NTNU - Trondheim
Norwegian University of

Science and Technology

Automated routing confiiguration

Marija Gajic¢

Submission date: December 2019
Responsible professor: Finn Arve Aagesen, NTNU IIK
Supervisor: Otto Jonasen Wittner, NTNU IIK

Norwegian University of Science and Technology
Department of Communication Technology and Information Security

Abstract

Nowadays Internet Service Providers are facing increase in usage of
different services and growing number of customers. Network Management
has become very important secondary network functionality. One of the
network management tasks is routing configuration. Traditional IP
networks are required to be dynamic, flexible and react in real time
to the events that might impact its users (e.g. link failure, overload,
flapping etc.). In case of such events, changes in routing configurations
often require manual interaction and adjustments of static link metrics.
This lowers the efficiency of the network management procedures in
terms of utilization of both time and available resources. Work presented
here introduces an Adaptive Network Routing Configuration framework
for OSPF/IS-IS based IP networks. The framework stands on XML
Equivalent Transformation logic applied as reasoning procedure for route
choices. This reasoning procedure is a way towards automatic and
adaptive routing decision making process. One example case scenario
of network enforcing the framework was described and simulated. We
investigated how router “s buffer size and interarrival times of the traffic
flows impact the performance of the framework. Finally, we compared
performance of the framework with the current traditional IP networks
setup.

Keywords: adaptive IP networks, automated routing configuration, IS-
1S, OSPF, XML Equivalent Transformation, reasoning engine.

To my brother, Veljko

Preface

This master thesis was conducted as an introduction to my integrated
Ph.D studies research work.

Hereby I would like to say thank you to my supervisor, professor Finn
Arve Aagesen. Thank you for choosing me to be your Ph.D candidate,
thank you for believing in me, and thank you for all the help and fruitful
discussions we have had during this work.

I would also like to thank to my co-supervisor Otto J. Wittner for his
suggestions, ideas, and for giving me another perspective about things
we were working on. I owe a huge gratitude to Chutiporn Antariya
for explanations and help related to the reasoning machine she created.
Furthermore, I would like to say thanks to Svein Ove Undal from Uninet,
for hints which lead me to the main idea of this project.

Big thanks to my colleges and friends - Poul, Katina, Besmir and Romina
for giving me motivation and making me laugh every day at work.

My deepest gratitude goes to VEGA d.o.o company, its owner and my
friend Stanko Jesi¢ who supported me since my early teenage years. You
have made a huge impact on my life. Thank you for being such a perfect
role model.

Mama i Tata, tako je tesko napisati nesto dostojno Vas. Kada me pitaju
Sta je tajna uspeha, kazem im da nema tajne. Ja sam samo imala srece
da budem Vasa céerka. Vi ste moja tajna, Vi ste moj jedini trik. Ne
postoji jedno hvala dvoljno veliko za to.

At the very end, I would like to dedicate this thesis to my brother, Veljko.
My dearest little one, this is for all the days I was not there with you.

List of Figures

List of Tables

List of Acronyms

1 Introduction
2 Background and Related Work
3 Reasoning Machine
3.1 Policy-based adaptation mechanism
3.2 Datamodel
3.2.1 XML Specialization System
3.22 XML/XET caluses
4 Adaptive Network Routing Configuration
4.1 Query
42 Rules.
4.3 Databasefiles
5 Simulation
6 Results & Discussion
7 Conclusion and Future Work
7.1 Conclusion
7.2 Futurework L.
References
Appendices
A Rules

Contents

xi
xiii

XV

15

............ 15
............ 17
............ 19

21

23

27

............ 27
............ 27

29

31

ix

B Router’s Data Base Files

C Example Answer of the NXET Reasoning Engine

37

41

1.1

3.1

6.1
6.2

6.3

List of Figures

Network topology for case scenario of interest 2
Policy-based adaptation architecture taken from [1] 10
Percentage of flow packets dropped related to traffic interarrival time . 24
Percentage of flow packets dropped related to the router ’s interface buffer

SIZE .. e 25
Percentage of flow packets dropped related to router s interface buffer

size without the application of the Reasoning Machine 26

Xi

3.1

6.1
6.2
6.3

List of Tables

XML expression variable types [2] L oL 13
Percentage of flow packets dropped versus traffic interarrival time . .. 23
Percentage of flow packets dropped versus router “s interface buffer size 25
Percentage of flow packets dropped versus router ‘s interface buffer size

without the application of the Reasoning Machine 26

xiii

List of Acronyms

ECP Equal - Cost MultiPath Routing.

LDM Load Distribution in MPLS.

LSA Link State Advertisment.
MPLS Multiprotocol Label Switching.
NOC Network Operation Center.

PEMS Periodic Multi-Step MPLS traffic engineering technique.

PER Prediction of Effective Reparation.

QoS Quality of Service.

RM Reasoning Machine.

SLA Service Level Agreement.

TAPAS Telematics Architecturefor Play-based Adaptable Service System.

XDD XML Declerative Description.

XET XML Equivalent Transformation.

XV

Introduction

Network management is secondary network functionality consisting of OAM&P -
Operation, Administration, Maintenance and Provisioning of network and services.
Network providers want to provide their services at a satisfactory level most commonly
expressed through Quality of Service(QoS), while keeping the cost required to achieve
this at the optimum level. This comes with many challenges that can be grouped
under the umbrella of FCAPS - Fault management, Configuration management,
Accounting, Performance and Security. Configuration management includes setting
and tuning various network devices. [3] The work presented here is related to routing
configuration management in traditional IP networks. Devices of interests are routers
or Level 3 switches.

Main tasks in routing configuration are configuration of IP addresses, choice
and implementation of routing protocols, and security related challenges. We focus
on routing configuration of the Interior Gateway Routing (IGR) protocols such as
Open Shortest Path First (OSPF) and Intermediate System-Intermediate System
(IS-IS). These are link-state based routing protocols designed to be used within one
autonomous system (AS). Most large IP-networks are functioning with these two
routing protocols. TCP/IP protocol stack is to a high extent succeeding in making
the network robust and reliable. However it does not necessarily provide efficiency.
This means that selected route for one IP packet might not be the optimum one, e.g.
the one with the lowest latency. This is related to traffic engineering. [4]

Nowadays there is strong tension that Internet Service Provides (ISPs) have to
deal with, caused by constant growth of number of users as well as intensive usage of
services such as VoIP or Video on demand. In order to deal with high competition
while keeping the QoS level conformed with offered Service Level Agreements (SLAs)
ISPs have to introduce efficient traffic engineering methods instead of using only
the "best-effort" approach. Traffic engineering aims for better utilization of network
resources. Work presented here focuses on one of the techniques for traffic engineering
which includes adaptation of routing configuration. In link state based routing

2 1. INTRODUCTION

protocols path selection is governed by link weights/"cost". Link weight is a metric
used to indicate to what extent one route should be preferred over its alternatives.
For example, routes with higher capacity will normally have lower weights and are
as such more often selected as best path.

Despite various traffic engineering techniques available, doing this in real time
still remains a big challenge. Networks are very dynamic and complex, and in order
for provided services to fulfill SLA requirements network should immediately react
to the changes in topology. Very often, this requires manual changes in configuration
files.

Let s consider one specific network autonomous system, presented in Figure
1.1. Network topology shown is very similar to UNINETT core network with few
additional nodes and links. Purpose of added links is to have more available node-to-
node connections and alternative paths for router to choose among. IS-IS routing
protocol is used. Topology consists of 7 routers and links between them. Node
oslo__qwl is connected to the Internet. Only three links have 100 Gb/s capacity
(marked in the figure), the rest are 10 Gb/s. Weight on the three links with higher
capacity are smaller than for 10 Gb/s links. Thus, if customers connected to node
trd__gwl want to send a lot of traffic to the Internet, they will by default use the 100
Gb/s direct link to oslo__gwl.

stolay_gwi wrd_hovedbygget_gw

100Ch/ s]

100Ch/s

Figure 1.1: Network topology for case scenario of interest

What happens when link number 1 gets broken or is flapping i.e. has significant
percentage of packet loss due to cable instability or damage? The traffic is re-routed
to alternative path. Based on the routing table, the best alternative is the one with
shortest path, via trd_gw?2. This path consists of two links: link number 2 and link

number 3 (see Figure 1.1 for link numbers). Routing protocols immediately react
to changes in topology and network continuous to function as desired. However,
if utilization of the link 1 at the point of breakage was higher than 10%, a link
overload at link 2 will occur. This happens because alternative link has 10 times less
capacity than the main one. Packets are being buffered on the interface, causing
delay or significant package loss when the buffer gets full. In order to prevent this,
the engineers managing the network have to do traffic engineering by manually
altering the values of link weights. Weights are manipulated in such a way that load
distribution is achieved, resulting in prevention or decrease in number of packets lost.

Manual intervention requires the engineers to have detailed overview and knowl-
edge about the network and to work under time pressure. Network provider needs to
ensure human resources as well as coverage for cost of possible SLA requirements
deviations. It would be much better if providers could replace these manual recon-
figurations with a framework that is capable of achieving nearly the same result
but autonomously and efficiently. The ultimate goal is to have an adaptable service
system which by definition in [5] is a service system capable of dynamically adapta-
tion to changes related to users, nodes, status of capability and service performance
measures, changed service requirements and policies. This is where we center our
research around.

In order to replace manual link weights configuration on which forwarding decisions
are based, the new framework needs to have knowledge about network topology
obtained through routing table. It can thus be ran as a software architecture on top
of the existing router operating system. Furthermore, while doing reasoning it has
to be capable of choosing the correct optimal alternative path. Work presented in
this thesis is about an Adaptive Network Routing Configuration framework which
is supposed to encapsulate and provide all this functionalities. The framework is
governed by a Reasoning Machine based on XET (XML Equivalent Transformation)
policy - driven reasoning engine, with the goal of reducing human interaction and
provider ‘s costs related to amount of packets lost due to previously described link
overload scenarios.

Several research questions are being addressed. Is it possible to implement such
a framework and how would it look like? What data is required as an input to the
framework so that it can fulfill the automated routing configuration tasks? How the
framework would preform, more precisely how the traffic intensity and size of the
router “s buffer impact the amount of packets lost? Lastly, we tackle on how does
this framework s performance compare to the network scenario without application
of the reasoning machine.

4 1. INTRODUCTION

The rest of the sections are organized as follows; Section 2 is about background
and related work where the reasoning machine was developed and applied. Section
3 describes how the reasoning machine is functioning. Section 4 describes how the
reasoning machine can be used as a part of Adaptive Network Routing Configuration
framework. Section 5 is about how it was implemented and tested in simulation,
Section 6 presents results of the simulation. Finally, Section 7 centers about results,

conclusion, and future research work.

Background and Related Work

Routing protocols of interest are link - state based IGRPs such as IS-IS and OSPF,
and these are not fully dynamic. This means that they are not capable of real-time
adaptation to all kinds of different events since the link weights which serve as basics
for routing table formation are static. Link cost is specified and kept static for a
long period of time meaning that traffic is always forwarded via one, same path.
Furthermore these types of protocol do not have any knowledge about performance
objectives. Also, routers only have overview of their neighbors” link states, and not
having a centralized approach makes it challenging to do the optimal end-to-end
traffic engineering.

One would argue that one of the obvious way to do traffic engineering is to
replace the traditional network setup with Software Defined Networks (SDN). In
SDN control plane and data plane is decoupled, and control plane is where all the
network intelligence is centered. Control plane is responsible for making forwarding
decisions, while data plane only executes the commands. Centralized SDN network
controller enables efficient network management and provisioning including traffic
engineering solutions. Some of the possible techniques and their advantages have been
discussed in [6]. However, majority of networks nowadays are traditional IP based
networks and switching to SDN would require a change in complete architecture
which even if possible and applicable to the specific scenario, would this bring a lot of
cost. Focus is therefore kept on TE in traditional IP networks, more specifically on
state dependant methods where traffic is manipulated depending on different metrics
reflecting the network state at the moment of calculation. We aim for reducing the
packet loss in peak hours by routing this traffic as per metrics stored in configuration
of the applied routing mechanism. [7]

One of the basic techniques for traffic engineering in OSPF /IS-IS based networks
is Equal - Cost MultiPath Routing (ECP), where router has several next-hop stations
for given destination and must then choose one of them based on a certain method.[8]
Most nowadays methods applying hashing approach to select the best route among

6 2. BACKGROUND AND RELATED WORK

all the available ones. Hashing is a stateless approach to traffic engineering which
distributes the traffic with the usage of hash function. A hash function is commonly
enforced on a subset of five elements - source and destination addresses, ports and
protocol ID. Computation is efficient and straightforward. It enables flow based
distribution of traffic load but this distribution is always done evenly. Furthermore,
hashing based approach does not manage and update the state of the network
which consequently makes dynamic traffic engineering impossible. [9] If 16-bit CRC
(Cyclic Redundant Checksum) is used for hashing calculations network becomes
less imbalanced compared to classical hashing, but this comes with a cost of high
computational complexity. In addition to complexity, problems with packets from
one flow arriving with different delay times and being re-ordered is a non-trivial
challenging issue for ISPs.[7]

Apart from hashing, several different techniques for traffic engineering based on
packet loss and delay have been developed. In [10] a technique based on Multiprotocol
Label Switching (MPLS) called Periodic Multi-Step (PEMS) was introduced. MPLS
solutions are efficient because forwarding decisions do not require unpacking the
packet up to network headers layer. Only the MPLS label is checked which results
in scalable mechanism. PEMS has three phases, path selection, allocation, and
dynamic adaptation of the metrics based on the network state. In the first phase all
available paths are fetched for each source-and-destination pairs. Upon traffic arrival,
Prediction of Effective Reparation (PER) is used to select one Label Switched Path
(LSP) which will be allocated for the current packet. PER is an advanced type of
Load Distribution in MPLS (LDM) network which takes into account path capacity
of the available path and distributes the traffic optimally using the formula that
includes number of hops, bandwidth and number of paths currently allocated to the
existing traffic in the network. Third phase of PEMS is dynamic adaptation of the
distribution coefficient according to the change in state of important elements in
network topology. PEMS enables differentiated services (DiffServ) and was proved
to be scalable in terms of number of nodes in the network but it requires MPLS as
an additional construct introduced to the basic IP network.

According to the survey paper done by Singh et al. [7], most popular techniques
for IP traffic engineering either include MPLS or hashing. However these techniques
have some drawbacks mentioned above (complexity, per packet calculations, no
dynamism, re-ordered packet arrival, even distribution of traffic only etc.). There
exists another approach introduced by Fortz et al. in [4] where OSPF based network is
monitoring traffic pattern and then changing the weights accordingly. A "centralized"
approach was introduced. Topology and packets circulating within the network
are being monitored, and the link weights are adjusted accordingly to achieve the
specific goal for provided services. They have built so called "Traffic Engineering
Framework", which is applied on the top of operational network. In order to change

link weights and make routing decisions it requires Network Operation Center (NOC)
for acquiring the information about network topology and traffic statistics. The
framework proposes usage of an intermediate construct (for example Simple Network
Management Protocol - SNMP) for polling or getting the data via traps. These
traffic demands are then taken as an input to routing model, which will compute
possible paths and set the link weights accordingly. Decisions can be made by several
different approaches: link weight proportional to link capacity, physical distance,
being random, optimized to traffic conditions etc. The authors concluded that is is
not possible to find an algorithm that is guaranteed to be both fast and produce
close to optimal weight settings. With this heuristic approach defining and meeting
SLA requirements comes as a big challenge for ISP.

Our goal is to develop a new framework which would eliminate the mentioned
drawbacks of existing traffic engineering techniques. In order to create adaptable
network for case scenario and similar challenges described in Section 1 the framework
should be operating dynamically, per flow, with uneven traffic distribution based
on the routing metrics of link. Our framework is similar to Fortz et al. approach
explained previously, but without the need for NOC or SNMP, thus based exclusively
on data from routing tables. One way to achieve that is by using the data and
applying a Reasoning Machine (RM) which enables policy based specification and
operation of traffic engineering. The reasoning machine used is based on XML
Equivalent Transformation - declarative programming language for manipulation of
XDD (XML Declarative Description) expressions as introduced in [2]. While details
of the Reasoning Machine functioning and adaptation will follow in next section,
this approach found its application many different scenarios. It was used in three
doctoral thesis for different purposes: For example, in [11] and [12] it was a part
of capability-related adaptation framework for TAPAS - Telematics Architecture
for Play-based Adaptable Service Systems. TAPAS is a service execution platform
and prototype for adaptable service system supporting capability-, functionality-,
and concept-related adaptation of services. In [13] it was used for home energy
management system for electricity cost savings and comfort preservation and creation
of SMASH - SiMulated Adaptable Smart Home (an environment for case-based
simulations from users perspective in power systems).

Reasoning Machine

Main artifact of this work is policy-based framework which enables adaptable routing
configuration of OSPF/IS-IS based routing in traditional IP networks. This architec-
ture consists of the network as such, policy-based adaptation mechanism and data
model. Shortly, it is about applying already existing concepts of reasoning machine
to specific adaptive network routing configuration scenario.

3.1 Policy-based adaptation mechanism

Adaptation mechanism embodies a Reasoning Machine (RM) responsible for making
automated forwarding decisions. Decision making process is based on the data
from routing table and traffic statistics serving as an input. End result is RM
being capable of dynamical adaptation of routing configuration and changing the
original routing protocol ‘s best path choice. The RM to be used was in its original
format first introduced in [1], and we will apply the same logic and data model -
XML Equivalent Transformation (XET) rule based language that stands on XML
Declarative Descripiton (XDD) expressions.

As defined in [1], RM R can be described as follows:

R={Q,F,P,T,E, 5} (3.1)

P={X, A} (3.2)
where :

— @ is the set of query&reply messages exchanged between the managed system
and the reasoning engine,

— F' is a generic reasoning procedure,

10 3. REASONING MACHINE

— P is a policy system which consists of set of rules X and set of actions A ,
— T is a set of system constraints,

F is a set of status data and

— X is a set of reasoning conditions.

Status data represent current values of the variables of interest while system
constraints are restraints and relationships between variables. Policy system is based
on system constraints. X is a set of reasoning conditions that consists of trigger
condition and goal condition. RM begins execution when trigger condition is matched
end end when goal condition is achieved. These connections and relations between
these elements is shown in Figure 3.1. Service System Adaption Manager takes Rules,
Actions, System constraints and Status data as inputs required to make decision
about the action to be applied on the associated Managed Service System.

Rules Actions
X A
v v
T - Service System A Ae A ~ Managed —
System constraints =~ Adaptation Manager Control inputs Service System
A
£
Status data

Figure 3.1: Policy-based adaptation architecture taken from [1]

Now, all concepts described have to be adjusted and mapped to routing configu-
ration case. It is easier to imagine and explain them if we think about one specific
scenario, for example the one explained in Figure 1.1. If we are to prevent link
overload on the link which has 10 times less link capacity than the original broken
link, RM needs to achieve that would function as follows:

— @ can be thought of a set of query&reply messages, where a query is an XDD
formatted file (details will follow) consisting of flow related information such as
source and destination address and an unresolved variable representing best
path for that variable. Response message should then return the same document
with instantiated values for the best path, consisting of a forwarding decision
about to which interface to forward the current flow. It is per flow processing
for two reasons: 1. less delay and computations then in per-packet approach
and 2. prevents packets travelling different routes and arriving re-ordered to
the destination,

3.2. DATA MODEL 11

— F in our case is a process of determining the best route based on the data
from routing table,

— P as our policy system is constituted by rules and actions are also written in
XDD. Every rule comprises of rule "HEAD" and "BODY" atoms which will be
further explained later on in this chapter,

— T is a set of system constraints such as maximum size of the interface output
buffer on each interface in the router,

— FE as set of status data in our case is for example a routing table data and
current interface output buffer size,

— X when it comes to conditions, trigger condition can be arrival of the flow s
first packet, while goal condition and end of the execution is reached when the
best route for the flow currently being processed is determined.

We will start with explaining the Reasoning Procedure F' which is similar to
logic programming. Reasoning Procedure requires at least two input files, one is file
with rules and another one is file with the query clause. Both rules and queries have
"HEAD" and "BODY", and body of the query is matched against the head of each
rule. If these are matched, rule execution continues. The principle applied here is
XET, where problem is transformed through repetitive applications of equivalent
transformation rules.

Policy rules and specification is enforced through Equivalent Transformation rules
and clauses. Problem must be formulated as a query clause that allows for further
transformation. An ET clause has the form:

Head atom ¢ Body atomy, ... Body aton/ln

Head Bodv

Head or head atom has a message that incorporates a problem which requires an
answer or action. This problem will be equivalently transformed by matched rules”
body atom(s) until it eventually contains an answer to the initial problem. Policies
for routing decision making procedure are defined as XET rules. They are therefore
easy to manipulate and change if needed.

3.2 Data model

As mentioned previously, data model used by the RM is XET rule based language.
XML Equivalent Transformation is a tool which one can use to model and run
application rules and logic, data, queries and requests. [2] These components are
represented in XML Declarative Description (XDD).

12 3. REASONING MACHINE

XDD is XML based data modelling language that allows for precise and formal
representation of all the required concepts. It is a language with two constituents:
words and sentences. XML elements are words and can be explicit/implicit, simple
or complex, while XML clauses are sentences used to depict conditional relationships
or constraints between them. The biggest advantage of XDD compared to basic
XML or RDF (Resource Description Format) is in increased expressive power of
relationship between XML expressions which include symmetry, composition-of and
inverse. [14] This section handles XML expressions “structure defined abstractly with
XML Specialization System and syntax of XDD clauses.

3.2.1 XML Specialization System

The difference between XML elements and expressions is that expression can carry
variables representing implicit information and thus have enriched expressive power.
XML expression can be ground - basic XML element without variables or non-ground
meaning that they carry variables. Similar to XML elements, expressions also have
tag names, attributes and their associated values, and main contents which can
carry variables. All well defined types of variables and their representations are
shown in Table 3.1. We have N-, S-, P-, E-, I- and Z- variables representing basic
XML element name, String variable, zero or more attribute-value pairs, variable
consisting of zero or more XML expression, parts of XML expressions and sets of
XML expressions respectively. Each variable type begins with "$" sign and has a
generic form of (v,w) where v is the name of the variable and w is its value. In
this work we will focus only on two variables types from the table: S-variables and
E-variables. The first is a simple implicit representation of a variable which can be
replaced by a String, for example S-variable $Svar__name in the following XML
expression:

<name>$Svar_name</name>
can be replaced with
<name>0la</name>

since "Ola" is a String. FE-variables are constructed type of variables consisting of
zero, one or more XML expressions. For example S-variable $Svar__person in the
following XML expression:

<person>$Evar_person</person>
can be specialized with for example two ground XML expressions:

<person>
<name>0la</name>
<surname>Nordmann</surname>
</person>

3.2. DATA MODEL 13

These two variable types will play the key role for definition of rules and queries
in the reasoning machine for routing configuration adaptation.

Table 3.1: XML expression variable types [2]

Variable Names

Variable Type Beginning with Instantiation to

N-variables: Name-variables $N Element types or attribute names

S-variables: String-variables $S Strings

P-variables: Attribute-value-pair-variables $P Sequences of zero or more attribute-
value pairs

E-variables: XML-expression-variables $E Sequences of zero or more XML
expressions

I-variables: Intermediate-expression-variables $1 Parts of XML expressions

Z-variables: Set-variables $Z Sets of XML expressions

3.2.2 XML/XET caluses

XML clauses are ground for ET clause and have identical formulation. As described
before, clauses represent implicit and conditional relationship where each clause is of
the form

H < By, Bs,..., B, (3.3)

where H is the head XML expression, and By, Bs, ..., B,, are body atoms. When
n = 0 we have unit-clause written simply as H. If we re-write the clause from 3.3
with XDD syntax, we get an XET/XDD clause shown in 3.1. XML representation of
clause is equivalently transformed until all the body atoms are resolved.

Listing 3.1: XET/XDD clause

<xet:Clause>
<xet:Head>...</xet:Head>
<xet :Body>
Body atoml, Body atom 2,
</xet:Body>
</xet:Clause>

How do XML clauses work with ET rule and reasoning procedure? As seen from
equation 3.1 we need a set of messages between the system and a reasoning machine
which is modeled as an XML clause looks :

msg(...) < msg(...) (3.4)

Relating it to XET rule and XDD clause, this is is an axiom interpreted as: head
of the message is true if body of the message is true. Reasoning procedure will be
transforming the head of the message clause until there are no body atoms left.[1]

14 3. REASONING MACHINE

If we make now another example, where a set of conditions C' that have to be
fulfilled in order for the statement to be true, it looks as follow:

msg(...),C < By, Ba, ..., B, (3.5)

then the rule will transform original msg(...) into n body atoms but only in the case
when conditions are fullfiled. The action is recursive; once a body atom is matched
with head of the rule it is further transformed into the transformation rule’s body
atoms. This means that each of the body atoms becomes a head of new sub-clause
and it continuous with transformation through another existing rule with whose head
it matches. Transformation may include a set of different actions and the process
ends when there are no more body atoms or where there is no rule to be matched
with the remaining body atom(s).

Adaptive Network Routing
Configuration

This section is about designing query and rule file for network routing configuration
scenario. Reasoning Engine that implements described reasoning procedure and
matches the query against the rules is contained in Java code called NxET reasoning
engine. Full implementation details are described explained in technical report [15].
It takes query and rule files as an input and does complete XET.

Policy based framework is to be enforced within routers in network of interest.
We assume that our router has the knowledge of network topology, data from routing
table and OSPF Link State Advertisement (LSA) (or similarly Link State PDUs
in IS-IS). All these data has specific format which will be shown and discussed in
Section 4.3. Even though in practice routers in traditional IP network can only see
its neighbors link, only one XML file is required to represent the whole network
topology and provide topology overview for the reasoning machine. Trigger condition
for activation of reasoning procedure is flow packets arrival. Packets are part of the
flow, and forwarding decision is done per flow and not per packet for two reasons,
first one is that TCP requires packet to arrive to the destination in right order and
the second is time/delay it would take to do the reasoning for every packet. Goal
condition is known route for the arrived packet. Messages exchanged with the RM
are query&reply, and reply is based on the XET processing of the query clause and
rules. Head of the each defined rule is matched against body of the query atoms.

4.1 Query

Query clause is specific type of a XET clause, because of two reasons. Its head
specifies how the reply should look like using XML expressions carrying variables,
and it has only one body atom to be matched against the set of rules.

Upon arrival of the first packet in the flow trigger condition is met and new query
clause is created. Router should be able to fetch information needed to forward the

15

16 4. ADAPTIVE NETWORK ROUTING CONFIGURATION

table such as source and destination addresses. These two pieces of data are used
and sent in a query which has the following format:

Listing 4.1: Query message sent from managed system-network router to the RM

<xet:XET xmlns:xet="http://xet.sf.net" xmlns:rdf="RDF">
<xet:Query>
<xet:Clause>
<xet:Head>
<Request>
<from>Svar_from</from>
<to>Svar_to</to>
<utilization maxvalue=Svar_utilization/>
<route sum="Svar_sum" nodecrossed="Svar_crossed">
Evar_result
</route>
<best>
Evar_best
</best>
</Request>
</xet:Head>
<xet:Body>
<Request>
<from>trd_gwil</from>
<to>oslo_gwl</to>
<utilization maxvalue="80" />
<route sum="Svar_sum" nodecrossed="trd_gwl">
Evar_result
</route>
<best>
Evar_best
</best>
</Request>
</xet:Body>
</xet:Clause>
</xet:Query>
</xet:XET>

From Listing 4.1 we see that query clause consists of one head and one body atom.
Namespace for these is xet indicating that this is XET clause. Body of the query has
the same skeleton as the head, but instantiated with some concrete values for one
specific packet flow. Head atom has only one XML expression named <Request>
which is structured and non-ground since it carries variable. Expressions <from>
and <to> carry one S-variable each, representing the name of their originating and
destination nodes. Expression named <utilization> is optional, but can be used
to select a maximum value of the link utilization allowed - Svar utilization. For

4.2. RULES 17

example, if one link has its utilization value higher than defined acceptable value
(e.g. 90%) utilization then we do not want to send packets on that link.

Expression <route> is an auxiliary expression which containing an F-variable
Evar__result which will during the execution of XET be instantiated in such a way
that it will represent all the possible routes between from and to nodes. It has two
attributes, sum and nodecrossed. Sum will be instantiated to the value equal to the
lowest cost among all available routes and nodecrossed is there just to help XET
know which next node has already been visited when determine the possible paths.
Variable of interest and is Evar best, contained in expression <best>. This one will
contain the best route chosen among all the possible routes contained in Evar_result.

Body of the query instantiates all these variables in such way that it represents a
packet coming from node called "trd_gwl" and aiming to reach node "oslo_ gw1",
using only link whose ultization is less then specified acceptable maximum. The first
nodecrossed is the origin. After being transformed and matched against the XET
rules, variable Evar_ best will contain the answer about the best route, provided by
the reasoning procedure. This will be contained in a reply message sent from RM to
the node forwarding the arrived packet.

4.2 Rules

In order for XET transformations to lead us to the best alternative route, set of
rules is needed. NxET reasoning engine supports two types of rules, N- and D- rules.
N-rule is a declarative description of a problem where the sequence of Equivalent
Transformation executions does not matter - the final result is the same no matter
the order of resolving the body atoms in each rule. This gives a lot of flexibility, and
is close to human language specification of the static policies to be applied.

Our set of rules consists of three rules, these are "AllOklinks","Set" and "RuleMIni-
mum" as shown in listing A. All rules are of a type N-rule, meaning that order of the
Body atoms specification does not affect the final result, but we will discuss them in
the order in which they are written for the sake of easier explanation. First two rules
together are responsible for creating a set consisting of all possible paths between
<to> and <from> nodes of currently processed packet. Third rule is responsible for
choosing one best path from the result of the execution of XET of the first two rules.

How is then query clause matched against this set of rules? As explained in
previous chapter, body of our query from listing 4.1 is matched against the set of
rules, more precisely heads of the rules. Head of the rule "Set" is successfully matched
with the body of our query, and that is the only rule in our set of rules that has
the initial match. Execution starts from there, but we will first explain the rule

18 4. ADAPTIVE NETWORK ROUTING CONFIGURATION

"AllOkLinks" because functioning of that rule is required for understanding the "Set"
rule.

Rule "AllOklinks" is a rule which returns all possible routes between <from>
and <to> nodes that fullfil the conditions specified. Condition for a route to be
returned is that state of the link is "ok" and the utilization of that link to be less
than a maximum specified value. Querying the router is done through NxET built-in
function called xfn:FactQuery. FactQuery queries the router ’s data base to get the
links that are up and not overloaded above the percentage specified as attribute
"maxvalue" inside <utilization>. Router s data base contains two files as data sources
- ds://ALL-ROUTES and ds://UTILIZATION all XML files. The first file has a
list of all links in the network topology, and related data (such as IP addresses,
interface names etc.) while the second file keeps data related to utilization of this
links. Appendix 4.1 contains example files for scenario presented in Figure 1.1.

There are two basic cases that has to be distinguished when looking for the
possible routes. The first one is when we have a direct link between the two nodes,
and the second one is when routes have 1 or more intermediates. That is why
this rule has two body atoms. For direct link between the source and destination
nodes, application of this rule sounds straight forward. In data base file definition of
<LINK> you are searching for the links whose attributes nodel/2 have the same
value as Svar_ from/Svar_to. Once you find it you save data related to that direct
link as one answer to the query.

If the link is indirect, every neighbor of the originating node becomes new <to>
element and again its neighbors are considered and checked if one of them is the
original Svar_ from, from the query clause. If yes the route is added to the answer
and this node is added to the String list of node crossed in order to avoid looping.
All intermediate links of one path are join in one XML expression which becomes
one answer to the query. This is done with the built-in function xfn:MatchD which
is used for instantiation of E-variables. Namespace :xfn is connected to all the core
functions of the reasoning engine. For example, a path from node node trd_ gwl to
oslo_gwl via nodes R1 and R2 will start from the link trd_gwl-R2. Then E_ var
routeok will through xfn:MatchD become representation of that link, and then when
links R2-R1 and R1-oslo_gwl are traversed they will be added as ground expressions
to the E-variable. That is how the first rule ET is executed.

As said before, rule number 2 is the one whose head matches the body of the
query. By rules of ET, next step after the match is resolving body atoms of the rule
"Set". There is only one body atom from this rule, but it has two parts. The first body
part starts with XML expression named xfn:SetOf which is NxET reasoning machine
built in function. XFN function SetOf merges all answers from rule "AllOkLinks"

4.3. DATA BASE FILES 19

into one answer. It has a Condition for becoming the member of the set, which
then becomes a new body atom. As seen from the rule file, condition for this set is
basically equal to the head of the rule "AllOkLinks" . The first rule is then executed
returning resolved body atoms as separate answers. Every new answer becomes a
new clause and in case there are further rules that are matching we get a lot of
branching. SetOf will join all answers in one, making only one potential close for
further transformation. Not only that, having the routs and their cost in one answer
make it possible and easier to compare the routes.

After xfn:SetOf of the "Set" rule, the body atom is not yet fully resolved, it has
an XML expression called "FindMinimum". As the name says, the aim of this part
id to find the path with the minimum cost/weight given the network conditions form
the input files. This part of the body atom will tried to be matched against our
rules set. The rule that matches it is "RuleMinimum'. This rule will instantiate the
FE-variable Evar_best with the path which has the smallest cost value from all the
available paths contained in the Set obtained after execution of the "Set" rule.

Since it is declarative description of code execution, the rule to choose path with
minimum cost is quiet complex and long. In object oriented programming it could
take just one function or one for loop. Here however we have to distinguish three
cases, having zero available paths between <to> and <from> node, or having one
path, two path or having more paths. To support these three alternatives the rule has
three body atom. The first one is when there is no available path between the nodes.
In that case Evar_best remains unresolved while the value for the cost is assigned
high value, for example 10000 because that one is hardly reached since metrics values
are usually around 10. If there is only one path, then that one automatically becomes
Evar_ best and minimum cost is equal to the cost of that path. If there are two, then
these two are compared and the Evar_best becomes more than one, then they are
compared and the one with lower cost becomes the insantiation of the best path.
If there are three or more, then recursion is needed. Last two paths are taken and
processed by body for only two paths available, result is compared with the rest of
the paths and so until until all body atoms have been traversed and resolved.

Final result to the query is sent back to the router, in the same format as head of
the body, but with an instantiated values for <best> XML expression in the query.
Example of the answer clause is shown in Appendix C.

4.3 Data base files

It is required from the node/router executing the reasoning procedure to have two
files - ALL LINKS and UTILIZATION as data input to the engine. Example files for
our case scenario network are shown in Appendix B. Both files are of course XML

20 4. ADAPTIVE NETWORK ROUTING CONFIGURATION

files, the first file contains list of all links available in the network. Every link is in
the file represented as shown in Listing 4.2. Data required is very similar to routing
table data of link-state based protocols such as OSPF/IS-IS. We have name of the
two nodes, IP addresses, and interface names(e.g. interface GigabitEthernet 1/0 is
shortly g1/0), as well as metric from routing configuration. Data for our specific
network case scenario was made up and the values are chosen arbitrarily.

Listing 4.2: Required format of the LINK entry in ALL-LINKS file in router s
data base

<LINK nodel="Svar_valuel" intl="Svar_value2" ipl="Svar_value3"
node2="Svar_value4" int2="Svar_valueb" ip2="Svar_value6"
metric="Svar_value7" />

The second file, UTILIZATION just adds utilization value of each link so the
entry there becomes as shown in Listing 4.3. The IP value of one of the link ends
is the cross-reference between the two data base files, so for simplicity of rule files
two entries are required for each link. State of the link can have two values, "ok" or
"down", and rules will not take into account links that are down basing the choice
on the value of this state attribute. Utilization represents current value of the link
utilization which if higher than maximum specified utilization value will also lead to
link been discarded from list of all possible links.

Listing 4.3: Required format of the LINK entry in UTILIZATION file in router s
data base

<LINK ipl="Svar_value3" state="ok/down" utilization="Svar_utilization"/>
<LINK ipl="Svar_value6" state="ok/down" utilization="Svar_utilization"/>

Simulation

Application scenario considered was presented in Figure 1.1. The services of interest
are Voice Over IP (VoIP) services — e.g. Viber, Skype, Whats-up voice calls only.
We focus on one part of the traffic in this network, and that is a traffic between all
the users connected to node “trd__gwl” making their calls over the Internet via node
“oslo__gw1”. This example case scenario can then be generalized to other traffic cases.
So, traffic data will be originating from main Trondheim node, targeting Oslo as
destination.

In order to simulate the example case scenario, Java application has been written
and ran on top of the NxET reasoning engine. All data explained previously is
required for proper functioning of the simulated framework. We opted for time-driven
simulation. It has a disadvantage of using real time, but in our case it was a good
choice for several reasons. Firstly, our simulation environment has to be written in
Java for the sake of enabling interoperability with NXxET reasoning engine which is
also described in Java. The best approach would be to have event-based simulator in
Java. The initial intention was to use Java for DEMOS library which unfortunately
is not available anymore since the project was shut down. Essential construct for
the event-based simulation is event list handler. After searching for the one that
could fit our research questions well, we figured out that no such exists and new
Java based event list handler would have to be programmed. That as such requires
high effort which would exceed the time limit. Furthermore, our scenario of interest
when 10Gb/s link gets overloaded only happens for a in a short interval of peak-hour
traffic. That is why time-based simulation was selected.

There are three basic constructs of our simulation: application for packet gen-
eration, application for packet processing (deciding on which interface to send the
packet), and packet sending (sending out the packet on the interface). These three
constructs are implemented as synchronized thread objects, started at the same point
in time.

21

22 5. SIMULATION

Packet generator generates the flow packets following Poisson distribution, mean-
ing with negatively exponentially distributed (n.e.d) interarrival times. We will vary
the intensity in order to see how it impacts the percentage of packets loss. In addition,
we will vary the the size of the interface output buffer with the same purpose. Source
and destination for flow packets will be “trd__gw1” and “oslo_gw1” respectively.
Flow size is assumed to be 1400 kB, meaning that each flow has 7 packets of 200 kB
which according to [16] is the average size of one VoIP packet. Packet generator will
therefore create flows of packets following n.e.d with varied intensity and send them
to router s input buffer queue from where packet processor takes over.

Packet processor is using Java class BlockingQueue for router s input and inter-
faces” output queues. BlockingQueue is used because its implementation is done
in such a way that it does not require any thread synchronization. Once packets
are in the input buffer of the router “trd_gwl”, the NxET reasoning engine will
be activated and fetch the interface name on which it is supposed to forward the
packet. For every flow, a query message will be sent to the reasoning machine, and
the interface would be read from response after all the rules body atoms are resolved.
Targeted interface will be contained in the first element of the E-variable $Evar_best.
Once the interface is identified, packet will be put into output buffer queue of the
interface and will wait to be sent on the link. In order to quickly reach rare event
condition - full output buffer, we chose low values for output buffer 's capacity. When
the interface is chosen, the application will check the current size of its output buffer.
Trigger condition for activation of the reasoning machine happens when that value is
higher than specified maximum allowed value for buffer usage. For example, if we
chose 90% once the buffer capacity is 90% occupied, the application will consider the
link connected to that interface as overloaded. Reasoning procedure will be invoked
again and again until it finds the link with lower utilization.

Flow packets residing in the interfaces” output buffers are further processed by
the packet sender which will put the packets on the link and forward them to the
next node. This happens with a transmission delay equal to the quotient between
flow size and link capacity. Since our links are 100 and 10 Gbps, again for simulation
purposes we chose links with lower capacities in order to reach full output buffer.
After delay time expires packet is removed from the queue.

In the case where there is no interface available with buffer occupation being
less than 90%, the last chosen interface will be selected again. Once its buffer gets
full, packets will be dropped. Main goal of the simulation is to see the impact of
intensity and buffer size variations on percentage of packets dropped, as well as to
try to compare it to network without the reasoning machine. Results will follow in
the next section.

Results & Discussion

First part of simulation had the goal to check the impact of the intensity of flow
arrivals on the percentage of packets lost. For the sake of getting many runs of
our time based simulation, simulation was run for 100s, in 20 repetitions. Intensity
was varied from having 1 packet every 20ms, to 1 packet flow every 100ms having 8
steps with 10ms increment in between. Buffer size was limited to 20 flows (224 000)
bits, and was kept fixed trough out this part of the simulation. Average values of
percentage of flow packets lost are shown in Table 6.1 and Figure 6.1. Maximum
deviation for the percentage loss was less then 5% of the value of percentage of
packets dropped.

Table 6.1: Percentage of flow packets dropped versus traffic interarrival time

Interarrival time [ms] | Percentage of flow packets dropped
20 3.09 %
30 2.79 %
30 2.72 %
40 2.49 %
50 2.33 %
60 218 %
70 2.08 %
80 1.53 %
90 1.39 %
100 1.06 %

23

24 6. RESULTS & DISCUSSION

Percentage of flow packets dropped related to the interarrival
times

3,50

3,00

N
w
=)

2,00

% of flow packet loss
e
° »
s S

o
w
o

o
o
S

0 20 40 60 80 100 120
Interarrival time [ms]

Figure 6.1: Percentage of flow packets dropped related to traffic interarrival time

From both the table and the graph we can see that the percentage of packet
loss is decreasing with the increase in interarrival time. The whole system can be
described as two M/M/1 queues, where the first server is Packet Processor and the
second server is Packet Sender. Thus, having less requests arriving to the queue and
being processed would result in less flow drop. During the simulation, we could see
that the reasoning machine correctly made all the decisions about what is the best
path. The path with the minimum sum of link weights was always chosen correctly,
and in case there were several the first one on the list was selected. This showed that
it is practically possible to implement the adaptive network routing configuration
framework working in a described way.

The same scenario was also tested without reasoning machine, but since our
chosen buffer size was chosen to be extremely small we ended with a huge amount
of flow items being dropped (more than 1/3 of generated flows). It is thus hard
to create a time based simulation which would fit both scenarios. This is because
for the simulation of the reasoning engine application we have to use small, quickly
full buffers of all links that can lead from trd_ gw1 to oslo_gw1 while for the case
without reasoning machine we need a buffer big enough not to drop a lot of flows in
chosen alternative link.

We quickly figured out that buffer size plays an important role in the percentage
of packets loss. Thus, in next rounds of simulation we also used 1.5 minutes long
simulation where we kept the intensity value constant - 1 flow every 100ms. We
varied buffer size from being able to contain 50 flows up until 250 flows, having 3
intermediate steps with increment of 50 flows.

25

Flow size was also kept constant at the value of 1400 kB. Average values of
percentage of flow packets lost are shown in Table 6.2 and Figure 6.2. Maximum
deviation for the percentage loss in 20 simulation repetitions was less then 10% of
the value of percentage of packets dropped.

Table 6.2: Percentage of flow packets dropped versus router “s interface buffer size

Buffer size [number of flows] | Percentage of flow packets dropped
50 9.368770764 %
100 4.711425206 %
150 2.975557917 %
200 3.676078849 %
250 1.003344482 %
500 0%

Percentage of flow packets dropped related to size of the
interface’s buffer

% of flow packet loss
«

0 100 200 300 400 500 600

Buffer size [number of flows]

Figure 6.2: Percentage of flow packets dropped related to the router’s interface
buffer size

As expected, increasing the interfaces “output buffers sizes resulted in decrease of
flow packets drop. Our buffer size represents maximum size of the queue in M/M/1
process and increase here causes less requests to be dropped.There is however an
exception in the decreasing trend, when the buffer size is 200 but if we take into
account the 10% deviation it still can be considered to follow the trend.

After buffer size was increased to 250 flows, we tried also with 500 got zero
flows dropped which makes sense because in this case approximately 1000 flows were
generated and processed and this can be shared between two interfaces with output
buffer capacity less than or equal to 500 flows. Furthermore, with a buffer size of

26 6. RESULTS & DISCUSSION

500 flows we simulated the network scenario without enforcement of the reasoning
machine since this buffer size is close to the buffer size of CISCO router C7200. [17]
After 20 repetitions of simulations we got average of 10.7% of flow packets dropped
with maximum percentage deviation equal to 3% of the average value. This value is
already way higher compared to 0 flow packets lost in the case of adaptive network
routing configuration framework application.

Furthermore, we tried to see what size of a buffer is needed for raw network
scenario (aka without adaptive routing configuration framework) to reach no flow
packet dropped under the same conditions. Of course, higher the buffer size is less
the percentage of lost flow packets were until after 700 it reached the value of 0 flow
packets dropped. How quickly the average values were falling towards zero % is
shown in Table 6.3 and Figure 6.3 , again with maximum percentage deviation equal
to 3% .

Table 6.3: Percentage of flow packets dropped versus router “s interface buffer size
without the application of the Reasoning Machine

Buffer size [number of flows] | % of packet loss
50 9,368770764 %
100 4,711425206 %
150 2,975557917 %
200 3,676078849 %
250 1,003344482 %
500 0%

Percentage of flow packets dropped related to the buffer size, without the
application of Reasoning Machine

% of flow packet loss
N

500 550 600 650 700 750
Buffer size [number of flows]

Figure 6.3: Percentage of flow packets dropped related to router’s interface buffer
size without the application of the Reasoning Machine

Conclusion and Future Work

7.1 Conclusion

From what we have seen, it is possible to create high level Adaptive Network Routing
Configuration framework based on NXET Reasoning Machine engine which enforces
the reasoning procedure based on XML Equivalent Transformations on XDD XML
expressions and clauses. A node has to exchange messages with the reasoning engine,
which are of query&reply format where query is asking for a best path between two
nodes specified as source and destination. Reasoning engine needs a set of rules
describing the policy of how this choice is to be made. Body of the query atom
is recursively equivalently transformed through body of the rule(s) whose head it
matched. Finally an answer is obtained and returned to the node as reply to the
query clause.

Simulated in simple UNINET-like network topology we realized that percentage
of flow packets dropped is decreasing with increase of interarrival time and increase
in buffer size. When Adaptive Network Routing Configuration framework is applied,
in order to reach 0 flow packets dropped interfaces are required to have output buffer
size capable of hosting about 500 flows. Under the same conditions, without the
framework more than 700 flows in the output buffers are needed.

7.2 Future work

This master thesis work was conducted as part of my integrated Ph.D studies. The
purpose was to get to know the area of interest and get ideas for the direction of the
Ph.D research work. Focus of this work was in understanding and developing the
reasoning procedure capable of doing adaptive routing configuration. Simulation was
done in order to show how this artifact can interact in the context of one specific
network scenario.

27

28 7. CONCLUSION AND FUTURE WORK

At this point there are several ideas for improvements and future research work
ideas for Ph.D research directions. Firstly, an event-based simulator or more precisely
event-list handler in Java is to be implemented. This would take away a lot of
drawbacks of the time-based simulation approach such as time consuming simulations
leading to a decision to have very short and not fully representative intervals and
results. Further on, with event-based handler it would be possible to directly observe
and compare two approaches - with and without the reasoning machine. Another
parameter of interest - delay in packets arrival is of a high importance for QoS and
might as well be checked in simulation. In addition to that, packets coming and
destined to other nodes should also be simultaneously included, as well as enforcement
of the framework in each of the nodes in the described scenario. Another type of
services could also be considered in addition to voice calls. For example Video on
Demand (VoD)- this service has different traffic characteristics - bigger data and
different interarrival time distribution from VoIP.

Next step is the actual implementation of the described framework in real hardware
running on the top of currently implementing routers logic. This furthermore
comes with the challenge of having vendor dependent routing configuration files and
operating system. One way to unify this is OpenConfig with common data models
written in YANG. YANG is a network configuration data modelling language for
management protocols. [18] Potential implementation of Adaptive Network Routing
Configuration framework through an OpenConfig extension would enable dynamic
and programmable architecture which would be vendor independent and shared
between network operators. This is a direction to center my further Ph.D research
around.

References

P. Supadulchai and F. A. Aagesen, “Policy-based adaptable service systems archi-
tecture,” in 21st International Conference on Advanced Information Networking
and Applications (AINA ’07), pp. 656-665, May 2007.

C. Anutariya, V. Wuwongse, K. Akama, and V. Wattanapailin, “Semantic web
modeling and programming with XDD,” in The Emerging Semantic Web, Selected
papers from the first Semantic web working symposium, Stanford University,
California, USA, July 30 - August 1, 2001, 2001.

M. Subramanian, Network Management: Principles and Practice. The address:
Pearson Education India, 2 ed., 11 2012.

B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional ip
routing protocols,” IEEE Communications Magazine, vol. 40, pp. 118-124, Oct
2002.

P. Supadulchai and F. A. Aagesen, “Policy-based adaptable service systems archi-
tecture,” in 21st International Conference on Advanced Information Networking
and Applications (AINA ’07), pp. 656665, May 2007.

A. Guleria, “Traffic engineering in software defined networks: A survey,” Journal
of Telecommunications and Information Technology, vol. 4, pp. 3-14, 12 2016.

R. Singh, N. Chaudhari, and K. Saxena, “Load balancing in ip/mpls networks: A
survey,” Communications and Networks, vol. 4, 01 2012.

D. Thaler and C. Hopps, “Multipath Issues in Unicast and Multicast Next-Hop
Selection,” RFC 2991, November 2000.

Zhiruo Cao, Zheng Wang, and E. Zegura, “Performance of hashing-based schemes
for internet load balancing,” March 2000.

A. Toguyeni and O. Korbaa, “Diffserv aware mpls traffic engineering for isp
networks: State of art and new trends,” Journal of Telecommunications and
Information Technology, 01 2009.

P. Supdalcuai, Reasoning based Capability Configuration Management in Adapt-
able Service Systems. PhD thesis, NTNU, 2007.

29

30 REFERENCES

[12] P. Thongrta, A Service Framework for Capability - based Adaptation in Adaptable
Service Systems. PhD thesis, NTNU, 2012.

[13] K. Dittawit, Smart Grid Demand Response with Mutual Utility-Consumer Benefits.
PhD thesis, NTNU, 2016.

[14] C. Anutariya, K. Akama, and E. Nantajeewarawat, “Xml declarative description:
a language for the semantic web,” Intelligent Systems, IEEE, vol. 16, pp. 54 — 65,
06 2001.

[15] P. Supadulchai, “Nxet reasoning engine, Plug & Play Technical Report,” tech.
rep., Department of Telematics, NTNU, 2008.

[16] L. H. Do and P. Branch, “Real time voip traffic classification,” tech. rep., Centre
for Advanced Internet Architectures, Technical Report 090914A, July 2009.

[17] “Buffer tuning for all cisco routers.” https://www.cisco.com/c/en/us/support/
docs/routers/10000-series-routers/15091-buffertuning. html. Accessed: 2019-10-
20.

[18] M. Bjorklund, ¢ The YANG 1.1 Data Modeling Language,” RFC 7950, August
2016.

https://www.cisco.com/c/en/us/support/docs/routers/10000-series-routers/15091-buffertuning.html
https://www.cisco.com/c/en/us/support/docs/routers/10000-series-routers/15091-buffertuning.html

Rules

Listing A.1: Rules

<xet:XET xmlns:xet="http://xet.sf.net" xmlns:xfn="http://tapas.item.ntnu.no/
NxET/built-in/corefunctions"
xmlns:xfn2="http://tapas.item.ntnu.no/NxET/built-in/string">
<xet:Meta>
<xet:SpecificationVersion>0.1</xet:SpecificationVersion>
</xet:Meta>
<xet:Rule xet:name="AllOklinks" xet:priority="1">
<xet:Meta>
<xet:RuleDescription>Rule for returning all links between
specified nodes with the state OK
</xet:RuleDescription>
</xet:Meta>
<xet:Head>
<Request>
<from>Svar_from</from>
<to>Svar_to</to>
<utilization maxvalue="Svar_maxutilization"/>
<path sum="Svar_sum" nodecrossed="Svar_crossed">
Evar_routeok
</path>
</Request>
</xet:Head>
<xet:Body>
<xfn:MatchD xfn:mode="Set">
<X>Evar_routeok</X>
<X>
<nexthop interface="Svar_intl" nextNode="Svar_to"
utilization="Svar_utilization" metric="Svar_sum"/>
</X>
</xfn:MatchD>

31

32 A. RULES

<xfn:FactQuery xfn:uri="ds://ALL-ROUTES" xfn:mode="Set">
<LINK nodel="Svar_from" intl="Svar_intl" ipl="Svar_ip" node2="
Svar_to" int2="Svar_otherint"
ip2="Svar_otherip" metric="Svar_sum"/>
</xfn:FactQuery>
<xfn:FactQuery xfn:uri="ds://UTILIZATION" xfn:mode="Set">
<LINK ipl="Svar_ip" state="ok" utilization="Svar_utilization"/
>
</xfn:FactQuery>
<xfn:LessThanOrEqual xfn:numberl="Svar_utilization" xfn:number2="
Svar_maxutilization"/>
<xfn:Not>
<xfn:StringIsMember xfn:string="Svar_to" xfn:list="
Svar_crossed"/>
</xfn:Not>
</xet:Body>
<xet:Body>
<xfn:MatchD xfn:mode="Set">
<X>Evar_routeok</X>
<X>
<nexthop interface="Svar_int1l" nextNode="Svar_any"
utilization="Svar_utilization"
metric="Svar_metric"/>
Evar_routeok?2
</X>
</xfn:MatchD>
<xfn:FactQuery xfn:uri="ds://ALL-ROUTES" xfn:mode="Set">
<LINK nodel="Svar_from" intl="Svar_intl" ipl="Svar_ip" node2="
Svar_any" int2="Svar_otherint"
ip2="Svar_otherip" metric="Svar_metric"/>
</xfn:FactQuery>
<xfn:FactQuery xfn:uri="ds://UTILIZATION" xfn:mode="Set">
<LINK ipl="Svar_ip" state="ok" utilization="Svar_utilization"/

>
</xfn:FactQuery>
<xfn:Not>

<xfn:StringlsMember xfn:string="Svar_any" xfn:list="
Svar_crossed"/>
</xfn:Not>
<xfn:Not>
<xfn:StringEqual xfn:stringl="Svar_any" xfn:string2="Svar_to"/
>
</xfn:Not>
<xfn:LessThanOrEqual xfn:numberl="Svar_utilization" xfn:number2="

Svar_maxutilization"/>

33

<xfn:Add xfn:numberl="Svar_metric" xfn:number2="Svar_sum2" xfn:
result="Svar_sum"/>

<xfn2:ConcatString xfn2:stringl="Svar_crossed" xfn2:string2=" "
xfn2:result="Svar_temp"/>

<xfn2:ConcatString xfn2:stringl="Svar_temp" xfn2:string2="Svar_any
" xfn2:result="Svar_crossed2"/>

<Request>
<from>Svar_any</from>
<to>Svar_to</to>
<utilization maxvalue="Svar_maxutilization"/>
<path sum="Svar_sum2" nodecrossed="Svar_crossed2">

Evar_routeok?2

</path>

</Request>

</xet:Body>

</xet:Rule>

<xet:Rule xet:name="Set" xet:priority="1">
<xet:Meta>

<xet:RuleDescription>Rule for set</xet:RuleDescription>

</xet:Meta>
<xet:Head>

<Request>
<from>Svar_from</from>
<to>Svar_to</to>
<utilization maxvalue="Svar_maxutilization"/>
<route sum="Svar_sum" nodecrossed="Svar_crossed">
Evar_result
</route>
<best>Evar_shortestpath</best>
</Request>

</xet:Head>
<xet:Body>

<xfn:Set0f xfn:mode="Set">
<xfn:Set>Evar_result</xfn:Set>
<xfn:Constructor>
<path sum="Svar_sum">
Evar_routeok
</path>
</xfn:Constructor>
<xfn:Condition>
<Request>
<from>Svar_from</from>
<to>Svar_to</to>
<utilization maxvalue="Svar_maxutilization"/>

<path sum="Svar_sum" nodecrossed="Svar_crossed">

34 A. RULES

Evar_routeok

</path>
</Request>
</xfn:Condition>

</xfn:Set0f>
<FindMinimum>
<data value="Svar_minimun">
Evar_result

</data>
<best>Evar_shortestpath</best>

</FindMinimum>
</xet:Body>
</xet:Rule>

<xet:Rule xet:name="RuleMinimum" xet:priority="1">
<xet:Meta>
<xet:RuleDescription>Rule for returning minimum value</xet:

RuleDescription>

</xet:Meta>

<xet:Head>
<FindMinimum>
<data value="Svar_valueminimum">
Evar_allpaths

</data>
<best>Evar_shortestpath</best>

</FindMinimum>

</xet:Head>

<xet:Body> <!-- Bodyl OK-->
<xfn:MatchD xfn:mode="Set">

<X>Evar_allpaths</X>
<X></X>

</xfn:MatchD>
<xfn:AssignString xfn:variable="Svar_valueminimum" xfn:value="

100000" />
<xfn:MatchD xfn:mode="Set">

<X></X>
<X>Evar_shortestpath</X>

</xfn:MatchD>
</xet:Body>

<xet:Body> <!-- Body2 one element -->

<xfn:MatchD xfn:mode="Set">

<X>
<path sum="Svar_valuel">Evar_whatever</path>
</X>
<X>Evar_allpaths
</X>

</xfn:MatchD>
<xfn:AssignString xfn:variable="Svar_valueminimum" xfn:value="
Svar_valuel"/>
<xfn:MatchD xfn:mode="Set">
<X>Evar_shortestpath</X>
<X>
<path sum="Svar_valuel">Evar_whatever</path>
</X>
</xfn:MatchD>
</xet:Body>

<xet:Body> <!-- Body3 two or more element-->
<xfn:MatchD xfn:mode="Set">
<X>

<path sum="Svar_valuel">Evar_whatever</path>
Evar_rest_paths

</X>

<xX>
Evar_allpaths

</X>

</xfn:MatchD>
<FindMinimum>
<data value="Svar_minimum2">
Evar_rest_paths
</data>
<best>Evar_rest_shortestpath</best>
</FindMinimum>

<xfn:LessThanOrEqual xfn:numberl="Svar_valuel" xfn:number2="
Svar_minimum2"/>

<xfn:AssignString xfn:variable="Svar_valueminimum" xfn:value="
Svar_valuel"/>

<xfn:MatchD xfn:mode="Set">
<X>
<path sum="Svar_valuel">Evar_whatever</path>
</X>
<X>Evar_shortestpath</X>

35

36 A. RULES

</xfn:MatchD>
</xet:Body>

<xet:Body> <!-- Body4 three or more element-->
<xfn:MatchD xfn:mode="Set">
<X>

<path sum="Svar_valuel">Evar_whatever</path>
Evar_rest_paths
</X>
<X>
Evar_allpaths
</X>
</xfn:MatchD>
<FindMinimum>
<data value="Svar_minimum2">
Evar_rest_paths
</data>
<best>Evar_rest_shortestpath</best>
</FindMinimum>

<xfn:LessThan xfn:numberl="Svar_minimum2" xfn:number2="Svar_valuel
"/>

<xfn:AssignString xfn:variable="Svar_valueminimum" xfn:value="
Svar_minimum2"/>

<xfn:MatchD xfn:mode="Set">
<X>Evar_rest_shortestpath</X>
<X>Evar_shortestpath</X>

</xfn:MatchD>

</xet:Body>
</xet:Rule>
</xet:XET>

Router s Data Base Files

Listing B.1: ALL-LINKS

<?xml version="1.0" encoding="UTF-8" standalone="no"7><xet:XET xmlns:xet="
http://xet.sf.net" xmlns:contact="http://www.w3.org/2000/10/swap/pim/
contact#" xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">

<xet:Fact>

<LINK int1="g1/0" int2="g1/0" ipi="1.1.1.1" ip2="1.1.1.

nodel="oslo_gwl" node2="trd_gwl"/>

<LINK intl="g5/0" int2="g4/0" ip1="1.1.5.1" ip2="1.1.5.

nodel="oslo_gwl" node2="stolaw_gw2"/>

<LINK int1="£0/0" int2="£f0/0" ip1="1.1.7.1" ip2="1.1.7.

nodel="oslo_gwl" node2="R1"/>

<LINK int1="£2/0" int2="£2/0" ip1="1.1.2.1" ip2="1.1.2.

nodel="oslo_gwl" node2="trd_gw2"/>

<LINK int1="£3/0" int2="£3/0" ip1="1.1.3.1" ip2="1.1.3.

nodel="oslo_gwl" node2="trd_gw2"/>

<LINK int1="g1/0" int2="g1/0" ipi1="1.1.1.2" ip2="1.1.1.

nodel="trd_gwl" node2="oslo_gwl"/>

<LINK int1="g4/0" int2="g5/0" ip1="1.1.5.2" ip2="1.1.5.

nodel="stolaw_gw2" node2="oslo_gwl"/>

<LINK int1="f0/0" int2="f0/0" ip1="1.1.7.2" ip2="1.1.7.

nodel="R1" node2="oslo_gwl"/>

<LINK int1="£2/0" int2="£2/0" ip1="1.1.2.2" ip2="1.1.2.

nodel="trd_gw2" node2="oslo_gwl"/>

<LINK int1="£3/0" int2="£3/0" ip1="1.1.3.2" ip2="1.1.3.

nodel="trd_gw2" node2="oslo_gwl"/>

<LINK int1="f1/0" int2="f1/0" ip1l="4.4.1.1" ip2="4.4.1.

nodel="trd_hovedbygget_gw" node2="stolaw_gw2"/>

<LINK int1="fO0" int2="f1/0" ip1="1.1.14.2" ip2="1.1.14.

nodel="R2" node2="R1"/>

<LINK int1="£2/0" int2="£1/0" ip1="2.2.4.1" ip2="2.2.4.

nodel="trd_gwl" node2="trd_gw2"/>

on

on

metric="10"

metric="10"

metric="15"

metric="15"

metric="15"

metric="10"

metric="10"

metric="15"

metric="15"

metric="15"

metric="15"

metric="15"

metric="10"

37

38 B. ROUTER’S DATA BASE FILES

<LINK int1="g3/0" int2="g2/0" ip1="2.2.2.1" ip2="2.2.2.2"
nodel="trd_gwl" node2="trd_hovedbygget_guw"/>

<LINK int1="£4/0" int2="£3/0" ip1="2.2.3.1" ip2="2.2.3.2"
nodel="trd_gwl" node2="trd_hovedbygget_gw"/>

<LINK int1="f£2/0" int2="f2/1" ip1="2.2.5.2" ip2="2.2.5.1"
nodel="R2" node2="trd_gwl"/>

<LINK int1="£1/0" int2="£1/0" ip1="4.4.1.2" ip2="4.4.1.1"
nodel="stolaw_gw2" node2="trd_hovedbygget_gw"/>

<LINK int1="f1/0" int2="£010" ip1="1.1.14.1" ip2="1.1.14.2" metric="
15" nodel="R1" node2="R2"/>

<LINK int1="£1/0" int2="£2/0" ip1="2.2.4.2" ip2="2.2.4.1"
nodel="trd_gw2" node2="trd_gwl"/>

<LINK int1="g2/0" int2="g3/0" ip1="2.2.2.2" ip2="2.2.2.1"
nodel="trd_hovedbygget_gw" node2="trd_gwl"/>

<LINK int1="£3/0" int2="£4/0" ip1="2.2.3.2" ip2="2.2.3.1"
nodel="trd_hovedbygget_gw" node2="trd_gwl"/>

<LINK int1="f£2/1" int2="£2/0" ip1="2.2.5.1" ip2="2.2.5.2"
nodel="trd_gwl" node2="R2"/>

</xet:Fact>
</xet:XET>

metric="10"

metric="15"

metric="15"

metric="15"

metric="10"

metric="10"

metric="15"

metric="15"

Listing B.2: UTILIZATION

<?xml version="1.0" encoding="UTF-8" standalone="no"7><xet:XET xmlns:
xet="http://xet.sf.net" xmlns:contact="http://www.w3.org/2000/10/
swap/pim/contact#" xmlns:rdf="http://wuw.w3.org/1999/02/22-rdf-
syntax-ns#">
<xet:Fact>

<LINK ip1="1.1.1.1" state="down" utilization="10"/>
<LINK ip1="1.1.1.2" state="down" utilization="10"/>
<LINK ip1="1.1.5.1" state="ok" utilization="20"/>
<LINK ipl1="1.1.5.2" state="ok" utilization="20"/>
<LINK ip1="1.1.7.1" state="ok" utilization="30"/>
<LINK ip1="1.1.7.2" state="ok" utilization="30"/>
<LINK ip1="1.1.2.1" state="ok" utilization="50"/>
<LINK ip1="1.1.2.2" state="ok" utilization="50"/>
<LINK ip1="1.1.3.1" state="ok" utilization="50"/>
<LINK ip1="1.1.3.2" state="ok" utilization="50"/>
<LINK ip1="2.2.2.1" state="ok" utilization="50"/>
<LINK ip1="2.2.2.2" state="ok" utilization="50"/>
<LINK ip1="2.2.3.1" state="ok" utilization="50"/>
<LINK ip1="2.2.3.2" state="ok" utilization="50"/>

<LINK
<LINK
<LINK
<LINK
<LINK
<LINK
<LINK
<LINK

ip1="2.
ip1="2.
ip1="2.
ip1="2.
ipl="1.
ipl="1.
ip1="4.
ip1="4.

</xet:Fact>

</xet:XET>

39

.4.1" state="ok" utilization="50"/>
.4.2" state="ok" utilization="50"/>
.5.1" state="ok" utilization="50"/>
.5.2" state="ok" utilization="50"/>
.14.1" state="ok" utilization="50"/>
.14.2" state="ok" utilization="50"/>
.1.1" state="ok" utilization="50"/>
.1.2" state="ok" utilization="50"/>

Example Answer of the NxET
Reasoning Engine

Listing C.1: Answer to the query message from listing 4.1

<Request>
<from>trd_gwl</from>
<to>oslo_gwl</to>
<utilization maxvalue="80"/>
<route sum="Svar_sum" nodecrossed="Svar_crossed">
<path sum="10">
<nexthop metric="10" nextNode="oslo_gwl" utilization="10" interface="gl
/0"/>
</path>
<path sum="25">
<nexthop metric="10" nextNode="trd_gw2" utilization="50" interface="f2
/0"/>
<nexthop metric="15" nextNode="oslo_gwl" utilization="50" interface="£f2
/0"/>
</path>
<path sum="35">
<nexthop metric="10" nextNode="trd_hovedbygget_gw" utilization="50"
interface="g3/0"/>
<nexthop metric="15" nextNode="stolaw_gw2" utilization="50" interface="
f1/0"/>
<nexthop metric="10" nextNode="oslo_gwl" utilization="20" interface="g4
/0"/>
</path>
<path sum="40">
<nexthop metric="15" nextNode="trd_hovedbygget_gw" utilization="50"
interface="£4/0"/>
<nexthop metric="15" nextNode="stolaw_gw2" utilization="50" interface="
f1/0"/>

41

42 C. EXAMPLE ANSWER OF THE NXET REASONING ENGINE

<nexthop metric="10"
/0"/>
</path>
<path sum="45">
<nexthop metric="15"
<nexthop metric="15"
<nexthop metric="15"
/0"/>
</path>
<path sum="25">
<nexthop metric="10"
/0"/>
<nexthop metric="15"
/0"/>
</path>
</route>
<best>
<path sum="10">
<nexthop metric="10"
/0" />
</path>
</best>
</Request>

nextNode="oslo_gwl" utilization="20" interface="g4

nextNode="R2" utilization="50" interface="f2/1"/>
nextNode="R1" utilization="50" interface="f0"/>
nextNode="oslo_gwl" utilization="30" interface="£f0

nextNode="trd_gw2" utilization="50" interface="£f2

nextNode="oslo_gwl" utilization="50" interface="£f3

nextNode="oslo_gwl" utilization="10" interface="gl

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background and Related Work
	Reasoning Machine
	Policy-based adaptation mechanism
	Data model
	XML Specialization System
	XML/XET caluses

	Adaptive Network Routing Configuration
	Query
	Rules
	Data base files

	Simulation
	Results & Discussion
	Conclusion and Future Work
	Conclusion
	Future work

	References
	Rules
	Routers Data Base Files
	Example Answer of the NxET Reasoning Engine

