
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

C
T

an
d

N
at

ur
al

 S
ci

en
ce

s

B
ac

he
lo

r’
s

pr
oj

ec
t

Tomas Paulsen

Visual error detection on 3D
printing

Bachelor’s project in Automation Engineering
Supervisor: Ottar Osen, Saleh Abdel-Afou Alaliyat

December 2019

Visual error detection on 3D

printing

Bachelor Thesis

Tomas Paulsen

Supervisors

Ottar Osen

Saleh Abdel-Afou Alaliyat

Ålesund

Desember 16, 2019

 Visual error detection on 3D printing

i

Abstract

The process of 3D printing has become more available to the public, due to the increase of

affordable consumer FDM printers on the market. This process is however not without errors.

Most consumer printers do not have any way of detecting errors and will continue its

instructions regardless of the physical result. Errors usually results in waste of materials,

energy and time. The process of 3D printing objects can take anywhere from 10 minutes to

several days. It is therefore tedious for the user to monitor the whole process to detect errors.

This paper presents the development of a system for error detection in 3D printing using

computer vision. The system uses a raspberry pi, with camera to visually track and monitor

the objects printed. This system utilizes image analysis to monitor in real time the process of

3D printing objects. The system detects and alerts errors of filament runout and vertical shift

of the object.

The error detection compares consecutive images of each layer the printer builds. Key points

in the object is tracked and compared with key points in previous images to determine if an

error is present. Results from testing the system shows detection of common errors and

handling of false detection.

The result of this paper is a system that uses computer vision to detect errors in 3D printing.

Norsk:

3D-skriving har blitt meir tilgjengeleg for forbrukarar på grunn av auke av rimelege FDM-

skrivarar i marknaden. Prosessen med 3D-skriving er ikkje nødvendigvis utan feil. Dei fleste

av forbrukarskrivarane har ikkje nokon måte å oppdaga feil på, og vil difor fortsette

instruksjonane sine uavhengig av det som fysisk kjem ut av skrivaren. Feil resultera som regel

i sløsing av material, straum og tid. Prosessen med å 3D-skrive objekt kan ta alt frå 10 minutt

til fleire dagar. Der er difor lite hensiktsmessig for brukaren å måtte halde auge med heile

prosessen for å oppdaga feil.

Denne oppgåva legg fram utviklinga av eit system for feildeteksjon i 3D-skriving ved bruken

av maskinsyn. Systemet nyttar ein Raspberry Pi med kamera for å visuelt spore og overvaka

objekt som blir skrive ut. Dette systemet nyttar bildeanalyse for å overvaka prosessen i

 Visual error detection on 3D printing

ii

sanntid. Systemet klarar å oppdage og varsle feil dersom skrivaren går tom for materialar og

forskyving av objektet.

Feiloppdaginga nyttar ei samanlikning av påfølgjande bilde av kvart lag skrivaren legg ned.

Nøkkelpunkt i objektet blir spora og samanlikna med nøkkelpunkt i tidlegare bilde for å

avgjera om det er ein feil i skrivinga. Resultata frå testing av systemet synar oppdaging av

vanlege feil og handtering av falske feil.

Resultatet av denne oppgåva er eit system som nyttar maskinsyn for å oppdage feil i 3D-

skriving.

 Visual error detection on 3D printing

iii

Preface

This bachelor thesis is the result of a bachelor’s project in Automation Engineering at the

Norwegian University of Science and Technology. The motivation behind this thesis came

from my own need for a system to detect errors in the 3D printing process. Therefor the

project was self-developed but with good help from a few people I would like to

acknowledge.

I would like to thank everyone who has supported and aided to this project, especially:

 Ingrid Kvammen Paulsen. For the essential support and love.

 Ottar L. Osen and Saleh Abdel-Afou Alaliyat. For guidance and supervision.

 Arne Styve and Girts Strazdins. For guidance in programming architecture and design.

 Anders Sætersmoen, Øivind Andre Hanken and Markus Gutvik Lyngstad. For

supplying hardware and location for setup.

This project is open source and anyone who wants to further develop it are welcome to

contact me. The full source code can be found at Github (Paulsen, 2019)

Tomas Paulsen

Ålesund, December 2019

 Visual error detection on 3D printing

iv

Abbreviations

3D Three dimensional

BLOB Binary Large Object

FDM Fused deposition modelling

FoV Field of view

GCODE Programming language used by 3D printers

GPIO General Purpose Input/ Output

HSV Hue Saturation Value

IDE Integrated development environment

OOP Object oriented programming

OS Operating System

RAM Random Access Memory

RGB Red Green Blue

Rpi Raspberry Pi

SLICER Software to slice 3D model into layers

UX User experience

 Visual error detection on 3D printing

v

Contents
Abstract ... i

Preface ... iii

Abbreviations .. iv

List of Tables ... viii

List of Figures ... ix

Chapter 1: Introduction .. 1

1.1 Background .. 1

1.2 Problem formulation .. 1

1.3 Project objectives ... 1

1.4 Scope .. 2

1.5 Previous work ... 2

1.6 Structure of the thesis ... 3

Chapter 2: Theory ... 4

2.1 3D Printing ... 4

2.1.1 FDM .. 4

2.1.2 Errors ... 5

2.2 Image analysis .. 6

2.2.1 Gaussian blur ... 6

2.2.2 Colour-space and conversion .. 7

2.2.3 Thresholding .. 7

2.2.4 Morphological Operations ... 8

2.2.5 Contour .. 8

2.2.6 Image comparing ... 8

2.3 Lighting .. 9

2.4 Principles of Programming ... 9

2.4.1 OOP ... 9

2.4.2 Facade pattern design .. 10

Chapter 3: Method .. 11

3.1 Preparations .. 11

3.2 Hardware and software ... 11

3.3 Development environment ... 12

3.3.1 3D Printer .. 12

3.3.2 Microcontroller and camera .. 13

3.3.3 Camera stand ... 13

 Visual error detection on 3D printing

vi

3.3.4 Lighting ... 14

3.3.5 Printer control .. 15

3.3.6 Trigger button .. 16

3.3.7 Deployment network ... 17

3.4 Software development .. 17

3.4.1 Initial preparations ... 17

3.4.2 Virtual environment .. 18

3.4.3 Testing and learning .. 19

3.4.4 System initial spec ... 19

3.4.5 Development ... 19

3.4.6 GUI .. 20

3.4.7 Multithreading ... 20

3.4.8 System spec revised .. 20

3.4.9 Software architecture ... 21

3.4.10 Finalizing and clean-up ... 22

3.5 Image processing .. 22

3.5.1 OpenCV ... 23

3.5.2 Gather images .. 23

3.5.3 Smoothing image ... 25

3.5.4 Converting to HSV .. 25

3.5.5 Thresholding .. 25

3.5.6 Morphological Operations ... 26

3.5.7 Contour and extreme points .. 27

3.5.8 Comparing images ... 28

3.6 Alert handling ... 29

3.7 System tests .. 29

3.7.1 Prints .. 30

3.7.2 Data ... 30

Chapter 4: Results .. 31

4.1 Application ... 31

4.1.1 GUI .. 31

4.1.2 Usage ... 32

4.2 Printable hardware .. 32

4.3 System tests .. 32

4.3.1 Error free prints ... 33

4.3.2 Filament runout error .. 35

4.3.3 Shifted part error ... 38

 Visual error detection on 3D printing

vii

4.4 Accuracy ... 42

Chapter 5: Discussion ... 43

5.1 Project ... 43

5.2 Key findings ... 43

5.3 Limitations ... 44

5.4 Recommendations .. 45

5.5 Impact ... 45

Chapter 6: Conclusion .. 46

6.1 Further work ... 46

6.1.1 Optimizing ... 46

6.1.2 Rendered model ... 46

6.1.3 Octoprint plugin .. 46

Bibliography ... 47

Appendix .. 49

A: Pre-project report ... 50

B: Data from tests ... 58

 Visual error detection on 3D printing

viii

List of Tables

Table 1 Hardware used in the project ... 11

Table 2 Software used in the project .. 12

Table 3 Resolution accuracy .. 24

 Visual error detection on 3D printing

ix

List of Figures

Figure 1 FDM printing diagram. From (Gringer, 2018) .. 4

Figure 2 RGB and HSV colour space. From (SharkD, 2008) .. 7

Figure 3 Dome diffuse lighting. From (Martin, 2013) ... 9

Figure 4 Ultimaker 2+ .. 12

Figure 5 Unmasked print bed ... 13

Figure 6 Masked print bed ... 13

Figure 7 Camera mount attached to printer .. 14

Figure 8 CAD render of camera mount ... 14

Figure 9 CAD model and mounted lighting fixture ... 15

Figure 10 Trigger button mounted at printer corner .. 16

Figure 11 RC circuit for button. From (Hale, 2014) .. 17

Figure 12 Class diagram ... 21

Figure 13 Image captured on picamera .. 23

Figure 14 Image of ruler used to determine physical resolution .. 24

Figure 15 Smoothed image .. 25

Figure 16 Binary image from the thresholding .. 26

Figure 17 Binary mask after eroding .. 27

Figure 18 Contour and extreme points of the segmented object .. 27

Figure 19 Differential image from pixel-wise subtraction on consecutive images 28

Figure 20 GUI application .. 31

Figure 21 Fast Cube printed and system display .. 33

Figure 22 Fast Cube Complete Chart ... 33

Figure 23 Benchy printed and system display ... 34

Figure 24 Benchy Complete Chart ... 34

Figure 25 3 Cubes printed and system display ... 35

Figure 26 3 Cubes Complete Chart .. 35

Figure 27 Fast Cube filament runout error ... 36

Figure 28 Fast Cube filament runout chart ... 36

Figure 29 Section of the data logged in Fast Cube filament runout test 37

Figure 30 Benchy filament runout error ... 37

Figure 31 Benchy filament runout chart .. 37

Figure 32 3 Cubes filament runout error .. 38

Figure 33 3 Cubes filament runout chart .. 38

Figure 34 Fast Cube shifted error ... 39

Figure 35 Fast Cube shifted chart .. 39

Figure 36 Benchy shifted error ... 40

Figure 37 Benchy shifted chart .. 40

Figure 38 3 Cubes shifted error .. 41

Figure 39 3 Cubes shifted chart .. 41

Chapter 1: Introduction

1

Chapter 1: Introduction

1.1 Background

The process of 3D printing has become more available to the public, due to the rise of

affordable consumer printers on the market. 3D printing is a technology that can create

physical objects from digital 3D models. It is an additive manufacturing process that has

become consumer friendly and requires little knowledge to get started.

However, the process of printing out parts is not always without errors. An error in the

printing process is any misplacement, deformation or flawed of the part that is not wanted in

the result. If an error occurs, the printer will continue to complete the given set of instructions

regardless. Because of this the printer will still output material on top of any fault or flawed

part, and this will most likely be wasted and the part discarded.

The motivation for this project comes from my personal need for a system that can detect

errors in the printing process. I started learning about 3D printers by building my own. I have

used it to make prototypes, functional parts as well as decorative parts. It started out as a

hobby but has proven valuable during my studies. I have many times experienced errors

occurring during the process which renders the parts useless. Errors usually leads to waste of

filament, time and energy.

The process of printing 3D parts is time-consuming. Printing parts can take up anything from

10min to several days depending on size and resolution of the print. This means that it is not

practical for the user to monitor the whole process from start to finish. This is where the idea

for this project comes from. If the process could be monitored by a system and detect if

something went wrong, this could have an impact on the 3D printer for consumers market.

1.2 Problem formulation

Detecting errors in FDM 3D printing process, by using computer vision on live monitoring.

1.3 Project objectives

The main objective of this project is to develop a system that visually monitors the process of

3D printing to detect errors, and alerts if an error is detected.

Chapter 1: Introduction

2

1.4 Scope

The project is aimed for single colour consumer FDM 3D printers.

The system should be able to run on low-cost hardware like a microcontroller. The system

shall have a user interface for configuring of the system, real-time monitoring and error

detection.

The application should be made available as opensource.

1.5 Previous work

Straub (2015) writes a paper that considers the approach to this problem using a multi-camera

setup. The image analysis used was a pixel-by-pixel differentiation with regards on the pixels

RGB brightness values. In addition, a comparison of the final print to the in-progress was

used. The result of this paper was a system able to detect filament runout (print not

progressing). However, the paper mentions that utilizing greater colour filtering could add

robustness in segmenting the object.

The second paper found, Vision based error detection for 3D printing processes (Baumann &

Roller, 2016), has a slightly different approach. This paper defines five error classes, and they

were able to detect three of them. They used HSV thresholding to segment the object from the

background, and blob detection to track the object. In addition, they used visual markers to

determine the area of interest for cropping the images. To detect errors, they also used a

differentiation approach. They then calculated a differential image from three consecutive

images, with a time interval of 3/25 seconds. Furthermore, they integrated the three

consecutive frames to detect change in horizontal position of the object.

The paper identified obstacles in pixel errors from the camera and in change of lighting

conditions.

The third paper found, In-line 3D print failure detection using computer vision (Lyngby, et

al., 2017) builds on the approach of the first paper, but instead of comparing to the final print

they sought to compare with a CAD model. They also used HSV thresholding to create a

mask segmenting the object from the background, as used in the second paper. The result of

Chapter 1: Introduction

3

the paper demonstrated that comparing the print to a rendered model of the object works in

their rough prototype.

All three papers have done work towards solving the problem of detecting errors in 3D

printing. Key aspects for these, that will be investigated in this thesis is, using HSV

thresholding for segmentation, pixel-by-pixel differentiation and detect changes in horizontal

position. In addition, this project will investigate detection of changes in vertical position.

1.6 Structure of the thesis

Chapter 1 gives an introduction and scope of the problem and presents key aspects of previous

research on the problem.

Chapter 2 documents the theory behind the methods used in this project.

Chapter 3 contains documentation on the methods used to achieve the result.

Chapter 4 gives the result of the project

Chapter 5 Discusses the result and limitations of the project as well as the impact.

Chapter 6 Gives a conclusion of the project and discussion.

Chapter 2: Theory

4

Chapter 2: Theory

2.1 3D Printing

3D printing is an additive manufacturing technology. It is the process of turning a digital

model into a physical three-dimensional object. This is done by adding materials layer by

layer to build an object (3D Hubs, u.d.). 3D printing can be done by many ways, however in

this paper only FDM 3D printing is explored and developed for.

2.1.1 FDM

FDM 3D printing is rapidly growing on the consumer market. This technology was developed

by Scott Cramp in 1988. It has become one of the most widely available processes of 3D

printing and is mainly used for design verification and rapid prototyping (3D Hubs, u.d.).

Figure 1 FDM printing diagram. From (Gringer, 2018)

Figure 1 shows the principal process of printing by FDM. The filament is melted and extruded

through a nozzle in the print head (1). The print head is moved relative to the print bed (3),

either by moving the print head, the print bed or a combination. The extruded filament is then

cooled in the shape it has been laid down to form a layer (2). The process continues to create

layers on top of each other to form a 3D model.

Chapter 2: Theory

5

2.1.2 Errors

In consumer 3D printing errors may occur. Baumann et al. defines in their paper (2016) five

error classes as there were no previous systematically research on error classification.

1. Detachment. This is an error due to the object detaching form the print-bed. This can

happen if the distance between the print-bed and nozzle is not calibrated correctly, or

due to vibration and rapid movement in the print bed.

This error class includes warping, which is when the object is only partly detached.

Warping is the result of fluctuating in temperature when the part is cooled. The

mechanical properties of the filament determine how the material shrinks when

cooled. If the part is cooled to quick or inconsistent warping can happen.

2. Missing material flow. This is an error due to the filament not extruding through the

nozzle. This can happen if the nozzle is clogged, extruder not pushing the filament, or

the filament has run out. When this happens, the printer continues the given

instructions regardless, and the object will not grow.

3. Deformed object. This is an error when the object shape deviates from the CAD

model. This can occur when printing bridges, with lower layer missing, between two

points. This can also occur when the layer parameters are outside the edge of the

previous parameter, as with steep overhang surfaces.

4. Surface errors. This is an error where the surface deviates from the CAD model. The

surface texture is determined by the material property. This error can come from the

object geometry not matching the chosen parameters, as with steep angles.

5. Deviation from model. This error is when none of the previously mentioned errors

occurs, but the object deviates from the model in structure or size. This can occur

without the object having any obvious flaws and the print is successful. Deviation can

be the result of unsuitable slicing and printing parameters, leading to warping and

shrinkage.

Chapter 2: Theory

6

2.1.2.1 Human error

3D printing is subject to errors caused by the user. There are some key factors the user must

be aware of when using a 3D printer.

 Object design. In order to print parts, the object should be designed with consideration

of the 3D printing process. The process of adding materials layer-by-layer restricts the

object shape and mechanical properties (Oropallo & Piegl, 2015).

 Slicing. The 3D printer needs slices of the model representing each layer. A slicing

software is used to convert the digital model to slices. The software takes many

parameters witch the user can adjust. Therefore, slicing can be a subject of human

errors.

2.1.2.2 External influence

The process of 3D printing can be influenced by external factors.

 Environment. FDM printing is usually based on melting materials to extrude each

layer. The layers are then cooled to form solid parts. The cooling process can be prone

to external influence, which can result in wrong mechanical properties, warping and

misplacement of the layer.

 Material properties. FDM printing can utilize many different materials. Some of these

can be sensitive to moisture, temperature and cooling rate. Errors will most likely

occur if the material properties are not considered.

2.2 Image analysis

The purpose of digital image analysis is to extract information from the images for data

analysis (Easton, Jr, 2010). Image analysis is used in computer vision to make the computer

able to process data from images.

2.2.1 Gaussian blur

Gaussian blur is a method used for smoothing images. This is a filter used to reduce noise,

usually in pre-processing of images. This is done by convolving the image with a kernel. The

amount of smoothing is determined by the size of the kernel.

Chapter 2: Theory

7

2.2.2 Colour-space and conversion

Digital colour images are usually represented by RGB colour space as this is the way screens

displays images. HSV colour space is a different way of representing colours in a human

related way.

Figure 2 RGB and HSV colour space. From (SharkD, 2008)

Colour spaces can be represented as cubes shown in Figure 2. The images gathered by using

OpenCV is defined in BGR colour space, which is the same as RGB but rearranged.

In BGR space each pixel is represented by a blue (B), green (G) and red (R), and in HSV

space each pixel is represented by hue (H), saturation (S) and value (V) (OpenCV, 2019).

The hue represents the colour. Saturation is a representation of the amount of white in the

colour. Value is the brightness of the colour.

When threshold an image by colour range it is more intuitive for the user to define a range in

the HSV colour space rather than in RGB values (Umbaugh, 2018, pp. 48, 306).

2.2.3 Thresholding

Thresholding is a way of creating a binary image from a colour, or grey-scale image by

segmentation. An image can be mapped to a binary image by setting a threshold range for the

colour values. The Values within the threshold range will be set to 1, and the values outside

the range will be set to 0. This gives a binary image representing a mask of the threshold

(Umbaugh, 2018, p. 93).

Chapter 2: Theory

8

2.2.4 Morphological Operations

Morphological filtering is used in image analysis to segment objects of interest. This is done

by two operations, dilation and erosion. Dilation is a way of expanding the object to fill holes.

Erosion, the opposite, is a way of shrinking the objects to remove noise artefact. They can be

used in combination to restore the object after filtering. This is called opening and closing.

Opening is erosion followed by dilation, and closing is dilation followed by erosion

(Umbaugh, 2018, p. 185).

2.2.5 Contour

A contour is the surrounding boundary of joining points that have similar properties. Contours

are useful for getting information on the shape of objects (Sinha, u.d.).

2.2.6 Image comparing

Image comparing is the process of differencing images.

2.2.6.1 Pixel by pixel subtraction

Image differentiation by using pixel by pixel subtraction determines a difference image by

subtracting each pixel in one image from the pixel of the same placement in another image.

The resulting image contains the difference between the images. This method requires the

images to be of the same size. This method is often used to detect motion in consecutive

images (Umbaugh, 2018). One weakness to this method is if the camera moves between the

images, this would indicate a difference.

2.2.6.2 Template matching

Template matching is the process of searching for an image (template) in another image. This

is usually used to find smaller images within a larger image. The result of template matching

two images is a probability measure for the template is within the image.

2.2.6.3 Object tracking

The process of object tracking is finding the position of key points of the object and detect

change over time.

Chapter 2: Theory

9

The printed layers should not move in the horizontal axis. By tracking the position of the

outward edge across consecutive images it is possible to detect if the object has moved

horizontally.

The printed part should increase in vertical axis for each layer printed. By tracking the

position of the top edge of the part, it is possible to detect if the part grows or not.

2.3 Lighting

The most common way of lighting shiny surfaces, in order to reduce specular reflections, is

by diffuse lighting. Diffusing the light is a technique for scattering the light in multiple

directions and spreading the source of light across a larger surface.

Figure 3 Dome diffuse lighting. From (Martin, 2013)

Dome diffuse, shown in Figure 3, is one of the most common ways of doing this and are very

effective for lighting curved surfaces (Martin, 2013). This gives a smooth light evenly

scattered across the scene.

2.4 Principles of Programming

2.4.1 OOP

Object oriented programming (OOP) is a programming paradigm. In the book “Objects First

with Java” David J. Barnes and Michael Kölling states that OOP is used to model some part

of the world (Barnes & Kölling, 2017). This book was part of the curriculum for the subject

Chapter 2: Theory

10

Object-oriented programming (ID101912). This subject is the reason for using OOP in this

project. OOP principles focuses on how to write good code.

2.4.2 Facade pattern design

A design pattern is used to structure large applications and defines how objects should interact

in complex relationship (Barnes & Kölling, 2017).

The facade pattern is used to create a higher-level interface of the functionality of subsystems

(Bosch, 1996). This makes implementation to user interfaces more general and provides a

single integration

Chapter 3: Method

11

Chapter 3: Method

3.1 Preparations

The purpose of this project is to make a system that can monitor and detect error on the 3D

printing process. This requires the system to run on hardware reserved for this purpose. Since

this project focuses on consumer FDM printers this hardware had to be consumer friendly,

and therefore the Raspberry microcontroller was chosen. The Raspberry environment is vastly

supported online with many tutorials and good documentation free and open to the public.

3.2 Hardware and software

Hardware

Name Info Usage

Ultimaker 2+ FDM 3D Printer Printing parts for testing system

Raspberry Pi 4 Microcontroller Main system

Pi Camera Module V2 Raspberry Pi Camera Gathering of images for the system

LED strips Consumer type all white LED Lighting the parts for printing

LCD Monitor Main system display

Logitech C920 USB Camera Testing and development on PC

Raspberry Pi 3b Microcontroller 3D printer Remote control system

End stop button Switch Trigger to save frame from camera

TP-LINK TL-WR841N Deployment network for both Rpi

Table 1 Hardware used in the project

Software

Name Info Usage

Python 3 V 3.5 Main system framework language

Pycharm V 2019.2 IDE Development environment

Github Git version control Storing versions of the applications

OpenCV Contrib V4.1.0.25 Computer vision library for image

processing

Chapter 3: Method

12

NumPy V 1.17.2 Scientific library for arithmetic

operations

Tkinter GUI library Frontend GUI

PIL V 6.2.0 Python Imaging Library for displaying

images in GUI

Json JavaScript Object Notation Read/Write preset values from/to file

Rasbian Raspbian Buster with desktop

V September 2019

Operating system for main

microcontroller

OctoPi V 0.16.0 Operating system for remote

microcontroller

OctoPrint V 1.3.12 Running on octopi for controlling the 3D

Printer

Octolapse V 0.3.4 Octoprint plugin for controlling

timelapse.

Autodesk Fusion 360 CAD/CAM tool 3D modelling parts

Ultimaker Cura V 4.4 Slicing modelled parts for printing

MobaXterm Home Edition V12.4 SSH client for remote terminal for the

microcontrollers

Table 2 Software used in the project

3.3 Development environment

3.3.1 3D Printer

This project uses an Ultimaker 2+ for research and development of the system. It was also

used to make physical parts needed in this project. The IIR institute at NTNU Ålesund had

recently bought 4 of these, and this made the choose of printer easy as it could be reserved for

this project entirely.

Figure 4 Ultimaker 2+

Chapter 3: Method

13

The Ultimaker, shown in Figure 4 is an FDM printer that uses a single extrusion nozzle to

build 3D parts layer by layer. It is a robust consumer printer and delivers consistent results.

However, it can be subject to errors due to environment influence and human errors from

wrong usage.

Figure 5 shows that the print bed of the Ultimaker is made of reflective glass. This gave a

reflection of the object that interfered in segmenting the object from the surroundings.

Because of this some tape was applied to the print bed, as shown in Figure 6.

3.3.2 Microcontroller and camera

The development of this project started out using a Raspberry Pi 3B+. After initial work using

multiple images and processing them in real time it was clear that this model had limitations

in memory when processing large number of images. The model 3B+ has 1Gb of RAM.

Therefore, a Raspberry model 4, which has 4Gb of RAM was acquired to this project. The

Raspberry was setup with Raspbian Buster operating system.

The Raspberry Pi ecosystem contains an original camera module. This camera connects to the

raspberry Pi with a ribbon cable. The camera was a natural choice due to the built-in library

support, and the low cost of this module.

3.3.3 Camera stand

In order to get consistent images, the camera needed to be mounted relative to the print area.

Figure 5 Unmasked print bed Figure 6 Masked print bed

Chapter 3: Method

14

Figure 7 Camera mount attached to printer

A camera stand was made in order to mount the camera in good viewing distance to the

printer bed, shown in Figure 7. The camera is then relatively stationary to the parts that will

be printed.

Figure 8 CAD render of camera mount

Figure 8 shows the parts that were designed in Autodesk Fusion 360. These were uploaded to

Thingiverse #4010873 (Paulsen, 2019).

3.3.4 Lighting

The printer used in this project has some lighting of the print area. However, they were

considered too dim for this project, and because of the exposed LED with no diffusion they

gave a harsh light.

3D printed parts are usually made from highly reflective materials. Also, when working with

computer vision in situations like this project, a fixed lighting is useful.

Chapter 3: Method

15

Figure 9 CAD model and mounted lighting fixture

This led to the making of two LED columns, shown in Figure 9. The parts were designed in

Autodesk Fusion 360, printed on the Ultimaker and fitted with LED strips. They were placed

in the front corners of the printer and were fitted with wax paper to diffuse the light. This

gives a soft and consistent light that will minimize reflections.

3.3.5 Printer control

In order to gather consistent images where the printer nozzle is not covering the part, the

printer needed to be controlled. This was done using a software called Octoprint, which runs

on a raspberry pi. Octoprint overrides the Ultimakers own control and enables control in a

web interface for remote access. The raspberry pi 3B+ initially intended for the system was

reused for this.

Within this software there is a plugin called Octolapse. This is a plugin used for creating

smooth timelapse video of the print, where the print head is moved to a corner for every

image gathered. In other words, this plugin lets the user control what the printer does before

starting the next layer of the print. This led to the opportunity of snapping images by having

the print head push a physical switch.

Chapter 3: Method

16

3.3.6 Trigger button

Figure 10 Trigger button mounted at printer corner

The physical switch, shown in Figure 10, is used to trigger the application to store a frame to

the image register. The switch is mounted at a corner of the 3D printer, in such a way that the

printer head can push it.

Initially the switch was connected by a pull-up method that uses the internal GPIO pins

resistor of 1.8KΩ. The GPIO pin is connected to ground when the switch is closed. This was

combined with a simple debounce and rising flag in software to detect a push to the switch.

However, this solution was not as robust as needed. The switch triggered a few times without

being pushed, when the print head was in the middle of the bed. It was theorized that this was

due to electrical noise as the system is setup in the electro lab, or internal noise in the

raspberry due to low pull up resistor. However, this interference was considered too noisy for

this project.

Chapter 3: Method

17

Figure 11 RC circuit for button. From (Hale, 2014)

This led to the decision of using a small RC filter circuit, shown in Figure 11. This solution is

inspired by the project “Debouncing GPIO Input” by Ted B Hale (2014). This hardware

solution is much more robust as it will shield against noise and debounce voltage spikes.

3.3.7 Deployment network

A network router for hosting a subnet was setup. This served the purpose of connecting both

microcontrollers to a pc. The pc could then remote access the Rpi 4 over SSH, and upload and

deploy the python files directly from the PyCharm IDE.

The network was also used to access the web interface of the Octoprint server, for remote

controlling the printer.

3.4 Software development

3.4.1 Initial preparations

My previous experience in software development was limited to the curriculum for the subject

Object-oriented programming (ID101912). In this subject Java was used, but the knowledge

gained in OOP was general and not limited to Java.

Chapter 3: Method

18

Previous experience with computer vision and image analysis was done using Matlab.

However, Matlab is specialized for data analysis and is not as suitable as other languages for

developing on the Rpi.

The Raspberry environment supports both Java and Python programming languages, but due

to the many available open source tutorials and native Raspberry GPIO support, Python was

chosen. Python is free and open source and supports vast number of libraries.

The choice of using python to develop this application meant that the project had to spend a

lot of time going over tutorials and trying out methods, in order to gain sufficient knowledge

before building the application architecture.

The development started with gathering knowledge on image analysis using python. This was

done using many online tutorials, especially Adrian Rosebrock`s community (2019). This site

had several tutorials and articles for getting started with computer vision and OpenCV, and it

was done using examples in python.

3.4.2 Virtual environment

A virtual python environment was created in the Rpi, to isolate the project from the OS. This

was done to control the packages and resources in isolation. This meant that the libraries and

packages used could not be altered outside of the environment.

In order to run the project from the Raspbian terminal, the virtual environment needs to be

activated, then navigate to the project directory, before lastly running the python file. This

was an unnecessary tedious process. Therefore, a bash script for automating this sequence of

commands was made. This made launching the python files from the virtual environment

much quicker.

Pycharm support remote deployment over SSH. This allowed the project to be developed on a

pc before uploading to and running on the virtual python environment on the Rpi. However,

running over SSH meant that any GUI or preview element could not be displayed. Therefore,

this was only used to upload the files from the pc to the Rpi.

Chapter 3: Method

19

3.4.3 Testing and learning

The work continued with developing and testing small python scripts to deploy on Rpi. Like

how to handle the Rpi camera and GPIO, capture frames to memory and writing image files,

building time-lapse video from consecutive frames, colour thresholding and object

segmentation. All these where small programs, preforming each task individually without the

use of OOP. A sample of these can be found at Github (Paulsen, 2019). At this point the

development had to start working towards a complete system implementing these.

A meeting with Arne Styve and Girts Strazdins was held regarding planning the software

architecture. They gave good advice and recommended utilizing a facade design pattern to

connect multiple subsystems, provide a simple interface to the client by hiding the complexity

of the backend systems, and maintain responsibility-driven design. They also advised in

developing by using a top-down approach, by identifying and defining what the system

should provide to the user, not the other way around.

3.4.4 System initial spec

After the meeting with Arne and Girts, a minimum spec for the system was made, with

regards to the user functionality. The initial spec:

The system shall have:

 GUI

 Live display of the camera feed

 Compare sequential images at given interval to detect changes

 Detect errors and alert if detected

 Configuration of HSV parameters for thresholding

3.4.5 Development

Developing with a top-down approach led to taking a step back from testing all small

programs individually, and towards figuring out what the system should do for the user.

This started the work on defining a user experience (UX).

UX design goals:

 User input of parameters should be intuitive.

 The system shall give the user information regarding status of the print.

 Displaying live camera to the user

Chapter 3: Method

20

3.4.6 GUI

In order to build the graphical user interface a library was needed. For this project the Tkinter

package was chosen due to it being built-in to Python (Python Software Foundation, 2019)

and is one of the most commonly used for creating GUI apps in python. The tkinter package

builds on top of Tcl/Tk gui toolkit (Ross, 2019).

The GUI was developed with regards to the system spec and UX design goals. The main

window holds buttons and sliders for the user to input the necessary values for the image

processing. A window for displaying the live camera feed that constantly updates with the

latest frame from the camera was implemented. In addition, two pages for displaying the

latest and the second latest image from the image register was added.

3.4.7 Multithreading

In order to let the system preform multiple things at the same time, using multiple threads was

needed. The camera instance needed a thread for continuous capturing frames. The trigger

instance uses a thread for capturing a push of the button. The processor instance uses a thread

for preforming image processing. And the GUI uses a thread to handle button events and

refreshing frames displayed.

3.4.8 System spec revised

After some time in development the system spec was changed towards more specified

demands.

The system shall have:

 Intuitive GUI for development and testing

 A window for displaying live camera feed

 Windows for displaying the last and second to last page stored in register

 Store images to a register when a physical button is pressed

 Configuration of HSV parameters for thresholding

 Save and store HSV parameters presets

 Buttons for applying morphological operations to the mask

 Detect errors and alert if detected

Chapter 3: Method

21

3.4.9 Software architecture

Figure 12 Class diagram

Figure 12 shows the class diagram of the application.

 Main. This is the entry point for starting the application. This class instantiates a

MainWindow and a Facade object.

 MainWindow. This is the main window of the GUI. This instance handles the GUI

elements for user input. This class instantiates the CameraPage and two versions of

ImagePage on button press.

 CameraPage. This class displays and updates the current frame from the camera.

 ImagePage. This class displays and updates a frame from the Imageregister. One

instance of this displays the latest image. Another instance of this displays the second

to last image.

 Facade. This class connects functions of the subsystems (backend) to the GUI system

(frontend).

 Camera. This class handles the pulling of frames from a physical camera.

 Processor. This class handles the image processing, and logic connected to data

collecting. Currently this class also handles alerts.

 Trigger. This class listens for a push of a physical GPIO button.

Chapter 3: Method

22

 Imageregister. This class holds the images in a register.

3.4.10 Finalizing and clean-up

Towards the end of the project the code needed to be cleaned up. Methods that was not used

was removed. Encapsulating the objects variables in private fields and utilizing getters- and

setters- methods for these was implemented on every class of the code. Comments for the

methods that was not self-explanatory, and where it was necessary to clarify.

3.5 Image processing

In order to detect errors by image processing multiple approaches was tested.

One approach was to use template matching. This used the second to last frame gathered as a

template for matching in the current frame gathered. The images used in this approach was

BGR. Tests conducted during development showed that the values gathered from this was

inconsistent. This meant that the values could not be tested against a threshold value in order

to detect errors. Because of this the template matching approach was abandoned.

Another approach was to use pixel-wise differentiation. This was done by subtracting the

previous image from the current and calculate the difference in pixels. This gave a value of

how much area of the frame had changed. This approach showed good results in testing

against a threshold, when used on binary images.

The last approach explored was to use contouring to track extreme points (outer most point)

of the object. The contours where gathered from binary images. This showed a much more

reliable result in tests during development and was therefore used in the final algorithm.

The algorithms used in the final system are:

1. Gather image

2. Smoothing image

3. Convert colour space to HSV

4. Thresholding to binary

5. Morphological Operations

6. Contour and extreme points

Chapter 3: Method

23

7. Store binary image in register

8. If register har two or more images: Comparing consecutive images, pixel-wise and by

extreme points position

9. Go to step 1 at next button press

3.5.1 OpenCV

OpenCV is an open source library of image analysis algorithms used for computer vision

applications. This library was chosen for this project because it is open source and vastly

supported online with tutorials and good documentations (OpenCV, 2019). The library covers

most of the image analysis used in this project.

3.5.2 Gather images

Images are gathered in Camera instance. If Rpi is used the picamera modules

capture_continuous method is used, while if PC is used the opencv modules VideoCapture is

used. Both is handled by the Camera instance with returns the latest frame.

Figure 13 Image captured on picamera

Figure 13 displays and image captured by the picamera. Here the captured FoV of the print

area is shown. The camera was placed in this manner to cover the whole print area.

Images is captured after each layer the printer has laid down. The images are then stored to a

register in order to hold several images in memory.

Chapter 3: Method

24

3.5.2.1 Resolution

The Raspberry Pi Camera module supports capturing at multiple resolutions. To determine the

physical resolution, images of a ruler was captured at different resolutions.

Figure 14 Image of ruler used to determine physical resolution

The images shown in Figure 14 was used to count the number of pixels per millimetre. This

was done by counting pixels over 10/20 millimetre and average then to get relative accurate

readings. The maximum resolution of the Rpi camera when capturing continually is limited to

2592x1944. In addition, resolutions of 1280x960 and 640x480 was measured.

Resolution Vertical pixels per millimetre Horizontal pixels per millimetre

640x480 1.5 1.5

1280x960 3 3.1

2592x1944 6.2 6.3

Table 3 Resolution accuracy

Table 3 show the difference in accuracy of the different resolutions. This measurement was

taken at the centre of the printers build plate. In addition, images where the ruler is positioned

at the back and front of the build plate was gathered. By measuring at the middle and back,

the difference at 1280x960 resolution was 0,7 pixels per millimetre in vertical orientation.

The resolution of 1280x960 yielded enough framerate to display live camera feed and

maintain good accuracy, therefor this was used throughout the project.

Chapter 3: Method

25

3.5.3 Smoothing image

In order to remove noise from the gathered frame, the Processor instance smooths the image

by using OpenCV’s GaussianBlur. This method convolves a 5x5 kernel with the image to blur

and smooth the image.

Figure 15 Smoothed image

The edges of the image get softer as shown in Figure 15. This is used to prepare the image for

further processing.

3.5.4 Converting to HSV

The images are converted to HSV using OpenCV’s cvtColor method. This maps the BGR

values in the gathered frame to HSV.

3.5.5 Thresholding

The HSV images are converted to binary images by thresholding on user input HSV range

using OpenCV’s inRange method.

Chapter 3: Method

26

Figure 16 Binary image from the thresholding

The image is thresholded to mask the object from the background. Figure 16 show the binary

mask of the segmented object, with the same size and scale as the input image shown in

Figure 15.

A handling of three preset HSV value ranges was implemented in the GUI. The user can save

the values for later usage in the presets.

3.5.6 Morphological Operations

The binary image is then processed by morphological operations if the used requests it. The

user can then choose between erode, dilate, open and close. All these operations are used to

clean the binary mask, in order to better separate the object from the environment.

Chapter 3: Method

27

Figure 17 Binary mask after eroding

The image produced by thresholding, Figure 16, can contain some grainy noise that needs to

be removed by morphological operations. By eroding the image, it is possible to remove these

grains, as shown in Figure 17.

3.5.7 Contour and extreme points

Figure 18 Contour and extreme points of the segmented object

Chapter 3: Method

28

By finding the contour of the object it is possible to find the extreme points of the boundary.

These extreme points, shown in Figure 18 are used to track vertical position (highest point of

the object) and horizontal position of the object. This is used when comparing images.

3.5.8 Comparing images

The current image is compared to a previously stored image from the register. The comparing

explored in this project are:

 Pixel-wise differentiation. The current image is subtracted from the previous image,

and the non-zero pixels of the resulting image is counted. This gives a differential

value correlated to the motion between the two images. The method used are

arithmetic operations using the NumPy module.

 Horizontal motion. By tracking the position of the extreme points on the left and right

side of the object in one frame and compare to the same tracked point in the next

frame. This gives a value representing the difference in position of the sideways

movement of the object.

 Vertical motion. This is similar to the horizontal motion, but the tracked points are the

top extreme points. This gives a value representing the difference in height of the

object.

Figure 19 Differential image from pixel-wise subtraction on consecutive images

Chapter 3: Method

29

By comparing consecutive images of 640x480 resolution the difference of one layer was

hardly noticeable by any of the methods, as this would be around 1.5 pixel. By using a

resolution of 1280x960, one layer would be around 3 pixels. This led to a much more usable

result in pixel-wise comparison and horizontal motion. However, the vertical motion still

needed improvement as the value sometimes showed zero increase in height.

This led to the implementation of differentiating the current frame and the fourth last frame in

the register, for detecting vertical motion. This gave a higher outcome that proved useful for

the alert handling.

3.6 Alert handling

To handle alerts the values gathered from comparing images is compared to a threshold. If the

values range outside the threshold, and alert is detected. During the development this

sometimes triggered when an error was not present. And there by giving false alerts. This led

to the implementation of a 2-stage error authentication.

If an error is detected in only one comparison and not the next the alert is not triggered. This

is done by two errors flags that trigger the alert only if the system detects two consecutive

errors.

The implemented threshold value for pixel-wise comparison can be input from the GUI. This

was done because the value of pixel-wise comparison will wary according to the size of the

object printed. By default, this threshold is set high to avoid false alerts, but the user can set

this more appropriate by observing the values ranging during printing.

The threshold range for horizontal motion was set to +/- 3 in order to allow camera shake or

otherwise interference.

The threshold for height difference was set to 0.

3.7 System tests

The system was constantly tested during the development. Parts where test-printed in three

different colours, red, black and white filament. The black and white filament where

challenging to threshold in order to get clean masks of the object, therefore they were put a

side and red filament was used for the rest of the project.

Chapter 3: Method

30

Towards the end of the project a series of tests was conducted to document the result of the

project. These tests consisted of monitoring several prints where the print completed without

errors, where the print shifted in horizontal position and where the printer run out of filament

during the print.

3.7.1 Prints

Three different 3D prints where tested in three different setups. The first setup was an

unaltered environment, in order to print without errors and there by check if the system would

trigger false alerts. The second setup was to retract the filament in the middle of the print, to

test if the system detected filament runout. The third setup was to affect the print to no longer

stick to the print bed, to test if the system detects horizontal shift.

3.7.2 Data

The data gathered from these tests:

 Timestamp

 Number of non-zeros pixels in differential image.

 Object height difference over last three layers

 Sideways movement of the object boundaries

 Status message

The data is written to a CSV file, in order to display and analyse in Microsoft Excel.

Chapter 4: Results

31

Chapter 4: Results

The results presented here are from tests conducted on the development environment of the

project and have not been tested on different setup and other printers.

4.1 Application

This project has resulted in an application for detecting errors when monitoring the 3D

printing process, which meets the spec mentioned in 3.4.8 System spec revised. The

applications architecture allows for further development and can serve as a platform for future

image analysis applications on both pc and Rpi.

The complete code for this system is uploaded to Github (Paulsen, 2019).

4.1.1 GUI

Figure 20 GUI application

Chapter 4: Results

32

The GUI, as shown in Figure 20, holds the necessary function the user needs to setup error

monitoring.

The GUI also holds function needed in development. The “Print” and “Similarity” buttons is

used to display numbers of frames in the register and display differences between the last

frames.

4.1.2 Usage

The system assumes that the user monitors the first few layers put down, as errors regarding

first layer bonding is not covered by the system.

In order to start the error detection, the first step is to start the camera page. This opens

another GUI window containing live camera feed. The next step is adding the mask and set

the threshold on the sliders. To find the correct threshold it is useful to put an object of the

same colour as the filament the printer uses. If needed the next step is adding morphological

operations to clean the binary image. The GUI holds buttons for eroding, dilating, opening

and closing. The last step is to set the application to save masked images, before starting the

print. Now the application waits for the physical button to be triggered, before storing images

in the register. When the register has two or more images the pixel-wise differentiation and

horizontal tracking starts. When the register has four images contain an object, the height

differentiation starts.

Alerts registered is printed out in the console, as well as warnings, info and debug messages.

In addition, the data tracked is logged to a csv file.

4.2 Printable hardware

The project has developed a camera mount to attach Rpi camera to an Ultimaker printer. In

addition, a lighting fixture for LED strips vas developed. The parts can be found at

Thingiverse #4010873 (Paulsen, 2019).

4.3 System tests

Data legend:

 Height diff. The number of vertical pixels over the last three frames

 Left diff. The variation between each frame, of the left extreme point tracked.

 Right diff. The variation between each frame, of the right extreme point tracked.

Chapter 4: Results

33

 Diff Normalized. The number of pixel difference between each frame. This number is

represented as pixels * 1/100

The result of the system tests described in 3.7 System tests:

4.3.1 Error free prints

These tests were conducted without interference to the print.

4.3.1.1 Fast Cube

Figure 21 Fast Cube printed and system display

The object is a cube of 50x50x50mm printed complete without interference. Figure 21 Shows

the setup of the test.

Figure 22 Fast Cube Complete Chart

The result of the test is shown in Figure 22. The part printed complete without any errors, and

the system did not detect any errors.

-2
-1
0
1
2
3
4
5
6

1
6

:5
2

:1
3

1
6

:5
3

:1
5

1
6

:5
4

:1
8

1
6

:5
5

:2
0

1
6

:5
6

:2
3

1
6

:5
7

:2
5

1
6

:5
8

:2
7

1
6

:5
9

:2
9

1
7

:0
0

:3
1

1
7

:0
1

:3
6

1
7

:0
2

:3
9

1
7

:0
3

:3
9

1
7

:0
4

:4
2

1
7

:0
5

:4
4

1
7

:0
6

:4
6

1
7

:0
7

:4
6

1
7

:0
8

:4
9

1
7

:0
9

:5
1

1
7

:1
0

:5
2

1
7

:1
1

:5
4

1
7

:1
2

:5
5

1
7

:1
3

:5
8

1
7

:1
4

:5
8

1
7

:1
6

:0
0

1
7

:1
7

:0
5

1
7

:1
8

:0
7

1
7

:1
9

:0
9

1
7

:2
0

:1
1

1
7

:2
1

:1
3

1
7

:2
2

:1
6

1
7

:2
3

:1
8

1
7

:2
4

:2
0

1
7

:2
5

:2
3

Fast Cube Complete

Height diff Left diff Right diff Diff Normalized

Chapter 4: Results

34

4.3.1.2 Benchy

Figure 23 Benchy printed and system display

The object is a model of a boat called “Benchy”. Figure 23 shows the finished print and

system display.

Figure 24 Benchy Complete Chart

The result of the test is shown in Figure 24Figure 22. The part printed complete without any

errors. The system detected a warning “Part did not grow” at timestamp 19:02:59, however

since this was not detected in the next frame the alert is not set. This show that the 2-stage

alert handling mentioned in 3.6 Alert handling works as intended.

-4
-3
-2
-1
0
1
2
3
4
5
6

1
9

:0
1

:2
5

1
9

:0
3

:4
0

1
9

:0
4

:5
4

1
9

:0
6

:0
6

1
9

:0
7

:4
6

1
9

:1
1

:1
7

1
9

:1
4

:3
3

1
9

:1
7

:0
8

1
9

:1
9

:0
8

1
9

:2
0

:5
6

1
9

:2
3

:2
9

1
9

:2
5

:2
8

1
9

:2
7

:1
8

1
9

:2
9

:0
8

1
9

:3
0

:5
8

1
9

:3
2

:4
9

1
9

:3
4

:2
8

1
9

:3
5

:4
5

1
9

:3
6

:5
0

1
9

:3
7

:5
0

1
9

:3
8

:5
0

1
9

:3
9

:5
8

1
9

:4
1

:0
2

1
9

:4
2

:0
5

1
9

:4
3

:1
5

1
9

:4
5

:4
7

1
9

:4
7

:5
6

1
9

:4
8

:5
8

1
9

:4
9

:4
5

1
9

:5
0

:3
3

1
9

:5
1

:2
1

1
9

:5
2

:0
9

Benchy Complete

Height diff Left diff Right diff Diff Normalized

Chapter 4: Results

35

4.3.1.3 3 Cubes

Figure 25 3 Cubes printed and system display

This is a print of three cubes as shown in Figure 25

Figure 26 3 Cubes Complete Chart

The result of the test is shown in Figure 26. The print completed without any errors. The

system detected a warning “Vertical shift, Left side” at the first comparison, however since

this was not detected in the next frame the alert is not set.

4.3.2 Filament runout error

These tests were conducted with interference. After some time printing normally, the filament

is retracted.

-2
-1
0
1
2
3
4
5
6
7

Ti
m

e
2

0
:5

5
:3

0
2

0
:5

5
:5

5
2

0
:5

6
:2

1
2

0
:5

6
:4

6
2

0
:5

7
:1

1
2

0
:5

7
:3

7
2

0
:5

8
:0

2
2

0
:5

8
:2

7
2

0
:5

8
:5

4
2

0
:5

9
:2

0
2

0
:5

9
:4

5
2

1
:0

0
:1

1
2

1
:0

0
:3

6
2

1
:0

1
:0

2
2

1
:0

1
:2

7
2

1
:0

1
:5

2
2

1
:0

2
:1

8
2

1
:0

2
:4

3
2

1
:0

3
:0

8
2

1
:0

3
:3

3
2

1
:0

3
:5

9
2

1
:0

4
:2

4
2

1
:0

4
:5

0
2

1
:0

5
:1

5
2

1
:0

5
:4

1
2

1
:0

6
:0

6
2

1
:0

6
:3

2
2

1
:0

6
:5

7
2

1
:0

7
:2

2
2

1
:0

7
:4

7
2

1
:0

8
:1

3
2

1
:0

8
:3

8
2

1
:0

9
:0

3
2

1
:0

9
:2

8
2

1
:0

9
:5

4
2

1
:1

0
:1

9
2

1
:1

0
:4

5
2

1
:1

1
:1

0
2

1
:1

1
:3

5
2

1
:1

2
:0

0
2

1
:1

2
:2

6
2

1
:1

2
:5

1
2

1
:1

3
:1

6
2

1
:1

3
:4

1
2

1
:1

4
:0

7
2

1
:1

4
:3

3
2

1
:1

4
:5

9
2

1
:1

5
:2

4
2

1
:1

5
:4

9
2

1
:1

6
:1

4
2

1
:1

6
:4

0
2

1
:1

7
:0

5
2

1
:1

7
:3

2
2

1
:1

7
:5

7
2

1
:1

8
:2

2
2

1
:1

8
:4

7
2

1
:1

9
:1

3
2

1
:1

9
:3

8
2

1
:2

0
:0

3
2

1
:2

0
:2

8
2

1
:2

0
:5

4
2

1
:2

1
:2

0
2

1
:2

1
:4

5

3 Cubes Complete

Height diff Left diff Right diff Diff Normalized

Chapter 4: Results

36

4.3.2.1 Fast Cube

Figure 27 Fast Cube filament runout error

The “Fast Cube” object is printed, and the filament is retracted to trigger a filament runout

error, as shown in Figure 27

Figure 28 Fast Cube filament runout chart

The part printed until the filament was retracted at timestamp 17:56:53. This meant that the

part did not grow after that point. The system detected a warning “Part did not grow” at

17:57:30, however the next frame did not detect a stop in height difference therefore the alert

was not triggered.

-2
-1
0
1
2
3
4
5
6

1
7

:4
6

:5
0

1
7

:4
7

:1
5

1
7

:4
7

:4
0

1
7

:4
8

:0
4

1
7

:4
8

:2
9

1
7

:4
8

:5
4

1
7

:4
9

:1
9

1
7

:4
9

:4
4

1
7

:5
0

:0
8

1
7

:5
0

:3
3

1
7

:5
0

:5
8

1
7

:5
1

:2
4

1
7

:5
1

:4
8

1
7

:5
2

:1
3

1
7

:5
2

:3
8

1
7

:5
3

:0
3

1
7

:5
3

:2
8

1
7

:5
3

:5
5

1
7

:5
4

:1
9

1
7

:5
4

:4
4

1
7

:5
5

:0
9

1
7

:5
5

:3
4

1
7

:5
6

:0
1

1
7

:5
6

:2
7

1
7

:5
6

:5
3

1
7

:5
7

:1
8

1
7

:5
7

:4
2

1
7

:5
8

:0
6

1
7

:5
8

:3
1

1
7

:5
8

:5
7

1
7

:5
9

:2
1

1
7

:5
9

:4
5

1
8

:0
0

:0
9

Fast Cube Filament Runout

Height diff Left diff Right diff Diff Normalized

Chapter 4: Results

37

Figure 29 Section of the data logged in Fast Cube filament runout test

Figure 29 shows the logged data after the filament was retracted. The warnings at 17:57:30

and 17:57:54 was followed by a detection in height difference, which show that the system

needs a few layers of frames without growth before alerting.

4.3.2.2 Benchy

Figure 30 Benchy filament runout error

The “Benchy” object is printed, and the filament is retracted to trigger a filament runout error,

as shown in Figure 30.

Figure 31 Benchy filament runout chart

-4

-2

0

2

4

6

2
0

:2
2

:0
1

2
0

:2
3

:3
5

2
0

:2
4

:0
1

2
0

:2
4

:3
0

2
0

:2
4

:5
9

2
0

:2
5

:3
0

2
0

:2
5

:5
7

2
0

:2
6

:2
7

2
0

:2
6

:5
6

2
0

:2
7

:3
4

2
0

:2
8

:2
2

2
0

:2
8

:5
7

2
0

:3
0

:3
1

2
0

:3
3

:1
5

2
0

:3
4

:1
3

2
0

:3
5

:0
9

2
0

:3
6

:1
1

2
0

:3
7

:1
8

2
0

:3
8

:1
0

2
0

:3
8

:5
9

2
0

:3
9

:4
4

2
0

:4
0

:2
8

2
0

:4
1

:1
0

Benchy Filament Runout

Height diff Left diff Right diff Diff Normalized

Chapter 4: Results

38

The part printed until the filament was retracted at timestamp 20:38:59. This meant that the

part did not grow after that point. The system detected a warning “Part did not grow” at

20:40:07, and the alert was set from the next comparison. This is shown in Figure 31 where

the blue “Height diff” line hits the zero mark.

4.3.2.3 3 Cubes

Figure 32 3 Cubes filament runout error

Figure 32 shows that the “3 Cubes” printed, until the filament was retracted.

Figure 33 3 Cubes filament runout chart

The parts printed until the filament was retracted at timestamp 21:30:13. The part did not

grow after that point. A warning was detected at 21:30:51, and an alert triggered from the next

comparison, as shown in Figure 33.

4.3.3 Shifted part error

These tests were conducted with interference. After some time printing normally, the part is

carefully loosened from the print bed. This was done by turning off the heated bed, and

-2
-1
0
1
2
3
4
5

2
1

:2
5

:5
7

2
1

:2
6

:1
0

2
1

:2
6

:2
3

2
1

:2
6

:3
5

2
1

:2
6

:4
8

2
1

:2
7

:0
1

2
1

:2
7

:1
3

2
1

:2
7

:2
6

2
1

:2
7

:3
9

2
1

:2
7

:5
2

2
1

:2
8

:0
6

2
1

:2
8

:1
8

2
1

:2
8

:3
2

2
1

:2
8

:4
4

2
1

:2
8

:5
7

2
1

:2
9

:1
0

2
1

:2
9

:2
2

2
1

:2
9

:3
5

2
1

:2
9

:4
8

2
1

:3
0

:0
0

2
1

:3
0

:1
3

2
1

:3
0

:2
6

2
1

:3
0

:3
8

2
1

:3
0

:5
1

2
1

:3
1

:0
4

2
1

:3
1

:1
6

2
1

:3
1

:2
9

2
1

:3
1

:4
2

2
1

:3
1

:5
4

2
1

:3
2

:0
7

2
1

:3
2

:2
0

2
1

:3
2

:3
2

3 Cubes Filament runout

Height diff Left diff Right diff Diff Normalized

Chapter 4: Results

39

slightly lifting the edges of the print without shifting it. The shift of the object was caused by

the print head.

4.3.3.1 Fast Cube

Figure 34 Fast Cube shifted error

Figure 34 shows the part shifted to the left during the test.

Figure 35 Fast Cube shifted chart

The part printed normally before being loosened at timestamp 18:52:22. A warning “Vertical

shift, Left side. Vertical shift, Right side” was triggered at the next frame comparison,

followed by the alert at timestamp 18:52:46. The chart in Figure 35 shows that the Left and

Right diff spikes at the warning. The difference in pixel-wise comparison also spikes as the

shifted part covers a larger area in the frame.

-40

-20

0

20

40

60

80

1
8

:3
9

:4
0

1
8

:4
0

:0
5

1
8

:4
0

:3
0

1
8

:4
0

:5
5

1
8

:4
1

:2
0

1
8

:4
1

:4
4

1
8

:4
2

:0
9

1
8

:4
2

:3
4

1
8

:4
2

:5
9

1
8

:4
3

:2
4

1
8

:4
3

:4
9

1
8

:4
4

:1
3

1
8

:4
4

:3
8

1
8

:4
5

:0
3

1
8

:4
5

:2
8

1
8

:4
5

:5
3

1
8

:4
6

:1
7

1
8

:4
6

:4
2

1
8

:4
7

:0
7

1
8

:4
7

:3
2

1
8

:4
7

:5
7

1
8

:4
8

:2
3

1
8

:4
8

:5
0

1
8

:4
9

:1
6

1
8

:4
9

:4
1

1
8

:5
0

:0
6

1
8

:5
0

:3
0

1
8

:5
0

:5
5

1
8

:5
1

:1
9

1
8

:5
1

:4
6

1
8

:5
2

:1
0

1
8

:5
2

:3
4

1
8

:5
2

:5
8

1
8

:5
3

:2
3

1
8

:5
3

:4
7

Fast Cube Shifted

Height diff Left diff Right diff Diff Normalized

Chapter 4: Results

40

4.3.3.2 Benchy

Figure 36 Benchy shifted error

Figure 36 show the “Benchy” object after shifting has occurred.

Figure 37 Benchy shifted chart

The part printed normally until 20:12:54, where it was loosened. The next comparison

detected a warning “Part did not grow. Vertical shift, Left side”, because the part had shifted.

Figure 37 show that left and right diff spikes at 20:14:17, this indicates a shift to the left. And

at 20:15:15 the values spike the other way, indicating a shift to the right. This was because the

part was further shifted by the print head at the following layers.

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

2
0

:0
3

:0
2

2
0

:0
4

:0
1

2
0

:0
4

:3
6

2
0

:0
4

:4
9

2
0

:0
5

:0
3

2
0

:0
5

:1
7

2
0

:0
5

:3
1

2
0

:0
5

:4
5

2
0

:0
6

:0
1

2
0

:0
6

:1
6

2
0

:0
6

:3
1

2
0

:0
6

:4
5

2
0

:0
6

:5
9

2
0

:0
7

:1
4

2
0

:0
7

:2
9

2
0

:0
7

:4
3

2
0

:0
7

:5
8

2
0

:0
8

:1
2

2
0

:0
8

:3
5

2
0

:0
8

:5
9

2
0

:0
9

:2
3

2
0

:0
9

:4
0

2
0

:0
9

:5
9

2
0

:1
0

:1
7

2
0

:1
1

:3
3

2
0

:1
2

:5
4

2
0

:1
4

:1
7

2
0

:1
4

:4
8

2
0

:1
5

:1
5

2
0

:1
5

:4
2

2
0

:1
6

:1
1

2
0

:1
6

:3
9

2
0

:1
7

:1
2

Benchy Shifted

Height diff Left diff Right diff Diff Normalized

Chapter 4: Results

41

4.3.3.3 3 Cubes

Figure 38 3 Cubes shifted error

Figure 38 shows the 3 Cubes print after it has shifted. The print consists of three objects, and

only two of these where loosened, to check if the system would detect the error even if one

object remained normal.

Figure 39 3 Cubes shifted chart

The two objects were loosened at timestamp 21:39:02. A warning “Vertical shift, Left side.

Vertical shift, Right side” was detected in the next comparison, followed by an alert. Figure

39 shows the spikes of where the shift occurred. In addition, the first comparison detected a

warning at 21:35:51, however this did not trigger an alert as it was not an error.

-150

-100

-50

0

50

100

150

2
1

:3
5

:5
1

2
1

:3
6

:0
4

2
1

:3
6

:1
7

2
1

:3
6

:2
9

2
1

:3
6

:4
2

2
1

:3
6

:5
5

2
1

:3
7

:0
7

2
1

:3
7

:2
0

2
1

:3
7

:3
3

2
1

:3
7

:4
5

2
1

:3
7

:5
8

2
1

:3
8

:1
1

2
1

:3
8

:2
3

2
1

:3
8

:3
6

2
1

:3
8

:4
9

2
1

:3
9

:0
2

2
1

:3
9

:1
4

2
1

:3
9

:2
7

2
1

:3
9

:4
0

2
1

:3
9

:5
2

2
1

:4
0

:0
6

3 Cubes shifted
Height diff Left diff Right diff Diff Normalized

Chapter 4: Results

42

4.4 Accuracy

The measurement of an object at the middle of the print bed shows that the camera frame was

3 pixels per millimetre in vertical and 3.1 pixels per millimetre in horizontal direction, for a

resolution of 1280x960, as documented in “3.5.2 Gather images”.

The layer height of the print also affects the accuracy. The most common layer height for this

printer is between 0.3mm and 0.15mm. This means that one layer of 0.3mm is approximately

1 pixel high in the images gathered. However, by averaging the height difference gathered in

the tests the result is ~2.87 pixels in the difference over three frames. Giving less than 1 pixel

at 0.3mm layer height. Which means that the resolution chosen cannot detect one layer alone.

Chapter 5: Discussion

43

Chapter 5: Discussion

5.1 Project

The application developed by this project is structured in such a way that it can be used for

developing other image analysis applications, as this was defined in the scope of the project.

This on one hand, required that the project spent some time in achieving this structure, which

could have been used for researching and testing other methods for detecting errors in 3D

printing. On the other hand, the result from using and testing the system show that the

methods explored in this project is useful in detecting errors.

5.2 Key findings

The development process found that template matching did not yield usable results and was

therefore left out of the final application. However, the development process found that using

pixel-wise differentiating can be used, and the tracking of extreme points in the contours of

the object proved very useful for achieving the results.

The result of printing without errors, as documented in 4.3.1 Error free prints indicates that

the system does not trigger false positive warnings. However, the tests conducted does not

cover all possible situations, and further testing is advised.

The result of printing with errors, as documented in 4.3.2 Filament runout error and 4.3.3

Shifted part error shows that the system is able to detect errors of class 1 (Detachment) and

class 2 (Missing material flow) from 2.1.2 Errors. However, the other three error classes are

not covered by this system.

The accuracy obtained from the tests, documented in 4.4 Accuracy show that differentiating

the last frame and the fourth last frame is necessary to detect a high enough change in height

at a resolution of 1280x960. This however leads to a delay from the error occurring to the

system detects it. The delay is acceptable for this system.

The resolution (1280x960) used for the system resulted in a less than one pixel covered by a

layer height of 0.3mm. Furthermore, if using a lower layer height than this, the differentiating

over the last and the fourth last frame would not be enough for the detection. However, the

camera supports a resolution of 2592x1944, which would result in around 2 pixels for a

Chapter 5: Discussion

44

0.3mm layer height. Further development should consider this and using a larger distance

between the frames in the differentiation.

The 2-stage alert handling described in 3.6 Alert handling, proved useful when printing the

error free test 4.3.1.2 Benchy. This test showed that single alerts can occur in the system,

however due to the alert handling being implemented the system did not detect this as an

error.

5.3 Limitations

One limitation with this approach is the usage of a single camera. This can only detect error

that are visible to the camera. Any error that occurs behind another object or otherwise not

visible to the angel of the camera, would not be detected. However, most errors will be visible

from the camera.

Another limitation is the need to mount the camera to the print bed. This can be a problem as

some printers is enclosed or of such formfactor that mounting to the bed physically is not

possible.

The use of HSV threshold limits the system to using colour that stand out from the

surroundings. In addition, this is a limitation when using black, white or shaded materials as

mentioned in 3.7 System tests.

By using hardware with relative low processing power, the project had to limit the resolution

of the gathered images in order to maintain a live feed of acceptable frame rate. This led to a

limitation in accuracy, which in turn led to the need for differencing between the current

image and the fourth last image.

The system also has a limitation regarding the need for being on, in order to hold the images

in the register. This is because frames are held in memory and not written to the disk. This

means that if the system needs to restart during a print, all previous captured frames would be

disregarded.

Chapter 5: Discussion

45

5.4 Recommendations

The use of a raspberry pi has as mentioned limitations, therefore the use of more powerful

hardware should be addressed. The application is designed in way that it could run from a pc.

Another way of overcoming the limitations of the raspberry pi is to capture images at multiple

resolutions. By separating the images used for processing and the images used for displaying

the live camera feed, they could be captured at different resolutions. This however was not

implemented in this project.

5.5 Impact

The result of the tests done show that the system can be used for error detection. However, as

the result shows, the system can alert warnings even if an error is not present. This means that

one should not fully trust the system to monitor and detect, as the possibility of false positive

can occur. However, these false warnings were captured by the 2-stage alert handling, but

further tests should be conducted to verify more.

The impact of this project can be looked at as a good start for further development. The

project has developed a solution that is available open source, as determined by 1.4 Scope.

This means that anyone of interest can use or continue the work on the application.

Chapter 6: Conclusion

46

Chapter 6: Conclusion

The main objective of this project was to develop a system that visually monitors the process

of 3D printing to detect errors, and alerts if an error is detected. This project has achieved this

objective by developing an approach to detecting errors in the 3D printing process. This

approach used methods that compares consecutive frames and the latest frame to the fourth

latest frame in order to detect changes. The methods that were found useful was pixel-wise

differentiating, tracking of extreme points in contours of the objects and a 2-stage alert

handling to avoid false alerts. The result from these methods show that error detection in 3D

printing can be done by computer vision.

The system developed by the project has some limitations regarding visibility from the use of

a single camera, the need to mount the camera relative to the print area, the need for using

filament colours that stands out from the surroundings, accuracy from the resolution needed to

maintain a live feed, and lastly the need for uptime to hold frames in memory. However, the

results from the test preformed in this project show that the system can have an impact

towards further development.

6.1 Further work

6.1.1 Optimizing

This project recommends further work in optimizing the system in order to use higher

resolution and achieve more accuracy.

6.1.2 Rendered model

Implementing comparing captured images with images of the rendered model can increase

accuracy, make the system more robust and could lead to detection of other error classes than

1 and 2.

6.1.3 Octoprint plugin

The system could be very useful to many if implemented to Octoprint as a plugin. Octoprint

allows control over the printer which means that it can stop the printer if an error occurs.

Many people have already an Octoprint server monitoring their printers. With this system

implemented the server could send and alert and snapshot of the print if an error is detected,

or fully automate the process of stopping the printer when an error is detected.

0 Bibliography

47

Bibliography

3D Hubs, n.d. What is 3D printing? The definitive guide. s.l.:s.n.

Barnes, D. J. & Kölling, M., 2017. Objects First with Java. Sixth edition ed. Essex: Pearson

Education Limited.

Baumann, F. W. & Roller, D., 2016. Vision based error detection for 3D printing processes.

MATEC Web of Conferences, p. 8.

Bosch, J., 1996. Design Patterns as Language Constructs. Ronneby, Sweden: University of

Karlskrona/Ronneby.

Easton, Jr, R. L., 2010. Fundamentals of Digital Image Processing. s.l.:s.n.

Gringer, 2018. Wikimedia. [Online]

Available at: https://commons.wikimedia.org/wiki/File:FDM_printing_diagram.png

[Accessed 10 12 2019].

Hale, T. B., 2014. The Raspberry Pi Hobbyist. [Online]

Available at: http://raspberrypihobbyist.blogspot.com/2014/11/debouncing-gpio-input.html

[Accessed 05 11 2019].

Lyngby, R. et al., 2017. In-line 3D print failure detection using computer vision. Leuven,

Belgium: s.n.

Martin, D., 2013. A Practical Guide to Machine Vision Lighting. [Online]

Available at: https://www.advancedillumination.com/wp-content/uploads/2018/10/A-

Practical-Guide-to-Machine-Vision-Lighting-v.-4-Generic.pdf

[Accessed 10 12 2019].

OpenCV, 2019. Documentation. 4.1.1 ed. s.l.:s.n.

Oropallo, W. & Piegl, L. A., 2015. Ten challenges in 3D printing. Engineering with

Computers.

Paulsen, T., 2019. devproj. s.l.:s.n.

Paulsen, T., 2019. errordetector, s.l.: s.n.

Paulsen, T., 2019. Ultimaker Raspberry Pi Camera bed mount. s.l.:Thingiverse.

Python Software Foundation, 2019. Python documentation 25.1. tkinter — Python interface to

Tcl/Tk. [Online]

Available at: https://docs.python.org/3.5/library/tkinter.html

[Accessed 01 12 2019].

0

48

Rosebrock, A., 2019. PyImageSearch. [Online]

Available at: https://www.pyimagesearch.com/

[Accessed 16 09 2019].

Ross, C., 2019. The Python Wiki. [Online]

Available at: https://wiki.python.org/moin/TkInter

[Accessed 05 12 2019].

SharkD, 2008. Wikimedia. [Online]

Available at:

https://commons.wikimedia.org/wiki/File:Color_solid_comparison_hsl_hsv_rgb_cone_sphere

_cube_cylinder.png

[Accessed 10 12 2019].

Sinha, S., n.d. Geeksforgeeks. [Online]

Available at: https://www.geeksforgeeks.org/find-and-draw-contours-using-opencv-python/

[Accessed 12 12 2019].

Straub, J., 2015. Initial Work on the Characterization of Additive Manufacturinga (3D

Printing) Using Software Image Analysis, Fargo, ND, United States: North Dakota State

University.

Umbaugh, S. E., 2018. Digital Image Processing and Analysis Applications with MATLAB

and CVIPtools. Third Edition ed. Edwardsville, United States: Tyalor & Francis Group: CRC

Press.

0 Appendix

49

Appendix

A: Pre-project report
B: Data from tests

A: Pre-project report

50

A: Pre-project report

A: Pre-project report

51

A: Pre-project report

52

A: Pre-project report

53

A: Pre-project report

54

A: Pre-project report

55

A: Pre-project report

56

A: Pre-project report

57

B: Data from tests

58

B: Data from tests

B: Data from tests

59

B: Data from tests

60

B: Data from tests

61

B: Data from tests

62

B: Data from tests

63

B: Data from tests

64

B: Data from tests

65

B: Data from tests

66

B: Data from tests

67

B: Data from tests

68

B: Data from tests

69

B: Data from tests

70

B: Data from tests

71

B: Data from tests

72

B: Data from tests

73

B: Data from tests

74

B: Data from tests

75

B: Data from tests

76

B: Data from tests

77

B: Data from tests

78

B: Data from tests

79

B: Data from tests

80

B: Data from tests

81

B: Data from tests

82

B: Data from tests

83

B: Data from tests

84

B: Data from tests

85

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f I

C
T

an
d

N
at

ur
al

 S
ci

en
ce

s

B
ac

he
lo

r’
s

pr
oj

ec
t

Tomas Paulsen

Visual error detection on 3D
printing

Bachelor’s project in Automation Engineering
Supervisor: Ottar Osen, Saleh Abdel-Afou Alaliyat

December 2019

