of common predicted essential proteins by different methods is very small.

Results: In this paper, an ensemble framework is proposed which integrates gene expression data and protein-
protein interaction networks (PINs). It aims to improve the prediction accuracy of basic centrality measures. The idea
behind this ensemble framework is that different protein-protein interactions (PPIs) may show different contributions
to protein essentiality. Five standard centrality measures (degree centrality, betweenness centrality, closeness centrality,
eigenvector centrality, and subgraph centrality) are integrated into the ensemble framework respectively. We evaluated
the performance of the proposed ensemble framework using yeast PINs and gene expression data. The results show

that it can considerably improve the prediction accuracy of the five centrality measures individually. It can also
remarkably increase the number of common predicted essential proteins among those predicted by each centrality
measure individually and enable each centrality measure to find more low-degree essential proteins.

Conclusions: This paper demonstrates that it is valuable to differentiate the contributions of different PPIs for
identifying essential proteins based on network topological characteristics. The proposed ensemble framework is a

successful paradigm to this end.

Keywords: Essential protein, Protein-protein interaction networks, Centrality measure, Ensemble learning, Gene

expression

Background

Genome-wide gene deletion studies show that a small
fraction of genes in a genome are indispensable to the
survival or reproduction of an organism [1, 2]. These
genes are referred to as essential genes, and essential
proteins are just the products of essential genes. The de-
letion of such essential proteins will result in lethality or
infertility. Studies have shown that essential genes con-
tribute to a diverse spectrum of diseases [3, 4]. There-
fore, the identification of them is very important not
only for understanding the minimal requirements for
survival of an organism, but also for finding human dis-
ease genes [3, 4] and new drug targets [5, 6]. Several
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experimental essential proteins discovery methods have
been developed, such as single gene knockouts [7], RNA
interference [8] and conditional knockouts [9]. However,
these experimental methods are very costly, time-
consuming and laborious.

With the development of high-throughput experimen-
tal technologies, such as Y2H and mass spectrometry,
large amounts of protein-protein interaction (PPI) data
have been produced, which makes it possible to study
proteins from network level. In order to overcome the
experimental constraints, recently researchers have paid
more attention to computational methods based on PPI
network topological characteristics. These computational
methods aim to mine and capture the correlations be-
tween network topological features and protein essenti-
ality. It has been observed in the PINs of many species,
such as Saccharomyces cerevisiae, Caenorhabditis ele-
gans, and Drosophila melanogaster [10, 11], that proteins
highly connected with other proteins are more likely to
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be essential than those selected by chance [12]. This
phenomenon is referred to as the centrality-lethality rule
[12], which demonstrates a high correlation between a
node’s topological prominence in a PIN and its essential-
ity. Several researchers have begun to explain this rule in
different hypotheses [13—16]. Although some controver-
sies still exist about whether, why and how the highly
connected proteins tend to be essential in PINs [13-16],
most researchers have confirmed the correlation between
topological centrality and protein essentiality [11, 17].

Besides the degree centrality (DC) [12], many other
centrality measures, such as betweenness centrality (BC)
[18], closeness centrality (CC) [19], eigenvector central-
ity (EC) [20], and subgraph centrality (SC) [21], have
also been proposed to capture the correlations between
network topological properties and protein essentiality.
Betweenness centrality of a node is defined as the aver-
age fraction of the shortest paths that pass through the
node. Joy et al. [18] have found that proteins with high
betweenness are more likely to be essential. CC mea-
sures how quickly a node communicates with other
nodes in the network. It is defined as the reciprocal of
the average shortest distances from a node to all other
nodes. EC is a measure of the influence of a node in a
network. It is defined as the principal eigenvector of the
adjacency matrix defining the network [20]. SC counts
the total number of closed walks in which a protein par-
ticipates in the PIN and gives more weights to closed
walks of short lengths [21]. It has been confirmed that
these topological properties correlate with the essential-
ity of proteins to some degree [12, 18, 22, 23]. Some
recently proposed methods are also based on the topo-
logical properties of PINs, such as TP [24] and LAC
[25], and they outperform the mentioned commonly
used centrality measures. CytoNCA, a Cytoscape plugin,
implemented some commonly used centrality measures
as well as some newly proposed ones [26].

While these proposed centrality measures have dem-
onstrated that network topological properties correlate
with protein essentiality, low accuracy and low overlap
exist when separately using these centrality measures to
predict protein essentiality. It is expected that protein
essentiality relates to multiple biological factors. Each of
the proposed centrality measures often captures only
one or a few topological properties which correlate with
the protein essentiality. In addition, the currently avail-
able PINs for each species is incomplete (false negatives)
and noisy (false positives), which further hinders the per-
formance of these centrality measures.

In order to improve the prediction accuracy of essential
protein discovery methods, biological and data quality in-
formation have been integrated with network topological
properties, such as gene expression, cellular localization,
biological process information, protein complex, and PPI
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confidence [22, 23, 27-33]. More specifically, due to the
high number of false positives in PINs, the quantitative in-
formation of PPI confidence is believed to impact on es-
sential protein discovery. As reported in [28], centrality
measures can detect more essential proteins in weighted
PINs (where edge weight is defined by the confidence of
the corresponding PPI) than in their corresponding un-
weighted PINs (e.g., about 20 % improvement is obtained
from CC and SC). However, although many methods have
been proposed to evaluate the confidence of PPIs, as dis-
cussed by Li et al. [28], no more than 20 % improvement
can be obtained for six centrality measures (DC, BC, EC,
SC, CC and Information centrality) by considering the
confidence of PPIs. The advances and challenges in identi-
fying essential proteins using computational methods are
reviewed in recent articles [34, 35].

According to the explanations for hub proteins’ essen-
tiality either in the uniform essential PPI assumption
[14] or in the essential complex assumption [15], differ-
ent PPIs between a protein and its interacting neighbors
are expected to have different contributions to the pro-
tein’s essentiality. The contribution of a PPI to its inter-
acting proteins’ essentiality may relate to the confidence
of the PPI, but is expected to be different from the confi-
dence. For example, a PPI of high confidence is not ne-
cessarily having high contribution to the essentiality of
its interacting proteins. Therefore, in terms of identifying
essential proteins, how to evaluate the PPIs’ importance
or contribution to their interacting proteins’ essentiality
is non-trivial.

As we know, aside from technologically produced false
positives, PINs provide in fact a set of putative interac-
tions occurring between gene products. In the biological
sense, these interactions are physically possible, but we
don’t know if they occur inside the cell. This can be due
to a number of possibilities, for instance, the protein
pairs may not share the same cellular compartment,
could not be expressed simultaneously, the interaction
could occur but be biologically irrelevant, the interaction
happen for short intervals. The integration of PINs with
gene expression data is to provide a more reliable ap-
proximation to an in-vivo scenario. Recently several es-
sential protein discovery methods by integrating PINs
with gene expression data have been proposed, which
outperform the centrality measures solely based on
PINs. Most of these methods are based on two or more
of the following assumptions: (1) A highly connected
protein is more likely to be essential than a low con-
nected one; (2) essential proteins tend to form densely
connected clusters; (3) essential proteins in the same
cluster have a higher chance to be co-expressed; (4)
party hubs and date hubs have the similar probability to
be essential while they have very different clustering
property. PeC integrates edge clustering coefficient with
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gene co-expression correlation so as to capture both the
co-clustering and the co-expression properties of a pro-
tein with its neighbors [22]. In CoEWC, a protein’s es-
sentiality is determined by the number of the protein’s
neighbors and the probability that the protein is co-
expressed with its neighbors as well as its neighbors’
clustering properties [23]. Xiao et al. proposed a method
to predict essential proteins based on active PPI network
(APPIN) which is constructed based on static PPI net-
work and dynamic gene expression data using both
time-dependent and time-independent models, and ap-
plied several centrality measures in the APPIN to predict
essential proteins [36]. The above mentioned integrated
methods show that gene expression data can indeed be
used to improve the accuracy of essential protein pre-
diction from PINs, and they also shed light on how
to integrate it with PINs. Generally speaking, different
assumptions can lead to different integration strategies,
which in turn can be of different prediction accuracy.

In this paper, we propose an ensemble framework aim-
ing to increase the prediction accuracy of basic centrality
measures. [t integrates biological information (gene ex-
pression) with PINs. In our framework, a series of PINs
are generated based on the original one using a gene ex-
pression correlation-guided bagging strategy. Five cen-
trality measures (DC, BC, EC, SC, and CC) are applied
in the PINs and a set of scores for each protein are
obtained according to each centrality measure. A final
score is computed for each protein by using a weighted
voting strategy, which reflects the probability of a pro-
tein being essential. Differing from other proposed
methods, a protein’s essentiality in our ensemble frame-
work is determined not only based on its connectivity in
the original PIN [12, 18], but also by its connectivity in a
series of generated PINs. The performance of the ensem-
ble framework was tested on the protein interaction
networks of Saccharomyces cerevisiae, a well-studied
species by knockout experiments.

This paper is organized as follows. We first show the
materials used to test our framework, including the
protein-protein interaction data, gene expression data,
and the information of gene essentiality. Then the pro-
posed framework is depicted in detail. The experimental
results are presented and discussed in the following
section. Finally we present our conclusion and future
directions.

Methods

In this paper, a PIN is represented by an undirected
graph G(V, E), where a node veV represents a protein
and an edge e(yv)eE denotes an interaction between
two proteins # and v. In the context of PINs, protein
centrality is used to characterize the importance or con-
tribution of an individual protein to the global structure
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or configuration of the PIN [37]. In the PIN, each pro-
tein is assigned a score indicating its relative possibility
to be essential according to each centrality measure.
Top ranked proteins are taken as candidates of essential
proteins.

Test data

To evaluate the performance of the ensemble frame-
work, the PPI and gene expression data of Saccharomy-
ces cerevisiae were used. This model organism has been
characterized by knockout experiments and widely used
in the evaluation of essential protein discovery methods.
The test data used in this paper are as follows.

The PPI data were downloaded from the DIP [38] and
BioGRID (release 3.2.99) databases [39]. From DIP, 5093
proteins and 24,743 interactions are obtained after re-
moving self-interactions and repeated interactions. From
BioGRID, there are 76,610 unique physical interactions
among 6074 proteins in total after genetic interactions,
self-interactions and repeated interactions were filtered.
4731 proteins are common among the two PPI data sets.
For convenience, we refer to the PIN from DIP database
as PIN24K, and the PIN from BioGRID database as
PIN76K in the following.

The Saccharomyces genome deletion consortium re-
ports a total of 1156 essential open reading frames
(ORFs) [1], among which 1122 are unique. Among the
1122 corresponding essential proteins, there are 1024 in-
volved in the PIN24K and 1045 involved in the PIN76K.
We refer to them as standard-1122 for convenience.
Other essential gene collections include DEG [40] and
SGD [41]. In DEG, there is a collection of 1110 yeast es-
sential genes, but only 1037 and 1100 are involved in the
PIN24K and PIN76K, respectively. In SGD, there is a
collection of 1279 yeast essential proteins, where 1159
and 1201 essential proteins are included in the PIN24K
and PIN76K, respectively. In the following analysis,
standard-1122 is used as the reference for protein’ essen-
tiality, unless otherwise stated. The other two essential
protein collections are used as further references.

The gene expression data of Saccharomyces cerevisiae
were retrieved from [42], which have been used for the
task of identifying essential proteins by other authors
[22, 23, 36]. It contains 6777 genes and 36 samples in
total. There are 4985 and 5433 proteins included in this
gene expression data from PIN24K and PIN76K, re-
spectively. For proteins which have no corresponding
gene expression data, we simply set them with zero
values. Although many collections of gene expression
data for Saccharomyces cerevisiae exist, most of them ei-
ther have small sample size (i.e., few conditions for cap-
turing gene expression levels) or are devoted to specific
special treatments. The collection of gene expression
data from [42] spans three cell cycles and has a large
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coverage of yeast genes. Comparatively speaking, we
think this collection is more suitable for the task of iden-
tifying essential proteins.

The proposed ensemble framework

In machine learning, ensemble methods use multiple
models to obtain better predictive performance than
could be obtained from any of the constituent models
alone [43]. Bootstrap aggregating, often abbreviated as
bagging, is a popular ensemble technique which involves
having each model in the ensemble vote with equal
weight. In order to promote model variance, bagging
trains each model in the ensemble using a randomly
drawn subset of the training set. In bagging, models can
be trained in parallel. Boosting is another ensemble tech-
nique which involves incrementally building an ensem-
ble by training each new model to emphasize the
training instances that previous models misclassified. In
boosting, models are trained in sequence.

If we take protein-protein interactions (PPIs) in a PIN
as the training information, false positive PPIs as noise
introduced in the training information, and each central-
ity measure as the base learning model, then we can
construct an ensemble framework for each centrality
measure with the expectation of an improved perform-
ance just as it does in other application domains. The
ensemble framework in this study aims to lessen the
effect of noise contained in the PPIs as well as to
emphasize the effect of PPIs which are considered im-
portant for their interacting proteins’ essentiality. To this
end, we construct the ensemble framework by using a
correlation-guided sampling method which combines
the thoughts of both bagging and boosting.

The ensemble framework consists of the following
four steps. (1) Data partition: from the original PPI
data, a series of, say m, PINs, are constructed according
to certain criteria (see below). This step is similar to that
used in bagging to generate training data for each of the
ensemble models. (2) Grading: compute a score for each
protein on each of the m generated PINs using a central-
ity measure. Then we can get m scores for each protein
by using each centrality measure. (3) Integrating: inte-
grate the m scores for each protein into one final score
according to some strategy (see below). (4) Ranking:
rank the proteins according to their final scores. For the
top n ranked proteins, more true essential proteins con-
tained, more effective the ranking method is.

Data partition

Data partition is one of the most important steps in the
proposed ensemble framework. In this paper, we use a
correlation-guided data partition strategy. The basic
ideas behind this data partition strategy include: (a) es-
sential proteins are more likely to be co-expressed with
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some of their neighbors; (b) PPIs between two highly co-
expressed proteins are more important to the proteins’
essentiality. Pearson correlation coefficient (PCC) is used
to evaluate how strong two interacting proteins in a PIN
are co-expressed.

We evaluated the data to see if essential proteins tend
to display more co-expressed partners in the PINs (as-
sumption a). Figure 1 gives the distributions of co-
expression weights (Pearson correlation coefficients) for
both essential and nonessential proteins. Evidently the
weight distributions are significantly different between
essential and nonessential proteins (KS test p-value <
2.2e-16 on both PIN24K and PIN76K). Essential proteins
indeed tend to be co-expressed with their partners com-
pared with nonessential proteins. We further examined
the node strength distributions of essential and nones-
sential proteins (Additional file 1: Figure S1) and noticed
a significant difference between the two distributions
(KS test p-value < 2.2e-16).

According to [14], centrality-lethality rule can be ex-
plained based on essential PPIs. The authors stated that
some PPIs are more important than others which would
be particularly meaningful if there are PPIs that are es-
sential to the survival or reproduction of an organism.
An essential interaction between two proteins makes
both proteins essential because the removal of either
protein causes lethality or infertility due to the disrup-
tion of the interaction. For example, yeast proteins
SPT16 and POB3 are both essential and they form het-
erodimers that function in DNA replication. Genetic
studies showed that their interaction is critical for this
function [44]. Two proteins forming an essential PPI
both must be essential, but interactions between essen-
tial proteins (IBEPs) may or may not be essential be-
cause the essentiality of a protein can be due to factors
other than essential PPIs. The authors found that about
3 % yeast PPIs are essential PPIs based on random rewir-
ing method [14]. Additional file 1: Figure S2 gives the
distributions of co-expression weights for IBEPs and
Non-IBEPs, which tell us that these two types of PPIs
have significantly different co-expression weights distri-
butions (KS test p-value < 2.2e-16). We found that the
IBEPs, whose co-expression weights larger than 0.75, ac-
count for about 3.9 and 3 % yeast PPIs based on Bio-
GRID and DIP respectively. This proportion consists
with that of essential PPIs reported in [14]. We propose
that IBEPs with high co-expression weights may be more
likely to be essential PPIs, although there’s no easy way
to validate this assumption. Based on these circumstan-
tial evidences, we proposed our second assumption that
PPIs between two highly co-expressed proteins are more
important to the proteins’ essentiality.

The data partition strategy works as follows. First, it
computes the PCC value for each pair of directly



Zhang et al. BMC Bioinformatics (2016) 17:322

Page 5 of 17

\

0.75-
Z‘OSO - legend
% I:I Essential
© |:I Nonessential
0.25-
0.00-
-1.0 -05 00 05 1'0
weight
(a) PIN24K
0.8-
0.6~
> legend
g 0.4- EI Essential
[}
o I:I Nonessential
0.2-
0.0-
-0.5 00 0’5 1'0
weight
(b) PIN76K
Fig. 1 The distributions of co-expression weights for essential and nonessential proteins. The co-expression weight for each protein pair was
calculated as the Pearson correlation coefficient

interacting proteins in the original PIN. Second, a series
of thresholds are determined according to the distribu-
tion of PCC values of all the PPIs in the original PIN
where maxPCC (minPCC) is the maximal (minimal)
PCC value among all PPIs’ in the original PIN. There are
two ways to generate the thresholds. One is the absolute
thresholding strategy, in which we have each threshold

thr,€[0, maxPCC), i=1,2,...,m. The other is so-called
uniform thresholding strategy, in which we have each
threshold thr,e(minPCC, maxPCC), i=1,2,...,m. Third,
according to each thresholding strategy, m PINs are gen-
erated from the original PIN. In the absolute threshold-
ing strategy, for each threshold thr;, the PPIs, whose
absolute PCC values are below the threshold, are deleted
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from the original PIN, and a new PIN, say PIN;, in which
the absolute PCC values between all directly interacting
protein pairs are larger than the threshold thr;, is gener-
ated. Then m PINs are generated from the original PPI
data. Similarly, m PINs can be generated by using the
uniform thresholding strategy. For each threshold thr;,
PIN; is generated by deleting all PPIs whose PCC values
are less than thr; from the original PIN.

The data partition process, which is guided by the cor-
relation, is different from the random sampling strategy
for training data generation in bagging. Instead, it is
similar with that of boosting since both of them select
training data under the guidance of some knowledge.
On the other hand, the PINs are all generated before ap-
plying learners (centrality measure, in this case), which
is similar with that of bagging, and so the following
training and predicting (compute the scores according
to certain centrality measure, in this case) processes can
be executed in parallel. Therefore, the data partition
strategy integrates the advantages of both bagging and
boosting.

Grading

In this paper, five commonly used centrality measures
are employed, and their performance are compared with
and without the ensemble framework. These five cen-
trality measures are degree centrality (DC) [12], be-
tweenness centrality (BC) [18], closeness centrality (CC)
[19], eigenvector centrality (EC) [20], and subgraph cen-
trality (SC) [21].

In the grading stage, one set of m scores are calculated
for each protein according to each centrality measure on
each PIN (m generated PINs in data partition stage). For
example, if we take DC as the base centrality measure,
then for each protein, there are m DC scores for it cal-
culated from the m PINs respectively. Note that, accord-
ing to the data partition strategy, the magnitudes of the
m scores for each protein generally decreases with the
increase of thresholds for generating the PINs, that is,
the score of a protein calculated on PIN; is generally lar-
ger than that computed on PIN;,; for the same protein
according to the same centrality measure. The scores for
all proteins computed from the same PIN using the
same base centrality measure are normalized by dividing
their maximal value. The normalization aims to make
scores calculated from different PINs comparable and to
make it convenient for the integrating stage.

Integrating

In ensemble learning, multiple predictions by ensemble
models are often combined in some way (typically by
weighted or unweighted voting) to classify new exam-
ples. In this paper, we use a weighted voting strategy to
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combine the scores computed on the m PINs for each
centrality measure.

According to the basic ideas behind the data partition
strategy, larger weights should be given to the scores
computed from the PINs generated with larger thresh-
olds. Formally, let w; be the weight assigned to PINj,
then w;<w;,, i=1,....,m-1. Let s(j,i) be the score calcu-
lated on PIN; for protein j according to a centrality
measure, then the final score, f5(j), for protein j in the
ensemble framework is calculated by

BO)Y =" s(.i) x wi. (1)

The ensemble framework aims not only to emphasize
PPIs which have more contributions to protein essential-
ity, but also to reserve useful information of the original
PIN to the greatest extent. With the increase of thresh-
olds, more and more PPIs are deleted from the original
PIN, and some useful information may also be lost.
Therefore, we would set the weight of the original PIN
to 1 to alleviate such information lost.

Ranking

In the ensemble framework, proteins are ranked accord-
ing to their final scores in descending order. Top n
ranked proteins are taken as the candidates of essential
proteins, out of which the number of true essential pro-
teins are determined according to the list of known es-
sential proteins. Therefore, the more essential proteins
that are contained in the top n candidates, the better the
prediction or ranking method is.

Results and discussion

For convenience, the ensemble framework using DC
(BC, EC, SC and CC) as the base model is referred to as
EnDC (EnBC, EnEC, EnSC and EnCC, respectively).
EnDC-a denotes the ensemble method using absolute
thresholding strategy and EnDC-u denotes the ensemble
method using uniform thresholding strategy. The same
goes for other four ensemble methods: EnBC, EnCC,
EnEC and EnSC.

In the following experiments, we set thr;=1{0,0.1,
0.2,...,0.8,0.9,0.91,0.92,...,0.95} for the absolute threshold-
ing strategy, and thr;={-0.7,-0.6,...,0,0.1,0.2,...,0.8,0.9,
0.91,0.92} for the uniform thresholding strategy. There-
fore, in the ensemble framework, there are m =15 PINs
generated using absolute thresholding strategy while
m =19 PINs using uniform thresholding strategy.

Performance of the ensemble framework

Two thresholding strategies

We first conducted experiments to evaluate the per-
formance of these two thresholding strategies. The
weight vector w=1{1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,
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233, 377, 610, 987} for ensemble methods with absolute
thresholding strategy, and w=1{1,1,1,1,1, 1,1, 1, 2, 3,
5, 8, 13, 21, 34, 55, 89, 144, 233} for ensemble methods
with uniform thresholding strategy.

Figure 2 gives the performance comparison of the en-
semble framework with two thresholding strategies on
two yeast PINs, PIN24K (DIP) and PIN76K (BioGRID).
Five centrality measures (BC, CC, DC, EC and SC) are
used as the base models to test whether or how much
they can benefit from the proposed ensemble frame-
work. From Fig. 2 we can see that the two thresholding
strategies perform similarly on PIN24K, while EnBC-a
and EnCC-a perform better than their corresponding en-
semble methods, EnBC-u and EnCC-u, on PIN76K. In
top n ranked proteins, the ensemble methods, using ei-
ther thresholding strategy, considerably outperform their
corresponding centrality measures. This validates the
usefulness of the ensemble framework for identifying es-
sential proteins from PINs. For example, in top 100
ranked proteins, more than 100 % improvement is ob-
tained by four ensemble methods (EnCC-a, EnDC-a,
EnEC-a, and EnSC-a) on PIN76K and by two ensemble
methods (EnCC-a and EnEC-a) on PIN24K, as com-
pared with their corresponding centrality measures.
EnDC-a and EnSC-a achieve an 85 % improvement on
PIN24K as compared with DC and SC, respectively.
EnBC-a compared with BC achieves the least improve-
ment, but there are still 68 % improvement on PIN24K
and 97 % improvement on PIN76K, respectively.

We also compared our ensemble methods with two
PCC based methods: applying centrality measures in
PCC-threshold PIN, and in PCC-weighted PIN. For PCC-
threshold method, we set threshold to 0.75, which is based
on the distribution of co-expression weights distribution
and IBEP weights distribution (Fig. 1 and Additional file 1:
Figure S2) because at this point essential proteins and
IBEPs start having different co-expression weight distribu-
tions compared with nonessential proteins and Non-
IBEPs. PCC-threshold PIN was generated by removing
PPIs whose absolute PCC values are less than the thresh-
old from the original PIN. PCC-weighted PIN was gener-
ated by adding weight to each PPI in the original PIN
using its corresponding PCC value. Then five centrality
measures were applied in the two PINs respectively. We
use M-thr to denote PCC-threshold method and wM to
denote PCC-weighted method, where M is one of the five
centrality measures. The performance of these two
methods is also included in Fig. 2. Note that BC and CC
can only be applied in graphs with positive edge weights,
so they are not suitable for PCC-weighted method.
Figure 2 tells us that ensemble methods EnBC, EnCC, and
EnDC outperform the PCC-threshold methods BC-thr,
CC-thr, and DC-thr, while they perform similarly when
using EC and SC as base learners. The ensemble methods
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EnDC, EnEC, and EnSC outperform PCC-weighted
methods wDC, wEC, and wSC especially with smaller # in
top 7 candidates.

Figure 3 and Additional file 1: Figures S3-S5 presents
the performance comparison of five centrality measures
(BC, CC, DC, EC, and SC) with different thresholds by
using two thresholding strategies on two yeast PINs
(PIN24K and PIN76K), as well as the relationship be-
tween the number of nonzero-degree nodes and the
thresholds for generating the corresponding PINs when
applying two thresholding strategies. In Fig. 3 and
Additional file 1: Figure S3, we only show the perform-
ance of five centrality measures with thresholds that the
number of nonzero-degree nodes in their corresponding
PINs is larger than n when top n ranked proteins are
considered as essential protein candidates.

As shown in Fig. 3 and Additional file 1: Figure S3, the
performance of five centrality measures varies slightly at
small threshold values in both thresholding strategies.
Then their performance increases rapidly when the
thresholds are larger than 0.7 and almost reaches their
best performance when the thresholds are larger than
0.8. It can be seen that the number of true essential pro-
teins in the top 100 ranked proteins on the PINs gener-
ated with thresholds larger than 0.8 becomes almost
twice of that of the original PIN for each centrality
measure. In top # ranked proteins for absolute thresh-
olding strategy, five centrality measures benefit more
with smaller 7, and such benefits decrease with the in-
crease of n. For uniform thresholding strategy, the per-
formance of the five centrality measures has almost no
change with thresholds smaller than zero, and then the
performance increases with the increase of thresholds
similarly to that in the absolute thresholding strategy.
Therefore we set the weights to 1 for negative thresholds
in the uniform thresholding strategy and set the weights
for other thresholds the same as in the absolute thresh-
olding strategy in the ensemble framework (see Fig. 2).
The performance dependence on thresholds further con-
firm our basic ideas behind the ensemble framework: (1)
essential proteins tend to be co-expressed with some of
its neighbors, and (2) PPIs between two highly co-
expressed proteins are more important to the proteins’
essentiality. Therefore, the performance of five centrality
measures is improved by deleting trivial PPIs whose
interacting proteins’ expression is not correlated.

Furthermore, it can be seen that the five centrality
measures on the generated PINs performs similarly or
even outperforms their ensemble counterparts at some
thresholds (see Fig. 3, Additional file 1: Figure S3, and
Fig. 2). One may question why we should use the en-
semble framework. As shown in Additional file 1: Figure S4
and Figure S5, the number of nonzero-degree proteins in
the generated PINs decreases with the increase of the
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Fig. 2 Performance comparison of two thresholding strategies of the ensemble framework on two yeast PINs. Five centrality measures (BC, CC,
DC, EC and SC) are used as the base models respectively. We also compared our ensemble methods with: 1) using a single PCC-thresholded PIN
with thr=0.75, and 2) using a PCC-weighted version of PIN. Proteins are ranked according to their final scores calculated by each ensemble
method (i.e, ENnBC, EnCC, EnDC, EnEC and EnSC) or by each centrality measure (BC, CC, DC, EC and SC) or by the other compared methods. For
each ensemble method on each case, top n ranked proteins are selected as the candidates of essential proteins, out of which the number of true
essential proteins are determined. The same procedure is applied to five centrality measures and the other compared methods
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Fig. 3 Performance comparison of five centrality measures (BC, CC, DC, EC, and SC) on two yeast PINs (PIN24K and PIN76K) using absolute
thresholding strategy. For each yeast PIN (PIN24K or PIN76K), 15 PINs are generated by using the absolute thresholding strategy. Proteins are
ranked according to their values calculated by each centrality measure on each PIN. For each centrality measure on each PIN, top n proteins are
selected as candidates for essential proteins, out of which the number of true essential proteins are determined. The PIN with threshold 0 is the
original PIN (PIN24K for (a)-(d), and PIN76K for (e) ~ (h)). X-axis represents the thresholds and y-axis the number of true essential proteins in top n
ranked proteins. Proteins contained in standard-1122 are considered as essential proteins

( h) Top 400 ranked proteins (PIN76K)

thresholds for generating the PINs. For example, only 290
and 588 nonzero-degree proteins are left in the PINs gen-

erated from PIN24K and
threshold equals to 0.9 in

PIN76K respectively when the
absolute thresholding strategy.

Only these nonzero-degree proteins would be given non-
zero scores by five centrality measures so that they can be
ranked according to their scores. The other proteins will
be ranked randomly since they all have zero scores.
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Therefore, the thresholding method might be useful when
we only want to select a small number of proteins so as to
study their essentiality. However, the ensemble framework
aims to discover most of the essential proteins by making
the best use of useful information contained in the original
PIN while at the same time highlighting some PPIs which
are more important for proteins’ essentiality. The other
disadvantage of PCC-threshold method is that we usually
don’t know which threshold is better for a new organism.
Although we can select the threshold based on experi-
ences from other well studied organisms, there should be
difference between organisms. Furthermore, from Fig. 2,
we can see that PCC-threshold methods don’t always have
similar performance with ensemble methods for different
centrality measures.

In the following we take only the ensemble framework
with the absolute thresholding strategy into consideration.
A similar analysis can be obtained for the uniform thresh-
olding strategy. One aspect of the absolute thresholding
strategy is the selection of thresholds. From a biological
perspective, it might not make sense to differentiate PCC
values between 0.91 and 0.92. In Additional file 1: Figure S4
we can also see that the number of nonzero-degree pro-
teins changes very slowly with the increase of thresholds
from 0.9 to 0.95 on two yeast PINs (PIN24K and PIN76K).
However, please note that this ensemble framework aims
to emphasize the effect of some PPIs which are expected
to be important for their interacting proteins’ essentiality
and that PPIs between two highly co-expressed proteins
are considered to be more important to the proteins’
essentiality. The results shown in Fig. 3 and Additional
file 1: Figure S3 support our view. The PINs generated
with thresholds larger than 0.9 should mainly contain
the PPIs which connect highly co-expressed proteins
and are more informative for identifying essential proteins
according to the basic ideas of the ensemble framework.
Therefore, five centrality measures on the PIN generated
with threshold 0.9 considerably outperforms their corre-
sponding counterparts on the original PIN.

There are multiple methods to emphasize the informa-
tion contained in the PINs generated with larger thresh-
olds. One is the dense sampling method which samples
more PINs with larger thresholds as shown in the en-
semble framework with the absolute thresholding strat-
egy, and the other method is dominant weighting which
gives dominant weights to such PINs. Additional file 1:
Figure S6 presents the experimental results of these two
methods. In Additional file 1: Figure S6, we use M (0 ~
0.9) to test the dominant weighting in which the PIN
generated with the largest threshold (0.9, in this case) re-
ferred to as the dominant PIN, and we use M (0 ~ 0.95)
to test dense sampling. M is one of the five ensemble
methods: EnBC-a, EnCC-a, EnDC-a, EnEC-a, and EnSC-a.
Of course more dominant PINs can be chosen, but for
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simplicity we only choose one dominant PIN here. From
Additional file 1: Figure S6 we can see that ensemble
methods using the dominant way achieve better perform-
ance by giving larger weight to the dominant PIN. On
PIN24K, two ensemble methods (EnCC-a and EnEC-a) can
achieve almost the same performance for both methods,
while the other three ensemble methods perform slightly
better using dense sampling. On PIN76K, three ensemble
methods (EnDC-a, EnEC-a and EnSC-a) perform similarly
for both methods, while other two ensemble methods
(EnBC-a and EnCC-a) perform better using dense sam-
pling. In general, dense sampling is better than the domin-
ant weighting, so in the following analysis we only consider
the dense sampling approach, that is, the absolute thresh-
olding strategy used in the ensemble framework.

Voting weights

The proposed ensemble framework takes a weighted
voting strategy to integrate the scores computed on dif-
ferent PINs. Based on the basic ideas behind the ensem-
ble framework, the weighted voting strategy should favor
the scores computed on the PINs generated with larger
thresholds. That is, it favors the PPIs whose interacting
proteins are highly co-expressed. This is based on the
assumption that essential proteins tend to be highly co-
expressed with some of their co-clustered neighbors.
This assumption can be observed in the two yeast PINs
(Fig. 1 and Additional file 1: Figure S2).

Figure 4 presents the performance comparison of five
ensemble methods using absolute thresholding strategy
with different types of voting weights. In Fig. 4, four
types of voting weights are considered. wl1=1{1,1,1,1, 1,
1,1,1,1,1,1,1, 1, 1, 1}, delegates the unweighting strat-
egy which doesn’t discriminate the contributions from
different generated PINs, and is used as a base line.
w2={1,2,3,4,5,6,7 8,9, 10, 11, 12, 13, 14, 15}, is
called gradual advance weighting. w3=1{1, 1,1, 1,1, 1, 1,
1, 8,9, 10, 11, 12, 13, 15}, is called prior guided advance
weighting. w4 ={1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,
377, 610, 987}, is called dominant weighting in which the
weight for each generated PIN is the sum of its two pre-
ceding PINs’ weights. Gradual advance weighting (w2)
and dominant weighting (w4) are designed based on the
assumption that PPIs whose interacting proteins are
highly co-expressed may be more important in identifying
essential proteins. w3 is designed by the knowledge that
all five centrality measures perform better on PINs gener-
ated with thresholds larger than 0.7 (see Fig. 3), so the first
eight PINs (one original PIN and seven generated PINs
with thresholds from 0.1 to 0.7) are given weights 1, and
the weights increase gradually for the subsequent PINs
generated with the thresholds lager than 0.7. Therefore
gradual advance weighting and dominant weighting are
feasible for the ensemble framework since they don’t
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ensemble method using absolute thresholding strategy with different

require the information of performance distribution on
the generated PINs.

In Fig. 4 we can see that dominant weighting is better
than other three types of voting weights for all five en-
semble methods. In addition, three ensemble methods
(EnDC-a, EnEC-a and EnSC-a) are quite robust in select-
ing voting weights. EnCC-a and EnBC-a benefit more
from the dominant weighting strategy, especially for
EnCC-a on PIN76K. BC and CC are two global centrality
measures, while DC, EC, and SC are local centrality

measures. This tells us that global centrality measures are
more sensitive to noisy and trivial PPIs (whose proteins
are not co-expressed) for predicting protein essentiality
than those local centrality measures.

Additional file 1: Figure S7 presents the performance
comparison of five ensemble methods using uniform
thresholding strategy with different types of voting weights.
Similarly, four types of voting weights are adopted to test
the performance of the ensemble framework with the
uniform thresholding strategy. As shown in Additional
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file 1: Figure S7, prior guided dominant weighting (w4) is
better than the other three types of voting weights for five
ensemble methods. Prior guided advance weighting is in
second place. By comparison of Fig. 4 and Additional
file 1: Figure S7, we can further conclude that the abso-
lute thresholding strategy is better than the uniform
thresholding strategy. In the following analysis, we only
consider the ensemble framework using the absolute
thresholding strategy and dominant voting weights.

Common predicted essential proteins

Although many centrality measures have been reported
to have some correlation with protein essentiality, most
of them have low accuracy in identifying essential pro-
teins when used alone (Fig. 2). There are multiple rea-
sons for the lack of accuracy, the incomplete and noisy
PIN on which centrality measures depends, and the fact
that protein essentiality is expected to relate to many
biological features additional to one or few topological
properties of the PIN. It is therefore not surprising that
centrality measures have limited predictive ability for
protein essentiality. Thus how to integrate useful topo-
logical information captured by different centrality mea-
sures, as well as different biological data sources is very
important for identifying essential proteins. Further-
more, our experimental results on two yeast PINs show
that the number of common predicted proteins (overlap)
by five centrality measures is very small (see Table 1), in
addition to their low accuracy.

Table 1 gives the number of overlap among the top
100 proteins ranked by any two different centrality mea-
sures and the number of essential proteins among the
overlap, as well as the number of overlap by all the five
centrality measures and the corresponding number of
essential proteins. As shown in Table 1, there is a larger
overlap rate between DC and SC on both two yeast PINs
(92/100 on PIN76K and 97/100 on PIN24K), which
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indicates the positive correlation between DC and SC.
But the number of true essential proteins is small (38/92
on PIN76K and 43/97 on PIN24K) because of the low
accuracy of DC and SC for predicting essential proteins.
The overlap rate between BC and EC is the lowest (36/
100 on PIN76K and 47/100 on PIN24K), so is the over-
lap rate for true essential proteins (12/36 on PIN76K
and 24/47 on PIN24K). In general, true essential pro-
teins only account for a small proportion of the overlap
(24 % ~ 46 % on PIN76K, and 42 % ~ 51 % on PIN24K).
The overlap rates are even lower among the five central-
ity measures on two yeast PINs (29/100 on PIN76K and
43/100 on PIN24K), let alone the number of essential pro-
teins in the overlap (7 on PIN76K and 21 on PIN24K).
Table 2 gives the number of overlaps among the top 100
proteins ranked by different ensemble methods and the
number of essential proteins among the overlaps. EnDC-a
and EnSC-a have the largest overlap rate on two yeast
PINs (99/100 on PIN76K and 98/100 on PIN24K), which
is similar to their corresponding centrality measures, DC
and SC. Out of the overlap between EnDC-a and EnSC-a,
the overlap rate for essential proteins is also high (83/99
on PIN76K and 80/98 on PIN24K). EnDC-a and EnCC-a
have the lowest overlap rate on PIN76K (40/100), while
EnBC-a and EnEC-a have the lowest overlap rate on
PIN24K (60/100). In general, among the overlap, true es-
sential proteins account for a proportion about 67 % ~
92 % on PIN76K and 78 % ~ 83 % on PIN24K, which are
much higher compared with those of centrality measures.
Although a slight decrease in the overlap rate exists for a
few pairs of ensemble methods compared with those of
their corresponding pairs of centrality measures, the over-
lap rate of true essential proteins increases. For example,
the overlap between EnDC-a and EnBC-a decreases to 60
from 66, the overlap between DC and BC, but the overlap
of essential proteins between EnDC-a and EnBC-a increases
to 51 from 22. From Tables 1 and 2 we can see that the

Table 1 The number of common predicted proteins (overlap) among the top 100 proteins ranked by different centrality measures

Datasets Centrality BC EC SC CcC #overlaps among five
measures centrality measures
#overlap #EP #overlap #EP #overlap #EP #overlap #EP #overlap #EP
PIN76K DC 66 22 57 26 92 38 51 20 29 7
BC 36 12 63 21 49 16
EC 65 30 41 12
SC 51 19
PIN24K DC 84 36 57 29 97 43 71 31 43 21
BC 47 24 82 36 64 28
EC 56 29 67 29
SC 70 31

Proteins are ranked according to the scores calculated by each centrality measure. Then top 100 ranked proteins for each centrality measure are selected as the
candidates of essential proteins, out of which the number of true essential proteins are determined. #overlap represents the number of common predicted
proteins among the top 100 ranked proteins by different centrality measures and #EP the number of true essential proteins among the overlaps
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Table 2 The number of common predicted proteins (overlap) among the top 100 proteins ranked by different ensemble methods

Datasets Ensemble EnBC-a EnEC-a EnSC-a EnCC-a #overlaps among five
methods ensemble methods
#overlap #EP #overlap #EP #overlap #EP #overlap #EP #overlap #EP
PIN76K EnDC-a 60 51 92 79 99 83 40 37 28 25
EnBC-a 55 47 59 50 59 40
EnEC-a 93 80 41 37
EnSC-a 41 38
PIN24K EnDC-a 74 58 84 69 98 80 82 67 53 42
EnBC-a 60 48 72 57 71 56
EnEC-a 86 71 72 60
EnSC-a 80 66

Proteins are ranked according to the scores calculated by each ensemble method. The top 100 ranked proteins for each ensemble method are selected as the
candidates for essential proteins, out of which the number of true essential proteins are determined. #overlap represents the number of common predicted
proteins among the top 100 ranked proteins by different ensemble methods and #EP the number of true essential proteins among the overlaps

overlaps of top ranked proteins between ensemble methods
contain more essential proteins than those between the
centrality measures.

Additional file 1: Tables S1 and S2 give the number of
overlap among the top 100 proteins ranked by two dif-
ferent PCC-weighted methods or by two different PCC-
threshold methods. For PCC-weighted methods, among
the overlap, true essential proteins account for a propor-
tion about 42 % ~ 56 % on PIN76K and 56 % ~ 75 % on
PIN24K. The overlap is lower on PIN24K than that on
PIN76K. For PCC-threshold methods, true essential pro-
teins account for a proportion about 36 % ~76 % on
PIN76K and 50 % ~ 88 % on PIN24K. By comparing with
Tables 1 and 2, we can see that ensemble methods have
higher rates of true essential proteins among the overlaps.

We further analyzed how correlated the five centrality
measures and the five ensemble methods are by using
their top 100 ranked proteins. For each pairwise com-
parison, we use the union of their top 100 ranked pro-
teins to calculate the Pearson correlation coefficient
based on their corresponding scores. Additional file 1:
Table S3 and S4 give the correlations between centrality
measures and between ensemble methods. On PIN76K,
EnBC-a and EnCC-a show almost no correlation with
other ensemble methods while their corresponding cen-
trality measure pairs have strong correlations, and three
ensemble methods (EnDC-a, EnEC-a, and EnSC-a) show
similar correlations compared with their corresponding
centrality measures. On PIN24K, four ensemble pairs
(EnBC-a and EnEC-a, EnBC-a and EnSC-a, EnDC-a and
EnEC-a, EnDC-a and EnSC-a) show larger correlations
compared with their corresponding centrality measures
pairs. In general, the ensemble framework doesn’t signifi-
cantly increase pairwise correlations, and it even decreases
the pairwise correlations (for example, on PIN76K). We
also can see that the correlation is not necessarily propor-
tional to the overlap between two methods. For example,

on PIN76K, there are 57 overlap between DC and EC, 92
overlap between EnDC-a and EnEC-a, but the correlations
are similar or even a little decrease from DC and EC pair
to the ensemble pair. Three local centrality measures (DC,
EC, SC) show high correlations whether in the original
PIN or in the ensemble framework

Prediction of low-degree essential proteins

Additional file 2: Tables S5-S8 present the top 100 pro-
teins ranked by five centrality measures and by five en-
semble methods on PIN24K and PIN76K. The degree
distribution characteristics of these proteins are presented
in Table 3. The average degree of the top 100 proteins
ranked by each ensemble method is much smaller than
that of its corresponding centrality measure, which is true
on two yeast PINs. For example, the average degree of the
top 100 proteins ranked by DC is 97.11, but it’s only 25.44
for those ranked by EnDC-a on PIN24K. On PIN76K, the
average degrees for the top 100 proteins ranked by DC
and EnDC-a are 327.57 and 94.21, respectively. This holds
true for the other four centrality measures and their corre-
sponding ensemble methods.

As shown in Table 3, more low-degree proteins are
identified as essential candidates by the ensemble methods
as compared with the corresponding centrality measures.
For example, in the top 100 ranked proteins of EnDC-a,
the degrees of 89 proteins are less than the minimal de-
gree of the top 100 ranked proteins of DC on PIN76K,
while 95 are low-degree proteins on PIN24K. Among the
low-degree proteins identified by all five ensemble
methods on PIN24K, about 75 % ~ 84 % are essential, and
about 83 % ~ 86 % proteins are essential among the low-
degree proteins identified by three ensemble methods
(EnDC-a, EnEC-a and EnSC-a) on PIN76K. Few low-
degree proteins are identified by EnBC-a and EnCC-a on
PIN76K, compared with BC and CC, although the average
degrees of the top 100 ranked proteins by EnBC-a and
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Table 3 Degree distribution characteristics among the top 100 proteins ranked by different centrality measures and different
ensemble methods

BC EnBC-a CcC EnCC-a DC EnDC-a EC EnEC-a SC EnSC-a
PIN76K Average degree 306.32 135.99 277.71 108.88 32757 94.21 290.7 9337 32698 94.54
Minimal degree 17 10 24 6 138 20 83 23 127 20
#low_degree - 1 - 7 - 89 - 60 - 83
#EP - 0 - 2 - 75 - 52 - 69
Average node strength 0.07 042 0.08 047 0.12 0.57 0.2 0.58 0.2 0.54
PIN24K Average degree 93.23 3763 89.96 26,51 97.11 2544 79.14 2143 97.04 24.82
Minimal degree 33 4 33 4 64 4 31 3 60 4
#low_degree - 62 - 76 - 95 - 78 - 93
#EP - 47 - 64 - 78 - 64 - 78
Average node strength 0.07 0.35 0.06 045 0.07 0.5 0.05 0.53 0.05 0.39

#low_degree denotes the number of proteins out of the top 100 ranked proteins by an ensemble method whose degrees are less than the minimal degree of the

top 100 proteins ranked by the corresponding centrality measure, and #EP the number of essential proteins out of the #low_degree proteins

EnCC-a are much smaller than those of proteins ranked
by BC and CC.

According to the definition of low-degree proteins,
there is no intersection among the low-degree proteins
and those ranked proteins by the corresponding central-
ity measures. Therefore, results in Table 3 also tell us
that on PIN24K the overlap rates are very low between
ensemble methods and their corresponding centrality
measures, while this is true only for three pairs of
methods (DC and EnDC-a, EC and EnEC-a, SC and
EnSC-a) on PIN76K. Our further analysis on the pro-
teins shown in Additional file 2: Tables S5-S8 indicate
that the overlap rate between an ensemble method and
its corresponding centrality measure is very low on two
yeast PINs. The overlap rates are 2 % ~ 13 % on PIN24K
and 5 % ~ 15 % on PIN76K. This low overlap indicates
that the ensemble methods are quite different from their
corresponding centrality measures.

In Table 3, we also included average node strength for
each method, which was calculated based on the PCC-

weighted PIN. In general, ensemble methods have much
larger average node strengths than their corresponding
centrality measures. This is consistent with Additional
file 1: Figure S1, since essential proteins tend to have lar-
ger node strengths compared with nonessential proteins.

Analysis on the different predicted proteins

Since the overlap rate is very low between an ensemble
method and its corresponding centrality measure, we eval-
uated the different proteins identified by each ensemble
method and those by the corresponding centrality meas-
ure. The top 100 ranked proteins by different methods
shown in Additional file 2: Tables S5-S8 are used for
evaluation. Figure 5 shows how many essential proteins
are predicted out of the different proteins identified by en-
semble methods and those identified by the corresponding
centrality measures. As expected, the results shown in
Fig. 5 illustrate that the percentage of essential proteins
identified by any ensemble method is consistently higher
than that identified by the corresponding centrality
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measure. Take EnEC-a/EC as an example. Out of the top
100 ranked proteins identified by EnEC-a and by EC on
PIN24K, 98 proteins are different. Out of the 98 proteins
uniquely identified by EnEC-a, about 82.7 % proteins are
essential. In contrast, only 34.7 % out of the 98 proteins
uniquely identified by EC are essential. On PIN76K, for
their top 100 ranked proteins, the numbers become 87,
85.1 % and 25.3 %, respectively. Similar results can be ob-
tained for the remaining ensemble methods and their cor-
responding centrality measures on two yeast PINs.

Among the top 100 ranked proteins by different
methods, there are several proteins which are not con-
tained in standard-1122, but are contained in either or
both of other two essential protein collections. For
example, on PIN24K, two proteins (YBR106W and
YBR200W) and three proteins (YCR0O88W, YFL0O23W
and YBR106W) among the top 100 ranked proteins by
BC and by EnBC-a respectively are not contained in
standard-1122 but are contained in essential protein col-
lection of SGD. YFL023W is a low-degree protein since
its degree (equal to 10) is less than the minimal degree
(equal to 33) of the top 100 proteins ranked by BC, but
its node strength is high (3.17) which means that it is
highly co-expressed with some of its interacting proteins
(for example, YBR247C (0.93), YDLO60W (0.95), YNL207W
(0.94), YNL277W (0.65), the value is Pearson correlation).
It’s interesting that all the four highly co-expressed part-
ners are also essential proteins according to standard-
1122. On PIN76K, there are more such proteins among
the top 100 ranked proteins by five centrality measures
than by the corresponding ensemble methods. For ex-
ample, there are 9, 5, 6, 2, and 6 such proteins among the
top 100 ranked proteins by BC, CC, DC, EC, and SC
respectively, while there is only one such protein
(YGR159C) among the top 100 ranked proteins by EnBC-
a and zero for other four ensemble methods.

Conclusions

The discovery of essential proteins at the network level
is an important research field. Many network topology-
based centrality measures for the discovery of essential
proteins have been proposed. However, most of them
are based on the topological properties of PINs and only
have limited prediction accuracy. One reason might be
the incomplete and noisy PINs on which the centrality
measures depend. The other reason might be the fact
that proteins’ essentiality are expected to relate to mul-
tiple biological features rather than one or few features
captured by an individual centrality measure. Effective
integration of multiple centrality measures as well as
multiple biological data sources would be very useful for
the task of identifying essential proteins. However, our
experimental results for five commonly used centrality
measures (DC, BC, EC, SC, and CC) on two yeast PINs
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(PIN76K and PIN24K) for Saccharomyces cerevisiae indi-
cate that the overlap rate among the top ranked proteins
by these centrality measures is very low, in addition to the
low accuracy of these centrality measures.

To tackle the above problem, we propose an ensemble
framework for the discovery of essential proteins, which is
based on two ideas that essential proteins tend to be co-
expressed with some of their interacting neighbors and
that PPIs between two highly co-expressed proteins are
expected to be more important to the proteins’ essential-
ity. Five commonly used centrality measures (BC, CC,
DC, EC and SC) are used as base models. The perform-
ance of the ensemble framework has been evaluated on
two yeast PINs (PIN24K and PIN76K). Experimental re-
sults indicate that the ensemble framework can greatly im-
prove the prediction ability of five commonly used
centrality measures, especially for top n ranked proteins
with smaller # (i.e., n < 600). Furthermore, the overlap rate
of essential proteins increases notably among the top pro-
teins ranked by different ensemble methods. Essential pro-
teins with low degree but highly co-expressed with some
of their neighbors are more easily identified by ensemble
methods than by centrality measures. It’s also interesting
to note that the higher overlap rate of essential proteins
between different ensemble methods does not translate to
increased correlation but rather decreased correlation
compared with the centrality measures. Therefore, the en-
semble framework is valuable for predicting essential pro-
teins from PINs. For organisms which have no available
protein interaction data, computational methods for the
construction of PINs [45] could give rise to a purely in
silico network topology for predicting essential proteins.

The proposed ensemble framework can considerably
improve the prediction accuracy of five centrality mea-
sures as well as the overlap rate between them for pre-
dicting essential proteins. However, the prediction
accuracy decreases with the increase of n. The reason
may be the fact that although essential proteins tend to
be co-expressed with their interacting proteins, there are
some essential proteins that have low co-expression
levels with their interacting proteins. With the improve-
ment in accuracy and completeness for both protein
interaction data and gene expression data, we envisage
that the effectiveness of the proposed ensemble frame-
work might be enhanced accordingly.

In future research, more sophisticated ensemble frame-
works will be explored for the discovery of essential pro-
teins, especially the ensemble framework to integrate the
predictive power from different topological properties as
well as different types of biological information. Feature
selection is often of a very important role in classification
models. As reported in [46], features used to train the
classifier determine its speed and performance. For identi-
fying essential proteins across related organisms, especially
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distantly related organisms, feature selection should be
more important since both the correlation level and pre-
dictive power of the features may vary in different organ-
isms [35]. In the future, we will be also interested in
developing feature selection method for identifying essen-
tial proteins from distantly related organisms.
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