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Abstract 
The alarm system plays a vital role to grant safety and reliability in the process 

industry. Ideally, an alarm should inform the operator about critical conditions only, 

and a set of corrective actions should be associated with each alarm. During alarm 

floods, the operator may be overwhelmed by several alarms in a short time span. 

Crucial alarms are more likely to be missed during these situations. Poor alarm 

management is one of the main causes of unintended plant shut down, incidents and 

near misses in the chemical industry. Most of the alarms triggered during a flood 

episode are nuisance alarms –i.e. alarms that do not communicate new information to 

the operator, or alarms that do not require an operator action. Chattering alarms –i.e. 

that repeat three or more times in a minute, and redundant alarms –i.e. duplicated 

alarms, are common forms of nuisance. Identifying nuisance alarms is a key step to 

improve the performance of the alarm system. Advanced techniques for alarm 

rationalization have been developed, proposing methods to quantify chattering, 

redundancy and correlation between alarms. Although very effective, these 

techniques produce static results. Machine learning appears to be an interesting 

opportunity to retrieve further knowledge and support these techniques. This 

knowledge can be used to produce more flexible and dynamic models, as well as to 

predict alarm behaviour during floods. The aim of this study is to develop a machine 

learning-based algorithm for real-time alarm classification and rationalization, whose 

results can be used to support the operator decision-making procedure. Specifically, 

efforts have been directed towards chattering prediction during alarm floods. 

Advanced techniques for chattering, redundancy and correlation assessment have 

been performed on a real industrial alarm database. A modified approach has been 

developed to dynamically assess chattering, and the results have been used to train 

three different machine learning models, whose performance has been evaluated and 

discussed. 
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Chapter 1  

Introduction 
 

 

 

1.1. Background 

The alarm system has always played a vital role to grant safety and reliability in the 

process industry. Before the advent of the DCS, the alarms were hard-wired (Katzel, 

2007). Installing a new alarm was expensive (approx. 1000 $/alarm) (Katzel, 2007), 

and few alarms could be installed due to the limited space on the annunciator panel 

(Shaw, 1993). For these reasons, only crucial alarms were installed, and the need for 

a new alarm must have been carefully justified. 

Nowadays, the alarm system is integrated with the DCS (Shaw, 1993; Katzel, 2007). 

Adding an alarm does not involve connecting cables and purchasing new hardware 

anymore (Shaw, 1993). Basically, installing new alarms has become “free”. This has 

tremendously improved the flexibility of the alarm system, but some problems have 

arisen as well. 

For instance, in modern industries, the ease of configuring new alarms has led to a 

large number of alarms being installed. Often, many of these alarms are added without 

proper rationalization (Kondaveeti et al., 2010). As a result, the workload for the 

operator (i.e. the number of alarms to address) is often unbearable. Alarm floods and 

nuisance are problems that affect most of the modern chemical plants.  
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During alarm floods, the operator may be overwhelmed by hundreds of alarms in a 

short time span; in these situations, it is impossible to provide a timely response, and 

crucial alarms are more likely to be missed (Laberge et al., 2014). Nuisance alarms do 

not communicate new information to the operator, or do not require an operator 

action (ANSI ISA, 2016). Chattering alarms –i.e. that repeat three or more times in a 

minute, and redundant alarms –i.e. duplicated alarms, are common forms of nuisance 

(Kondaveeti et al., 2010). Typically, most of the alarms triggered during a flood 

episode are nuisance ones (Kondaveeti et al., 2010; ANSI ISA, 2016). Identifying 

nuisance alarms is a key step to improve the performance of the alarm system. 

Poor alarm management is one of the leading causes of unintended plant shut down, 

accidents, and near misses in the chemical industry (Stanton and Barber, 1995; Health 

and Safety Executive, 1997). Recently, standard manuals have been published 

(EEMUA, 2013; ANSI ISA, 2016), providing guidelines for effective alarm management 

and nuisance reduction. In addition, advanced alarm management techniques have 

been developed, proposing methods to quantify chattering, redundancy and 

correlation between alarms (Kondaveeti et al., 2010, 2013; Yang et al., 2012). But, 

although effective, these techniques produce static results. A chemical plant is not a 

static element, and so is the alarm system. In this “multivariate” context, the need of a 

dynamic and adaptive model is real.  

We now live in the Digital Era; computational capabilities and data analysis 

techniques have extremely improved over the past few years. Industry 4.0, 

Digitalization and Internet of things (IoT) are deeply affecting the chemical industry 

(Ravi and Wu, 2016; Reis and Kenett, 2018). An immense amount of data can be stored 

in Cloud services and server farms. Still, extracting information and acquiring 

knowledge from raw data are not trivial tasks; unfortunately, data are stored but 

(often) not further analysed (Han, Kamber and Pei, 2012). Thus, the chance to acquire 

further knowledge from data is missed. 

In this context, Machine Learning techniques have progressively captured the 

attention of the international scientific community (Liu et al., 2018). These algorithms 

can “learn” from past data, and the knowledge achieved during the learning phase (i.e. 

training) can be used to predict future events (Brink, Richards and Fetherolf, 2016); 

hence, Machine Learning appears to be a good chance to use historical data to develop 

dynamic and flexible models. 
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1.2. Objective 

The aim of this study is to develop a machine learning-based algorithm for real-time 

chattering prediction during alarm floods. In general, the method proposes an 

interesting opportunity to analyse historical alarm data and to extract knowledge 

from them. 

The analysis includes the application of state-of-the-art techniques developed by 

Kondaveeti et al. (2010, 2013); this has been done to show the performances of the 

most recent alarm management techniques. From the results of these techniques, the 

work has proceeded through the development of a new, dynamic, method to assess 

chattering. Finally, the Machine Learning models have been developed and tested on 

their ability to predict chattering alarms. 

The main objectives of this master’s thesis can be summarized as follows: 

1. the application of advanced alarm management techniques on a real industrial 

alarm database. 

2. the development of a method to dynamically assess alarm chattering; 

3. to use the results of the method mentioned above for training three different 

Machine Learning models: Linear, Deep and Wide&Deep; 

4. to evaluate the capability of the models to predict alarm chatter. 

 

1.3. Approach 

A case study approach has been used in this thesis. All the analyses described in the 

present work have been performed on a real industrial alarm database, which was 

provided by the Norwegian chemical company Yara. Figure 1.1 describes the analyses’ 

workflow.   

Firstly, the database has been studied and the main issues identified; time has been 

spent to become familiar with the database and with the plant layout. Secondly, the 

original database has been modified, and a new, more convenient, database has been 

created (Step 1 in Figure 1.1). Later, advanced alarm management techniques 

proposed by Kondaveeti et al. (2010, 2013) have been performed (Step 2). 
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Then, the original chattering index approach has been modified into a new, dynamic, 

method to assess alarm chatter (Step 3). 

Finally, the results of the Dynamic chattering index method, along with alarm data 

from the original alarm database, have been used to train and evaluate three Machine 

Learning models (Step 4). 

  

 

 

 

 

 

 

 

 

 

 

 

In Figure 1.1, blue objects depict methods that have already been discussed in 

previous works (Kondaveeti et al., 2010, 2013; Hu et al., 2015). The green items 

represent original methods, developed during the present work. 

The analyses have been performed using python as a programming language. 

PyCharm 2019.2 IDE has been used. 

It is worth noting that the approach and the proposed method are limited to the case 

study under assessment. The results of the Machine Learning models are strictly 

related to the features of the plant under assessment (ammonia production, 

continuous operation, alarm flood episodes). Similarly, the method presented in this 

thesis has been developed with the sole purpose of predicting alarm chatter; using the 

same method to predict other metrics may not lead to the same results. 

Alarm database 

Binary Alarm Database 

ASCM HDAP 
Chattering Index 

 (ψ) 

Dynamic Chattering Index 

൫ψ
𝑑

൯ 

Machine Learning 
(Tensor Flow) 

Step 1 

Step 2 

Step 3 

Step 4 

Figure 1.1 - Analyses workflow 
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1.4. Outlines 

This work includes seven chapters and three appendices. Chapter 2 describes the 

theoretical background of the present work, and it comprises two sections. In the first 

section, the key concepts of “alarm” and “alarm system” are described, as well as state-

of-the-art techniques for alarm management. In the second section, Machine Learning 

is introduced. Chapter 3 focuses on the alarm database, which represents the case 

study of the present work. Furthermore, a brief description of the chemical plant 

associated with the alarm database is provided. In Chapter 4, the analyses performed 

during this thesis work are described in detail. Specifically, the first sections of the 

chapter focus on the application of the techniques proposed by Kondaveeti et al. 

(2010, 2013), and on the development of the Dynamic chattering index. The final 

section of the chapter focuses on the Machine Learning simulations. In Chapter 5, the 

results obtained from the analyses described in Chapter 4 are revealed. The results 

are discussed and evaluated in Chapter 6. Additionally, the limitations of the methods 

are highlighted and, finally, recommendations for further works are provided. In the 

final chapter (Chapter 7), the findings are summarized and framed into the context 

outlined in section 1.1. 

The three appendices include a list of acronyms (Appendix A), the code used for the 

Machine Learning simulations (Appendix B) and the tables that are either too large to 

be displayed in the main body or that are believed to be less relevant (Appendix C). 
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Chapter 2  

Theoretical background 
 

 

 

2.1.  Introduction 

In the next two subchapters, the key concepts about the alarm system and Machine 

Learning are presented. 

In the first subchapter, the alarm system is described. First, the definitions of “alarm” 

and “alarm system” are provided, including their main features and related issues (e.g. 

nuisance). Secondly, the alarm management lifecycle is introduced, and how to 

properly manage and maintain the alarm system is described. Thirdly, an overview of 

the most significant metrics to evaluate the performance of the alarm system is 

provided. Unless otherwise specified, ANSI/ISA - 18.2 (2016) has been used as the 

main reference in these sections. Finally, state-of-the-art techniques for alarm 

management and rationalization are presented. 

In the second subchapter, Machine Learning is introduced; including origins, 

development and actual applications. Next, the most important metrics to evaluate the 

performance of a Machine Learning classification algorithm are introduced. Finally, 

the models and the software used in this thesis are described. 
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2.2. The alarm system  

According to the definition provided in ANSI/ISA - 18.2 (2016), the alarm system is a 

collection of hardware and software that detects an alarm state, communicates the 

indication of that state to the operator, and records changes in the alarm state. 

The alarm system represents a communication channel between the plant and the 

operator. During abnormal events, situations may arise where automatic systems (e.g. 

BPCS-Basic Process Control System, SIS-Safety Instrumented System) are not capable 

to restore normal process conditions; human intervention is needed to handle these 

situations. But, the first step to address a problem is being aware that a problem 

exists; through the alarm system, the operator is informed about abnormal process 

conditions or equipment malfunctions. The operator him/herself is part of the alarm 

system and can affect its performance. A well designed and reliable alarm system is 

an essential condition to grant a safe and stable plant. 

A more detailed description of the alarm system is presented in Figure 2.1; arrows 

represent the dataflow between the elements of the system. 

 

Figure 2.1 - Alarm system dataflow (ANSI ISA, 2016) 
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From the “Process”, data are sent to the “Control & safety system”, which comprises 

the Safety Instrumented System (SIS), the Basic Process Control System (BPCS), the 

“Packaged systems” and the “Panel”. Each element of the “Control & safety system” 

can communicate with the others. Then, data are sent to the “Interface” section, where 

alarm data are registered and stored (Alarm log and Alarm historian) and, finally, sent 

to the operator through the Human Machine Interface (HMI -e.g. a computer screen 

and a console). A two-way communication exists between the process and the 

operator, who does not passively receive information; the operator can affect the 

process conditions through the HMI, the panel and the packaged systems. 

The alarm system is not a static element, it ages and degrades like all the other 

elements inside a plant. Thus, it needs to be managed and maintained to ensure good 

performances over time. Before going deeper into the description of the alarm system 

management, a fundamental element must be described: the alarm.  

 

2.2.1. The alarm 

According to the definition provided in ANSI/ISA - 18.2 (2016), an alarm is 

an audible and/or visible means of indicating to the operator an equipment 

malfunction, process deviation, or abnormal condition requiring a timely response. 

It is worth noting that each alarm requires a timely response. If an alarm cannot be 

solved (i.e. no actions available or not enough time to respond), the alarm is ineffective 

and unnecessary. Typically, during an abnormal event, an alarm transitions into 

different states. The state of an alarm defines whether the alarm is active or not, as 

well as whether the operator has acknowledged the alarm. Figure 2.2 depicts the 

possible transition paths for the majority of the alarms. 
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Figure 2.2 - Alarm state transition diagram (ANSI ISA, 2016) 

During normal operations, an alarm is not active, and its state is represented by the 

circle labelled as “A” in Figure 2.2. An abnormal event may occur, and the alarm state 

switches to “B” active and unacknowledged (because the operator response to an 

alarm is not instantaneous). Then, the alarm state may proceed along two different 

paths: 

1. the alarm returns to normal condition without being acknowledged (B → D); 

2. the alarm is acknowledged by the operator (B → C). 

In case 1, the control system (e.g. BPCS, SIS, etc.) solved the abnormal event without 

human intervention, and before the operator has acknowledged the problem; the 

alarm state is not active and unacknowledged (C). Then, when the operator 

acknowledges that the alarm has been solved, the alarm state returns to “A”, or, if an 

abnormal event occurs again, the alarm state returns to “B”. 
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In case 2, the operator acknowledges the active alarm (typically pressing a button) 

before normal process conditions are restored; the alarm state is active and 

acknowledged. Then, the process may return to normal operation (A) or a new 

abnormal event may arise (B). A special case is the transition from “C” to “B”, this 

happens when an alarm has been acknowledged but the situation does not return 

normal in a reasonable time. In this situation, an alarm may be built to re-activate after 

a pre-defined amount of time. 

Circles “E”, “F” and “G” represent special cases of alarm states: 

• “Shelved”: temporarily suppressed by the operator; 

• “Suppressed-by-design”: temporarily suppressed based on plant operating 

condition (i.e. start-up, maintenance, tests, etc.); 

• “Out-of-service”: manually suppressed and removed from service (e.g. for 

maintenance). 

As previously argued, timing is a key concept in managing alarms. A typical alarm 

response timeline is described in Figure 2.3. 

 

Figure 2.3 - Alarm response timeline (ANSI ISA, 2016) 

The figure above represents a process value that increases over time (solid line); 

alarm states at different times (according to Figure 2.2) are described on the top of 

Figure 2.3. When the process value crosses the alarm setpoint (i.e. an alarm design 

attribute, see 2.2.1.2), the alarm state turns to active. Then, after a certain amount of 

time, the operator acknowledges the alarm; the amount of time between the alarm 
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and the acknowledgment is the ack delay. After the operator has acknowledged the 

alarm, he/she takes action to return to normal operations. The amount of time 

between the acknowledgement and the action is the operator response delay, which is 

a function of several factors, such as: 

• operator workload; 

• the complexity of determining the operator action; 

• the complexity of the operator action; 

• operator awareness and training; 

• operator console clarity and ergonomics. 

The sum of the ack delay and the operator response delay is the actual response time, 

which is bounded from above by the allowable response time. If an action is taken after 

the allowable response time the consequence will occur in any case. Process deadtime, 

rate of change of the process variable and the difference between the consequence 

threshold and the alarm setpoint are characteristics that influence the allowable 

response time. If the correct actions are taken in time, the process variable will start to 

decrease after the process dead time, eventually reaching the alarm setpoint again. 

Typically, the alarm does not return-to-normal immediately after crossing the 

setpoint, a deadband delay is set to prevent the alarm from turning on and off 

frequently if the process variable fluctuates around the alarm setpoint. 

If the wrong actions are taken (or the correct actions are taken too late) the process 

variable continues to increase, and the consequences occur (dashed line in Figure 2.3). 

 

2.2.1.1. Nuisance alarm 

According to the definition provided in ANSI/ISA - 18.2 (2016), a nuisance alarm is: 

an alarm that annunciates excessively, unnecessarily, or does not return to normal 

after the operator action is taken. 

Basically, a nuisance alarm does not provide any new information to the operator, or 

there are no possible actions to solve the alarms (Kondaveeti et al., 2010); thus, it 

constitutes a distraction for the operator. It is mandatory to periodically assess and 

reduce the number of nuisance alarms to grant a stable and efficient alarm system.  
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Examples of nuisance alarms are: 

a. chattering alarms; 

b. fleeting alarms; 

c. stale alarms; 

d. redundant alarms. 

According to ANSI/ISA - 18.2 (2016), a chattering alarm 

repeatedly transitions between the active state and the not active state in a short 

period of time. 

Within a few hours, or even minutes, a chattering alarm could be triggered hundreds 

of times. Obviously, the operator has no chance to manage such a vast amount of 

alarms. A rule of thumb to determine chattering behaviour is 3 or more alarm records 

(from the same alarm) in one minute (Kondaveeti et al., 2013). 

Fleeting alarms share the characteristic of rapid transition between the active and not 

active state but, unlike chattering alarms, they do not do it repeatedly (i.e. with high 

frequency). Stale alarms are alarms that stay active for a long time (e.g. more than a 

day). Finally, redundant alarms are two or more alarms that always occur together 

(e.g. they are associated with the same process variable). 

 

2.2.1.2. Alarm types and attributes 

Different types of alarm exist in a plant, for instance: 

a. absolute alarm: alarm generated when the alarm setpoint is exceeded (e.g. 

high-high, high, low, low-low); 

b. discrepancy alarm: alarm generated by the difference between the expected 

plant or device state to its actual state (e.g., when a motor fails to start after it 

is commanded to the on state); 

c. calculated alarm: alarm generated from a calculated value instead of a direct 

process measurement; 

d. instrument diagnostic alarm: alarm to indicate a field device or signal fault; 

e. bad-measurement alarm: alarm generated when the signal for a process 

measurement is outside the expected range; 

f.  adaptive alarm: alarm for which the setpoint is changed by an algorithm. 
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The definitions provided in the previous list are entirely drawn from ANSI/ISA - 18.2. 

Furthermore, each alarm is characterized by a series of attributes, which define the 

behaviour of the alarm within the control system. These attributes may vary 

depending on the specific alarm type, and they include: 

a. alarm description; 

b. alarm setpoint; 

c. alarm priority; 

d. alarm deadband; 

e. on-delay or off-delay; 

f. alarm group; 

g. alarm message. 

Each of these attributes is important, but some of them directly affect how the alarm 

behaves during an abnormal event; a brief description is needed to further describe 

these “special” attributes: 

• alarm setpoint: a threshold value that, when crossed, causes the alarm to 

transition into the active state. The alarm setpoint greatly affects the alarm 

performance, since it directly determines the allowable response time (see 

Figure 2.3). The alarm setpoint determination must follow a clear and rational 

method, that must consider the consequence threshold, the complexity of the 

operator actions, the normal operating range, etc.; 

• alarm priority: as the name suggests, this attribute determines the urgency of 

the alarm. It supports the operator to decide in which order the alarms should 

be addressed. Priority is not just a matter of severity of the consequences; 

allowable response time must be considered as well. Typically, three or four 

priority levels are used. The alarm priority determination must follow a clear 

and rational method and, ideally, most of the alarms should have low priority 

levels, while only a few of them should have higher priority levels; 

• alarm deadband: Figure 2.4 clarifies the function of the deadband. The solid 

line represents the process variable. When the value crosses the upper, 

horizontal, solid line (“High Limit” in Figure 2.4 -i.e. the alarm setpoint) a 

notification is sent to the operator. Then, due to measurement noise, the 
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process value crosses three more times the alarm setpoint value, but no 

notification is sent to the operator; this is because of the deadband 

(represented as the dashed, horizontal, line in Figure 2.4 -i.e. “High – DB”). If 

the process value stays between the setpoint and the deadband, no notification 

is sent to the operator. An accurate deadband setting can significantly reduce 

the number of nuisance alarms; 

 

Figure 2.4 - Deadband and setpoint (livelibrary.osisoft.com, 2020) 

• alarm off-delay: a parameter that defines how long an alarm has to stay active 

after the process condition has returned normal. It is similar to the deadband, 

but it is based on a time value, instead of a process value. If an active alarm 

crosses the setpoint (and an eventual deadband) and no off-delay is set, the 

alarm turns not active. But, if an off-delay of one minute is set, the alarm stays 

active one minute more, no matter if the process condition has returned 

normal already. An accurate off-delay tuning can significantly reduce 

chattering. 

Alarm attributes are decided during the basic design phase of the alarm system (2.2.2 

points C and D), and they are not static parameters. They can be “manually” changed 

to address a known nuisance problem, or they can be programmatically changed 

based on the current plant state (e.g. start-up, normal operation, etc.). Every time the 
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alarm attributes are changed, the operator must be informed about the change. Every 

change must be authorized and approved. 

It is worth noting that alarm attributes can be changed also by advanced alarming 

techniques, which is the scope of this thesis work. An example is the “Model-based 

alarming” technique, according to which the alarms’ behaviour (e.g. attributes) can be 

changed based on a model prediction if a reliable model is available. For instance, the 

model could predict the plant state or the alarm behaviour, and it could change the 

alarms attributes to adapt the alarm system to the upcoming conditions. 

 

2.2.2. The alarm management lifecycle 

The alarm system needs to be properly managed and maintained to ensure its 

effectiveness. ANSI/ISA - 18.2 (2016) proposes a lifecycle-based alarm management, 

which comprises ten stages and three internal loops; a schematic description of the 

alarm management lifecycle is presented in Figure 2.5. 

Either if a new alarm system is installed, or an existing one needs to be managed, the 

alarm management lifecycle will provide a rational method to ensure an efficient 

system. 
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Figure 2.5 - Alarm management lifecycle (ANSI ISA, 2016) 

 

It is worth noting that, according to “note 3” in Figure 2.5, that one can enter the alarm 

lifecycle through the “Philosophy” stage (A), the “Monitoring & assessment” stage (H) 

or the “Audit” stage (J). A brief description of each stage will now be provided: 

A. Philosophy 

the Philosophy stage constitutes the foundations of the whole alarm 

management lifecycle. During this stage, a document must be drawn, 

containing the criteria, definitions, principles and responsibilities of the alarm 

management lifecycle. The alarm Philosophy provides the method that must 

be followed by the other stages of the lifecycle to achieve their purposes. 

Recommended/required topics that must be covered over the alarm 

Philosophy are presented in Table C. 3. For example, the philosophy must 

clarify the purpose of the alarm system, the methods for the alarm design (i.e. 

how to calculate setpoints, deadbands, off-delay, alarm types, etc.), the basis 

and the metrics used for alarm prioritization, the methods for monitoring and 
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maintaining the alarm system, and much more. Basically, it provides the 

guidelines on how to perform each stage of the alarm management lifecycle, 

and it constitutes the natural entry point for new systems. 

B. Identification 

during this stage, a collection of potential alarms is provided. The 

identification method (i.e. how to quantify the need for a new alarm) must 

follow the guideline presented in the Philosophy stage. An alarm may be 

identified by formal methods (such as HAZOP, FMEA, P&ID reviews, etc.) or by 

operational experience and plant knowledge. The output of the Identification 

stage (list of potential alarms) is the input to the Rationalization stage. 

C. Rationalization 

first, during the Rationalization stage, the need for each potential alarm must 

be justified (it must be ensured that the alarm meets the criteria of the alarm 

Philosophy). During the justification phase, it should be also verified that the 

potential alarm does not duplicate an existing alarm, and that it will not 

become a nuisance. If the alarm is consistent with the Philosophy, the alarm 

setpoint is determined as well as the alarm priority and classification. The list 

of partially determined alarms is then sent to the “Detailed design” stage. 

D. Detailed design 

during this stage, the alarm if fully designed and determined. Additional alarm 

attributes are specified (e.g. deadbands, off-delay, etc.), HMI is designed (e.g. 

how the alarm is presented to the operator based on the priority, the state, 

etc.) and advanced alarming is designed. The latter is used if the basic alarm 

design is not sufficient to grant the performances required by the alarm 

Philosophy. An example is the “Model-based alarming” technique, which was 

introduced at the end of paragraph 2.2.1. 

E. Implementation 

during this stage, the alarms are physically installed and tested. Finally, the 

operators are trained. 

F. Operation 

the alarm/the alarm system is operative. 
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G. Maintenance 

in this stage, the alarm is not operative because tests or reparation are needed. 

Periodical maintenance on the alarm system is essential to sustain its 

performance. 

H. Monitoring & assessment 

during this phase, the performances of the alarm system are monitored. Alarm 

data are analysed, and performance metrics are produced (see 2.2.3 for more 

details). If the effectiveness of the alarm system does not match the Philosophy 

requirements, maintenance or changes to the alarm system may be required 

(e.g. different alarm attributes, new alarms, advanced alarming techniques, 

reparation, etc.). This is the natural entry point for existing alarm systems. 

Furthermore, the “Monitoring & assessment” stage is the entry point for the 

techniques discussed in this work; since the aim of this thesis is to provide a 

method to address nuisance and enhance the alarm system performances. The 

output of this stage is a list of suggestions to improve the performances. 

I. Management of change 

in this stage, the changes identified during “Monitoring & assessment” are 

discussed and approved. The output of this stage is a list of authorized 

changes, which is fed to the “Identification” stage. 

J. Audit 

this is a separate stage of the alarm management lifecycle. It is periodically 

conducted to preserve the efficiency of the alarm system and the alarm 

management lifecycle itself. This is the only phase where modifications to the 

Philosophy can be discussed and, eventually, approved. Audit stage may 

highlight issues not recognizable by the “Monitoring & assessment” stage. 

In Table C. 4, a concise description of the activities performed in each stage of the 

alarm management lifecycle is provided, along with the inputs and the outputs. 
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2.2.3. Performance of the Alarm system 

During the “Monitoring & assessment” stage, the performance of the alarm system 

must be monitored and evaluated against the Philosophy requirements. Various 

performance metrics exist to assess the alarm system's effectiveness. All the metrics 

are calculated from alarm data (i.e. an alarm database, a collection of alarm records) 

and, usually, at least thirty days of alarm data are needed. The metrics suggested by 

ANSI/ISA 18.2 are summarized in Table 2.1. 

 

Table 2.1 – Recommended alarm performance metrics summary (ANSI ISA, 2016) 

A brief description of the metrics is presented below. 

1. Average alarm rate per operator console 

number of annunciated alarms per operator based upon one month of data (i.e. 

thirty-day average). The following limits are suggested: 

▪ acceptable: ~ 6 alarms per hour per operator (average); 

▪ maximum: ~ 2 alarms per ten minutes per operator (average). 

The thresholds presented above consider the experience of the operator and 

the time needed to study the situation, to take corrective actions and to verify 

that the situation has returned normal. 
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2. Peak alarm rate per operator console 

an operator cannot handle more than 10 alarms in a 10-minutes interval. Peak 

alarm rate analysis consists in dividing the month into 10-minutes-spaced 

intervals. For each interval, the number of annunciated alarms per operator is 

calculated. The number of intervals containing more than ten alarms 

represents the “Peak alarm rate per operator console”. The recommended 

value is less than 1% (i.e. less than 43.2 ten-minutes intervals in a month). 

“Peak alarm rate per operator console” and “Average alarm rate per operator 

console” must be considered simultaneously. 

3. Alarm floods 

Alarm floods are periods of intense alarm activity. Hundreds (or even 

thousands) of alarms may occur during a flood episode; in situations like this, 

crucial alarms are more likely to be missed. The duration of an alarm flood is 

variable; it starts when the alarm rate exceeds 10 alarms/operator per ten 

minutes time interval, and it ends when the alarm rate returns normal (e.g. less 

than 5 alarms/operator per ten minutes time interval). It is recommended that 

the alarm system should not experience floods for more than 1 % of the total 

time. 

4. Frequently occurring alarms 

usually, in a chemical plant, hundreds of alarms are configured. However, only 

a few of them are responsible for most of the total alarms count (i.e. from ten, 

up to twenty alarms only are responsible for more than 70% of the total alarm 

occurrences within the study period). Addressing these frequent alarms can 

greatly enhance the alarm system performance. As a recommendation, the top 

10 most frequent alarms (namely, ‘top 10 bad actors’) should not constitute 

more than 5% of the total alarm occurrences. 

5. Chattering and fleeting alarms 

chattering and fleeting alarms have already been defined in 2.2.1.1. Chattering 

alarms are usually in the list of the “Frequently occurring alarms”.  Chattering 

and fleeting alarms are not tolerated in any way. If chattering or fleeting alarms 

are identified, actions must be taken to correct them. 
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6. Stale alarms 

stale alarms have already been defined in 2.2.1.1. There is no long-term 

acceptance for these kinds of alarms, but it is tolerable to have less than five 

stale alarms per day. 

7. Annunciated alarm priority distribution 

as it was already mentioned in 2.2.1.2, alarms with higher priority should be 

annunciated less frequently compared to the ones with lower priority. The 

“Alarm priority distribution” quantifies the consistency of the alarm 

prioritization procedure. 

 

2.2.4. Chattering, Redundancy and Correlation assessment 

As previously argued, a key step to improve the performance of the alarm system is to 

remove nuisance alarms (2.2.1.1 and 2.2.3) and to address frequently occurring alarms 

(2.2.3). During the past years, advanced alarm management tools have been 

developed to quantify chattering (Kondaveeti et al., 2010, 2013), redundancy and 

correlation (Kondaveeti et al., 2010; Yang et al., 2012; Ahmed et al., 2013). These 

techniques represent the foundations of this thesis work; a brief description of each 

of them is presented in the next three paragraphs. 

 

2.2.4.1. Chattering assessment: the chattering index (𝜓) 

In section 2.2.1.1 a rule of thumb to identify a chattering alarm is defined as 3 or more 

alarms in a minute. But the definition is vague, and no standard or guideline exists to 

quantify the chattering behaviour of an alarm. Kondaveeti et al (2013) proposed a 

method based on run length distributions to quantify alarm chattering. The method 

follows 5 steps: 

1. binary alarm database creation; 

2. run length (r) calculation;  

3. Run Length Distribution (RLD) calculation; 

4. Discrete Probability Function (DPF) calculation; 

5. chattering index (𝜓) calculation. 
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Each step will be described in detail in paragraphs 4.2 and 4.5.  

The result of the procedure is a chattering index 𝜓 for each unique alarm that occurred 

within the study period. The chattering index 𝜓 of an alarm can be interpreted as the 

“mean frequency of annunciation of that alarm assuming that the abnormal event 

prevails for an indefinite period of time” (Kondaveeti et al., 2013), and it has the 

following properties: 

• 𝜓 ∈ [0,1]     (the closer to 1, the more the alarm shows chattering behaviour); 

• 𝜓 units are alarms/s. 

A suggested rule to determine whether an alarm shows chattering behaviour is: 

 
𝜓 >  0.05 

𝑎𝑙𝑎𝑟𝑚𝑠

𝑠
 2.1 

This is because 0.05 alarm/s is equal to 3 alarms/min, which is the suggested value 

already discussed in  2.2.1.1. 

 

2.2.4.2. Correlation and redundancy assessment: the ASCM 

Redundancy has already been discussed in 2.2.1.1, while “correlation” must be 

described further. The “correlation” is a measure that indicates “how much” two 

alarms are similar. If two alarms are correlated, they tend to be annunciated together. 

This does not necessarily mean that two correlated alarms appear always at the same 

time; for example, one of them may occur two minutes after the other. But, if the same 

delay between two alarms happens frequently, it means that the two alarms are 

somehow correlated. For example, the first alarm could be a high-temperature alarm 

of a gas-phase batch reactor, while the second one a high-pressure alarm of the same 

reactor; they are not the same alarm (i.e. they are not redundant) but they are 

certainly correlated. In this example, the operator actions should be aimed at 

decreasing the temperature, rather than decreasing the pressure; solving the high 

temperature will solve the high pressure as well. In this example, it is trivial to 

recognize correlation; instead, in more complex systems, it may not be intuitive. 

Obviously, correlation is not a form of nuisance, it is a measure to quantify the 

relationship between alarms. It could be used to support the operator actions and to 

assess redundancy (i.e. if two alarms are “extremely” correlated, they probably will be 

redundant). 
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A method to assess the correlation between two alarms was proposed by Kondaveeti 

et al.  (2010). It is based on the binary representation of alarm data and the application 

of the Jaccard measure, which measures the “distance” (i.e. the correlation) between 

two binary sequences (Lesot, Rifqi and Benhadda, 2009). The method develops 

through five steps: 

1. binary alarm database creation; 

2. padding each binary sequence with extra 1’s;  

3. calculation of similarity measure; 

4. re-ordering of the similarity matrix; 

5. colour coding. 

Each step will be described in detail in paragraphs 4.2 and 4.4. 

The result of the procedure is the Alarm Similarity Color Matrix (ASCM, Figure 2.6). 

 

Figure 2.6 – An example of ASCM (Hu et al., 2015) 

Figure 2.6 introduces an example of an Alarm Similarity Color Matrix (ASCM), which 

is a symmetric matrix whose elements represent the degree of correlation between 

couples of alarms. The rows and the columns of the matrix represent a unique alarm. 

Each element of the matrix is displayed as a coloured square, the colour represents 
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the value of the similarity measure (i.e. the Jaccard measure) between two alarms (the 

row and column index of the element). The Jaccard measure is bounded between 0 

and 1; the higher the similarity (i.e. the correlation) the higher the Jaccard measure. 

Since the matrix is symmetric, the diagonal elements represent the correlation 

between one alarm and the alarm itself (i.e. the diagonal element of the row 

“Tag21.DVLO” in Figure 2.6 represents the correlation between the binary sequences 

of “Tag21.DVLO” and “Tag21.DVLO”). But, the degree of correlation of two identical 

alarm is 1 (the binary sequence are identical); thus, every element in the diagonal has 

a Jaccard measure equal to 1 (maximum degree of correlation) and is represented as 

a black square, according to the colour bar on the right of Figure 2.6. Intuitively, the 

darker the colour of the matrix element, the higher the correlation between the two 

alarms. It is worth noting that the alarms are not randomly displayed in the matrix. 

Alarms are reordered (step 4 of the method) in such a way that alarms with higher 

correlation are displayed together in the matrix (Kondaveeti et al., 2010), forming 

clusters of correlated alarms. If an alarm of a cluster is triggered, it is very likely that 

another alarm of the same cluster will be triggered anytime soon. This information 

could be used to support the operator decision-making procedure. Furthermore, the 

ASCM is used to assess redundancy; for example, if two different alarms have a 

similarity measure close to 1, it is highly probable that they are redundant alarms. One 

of the two redundant alarms can be silenced since it does not provide any new 

information to the operator. To conclude, ASMC is not just a graphical tool, the 

coloured squares represent a “real” similarity value that, as discussed above, is a 

meaningful and valuable piece of information.  

 

2.2.4.3. The High Density Alarm Plot (HDAP) 

In (Kondaveeti et al., 2010) the authors proposed another alarm visualization tool, the 

High Density Alarm Plot (HDAP), which can be used to support the findings obtained 

by the techniques discussed above (Chattering index and ASCM). The HDAP is a 

convenient way to display large alarm databases and can be used to visually recognize 

periods of plant instability as well as to preliminary assess chattering and redundancy.  
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To obtain the HDAP the following steps must be followed: 

1. binary alarm database creation; 

2. time bins creation and alarm count; 

3. HDAP creation. 

Each step will be described in detail in paragraph 4.2 and 4.3 

The result of the procedure is the HDAP (Figure 2.7). 

 

Figure 2.7 – An example of HDAP (Kondaveeti et al., 2010) 

Each row (i.e. point of the y-axis) represents the “temporal representation of a unique 

alarm over the selected time range” (Kondaveeti et al., 2010), each column (i.e. point 

of the x-axis) represents a 10 minutes time interval (bin). The coloured sticks in the 

plot represent how many times the alarm of concern (row) is occurred within the time 

bin (column) according to the colour bar on the right of Figure 2.7. It is worth noting 

that the alarms are sorted in such a way that the total alarm count decreases from the 

top to the bottom of the plot (i.e. the first alarm of Figure 2.7 -i.e. “tag.id1” has a higher 

total alarm count than the second one -i.e. “tag.id2”, etc.). In this way, alarms with 

higher alarm count (i.e. the “Frequently occurring alarms”, the “bad actors”) are 
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displayed on the top of the HDAP. Furthermore, redundant alarms tend to be 

displayed together since they have similar alarm count. The annotations in Figure 2.7 

clarify the usefulness of the HDAP; for instance, it can be used to recognize periods of 

plant instability, it can be used for preliminary redundancy assessment (alarms that 

appears always together in the plot, and with the same alarm count) and, finally, it can 

be used for preliminary chattering assessment (alarm with very high count within the 

time interval). It should be emphasized that the HDAP is just a visual tool, it is useful 

for a preliminary assessment, but it cannot substitute the two techniques described 

earlier (𝜓 and ASCM). 
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2.3. Machine Learning 

Machine Learning is the field of Artificial Intelligence (AI) (Brink, Richards and 

Fetherolf, 2016) that comprises all the techniques (i.e. algorithms) through which a 

machine can gain knowledge from the past (i.e. past data), and use the acquired 

knowledge to perform several tasks (e.g. predictions, classification, pattern 

recognition, etc.).  

There is not one, universally accepted, Machine Learning definition. In Mohri et al. 

(2012) it is defined as: 

computational methods using experience to improve performance or to make 

accurate predictions. 

The term “Machine Learning” was coined by Arthur L. Samuel (1959). He developed a 

computer algorithm to play checkers in such a way that the program “will learn to play 

a better game of checker that can be played by the person who wrote the program” 

(Samuel, 1959). The program was trained on playing thousands of games against 

itself; depending on the situation, the program learned the best moves (i.e. the moves 

that led to a victory). By 1970 the software achieved the level of an amateur player 

(Brink, Richards and Fetherolf, 2016), and this led to the birth of Machine Learning. 

Since then, Machine Learning techniques have progressively captured the attention of 

the international scientific community, and now they represent one of the “hot topics” 

of the 21st century (Liu et al., 2018). 

The actual applications of Machine learning are countless (Mohri, Rostamizadeh and 

Talwalkar, 2012; Brink, Richards and Fetherolf, 2016), the list below is just a quick 

and non-comprehensive review of the variety of different scientific fields that have 

taken advantage of Machine Learning techniques: 

• computer vision tasks, e.g., image recognition, face detection; 

• medical diagnosis; 

• computational biology applications, e.g., protein function or structured 

prediction; 

• text or document classification, e.g., spam detection; 

• stock-market prediction; 

• risk management. 
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And new applications are found every day. 

Although dozens of Machine Learning algorithms exist, each of them falls into three 

big classes;  

1. supervised learning; 

2. unsupervised learning; 

3. reinforcement learning. 

In this thesis, only supervised learning has been used. Furthermore, supervised 

learning can be divided into two main categories: Regression and Classification. Since 

the aim of the present work is to classify alarms (i.e. the alarm “will show chattering” 

or “will not sow chattering”), Classification only has been used. Thus, in the following 

sections, the key concept about Classification problems, and related machine learning 

algorithms, will be provided (e.g. definitions, characteristics, performance metrics, 

tasks, models). In the final section, the software used during the simulations 

(TensorFlow) will be introduced. 

 

2.3.1. Definitions and general aspects 

Two definitions are needed before proceeding further into the description of 

unsupervised learning: 

• features 

the features are meaningful attributes of the problem under assessment. The 

features should capture the relevant aspect of the problem (Brink, Richards 

and Fetherolf, 2016) and constitute the inputs of the Machine Learning model. 

For instance, if the task is to classify emails to detect spam, some relevant 

features may be the sender, the subject, the presence of specific keywords, etc. 

In this way, an email is completely described by a series of attributes. If the task 

is to predict alarms behaviour (like in this thesis), the features may include the 

alarm tag, the alarm status, the alarm attributes, the value of the associated 

process variable, etc. 
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• labels (or targets) 

the labels are the values or categories that the model has to predict. For 

instance, in the spam detection example, the label associated with an email is 

“Spam” or “Not Spam”. In this thesis work, since the objective is to predict 

chattering, the labels may be “The alarm is going to show chattering” or “The 

alarm is not going to show chattering”. 

Supervised learning develops through two main steps: 

1. training;  

2. evaluation. 

First, the original dataset (i.e. a database of features and associated labels) is divided 

into two distinct datasets (e.g. in a half): 

a. the training dataset; 

b. the evaluation dataset. 

During the training phase, the algorithm has access to the training dataset only, which 

contains both the features and the labels. The scope of the training step is to build a 

function 𝑓 such that: 

 𝑌 = 𝑓(𝑋) + 𝜀 2.2 

where: 

• 𝑌 = 𝑙𝑎𝑏𝑒𝑙𝑠; 

• 𝑋 = 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝑡𝑖𝑝𝑖𝑐𝑎𝑙𝑙𝑦 𝑎 𝑚𝑎𝑡𝑟𝑖𝑥); 

• 𝜀 = 𝑛𝑜𝑖𝑠𝑒. 

Thus, the aim of the training is to find a relationship (𝑓) between the labels (𝑌) and 

the features (𝑋) ignoring the data noise (𝜀) (Brink, Richards and Fetherolf, 2016). 

How the best function is found is out of the scope of this work; usually, the loss is 

minimized, for more see Brink et al. (2016) and Mohri et al. (2012). Hopefully, at the 

end of the training phase, a function that well represents the relationship between 

features and labels is found. 

After the training phase, the performance of the algorithm needs to be tested. The 

knowledge gained during the training is now used to predict the labels of a new set of 

features; this is the evaluation phase. First, the labels are removed from the evaluation 
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dataset (remark: the algorithm has not come into contact with the evaluation dataset 

so far) and the unlabelled dataset is fed to the trained algorithm. The task here is to 

predict the labels of the new features. If the training was successful, the algorithm 

would be able to predict most of the new labels (i.e. the predictions would match the 

real labels). 

A clarification about the nature of the predictions is needed. The output of a model is 

not a label itself, but a list of label’s probabilities. For instance, in the emails example, 

the raw output of the algorithm is not simply “Spam”, but a probability vector like 

[0.78, 0.22], where 0.78 is the probability of the label being “Spam” and 0.22 the 

probability of the label being “Not Spam”. Then, comparing the probabilities with a 

threshold value, the raw output is converted into the label, that is finally returned by 

the program. By default, the probability threshold level is 0.5 (i.e. a certain label will 

be predicted if its probability is greater than 0.5). The threshold value can affect the 

performance of the algorithm (Google, 2020b).  

In the next sections, the metrics used to quantify the performance of a machine 

learning algorithm will be described. 

 

2.3.2. Performance of machine learning algorithms 

Several metrics are used to quantify the performance of a Machine Learning 

algorithm. It is worth noting that the performance is strictly related to the evaluation 

phase; a model cannot be assessed based on the results of the training phase only. 

Before introducing the performance metrics, the definitions of True Positive, True 

Negative, False Negative and False Positive are needed. 

In the emails example, one can represent the labels (i.e. “Spam”, “Not Spam”) as a 

binary sequence, where “1” is the label “Spam” and “0” is the label “Not Spam”. With 

this notation: 

• True positive (TP) 

a “True positive” occurs when the model correctly predicts the label “1” (i.e. 

during the evaluation phase, for one set of features, the model predicted the 

label to be 1, and the true label was 1 as well). 
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• true negative (TN) 

the model predicted the label to be 0, while the true label was 0. 

• false positive (FP) 

the model predicted the label to be 1, while the true label was 0. 

• false negative (FN) 

the model predicted the label to be 0, while the true label was 1. 

Typically, a confusion matrix is used to display TP, FP and FN. An example of a 

confusion matrix is presented in Figure 2.8. 

E
xp

ec
te

d
 

0 TN = 90 FP= 1 

1 FN = 8 TP = 1 

  0 1 

  Predictions 
Figure 2.8 – The confusion matrix 

The x-axis of Figure 2.8 represents the predictions of the model (i.e. 0 and 1 – “Spam” 

and “Not Spam”) while the y-axis represents the real value of the labels. Looking at 

this matrix one can conclude that: 

• the class “1” has been correctly predicted 1 time (TP); 

• the class “0” has been correctly predicted 90 times (TN); 

• the class “1” has been incorrectly predicted 1 time (FP); 

• the class “0” has been incorrectly predicted 8 times (FN). 

The confusion matrix is a useful tool to have a quick overview of the model 

performance, but it is not enough; performance needs to be further quantified. 
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Three metrics are widely used to assess the algorithm performance: Accuracy, 

Precision and Recall. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 2.3 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 2.4 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 2.5 

Accuracy is the ratio between the correct predictions and the total number of 

predictions. Thus, it is a good starting point to evaluate the performance of the 

algorithm, but it is not enough. For instance, imagine that a Machine Learning 

algorithm to classify tumours have been created, the two labels to be predicted are 

“Benign” and “Malignant”. The algorithm is evaluated on a dataset containing 100 

tumours, 91 are benign and 9 are malign. Now, imagine that the model produced the 

results in Figure 2.8. Thus, the accuracy would be 0.91 (91 correct predictions out of 

a total of 100); it seems good. But a closer look at the results reveals that the model 

performance is totally unacceptable. In fact, of the 9 malign tumours, only 1 has been 

correctly predicted. This example (Google, 2020a) clarifies that accuracy alone is not 

enough, especially for unbalanced problems. Both precision and recall must be 

considered together. 

The Precision is the fraction of correct positive predictions. The Recall is the fraction 

of real positive correctly predicted. In the tumour’s classification example, according 

to the values in Figure 2.8, the precision would be 0.5 and the recall would be 0.11. 

The recall reveals that only 11 % of the actual malignant tumour have been correctly 

predicted; this is obviously not adequate. 

All the metrics described above must be considered together but, depending on the 

problem of concern (e.g. spam identification, tumour identification, etc.), one metric 

is usually more significant than the others. For example, in the tumour classification 

problem, the Recall is the most important metric, because it is crucial to identify most 

of the malignant tumour. In the email classification, it is crucial to not classify legit 

emails as “Spam” ones; thus, precision is the metric that must be optimized. 
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Precision and Recall are affected by the threshold (i.e. the probability level beyond 

which the predicted label is “1”) but, unfortunately, precision and recall are often “in 

tension” (Google, 2020b); usually, trying to improve one metric will cause the other 

to worsen. The Precision-Recall curve is a visualization tool that displays the precision 

and recall values varying the threshold. An example is presented in Figure 2.9. 

 

                  Figure 2.9 - Precision-Recall curves 

The Precision-Recall curves associated with two different algorithms are presented in 

Figure 2.9. Focusing on the solid curve (i.e. “Algorithm 1”), if one modifies the 

threshold to obtain a recall equal to 0.6, the precision will be less than 0.2 (blue arrows 

in Figure 2.9). Similarly, if one wants a precision equal to 0.6, the recall will be less 

than 0.3 (orange arrows in Figure 2.9). 

 

In the next section, the three classification models used in this thesis are introduced. 
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2.3.3. Models 

The aim of a Machine Learning algorithm is to find a function (𝑓) that well represents 

the relationship between inputs (features) and output (labels). The “Model” defines 

how the function is built and what are its main attributes. In Tensorflow.org (2020e) 

the model is defined as 

a function with learnable parameters that maps an input to an output. The optimal 

parameters are obtained by training the model on data. A well-trained model will 

provide an accurate mapping from the input to the desired output. 

Numerous models are available for addressing a classification problem. In this thesis, 

three different models have been used: Linear, Deep Neural Network and Wide&Deep. 

 

2.3.3.1. The Linear model 

In linear models, the relationship between the features and the labels is described as 

a linear function (Hastie, Friedman and Tibshirani, 2009): 

 
𝑌 = 𝛽0 + ∑ 𝑋𝑗

𝑝

𝑗=1

𝛽𝑗 2.6 

being: 

▪ 𝑌 = 𝑙𝑎𝑏𝑒𝑙𝑠; 

▪ 𝑋 = [𝑋1, 𝑋2, … , 𝑋𝑝] = 𝑡ℎ𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑣𝑒𝑐𝑡𝑜𝑟; 

▪ 𝑋𝑗 = 𝑎 𝑓𝑒𝑎𝑡𝑢𝑟𝑒; 

▪ 𝛽0 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 (𝑜𝑟 𝑏𝑖𝑎𝑠); 

▪ 𝛽𝑗 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑜𝑟 𝑤𝑒𝑖𝑔ℎ𝑡); 

The vector 𝛽 = [𝛽1, … , 𝛽𝑝] is the vector of weights. During the training, the optimal 

values of bias and weights are found. If a linear model is used in a binary classification 

problem with two features (𝑝 = 2 in equation 2.8), the decision boundary is a straight 

line. Figure 2.10 clarifies this aspect. 

https://developers.google.com/machine-learning/glossary/#parameter
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Figure 2.10 - Linear Regression of 0/1 Response (Hastie, Friedman and Tibshirani, 2009) 

Figure 2.10 is a visual representation of a binary classification problem. “Orange” and 

“Blue” circles represent the real labels. The x and y-axis represent the values of the 

features (in this example only two features are considered). The solid black line 

represents the decision boundary generated by the linear model. The decision 

boundary divides the plane into two decision regions. Every circle above the decision 

boundary will be labelled by the model as “Orange”. Every circle below the decision 

boundary will be labelled as “Blue”. The number of wrong predictions (i.e. orange 

circles below the decision boundary and blue circles above the decision boundary) 

represents the False Negative and False Positive. Of course, the position of the 

decision boundary is strictly related to the threshold value (i.e. varying the threshold 

causes the boundary to translate). 

It is worth noting that, in linear models, each feature is associated with a different 

coefficient (Hastie, Friedman and Tibshirani, 2009). In other words, each feature is 

independent, and the model cannot assess how “inter-features” relationships affect 

the output. This limitation can be partially solved by “combining features into a single 

feature” (TensorFlow.org, 2020c) and feeding this new, more meaningful, feature to 

the linear model; this process is called Feature Crosses (Google, 2020c). Still, the linear 

model is not able to generalize to previously unseen features combinations (Cheng et 

al., 2016). 

Despite its simplicity, the linear model is still widely used (James et al., 2013); it is 

well-known, fast, reliable and it works well on large sets of features (Santini, 2018). 
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2.3.3.2. The Deep Neural Network model 

In Deep Neural Network (DNN) models, the inputs (i.e. features) are linearly 

combined and converted into derived features through a non-linear function (Hastie, 

Friedman and Tibshirani, 2009). Derived features are named hidden units, and they 

constitute the so-called hidden layer of the Neural Network (Hastie, Friedman and 

Tibshirani, 2009). An example of a Neural Network with a single hidden layer is 

presented in Figure 2.11. Neural networks can have multiple hidden layers as well.  

 

In the figure above, the DNN model is fed with a vector of p features (X). Then, the 

features are linearly combined and converted into M derived features (Z) according 

to: 

 𝑍𝑚 = 𝜎(𝛼0𝑚 + 𝛼𝑚
𝑇  𝑋), 𝑚 = 1, … , 𝑀 2.7 

where: 

▪ 𝛼0𝑚 = 𝑏𝑖𝑎𝑠; 

▪ 𝛼𝑚 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠; 

▪ 𝑍𝑚 = 𝑑𝑒𝑟𝑖𝑣𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 (ℎ𝑖𝑑𝑑𝑒𝑛 𝑢𝑛𝑖𝑡); 

▪ 𝜎 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 

 

Labels 

 

Hidden Layer 

 

Features 

 
Figure 2.11 - Schematic of a single hidden layer, feed-forward neural network. Adapted from 

(Hastie, Friedman and Tibshirani, 2009)  
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The activation function 𝜎 is non-linear. Usually, it is chosen to be the sigmoid function: 

 
𝜎(𝑣) =

1

1 + 𝑒−𝑣
 2.8 

If there is more than one Hidden Layer, equation 2.7 is used again to calculate the 

hidden units of the second hidden layer. In this case, X must be replaced by Z in eq. 

2.7, and the coefficients must be updated. 

Finally, the derived features of the last hidden layer are linearly combined and used 

to obtain the labels: 

 𝑇𝑘 = 𝛽0𝑘 + 𝛽𝑘
𝑇 𝑍, 𝑘 = 1, … , 𝐾 2.9 

 𝑌𝑘 = 𝑔𝑘(𝑇),                   𝑘 = 1, … , 𝐾 2.10 

where: 

▪ 𝑇𝑘 = 𝑙𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑟𝑖𝑣𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠; 

▪ 𝛽0𝑘 = 𝑏𝑖𝑎𝑠; 

▪ 𝛽𝑘 = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠; 

▪ 𝑍 = [𝑍1, … , 𝑍𝑀] = 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑟𝑖𝑣𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠; 

▪ 𝑌𝑘 = 𝑎 𝑙𝑎𝑏𝑒𝑙; 

▪ 𝑇 = [𝑇1, … , 𝑇𝐾]; 

▪ 𝑔𝑘 = 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 

Several kinds of output functions exist. An example is the softmax function (Hastie, 

Friedman and Tibshirani, 2009): 

 
𝑔𝑘(𝑇) =

𝑒𝑇𝑘

∑ 𝑒𝑇𝑙𝑘
𝑙=1

 2.11 

The equations presented above refer to a general K classification problem (i.e. the 

number of labels to predict is K). For binary classification K = 2. 

The number of hidden units (M), and the number of hidden layers, are adjustable 

parameters, and they can greatly affect the performance of the algorithm. In general, 

too many hidden units are better than too few (Hastie, Friedman and Tibshirani, 

2009). The selection of the number of hidden layers is basically guided by experience 

and trial-and-error method (Hastie, Friedman and Tibshirani, 2009). 
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It is worth noting that the model has different sets of coefficients (also called weights). 

When the labels (𝑌) are calculated, a set of K coefficients (𝛽) and the bias (𝛽0𝑘) are 

needed. Furthermore, each Hidden Layer requires the calculation of M coefficients 

(𝛼𝑚) and a bias (𝛼0𝑚). Similarly to the Linear model, the weights are optimized during 

the training phase. 

The DNN model can overcome the limitations imposed by the Linear model. DNN 

models can capture nonlinearities in the data, they can produce decision boundaries 

of any shape and they can generalize better than the Linear model (Hastie, Friedman 

and Tibshirani, 2009; Cheng et al., 2016). In Figure 2.12, the results of the application 

of a DNN model (on the same dataset described in Figure 2.10) are presented.  

 

Figure 2.12 - Decision boundaries for a neural network model (Hastie, Friedman and Tibshirani, 2009) 

The solid line in Figure 2.12 represents the decision boundary produced by the DNN 

model. Comparing Figure 2.12 with Figure 2.10 reveals that the DNN model can 

produce more accurate and well-shaped decision regions. 

DNN models are widely used in images and sounds recognition (Hastie, Friedman and 

Tibshirani, 2009; Brink, Richards and Fetherolf, 2016) and they are one of the most 

flexible models. Although, flexibility comes to a price: DNN requires more 

computational effort, they are harder to optimize and they are prone to overfitting 

(Hastie, Friedman and Tibshirani, 2009; Brink, Richards and Fetherolf, 2016). 
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2.3.3.3. The Wide&Deep model 

The Wide&Deep model was created to join the benefits of the Linear (i.e. wide) and 

DNN models. As previously argued, the Linear model is fast, reliable and it is good at 

assessing the relative weight of each feature, or group of features (feature crosses). 

However, the linear model lacks in flexibility and generalization. Instead, the DNN 

model is flexible and better at generalizing and capturing inter-feature relationships 

and nonlinearities in the data. However, the deep model may overgeneralize and 

detect a relationship also where no (or poor) relationship exists. 

To overcome the limitations of both models, and to enhance their qualities, the 

Wide&Deep model uses both the Linear and the Deep approaches (Cheng et al., 2016). 

Figure 2.13 depicts the general structure of the model. 

 

Figure 2.13 - The spectrum of Wide & Deep models (Cheng et al., 2016) 

The Wide&Deep model consists of a Linear part and a DNN part (centre of Figure 2.13). 

The two parts are jointly trained, and their parameters are optimized simultaneously 

(Cheng et al., 2016). In the Cheng et al. (2016) original work, the wide part comprised 

only a small number of significant crossed features. The Wide&Deep model was used 

to develop a user recommender system, and it proved to perform better than the 

Linear and the Deep models. 
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2.3.4. TensorFlow 

TensorFlow is an open-source, machine learning oriented, software library developed 

by Google Brain team and released under Apache 2.0 License in 2015 (Abadi et al., 

2016), the last stable version is r2.0.  

The TensorFlow web homepage describes the software as: 

an end-to-end open source platform for machine learning. It has a comprehensive, 

flexible ecosystem of tools, libraries and community resources that lets researchers 

push the state-of-the-art in ML and developers easily build and deploy ML powered 

applications. 

TensorFlow is widely used for both research and production (Abadi et al., 2016), and 

it owes part of its fame to its simplicity and flexibility. The library offers different 

levels of abstraction, including high-level APIs and pre-made estimators (i.e. a high-

level representation of a complete model), which are particularly suitable for 

inexperienced users.  

Several leading companies have used/use TensorFlow to solve real-world problems 

and increase productivity (TensorFlow.org, 2020b). Furthermore, the software is 

supported by an active and diverse online community (github, StackOverfolw). 

TensorFlow runs on Ubuntu, Windows, MacOS and Raspberry (TensorFlow.org, 

2020d). The python API is the most complete and easy to use, but also other languages 

are supported (e.g. C++, JavaScript, Go, and more) (GitHub.com, 2020; 

TensorFlow.org, 2020a). 

In this thesis, TensorFlow r1.15 has been used, the platform has been installed on a 

python 3.7.4 release running on Windows 10.





 
 

43 
 

 

 

 

 

Chapter 3  

The alarm database 
 

 

 

3.1. Introduction 

The purpose of this chapter is twofold: firstly, to provide a brief description of the case 

study considered (the Yara production plant located in Ferrara - Italy; and secondly, 

to describe the alarm database used in this work.  

 

3.2. The Yara production plant 

The plant forms part of the chemical pole located in Ferrara (Italy), the main activity 

consists in the production of ammonia and urea. Due to the large quantity of 

hazardous substances stored and handled during normal activity, the plant has been 

classified as an “upper tier” Seveso III establishment, along with four more sites inside 

the chemical pole (Arpae, 2019). 

The plant consists of seven different sections: 

1. ammonia plant; 

2. urea plant; 

3. ammonia solution plant; 

4. membrane and IGI plant; 
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5. carbon dioxide liquefaction plant; 

6. AIR-1 plant (32.5% urea solution production); 

7. urea storage and bagging plant. 

Italian law (“Decreto Legislativo n. 105 del 26 giugno 2015 ‘Attuazione della direttiva 

2012/18/UE relativa al controllo del pericolo di incidenti rilevanti connessi con 

sostanze pericolose.’) (D.Lgs. 105/2015) requires that a Safety Report must be 

provided for “upper tier” establishments. Specifically, during the drafting of the Safety 

Report, a preliminary analysis shall be carried out, to identify critical sections of the 

plant (D.Lgs. 105/2015, Annex C, part 1). Two plant sections may meet the 

requirements to be considered critical, namely: 

1. ammonia plant; 

2. urea plant. 

This result is strictly related to the substances handled in these two sections, as well 

as to the operating conditions. 

Extensive use of methane, hydrogen and ammonia (anhydrous and aqueous solution) 

occurs in the ammonia plant section, while in the urea plant the key substances are 

ammonia, hydrogen, urea-formaldehyde (Formurea), and Sodium hypochlorite. A list 

of the main hazardous substances handled in the plant, along with their classification 

according to CLP regulation (1272/2008/CE) is presented in Table C. 1; bold tags 

represent hazardous properties subject to D.Lgs. 105/2015. 

Table 3.1 summarizes what has been told so far about the hazardous substances 

present in the two plant sections of concern; it contains the hazardous characteristic 

that might lead to a major accident, the substances associated with those 

characteristics and the plant sections where these substances are produced/handled.  
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HAZARDOUS CHARACTERISTIC 

(subject to D.Lgs. 105/2015) 
KEY SUBSTANCE PLANT SECTION 

Flammable gas 

Anhydrous ammonia 
 Ammonia plant 

 Urea plant 

Methane  Ammonia plant 

Hydrogen 
 Ammonia plant 

 Urea plant 

Hazardous to the aquatic 

environment 

Anhydrous ammonia 
 Ammonia plant 

 Urea plant 

Ammonia aqueous solution 

(15 – 30 %) 
 Ammonia plant 

Sodium hypochlorite 

(14 – 15 %) 
 Urea plant 

Acute toxicity 
Anhydrous ammonia 

 Ammonia plant 

 Urea plant 

Formurea  Urea plant 

Table 3.1 - Hazardous substances and plant sections 

 

Remark: in Table 3.1, “key substance” has the meaning of “substance that best 

represents the hazardous properties of a stream/plant section”. Therefore, 

the fact that methane can be found in the ammonia plant does not 

necessarily mean that it is only found in that plant section, or that methane 

is the only substance in that plant section. If a “key substance” is found within 

a specific plant section, one can conclude that there are streams or 

equipment whose hazardous properties are well described by the key 

substance. 
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In addition to an extensive use of both toxic and flammable substances, severe 

operational conditions (i.e. high temperature, and high pressure) are often required, 

due to the kinetic and thermodynamic features of the reactions involved. 

Furthermore, in specific parts of the plant, high temperature and pressure are 

associated with corrosive substances; this contributes to the risk of mechanical 

failure, which represents the major safety issue for this specific plant. Indeed, the 

technologies involved are extremely well known (they have been used for more than 

60 years) and the SIS is efficient and reliable. 

Therefore, the efforts must be directed to prevent: 

 corrosion: caused by acid condensate in the ammonia plant and by carbamate 

and ammonium carbonate in the urea plant; 

 Stress Corrosion Cracking: it arises in the anhydrous ammonia storage tanks, 

in presence of dissolved oxygen, high pressure and temperatures above 0°C; 

 hydrogen embrittlement: worsened by high hydrogen concentration 

combined with high temperature (conditions that often arise in the ammonia 

plant section). 

All the phenomena described above were considered during the design phase of the 

plant. Proper corrosion allowances, special alloys, lining, operational precautions and 

periodic non-destructive tests are the main safety barriers to avoid mechanical 

failure. 

Even if both ammonia and urea plant sections are safety-critical, during the initial 

phase of this work the attention has been focused solely on the ammonia plant; this 

choice has been forced by the available data: Yara provided P&IDs and PFDs of the 

ammonia plant only. 

 

The next paragraph presents an overview of the ammonia plant section, the purpose 

is to familiarize with the design and to describe the plant's operational activity. The 

equipment’s names have been changed due to the sensitive nature of this information. 
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3.2.1. The ammonia plant 

The ammonia plant is based on Haldor Topsoe technology, and the capacity is 1720 

t/d (Yara Italia S.p.A, 2016). Approximately 60% of the ammonia produced within this 

plant section is used to synthesize urea; the other part is sent to the Ravenna chemical 

pole via pipeline (Yara.it, 2020). 

The plant section comprises seven subsections: 

a. Desulfurization, Reforming and Breda Boiler; 

b. Conversion, Decarbonization and Methanation; 

c. Ammonia synthesis and Cooling circuit; 

d. Anhydrous ammonia storage, Pipeline and Loading/unloading tankers. 

e. Cooling and clarification towers; 

f. Instruments air production and nitrogen compression and storage. 

The ammonia synthesis is carried out according to the reaction: 

 𝑁2 + 3𝐻2 ↔ 2𝑁𝐻3 3.1 

Nitrogen is supplied by air and hydrogen is produced through methane steam 

reforming. 

Not all the sub-sections are equally interesting from the safety point of view. The 

analysis of past accidents (e.g. FACTS and MARS databases) that occurred in ammonia 

plants highlights that most of the accidents happened within the process section (i.e. 

subsections a, b and c). For this reason, and because of documentation availability 

constraints, only these three subsections are described in the next seven sub-

paragraphs; each sub-paragraph describes the design and the activities of the sub-

section of concern. The only exception is the Breda boiler: it has been decided to not 

further describe this unit because it is not directly involved in the ammonia 

production. 
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3.2.1.1. Desulfurization 

Methane enters the plant via pipeline in the form of natural gas ൫𝑣𝑜𝑙%𝐶𝐻4
≈ 98 %൯, 

the pressure is then reduced from 50 bar to 40 bar, which is the feed pressure. Even 

though the natural gas content of sulphur compounds is relatively low, the catalyst 

used in the upcoming sections of the plant is extremely sensitive to these compounds. 

Consequently, sulphur must be removed to avoid the risk of catalyst deactivation. 

Desulfurization section (first step of sub-section a.) consists of three catalytic 

reactors: 

1) R – 03: hydrogenator; 

2) R – 01: first sulphur absorber; 

3) R – 02: second sulphur absorber. 

After a preheating stage, the natural gas at the temperature of 400°C flows into R – 03; 

in the reactor, the sulphur compounds are hydrogenated to 𝐻2𝑆 according to the 

reactions: 

 𝑅𝑆𝐻 + 𝐻2 → 𝑅𝐻 + 𝐻2𝑆 3.2 

 𝑅1𝑆𝑅2 + 2𝐻2 → 𝑅1𝐻 + 𝑅2𝐻 + 𝐻2𝑆 3.3 

 𝐶𝑂𝑆 + 𝐻2 → 𝐶𝑂 + 𝐻2𝑆 3.4 

 

Then, the gas flows into R – 01 and R – 02 reactors (usually arranged in series) where 

hydrogen sulphide is absorbed according to the reaction: 

 𝐻2𝑆 + 𝑍𝑛𝑂 → 𝑍𝑛𝑆 + 𝐻2𝑂 3.5 

Finally, the natural gas flows out the sub-section with a sulphur content < 1 ppm, and 

it approaches the Reforming sub-section. 
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3.2.1.2. Reforming 

The de-sulphurated natural gas is mixed with medium pressure steam (𝑃 ≈ 40 𝑏𝑎𝑟) 

to ensure an optimal vapour/carbon feed ratio (𝑆𝑡𝑒𝑎𝑚/𝐶 ≈ 3 ). Next, the mixture is 

preheated and enters the reforming section (second step of sub-section a.) at a 

temperature of 540°C. 

The reforming section comprises two reforming stages: 

1) B – 01: primary reformer; 

2) R – 03: secondary reformer. 

The primary reformer is a vertical, proprietary, side-fired reactor where the steam 

reforming of methane takes place according to the reactions: 

 𝐶𝐻4 + 2𝐻2𝑂 ↔ 𝐶𝑂2 + 4𝐻2 3.6 

 𝐶𝑂2 + 2𝐻2 ↔ 𝐶𝑂 + 𝐻2𝑂 3.7 

Due to the endothermic nature of the reactions involved, as well as their 

thermodynamic and kinetic properties, the temperature inside the reactor must rise 

to 800°C; to achieve this goal, a heat source is needed (Aika et al., 2012). In Haldor 

Topsoe based reformers, natural gas is burned to provide heat and maintain the 

desired temperature level. Specifically, in this reformer, natural gas is burned in more 

than six hundred axial burners. Subsequently, heat is recovered from the exhaust gas 

leaving the combustion chamber and it is used to pre-heat the reacting mixture, to 

pre-heat the natural gas entering the desulphurization section, to pre-heat the air 

stream entering the secondary reformer, to superheat steam and to pre-heat a boiling 

feed water stream. 

The reacting mixture (methane and steam) flows from the top to the bottom of the 

primary reformer, in more than 400 catalytic tubes. These tubes are placed inside the 

reformer’s combustion chamber; the heat from the outside promotes the steam 

reforming according to reactions 3.6 and 3.7. 

The mixture leaves the primary reformer (𝑇𝑜𝑢𝑡 ≈ 800°𝐶) and approaches the 

secondary reformer.  

 



 
 

50 
 

The secondary reformer (Figure 3.1) is an autothermal, adiabatic reactor. Two 

streams enter the reformer: the process streams and an air stream. The aim of this 

stage is to lower the methane content, to increase the hydrogen content and to add 

nitrogen. 

 

 

 

 

 

 

 

 

 

In the first section of the reactor, the two streams are mixed, and a combustion 

reaction occurs (air oxidises part of the unreacted hydrocarbons and part of the 

hydrogen in the process stream) according to the reactions (AL-Dhfeery and Jassem, 

2012): 

 𝐶𝐻4 + 3/2 𝑂2 ↔ 𝐶𝑂 + 𝐻2𝑂 3.8 

 𝐻2 + 1/2 𝑂2 ↔ 𝐻2𝑂 3.9 

The partially reacted mixture flows through the second section of the secondary 

reformer, where a catalytic bed promotes the reactions (AL-Dhfeery and Jassem, 

2012): 

 𝐶𝐻4 + 𝐻2𝑂 ↔ 𝐶𝑂 + 3𝐻2 3.10 

 𝐶𝑂 + 𝐻2𝑂 ↔ 𝐶𝑂2 + 𝐻2 3.11 

 𝐶𝐻4 + 2𝐻2𝑂 ↔ 𝐶𝑂2 + 4𝐻2 3.6 

Air 

Process stream 

Product 

Combustion 

Catalyst 

Figure 3.1 - Secondary reformer representation. Adapted from (Topsoe.com, 2020) 
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Reaction 3.10, 3.11 and 3.6 are endothermic, the required heat is provided by the 

initial combustion (reactions 3.8 and 3.9). The temperature inside the reactor exceeds 

1000°C. 

The resulting mixture leaves from the bottom of the secondary reformer with a 

composition (dry basis) equal to: 

• 𝐻2 = 55 % 

• 𝐶𝑂 = 24 % 

• 𝐶𝑂2 = 8 % 

• 𝐶𝐻4 = 0.5 % 

The process stream leaving the reforming section needs to be purified from carbon 

monoxide and carbon dioxide before entering the ammonia synthesis section. The 

removal of 𝐶𝑂 and 𝐶𝑂2 is carried out in subsection b through three subsequent steps. 

First, carbon monoxide is converted into carbon dioxide and hydrogen in the 

conversion section. Then, 𝐶𝑂2 is removed in the decarbonization section. Finally, the 

last traces of 𝐶𝑂 and 𝐶𝑂2 are removed in the methanation section. 

 

3.2.1.3. Conversion 

After leaving the secondary reformer, the gas stream enters the conversion section 

(first step of sub-section b.) where the 𝐶𝑂 conversion is carried out. The main 

equipment is: 

1) E – 01A/B: heat recovery reboilers; 

2) E – 02: steam superheater; 

3) R – 04: high-temperature conversion reactor; 

4) R – 05: low-temperature conversion reactor; 

5) E – 03: heat recovery reboiler. 

Heat is removed in two boiling feed water reboilers (arranged in parallel) and in a 

steam superheater (E – 02); the temperature of the syngas stream leaving the cooling 

section is 340°C. 

The cooled gas stream passes through the two catalytic reactors (R – 04 and R – 05) 

where the partial conversion of  𝐶𝑂 occurs according to the exothermic reaction: 



 
 

52 
 

 𝐶𝑂 + 𝐻2𝑂 → 𝐶𝑂2 + 𝐻2 3.12 

A cooling stage is located between the two reactors. Here, heat is removed in E – 03 

and in three boiling feed water preheaters arranged in series (not mentioned in the 

list of the main equipment). 

Finally, the process stream leaves the conversion section at a temperature of 220°C, 

with a 𝐶𝑂 content of 0.2 % (dry basis) and a 𝐶𝑂2 content equal to 17.6 % (dry basis). 

 

3.2.1.4. Decarbonization 

The gas stream leaving the conversion section has a low content of 𝐶𝑂 while the 

content of 𝐶𝑂2 is high. Carbon dioxide needs to be removed before proceeding further; 

this is achieved in the decarbonization section (second step of subsection b, Figure 

3.2). The main equipment is: 

1) C – 01: absorption column (chemical absorption); 

2) C – 02: regeneration column; 

3) miscellaneous pumps and heat exchangers; 

 

Figure 3.2 - Decarbonization section 

Gas absorption, as is well known, is enhanced by low temperatures. Consequently, 

before entering the absorption column, the process stream (stream 1 in Figure 3.2) is 
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cooled in three heat exchangers. In the first cooler (E – 04), heat is used to produce 

steam. The second and third exchangers (E – 05, arranged in parallel) are the reboilers 

of the regeneration column. 

Then, process condensate (3) is removed in D – 01, and the cooled gas stream (2) 

enters the absorption column (C – 01), where a Vetrocoke solution (containing 𝐾2𝐶𝑂3, 

𝐾𝐻𝐶𝑂3, DEA and glycine) is used as a solvent. Here, 𝐶𝑂2 is absorbed according to the 

reaction: 

 𝐶𝑂2 + 𝐾2𝐶𝑂3 + 𝐻2𝑂 → 2𝐾𝐻𝐶𝑂3 3.13 

The clean process gas (4) leaves the top of column C – 02 with a carbon dioxide 

content of 700 ppm and a temperature of 90°C. 

The (𝐶𝑂2 rich) liquid solution (5) flows from the bottom of C – 01 to the top of the 

regeneration column (C – 02). Here the liquid flashes (pressure decreases from 30 bar 

to 2 bar in D – 02) and the released gas (𝐶𝑂2 reach) leaves section (6). The fraction of 

the liquid solution that remains liquid after the flash (7) flows down the regeneration 

column, eventually reaching the bottom and the reboilers. The heat provided by the 

reboilers and the previous flash promote the inverse of 3.13 reaction, the result is 𝐶𝑂2 

liberation and, consequently, solvent regeneration. 

 

3.2.1.5. Methanation 

The clean syngas leaving the top of the absorption column approaches the 

methanation section (third step of subsection b.) that essentially consists of: 

1) R – 06: the methanation catalytic reactor; 

2) miscellaneous heat exchangers. 

The process stream is preheated from 90°C to 220°C end enters the reactor, where all 

the remaining traces of 𝐶𝑂2 and 𝐶𝑂 are removed according to the reactions: 

 𝐶𝑂 + 3𝐻2𝑂 ↔ 𝐶𝐻4 + 𝐻2𝑂 3.14 

 𝐶𝑂2 + 4𝐻2𝑂 ↔ 𝐶𝐻4 + 2𝐻2𝑂 3.15 

The gas stream leaving the reactor has an inorganic carbon content (𝐶𝑂2 and 𝐶𝑂) of 

less than 10 ppm, and a temperature of 245°C (3.14 and 3.15 are exothermic 
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reactions). Finally, heat is recovered, and the temperature is lowered to 30°C. Before 

the cooling section, there is an emergency line to flare stack. 

 

3.2.1.6. The ammonia synthesis 

The clean and cooled syngas has now the required purity for ammonia production. 

Nevertheless, ammonia synthesis reaction (3.1) is exothermic and reversible and 

requires high temperature to ensure fast kinetic and high pressure to ensure high 

conversion (Aika et al., 2012; Pattabathula and Richardson, 2016). Thus, the reacting 

mixture needs to be compressed and heated before it enters the reactors. 

Furthermore, due to the reversible nature of 3.1, the conversion is only partial, and a 

considerable amount of unreacted syngas leaves the reactors. The ammonia needs to 

be separated from the unreacted syngas, that is eventually recycled back to the 

reactors (Figure 3.3). The separation is obtained through subsequent cooling and 

expansion units where ammonia liquefies, and the generated gas is either recycled 

back to the reactors or purged to permit the inert compounds to leave the reaction 

loop. Furthermore, in the cooling section, the process stream needs to be cooled below 

0 °C, a refrigerant is then needed. To achieve this task part of the produced ammonia 

is used as a refrigerant in a refrigeration loop, where anhydrous ammonia is 

compressed and evaporated in three different stages. 

The ammonia synthesis section (first step of subsection c.) consists of: 

1) P – 01: syngas compressor; 

2) R – 07 and R – 08: ammonia synthesis catalytic reactors (proprietary); 

3) E – 06: heat recovery reboiler; 

4) P – 02: cooling circuit compressor; 

5) miscellaneous exchangers and equipment (including a liquid ammonia 

washing section) 

P – 01 is a five-staged, steam-driven, centrifugal compressor with inter-stage cooling 

units. Before the first stage, and between the first and second stages, the cooling units 

consist of liquid ammonia chillers (ammonia from the refrigeration circuit is used as 

a refrigerant); in the remaining cooling units, water is used as a refrigerant. After the 

fourth stage of the compressor, the reaction mixture is sent to a washing section to 
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remove any trace of the oxygenated compound (𝐶𝑂, 𝐻2𝑂) and to further decrease the 

temperature. Here, the gas is cooled in two heat exchangers and is sent to column C – 

03, where it comes into contact with liquid ammonia; this ensures the oxygenated 

compounds elimination (absorbed by ammonia) and an outlet temperature of 2°C. 

The stream leaving the washing unit is sent to the fifth (and final) stage of the 

compressor. The process stream enters the compressor at 25 bar and leaves at 180 

bar. 

 

Figure 3.3 - Ammonia reaction loop 

 The reacting mixture that leaves the fifth stage of P – 01 (makeup) is mixed with the 

unreacted syngas (stream 7 in Figure 3.3), which comes from the synthesis loop. The 

resulting stream (2) is preheated in E – 08 A/B (gas-gas heat exchangers, they recover 

heat from the hot stream leaving the reactors) and sent to the first synthesis reactor. 

In R – 07 and R – 08 the exothermic reaction 3.1 occurs, the generated heat is then 

recovered and used to produce high-pressure steam in E – 06 reboiler, to preheat the 

reacting mixture entering R – 07 and to preheat boiling feed water.  

The product stream (3) leaves the reactors with a temperature of 400 °C and a 

composition equal to: 

• 𝐻2 = 50 % 

• 𝑁2 = 18 % 

• 𝑁𝐻3 = 22 % 

• 𝐶𝐻4 = 7 % 

• 𝐴𝑟 = 3 %   
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As already mentioned, the product stream contains a significant amount of reagents 

(𝐻2 and 𝑁2) that must be recycled to the reactors, as well as inert compounds (𝐶𝐻4 

and 𝐴𝑟) that must be purged. This is achieved by cooling and expanding the product 

stream. 

The cooling section consists of ten heat exchangers arranged in series. The first, 

second and third heat exchangers (E – 06 and E – 07A/B) are water-cooled, the fourth 

and the fifth are a gas-gas heat exchangers (E – 08A/B), the sixth and the seventh are 

water-cooled (E – 09A/B), the eight is a gas-gas heat exchanger (E – 10)  the ninth and 

the tenth coolers are liquid ammonia chillers (liquid ammonia comes from the 

refrigeration circuit). The result is that the temperature of the process stream is 

lowered below the mixture’s dew point; this leads to the formation of a liquid phase 

(ammonia-rich). The biphasic stream (4) enters a separator (D – 03) where the liquid 

phase is collected and sent to the expansion section (5). The gas-phase (reagents rich) 

leaves from the top of the separator (6), enters E – 10 and, finally, is recycled back to 

the compressor (7) where is mixed with the make-up stream leaving the fifth stage of 

P – 01; this completes the reagents loop. 

At the same time, the liquid phase leaves from the bottom of D – 03 (5) and enters the 

expansion section at 172 bar and -2°C. The expansion occurs in two vessels arranged 

in series where the liquid stream is expanded (and partially vaporized) from 170 bar 

to 1.3 bar. In the first vessel (D – 04), the product stream expands from 170 bar to 20 

bar (8), part of the liquid vaporizes, and the resulting gas (9) is sent to an ammonia 

chiller (E – 11A) where the ammonia is condensed and recycled back (10) to D – 04. 

On the other hand, the non-condensable fraction of the gas is sent part to purge and 

part to the membrane and IGI plant section. Next, the liquid phase (11) is sent, form 

the bottom of D – 04, to the second expansion vessel (D – 05) where it expands from 

20 bar to 1.3 bar (12), part of the liquid vaporizes and the resulting gas is sent to the 

compressor of the refrigeration cycle. The liquid phase collected in the bottom of D – 

05 is anhydrous ammonia at -30 °C (temperature has lowered due to the expansion) 

which is sent (13) to the cryogenic storage vessel (D – 06), this ends the ammonia 

reaction loop. 
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As already mentioned, a refrigerant is needed to cool the product stream leaving the 

synthesis reactors (liquid ammonia chillers E – 12 and E – 13), to cool the makeup 

stream entering the fifth stage of P – 01 (ammonia chiller E – 14) and to condense and 

recover the ammonia from the purge gas streams (E – 15, E – 11A/B). For this reason, 

part of the produced ammonia is used as a refrigerant in a refrigeration loop. 

 

Figure 3.4 - Ammonia refrigeration cycle 

Here, according to Figure 3.4, the cool stream of liquid ammonia (stream 1) is 

expanded and subsequently evaporated in three stages, at three different pressures, 

corresponding to the temperatures of 4°C (ammonia at 4 bar, stream 2 and 3), -7°C 

(ammonia at 2 bar, stream 5) and -30°C (ammonia at 0.05 bar, streams 7 and 8). After 

the evaporation, ammonia is sent to P – 02, which is a centrifugal, 4 staged, 

compressor. Each vapour stream enters a different stage of the compressor depending 

on the pressure: the ammonia streams flowing from E – 12 and E – 14 (stream 4) enter 

the third stage of the compressor, the one flowing from E – 13 (stream 6) enters the 

second stage of the compressor and the ones coming from E – 15 and E – 11A/B 

(stream 9) enters the first stage of the compressor. Between the third and the fourth 

stage of the compressor, the gas stream is cooled in E – 16. The ammonia leaves the 

compressor at a pressure of 20 bar (stream 10). Next, the ammonia is condensed and 

sent to an accumulator tank (D – 08). From the accumulator tank, the refrigerant flows 

through E – 17, where is cooled by the anhydrous ammonia coming from the cryogenic 
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storage vessel (D – 06). Finally, the cooled refrigerant (1) enters again the ammonia 

chillers, and the refrigeration loop is completed. 

The description of the ammonia plant section is now concluded. The hope is that the 

main features and safety-related issues have been clarified, although the description 

has not covered all the aspects and details of the plant. More about the ammonia 

synthesis and, specifically, about Haldor Topsoe technology can be found in Jennings 

(1991), Aika et al. (2012), Pattabathula and Richardson (2016). More about the 

Ferrara production site can be found in (Yara Italia S.p.A, 2016) and (Yara.it, 2020). 

The next paragraph focuses on the alarm database provided by Yara. It contains alarm 

data coming from the plant described above, and it represents the basis on which all 

the analyses performed during this thesis work have been built.  
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3.3.  The alarm database 

The database consists of alarm data collected during an observation period of more 

than four months; specifically, from 19/07/2017 to 30/11/2017. Each row of the 

database (26473 in total) represents an alarm occurrence, and each column (thirty-

six in total) represents a piece of information about the alarm. Thus, for each alarm 

occurrence, thirty-six alarm attributes are provided. Not all these attributes are 

equally important or meaningful, some of them are just codes to identify the different 

plant sections, the stations, or the GMT time of the station. According to (Kondaveeti 

et al. (2010) an alarm is completely defined by three attributes only: 

• Time Stamp: the time when the alarm occurred; 

• Source: the instrument or the PLC function that triggered the alarm; 

• Alarm Identifier: defines the alarm status (e.g. HHH, LLL, HTRP, etc.) 

In Table 3.2, a list of the most meaningful alarm’s attributes is presented; for each 

attribute, a brief explanation of its meaning is provided. 

 

ATTRIBUTE MEANING 

Time Stamp Date and time (GMT) of the alarm occurrence.  

Source 
The source that triggered the alarm. It might be a measuring instrument or a PLC 
function. 

Jxxx 

The safety interlock logic associated with the alarm. When an alarm is triggered, 
the corresponding safety logic is activated. The logic initiates a series of 
predefined actions, that might be as simple as turning a pump on, or as complex 
as tripping of multiple pieces of equipment. 

Message 

The message that is shown to the operator. It contains five attributes: 
1. the Source; 
2. a concise description of the equipment involved; 
3. the safety interlock logic (Jxxx); 
4. the value and units of measures of the process variable; 
5. the Alarm Identifier. 

Active Time 
Date and time (GMT) of the first alarm occurrence.  
If the alarm is not a Recover entry, this field is equal to “Time Stamp”. 

Data Value 
The value of the process variable. 
If the “Source” is not a measuring instrument this field is empty. 

Eng. Unit 
The units of measure of the process variable.  
If the “Source” is not a measuring instrument this field is empty. 

Table 3.2 - Alarm database attributes 
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A few more words are needed to describe the Alarm Identifier attribute (point 5 of 

attribute Message). As it has been already mentioned, the Alarm Identifier defines the 

alarm status. In the alarm database, twelve different Alarm Identifiers can be found: 

• LLL / HHH 

low/high alarm. It warns that the value of the process variable (or PLC 

function) has exceeded the low/high setpoint. It announces that a block 

intervention will occur if the value continues to decrease/increase. 

 

• LTRP / HTRP 

very low/very high alarm. It informs the operator that the value of the process 

variable (or PLC function) has exceeded the very-low/very-high setpoint. 

Usually, after this alarm, a block intervention starts (other conditions might be 

needed to start the block procedure). 

 

• LLL / HHH / LTRP / HTRP Recover 

recover of a previous LLL/HHH/LTRP/ HTRP alarm. It informs the operator 

that the alarm has been recovered. 

 

• IOP 

instrumental failure or out-of-range measure. 

 

• ALM 

generic alarm (used for alarms triggered by ad-hoc logics).  

• NR 

alarm terminated. It informs the operator that an IOP or an ALM is terminated. 

 

• ACK 

acknowledgement. It informs that the operator has acknowledged the alarm 

(typically pressing a button). Acknowledgement might be required by/given to 

any of the Alarm Identifiers presented above. 

This completes the overview of the database’s structure and keywords. In the next 

paragraph, the results of the analysis carried out by (2018) are presented, which are 

necessary to achieve a better understanding of the database main features and data 

distribution. 
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3.3.1. Database analysis 

The database contains 26473 alarms. Obviously, the alarms are not evenly distributed 

throughout the observation period. The time-distribution of the alarms is presented 

in Figure 3.5. 

 

Figure 3.5 - Alarms time distribution 

The days between the 9th of September and the 8th of October show an unusually high 

alarm count compared with the rest of the observation period. One can conclude that 

the plant went through a period of high instability during these days. Specifically, 

25572 alarms occurred during that month (more than 96 % of the total alarm 

registered in the database). Clearly, a considerable number of floods and chattering 

alarms must have occurred. 

The plant instability is also suggested by the process variables time-trend, an example 

is presented in Figure 3.6.  

 

Figure 3.6 - FI209B time-trend on the 9th of September 2017 
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The figure shows the data measured by the instrument FI209B during the 9th of 

September (it measures the mass flow rate of steam entering the first reformer); the 

x-axis represents the time of the day. Undoubtedly, an event caused a significant 

reduction of the flow at 6 pm; every process variable in the ammonia plant section 

shows the same trend. The plant instability was caused by a total power outage, 

happened on the 9th of September at 6 pm, as reported in the document “Analysis of 

operational experience” provided by Yara. The blackout forced a plant shut down and 

a small quantity of ammonia (150 kg) was released into the atmosphere due to the 

energy loss in the cooling system. 

The alarms registered during the observation period were triggered by 194 different 

sources in total. Clearly, the alarm count is not evenly distributed between the sources 

(i.e. not all the sources have the same alarm count). In Figure 3.7 the twenty alarm 

sources with the higher alarm count are presented. 

 

Figure 3.7 - Top 20 sources with higher alarm count 

It is worth noting that the first ten sources show an extremely higher alarm count 

compared to the others. Specifically, 21269 alarms were triggered by the first ten 

sources in Figure 3.7. Thus, the considerations made in paragraph 2.2.3 point 4 match 

the data evidence. Efforts must be directed to assess the features and the behaviour 

of the alarms with higher alarm count (e.g. do they show chattering? Are they 

redundant? Etc.) and, whenever possible, to decrease the occurrences of these “bad 

actors” since this would significantly improve the performance of the alarm system 

and the operator response. 
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3.3.2. Alarm locations and functions 

To achieve a better understanding of the alarm system, it would be useful to know 

where the measure instruments (sources) that triggered an alarm are in the ammonia 

plant, and how the safety interlock system acts. This would clarify the relation 

between alarms, equipment and PLC safety functions; which is not a trivial task 

looking at the alarm database only. Indeed, the only information provided in the alarm 

database about the location and the safety function is in the “Message” attribute (Table 

3.2). Although, the provided information is concise and often difficult to interpret. For 

example, Table 3.3 represents a row of the alarm database (the most meaningful 

attributes only are presented): 

Time Stamp Source Jxxx Message Active Time Data Value Eng Unit 

---- LI202 J1/J2 LI202 D201 LEVEL J1/J2 LTRP ---- 0.0 % 

Table 3.3 - A row of the alarm database (reduced) 

Looking at the attributes in Table 3.3 one can conclude that LI202 is a level gauge that 

measures the level of D201 vessel. But it is still not clear neither where D201 is located 

nor the function of the piece of equipment. Similarly, it is not clear the function of the 

J-1 and J-2 interlock functions after being triggered. For this reason, it has been tried 

to find the location of the alarm sources. Fifty-six sources out of one hundred ninety-

four have been found. The reasons for which the remaining sources have not been 

found may be the following: 

• The alarm is not associated with an instrument; 

• The alarm is not located in the Ammonia plant section. 

The results of the “Search operation” are presented in Table C. 2. 
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Chapter 4  

Analysis set-up 
 

 

 

4.1. Introduction 

In the present chapter, the analyses performed during the thesis work are presented 

and described in detail. Specifically, it is clarified how the binary alarm database has 

been obtained from the original alarm database. Then, the steps to be followed to 

obtain the HDAP, the ASCM and the Chattering Index are described. Later, the idea of 

Dynamic chattering assessment is introduced, and how to obtain the related index is 

clarified. Finally, the step-by-step procedure that has been followed to build the 

Machine Learning models is outlined. 

It is worth noting that the analyses have been performed using a reduced version of 

the alarm database; specifically, from 09/09/2017 to 08/10/2017. This has been 

done both for time constraints (the analyses are extremely time-consuming) and 

because most of the alarms occurred within that period. 
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4.2. The binary database 

As previously argued (3.3), an alarm event is uniquely identified by three attributes: 

1. time stamp; 

2. tag name; 

3. alarm identifier.   

The combination of a tag name and an alarm identifier (e.g. FI209B HHH, FI234 LTRP 

etc.) is called a unique alarm (Kondaveeti et al., 2010). Each unique alarm data can be 

conveniently represented by a binary sequence. 

The binary sequence associated with a unique alarm is a vector whose elements can 

be “0” or “1”. Each element of the vector is associated with a time stamp; normally, a 

one-second sampling is required (i.e. the elements of the vector are one-second-

spaced). A “0” in the binary sequence means that, at that instant, the unique alarm of 

concern has not occurred. On the other hand, a “1” in the binary sequence means that 

the unique alarm has occurred at that instant. 

The binary sequences obtained by each of the unique alarms can be grouped and 

displayed as a matrix (the binary database). The binary representation of the alarm 

data represents the starting point for each advanced alarming technique described in 

the next three sections (4.3, 4.4 and 4.5). Now, the steps to obtain the binary database 

from the Yara alarm database (section 3.3) are described. 

The binary database has been obtained through three steps: 

1. from the alarm database, all the unique alarms that occurred within the 

observation period have been identified. Then, the unique alarms have been 

stored in a vector (each element of the vector is a unique alarm). 791 unique 

alarms have been identified during this step; 

2. a one-second-spaced time vector has been built. The first element of the vector 

represents the starting point of the observation period while the last element 

of the vector represents the ending point. The original database (section 3.3) 

contains alarm data from 19/07/2017 to 30/11/2017. In this thesis, it has 

been decided to focus on the period between 09/09/2017 and 08/10/2017 
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only, because most of the alarms occurred within that time span (Figure 3.5). 

Table 4.1 is a representation of the obtained time vector. 
 

09/09/2017   00:00:00 

09/09/2017   00:00:01 

09/09/2017   00:00:02 

09/09/2017   00:00:03 

⋯ 

08/10/2017   23:59:58 

08/10/2017   23:59:59 

09/10/2017   00:00:00 

Table 4.1 - One-second-spaced time vector 

The time vector has 2592000 elements (i.e. seconds between 09/09/2017 and 

09/10/2017); 

3. for each unique alarm identified in step 1, a binary vector has been built (same 

length as the time vector). Each element of the binary vector is a “1” if the 

unique alarm occurred at the moment identified by the element of the time 

vector or is a “0” if it did not occur. 

As a result, a 2592001 𝑥 792 matrix has been obtained, representing the binary 

sequences of all the unique alarms that occurred within the period of concern. The 

first column of the matrix is the time vector, the remaining columns are the binary 

sequences. The first row of the matrix represents the unique alarms. 

The obtained matrix is large and difficult to handle. However, some columns and rows 

contain only null elements. If a row contains zeroes only, no alarm occurred at the 

instant defined by the first element of the row (i.e. an element of the time vector). If a 

column contains zeroes only, the associated unique alarm has not occurred within the 

period of concern. For this reason, the rows and the columns containing zeroes only 

have been removed. As a result, a reduced 18876 𝑥 764 matrix has been obtained. 

Table 4.2 provides a schematic representation of the binary database. 
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Time stamp ADAH3400A_8 ACK ⋯ FI306 LLL ⋯ PI3400 ACK ⋯ ZAL320 ALM 

09/09/2017   16:07:24 0 ⋯ 1 ⋯ 0 ⋯ 0 

09/09/2017   16:07:25 0 ⋯ 0 ⋯ 0 ⋯ 0 

09/09/2017   16:07:26 0 ⋯ 0 ⋯ 0 ⋯ 0 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

09/09/2017   16:07:39 0 ⋯ 0 ⋯ 0 ⋯ 1 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

09/09/2017   16:15:54 0 ⋯ 1 ⋯ 0 ⋯ 0 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

21/09/2017   09:10:42 1 ⋯ 0 ⋯ 0 ⋯ 0 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

07/10/2017   13:57:13 0 ⋯ 0 ⋯ 0 ⋯ 0 

07/10/2017   14:25:41 0 ⋯ 0 ⋯ 1 ⋯ 0 

Table 4.2 - Schematic representation of the binary database 

 

It is worth noting that the first row of the matrix is associated with the time stamp 

“09/09/2017   16:07:24”. Thus, from the beginning of the period under assessment 

(i.e. “09/09/2017   00:00:00”, the first element of Table 4.1) until “09/09/2017   

16:07:24” no alarm occurred. Similarly, no alarm occurred between the time stamp 

associated with the last row of the matrix (i.e. “07/10/2017   14:25:41”) and the end 

of the period under assessment (“09/10/2017   00:00:00”, last element of Table 4.1). 

Thus, the observation period can be further reduced, and it can be defined as the time 

span between the first row of Table 4.2 and the last row of the same table (i.e. from 

09/09/2017   16:07:24 to 07/10/2017   14:25:41). 

The reduced binary database has been used as a starting point to obtain the HDAP, the 

ASCM and the Chattering Index, as discussed in the next three sections. 
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4.3. The HDAP 

According to what has been described in section 2.2.4.3, the creation of the High 

Density Alarm Plot develops through three steps. The first step is the creation of the 

binary database, which has already been described in paragraph 4.2. Thus, the second 

and third steps only will be described now: 

2. time bins creation and alarm count 

the observation period (i.e. 09/09/2017   16:07:24 – 07/10/2017   14:25:41) 

is divided in ten-minutes-spaced time intervals (called “bins”). The result is a 

time vector; an example is presented in Table 4.3. 

 

09/09/2017   16:10:00 

09/09/2017   16:20:00 

09/09/2017   16:30:00 

⋯ 

07/10/2017   14:10:00 

07/10/2017   14:20:00 

07/10/2017   14:30:00 

Table 4.3 - Ten-minutes-spaced time vector 

Each element of the vector (e.g. 09/09/2017   16:20:00, a “bin”) represents a 

10 minutes time interval (e.g. the bin “09/09/2017   16:20:00” represents the 

time interval between 16:15:00 and 16:25:00 of the same day). 

For each time interval, and for each unique alarm, the alarm count within the 

time interval is calculated using the binary database as a data source. The 

result is stored in a vector of the same dimension of the time vector. In this 

way, each unique alarm is associated with a vector whose elements represent 

the number of alarm occurrences in a time interval equal to 10 minutes. 

The vectors are grouped to form a matrix. Each column of the matrix 

represents a unique alarm and each row represents a 10 minutes time interval. 

Each element of the matrix is an integer representing how many times the 

unique alarm occurred during the 10 minutes time intervals; 
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3. HDAP creation 

the matrix obtained in step 2 is used to calculate the total alarm count for each 

unique alarm (i.e. how many times each unique alarm occurred within the 

study period). A ranking system has been built to sort the unique alarms based 

on the total alarm count (i.e. higher rank means higher alarm count). The 

ranking/sorting is necessary to ensure that alarms with higher alarm count 

will be displayed higher in the HDAP (alarms must be sorted in such a way that 

the total alarm count decreases from the top to the bottom of the plot).  

Finally, the plot is built; the y-axis represents all the unique alarms and the x-

axis represents the ten minutes spaced time bins. A colour bar has been built 

to correctly colour-coding the points of the plot, as described in section 2.2.4.3. 

Through these steps, an HDAP containing 763 unique alarms (y-axis) and 1598 ten-

minutes-spaced time bins (x-axis) is obtained. The plot is too large to be displayed 

correctly, for this reason, it has been decided to display a reduced version, containing 

the first 15 alarms only (i.e. the 15 alarms with the higher alarm count: the “top 15 

bad actors”). The HDAP of the top 15 bad actors is presented in Figure 5.1. 
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4.4. The ASCM 

According to what has been told in section 2.2.4.2, the creation of the Alarm Similarity 

Color Matrix requires five steps. The first step is the creation of the binary database, 

which has already been described in paragraph 4.2. Thus, the steps from the second 

to the fifth will be described now: 

2. padding 

each binary sequence (i.e. each column of the binary database) must be 

“padded” with extra “1’s” to enrich the alarm occurrences and to consider a 

possible communication lag (Kondaveeti et al., 2010). The padding phase 

consists of adding a user-defined number of ones before and after each alarm 

occurrence in the binary sequence (i.e. every time a “1” is found in the binary 

sequence, a certain number of ones are added before and after the occurrence). 

In this thesis, a padding length equal to 5 has been chosen (Kondaveeti et al., 

2010). Thus, five ones are placed before and after every occurrence. The 

general procedure is outlined in Figure 4.1. 

Time stamp Alm_1 

09/09/2017   16:07:24 0 

09/09/2017   16:07:25 0 

09/09/2017   16:07:26 0 

09/09/2017   16:07:27 0 

09/09/2017   16:07:28 0 

09/09/2017   16:07:29 0 

09/09/2017   16:07:30 0 

09/09/2017   16:07:31 0 

09/09/2017   16:07:32 1 

09/09/2017   16:07:33 0 

09/09/2017   16:07:34 0 

09/09/2017   16:07:35 0 

09/09/2017   16:07:36 0 

09/09/2017   16:07:37 0 

09/09/2017   16:07:38 0 

09/09/2017   16:07:39 0 
aaa 

Time stamp Alm_1 

09/09/2017   16:07:24 0 

09/09/2017   16:07:25 0 

09/09/2017   16:07:26 0 

09/09/2017   16:07:27 1 

09/09/2017   16:07:28 1 

09/09/2017   16:07:29 1 

09/09/2017   16:07:30 1 

09/09/2017   16:07:31 1 

09/09/2017   16:07:32 1 

09/09/2017   16:07:33 1 

09/09/2017   16:07:34 1 

09/09/2017   16:07:35 1 

09/09/2017   16:07:36 1 

09/09/2017   16:07:37 1 

09/09/2017   16:07:38 0 

09/09/2017   16:07:39 0 
 

Figure 4.1 - Padding procedure 

Padding 
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“Alm_1” in Figure 4.1 represents a generic unique alarm. 

It is worth noting that the padding length is an adjustable parameter and must 

be chosen according to the problem of concern (Kondaveeti et al., 2010). 

3. calculation of the similarity measure 

as previously argued, the Jaccard measure has been used in this thesis as a 

similarity indicator. The Jaccard measure is defined as (Kondaveeti et al., 

2010): 

 
𝑆𝐽𝑎𝑐𝑐(𝑋, 𝑌) = max

lϵL
(

𝑎(𝑙)

𝑎(𝑙)+𝑏(𝑙)+𝑐(𝑙)
)  4.1 

where: 

▪ 𝑋 and 𝑌 = two unique alarm’s binary sequences (padded); 

▪ 𝐿 = a vector, containing the allowable delay times between the binary 

sequences; 

▪ 𝑙 = allowable time lag between the sequences; 

▪ 𝑎(𝑙) = number of “matches” (i.e. 𝑥𝑖 = 1, 𝑦𝑖 = 1 being 𝑥𝑖  and 𝑦𝑖 elements 

of the sequences 𝑋 and 𝑌 separated by a lag time equal to l); 

▪ 𝑏(𝑙) = number of “mismatches” (i.e. 𝑥𝑖 = 1, 𝑦𝑖 = 0, being 𝑥𝑖  and 𝑦𝑖 

elements of the sequences 𝑋 and 𝑌 separated by a lag time equal to l); 

▪ 𝑐(𝑙) = number of “mismatches” (i.e. 𝑥𝑖 = 0, 𝑦𝑖 = 1, being 𝑥𝑖  and 𝑦𝑖 

elements of the sequences 𝑋 and 𝑌 separated by a lag time equal to 𝑙). 

It is worth noting that 𝐿 is a vector whose elements are one-second-spaced 

integers representing the allowable time lags (in seconds). To clarify the use of 

the allowable time lag, an example is needed. For instance, let 𝑋 and 𝑌 be the 

fictitious binary sequences presented in Figure 4.2:   
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Time 
  

X 
  

 Y 

12:00:00   1    0 

12:00:01   0    1 

12:00:02   0    1 

12:00:03   1    0 

12:00:04   1    0 

12:00:05   0    1 

12:00:06   0    0 

12:00:07   1    1 

12:00:08   0    0 

12:00:09   0    0 

12:00:10   0    0 

12:00:11   1    0 

12:00:12   0    1 

12:00:13   0    1 

12:00:14   1    0 

12:00:15   0    0 

Figure 4.2 - Similarity measure with time delay 

Each element of the time sequences 𝑋 and 𝑌 is one second spaced. 

If 𝑙 = 0 𝑠, the Jaccard measure is calculated with a time lag equal to 0 s. The 

calculation of “matches” and “mismatches” (equation 4.1) can be represented 

by the red arrows in Figure 4.2. In this situation, the matches and mismatches 

are: 

 

▪ 𝑎(𝑙) = 1; 

▪ 𝑏(𝑙) = 5; 

▪ 𝑐(𝑙) = 5.  

Thus, for 𝑙 = 0 𝑠, the similarity measure, according to equation 4.1, is: 

𝑆𝐽𝑎𝑐𝑐(𝑋, 𝑌)𝑙=0 =
1

1 + 5 + 5
= 0.091 

On the other hand, if 𝑙 = 1 𝑠, the Jaccard measure is calculated with a time lag 

equal to 1 s. The calculation of “matches” and “mismatches” (equation 4.1) can 

be represented by the green arrows in Figure 4.2. In this situation, the matches 

and mismatches are: 



 
 

74 
 

▪ 𝑎(𝑙) = 3; 

▪ 𝑏(𝑙) = 3; 

▪ 𝑐(𝑙) = 3. 

Thus, for 𝑙 = 1 𝑠, the similarity measure, according to equation 4.1, is: 

𝑆𝐽𝑎𝑐𝑐(𝑋, 𝑌)𝑙=1 =
3

3 + 3 + 3
= 0.333 

Therefore, in this example, the similarity is higher considering a lag time of 1 

second. 

The calculation must be repeated for each 𝑙 𝜖 𝐿. Thus, for each pair of binary 

sequences, dim(𝐿) similarity measures can be obtained (i.e. one measure for 

each element of 𝐿). According to equation 4.1, the “final” similarity measure 

between a couple of binary alarm data is the larger Jaccard measure. 

In this thesis, an allowable lag (or lead) time of 4 minutes has been considered 

(Kondaveeti et al., 2010). Hence, the vector 𝐿 can be represent as: 

 𝐿 = [−240, −239, … , 0, … , 239, 240]  4.2 

As previously argued, a total of 763 unique alarms have occurred within the 

study period. Thus, 291466 unique pairs of alarm binary sequences exist. The 

similarity measure is calculated for each of these pairs using the binary 

database as a source of data. Specifically, when a pair is selected, 481 Jaccard 

measures are calculated (one measure ∀ 𝑙 𝜖 𝐿 in equation 4.2) and, finally, the 

larger Jaccard measure is chosen to represent the similarity. 

At the end of this step, a 763 𝑥 763 matrix is obtained. The row and column 

indices represent a unique alarm and each element of the matrix is a Jaccard 

measure. Initially, the matrix is a lower unitriangular matrix (sub-diagonal 

elements only have been calculated since 𝑆𝐽𝑎𝑐𝑐(𝑋, 𝑌)𝑙∈𝐿 = 𝑆𝐽𝑎𝑐𝑐(𝑌, 𝑋)𝑙∈𝐿). 

Finally, the matrix has been made symmetric. 

At the end of this step, each alarm that occurred less than six times within the 

observation period has been removed from the matrix. This has been done 

because the Jaccard measure provides erroneously high values for couples of 

alarms that have very few “1’s” in the binary sequences. 

As a result, a reduced 407 𝑥 407 correlation matrix has been obtained. 
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4. re-ordering 

The symmetric matrix obtained at the end of step three encloses the Jaccard 

measures for each couple of unique alarms with more than 5 occurrences. 

However, the alarms (i.e. the row and column indices) are displayed in 

alphabetical order; although rational, this choice is totally arbitrary and does 

not group correlated alarms into clusters. 

A pre-made clustering algorithm has been used to sort the matrix and shows 

clusters of correlated alarms. Specifically, “dendrogram” and “linkage” 

functions of “scipy.cluster.hierarchy” python library have been used. For the 

“linkage” function, the “average” method has been chosen.  

The result is a sorted matrix (rows and columns order has been rearranged) in 

which correlated alarms are displayed together according to the selected 

linkage method. 

5. colour coding 

A convenient way to display the correlation matrix is to colour each element 

according to the Jaccard measure. A pre-made algorithm has been used to 

achieve this purpose. Specifically, the “heatmap” function of the “Seaborn” 

python library has been used. The “Reds” colourmap has been used; in this 

way, the colour of the elements fades from “brick red” (if the similarity 

measure is large -i.e. close to 1) to “light salmon” (if the similarity measure is 

low -i.e. close to 0). 

The result of these steps is the ASCM.  The matrix is too large to be displayed properly 

(407 𝑥 407). For this reason, a reduced version of the ASCM (containing 70 unique 

alarms only) is presented in Figure 5.3. 
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4.5. The Chattering Index (𝜓) 

According to what has been told in section 2.2.4.1, the calculation of the Chattering 

Index requires five steps. The first step is the creation of the binary database, which 

has already been described in paragraph 4.2. Thus, the steps from the second to the 

fifth will be described now: 

4. Run-Length (r) calculation  

a Run-Length is the “time difference in seconds between two consecutive alarms 

on the same tag” (Kondaveeti et al., 2013). Thus, whenever a “1” is found in the 

binary representation of the alarm, the Run-Length is the time between the “1” 

and the next “1” in the binary sequence. A graphical representation of the Run-

Lengths of fictitious alarm data is provided in Table 4.4 and Figure 4.3. 

 

 

                  Table 4.4 - Run length for a fictitious alarm based on historical data (Kondaveeti et al., 2013) 

 

 

             Figure 4.3 - Time trend showing alarm annunciations and the respective time count (Kondaveeti et al., 2013) 

In Table 4.4 the “Alarm time stamp” column represents the moments when the 

alarm was activated (“1” in the binary sequence). The “Time difference” 

column represents the Run-Lengths. For example, for the first alarm 

occurrence (“S. No.” = 1), the Run-Length is 3 seconds; this is because between 

the first ad the second alarm occurrences there are 3 seconds. Figure 4.3 is a 

time representation of the alarm occurrences. 
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Using the binary database as a data source, the Run-Lengths have been 

calculated for each unique alarm binary sequence. 

5. Run length distribution (RLD) calculation 

intuitively, if most of the alarm occurrences have very short Run-Length, the 

alarm will show chattering behaviour. To quantify this insight, Kondaveeti et 

al. (2013) proposed to count how many times each Run-Length (e.g. 3 seconds) 

is repeated in the alarm binary sequence (e.g. Run-Length 3 s recurs 2 times in 

Table 4.4). The results can be displayed in a histogram (Figure 4.4). 

 

 

                                Figure 4.4 - Run length distribution for the fictitious alarm presented in Figure 4.3 and Table 4.4 
                                                                                                  (Kondaveeti et al., 2013) 

Figure 4.4  represents the Run-Length Distribution of the alarm data presented 

in Table 4.4. The x-axis represents the Run-Length value (r), the y-axis 

represents how many times an alarm with a specific Run-Length has occurred 

(nr). 

For each unique alarm in the binary database, the Alarm Counts associated 

with the Run-Lengths (obtained in step 4) have been calculated. 

The result is a list of Run-Lengths and associated Alarm Counts; each unique 

alarm has its own list. 

6. Discrete Probability Function (DPF) calculation; 

Run-Length Distribution data can be normalized to obtain the Discrete 

Probability Function. Normalizing with a factor ∑ 𝑛𝑟𝑟  lead to: 



 
 

78 
 

 𝑃𝑟 =
𝑛𝑟

∑ 𝑛𝑟𝑟
        ∀  𝑟 𝜖 ℕ 4.3 

where: 

▪ 𝑟 = a Run-Length;  

▪ 𝑛𝑟 = the Alarm Count associated with the Run-Length 𝑟; 

▪ 𝑃𝑟 represents the probability that the run length 𝑟 occurred 𝑛𝑟 times. 

Thus, for each unique alarm, if the alarm is associated with 𝑧 uniques Run-

Lengths, 𝑧 Discrete Probability Functions are calculated. 

7. Chattering index (𝜓) calculation. 

the chattering index of a unique alarm can be calculated by summing the 

products between each probability function (𝑃𝑟) and the reciprocal of the run 

length (𝑟): 

 
𝜓 = ∑ 𝑃𝑟

1

𝑟
        

𝑟∈ℕ

 4.4 

 

The reciprocal of the run length is used as a weighting function to emphasize 

the alarm count with short run lengths (Kondaveeti et al., 2013). 

As a result, a Chattering index is calculated for each unique alarm. If the 

Chattering index is larger than a threshold value (e.g. 0.05 alarms/s, see 

equation 2.3), the alarm will be labelled as a chattering one. 

The steps described above produce a single Chattering index for each unique alarm. 

Thus, observing the index, one can assess whether the alarm showed chattering or 

not. Although meaningful, this is a static result (i.e. if, for instance, the alarm showed 

chattering behaviour for one day only, the chattering index would conclude that the 

alarm was chattering, with no further specifications). Since the aim of this thesis is to 

dynamically assess chattering, a more flexible and dynamic tool is needed. 

For this reason, The Dynamic chattering index has been developed. The ideas and 

assumptions that headed to this new index are described in the next section. 
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4.5.1. The Dynamic chattering index (𝜓𝐷) 

The purpose of this thesis is to develop a machine learning tool for real-time 

chattering assessment. Ideally, every time an alarm occurs, the algorithm should 

predict whether the alarm is going to show chattering behaviour or not. The machine 

learning algorithm needs to be trained on a set of historical data. The aim of the 

Dynamic chattering index is to associate each alarm occurrence (i.e. “1” in the binary 

sequence) with a measure that quantifies the tendency of the alarm to show chattering 

in the future. The Dynamic chattering index represents the raw data that, after some 

manipulations, are fed to the machine learning algorithm during the training phase. 

The core idea behind the Dynamic chattering index is to calculate a “regular” 

Chattering index every time a “1” is found in the binary sequence. This way, for each 

unique alarm, as many chattering indices as alarm occurrences are calculated (in 

opposition to the original chattering index, which is just one for each unique alarm). 

As previously argued, when an alarm occurs, we want to define whether the alarm will 

show chattering in the future. But, “the future” must be defined. In this thesis it has the 

meaning of “within one hour after the occurrence”; this is a design parameter and it can 

be adjusted. Considering a “short” future time (i.e. few minutes) could be a problem, 

because the Chattering index is a statistical tool; the more the available data, the more 

the index is reliable. On the other hand, considering a far future would cause a loss in 

dynamism (i.e. the farther the future considered, the more the Dynamic chattering 

index is similar to the regular Chattering index). 

The algebra behind the Dynamic chattering index is the same as the original one. For 

this reason, an example is provided to clarify how the Dynamic Chattering index is 

obtained, and to highlight the differences with the original one. 

Let 𝑍 be the binary sequence associated with the fictitious alarm “Alm_1”, as displayed 

in Table 4.5. 
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Index Time stamp 𝑍 

1 09/09/2017   16:07:24 1 

2 09/09/2017   16:09:25 1 

3 09/09/2017   16:09:30 1 

4 09/09/2017   16:09:33 1 

5 09/09/2017   16:09:47 1 

6 09/09/2017   16:09:59 1 

7 09/09/2017   16:10:57 1 

8 09/09/2017   16:15:00 1 

9 09/09/2017   16:50:24 1 

10 09/09/2017   17:05:42 1 

11 09/09/2017   17:50:15 1 

… … 1 

i 𝑇𝑖𝑚𝑒 𝑠𝑡𝑎𝑚𝑝𝑖  1 

… … 1 

n 𝑇𝑖𝑚𝑒 𝑠𝑡𝑎𝑚𝑝𝑛 1 

Table 4.5 - Binary sequence of the fictitious alarm "Alm_1". Parentheses represent the reduced binary sequences for 
the Dynamic chattering index calculation 

The “Index” column in Table 4.5 has been added to support the future explanation. For 

visualization purposes, all the zeroes have been removed from the binary sequence 

(i.e. column “𝑍”, the binary sequence, contains 1’s only).  

The calculation of the Dynamic chattering indices is iterative and, being 𝑛 the total 

number of occurrences (Table 4.5), it proceeds through 𝑛 − 1 iteration. Each generic 

iteration 𝑖 comprises the following steps: 

1. the occurrence with Index = 𝑖 is selected (e.g. Index = 1 for the first iteration); 

2. part of the binary sequence is now selected. Specifically, only the occurrences 

happened within 1 hour after the occurrence with Index = 𝑖 are selected (e.g. 

the blue graph parenthesis for the first iteration, the green one for the second, 

the red one for the ninth, and so on); 

3. using the reduced binary sequence obtained during step 2, a “regular” 

Chattering index is calculated, as it has been already described at the beginning 

of paragraph 4.5. The index is stored in a vector of the same dimension of the 

binary sequence. Specifically, it is stored in position 𝑖. 

Finally, the steps from 1 to 3 are repeated ∀ 𝑖 ∈ ℕ, 𝑖 < 𝑛. 

This way, every time a “1” is found in the binary sequence, a chattering index is 

calculated, which represents the tendency of the alarm to show chattering within one 

hour after the occurrence. This chattering index is called the Dynamic chattering index 

(𝜓𝐷), since it dynamically assesses chattering every time an alarm occurs. 
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The vector containing the Dynamic chattering indices can be grouped together with 

the binary sequence as shown in Table 4.6. 

Index Time stamp Z 𝜓𝐷  Alm_1 

1 09/09/2017   16:07:24 1 0.08 

2 09/09/2017   16:09:25 1 0.079 

3 09/09/2017   16:09:30 1 0.057 

4 09/09/2017   16:09:33 1 0.019 

5 09/09/2017   16:09:47 1 0.012 

6 09/09/2017   16:09:59 1 0.002 

7 09/09/2017   16:10:57 1 0.0006 

8 09/09/2017   16:15:00 1 0.0001 

9 09/09/2017   16:50:24 1 0.0001 

10 09/09/2017   17:05:42 1 … 

11 09/09/2017   17:50:15 1 … 

… … 1 … 

i 𝑇𝑖𝑚𝑒 𝑠𝑡𝑎𝑚𝑝𝑖  1 … 

… … … … 

n 𝑇𝑖𝑚𝑒 𝑠𝑡𝑎𝑚𝑝𝑛 1 \ 

Table 4.6 -  Binary sequence and Dynamic chattering indices of the fictitious alarm "Alm_1" 

The column “𝜓𝐷 Alm_1” in Table 4.6 represents the vector of the Dynamic chattering 

indices associated with each alarm occurrence. 

Similarly to the original Chattering index, a threshold value of 0.05 alarms/s can be 

used. But, in this case, the meaning of a Dynamic chattering index being higher than 

the threshold value is that the alarm will show chattering behaviour within one hour 

after the current occurrence (e.g. the red values in the last column of Table 4.6). 

As a result, for each unique alarm, a vector containing the Dynamic chattering index 

has been obtained. 

 

4.5.1.1. Limitations 

The Chattering index is mathematically structured to perform better on large datasets. 

In the Dynamic chattering index calculation, only a relatively short (1 hour) binary 

sequence is used. For this reason, if very few alarms were triggered within one hour, 

the dynamic index might behave in an unexpected way. As an example, consider the 

binary sequence (𝑌) represented in Table 4.7. 
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Time stamp 𝑌 𝑟 [𝑠] 

09/09/2017   16:07:24 1 1 

09/09/2017   16:07:25 1 32 

09/09/2017   16:07:57 1 37 

09/09/2017   16:08:34 1 1559 

09/09/2017   16:34:33 1 \ 

Table 4.7 - Fictitious binary sequence (Y) and associated Run-Lengths (r) 

Table 4.7 describes an alarm that occurred five times only within one hour. The last 

column of the table (𝑟) represents the run lengths (as described at the beginning of 

paragraph 4.5). 

The alarm itself does not suggest chattering (it occurred five times only) but, if one 

calculates the Dynamic chattering index of the first occurrence: 

 𝑟 = [1, 32, 37, 1559] 4.5 

 𝑛𝑟 = [1, 1, 1, 1] 4.6 

Then, the DPF (equation 4.3) is: 

  𝑃𝑟 = [1
4⁄ , 1

4⁄ , 1
4⁄ , 1

4⁄ ] 4.7 

Finally, the Dynamic chattering index related to the first occurrence is: 

 
𝜓𝐷 = 1

4⁄ ∙ 1 + 1
4⁄ ∙ 1

32⁄ + 1
4⁄ ∙ 1

37⁄ + 1
4⁄ ∙ 1

1559⁄ = 
4.8 

 
                       = 0.25 + 0.008 + 0.007 + 0.0002 = 0.265 > 0.05 

Thus, according to the index, the alarm has shown chattering. This is because of the 

presence of an extremely short run length (i.e. 1 s) and a large 𝑃𝑟 (i.e. 1/4). The 

contribution of the run length equal to 1 s would be enough to label the alarm as a 

chattering one (red value in equation 4.8). 

To conclude, the proposed Dynamic chattering index is sensitive to “high probability–

short run lengths” combinations and, in certain circumstances, it may behave in an 

unexpected way. 
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4.6. Tensor Flow simulations 

The first step in developing a machine learning algorithm is to build a database 

containing both the features and the labels (section 2.3.1). The selection of the most 

relevant features relies mainly on experience; a trial and error approach is frequently 

needed.  Next, the database is split into two parts; the first part is used to train the 

model, the second part is used to evaluate it. Later, the model is selected (i.e. Linear, 

Deep or Wide&Deep), and the features are converted to fit the model needs. Finally, 

the model is trained and evaluated. 

A more detailed description of the steps introduced above is now presented. 

1. database creation 

data (i.e. features and labels) must be grouped and organized to form a 

database (i.e. a matrix). This is the most efficient way to prepare the data to be 

fed into the Machine Learning models. The database is organized in such a way 

that the features are columns of the database, and the labels are stored in the 

last column of the database. Each row of the database represents a list of alarm 

features and the related label (i.e. a row of the database represents a single 

alarm). The general structure of a hypothetic database is displayed in Table 4.8. 
 

 Feature 1 Feature 2 … Feature n Label 

Alarm_1 FI306 LLL … Feature_𝑛 1 1 

Alarm_2 LI315 HHH … Feature_𝑛 2 0 

… … … … … … 

Alarm_k Feature_1 k Feature_2 k … Feature_𝑛 k Labelk 

Table 4.8 - Machine Learning database: general structure 

A series of 𝑘 alarm records, represented by 𝑛 features, are shown in Table 4.8. 

In this example, the “Feature 1” is the alarm source (Table 3.2), the second 

feature is the alarm identifier (Table 3.2) and the labels are either “0” or “1” 

(i.e. a binary classification). It is worth noting that the alarms represented in 

the database (i.e. the rows) are not the “unique alarms” discussed in the 

previous sections; actually, they are alarm occurrences as represented in the 

original alarm database (section 3.3). 
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As previously mentioned, selecting the most meaningful features often 

requires a trial and error approach. Several tests have been performed, only 

the features that have been used in the final simulations are now presented: 

• the year when the alarm occurred (Y); 

• the month when the alarm occurred (M); 

• the day when the alarm occurred (D); 

• the hour when the alarm occurred (H); 

• the minute when the alarm occurred (m) 

• the second when the alarm occurred (S); 

• alarm source (SO); 

• alarm identifier (ID); 

• alarm condition name (CN);  

• alarm safety function (JX); 

• the Active Time (ATD); 

• the data value (VAL); 

• the Eng. Units (UNI). 

All the attributes presented in the list above have been already discussed in 

(Table 3.2), except the condition name, which is the alarm identifier of the 

original alarm from the same source. For instance, an “HHH” alarm has “HHH” 

as condition name, but an “HHH Recovery” one has again “HHH” as condition 

name. This is because the alarm that has been recovered was an “HHH” one.  

The time features (i.e. year, month, day etc.) have been derived by dividing the 

“Time Stamp” attribute. This has been done because Machine Learning models 

accept only numerical values as input. Certainly, strings can be used as well 

(i.e. words and phrases), but they must be “mapped” into numeric values 

before being fed into the model. For more about the mapping functions, see 

TensorFlow.org (TensorFlow.org, 2020c). For the moment, it is enough to 

know that if the Time Stamps were fed as string objects (e.g. “09/09/2017   

16:07:24”) the model would not be able to assess the connection between 

“near” events (e.g. “09/09/2017 16:07:24” and “09/09/2017 16:07:25” would 

have been considered two completely unrelated events). Representing the 

time in distinct features resolves the issue. 
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According to the abbreviation presented in the list above, Table C. 5 shows a 

reduced version of the final database. 

It is worth noting that the features have been entirely derived from the original 

alarm database. Thus, the required data are directly provided by DCS and no 

further manipulation is needed. 

The last column of Table C. 5 represents the labels; a label can be either zero or 

one. If the alarm is going to show chattering behaviour within one hour, the 

label is “1”.  In contrast, the label is “0”, if the alarm is not going to show 

chattering. The binary representation of the labels has been derived from the 

Dynamic chattering index described in section 4.5.1. For an alarm’s occurrence, 

if the calculated Dynamic chattering index is greater than 0.05, a “1” is chosen 

as a label. On the contrary, a “0” is chosen as a label, if the related Dynamic 

chattering index is lower than 0.05. 

The final database has 25572 rows (i.e. alarm occurrences within the 

observation period, section 3.3.1) and 14 columns (13 features + 1 label). 

 

2. training and evaluation databases 

the database is split into two parts. The first part will be used during the 

training phase, the second part will be used to evaluate the performance (i.e. 

the prediction capability) of the trained models. The number of available data 

is limited; thus, it has been decided to enrich the training database with more 

alarm data. The training database comprises ¾ of the original database. The 

remaining part constitutes the evaluation database.  

In the original database, the data (i.e. rows) are displayed in chronological 

order. This may cause problems when the database is split. For instance, it may 

happen that most of the chattering alarm “occurred” in the first part of the 

database (i.e. the training part). Similarly, it may happen that certain alarms 

are included in the evaluation database while they did not occur in the training 

database. 

Machine Learning algorithms prefer well-distributed data. For this reason, 

before splitting the original database, the rows have been randomly sorted (i.e. 

shuffle). This resolves poor data distribution. 
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In addition, tests have been performed using the non-shuffled database as well, 

to assess how the models will perform with poorly distributed data and unseen 

events. 

Finally, the last column of the evaluation databases (i.e. the labels) has been 

removed and stored in a separate variable. This has been done because the aim 

of the evaluation phase is labels prediction; thus, the algorithm must not have 

access to the true labels’ values during that phase. 

 

3. model selection and features conversion 

three different models have been trained and evaluated (i.e. Linear, Deep, 

Wide&Deep).  The models have been trained and evaluated using the same 

databases and the same features. Still, the features need to be converted based 

on the selected model. How the features are converted is out of the scope of 

this work, for more about feature conversion see TensorFlow.org (2020c) and 

the code in sections B.1, B.2 and B.3. 

Table 4.9 summarize the features (e.g. numerical, categorical and crossed) used 

to train each model. 

 

 Linear Deep Wide&Deep1 

Numerical 
“Y”, “M”, “D”, “H”, 
“m”, “S”, “ATD”, 
“VAL”. 

“Y”, “M”, “D”, “H”, 
“m”, “S”, “ATD”, 
“VAL” 

“Y”, “M”, “D”, “H”, 
“m”, “S”, “ATD”, 
“VAL”. 

Categorical 
“SO”, “ID”, “CN”, 
“JX”, “UNI”. 

“SO”, “ID”, “CN”, 
“JX”, “UNI”. 

“SO”, “ID”, “CN”, 
“JX”, “UNI”. 

Crossed 
“VAL” x “UNI” 
“SO” x “ID” x “CN” 
“SO” x “ID” x “JX” 

\ 
“VAL” x “UNI” 
“SO” x “ID” x “CN” 
“SO” x “ID” x “JX”. 

Table 4.9 - Features summary 

Categorical features are non-numerical features (e.g. strings). Crossed features 

have already been discussed in sections 2.3.3.1 and 2.3.3.3.  

 
1 The Deep part uses Numerical and Categorical features, the Wide part uses Crossed features only. 
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To conclude, the Deep model and the deep part of the Wide&Deep model have 

three hidden layers. The first hidden layer has 1024 hidden units, the second 

512 and the third 256. 

 

4. training 

the models are trained using the training database as a data source. During this 

phase, the weights of the models are optimized to provide an accurate mapping 

from the input (the features) to the output (the labels). The Linear model and 

the linear part of the Wide&Deep model use the FTRL optimizer. The Deep 

model and the deep part of the Wide&Deep model use the “Adagrad” optimizer. 

All the models have been trained for the same number of steps. 

 

5. evaluation 

the trained models are now evaluated against their ability to predict the 

correct labels. Each row of the evaluation database (i.e. the features related to 

a specific alarm occurrence) is fed into the model. As a result, the model 

provides the predicted label. Specifically, it predicts the label’s probability (as 

discussed in section 2.3.1). By default, the software uses a threshold equal to 

0.5 to decide the predicted label’s value. By comparing the predicted labels 

with the real labels, the software calculates and displays a collection of 

performance metrics (e.g. accuracy, recall, precision etc.). Although useful, 

these metrics are limited to the default threshold. For this reason, the raw 

labels’ probability data have been manipulated to calculate precisions and 

recalls using different thresholds values. This has led to more meaningful tools 

to assess the performance of the models compared to the “default” 

performance metrics. 
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Chapter 5  

Results 

 

 

 

5.1. HDAP 

In the present paragraph, the results of the process described in section 4.3 are 

presented. Specifically, Figure 5.1 displays the HDAP of the top 15 bad actors over the 

whole observation period (defined in section 4.2). 

The observation period is large, the resulting plot (Figure 5.1) may appear a little 

zoomed-out; although readable, the points of the plot are thin, and it may be difficult 

to focus on a single bin. For this reason, a zoomed version of the plot is presented in 

Figure 5.2. In this figure, the same data are presented but the observation period has 

been reduced, and only the top 10 bad actors are considered (i.e. two days of 

observation are shown, from 09/09/2017 to 10/09/2017). The plot in Figure 5.2 has 

been created to display a better definition and separation between the points (i.e. 

sticks) of the HDAP. The result is a less general, but more readable, plot compared to 

Figure 5.1. 

The colour coding is displayed in the colour bar to the right of each figure. Grey sticks 

are a single alarm occurrence within the 10 minutes interval. From 2 to 10 

occurrences the colour fades from green to orange. For occurrences larger than 10 the 

colour fades from orange to red. It is worth noting that the time presented under the 

x-axis of Figure 5.1 and Figure 5.2 is GMT time.
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Figure 5.1 - HDAP of the Top 15 bad actors over the whole observation period 
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Figure 5.2 - Reduced version of the HDAP presented in Figure 5.1 (Top10 bad actors and reduced observation period) 
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Observing Figure 5.1, it is evident that the plant went through at least two instability 

periods. The first happened on the 9th of September, and it refers to the power outage. 

The second period of instability happened on the 30th of September.  

Observing Figure 5.2, one can detect several alarms with very high alarm count (i.e. 

intense red “sticks” in the plot, e.g. FI209B, LI307). It is very likely that these alarms 

showed chattering behaviour during the period of concern (more than 100 alarms in 

10 minutes is a strong chattering indication). In Figure 5.2, FI227A LTRP and FI227B 

LTRP show the same alarm distribution (same “sticks” position and colour); thus, it is 

highly probable that these two alarms are redundant (as suggested by their names).  
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5.2. ASCM 

In the present paragraph, the result of the process described in section 4.4 is 

presented. Specifically, Figure 5.3 displays a reduced version of the ASCM; it contains 

70 elements only. The colour coding is displayed in the colour bar to the right of the 

plot; it reflects the value of the Jaccard measure of each couple of unique alarms. 
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Figure 5.3 - Reduce ASCM (70 unique alarms only) 
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Observing Figure 5.3, several clusters can be identified. For example, three clusters 

are highlighted by a yellow border.  

From left to right, the first highlighted cluster suggests that P508, PI508B and PI508C 

are highly correlated and, maybe, redundant.  

The second cluster suggests that PI2471, PI2406 and PI2458 are highly correlated. 

Furthermore, some kind of correlation exists between those alarms and PI2409. 

The third cluster highlights a strong correlation between PI4431 and PI4432. 

Furthermore, some kind of correlation exists between those alarms and PI1403. 
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5.3. Chattering index 

Since the aim of this thesis is the dynamic assessment of chattering, the process 

described at the beginning of paragraph 4.5 has been tested on two unique alarms 

only. This has been done to ensure that the python code written to calculate the 

“regular” Chattering index works properly, because the calculation of the Dynamic 

chattering indices involves the calculation of a “regular” chattering index on a reduced 

binary sequence (point 3 of section  4.5.1). 

The Chattering index has been calculated for two unique alarms: 

a. FI209B IOP; 

b. LI318 LTRP Recover. 

“FI209B IOP” is the first of the bad actors (Figure 5.1) and shows apparent chattering. 

The latter is out of the list of the top 20 bad actors (not displayed in this thesis) and it 

never occurred more than two times within a 10 minutes time interval; thus, it is 

apparently not chattering. 

The RLD plots of the two alarms are displayed in Figure 5.4 and Figure 5.5.  

 

 

Figure 5.4 - RLD histogram of FI209B IOP 
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Figure 5.5 - RLD histogram of LI318 LTRP Recover 

 

Figure 5.4 shows a peak (high Alarm count) for short Run-Lengths (i.e. 1 to 10 

seconds), this is an evident indicator of chattering. Oppositely, Figure 5.5 presents no 

peaks; the Alarm count is low (i.e. 1) and the Run-Lengths are large (i.e. > 7000 s); 

together, this information indicates a non-chattering alarm. 

Finally, the Chattering index has been calculated: 

a. 𝜓𝐹𝐼209𝐵 𝐼𝑂𝑃 = 0.748 > 0.05 𝑎𝑙𝑎𝑟𝑚𝑠 𝑠⁄  → 𝑐ℎ𝑎𝑡𝑡𝑒𝑒𝑟𝑖𝑛𝑔 ; 

b. 𝜓𝐿𝐼318 𝐿𝑇𝑅𝑃 𝑅𝑒𝑐𝑜𝑣𝑒𝑟 = 7.73 ∙ 10−5 < 0.05 𝑎𝑙𝑎𝑟𝑚𝑠 𝑠 → 𝑛𝑜𝑡 𝑐ℎ𝑎𝑡𝑡𝑒𝑒𝑟𝑖𝑛𝑔 ⁄ . 

The results are coherent with what has been told so far about the two alarms. 

 

5.3.1. Dynamic chattering index 

A small portion of the results obtained from the process described in section 4.5.1 are 

shown in Table 5.1. Specifically, the figure is a screenshot of the IDE (Integrated 

Development Environment) that has been used to code the python scripts. Two 

unique alarms are displayed in the figure: 

a. FI227A LLL; 

b. LI318 LTRP Recover. 
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The second and the fourth columns of Table 5.1 are the binary sequences of “FI227A 

LLL” and “LI318 LTRP Recover” respectively. The third and last columns contain the 

related Dynamic chattering indices. The first column represents the time stamp. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 5.1 – Dynamic chattering indices of "FI227A LLL" and "LI318 LTRP Recover" (reduced observation period) 
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5.4. Tensor Flow simulations 

In the present paragraph, the results of the TensorFlow simulations are presented. As 

previously argued, two batches of simulations have been performed (section 4.6, step  

2). In the first simulations, the database was shuffled before being split. In the second 

simulations, it was not shuffled. 

 

5.4.1. First simulations (shuffled) 

The main results of the first simulations are now presented. The evaluation phase led 

to the metrics presented in Table 5.2. 

 Accuracy Precision Recall 

Linear 0.947 0.941 0.938 

Deep 0.937 0.929 0.926 

Wide&Deep 0.919 0.919 0.892 

Table 5.2 – Accuracy, Precision and Recall of the first simulations 

 

The confusion matrices linked to the models are displayed in Figure 5.6. 

 
  A) 

 
  B) 

 
  C) 

Figure 5.6 - Confusion Matrices of the first simulations. 

A) = Linear model, B) = Deep model, C) = Wide&Deep model 

 

It is worth noting that the results presented above refer to a “default” threshold equal 

to 0.5. As an example, the Precision-Recall curve related to the Linear model is 

displayed in Figure 5.7. 
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Figure 5.7 - Precision-Recall curve of the Linear model (first simulations) 

 

The Precision-Recall curves generated by the Deep and Wide&Deep models are 

similar to the one presented in Figure 5.7. Thus, they are not displayed in this thesis. 

Observing the metrics in Table 5.2, one can conclude that the Linear model produces 

larger metrics. Similarly, the Deep model produces larger metrics than the 

Wide&Deep does. Studying the confusion matrices displayed in Figure 5.6, it is evident 

that the models are weaker when it comes to predicting the label “1”; the number of 

False Negatives (bottom left of the confusion matrices) is always higher than the 

number of False Positives (top right of the confusion matrices). 
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5.4.1. Second simulations (non-shuffled) 

The main results of the second simulations are now presented. The evaluation phase 

led to the metrics presented in Table 5.3. 

 Accuracy Precision Recall 

Linear 0.502 0.635 0.021 

Deep 0.492 0.309 0.009 

Wide&Deep 0.492 0.2 0.004 

Table 5.3 - Accuracy, Precision and Recall of the second simulations 

 

The confusion matrices linked to the models are displayed in Figure 5.8. 

 
     A) 

 
  B) 

 
                            C) 

Figure 5.8 - Confusion Matrices of the second simulations. 

A) = Linear model, B) = Deep model, C) = Wide&Deep model 

 

It is worth noting that the results presented above refer to a “default” threshold equal 

to 0.5. 

Observing Table 5.3, one can conclude that the metrics follow the same trend observed 

in the first simulations (i.e. the Linear model produces larger metrics than the other 

models, the Deep model produces larger metrics than the Wide&Deep one). Similarly, 

studying the confusion matrices displayed in Figure 5.8, one can observe the same 

trend as in the first simulations. But here, the trend is exaggerated, with more than 

3000 False Negatives. Comparing Table 5.2 and Figure 5.6 with Table 5.3 and Figure 

5.8, it is evident that the models performed worst on the non-shuffled database. 
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The results of the second simulations have been studied more in-depth; the threshold 

has been varied to assess whether better metrics could be obtained. The Precision-

Recall curves related to the models are presented in Figure 5.9, Figure 5.10, Figure 

5.11. 

 

Figure 5.9 - Precision-Recall curve of the Linear model (second simulations) 

 

 

Figure 5.10 - Precision-Recall curve of the Deep model (second simulations) 
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Figure 5.11 - Precision-Recall curve of the Wide&Deep model (second simulations) 

 

The shapes of the Precision-Recall curves displayed in Figure 5.9 and Figure 5.10 are 

similar. But the linear model can achieve higher precisions and recalls compared to 

the Deep model. Furthermore, the Wide&Deep model (Figure 5.11) can achieve higher 

precision compared to the Linear model.  

If a Precision accessible to both the Linear and the Wide&Deep models is selected, the 

Recall provided by the Wide&Deep model will be lower. For instance, red arrows in 

Figure 5.9 and Figure 5.11 highlight the Recall for a Precision equal to 0.75; in these 

conditions, the Linear model reaches a Recall greater than 0.9 while the Wide&Deep 

model cannot reach 0.9. 

As an example, two points of the Precision-Recall curves related to the Linear and 

Wide&Deep models have been further analysed. The points are displayed as black 

crosses in Figure 5.9 and Figure 5.11. The metrics related to these points, and the 

linked thresholds, are displayed in Table 5.4. 

 Threshold Precision Recall 

Linear 0.0001 0.794 0.926 

Wide&Deep 0.068 0.879 0.795 

Table 5.4 - Thresholds, Precision and Recall for the points marked in Figure 5.9 and Figure 5.11 

The confusion matrices related to the points under assessment are displayed in Figure 

5.12. 
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A) 

 

                                           B) 

Figure 5.12 - Confusion Matrices of the points marked in Figure 5.9 and Figure 5.11 

A) = Linear model, B) =Wide& Deep model 

 

Observing the two matrices above, one can conclude that the Linear model is better in 

predicting the label “0”. On the contrary, the Wide &Deep model better predicts the 

“1” label.  
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Chapter 6  

Discussion 
 

 

 

6.1. Introduction 

The results presented in Chapter 5  are now evaluated and discussed. The limitations 

of the analyses are highlighted, as well as the difficulties experienced during the 

application of the methods. Finally, recommendations for further works are provided. 

 

6.2. HDAP, ASCM, Chattering index  

Through the HDAP (Figure 5.1 and Figure 5.2), periods of plant instability are 

highlighted, and bad actors are revealed. Furthermore, the HDAP can be used for 

preliminary chattering and redundancy assessment. A large HDAP (i.e. based on a 

wide study period) is useful to assess instability and bad actors, while chattering and 

redundancy assessment is easier on a reduced version of the plot.  

Correlation between alarms can be studied through the ASCM. Sometimes the matrix 

displays trivial correlations (e.g. P508, PI508B and PI508C) but interesting 

correlations are displayed as well (e.g. PI2471, PI2406 and PI2458). When handling 

large alarm databases, it is convenient to “split” the ASCM into smaller, more readable, 
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matrices. The ASCM is consistent with the preliminary redundancy assessment 

performed observing the HDAP. 

The Chattering index has been only used to test the algorithm; however, the results 

are consistent with the preliminary chattering assessment. The Dynamic chattering 

index permits to evaluate the likelihood that an alarm will show chattering behaviour 

within a defined time interval. As previously stated (section 4.5.1), the method may 

behave unexpectedly when few alarms occurred within the time interval and when 

alarms with “high probability–short run lengths” are studied. 

It is worth noting that these techniques require an impressive computational effort. 

For example, producing the binary database required ten days of uninterrupted 

computing. Similarly, the ASCM required sixteen days of uninterrupted computing. 

Furthermore, the computers used during the analyses were connected to the NTNU 

IT infrastructure; thus, they occasionally shut down during the simulations. The 

computational aspect must not be underestimated when approaching these 

techniques. The use of a reliable working station or, better, a supercomputer, would 

significantly simplify the analyses. 

To conclude, it is confirmed that the techniques discussed above are valuable offline 

analysis tools. They can be used to support the Monitoring and assessment phase of 

the Alarm management lifecycle (Figure 2.5), and to improve the alarm system 

performances. For example, when chattering is identified, the alarm attributes (e.g. 

deadband, setpoint, delays) may be changed to resolve the issue. Similarly, when the 

ASCM detects redundancy, the priority level of one of the redundant alarms may be 

lowered. 

Future research should examine the effect of different padding lengths when building 

the ASCM. In addition, the method for the calculation of the Dynamic chattering index 

needs to be improved to increase its reliability. Finally, using a larger database could 

significantly improve the quality of the results of the techniques discussed above. 
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6.3. TensorFlow simulations. 

 

6.3.1. First simulations 

The models show remarkable performances when the shuffled database is used 

(Table 5.2). Specifically, the Linear model provides the highest metrics, and, in this 

example, it qualifies as the best model. The reasons why a simpler model can 

overcome more modern and complex models may include: 

1. the problem may require more memorization and fewer generalization 

capabilities; 

2. the Deep and Wide&Deep models may overgeneralize, and detect a 

relationship between features where no (or poor) relationship exist; 

3. the chosen set of features may not be suitable for Deep models; 

4. Deep and Wide&Deep models are more sensitive and difficult to train. 

It is worth noting that the models have been trained on the same set of features, and 

no effort have been invested in optimizing the models. Hundreds of different 

configurations exist for Deep and Deep&Wide models (e.g. different number of hidden 

units, different optimizers, learning decay, target metrics etc.). Due to time constraints 

as well as knowledge constraints, it has been decided to use “default” settings only. 

This may work properly for “robust” models, like the Linear one, but optimization may 

be needed for more sensitive and advanced models. 

 

6.3.2. Second simulations 

When the non-shuffled database is used, the models reveal weak performance metrics 

(i.e. metrics based on threshold = 0.5, Table 5.3). The reasons why this happens may 

include: 

1. alarm data are not well spread among the two databases (i.e. training and 

evaluation); 

2. the evaluation database may comprise alarms or situations that never 

occurred in the training database. 
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Nevertheless, if the threshold is varied, decent performances are achieved (Table 5.4). 

Specifically, the Precision-Recall curves of the Linear and the Wide&Deep models 

underline a significative potential for performance improvement (Figure 5.9 and 

Figure 5.11). However, the required thresholds are relatively low (i.e. 0.0001 for the 

Linear, 0.068 for the Wide&Deep); this may be interpreted as a general weakness of 

the model in predicting the label “1” (i.e. the model appears to be confident in 

predicting the “0” labels, while the “1” labels are usually linked to low probability 

levels). The threshold related to the Linear model seems unrealistically low (i.e. 0.1%) 

while the one related to the Wide&Deep is low but it may be acceptable (6.8 %). 

In predicting alarm chatter, the most important metric is believed to be the Precision. 

This is because predicting False Negatives is less critical than predicting False 

Positives. For instance, if a non-chattering alarm is wrongly labelled as chattering (i.e. 

a False Positive), actions may be taken to silence the alarm; in this way, legit alarms 

may be missed. 

In this case, the model that optimizes the Precision is the Wide&Deep (Figure 5.11 and 

Table 5.4). Thus, the Wide&Deep model may qualify as the best model when the non-

shuffled database is used. The reason why this happens may include: 

1. generalization capability is needed to assess unseen events or feature 

combinations (events or alarms that occurred in the evaluation database only) 

(Cheng et al., 2016). Similarly, memorization capability is needed to extract 

knowledge from frequently occurring events or feature combinations (Cheng 

et al., 2016). 

2. the Deep model has excellent generalization capabilities but lacks in 

memorization; 

3. the Linear model strongly relies on memorization but lacks in generalization. 

In this context (i.e. non-shuffled database, poorly distributed and unseen events), the 

joint training of a Deep part and a Linear part may lead to better performances. 

 

To conclude, the proposed Machine learning models achieved considerable 

performance in predicting chattering alarms. Furthermore, the required 

computational effort is negligible compared to the techniques described in the 

previous section (i.e. a prediction can be obtained in a fraction of a second). The 
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method appears promising, and may be used for on-line, real-time, alarm assessment 

and classification. The results of the models (i.e. predictions) may be used in advanced 

alarming techniques (section 2.2.1.2) to support the operator decision-making 

procedure. 

 

Future research should certainly further test whether extending the analysis on a 

larger database will solve the issue of poor data distribution. Additionally, 

investigating the fields of “Feature Engineering” and “Data Mining” is an interesting 

topic for the future, since this may allow finding a more meaningful and convenient 

set of features. Similarly, optimizing the Deep and Wide&Deep models may lead to 

better performances. Finally, a Machine Learning model may be developed for real-

time correlation prediction. As a long-term objective, future research should be 

devoted to the development of a method to integrate the Machine Learning models on 

a real industrial alarm system. 
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Chapter 7  

Conclusions 
 

 

 

A Machine Learning method for chattering prediction has been developed. The 

method has involved the creation of an index for dynamic chattering assessment. 

Three models have been trained and evaluated on a real industrial database; Linear, 

Deep and Wide&Deep models. The performances of the models have been evaluated 

against the ability to predict chattering alarms. In general, the models have shown 

good prediction capabilities. Chattering alarms and alarm floods are major drawbacks 

in modern alarm systems; the models proposed in the present work are flexible and 

dynamic tools that may be used to address these issues. The obtained Machine 

Learning models may be used for real-time chattering prediction; the results may be 

used to develop advanced alarming techniques. This would significantly improve the 

performance of the alarm systems and the operator response. 

In addition, advanced alarm management techniques have been performed on the 

same alarm database. The results of the analyses have confirmed that these models 

are valuable offline tools to periodically monitor and assess the alarm system. The 

results of these techniques are meaningful, but static. Furthermore, a considerable 

computational effort is required. 

To conclude, the two approaches are not in contrast; on the contrary, they 

complement each other. The advanced alarm management techniques are solid and 



 
 

111 
 

reliable tools for offline, periodic, evaluations. Instead, the strength of a Machine 

Learning approach lies in the ability to predict future events. The first approach may 

be used on a regular basis, to maintain the alarm system; the second one may be used 

as an on-line tool, to improve the overall system flexibility and the operator response 

during critical events, like alarm floods. 
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Appendix A   

Acronyms 
 

 

 

ASCM  Alarm Similarity Color Matrix 

BFW  Boiling Feed Water 

BPCS  Basic Process Control System 

DEA  Diethanolamine 

DPF  Discrete probability function 

FMEA  Failure Modes and Effects Analysis  

HAZOP Hazard and Operability study   

HDAP  High Density Alarm Plot 

IDE  Integrated Development Environment 

IoT  Internet of Things  

HMI  Human-Machine Interface 

HPS  High Pressure Steam  

LPS   Low Pressure Steam 

MPS  Medium Pressure Steam 
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P&ID  Piping and Instrumentation Diagram 

PFD  Process Flow Diagram 

PLC  Programmable Logic Controller 

RLD  Run Length Distribution 

SIS  Safety Instrumented System 
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Appendix B  

Code 
 

 

 

B.1 Linear Model 

from __future__ import absolute_import, division, print_function, 
unicode_literals 
import numpy as np 
import pandas as pd 
import seaborn as sns 
from IPython.display import clear_output 
from sklearn.metrics import roc_curve 
from sklearn.metrics import confusion_matrix 
from sklearn.metrics import precision_recall_curve 
from matplotlib import pyplot as plt 
import tensorflow as tf 
from matplotlib.ticker import (MultipleLocator) 
 
tf.enable_eager_execution() 
 
# Path to train database 
train_file = '<path_to_training_file>' 
 
# Path to evaluation database 
test_file = '<path_to_evaluation_file>' 
 
# Open the databases 
df_train = pd.read_csv(train_file) 
df_test = pd.read_csv(test_file) 
 
# Drop columns containing chattering indices (it must not be passed as a 
feature) 
df_train = df_train.drop(['Chattering_Indices'], axis=1) 
df_test = df_test.drop(['Chattering_Indices'], axis=1) 
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# Define the names of the columns of the two databases 
COLUMNS = ["TSTR", "Y", "M", "D", "H", "m", "S", "TCOU", "TSTA", "TSNS", "SO", 
           "ID", "TID", "CN", "JX", "ATSTR", "ATCOU", "ATSTA", "ATD", "VAL", 
           "UNI", "CHD", "CHB"] 
 
df_train.columns = COLUMNS 
df_test.columns = COLUMNS 
 
# Copy the Labels in different variables and drop them from the original 
database 
y_train = df_train.pop('CHB') 
y_eval = df_test.pop('CHB') 
 
# Define Numerical and Categorical columns 
CATEGORICAL_COLUMNS = ['SO', 'ID', 'CN', 'JX', 'UNI'] 
NUMERIC_COLUMNS = ['Y', 'M', 'D', 'H', 'm', 'S', 'ATD', 'VAL'] 
 
# Drop unnecessary columns from the database 
features = CATEGORICAL_COLUMNS + NUMERIC_COLUMNS 
for element in COLUMNS[0:-1]: 
    if element not in features: 
        df_train.drop(columns=element, inplace=True) 
        df_test.drop(columns=element, inplace=True) 
 
# Convert the features and store them in a list 
feature_columns = [] 
for feature_name in CATEGORICAL_COLUMNS: 
    vocabulary = df_train[feature_name].unique() 
    feature_columns.append( 
    tf.feature_column.categorical_column_with_vocabulary_list(feature_name, 
    vocabulary)) 
  
for feature_name in NUMERIC_COLUMNS: 
    feature_columns.append(tf.feature_column.numeric_column(feature_name, 
    dtype=tf.float64)) 
 
# Define the Crossed features 
crossed = [tf.feature_column.crossed_column(["VAL", "UNI"], 
hash_bucket_size=int(1e6)), 
           tf.feature_column.crossed_column(["SO", "ID", "CN"], 
hash_bucket_size=int(1e6)), 
           tf.feature_column.crossed_column(["SO", "ID", "JX"], 
hash_bucket_size=int(1e6))] 
 
 
# Input pipeline function (from DataFrame to DataSet) 
def make_input_fn(data_df, label_df, num_epochs=10, shuffle=True, 
batch_size=32): 
    def input_function(): 
        ds = tf.data.Dataset.from_tensor_slices((dict(data_df), label_df)) 
        if shuffle: 
            ds = ds.shuffle(1000) 
        ds = ds.batch(batch_size).repeat(num_epochs) 
        return ds 
 
    return input_function 
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# Define the training and evaluation DataSets 
train_input_fn = make_input_fn(df_train, y_train) 
eval_input_fn = make_input_fn(df_test, y_eval, num_epochs=1, shuffle=False) 
 
# Build the linear Classifier (the model directory can be specified by 
model_dir='path_to_modeldir') 
linear_est = tf.estimator.LinearClassifier(feature_columns=feature_columns + 
crossed) 
 
# Train the Classifier 
linear_est.train(train_input_fn) 
 
# Evaluate the Classifier 
result = linear_est.evaluate(eval_input_fn) 
 
# Print the default metrics 
clear_output() 
print(result) 
 
# Assess predictions on the evaluation database 
predictions = linear_est.predict(eval_input_fn)  # this is a dict, the raw 
prediction probabilities are stored here 
expected = y_eval  # these are the real labels 
 
# Create a DataFrame containing the predictions (threshold=0.5), the real 
Labels, and the prediction probabilities 
list_predict = [] 
list_proba = [] 
list_expect = [] 
for pred_dict, expec in zip(predictions, expected):  # fill the lists 
    class_id = pred_dict['class_ids'][0] 
    probability = pred_dict['probabilities'][class_id] 
    list_predict.append(class_id) 
    list_proba.append(probability * 100) 
    list_expect.append(expec) 
 
df_predictions = pd.DataFrame({'Predictions': list_predict, 'Expected': 
list_expect, 'Probabilities': list_proba}) 
 
# Manually calculate Tp, Fn, Fp, Recall, Precision 
tp = 0 
fp = 0 
fn = 0 
tn = 0 
for p, e in zip(df_predictions.Predictions, df_predictions.Expected): 
    if e == 1 and p == 1: 
        tp += 1 
    elif p == 1 and p != e: 
        fp += 1 
    elif p == 0 and p != e: 
        fn += 1 
    elif p == 0 and e == 0: 
        tn += 1 
 
Recall = tp / (tp + fn) 
Precision = tp / (tp + fp) 
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# Take the probabilities of a positive prediction (i.e. "1") and store them 
into the DataFrame 
predictions = linear_est.predict(eval_input_fn) 
probs = pd.Series([pred['probabilities'][1] for pred in predictions])  # this 
is the probability of the label being "1" 
df_predictions['Prob_1'] = probs 
 
# Save the  Dataframe as a .csv text file 
df_predictions.to_csv('<path_to_save_directory>\\file_name.csv', index=False) 
 
# Plot the ROC curve 
fpr, tpr, _ = roc_curve(y_eval, probs) 
plt.plot(fpr, tpr) 
plt.title('ROC curve') 
plt.xlabel('false positive rate') 
plt.ylabel('true positive rate') 
plt.xlim(0, ) 
plt.ylim(0, ) 
plt.show() 
 
# Obtain the confusion matrix 
conf_matrix = confusion_matrix(df_predictions.Expected, 
df_predictions.Predictions) 
df_conf_matrix = pd.DataFrame(conf_matrix, index=[0, 1], columns=[0, 1]) 
 
# Plot the confusion matrix (parameters are optimized for A4, 3 matrices in a 
row) 
fig = plt.figure() 
ax = fig.add_subplot(111) 
fig = sns.heatmap(df_conf_matrix, annot=True, square=True, cmap='Reds', 
fmt='d', annot_kws={"size": 60}) 
cax = plt.gcf().axes[-1] 
cax.tick_params(labelsize=55) 
ax.set_ylabel('True label', fontsize=70, labelpad=30) 
ax.set_xlabel('Predicted label', fontsize=70, labelpad=30) 
ax.tick_params(labelsize=60, axis='x') 
ax.tick_params(labelsize=60, axis='y') 
plt.show() 
 
# Build precision - recall curve using a built-in function (parameters are 
optimized for A4, 2 or more figures per page) 
precisions_1, recalls_1, thresholds_1 = 
precision_recall_curve(df_predictions.Expected, df_predictions.Prob_1) 
fig_2 = plt.figure(figsize=(5, 5)) 
ax = fig.add_subplot(111) 
ax.plot(recalls_1, precisions_1, linewidth=5) 
ax.set_xlabel('Recall', fontsize=60, labelpad=30) 
ax.set_xlim(0, ) 
ax.xaxis.set_major_locator(MultipleLocator(0.1))  # set ticks in x axis 
ax.xaxis.set_minor_locator(MultipleLocator(0.05))  # set ticks in x axis 
ax.set_ylim(0, ) 
ax.yaxis.set_major_locator(MultipleLocator(0.1))  # set ticks in x axis 
ax.yaxis.set_minor_locator(MultipleLocator(0.05))  # set ticks in x axis 
ax.set_ylabel('Precision', fontsize=60, labelpad=30) 
ax.tick_params(which='major', direction='out', length=20, width=1, pad=20, 
labelsize=40, axis='x') 
ax.tick_params(which='major', direction='out', length=20, width=1, pad=20, 
labelsize=40, axis='y') 
ax.tick_params(which='minor', direction='out', length=10, width=1, pad=20, 
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axis='x') 
ax.tick_params(which='minor', direction='out', length=10, width=1, pad=20, 
axis='y') 
ax.grid(which='major', axis='both', linestyle='-') 
ax.grid(which='minor', axis='both', linestyle='--') 
plt.gca().set_aspect('equal', adjustable='box')  # make the plot squared 
 
# Build precision - recall curve manually 
recalls = [] 
precisions = [] 
thresholds = list(np.arange(0, 1, 0.0001))  # a list of thresholds  
for thresh in thresholds: 
    list_prediction_threshold = [] 
    for element in df_predictions.Prob_1: 
        if element >= thresh: 
            list_prediction_threshold.append(1) 
        else: 
            list_prediction_threshold.append(0) 
    conf = confusion_matrix(df_predictions.Expected,list_prediction_threshold) 
    true_p = conf[1][1] 
    false_p = conf[0][1] 
    false_n = conf[1][0] 
    recalls.append(true_p / (true_p + false_n)) 
    precisions.append(true_p / (true_p + false_p)) 
 
# Store results in a DataFrame and drop nan (when there are no more Tp) 
df_thresholds = pd.DataFrame({'Recall': recalls, 'Precision': precisions, 
'Threshold': thresholds}) 
df_thresholds.dropna(inplace=True) 
 
# Save the DataFrame 
df_thresholds.to_csv('<path_to_save_directory>\\file_name.csv', index=False) 
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B.2 Deep Model 

from __future__ import absolute_import, division, print_function, 
unicode_literals 
import numpy as np 
import pandas as pd 
import seaborn as sns 
from IPython.display import clear_output 
from sklearn.metrics import roc_curve 
from sklearn.metrics import confusion_matrix 
from sklearn.metrics import precision_recall_curve 
from matplotlib import pyplot as plt 
import tensorflow as tf 
from matplotlib.ticker import (MultipleLocator) 
 
tf.enable_eager_execution() 
 
# Path to train database 
train_file = '<path_to_training_file>' 
 
# Path to evaluation database 
test_file = '<path_to_evaluation_file>' 
 
# Open the databases 
df_train = pd.read_csv(train_file) 
df_test = pd.read_csv(test_file) 
 
# Drop columns containing chattering indices (it must not be passed as a 
feature) 
df_train = df_train.drop(['Chattering_Indices'], axis=1) 
df_test = df_test.drop(['Chattering_Indices'], axis=1) 
 
# Define the names of the columns of the two databases 
COLUMNS = ["TSTR", "Y", "M", "D", "H", "m", "S", "TCOU", "TSTA", "TSNS", "SO", 
           "ID", "TID", "CN", "JX", "ATSTR", "ATCOU", "ATSTA", "ATD", "VAL", 
           "UNI", "CHD", "CHB"] 
 
df_train.columns = COLUMNS 
df_test.columns = COLUMNS 
 
# Copy the Labels in different variables and drop them from the original 
database 
y_train = df_train.pop('CHB') 
y_eval = df_test.pop('CHB') 
 
# Define Numerical and Categorical columns 
CATEGORICAL_COLUMNS = ['SO', 'ID', 'CN', 'JX', 'UNI'] 
NUMERIC_COLUMNS = ['Y', 'M', 'D', 'H', 'm', 'S', 'ATD', 'VAL'] 
 
# Drop unnecessary columns from the database 
features = CATEGORICAL_COLUMNS + NUMERIC_COLUMNS 
for element in COLUMNS[0:-2]: 
    if element not in features: 
        df_train.drop(columns=element, inplace=True) 
        df_test.drop(columns=element, inplace=True) 
 
 



 
 

121 
 

# Convert the features and store them in a list 
feature_columns = [] 
categorical_feature = []  # categorical, must be mapped into dense 
for feature_name in CATEGORICAL_COLUMNS: 
    vocabulary = df_train[feature_name].unique() 
    categorical_feature.append( 
    tf.feature_column.categorical_column_with_vocabulary_list(feature_name, 
    vocabulary)) 
 
# Convert (wrap) categorical columns into dense columns: 
# Indicator 
for cat_col in categorical_feature: 
    feature_columns.append(tf.feature_column.indicator_column(cat_col)) 
 
# Or Embedding_column 
''' 
for cat_col in categorical_feature: 
    feature_columns.append(tf.feature_column.embedding_column(cat_col, 
dimension=9)) 
''' 
 
# Add numeric features 
for feature_name in NUMERIC_COLUMNS: 
    feature_columns.append(tf.feature_column.numeric_column(feature_name, 
    dtype=tf.float64)) 
 
 
# Input pipeline function (from DataFrame to DataSet) 
def make_input_fn(data_df, label_df, num_epochs=10, shuffle=True, 
batch_size=32): 
    def input_function(): 
        ds = tf.data.Dataset.from_tensor_slices((dict(data_df), label_df)) 
        if shuffle: 
            ds = ds.shuffle(1000) 
        ds = ds.batch(batch_size).repeat(num_epochs) 
        return ds 
 
    return input_function 
 
 
# Define the training and evaluation DataSets 
train_input_fn = make_input_fn(df_train, y_train) 
eval_input_fn = make_input_fn(df_test, y_eval, num_epochs=1, shuffle=False) 
 
# Build the Deep Classifier (the model directory can be specified by 
model_dir='<path_to_modeldir>') 
classifier_deep = tf.estimator.DNNClassifier(feature_columns=feature_columns, 
hidden_units=[1024, 512, 256]) 
 
# Train the Classifier 
classifier_deep.train(train_input_fn) 
 
# Evaluate the Classifier 
results = classifier_deep.evaluate(eval_input_fn) 
 
# Print the default metrics 
clear_output() 
print(results) 
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# Assess predictions on the evaluation database 
predictions = classifier_deep.predict(eval_input_fn)  # this is a dict, the 
raw prediction probabilities are stored here 
expected = y_eval  # these are the real labels 
 
# Create a DataFrame containing the predictions (threshold=0.5), the real 
Labels, and the prediction probabilities 
list_predict = [] 
list_proba = [] 
list_expect = [] 
for pred_dict, expec in zip(predictions, expected): 
    class_id = pred_dict['class_ids'][0] 
    probability = pred_dict['probabilities'][class_id] 
    list_predict.append(class_id) 
    list_proba.append(probability * 100) 
    list_expect.append(expec) 
 
df_predictions = pd.DataFrame({'Predictions': list_predict, 'Expected': 
list_expect, 'Probabilities': list_proba}) 
 
# Manually calculate Tp, Fn, Fp, Recall, Precision etc. 
tp = 0 
fp = 0 
fn = 0 
tn = 0 
for p, e in zip(df_predictions.Predictions, df_predictions.Expected): 
    if e == 1 and p == 1: 
        tp += 1 
    elif p == 1 and p != e: 
        fp += 1 
    elif p == 0 and p != e: 
        fn += 1 
    elif p == 0 and e == 0: 
        tn += 1 
 
Recall = tp / (tp + fn) 
Precision = tp / (tp + fp) 
 
# Take the probabilities of a positive prediction (i.e. "1") and store it into 
the DataFrame 
predictions = classifier_deep.predict(eval_input_fn) 
probs = pd.Series([pred['probabilities'][1] for pred in predictions])  # this 
is the probability of the label being "1" 
df_predictions['Prob_1'] = probs 
 
df_predictions.to_csv('<path_to_save_directory>\\file_name.csv', index=False) 
 
# Plot the ROC curve 
fpr, tpr, _ = roc_curve(y_eval, probs) 
plt.plot(fpr, tpr) 
plt.title('ROC curve') 
plt.xlabel('false positive rate') 
plt.ylabel('true positive rate') 
plt.xlim(0, ) 
plt.ylim(0, ) 
plt.show() 
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# Obtain the confusion matrix 
conf_matrix = confusion_matrix(df_predictions.Expected, 
df_predictions.Predictions) 
df_conf_matrix = pd.DataFrame(conf_matrix, index=[0, 1], columns=[0, 1]) 
 
# Plot the confusion matrix (parameters are optimized for A4, 3 matrices in a 
row) 
fig = plt.figure() 
ax = fig.add_subplot(111) 
fig = sns.heatmap(df_conf_matrix, annot=True, square=True, cmap='Reds', 
fmt='d', annot_kws={"size": 60}) 
cax = plt.gcf().axes[-1] 
cax.tick_params(labelsize=55) 
ax.set_ylabel('True label', fontsize=70, labelpad=30) 
ax.set_xlabel('Predicted label', fontsize=70, labelpad=30) 
ax.tick_params(labelsize=60, axis='x') 
ax.tick_params(labelsize=60, axis='y') 
plt.show() 
 
# Build precision - recall curve using a built-in function (parameters are 
optimized for A4, 2 or more figures per page) 
precisions_1, recalls_1, thresholds_1 = 
precision_recall_curve(df_predictions.Expected, df_predictions.Prob_1) 
fig_2 = plt.figure(figsize=(5, 5)) 
ax = fig.add_subplot(111) 
ax.plot(recalls_1, precisions_1, linewidth=5) 
ax.set_xlabel('Recall', fontsize=60, labelpad=30) 
ax.set_xlim(0, ) 
ax.xaxis.set_major_locator(MultipleLocator(0.1))  # set ticks in x axis 
ax.xaxis.set_minor_locator(MultipleLocator(0.05))  # set ticks in x axis 
ax.set_ylim(0, ) 
ax.yaxis.set_major_locator(MultipleLocator(0.1))  # set ticks in x axis 
ax.yaxis.set_minor_locator(MultipleLocator(0.05))  # set ticks in x axis 
ax.set_ylabel('Precision', fontsize=60, labelpad=30) 
ax.tick_params(which='major', direction='out', length=20, width=1, pad=20, 
labelsize=40, axis='x') 
ax.tick_params(which='major', direction='out', length=20, width=1, pad=20, 
labelsize=40, axis='y') 
ax.tick_params(which='minor', direction='out', length=10, width=1, pad=20, 
axis='x') 
ax.tick_params(which='minor', direction='out', length=10, width=1, pad=20, 
axis='y') 
ax.grid(which='major', axis='both', linestyle='-') 
ax.grid(which='minor', axis='both', linestyle='--') 
plt.gca().set_aspect('equal', adjustable='box')  # make the plot squared 
 
# Build precision - recall curve manually 
recalls = [] 
precisions = [] 
thresholds = list(np.arange(0, 1, 0.0001))  # a list of thresholds 
for thresh in thresholds: 
    list_prediction_threshold = [] 
    for element in df_predictions.Prob_1: 
        if element >= thresh: 
            list_prediction_threshold.append(1) 
        else: 
            list_prediction_threshold.append(0) 
    conf = confusion_matrix(df_predictions.Expected, 
list_prediction_threshold) 
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    true_p = conf[1][1] 
    false_p = conf[0][1] 
    false_n = conf[1][0] 
    recalls.append(true_p / (true_p + false_n)) 
    precisions.append(true_p / (true_p + false_p)) 
 
# Store results in a DataFrame and drop nan (rise when there are no more Tp) 
df_thresholds = pd.DataFrame({'Recall': recalls, 'Precision': precisions, 
'Threshold': thresholds}) 
df_thresholds.dropna(inplace=True) 
 
# Save the DataFrame 
df_thresholds.to_csv('<path_to_save_directory>\\file_name.csv', index=False) 
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B.3 Wide&Deep Model 

from __future__ import absolute_import, division, print_function, 
unicode_literals 
import numpy as np 
import pandas as pd 
import seaborn as sns 
from IPython.display import clear_output 
from sklearn.metrics import roc_curve 
from sklearn.metrics import confusion_matrix 
from sklearn.metrics import precision_recall_curve 
from matplotlib import pyplot as plt 
import tensorflow as tf 
from matplotlib.ticker import (MultipleLocator) 
 
tf.enable_eager_execution() 
 
# Path to train database 
train_file = '<path_to_training_file>' 
 
# Path to evaluation database 
test_file = '<path_to_evaluation_file>' 
 
# Open the databases 
df_train = pd.read_csv(train_file) 
df_test = pd.read_csv(test_file) 
 
# Drop columns containing chattering indices (it must not be passed as a 
feature) 
df_train = df_train.drop(['Chattering_Indices'], axis=1) 
df_test = df_test.drop(['Chattering_Indices'], axis=1) 
 
# Define the names of the columns of the two databases 
COLUMNS = ["TSTR", "Y", "M", "D", "H", "m", "S", "TCOU", "TSTA", "TSNS", "SO", 
           "ID", "TID", "CN", "JX", "ATSTR", "ATCOU", "ATSTA", "ATD", "VAL", 
           "UNI", "CHD", "CHB"] 
 
df_train.columns = COLUMNS 
df_test.columns = COLUMNS 
 
# Copy the Labels in different variables and drop them from the original 
database 
y_train = df_train.pop('CHB')  # .pop copies the Series and drop from the df 
y_eval = df_test.pop('CHB') 
 
# Define Numerical and Categorical columns 
CATEGORICAL_COLUMNS = ['SO', 'ID', 'CN', 'JX', 'UNI'] 
NUMERIC_COLUMNS = ['Y', 'M', 'D', 'H', 'm', 'S', 'ATD', 'VAL'] 
 
# Drop unnecessary columns from the database 
features = CATEGORICAL_COLUMNS + NUMERIC_COLUMNS 
for element in COLUMNS[0:-2]: 
    if element not in features: 
        df_train.drop(columns=element, inplace=True) 
        df_test.drop(columns=element, inplace=True) 
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# Convert the features and store them in a list 
feature_deep = [] 
categorical_feature = []  # categorical, must be mapped into dense 
for feature_name in CATEGORICAL_COLUMNS: 
    vocabulary = df_train[feature_name].unique() 
    categorical_feature.append( 
    tf.feature_column.categorical_column_with_vocabulary_list(feature_name, 
    vocabulary)) 
 
# Convert (wrap) categorical columns into dense columns: 
# Indicator 
for cat_col in categorical_feature: 
    feature_deep.append(tf.feature_column.indicator_column(cat_col)) 
# Or Embedding_column 
''' 
for cat_col in categorical_feature: 
    feature_columns.append(tf.feature_column.embedding_column(cat_col, 
dimension=9)) 
''' 
 
# Add numeric features 
for feature_name in NUMERIC_COLUMNS: 
    feature_deep.append(tf.feature_column.numeric_column(feature_name, 
    dtype=tf.float64)) 
 
# Define the Crossed features 
crossed = [tf.feature_column.crossed_column(["VAL", "UNI"], 
hash_bucket_size=int(1e6)), 
           tf.feature_column.crossed_column(["SO", "ID", "CN"], 
hash_bucket_size=int(1e6)), 
           tf.feature_column.crossed_column(["SO", "ID", "JX"], 
hash_bucket_size=int(1e6))] 
 
 
# Input pipeline function (from DataFrame to DataSet) 
def make_input_fn(data_df, label_df, num_epochs=10, shuffle=True, 
batch_size=32): 
    def input_function(): 
        ds = tf.data.Dataset.from_tensor_slices((dict(data_df), label_df)) 
        if shuffle: 
            ds = ds.shuffle(1000) 
        ds = ds.batch(batch_size).repeat(num_epochs) 
        return ds 
 
    return input_function 
 
 
# Define the training and evaluation DataSets 
train_input_fn = make_input_fn(df_train, y_train) 
eval_input_fn = make_input_fn(df_test, y_eval, num_epochs=1, shuffle=False) 
 
# Build the Wide&Deep Classifier (the model directory can be specified by 
model_dir='<path_to_modeldir>') 
classifier_wide = 
tf.estimator.DNNLinearCombinedClassifier(linear_feature_columns=crossed, 
                                                           
dnn_feature_columns=feature_deep, 
                                                           
dnn_hidden_units=[1024, 512, 256]) 
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# Train the Classifier 
classifier_wide.train(train_input_fn) 
 
# Evaluate the Classifier 
results = classifier_wide.evaluate(eval_input_fn) 
 
# Print the default metrics 
clear_output() 
print(results) 
 
# Assess predictions on the evaluation database 
predictions = classifier_wide.predict(eval_input_fn)  # this is a dict, the 
raw prediction probabilities are stored here 
expected = y_eval  # these are the real labels 
 
# Create a DataFrame containing the predictions (threshold=0.5), the real 
Labels, and the prediction probabilities 
list_predict = [] 
list_proba = [] 
list_expect = [] 
for pred_dict, expec in zip(predictions, expected): 
    class_id = pred_dict['class_ids'][0] 
    probability = pred_dict['probabilities'][class_id] 
    list_predict.append(class_id) 
    list_proba.append(probability * 100) 
    list_expect.append(expec) 
 
df_predictions = pd.DataFrame({'Predictions': list_predict, 'Expected': 
list_expect, 'Probabilities': list_proba}) 
 
# Manually calculate Tp, Fn, Fp, Recall, Precision etc. 
tp = 0 
fp = 0 
fn = 0 
tn = 0 
for p, e in zip(df_predictions.Predictions, df_predictions.Expected): 
    if e == 1 and p == 1: 
        tp += 1 
    elif p == 1 and p != e: 
        fp += 1 
    elif p == 0 and p != e: 
        fn += 1 
    elif p == 0 and e == 0: 
        tn += 1 
 
Recall = tp / (tp + fn) 
Precision = tp / (tp + fp) 
 
# Take the probabilities of a positive prediction (i.e. "1") and store it into 
the DataFrame 
predictions = classifier_wide.predict(eval_input_fn) 
probs = pd.Series([pred['probabilities'][1] for pred in predictions])  # this 
is the probability of the label being "1" 
df_predictions['Prob_1'] = probs 
 
# Save the  DataFrame as a .csv text file 
df_predictions.to_csv('<path_to_save_directory>\\file_name.csv', index=False) 
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# Plot the ROC curve 
fpr, tpr, _ = roc_curve(y_eval, probs) 
plt.plot(fpr, tpr) 
plt.title('ROC curve') 
plt.xlabel('false positive rate') 
plt.ylabel('true positive rate') 
plt.xlim(0, ) 
plt.ylim(0, ) 
plt.show() 
 
# Obtain the confusion matrix 
conf_matrix = confusion_matrix(df_predictions.Expected, 
df_predictions.Predictions) 
df_conf_matrix = pd.DataFrame(conf_matrix, index=[0, 1], columns=[0, 1]) 
 
# Plot the confusion matrix (parameters are optimized for A4, 3 matrices in a 
row) 
fig = plt.figure() 
ax = fig.add_subplot(111) 
fig = sns.heatmap(df_conf_matrix, annot=True, square=True, cmap='Reds', 
fmt='d', annot_kws={"size": 60}) 
cax = plt.gcf().axes[-1] 
cax.tick_params(labelsize=55) 
ax.set_ylabel('True label', fontsize=70, labelpad=30) 
ax.set_xlabel('Predicted label', fontsize=70, labelpad=30) 
ax.tick_params(labelsize=60, axis='x') 
ax.tick_params(labelsize=60, axis='y') 
plt.show() 
 
# Build precision - recall curve using a built-in function (parameters are 
optimized for A4, 2 or more figures per page) 
precisions_1, recalls_1, thresholds_1 = 
precision_recall_curve(df_predictions.Expected, df_predictions.Prob_1) 
fig_2 = plt.figure(figsize=(5, 5)) 
ax = fig.add_subplot(111) 
ax.plot(recalls_1, precisions_1, linewidth=5) 
ax.set_xlabel('Recall', fontsize=60, labelpad=30) 
ax.set_xlim(0, ) 
ax.xaxis.set_major_locator(MultipleLocator(0.1))  # set ticks in x axis 
ax.xaxis.set_minor_locator(MultipleLocator(0.05))  # set ticks in x axis 
ax.set_ylim(0, ) 
ax.yaxis.set_major_locator(MultipleLocator(0.1))  # set ticks in x axis 
ax.yaxis.set_minor_locator(MultipleLocator(0.05))  # set ticks in x axis 
ax.set_ylabel('Precision', fontsize=60, labelpad=30) 
ax.tick_params(which='major', direction='out', length=20, width=1, pad=20, 
labelsize=40, axis='x') 
ax.tick_params(which='major', direction='out', length=20, width=1, pad=20, 
labelsize=40, axis='y') 
ax.tick_params(which='minor', direction='out', length=10, width=1, pad=20, 
axis='x') 
ax.tick_params(which='minor', direction='out', length=10, width=1, pad=20, 
axis='y') 
ax.grid(which='major', axis='both', linestyle='-') 
ax.grid(which='minor', axis='both', linestyle='--') 
plt.gca().set_aspect('equal', adjustable='box')  # make the plot squared 
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# Build precision - recall curve manually 
recalls = [] 
precisions = [] 
thresholds = list(np.arange(0, 1, 0.0001))  # a list of thresholds 
for thresh in thresholds: 
    list_prediction_threshold = [] 
    for element in df_predictions.Prob_1: 
        if element >= thresh: 
            list_prediction_threshold.append(1) 
        else: 
            list_prediction_threshold.append(0) 
    conf = confusion_matrix(df_predictions.Expected, 
list_prediction_threshold) 
    true_p = conf[1][1] 
    false_p = conf[0][1] 
    false_n = conf[1][0] 
    recalls.append(true_p / (true_p + false_n)) 
    precisions.append(true_p / (true_p + false_p)) 
 
# Store results in a DataFrame and drop nan (they rise when there are no more 
Tp) 
df_thresholds = pd.DataFrame({'Recall': recalls, 'Precision': precisions, 
'Threshold': thresholds}) 
df_thresholds.dropna(inplace=True) 
 
# Save the DataFrame 
df_thresholds.to_csv('<path_to_save_directory>\\file_name.csv', index=False) 
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SUBSTANCE CAS NUMBER 
CLASSIFICATION (CLP 

Regulation) 

HAZARD 

STATEMENTS 

CONFINEMENT 

METHOD 

Anhydrous 

ammonia 
7664-41-7 

Flammable gas cat. 2 H221 

Cryogenic tank 

and pipes 

Gas under pressure H280 

Acute toxicity cat 3. 

(INHALATION) H331 

Skin corrosion/irritation cat. 1B H314 

Hazardous to the aquatic 

environment cat. 1 H400 

Hazardous to the aquatic 

environment cat. 2 H411 

Dry natural gas 

(methane) 

68410-63-9 

(74-82-8) 

Flammable gas cat. 1 H220 Pipes and plant 

equipment Gas under pressure H280 

Sodium 

hypochlorite 

(14 – 15 %) 

(7681-52-9) 

Corrosive to metals H290 

Tank  

Skin corrosion/irritation cat. 1B H314 

Hazardous to the aquatic 

environment cat. 1 H400 

Specific target organ toxicity 

(STOT) – single exposure cat. 3 H335 

Hydrogen 1333-74-0 
Flammable gas cat. 1 H220 Pipes and plant 

equipment Gas under pressure H280 

Ammonia aqueous 

solution 

(15 – 30 %) 

1336-21-6 

Skin corrosion/irritation cat. 1B H314 

Pipes and plant 

equipment 

Specific target organ toxicity 

(STOT) – single exposure cat. 3 
H335 

Hazardous to the aquatic 

environment cat. 1 
H400 

Hazardous to the aquatic 

environment cat. 2 
H411 

Formurea 80 

(aqueous solution) 
50-00-0 

Carcinogenicity cat. 1B H350 

Tank and pipes 

Germ cell mutagenicity cat. 2 H341 

Acute toxicity cat 3. 

(inhalation, contact, ingestion) 

H301 H311 

H331 

Skin corrosion/irritation cat. 2 H315 

Skin sensitisation cat. 1 H317 

Serious eye damage cat. 2 H319 

Specific target organ toxicity 

(STOT) – single exposure cat. 3 
H335 

Table C. 1– substances present in greater quantity than the thresholds defined in D.Lgs. 105/2015 
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Source Description 

FI234 

Mass flow rate of BFW entering E-18 (heat recovery from primary reformer 
exhausts). The stream leaving E-18 splits in two: part is sent to E-19 (heat recovery 
from the gas stream leaving the second ammonia synthesis reactor) the other part 
is sent to E-20A/B/D (heat recovery from the gas stream leaving high-temperature 
shift reactor). Part of the water leaving E-19 is sent to E-06 reboiler to produce HPS. 

PI275_ESD 
Pressure of the natural gas stream entering the combustion chamber of the primary 
reformer. If the pressure is too high, J-1 interlock sequence may be triggered, and 
the natural gas is sent to vent. 

PI276_ESD 
Pressure of the natural gas stream entering the combustion chamber of the primary 
reformer. If the pressure is too high or too low, J-2 interlock sequence may start the 
reforming section trip. 

FI225A 
Volumetric flow rate of natural gas entering the reaction section of the primary 
reformer. If the gas flow is too high, J-2 interlock sequence may start the reforming 
section trip. 

FI225B Same as FI225A. 

FI209A 
Mass flow rate of MPS entering the reaction section of the primary reformer. If the 
steam flow is too low, J-2 interlock sequence may start the reforming section trip.  

FI209B Same as FI209A. 

TI219_4 
Temperature of the gas stream leaving the primary reformer and approaching the 
secondary reformer. It is associated with J-1 and J-2 safety interlock logics. 

FI231B 
Volumetric flow rate of preheated air entering the secondary reformer. If the air 
flow is too low, J-3 logic may start the trip of the secondary reformer. 

FI231A Same as FI232B. 

PI203 

Pressure of the exhaust leaving the primary reformer combustion chamber and 
entering the heat recovery section. If the pressure is low (low draught), J1 and J2 
logics start the trip of the reformer section and send the natural gas to vent. If the 
pressure is high (high draught), J-5 safety logic may stop the first reforming blower. 

AI201 
𝐶𝐻4 concentration in the gas stream leaving the reformer section and entering the 
first Conversion reactor (R-04) 

LI202 

Water level in the steam drum D-09. It is located after the reforming section and it 
serves many pieces of equipment of the Conversion section: from D-09, BFW is sent 
to E01A/B and E03 while HPS is sent to E-02 steam superheater. If the level is low, 
J-1 and J-2 logics may start the trip of the reformer section and send the natural gas 
to vent. 

LI203 Same as LI202. 

FI227A 
HPS volumetric flow rate leaving D-09 (discussed above) and entering E-02 steam 
superheater. If the flow is too low J-2 interlock sequence may start the reforming 
section trip. 

FI227B Same as FI227B. 

AI202 
CO concentration in the gas stream leaving the high-temperature shift reactor. The 
CO concentration must be low to avoid catalyst poisoning in the ammonia reactor. 
It is associated with a High concentration alarm.  

LI267 

BFW level in E-04 boiler. The exchanger produces LPS recovering heat from the 
gas stream leaving the low-temperature CO converter (R-05). The produced steam 
is sent to the urea section. If the level is too low/high, J-130A and J-130S safety 
interlock sequences may start/stop the BFW pumps.  

LIC264 Same as LI267 but no associated alarms. Control function only. 

LI307 

Condensate level in D-01. The drum is a separator placed upstream of the Vetrocoke 
absorption column. From the bottom of D-01, the process condensate leaves the 
section, while the process gas leaves from the top of the separator and approaches 
the absorption column. The process condensate is used to produce demineralized 
water. 
If the level is too low, J-19 interlock logic may stop the process condensate draining. 

LI308 Same as LI307. 
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FI306 

Condensate mass flow rate from D-01 to the quench vessel D-10. The quench vessel 
is placed upstream of D-01 (see LI307) and, inside, the condensate coming from D-
01 is sprayed to cool the process gas stream that enters the decarbonization section. 
The condensate is then collected in the bottom of D-10 and sent again to D-01. If the 
mass flow rate is too low, J-18 interlock logic may start G308A/S quenching pumps. 

LI315 

Level in C-01 Vetrocoke absorber. If the level is too low, J9 interlock logic stops the 
liquid draining, starts the absorption column and methanation reactor trip, and 
drains the liquid from D-02 flash vessel. If the level is too high or J9 has already been 
triggered, J-19 interlock logic may start the Synthesis section trip and send the 
converted process gas to vent. 

LI328 

Level in D-02 flash vessel. It is located between the absorption column and the 
regeneration column. It receives the liquid (𝐶𝑂2 rich) from the bottom of C-01, an 
expansion occurs, and liquid stream partially evaporates. The gas (𝐶𝑂2 rich) leaves 
from the top of D-02, the liquid is sent to the regeneration column C-02.  
If the liquid is too high, J-9 interlock logic may start the liquid draining from D-02 
flash vessel, start the absorption column and methanation reactor trip, and stop the 
liquid draining from C-01 absorption column. 

FI302 
Volumetric flow of the “split” regenerated Vetrocoke solution (i.e. the one that is 
spilt from the bottom of C-02 and enters the top section of C-01). If the flow rate is 
too low, J-7 interlock logic may start the trip of the Vetrocoke pumps. 

FI303 

Volumetric flow of the “main” regenerated Vetrocoke solution (i.e. the one that is 
spilt from the centre of C-02 and enters the central section of C-01). 
If the flow rate is too low, J-7 interlock logic may start the trip of the Vetrocoke 
pumps. 

FI315 Same as FI303. 

FI314 Same as FI302. 

PI319 
Pressure of the 𝐶𝑂2 gas stream leaving the decarbonatization section and 
approaching the 𝐶𝑂2 compressor located in the Urea plant section.  
The instrument is associated with a low-pressure alarm. 

PI320 
Same as PI319 but J25 interlock logic is now associated. Unfortunately, the logic 
acts on the Urea plant; thus, the documentation is not available.  

LI335A 

Level in D-11 separator vessel, it is the absorption column top separator (the 
“clean” process gas stream that leaves from the top of the absorption column 
contains liquid, that must be removed).  If the level is low, J-43 interlock logic may 
stop the liquid draining.  

LI335B Same as LI335B. 

LIC318 

Level in D-12 separator. It is placed after the methanation section and it collects and 
removes the last portion of condensate from the process stream. After D-12 the 
syngas is sent to the compressor P-01.  
The instrument has control purpose and it is associated with a high-level alarm. 

LI319 
Same as LIC318 but it is associated with interlock logics. If the level is too high, J6 
interlock logic starts the trip of Metanator. If the level is too low, J-27 may stop the 
draining of the process condensate. 

PI3400 
Pressure of the syngas entering the first stage of P-01 compressor. A low-pressure 
alarm is present, no safety interlock logics are associated. 

PI3410 
Same as PI3400 but, if the pressure is too low, J-434 interlock logic may start the 
trip of the syngas compressor. 

PI3415 
Pressure of the lubricant serving P-01 compressor. If the pressure is too low, J-432 
may start the pump G432s. 

PI3415B Same as PI3415. 

PI3427 

Pressure of the vapour extracted from FTP-01 steam turbine (it drives the syngas 
compressor). If the pressure is too high, J434 interlock logic starts the trip of the 
compressor. If the pressure is too low, J-422 may start the trip of the P-03 
compressor. 

PI3429A 
Pressure of the MPS extracted from FTP-01 turbine and sent to FTP-03 (it drives 
the air compressor P-03). If the pressure is too low, J-422 interlock logic may start 
the trip of the P-03 compressor. 
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PI3429B Same as PI3429B. 

PDI3408A 

Pressure difference between the P-01 fifth stage outlet (makeup syngas) and the P-
01 sixth stage outlet (recycled syngas). Basically, it measures the pressure 
difference between the two syngas streams that are mixed and sent to the ammonia 
synthesis section. If the pressure difference is too high, J-434 interlock logic may 
start the trip of the syngas compressor. 

PDI3408B Same as PDI3408A. 

PI501 
Pressure of the syngas stream entering the first ammonia synthesis reactor. If the 
pressure is too high, J-28 interlock logic may start the trip of B-02. 

LI585 
BFW level in E-06. It produces HPS recovering heat from the process gas leaving the 
second ammonia reactor. If the level is too low or too high, J-435 interlock logic may 
unload P-01 syngas compressor. 

LI585B Same as LI585. 

LI585C Same as LI585. 

LI503 

Level in the D-03 ammonia separator. It is located after the ammonia cooling section 
where the gas stream leaving the second ammonia reactor is cooled and partially 
condensed. From the top of D-03 the gas (syngas) is recycled back to the 
compressor. From the bottom of D-03 the liquid (mainly ammonia) is sent to the 
expansion section. If the level is too high, J-435 interlock logic may unload P-01 
syngas compressor. 

LI414 

Level in the wash column C-03. In the column, ammonia is used to remove the last 
traces of oxygenated compound from the syngas. The washing column is placed 
between the fourth and the fifth of the syngas compressor. If the level is too high, J-
434 interlock logic may start the trip of the syngas compressor. 

LI415 Same as LI414. 

PI4422 
Pressure of the lubricant serving FTP-02 steam turbine (it drives the ammonia 
compressor P-02). If the pressure is too low, J-439 may stop the ammonia 
compressor.   

PI4431 Same as PI4422. 

PI4432 Same as PI4422. 

PI1570A 
Pressure of the anhydrous ammonia that flows from D-05 flash vessel (the last 
vessel of the expansion section) to the ammonia storage vessel (D-06). If the 
pressure is low, J-758 interlock logic may stop the ammonia pumping. 

PI1570B Same as PI1570A. 

PI1570C Same as PI1570A. 

Table C. 2 - Alarm location 

 

Remark: the expression “J-xxx may stop/start/unload etc.” implies that, usually, the 

interlock logics require more than one condition to be activated. Thus, if just 

one condition is met, it may not be enough to activate the logic. 
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 Table C. 3 - Required and recommended alarm philosophy content (ANSI ISA, 2016) 
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Table C. 4 - Alarm management lifecycle stage inputs and outputs (ANSI ISA, 2016) 
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Table C. 5 - Part of the database used for the TensorFlow simulations 
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