
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Marius Blom

nRF52 with OpenThread

Master’s thesis in Cybernetics and Robotics

Supervisor: Tor Onshus

February 2020

Master

nRF52 with OpenThread

Marius Blom

2020

Master-thesis

Department of Engineering Cybernetics

Norwegian University of Science and Technology

1

Problem

The LEGO-robot project have been ongoing since 2004 and have been the subject of several
master thesis and projects. The goal with these robots is to map an unknown labyrinth and thus
the robots that are available this year have different specifications and algorithms. The robots
communicate with a server written in Java that acts like a brain, where the different commands
are sent to the robots involved.
This theses will focus on continuing the work of Grindvik[6] with rewriting the current server
from Java to C++. This thesis will also continue the work with the NRF robot used by Leithe[9]
and get the robot communicate through OpenThread with the new C++ server.
The student will look closer at the following bullet points in this thesis.

• Inspect and analyse the server written in Java

• Inspect server written in C++

• Add navigation algorithms to the server written in C++

• Implement thread with nRF52840 for communication

• Set up a border router to use with future projects/thesis

• Implement new communication with existing NRF robot

i

Summary

The purpose of this thesis was to continue the work done by Grindvik with rewriting the existing
Java server application to C++. This work also include using the NRF robot to communicate
with the new C++ application by adding new hardware to the robot, which requires implement-
ing Thread for a local network to use with the robots, setting up a border router to forward
information in any direction to an external network and implementing a MQTT-SN gateway for
communication with a MQTT broker.

For the NRF robot to be able to communicate with the C++ application, the Tread net-
work was set up by using OpenThread, which is the open-source implementation of Thread. A
Raspberry PI was set up to function as a border router and as a MQTT-SN gateway. Since the
Raspberry PI lack the IEEE 802.15.4 standard used by Thread, a nRF52840-dongle had to be
connected and set up to be used as the network co-processor in the application layer.

The NRF robot already had the software to communicate with peripherals with the I2C
protocol but lacked the necessary hardware to communicate via Thread. The communication
of the NRF robot was updated from using Bluetooth Smart via the system-on-chip and instead
were set up to communicate through the MQTT protocol by using a nRF52840-dongle via I2C.

The C++ application were tested with a real robot by subscribing to topics on an online
MQTT broker. The NRF robot would publish measurements made by the infrared sensors to
the same topic through the MQTT-SN gateway that is set up on the Raspberry PI and vice versa.

The code in the C++ application have been cleaned up by moving some of the function-
alities from the main class and into their own classes. A new function was made in the C++
application, where a real robot will read coordinate pairs published by the C++ application , the
coordinate pairs will be relative to the robots current position in the real-world to achieve an
implementation of a simple navigation algorithm.

ii

Oppsummering

Formålet med oppgaven var å fortsette med jobben Grindvik hadde gjort når det kommer til å
skrive om Java applikasjonen til C++. Denne oppgaven inkluderte også jobben med å bruke
en NRF robot for å kommunisere med den nye C++ applikasjonen ved å implementere ny
maskinvare til roboten. Dette krever også å implementere Thread for lokalt nettverk for å bruke
med roboter, sette opp en grense router for å videresende informasjon i hvilken som helst retning
til et ekstern nettverk og implementere en MQTT-SN inngangsport for å kommunisere med en
MQTT megler.

NRF krever at det blir satt opp et Thread nettverk ved å bruke den åpne kildekode imple-
mentasjonen OpenThread for å kunne kommunisere med C++ applikasjonen. En Raspberry
PI ble satt opp som å fungere som en grense router, og som en MQTT-SN inngangsport. Siden
Raspberry PI mangler IEEE 802.15.4 standarden som brukes av Thread, så måtte en nRF52840-
dongel bli koblet til og brukes som en nettverks ko-prosessor i applikasjonslaget.

NRF roboten hadde allerede programvare for å kommunisere med periferiutstyr gjennom
I2C protokollen, men manglet den nødvendige maskinvaren for å kommunisere med Thread.
Kommunikasjonen på NRF roboten ble oppdatert fra å bruke Bluetooth Smart gjennom system-
on-chip på roboten, i stedet ble det satt opp kommunikasjon gjennom MQTT protocollen ved å
bruke en nRF52840-dongel via I2C.

C++ applikasjonen ble testet med en ekte robot ved å abonnere på emner fra en MQTT
megler på nett. NRF roboten gjorde målinger med infrarøde sensorer, og publiserte til samme
emne gjennom MQTT-SN inngangsporten som var satt opp på Raspberry PI.

Kildekoden i C++ applikasjonen ble ryddet opp i ved å flytte noen av funksjonalitetene fra
main klassen over til egne respektive klasser. En ny funksjon ble laget i C++ applikasjonen der
en ekte robot vil lese et koordinat par som C++ applikasjonen publiserer. Koordinat parene vil
være relative til robotens nåværende posisjon i den ekte verden for å oppnå en implementasjon
av en enkel navigasjon algoritme.

iii

Conclusion

The main goal of this thesis was to bring more functionality from the Java application into the
C++ application. Whereas the Java application have many intelligent ways to steer a real robot
when it comes to mapping and exploration, then the C++ application is more simple in that
regard.

The Thread network were already existing in previous thesis, but by not having the necessary
hardware and software available to be able to communicate with the C++ application resulted
in having to research and redo the process again.

The border router and MQTT-SN gateway can be run on any Linux machine, but since the
Thread network were set up with the intention of it being available for future thesis and projects
it was decided to purchase and use a Raspberry PI for this instead. and is therefore essential for
use with the C++ application. The Thread network have proven to be a robust solution and will
self-heal and assign various roles if a unit is disconnected. The Thread network itself will still
work without the Raspberry PI, but will lack a way to communicate with the C++ application
without the MQTT-SN gateway on the Raspberry PI.

Using a public MQTT broker have been a decent solution and I did not notice any problems
with high traffic on the broker. Even if I had success with a public broker, I would still highly
consider running it locally for more control.

Using a legacy layer on older robots that lack the necessary hardware to support Thread
will ease the process of moving from Bluetooth Smart to Thread. This does however add some
issues to the overall project in the long term as the MQTT protocol is currently tied together
with the legacy layer and hence any changes to the MQTT protocol will also require changes to
the legacy layer. This will add complexity to the project and remove many of the benefits with
running OpenThread natively on the robots.

The new navigation algorithm on the C++ application is very simple and will not steer the
robot in any intelligent manner. The intention of the algorithm was to have a way for the C++
application to steer a real robot without any manual input from the user. The coordinate pair
published by the server will always be in relation to the current position of the real robot. The
navigation algorithm have not been thoroughly tested because of issues mentioned in chapter
7.3.1. The C++ application still lack higher level SLAM tasks that is running on the Java
application.

iv

Preface

All students at Cybernetics and Robotics at The Norwegian University of Science and Technol-
ogy are doing a master thesis. The thesis was mostly written during the autumn of 2019 and
finished early winter of 2020 and forms the basis of evaluation.

This thesis is a continuation on the LEGO projects that started in 2004 and have been devel-
oped through many different projects and master thesis. This thesis have been individual. The
purpose of this thesis was to continue the work with creating a C++ server for communication
through OpenThread.

At the start of the thesis I was given a desktop computer, the source code for the C++
application from spring 2019, Java application from autumn 2018, legacy layer from spring
2019, NRF robot from spring 2019. I was also given the NRF robot itself and a nRF52832
development kit.

Later in the thesis I realised that I was missing crucial hardware and had to order the hard-
ware needed for Thread myself. I got the nRF52840-dongle(s) and Raspberry PI from the
Omega Workshop and got the nRF52840 development kit and various cables from an external
store. The hardware that was ordered is now part of the LEGO projects.

First of, thanks to my supervisor, Tor Engebret Onshus who were available for discussions
whenever I got stuck researching and provided me with a follow up on the thesis throughout the
semester.

Also a big thanks to Åsmund Stavdahl from the department of engineering cybernetics at
NTNU who provided me with guidance when soldering with a microscope on the new hardware
needed in the thesis.

Marius Blom
Trondheim, February 10, 2020

v

TABLE OF CONTENTS

Problem i

Summary ii

Oppsummering iii

Conclusion iv

Preface v

Table of Contents ix

List of Figures x

Listings xi

1 Introduction 1
1.1 Motivation . 1
1.2 How the thesis is presented . 1

2 Existing system 3
2.1 Starting point . 3

2.1.1 Robots . 3
2.1.2 NRF robot . 3
2.1.3 Java server . 4
2.1.4 C++ server . 4
2.1.5 IEEE 802.15.4 . 4
2.1.6 nRF52832 vs nRF52840 . 5

2.2 Testing existing Java system . 6
2.2.1 Mapping a circle with Java-application 6
2.2.2 Accuracy tracking . 7
2.2.3 Driving robot in a straight line . 8

vi

2.3 Running robots with C++ . 10

3 Java application 11
3.1 Toolchain . 11

3.1.1 JDK 8 . 11
3.1.2 Netbeans IDE . 11

3.2 SSNAR . 11
3.2.1 Simulation . 11
3.2.2 SLAM . 12
3.2.3 Navigation . 12
3.2.4 Communication . 12

4 C++ application 14
4.1 Toolchain . 14

4.1.1 Visual Studio . 14
4.1.2 vcpkg . 14

4.2 Third-party libraries . 14
4.2.1 boost . 15
4.2.2 sfml . 16
4.2.3 imgui . 16
4.2.4 paho-mqtt . 16
4.2.5 thor . 16

4.3 Server running . 17
4.4 Namespace . 17

4.4.1 NTNU::application . 18
4.4.2 NTNU::graph . 18
4.4.3 NTNU::gui . 19
4.4.4 NTNU::networking . 21
4.4.5 NTNU::utility . 21

4.5 Changes and additions to the application . 22

5 Communication with C++ application 23
5.1 Thread network . 23

5.1.1 OpenThread . 23
5.1.2 MQTT . 23
5.1.3 MQTT-SN . 24
5.1.4 Raspberry PI as Border Router . 24
5.1.5 nRF52840 as the dongle for RPi . 25
5.1.6 Ready for Thread . 26

vii

5.2 Thread with existing robots . 27
5.2.1 Toolchain . 27

5.3 nRF52840 dongle for robot . 28
5.3.1 Internal regulated source . 28
5.3.2 External regulated source . 28
5.3.3 Legacy layer on the NRF robot . 29
5.3.4 Thread topology with the nRF robot 29

6 C++ application with a real robot 31
6.1 Testing with the NRF robot . 31

6.1.1 Testing messages sent by the robot . 31
6.1.2 Testing messages sent by C++ application 33
6.1.3 Testing movement and sensor in a controlled space 34

6.2 Improving . 35
6.2.1 New robot event . 36

6.3 User interface . 36
6.3.1 New simulation panel . 36
6.3.2 New manual panel . 37
6.3.3 Changes to robots panel . 38

7 Discussion and Further work 43
7.1 Discussion . 43

7.1.1 MQTT versus BLE communication 43
7.1.2 C++ application versus Java application 43

7.2 Further work . 44
7.3 NRF robot . 44

7.3.1 Right motor . 44
7.3.2 Trackball . 44
7.3.3 Anti-collision . 44
7.3.4 Robot initialization . 44
7.3.5 Gear on the wheels . 44
7.3.6 Upgrade SoC . 45

7.4 C++ application . 45
7.4.1 SLAM . 45
7.4.2 navigate square . 45
7.4.3 Robot status . 45
7.4.4 Better support for multiple robots . 46

7.5 General suggestions to the project . 46

viii

7.5.1 Run robot with nRF52840 DK . 46
7.5.2 Local MQTT Broker . 46

Bibliography 46

Appendix 47
.1 Files overview . 47

ix

LIST OF FIGURES

2.1 Layers of the OSI model . 5
2.2 Mapping a circle . 6
2.3 Matlab plot of NRF . 7
2.4 Robot reach destination . 8
2.5 Robot does not reach destination . 9

4.1 Server running . 17

5.1 MQTT-SN gateway illustration . 24
5.2 Raspberry Pi 3 Model B+ . 25
5.3 Raspberry Pi 3 Model B+ with NCP dongle 26
5.4 SB2 cut, SB1 soldered . 28
5.5 Thread topology . 30

6.1 charging station . 32
6.2 charging station2 . 33
6.3 drive office01 . 34
6.4 drive circle . 35
6.5 gui simulation . 37
6.6 manual . 38
6.7 gui robot . 39
6.8 navigate off . 40
6.9 navigate on . 41

x

LISTINGS

4.1 install vckpg . 14
4.2 install boost . 15
4.3 install sfml . 16
4.4 install imgui . 16
4.5 install paho-mqtt . 16
4.6 install thor . 16
5.1 Wireless Personal Area Network Status . 26
5.2 Legacy Layer main.c . 29
6.1 ROBOT IDLE callback . 36
6.2 navigate square . 41

xi

1 INTRODUCTION

This thesis is a continuation of the work done by Torstein Grindvik in his master thesis contain-
ing the use of a C++ application and the use of Thread communication instead of the Bluetooth
Low Energy used by the Java application.

1.1 Motivation

Robotics are often used in both simple and advanced repetitive tasks where autonomy is one
of the greatest achievements in robotics. This could take all kinds of form, from cutting grass,
vacuuming the home of people, to large robotic arms in an assembly line.

To move forward, we often have to take a step back and see where we are. Instead of trying
to invent the wheel, we can look at what technology already exist around us and adapt them to
our needs. A simple block of LEGO with an infrared sensor attached can be used to measure
distance, combine this with an electrical motor and some wheels and we have a robot that can
detect obstacles.

The collaboration between robots is an essential challenge in robotics. The ability for coop-
eration between robots make the sum of all parts larger than the parts themselves and open new
possibilities. By combining simple existing materials and sensor with software are we able to
achieve an autonomous system that can do the repetitive task we want it to perform.

We are only limited by our own imagination, the future is already here.

1.2 How the thesis is presented

The contents of the thesis

• Chapter 2 contain information on how the system was at the beginning of the thesis

• Chapter 3 contains some more information as to how the current Java system is working

• Chapter 4 contains information about how the C++ system is working

1

• Chapter 5 contains information about how the communication with the C++ system is
working and how to set up what is needed for it to run.

• Chapter 6 contains information as to how the C++ system and the Thread network work
together with a real robot

• Chapter 7 contains discussion and suggestion on how to improve the system and robot.

2

2 EXISTING SYSTEM

The LEGO project have been around at NTNU since 2004 as an attempt at mapping a labyrinth
using simple existing technology. Today there exist several different types of robots, the NXT
robot, AVR robot, EV3 robot, several Arduino robots and the NRF robot.

2.1 Starting point

2.1.1 Robots

There exist several different robots with different hardware and algorithms. The main purpose
of these robots are mainly the same even if they are built with different specifications. The main
goal of the robots is to receive coordinates to move towards from the Java server, then detect
objects, navigate around them and communicate this information back to the Java server, where
the Java server draw a map with the information sent by the robots.

2.1.2 NRF robot

The NRF robot is equipped with infrared (IR) sensors that emit an infrared light that detects
if the light gets reflected back to the sensor. The wheel rotation is measured with a magnetic
rotary encoder. This use magnetic force and sensor to decode rotation into an electrical signal.
The communication is done wireless with Bluetooth Smart. A new printed circuit board (PCB)
was developed in 2018 by Korsnes[8]. This new PCB use the nRF52832 System-on-Chip (SoC)
which comes with an increase in RAM and program storage capacities compared to the older
ATmega2560 and was improved with new functionality as an on-board display and a microSD
slot for portable storage. There was a continuation of this work in 2019 by Leithe[9] where
many of the sensors used on the robot were calibrated. A Kalman filter dedicated to estimating
the robot position was implemented.

3

2.1.3 Java server

Most of the functionality from an existing MATLAB application was ported over to Java in
2016.[12] It was also created a graphical application with an user interface. The communication
went from using Bluetooth to Bluetooth Low Energy (BLE, which is also known as Bluetooth
Smart), with the Nordic Semiconductor nRF51 USB dongle.[13] The Java application was later
revised to use Cartesian coordinates instead of the relative polar coordinates ported over from
MATLAB.

2.1.4 C++ server

There have been expressed a wish to use a more familiar language more suited to the background
of the students which tend to work on the SLAM project and Grindvik began to port over the
functionality from the Java application to C++ in 2019.[6] This included creating a graphical
application for drawing measurements sent by the robots, creating a user interface in order
to let users issue control over various tasks and implementing a future-proof communication
method with the robots. As mentioned in section 2.1.3, the communication stack used by the
Java application is built upon BLE. This implementation was entirely discarded in the C++
application. The new stack use Thread networking technology where this Thread networking
technology utilize the IEEE 802.15.4 standard which is not supported by the hardware on any
of the existing robots, including the NRF robot mentioned in section 2.1.2. This have been
mitigated to some degree by a creation of a legacy layer by Grindvik[6], this layer is more a
band-aid fix then a solution to the problem. The C++ application is according to Grindvik more
flexible in development and have more useful basic features, but it does not yet have higher
level SLAM features.

2.1.5 IEEE 802.15.4

IEEE 802.15.4 is a standard which has specifications on the data link- and physical layers of the
OSI model.

4

[1]

Figure 2.1: Layers of the OSI model

Physical layer

Data transmission occurs on this layer. Different channels on the chosen frequency are managed
here. Signal strength and energy usage and monitoring also happens here.

Data link layer

MAC frames are sent here. The layer acts as a higher level manager of the physical layer,
controlling access. Beaconing is also performed here, where beacons are sent and received in
order to exchange information about the network.

2.1.6 nRF52832 vs nRF52840

The nRF52832 SoC that is on the NRF robot mentioned in section 2.1.2 does not support the
IEEE 802.15.4 standard. There is however a new lineup of SoCs which support the IEEE
802.15.4 standard, the nRF52840. This is the newest SoC in the same family as the ones already
in use for their Bluetooth technology in the robots for the SLAM project.

5

2.2 Testing existing Java system

Getting the server and robot up were an important step to see how the system works and behaves
at the start of the thesis.

2.2.1 Mapping a circle with Java-application

The Java-application automatically detected the NRF robot with pre-existing code. The robot
could be connected to the existing Java-application through the Bluetooth on the nRF52832
system-on-chip. The robot moved strange and the mapping progress were very slow, the robot
would often come to a complete stop and would not continue to navigate with he commands
sent from the Java-application. I ran a short test with the NRF-robot inside a circle-track found
in the office to see how the robot would behave in a more closed environment.

Figure 2.2: Mapping a circle

We can see an incomplete map of the circle in fig 2.2 as seen from the Java-application. The
only solution to get the robot to move after it had stopped was to command the robot to move
to coordinates sent manually from the Java-application.

6

2.2.2 Accuracy tracking

The NRF-robot was then equipped with 5 IR-reflectors to use with the tracking of the exact
movement with OptiTrack in B333 ”Slangelabben”. It was quickly noticed that the robot had
problems to just drive in a straight line in B333 due to a more slippery surface. The issue became
even more apparent when the robot had to rotate in order to change heading. There seem to be
a very heavy weight on the trackball that is used to help the rotation of the robot. The weight of
the back of the robot caused to the friction of the trackball to be large enough for the trackball
to stop rotating and therefore causing the spinning rubber wheels in the front of the robot to
increase on the surface of the B333. This issue was mitigated slightly by cleaning the trackball.
This resulted in reduced spinning of the wheels while tracking the robot with OptiTrack.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.2

0

0.2

0.4

0.6

0.8

1
Counter Clockwise 1m square - 1st run

Real Path

Intended Path

Figure 2.3: Matlab plot of NRF

The data from the OptiTrack system was then plotted in Matlab, figure 2.3, and it can be seen
that the robot does not reach the destination when trying to manually drive the robot in a 1x1
meter square. There were done several attempts at tracking the robot, where this was the best
result.

7

2.2.3 Driving robot in a straight line

As mentioned in section 2.2.2, it was noted that the robot did not fully reach the destination. It
was then decided to see if the Java-application and the NRF-robot had the same measurements.
It was measured a 1 meter straight line in the office to see check if the robot were driving the
distance that was specified by the Java-application.

Figure 2.4: Robot reach destination

The robot managed to reach the target coordinates set by the Java-application as seen in figure
2.4. There were done several tests in the office with the same results. However there was some
outliers where the robot were nowhere close to reaching the target coordinates.

8

Figure 2.5: Robot does not reach destination

We can see from figure 2.5 that the robot did not always reach the target coordinates. This was
caused by high friction on the trackball on the back of the robot, as in this case it acted like a
brake and caused the rubber wheels on the robot to spin and set the robot of course. The robot
came to a stop when it thought it had reached the target coordinates, yet it is clear that this was
not the case.

9

2.3 Running robots with C++

It was not possible to run any of the robots with the C++ application that Grindvik[6] had started
on. None of the robots are compatible with the C++ application without adding new hardware
and there was not a running Thread network for communication. In practice this means that the
real robots had no way to communicate with the C++ application.

10

3 JAVA APPLICATION

The current robots use a Java application to navigate and draw a map of the surroundings. The
communication protocol with the Java application is Bluetooth Smart(BLE).

3.1 Toolchain

3.1.1 JDK 8

The Java application use JavaFX for the graphical user interface and the latest version of Java
(JDK12) does not come with the JavaFX library set. The Java development kit 8(JDK8) does
however include JavaFX and I found it easier to use the JDK8 instead of adding the JavaFX
library set manually.

3.1.2 Netbeans IDE

Netbeans integrated development environment was chosen because of familiarity and that it can
be used with JDK8.

3.2 SSNAR

System of Self-Navigation Robots(SSNAR) is the Java server application used with the thesis.
The Java application have been the main server with the current Bluetooth robots for many
years. There seem to be several different versions of this server.

3.2.1 Simulation

The simulation of the robots in the Java application was developed by Thon in 2016. The
simulator is able to simulate robots. This simulator have later been improved upon and is
working as intended with simulating a real robot.

11

3.2.2 SLAM

Simultaneous localization and mapping

3.2.3 Navigation

The A* algorithm were used for path-planning on the Java application, where the A* algorithm
is a search-algorithm that utilize the principle of best-first. The A* algorithm is similar to
dijkstra algorithm where it use an open set and a closed set where new nodes are inserted into
the open set. The algorithm computes a cost for each node and at each iteration it selects the
node with the lowest cost from the open-set. The algorithm were implemented by Thon so
that it can traverse both directly and diagonally in the map. The current Java application use
cartesian coordinates.

3.2.4 Communication

The current BLE communication use a nRF51-server dongle for communication with the server
and a nRF51-peripheral dongle on the robots. Some of the current robots use a nRF52832-
dongle for BLE instead, which serve the same purpose as the nRF51-dongle. The message
protocol can be summarised by Table 3.1 and Table 3.2.

Robot

Message type Parameters

Handshake

Message type
Robot width and length

Tower offset
Axle offset

Sensor offset
Initial sensor heading

Update

Message type
Robot position (x,y)

Orientation
Tower heading
Sensor values

Status
Message type

Idle

Table 3.1: Message list from the robot

12

Server
Message type Parameters

Handshake
Message type
Orientation

Distance

Update

Message type
Handshake confirmed

Pause robot
Unpause robot
Robot finished

Table 3.2: Message list from the server

13

4 C++ APPLICATION

Several tools and various hardware need to be installed and configured to be able to start work-
ing with the new C++ application.

4.1 Toolchain

There are many different tools and software available for developing the new C++ application.

4.1.1 Visual Studio

Some of the required libraries for the C++17 application does not work as intended with 64-bit.
The C++ application is therefore built in a 32-bit environment. Visual Studio was chosen as a
development tool because of familiarity with the environment.

4.1.2 vcpkg

vcpkg is a command-line package manager that simplifies the acquisition and installation of
third-party libraries. The libraries in the vcpkg Windows catalog have been tested for compati-
bility with Visual Studio 2015/2017/2019.

Listing 4.1: install vckpg

1 git clone https://github.com/microsoft/vcpkg.git

2 cd vcpkg

3 bootstrap-vcpkg.bat

4.2 Third-party libraries

Various third-party libraries have been used and are mandatory for the C++ application to run.

14

4.2.1 boost

Boost provides a open-source and peer-reviewed portable C++ source libraries. Boost works on
almost any modern operating system, like UNIX and Windows variants.[2]

Listing 4.2: install boost

1 .\vcpkg install boost

boost Graph

Graphs are mathematical abstractions that are useful for solving many types of problems in
computer science. Part of the Boost Graph Library is a generic interface that allows access
to a graph’s structure, but hides the details of the implementation. The Boost Graph Library
algorithms consist of a core set of algorithm patterns and a larger set of graph algorithms. The
core algorithm patterns are breadth first search, depth first search and uniform cost search.[3]
The graph algorithms in the Boost Graph Library currently include

• Dijkstra’s Shortest Paths

• Bellman-Ford Shortest Paths

• Johnson’s All-Pairs Shortest Paths

• Kruskal’s Minimum Spanning Tree

• Prim’s Minimum Spanning Tree

• Connected Components

• Strongly Connected Components

• Dynamic Connected Components (using Disjoint Sets)

• Topological Sort

• Transpose

• Reverse Cuthill Mckee Ordering

• Smallest Last Vertex Ordering

• Sequential Vertex Coloring

15

boost Fiber

Fiber provides a framework for micro-/userland-threads (fibers) scheduled cooperatively. Each
fiber has its own stack.

4.2.2 sfml

Simple and fast multimedia library (sfml) provides a sample interface to various components of
the PC.[14] A multi-platform multimedia library composed of five modules: system, window,
graphics, audio and network.[14]

Listing 4.3: install sfml

1 .\vcpkg install sfml

4.2.3 imgui

Interface framework for graphical applications.[4] Well suited for creating user interfaces.

Listing 4.4: install imgui

1 .\vcpkg install imgui

4.2.4 paho-mqtt

A library which enables C++11 applications to connect to a MQTT broker, publish messages
to the broker, and to subscribe to topics and receive published messages.[5] Paho-mqtt did not
integrate well into the C++ application and had to be added manually in Visual Studio.

Listing 4.5: install paho-mqtt

1 .\vcpkg install paho-mqtt

4.2.5 thor

Multi-platform, open source C++ library which provides several extensions to SFML with
higher-level features.[7]

Listing 4.6: install thor

1 .\vcpkg install thor

16

4.3 Server running

After the mandatory libraries were installed, using x86 and using C++17 it was possible to get
the C++ application to properly build.

Figure 4.1: Server running

A graphical overview of the running C++ application with nothing connected can be seen
from figure 4.1.

4.4 Namespace

The previous authors of the Java application have separated their contributions by prefixing their
classes and functions by short keywords. Some of these have been combined and made into
namespace in the C++ application. The prefix TG used by Grindvik have been changed to the
more generic name NTNU and some new namespace have been added where it was necessary.
The new code have been merged into existing functions and classes instead of separating the
contribution like it was done in the Java application to hopefully make the code easier to work
with in the future. Most of this is unchanged and can also be found in chapter 7.2 and 7.3 in
Grindvik thesis[6].

17

4.4.1 NTNU::application

For uses directly concerned with the actual application.

SLAM::message

Messages from robots. Messages include robot position and obstacles.

SLAM::robot

Abstraction of robots. They are drawable and intended to be shown graphically.

SLAM::robots

Messages are fed to this robots class, where they are parsed. A new robot might then be
found at any time, and this class adds robots dynamically. A robot is defined by the topic
to which it publishes messages to. There are some events put out by this class. These include
ROBOT MOVED, ROBOT IDLE, ROBOT FOUND OBSTACLE and ROBOT CLEARED POINTS.
These can be assigned as callbacks.

SLAM::robot simulation

This class simulates a robot by publishing messages. The simulated robot move around the map
by randomising small changes of position and randomising obstacles to publish a mqtt mes-
sage to v1/robot/simulated/adv. It is possible to simulated the path-planning with the simulated
robot but there is however not currently possible to have the simulated robot move to a specific
coordinate.

SLAM::grid

High-level grid used in the application. It combines NTNU::graph::grid::obstructable grid and
NTNU::gui::elements::circle grid. The result is a grid which can be shown and represented
graphically, and also be obstructed and navigated via pathfinding.

SLAM::utility

Collection of various free utility functions. Functions include converting to and from the global
coordinate system and the rows and columns found in the application grid drawn in the appli-
cation, getting random numbers, random colours and converting from bytes to int16 t.

4.4.2 NTNU::graph

Deals with graphs, in the sense of nodes, vertices and algorithms using graph constructs

18

base::grid

Base grid abstraction in the context of graphs. Can be constructed from a given number of rows
and columns.

grid::obstructable grid

Inherits from base grid to allow to mark nodes as obstructed. It is possible to query whether a
node is obstructed.

grid::utility

Contains a utility function for converting integer row and columns accesses into vertex descrip-
tors as used internally by Boost.graph library

grid::vertex hash

Boost.graph requires a hasing function for placing vertices into an unordered map, which is
done as part of the pathfinding algorithm.

pathfinding

Have two functions. First function is solve, which takes a grid graph and two points in a grid
and return a vector of points which represents the points in the solved path between the two
points given. The next function is reduce, which takes a vector of points and reduce it to lines.

4.4.3 NTNU::gui

Everything related to graphics is sorted here, including drawing of all primitives and all handling
of panels.

base::path

This class is graphically drawable. The path is composed of lines (via NTNU::gui::collections::lines)
which connects waypoints which are circles (via NTNU::gui::collections::circles). It’s intention
is to graphically show a path.

base::updatable

Header-only class. It is a simple abstract class with a single virtual function that must be defined
in child classes. This function is given a time delta since the last time it was called. By inheriting
from this interface, any class can add itself as an updatable via the NTNU::gui::base::window
class.

19

base::window

Provides the actual window in which all the graphics are shown, including primitives and panels.
It allows the user to add panels, drawables, and updatables to the window via polymorphism. If
any of these are added via a single function call, the given element will be shown as part of the
window.

collections::circles

This class is a helper class wrapping a collection of the basic drawable circle. It has some
functionality for acting on the whole collection, such as setting colours and alpha values, which
apply to the whole collection. Attributes such as radius and point resolution of circles are
settable.

collections::lines

Wraps a collection of lines, similar to NTNU::gui::collections::circles.

elements::circle grid

This class represents a drawable grid of circles. It allows creating a grid with the amount of
rows and columns wanted, and a given separation. Separation indicates the space between rows
and columns, essentially being the diameter of a given circle in the grid. The class can also have
customisable colouring and alpha values.

panel::clicks

Control what mouse clicks do during the runtime of the application. It generate events which
are generated when the left-click or right-click mode changes.

panel::panel

Acts as a parent class for all panels, allowing them to be grouped together via polymorphism.
If the panel class is constructed with a title, it will become a stand-alone panel with it’s own
window. If no title is given, it is expected to be embedded within another panel.

panel::control panel

Holds other panels. Main feauture of this class is that when a panel is added to it, the child
panel is automatically placed within a new tab in the control panel.

20

panel::simulation panel

Panel used for simulation of a robot by running the task from NTNU::application::SLAM::robot simulation

panel::target panel

Panel that is a used to manually drive the robot, either to a certain coordinate or a set of pre-
determined coordinates that form a square.

panel::MQTT panel

Panel used as a helper for the MQTT communication in the application. It allows manually
publishing messages to arbitrary topics, manually subscribing to topics and monitoring the flow
of in- and outbound messages.

4.4.4 NTNU::networking

All protocols and their usages are sorted under this namespace.

protocols::MQTT::MQTT

Implements all the MQTT functionality. The class wraps an asynchronous MQTT C library.
It exposes a number for events which can be used with callbacks: connect response, discon-
nect response, publish response, connection lost, message arrived and delivery complete. An
important note of this class is that the underlying C library uses threads to achieve asynchronic-
ity. All callbacks are given in a multi-threaded context, which means special care has to be
taken when using these events.

protocols::MQTT::utility

Introduce a structure representing an MQTT topic. This application uses topics which are com-
posed of a version, a sender, an ID and a command. This structure is arbitrary and need not be
used in the future if another scheme is desired.

4.4.5 NTNU::utility

Utility functions and classes of higher abstractions-not sorting under any other namespace-sort
here

callbacks

Enabling class which provides a simple shortcut to allow any class to use the pattern of event-
callback.

21

4.5 Changes and additions to the application

NTNU::application
SLAM::robot modified
SLAM::robots modified

NTNU::gui
panel::target panel new

panel::simulation panel new
NTNU::graph unchanged
NTNU::networking unchanged
NTNU::utility unchanged

Table 4.1: Changes to namespace

Table 4.1 shows where changes were made and which namespace that were added to the
C++ application.

22

5 COMMUNICATION WITH C++

APPLICATION

Grindvik did a case study on an alternative method of communication in chapter 5 of his the-
sis. [6] The newer C++ server is using Thread for communication instead of BLE. This mesh
network requires new hardware and software that were not available and had to be set up again
from scratch.

5.1 Thread network

Thread is a low-power wireless mesh networking protocol based on Internet Protocol (IP).
Thread enables device-to-device and device-to-cloud communications. The network have no
single point of failure and can self-heal and reconfigure when a device is added or removed
which means that devices in a Thread network will automatically change roles if a device dis-
connect from the network.

5.1.1 OpenThread

OpenThread from Google is an open-source implementation of Thread.

5.1.2 MQTT

MQTT is a machine-to-machine messaging transport protocol. It is a publish/subscribe messag-
ing protocol, which means that it will let clients subscribe to topics and then receives messages if
other clients publish to such a topic.[10] The protocol usually runs over TCP/IP. MQTT requires
a broker, which is responsible for receiving all messages, filtering the messages, determining
who is subscribed and sending the messages to the subscribed clients.

An example of a topic which is used in the C++ application is v1/robot/name of robot/adv,
where the robots publish their current position and coordinates to detected obstacles in a coor-
dinate system.

23

5.1.3 MQTT-SN

MQTT-SN(MQTT for Sensor Networks) is designed to mostly work the same way as MQTT.
It also use a publish/subscribe model and can be considered as a version of MQTT. The main
difference is to reduce the size of the message payload and to remove a need for a permanent
connection by using UDP instead of TCP.

MQTT-SN

MQTT-SN

MQTT-SN gateway MQTT Broker

Raspberry PI

Public broker

Robot

Robot

Figure 5.1: MQTT-SN gateway illustration

As seen from the illustration in figure 5.1, a MQTT-SN gateway is required between the
MQTT-SN client and the MQTT broker.

5.1.4 Raspberry PI as Border Router

The C++ application use the MQTT messaging protocol for communication. A border Router
and a MQTT-SN gateway was required for the robots to communicate with the C++ application.
A border Router is a device that can forward information between a Thread network and a non-
Thread network. The OpenThread border router software supports any Linux machine.

A Raspberry Pi 3 Model B+ was set up with an image of a linux installation from Nordic
Semiconductor which include the OpenThread border router and a MQTT-SN gateway.

24

Figure 5.2: Raspberry Pi 3 Model B+

The Raspberry Pi were also configured as an access point with a static local IPv4 for wireless
connection to ease the process of finding the external IPv4 whenever the external IPv4 changed.

The MQTT-SN gateway on the Raspberry PI use a public MQTT broker and this can easily
be changed by setting up and configuring a MQTT broker locally instead.

5.1.5 nRF52840 as the dongle for RPi

The Raspberry Pi 3 Model B+ does not have the IEEE 802.15.4 standard that is required for
Thread. Thus the Raspberry PI would require a network co-processor(NCP) in the application
layer to be able to communicate with OpenThread devices through a serial interface over the
Spinel protocol, where Spinel is a general management protocol initially designed to support
Thread-based NCPs.

25

Figure 5.3: Raspberry Pi 3 Model B+ with NCP dongle

An nRF52840 dongle was required to be able to connect the Raspberry Pi to the Thread
network. The Thread NCP example code from Nordic Semiconductor (nRF5 SDK for Thread
and Zigbee v3.2.0) was used and flashed on to the usb dongle.

5.1.6 Ready for Thread

With the NCP setup and OpenThread running on the Raspberry PI it was possible to get the
wireless personal area network up and running.

Listing 5.1: Wireless Personal Area Network Status

1 pi@raspberrypi:˜ $ sudo wpanctl status

2 wpan0 => [

3 "NCP:State" => "associated"

4 "Daemon:Enabled" => true

5 "NCP:Version" => "OPENTHREAD/20180926-00632-g2279ef61; NRF52840"

6 "Daemon:Version" => "0.08.00d (; Jun 11 2019 09:10:53)"

7 "Config:NCP:DriverName" => "spinel"

8 "NCP:HardwareAddress" => [F4CE36B7BCC5EB54]

26

9 "NCP:Channel" => 11

10 "Network:NodeType" => "router"

11 "Network:Name" => "NordicOpenThread"

12 "Network:XPANID" => 0xDEAD00BEEF00CAFE

13 "Network:PANID" => 0xABCD

14 "IPv6:LinkLocalAddress" => "fe80::da:8385:d6d1:2ca9"

15 "IPv6:MeshLocalAddress" => "fdde:ad00:beef:0:e93c:64c1:87d8:7e9a"

16 "IPv6:MeshLocalPrefix" => "fdde:ad00:beef::/64"

17 "com.nestlabs.internal:Network:AllowingJoin" => false

We can seen the status of the Thread network from listing 5.1.

5.2 Thread with existing robots

None of the current robot have the hardware to support Thread. Grindvik made a legacy layer
in order to bridge the gap between the new C++ application using Thread and the older BLE
communication used by the robots. The legacy layer software were available, but the new
hardware had to be added to the robot.

5.2.1 Toolchain

There are many different software and tools available that can be used, and there are many
different ways for developing and flashing software to the robots and the development kits. It is
possible to use other tools than those that are suggested here.

SEGGER

SEGGER is software development tool for embedded systems(SES) which have a free license
for development with nRF system-on-chip, which made using SES an easy choice when work-
ing with the nRF52832 system-on-chip on the robot. SES can also be used to develop software
for the nRF-dongles and all of the example-code from the software development kits from
Nordic Semiconductor contains a SES project file.

nRF connect

nRF Connect with the programmer utility from Nordic Semiconductor is designed to be used
with nRF51, nRF52 and nRF53 development kits and dongles. It made the flashing of develop-
ment kit and the dongles easier as long as you had compiled a *.hex file and used a SoftDevice,
where a SoftDevice is a precompiled and linked binary software developed by Nordic Semicon-
ductor.

27

nRF52840 development kit

The nRF52840-DK is a Bluetooth 5, Bluetooth mesh, Thread and Zigbee development kit for
the nRF52840 system-on-chip. Having a development kit is not required but it is highly recom-
mended when developing software for the nRF-dongles since the nRF-dongles does not have a
real debugging option.

5.3 nRF52840 dongle for robot

The nRF52840 dongle can be powered from different sources and would have to be modified to
be able to use an external power source.

5.3.1 Internal regulated source

The default power supply of the nRF52840 dongle is the USB interface. The USB interface
supplies power to the on-chip high voltage regulator of the nRF52840 system-on-chip.[11]

5.3.2 External regulated source

The nRF52840 dongle can be configured to be supplied from an external regulated 1.8-3.6 V
source through the VDD OUT connection point. [11]

Figure 5.4: SB2 cut, SB1 soldered

As seen from figure 5.4 SB2 must be cut and SB1 must be soldered in order to use an
external power source. The USB will no longer provide power which means that the dongle can
no longer be flashed via USB without reversing this process. An alternative option in order to
be able to flash the dongle without USB is to solder a SWD interface directly on the dongle.

28

5.3.3 Legacy layer on the NRF robot

The legacy layer use the I2C communication bus that was available on the NRF robot, where
the nRF52840-dongle acts as a I2C slave. The first coordinate pair the robot sends to the server
is the position of the robot where the rest of the coordinate pairs are obstacles. The only thing
the robot receive is waypoints, e.g. where the server wish the robot to go.

Listing 5.2: Legacy Layer main.c

1 static nrfx_twis_config_t m_twis_config = {

2 .addr = {0x72,

3 0x73},

4 .scl = NRF_GPIO_PIN_MAP(0, 31),

5 .scl_pull = (nrf_gpio_pin_pull_t)NRFX_TWIS_DEFAULT_CONFIG_SCL_PULL,

6 .sda = NRF_GPIO_PIN_MAP(0, 29),

7 .sda_pull = (nrf_gpio_pin_pull_t)NRFX_TWIS_DEFAULT_CONFIG_SDA_PULL,

8 .interrupt_priority = NRFX_TWIS_DEFAULT_CONFIG_IRQ_PRIORITY};

We can see from a snippet of the legacy layer from listing 5.2 that pin 31 and pin 29 on the
nRF52840 dongle is used for the I2C communication with the NRF robot.

The reason as to why the NRF robot were chosen with the new Thread communication was
because the robot already contained a way to read or write on the I2C bus. This will make it
possible to send a MQTT message to a topic the robot subscribe to and the nRF52840 dongle
will request to read or write on the I2C bus.

5.3.4 Thread topology with the nRF robot

The nRF52840 development kit were flashed with a similar legacy layer that were used on
the nRF52840-dongle to simulate having more than one robot in the Thread network. The
development kit would not send any messages over the Thread network, but would instead be
used to listen and analyse how the network would connect and self-heal if a device were to be
disconnected from the network.

29

Figure 5.5: Thread topology

A clear real-time image of the Thread network can be seen from figure 5.5 by using the
Thread Topology Monitor(TTM) from Nordic Semiconductor.

30

6 C++ APPLICATION WITH A

REAL ROBOT

With the Thread network, the border Router, the MQTT-gateway and the legacy layer set up it
was possible to run the C++ application with a real robot in the real-world.

6.1 Testing with the NRF robot

The NRF robot would connect to the Thread network through the nRF52840-dongle, where the
Raspberry PI would act as a MQTT-SN gateway for publishing to the public MQTT broker used
in this thesis. The C++ application would subscribe to the topic published by the NRF robot
and read the feed that was handled by the public MQTT broker.

6.1.1 Testing messages sent by the robot

The charging station for the real robots were set up to see how well the real robot would detect
obstacles in the real-world. The robot would stand still and only the measurement messages
from the infrared tower would be used. This would give a good indication to see if the obstacles
detected by the infrared sensor tower on the robot and the messages published by the robot were
the same.

31

Figure 6.1: charging station

Figure 6.1 show how the charging station looks like in the real-world and how the NRF
robot were positioned in comparison with the charing station.

32

Figure 6.2: charging station2

As can be seen from figure 6.2 the robot is able to detect obstacles and place them in the grid
of the server. The message protocol is different from the Java application as in the robot will
only transmit the current position of the robot and the coordinates to an obstacle, whereas the
old BLE communication protocol would update the server with the current status of the robot,
e.g. if the robot was moving or idle.

6.1.2 Testing messages sent by C++ application

An attempt was made to try and drive the robot around the office. This was accomplished by
manually send a coordinate pair with MQTT to the robot that would act as a waypoint in which
the robot would drive to. This would give a good indication to see if the waypoints published by
the C++ application would be properly received by the NRF robot and if the NRF robot would
physically move in the real-world.

33

Figure 6.3: drive office01

Driving the robot manually was successful as can be seen from figure 6.3. The robot would
drive to the waypoint it was assigned and the infrared tower would find obstacles. The robot
would however drive blindly and crash into obstacles instead of stopping and requesting a new
waypoint even if there is supposed to be software on the robot that should handle and detect if
the robot is about to crash.

6.1.3 Testing movement and sensor in a controlled space

There is a large circular track with walls in the office that is often used to run real robots in
the real-world. This would give a chance to see how the server would handle the measure-
ments sents by the sensor tower and how the C++ application would place obstacles in a more
controlled space.

34

Figure 6.4: drive circle

As can be seen from the figure 6.4, the robot is able to draw a fairly accurate map of the
circle. Since the coordinates to the obstacle is in relation to the robot current position, then the
C++ application is able to place these obstacles fairly accurate when the robot is moving.

One of the reason as to why this circle is not as accurate as it should be is because the right
motor of the NRF-robot began to show signs of wear and tear. The motor would not always
turn as it should and therefore the robot would physically be at a different coordinate then it
was supposed to be even if the robot reported back the current position, and therefore the server
would place the obstacles wrongly.

6.2 Improving

Some improvements had to be made after testing to see how the C++ application would handle
a real robot in the real world.

35

6.2.1 New robot event

The C++ application had no indication if a robot ever reached the destination given by a way-
point and would therefore keep publishing new waypoints through MQTT at very fast intervals.
The old BLE communication used status parameters which the robot would send to the server
to avoid getting spammed with new commands. Since this does not currently exist in the new
communication protocol it was decided that the server would handle this instead.

A new event called ROBOT IDLE were created which compared the messages read through
the MQTT feed. The ROBOT IDLE event would then compare the robots last position with the
current position by reading the current topic of the MQTT feed and will give the robot an idle
status if those coordinates are the same. In practice this means that other classes will be able to
listen to the ROBOT IDLE event by using a callback function.

Listing 6.1: ROBOT IDLE callback

1 robots.enable_callback(NTNU::application::SLAM::robots_events::ROBOT_IDLE,

2 [&](std::any context) {

3 try {

4 auto [id, x, y] = std::any_cast<std::tuple<std::string,

5 int16_t,

6 int16_t>>(context);

7 std::cout << "Robot [" << id << "] idle at {" << x << ", " << y << "}\n";

8

9 }

10 catch (const std::bad_any_cast& e) { std::cout << e.what(); }

11 });

Listing 6.1 show how to implement the callback function for ROBOT IDLE in the C++ appli-
cation.

6.3 User interface

Some changes were made to the user interface. Two new classes for the panel were added and
an existing panel got some additional functionality.

6.3.1 New simulation panel

A new class was made for the simulation panel, which inherits from the panel class. The
class use the same NTNU::application::SLAM::robot simulation as earlier for a randomized
simulated robot.

36

Figure 6.5: gui simulation

From figure 6.5 it can be seen that the panel use the same design as the previously existing
simulation panel.

6.3.2 New manual panel

A new class was also made for the manual drive panel. This panel did not previously exist as a
class of its own, but were instead part of the main class.

37

Figure 6.6: manual

Figure 6.6 shows the manual drive tab. No changes to the functionality or design the panel.

6.3.3 Changes to robots panel

A new navigation panel were added but it was later decided to merge it with the robot panel
instead to avoid too many options or confusion with the user interface.

38

Figure 6.7: gui robot

The robots panel got two new functionalities as can be seen from figure 6.7. The ”Start
navigation in a square” button will look at the current position of the robot and give a new
waypoint relative to the current position of the robot whenever the robot would stop moving,
e.g. ROBOT IDLE event. The waypoints published by the C++ application will resemble a
square, hence the name ”navigation in a square”.

The stop navigation button will publish a waypoint to the current position of the robot and
the robot would therefore stop navigation since it had already reached the destination.

39

Figure 6.8: navigate off

We can see a simulated world with simulated obstacles from figure 6.8. The C++ application
would publish a new waypoint relative to the current robot position. This was also confirmed by
debugging and looking at the current target on the real-robot. A new waypoint would be pub-
lished when the simulated robot reached the current target waypoint. This was also confirmed
by looking that the current target of the real robot would update with the new waypoint.

40

Figure 6.9: navigate on

The navigation also includes the use of pathfinding through the A* search algorithm from
the Boosts.graph library. In practice this means that if there are obstacles between the target
waypoint and the robot, then the algorithm will find the shortest path between the nodes that
are not obstructed. This function do not however handle corner cases well, where for example
it will detect obstacles and change the pathing between the final waypoint and the robot, but it
would not handle if the final waypoint is placed on an already detect obstacle.

navigate square

The problem with the faulty motor of the NRF robot became a bigger issue and caused the
robot to never reach the waypoint it was supposed to. This caused the navigation software on
the robot to try and compensate for a missing motor by rotating the one working motor back
and forth. This caused the server to never receive the ROBOT IDLE event, which resulted in
the C++ application to never give out a new waypoint.

41

Listing 6.2: navigate square

1 auto navigate_square = [&](const std::string& robot, bool state) {

2 std::pair<int, int> target;

3 auto get_pos = robots.position(robot);

4 if (!get_pos)

5 return;

6 auto source = get_pos.value();

7 auto result = NTNU::application::SLAM::utility::coord_to_row_col(grid,

8 source.first,

9 source.second);

10 if (!result)

11 return;

12 auto [robo_row, robo_col] = result.value();

13 if (state) {

14 auto coords = robots.get_square_values(robo_row, robo_col);

15 for (int i = 0; i < coords.size(); i++) {

16 target = { coords[i].first, coords[i].second };

17 update_path_for_robot(robot, target);

18 auto next_time = system_clock::now() + milliseconds(1000);

19 sleep_until(next_time);

20 }

21 }if(!state)

22 {

23 target = { robo_row, robo_col };

24 update_path_for_robot(robot, target);

25 }

26 };

We can see that a timer was added on line 18 and line 19 from listing 6.2. This line was
added because of the problems with one of the motor of the NRF robot when trying to navigate
in the real-world. This timer was added to simulate the ROBOT IDLE event that would have
occurred when the robot reached the destination. This will work in practice with a simulated
robot to go through a sequence of waypoints but will however not work with a real robot in the
real world. This should be replaced with a callback to ROBOT IDLE when using a real robot.

42

7 DISCUSSION AND FURTHER

WORK

7.1 Discussion

7.1.1 MQTT versus BLE communication

One of the biggest current challenges with the MQTT protocol is that there are currently only
one robot that have the hardware and software to support it via Thread. The current version
of the message protocol used in this thesis is very simple with only two message pairs, current
robot coordinates and detected obstacles coordinates.

7.1.2 C++ application versus Java application

The Java application have been through several development cycles and have had added func-
tionality and improvement through many years. It is therefore natural that the Java application
currently contains more features when it comes to algorithms that are designed to better control
how the robots will explore and map a room. The downside to having been through many de-
velopment cycles and many different developers is that the consistency of the code itself varies.
Several classes in the Java applications have a single responsibility, while other classes have a
large number of dependencies and too much functionality.

The C++ application can give the robot a manual target, navigate with a set of predetermined
waypoints and click targeting. The C++ server do however lack algorithms for steering the
robots in an intelligent manner. The C++ application also lack a good simulation of how a real
robot would act in a simulated environment. One of the goals of Grindvik when he designed the
new C++ application was that the new classes should have a single responsibility and achieve
decoupling through events.

43

7.2 Further work

Contains suggestions that need to be looked closer at for continuation of the thesis for the future.

7.3 NRF robot

The NRF robot are not in a good state and there need to be made improvements for future work
with the overall project.

7.3.1 Right motor

The right motor on the NRF robot started to act strange early in the thesis. The motor stopped
working completely towards the end of the thesis and it is required to either fix the faulty motor
or give the robot two entire new motors.

7.3.2 Trackball

The NRF robot use a trackball in the back in order to turn. This trackball is under heavy weight
and would become dirty after some use. This caused the friction of the trackball to increase
and the robot would have difficulty turning, or in some cases it would have a difficult time just
driving in a straight line. This might be mitigated some with a larger trackball, or look at the
weight distribution of the robot.

7.3.3 Anti-collision

The NRF robot should have some anti-collision measurements that is not related to the server.
The anti-collision did not seem to work at all though and should be looked at.

7.3.4 Robot initialization

There is a problem with the NRF robots initialization process when used with the nRF52840-
dongle. It will look like the robot will do the initialisation process normally and the infrared
sensor tower would start rotating and detecting obstacles. The robot would not however always
initialise the dongle and therefore it would not be able to communicate with the Thread network,
e.g. the C++ application would not get any messages sent by the robot.

7.3.5 Gear on the wheels

There is excessive gear ratios on from the motor to the wheels. This gear ratio causes the NRF
robot to have a reduced speed and the robot need a longer axle to the wheels. This also causes

44

the wheels to be further away from the robot and in practice this makes the robot wider then it
haves to be.

With the already faulty motor of the NRF robot, it should be considered if it might be better
to just change the type of motor to possibly avoid the excessive gear ratios in the future.

7.3.6 Upgrade SoC

The NRF robot use a nRF52832 system-on-chip which does not support Thread. There is
however a newer nRF52840 system-on-chip that support Thread. With a new system-on-chip
it will be possible to avoid using an external dongle for the Thread communication. It would
not be any major changes to the source code when changing the system-on-chip, but there will
however be a need to modify the current printable circuit board for the change, since the newer
system-on-chip is of a different physical design.

7.4 C++ application

The C++ application have a good frame for further developing the application. The C++ appli-
cation do still miss many of the features that were in the Java application.

7.4.1 SLAM

SLAM algorithms needs to be added to the C++ application.

7.4.2 navigate square

The function navigate square in main.cpp must be changed in order to use it with a real robot.
The function currently have a timer in it to simulate that a robot would reach the destination
provided by waypoints. Replace the timer and add a callback to the ROBOT IDLE state when
using the C++ application with a real robot.

7.4.3 Robot status

The status of the real robots are currently handled with events by the server. The events are
set by reading the MQTT feed sent by the various robots and compared by previous messages
from the MQTT feed. This work well in theory but in practice this could slow down the C++
application by having to compare every message from the MQTT feed. The status of the robots
were previously handled by the robots themself and the Java application would only get a status
message if the status changed.

45

It should be looked into if it might be better to change the communication stack for the
MQTT feed to include the current state of the robot.

7.4.4 Better support for multiple robots

The C++ application is able to identify the robots by the topic published by the robot. The C++
application will however publish the same MQTT message to all the topics and all connected
robots will therefore receive the same waypoints.

This have been a very low priority since there is only one robot that is currently able to work
together with the C++ application.

7.5 General suggestions to the project

These are more general suggestions and ideas on how to possibly improve the overall project.

7.5.1 Run robot with nRF52840 DK

It should be considered at looking at the possibility to use the nRF52840 development kit di-
rectly on the robot since the development kit already supports Thread, and it have general pur-
pose input/output(GPIO).

7.5.2 Local MQTT Broker

MQTT need a MQTT Broker to handle the feed. This is currently done with a public MQTT
Broker, which in practice means that that anyone can subscribe or publish to the topics used in
this thesis. Another thing to point out is that the public MQTT broker may suffer to high traffic
and cause the MQTT feed to slow down. A solution to this is to set up a local MQTT broker on
either the PC running the C++ application or run it from the Raspberry PI.

Pros to a public broker

Everyone can get access to it through the internet, which in practice means that it is possible to
run the C++ application in one part of the country and run the robot in another.

Cons to a public broker

Since everyone have access to it, it may be susceptible to abuse and the MQTT feed could be
contaminated with false messages which would in practice be able to control the robot with the
correct message format.

46

Appendix

.1 Files overview

Shows a simple directory tree of the contents delivered in a zip-file alongside the thesis.
master thesis marius blom.zip

cpp

exe

Release.zip

src

SLAM-application.zip

document

thesis.pdf

Java

java nilssen 2018.zip

NRF robot

legacy layer

legacy layer.zip

slam application

src.zip

quickstart guide

cpp application.pdf

NRF segger.pdf

Raspberry PI.pdf

Raspberry PI

paho-mqtt-sn-gateway.conf

47

BIBLIOGRAPHY

[1] Ian Arnes. What is the OSI model? URL: https://medium.com/software-
engineering-roundup/the-osi-model-87e5adf35e10. (accessed 26.09.2019).

[2] boost. boost c++ libraries. URL: https://www.boost.org/. (2019).

[3] boost. The Boost Graph Library. URL: https://www.boost.org/doc/libs/1_
66_0/libs/graph/doc/index.html. (2019).

[4] Elias Daler. Dear ImGui SFML Binding. URL: https://github.com/eliasdaler/
imgui-sfml. (2019).

[5] Eclipse. paho-mqtt. URL: find%20url. (2019).

[6] Torstein Grindvik. “Master thesis”. In: (2019).

[7] Jan Haller. Thor C++ library. URL: http://www.bromeon.ch/libraries/
thor. (2019).

[8] Johan Korsnes. “Develpoment of a Real-Time Embedded Control System for SLAM
robots”. In: (2018).

[9] Endre Leithe. “Embedded nRF52 robot”. In: (2019).

[10] MQ Telemetry Transport. URL: http://mqtt.org/. (2019).

[11] nRF52840 Dongle. PCA10059 v1.0.0. v1.1. Nordic Semiconductor. Jan. 2019.

[12] Mats Gjerset Rødseth and Thor Eiving Svergja Andersen. “System for Self-Navigating
Autonomous Robots”. In: (2016).

[13] Nordic Semiconductor. URL: https://www.nordicsemi.com/. (2019).

[14] Simple and Fast Multimedia Library. URL: https://www.sfml- dev.org/.
(2019).

48

https://medium.com/software-engineering-roundup/the-osi-model-87e5adf35e10
https://medium.com/software-engineering-roundup/the-osi-model-87e5adf35e10
https://www.boost.org/
https://www.boost.org/doc/libs/1_66_0/libs/graph/doc/index.html
https://www.boost.org/doc/libs/1_66_0/libs/graph/doc/index.html
https://github.com/eliasdaler/imgui-sfml
https://github.com/eliasdaler/imgui-sfml
find%20url
http://www.bromeon.ch/libraries/thor
http://www.bromeon.ch/libraries/thor
http://mqtt.org/
https://www.nordicsemi.com/
https://www.sfml-dev.org/

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

M
as

te
r’s

 th
es

is

Marius Blom

nRF52 with OpenThread

Master’s thesis in Cybernetics and Robotics

Supervisor: Tor Onshus

February 2020

	Problem
	Summary
	Oppsummering
	Conclusion
	Preface
	Table of Contents
	List of Figures
	Listings
	Introduction
	Motivation
	How the thesis is presented

	Existing system
	Starting point
	Robots
	NRF robot
	Java server
	C++ server
	IEEE 802.15.4
	nRF52832 vs nRF52840

	Testing existing Java system
	Mapping a circle with Java-application
	Accuracy tracking
	Driving robot in a straight line

	Running robots with C++

	Java application
	Toolchain
	JDK 8
	Netbeans IDE

	SSNAR
	Simulation
	SLAM
	Navigation
	Communication

	C++ application
	Toolchain
	Visual Studio
	vcpkg

	Third-party libraries
	boost
	sfml
	imgui
	paho-mqtt
	thor

	Server running
	Namespace
	NTNU::application
	NTNU::graph
	NTNU::gui
	NTNU::networking
	NTNU::utility

	Changes and additions to the application

	Communication with C++ application
	Thread network
	OpenThread
	MQTT
	MQTT-SN
	Raspberry PI as Border Router
	nRF52840 as the dongle for RPi
	Ready for Thread

	Thread with existing robots
	Toolchain

	nRF52840 dongle for robot
	Internal regulated source
	External regulated source
	Legacy layer on the NRF robot
	Thread topology with the nRF robot

	C++ application with a real robot
	Testing with the NRF robot
	Testing messages sent by the robot
	Testing messages sent by C++ application
	Testing movement and sensor in a controlled space

	Improving
	New robot event

	User interface
	New simulation panel
	New manual panel
	Changes to robots panel

	Discussion and Further work
	Discussion
	MQTT versus BLE communication
	C++ application versus Java application

	Further work
	NRF robot
	Right motor
	Trackball
	Anti-collision
	Robot initialization
	Gear on the wheels
	Upgrade SoC

	C++ application
	SLAM
	navigate_square
	Robot status
	Better support for multiple robots

	General suggestions to the project
	Run robot with nRF52840 DK
	Local MQTT Broker
	Bibliography
	Appendix
	Files overview

