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Abstract

We explored the joint effect of synchronization window and offset/drift mode selection on
the time synchronization of linear wireless sensor networks (LWSNs). Recent advances in the
field along with the availability of capable hardware led to adoption of LWSNs in diverse
areas like monitoring of roads, pipelines, and tunnels. The linear topology applications are
susceptible to single point of failure; therefore, energy efficient operation of LWSNs is even
more important than the traditional WSNs. To address the challenge, we investigate the
time synchronization mode selection for the optimum operation of a multi-hop and low-
overhead LWSN. We investigate two modes of synchronization: synchronization by using
only offset and synchronization by using offset in addition to the clock drift. Furthermore,
we investigate the effects of synchronization window size. Our experimental results reveal
that computation of offset alone for smaller window sizes and resynchronization periods is
sufficient in achieving acceptable degree of synchronization.
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1 Introduction
Wireless sensor networks (WSNs) consists of a plurality of sensor nodes capable of

conveying the data they acquire from the environment towards a base station [1].

WSN protocols and algorithms are, typically, designed with very stringent constraints

due to their inherent properties like limited resources of energy, storage, computation,

and bandwidth [2–4]. Linear wireless sensor networks (LWSNs) are under the WSNs’

umbrella that is especially used to monitor and control linear structures like roads,

bridges, pipelines, tunnels, traffic lights, and similar [5–8]. Needless to say, the above-

mentioned limitations of WSN are also applicable to the special class of WSN, specific-

ally LWSN, along with some additional ones due to the linear structure of the

network. Veritably, the partial findings of a gas pipeline monitoring system [5] coursing

through cross-country mountainous regions in Turkey are presented in this paper.

Considering our model of LWSN topology where the nodes are allowed to commu-

nicate by preserving the hierarchical order (i.e., with immediate parent and child), the
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traditional distributed WSN architectures become inefficient. This hierarchical setup

introduces longer delays between nodes along with other restrictions [9] compared to

mesh, star, and hybrid topologies where a broadcast beacon can arrive at any child

node within the single hop neighbourhood of a transmitting node. Time

synchronization is of paramount importance in networked systems, especially in dis-

tributed network systems namely WSNs which extensively utilizes the time

synchronization aspect for coordination and correlation of distributed entities and

events (e.g., data fusion, synchronized sleeps and wake-ups, channel sharing). In fact,

the complex nature of the problem to be solved and demanding system requirements

lead to the development of numerous synchronization algorithms. In this context, sev-

eral accurate time synchronization methods have been proposed for WSNs [10–13], in

general, and for LWSNs [14, 15], in particular. A dual-time or two-time sources per

node were introduced in [14] to decrease the time fluctuations with increasing hops

but requires maintenance of those clocks thus adds complexity to the system model.

Besides, a broadcast mechanism was utilized to estimate the time in [15] which is un-

feasible in our context as described above.

Despite the abundance of synchronization techniques in the literature, most of the

proposed methods ignored certain practical aspects [16] which in turn affect the imple-

mentation. Furthermore, accurate time sources like Network Time Protocol (NTP),

General Packet Radio Services (GPRS), and Global Positioning System (GPS) are better

suited when there exists an infrastructure and good network coverage. Nevertheless,

these techniques require specific conditions and are relatively expensive to implement.

Additionally, the achievable timing accuracy of the aforementioned techniques might

be redundant for most of the industrial applications, or sometimes unfeasible given the

harsh and resource-limited working conditions [5].

Our focus in this study is to determine the optimum operation mode and parameters

for the trade-off between the synchronization speed and the accuracy, thereby avoid

overdesigning the synchronization algorithm. To achieve this, we establish some quan-

titative metrics for experimental assessment of each of the synchronization methods

namely offset-and-drift (OD) and offset-only (OO) for different synchronization win-

dows. This work will help designers to overcome possible obstacles and optimization

problems (e.g., network lifetime) faced in constructing a LWSN and more specifically

LWSN in pipelines. The key contributions of this paper are as follows:

1. Novel performance comparison of OD and OO in the time synchronization of

LWSN nodes.

2. Moreover, the joint effect of both OO and OD with synchronization windows is

studied.

3. Lastly, regardless of the abundant time synchronization algorithms proposed in the

literature, there exists only a few implemented systems. Here, the proposed

technique is adopted and realized in a pipeline monitoring system which is soon to

be deployed for active usage.

The remainder of the paper is organized as follows: In section 2, we review the

literature for related work and introduce our take on LWSN as well as some evalu-

ation techniques. Section 3 presents details of our extensive experiment and the
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outcomes. We then discuss the findings in section 4. Finally, conclusions are

highlighted in section 5.

2 Method
The timekeeping module of WSNs is susceptible to clock offsets and drifts due to fac-

tors including component quality and aging, and ambient conditions like temperature

and humidity [17]. Nonetheless, the clock can be modeled [18–20] as

tnode ¼ αnode þ βnode � tref ; ð1Þ

where α and β are the offset and drift, respectively, and tref is the global or universal

reference time assuming the clock offset and drift are constant over a period of short

observation time. The α term is also referred to as the bias and is subjective to the

clock start time. The clock drift, on the contrary, is affected by the surroundings as dis-

cussed previously. In fact, (1) can be modified to account for pairwise synchronization

as

t2 ¼ α12 þ β12 � t1; ð2Þ

where α12 and β12 are the relative offset and drift, respectively, and t1 and t2 are local

time of two nodes. A two-way handshaking mechanism to pass timestamps can be used

to estimate relative offset and drift at a node [11].

Refer to the Fig. 1 for a visual representation of the said handshaking process where

the node initiating the synchronization process is the parent and the other node is the

child denoted by the superscript. Moreover, the time TA is the time of transmission,

and the time TC is the time of reception at the origin node while TB is the time of re-

ception at the target node. This model assumes there are no incurred delays, retrans-

missions, and packet losses which are far from the reality. The time period where a

specific number of two-way handshaking messages are exchanged is referred to as the

synchronization window. One could compute relative offset and drift terms once ample

amount of timestamps are collected. These timestamps are time averaged [18] to esti-

mate the relative offset and drift. The upper and lower limits of relative drift can be cal-

culated using (3) and (4), respectively. The index i refers to the sample.

Fig. 1 Two-way handshaking visualization
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β12U ið Þ ¼ TA ið Þ−TA i−1ð Þ
TB ið Þ−TB i−1ð Þ ; ð3Þ

β12L ið Þ ¼ TC ið Þ−TC i−1ð Þ
TB ið Þ−TB i−1ð Þ ; ð4Þ

Rearranging (2), the upper and lower bounds of the offset can be calculated using (5)

and (6)

α12U ið Þ ¼ TA ið Þ−β12U ið Þ � TB ið Þ; ð5Þ
α12L ið Þ ¼ TC ið Þ−β12L ið Þ � TB ið Þ: ð6Þ

The average offset and drift can be estimated by employing (7) and (8)

β12 ið Þ ¼ β12U kð Þ þ β12L kð Þ
2

; ð7Þ

α12 ið Þ ¼ α12U kð Þ þ α12L kð Þ
2

: ð8Þ

Finally, the offsets are time-averaged in order to eliminate the random time-

dependent delays using the following equations. The W term on Eqs. (9) and (10) is the

sample count or synchronization window

β12−Avg ið Þ ¼ 1
W

Xi

i−Wþ1

β12 kð Þ; ð9Þ

α12−Avg ið Þ ¼ 1
W

Xi

i−Wþ1

α12 kð Þ: ð10Þ

Hence, smaller windows will contribute to faster synchronization while deterior-

ating the accuracy as lower number of samples is used in the computation of offset

and drift.

In this paper, the effect of synchronization window on the clock synchronization

accuracy is studied in conjunction with the mode of operation (i.e., offset-only esti-

mation and both offset-and-drift estimation) which enables us to choose the

optimum synchronization parameters and mode to prolong lifetime. Here, we es-

tablish some quantitative metrics for experimental assessment of each of the

synchronization methods namely offset-and-drift (OD) and offset-only (OO) for

various synchronization windows. The absolute difference (i.e., Δε) is the difference

between the expected and the measured average times which is given in (11). The

percentage relative difference, ε, is given by (12). Equation (13) represents the nor-

malized time and is denoted by ε.

Δε ¼ Timetrue−TimeExp ð11Þ

ε ¼ Δε
Timetrue

� 100% ð12Þ

ε ¼ 1−
TimeExp
Timetrue

ð13Þ
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3 Experiment
The sensor nodes utilized in our experiments (depicted on Fig. 2) are composed of

Atmel ATmega2560 chips as the microcontroller unit (MCU) as of Board 1, the low-

power, high-performance CC1200 Radio Frequency (RF) transceiver manufactured by

Texas Instruments as the communication module as module 2, and the low-cost, highly

accurate DS3231 real-time clock (RTC) chipset from Maxim Integrated as the module

3. The internal 16-bit timer/counter of the MCU is used to mimic the local clock of

each node. The RTC is used to sample the local times of each node at accurate inter-

vals and send to a companion personal computer (PC) for data logging. Our LWSN

network consists of 5 identical sensor nodes configured to communicate for maintain-

ing the hierarchical order, thereby, the first/reference node being the root and the sub-

sequent nodes having a pairwise relationship with immediate neighbor nodes.

Three different synchronization windows (i.e., 5, 15, and 25) are chosen for the ex-

periment. Two different synchronization scenarios are designed for each of the

synchronization windows namely offset-and-drift (OD) and offset-only (OO). Note that,

the relative drift term on (2) is unity for the OO synchronization unlike OD where it is

computed from the timestamp packets. Consequently, OO synchronization is relatively

faster as requires less computation. Each data point consists of a single synchronization

operation followed by sampling periods. The time synchronization is characterized by

the synchronization window and one of the test scenarios. During the sampling period,

the timing data of a node is recorded at the frequency of 1 Hz for three observation pe-

riods of 10, 30, and 60 min. The times elapsed are compared against the observation

duration to draw conclusions. In other words, a synchronization command (OD or

OO) was generated at the base station which stimulated a pairwise time

synchronization of nodes in a top-down approach. Upon synchronization of the last/

Fig. 2 Experimental node setup showcasing the baseboard, RF module, and other peripherals
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leaf node, the system was put to sleep and observed for the three different periods. The

time at which each of the nodes woke up were recorded and compared. Intuitively, the

closer the recorded time to the observed time, the better the synchronization has been.

And lastly, the experiment was carried out in an indoor laboratory environment while

keeping all other factors controlled (e.g., transmission power level, packet size, trans-

mission speed, inter-node distances, ambient temperature) and realistic, i.e., any con-

clusions drawn are indeed due to the method of synchronization only.

Here, the system model was kept simple to promote feasibility and making the system

implementable on inexpensive hardware without sacrificing the functionality. In con-

junction with these, the relatively longer end-to-end delays in LWSN compared to trad-

itional WSNs’ makes complex system models impractical.

4 Results and discussion
The data for absolute differences and relative differences are tabularized in Tables 1

and 2, respectively.

A lower absolute difference signifies better synchronization or smaller absolute error.

Referring to Table 1 of absolute differences, it is obvious that the absolute difference in-

creases with the duration for any of the particular synchronization windows regardless

of the synchronization method (i.e., offset-and-drift or offset-only) which is due to the

local clock’s drift over time. The absolute difference data itself is not decisive enough

to comment on the general trend. This is where the percentage relative difference term

comes in. It is particularly useful to compare results from different observation or sam-

pling durations. The difference between the two synchronization modes’ percentage

relative difference for a given window decreases over time as can be observed from

Table 2. This decreasing trend can also be observed while traversing the data diagonally

(i.e., the difference in ε decreases with increasing both the sampling time and the win-

dow). Both of these deductions from Tables 1 and 2 suggest that although the absolute

difference tends to increase over time, this increase is almost negligible compared to

the observation time. However, in order to find the optimum mode of operation and

thus draw conclusions, the normalized data should be analyzed. Figure 3 shows the plot

of differential normalized mean-elapsed times. The lower the normalized mean is, the

better the synchronization is. Observe that using only the offset for smaller

synchronization windows is sufficient, therefore, less computation is required; hence,

the resources can be utilized efficiently. One would expect the synchronization accur-

acy to improve with increasing window size, yet the drift weighs more than the window

size with our setup, and the differences are very subtle. Lastly, the optimum window

Table 1 Absolute difference (in seconds)

Window Scenario Duration

10min 30 min 60 min

5 OD 0.13987 0.18527 0.25320

OO 0.13787 0.18307 0.25130

15 OD 0.14247 0.18777 0.25567

OO 0.14837 0.19340 0.26090

25 OD 0.15953 0.20497 0.27323

OO 0.16363 0.20897 0.27691
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size is found to be the intersection of the curves, i.e., 7 for this setup; choice of

synchronization method has no effect on the achievable synchronization accuracy. We

also show that the use of OO for frequent synchronizations can outperform OD. Inevit-

ably, further work is necessary to perform a more extensive optimization of the system

parameters. For example, a constant transmission power was used in this experiment.

In order to achieve a prolonged network lifetime, the payload and the transmission

power level can be varied as suggested in [21]. Our goal in this work was to

synchronize the nodes in the LWSN system frequently rather than proposing a com-

parable accurate synchronization algorithm with the existent ones.

5 Conclusion
To the best of our knowledge, the contribution of offset/drift along with the

synchronization window on the accuracy of synchronization has never been investi-

gated, systematically, in the WSN literature. More importantly, numerous

synchronization techniques have been proposed throughout the literature but no stud-

ies have been carried out on the determination of optimal synchronization parameters

for relatively short resynchronization intervals which are frequently experienced in

practical field deployments of LWSNs. Hence, to fill the gap in the literature, in this

study, we explore the joint effect of synchronization window and offset and/or drift on

the time synchronization of LWSNs through direct experimentation employing a

Table 2 Relative difference (as percentages)

Window Scenario Duration

10min 30min 60 min

5 OD 0.023311 0.010293 0.0070333

OO 0.022978 0.010170 0.0069806

15 OD 0.023744 0.010431 0.0071019

OO 0.024728 0.010744 0.0072472

25 OD 0.026589 0.011387 0.0075898

OO 0.027271 0.011610 0.0076921

Fig. 3 Normalized mean time elapsed for OD and OO synchronization methods
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LWSN testbed. Furthermore, we show that computation of offset alone for lower

synchronization windows should be sufficient in attaining reasonable accuracy while

lowering both the overall energy consumption and the synchronization duration. Add-

itionally, the system is being realized in a pipeline project where the time

synchronization is carried out with OO method rather than OD which is not pragmatic

for deployable systems. Again, the aim of this paper is to publish the partial findings of

a realized system where the choice of OO as opposed to conventional OD gives better

performance and increased network operable lifetime.
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