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December 15, 2019



Abstract

The work presented in this thesis develops a Model Predictive Control (MPC) controller
for SINTEF’s offshore wind turbine simulator, STAS. STAS is a frequency domain sim-
ulator that is not optimized for time simulation and gives out linearized systems for two
linearization parameters; mean wind speed and percent of rated power that the turbine is
operating at. The MPC is first developed for only one such linear system. The earliest
MPC iterations controlled the generator speed and the collective blade pitch in a step-wise
manner, but this caused harmonics to be added to the system. Attemps at reducing the har-
monics were made by letting the MPC control a low-passed input, then linearly varying
inputs and then low-passed, linearly varying inputs, before finally the MPC was made to
control set points of a Proportional-Integral (PI) controller.

The main objective is to reduce the power tracking error, which the MPC is shown to do.
An attempt is made at reducing the fatigue on the structure by controlling the change in
the moments of parts of the turbine to zero. This did however lead to a rather poor power
tracking and not much reduction in the number of zero crossings of the derivative, which
is the usual reason for fatigue on moving structures.

To allow more steps to be taken in the prediction of the MPC whilst keeping the system
real time capable, the system is reduced to fewer states. This is first done with a bal-
anced reduction, achieving a reduction from 103 states to 62. Another attempt is made
via Principal Component Analysis (PCA), achieving the same performance with only 24
states.

Better power tracking is sought after and achieved by simulation of LIght Detection And
Ranging (LIDAR) measurements of the wind speed of air upstream of the turbine. To
test the system performance two noise models are implemented; one is a simple additive
Gaussian noise model and the other is based on a finite difference solution to the transport
equation. With perfect measurements the feed forward MPC lead to a large reduction
in Root Mean Square (RMS) error between desired and actual power, and a smaller, yet
significant, improvement is achieved even in the presence of a decent amount of noise on
the measurements.

To have the system behave more realistically away from the linearization point of the STAS
model, a Linear Parameter-Varying (LPV) system is made by interpolation of linearized
systems for three different linearization parameters. The system is shown to have worse
power tracking than the PI controller when using one static projection matrix to reduce
the system. Better performance than the PI controller is obtained when each linearized
system is reduced separately and transformed into a form where they can be interpolated.
Running the feed forward MPC on the full interpolated system with predictions using the
interpolated reduced system gave lower RMS error than the PI controller, showing the
promise of feed forward MPC for better power control and energy capture from offshore
wind turbines.
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Oppsummering

Arbeidet presentert i denne oppgaven utvikler en Model Predictive Control (MPC) kon-
troller for STAS, SINTEF sin simulator for offshore vindturbiner. STAS er en simulator i
frekvensdomenet som ikke er optimert for tidssimulering. Den gir ut lineariserte systemer
for to parametere; gjennomsnittlig vindhastighet og prosent av maks kraftproduksjon som
vindmøllen opererer ved. En MPC er først utviklet for kun ett slikt linearisert system.
De tidligste utgavene av MPC-en kontrollerte generatorhastigheten og den felles pitchen
til bladene på en stegvis måte. Dette førte til høyfrekvent støy på enkelte tilstander, så
det ble lett etter en bedre løsning, først igjennom å lavpassfiltrere inngangene, så ved å
la MPC-en kontrollere lineært varierende innganger. Deretter ble det testet med lavpass-
filtrerte, lineært varierende innganger, før det til slutt ble testet å la MPC-en kontrollere
settpunktene til en Proportional-Integral (PI)-kontroller.

Hovedmålet var å redusere avvik i kraftproduksjonen fra en referanse, noe MPC-en viste
at den klarte. Et forsøk på å redusere slitasje på vindturbinen ble gjort igjennom å styre en-
dringen i enkelte strukturmomenter til null. Dette førte til en kraftig redusert kraftkontroll
uten å vise til noen særlig reduksjon i antall nullkrysninger for den deriverte til momentene,
noe som er blitt vist å være hovedkilden til slitasje på bevegelige strukturer.

For å tillate en finere diskretisering i prediksjonssteget til MPC-en uten å gå på bekost-
ning av sanntidsegenskapene til kontrolleren ble det lineære systemet redusert til færre
tilstander. Dette ble først gjort igjennom en balansert reduksjon, noe som ga en reduksjon
fra 103 til 62 tilstander. Et nytt forsøkt via Principal Component Analysis (PCA) ga en
reduksjon til 24 tilstander.

Bedre følging av kraftreferansen ble vist igjennom en foroverkoblet MPC basert på simuler-
te LIght Detection And Ranging (LIDAR)-målinger av vindhastigheten foran vindtur-
binen. For å teste ytelsen til systemet ble to forskjellige støymodeller implementert. Den
ene var simpel hvit støy på hver måling, mens den andre brukte en finite difference løsning
av transportlikningen. Med perfekte LIDAR-målinger ga systemet en stor reduksjon i Root
Mean Square (RMS) feil mellom ønsket og faktisk produsert kraft. En mindre, men bety-
delig forbedring ble sett selv ved relativt mye støy på målingene.

For å få et mer realistisk system når tilstandene er langt unna lineariseringspunktet til
STAS-modellen ble det lagd et Linear Parameter-Varying (LPV)-system via interpoler-
ing av lineariserte systemer for tre forskjellige parametere. Systemet viste å ha dårligere
kraftfølging enn den PI-kontrolleren når det kun ble brukt én statisk projeksjonsmatrise
for å redusere system. Bedre ytelse enn PI-kontrolleren ble derimot oppnådd når hvert
lineariserte system ble redusert separat og transformert til en form hvor de kunne bli inter-
polert. Når MPC-en ble kjørt på det fulle interpolerte system med prediksjoner ved bruk
av det interpolerte reduserte systemet ga det lavere RMS-feil enn PI-kontrolleren. Dette
gir håp om at foroverkoblet MPC kan bli brukt til å redusere feil i kraftfølging og øke
energifangsten til offshore vindturbiner.
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Chapter 1
Introduction

This thesis was written in collaboration with SINTEF, using their wind turbine simulator,
STAS. It aims to use Model Predictive Control (MPC) and feed-forward wind measure-
ments to improve power tracking and possibly reduce structural fatigue.

1.1 Offshore wind turbines
Offshore wind is growing like never before [10]. Many large offshore projects are currently
in operation, like the Walney Extension and the London Array, showing great promise.
Offshore wind already has a strong foothold in Europe with more than 18 GW installed ca-
pacity [24], and global potential to reach more than 100 GW by 2030. Hywind, Equinor’s
floating wind turbine project outside Scotland, consists of five 6 MW turbines with a total
installed capacity of 30 MW and powers around 22,000 households [9]. It indicates that it
will be possible to develop wind farms in deeper waters, opening up a lot more area to be
used for energy production.

This expansion of the wind sector makes it crucial that more advanced control systems
for wind turbines are developed, in order to optimize energy capture whilst increasing
the life time of the turbines. With higher penetration of renewable energy, better power
tracking of wind turbines will also become increasingly important to maintain stability of
grid frequency.

1.2 Previous work
There have been some studies on MPC for wind turbines. In [12] a MPC for a 10 state
nonlinear model of a wind turbine is developed. It linearizes the model at each step, and
focuses on constraint handling in all operating regions of the wind turbine, rather than
improved power tracking abilities.
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In [27], benefits are attained with perfect wind field preview 5 seconds ahead of time on
simulated data using FAST [28], but the controller is not tested with more realistic LIght
Detection And Ranging (LIDAR) specs or noisy measurements. It also found that the
benefit of preview MPC was mainly seen in the full-load operating region.

More realistic LIDAR measurements where used in [16] and [23], and concluded that, even
in the presence of imperfect wind speed measurements, large reductions in both extreme
and fatigue loads were possible. The latter of these reported promising load reduction up
to 50 % for extreme gusts and 30 % for lifetime fatigue loads without negative impact on
overall energy production.

[15] develops a feed forward MPC using perfect preview of the future rotor plane average
free stream wind speed. The authors focus, as with this thesis, on the full-load operating
region, because the potential gains from improved performance in partial load operation
are small, as shown in [23]. The cost function includes costs on state deviations, costs on
inputs and costs on the final states deviation from a desired set point, but not on change
in input. Even though it uses perfect wind preview to get the results, it is argued that as
long as the upwind information provides any additional information above just assuming
the wind to remain constant, the feed forward component of the controller can be expected
to improve control performance. It furthermore proves good performance and constraint
handling, even in the presence of modeling errors and stochastic turbulence. A large step
towards robust MPC is taken by showing that it can handle many different scenarios and
operating conditions. The controller can make extreme scenarios like shut downs more
rare, but also reduce loads and fatigue if they happen. The paper concludes that MPC
gives hope for a unified way of achieving the goals of a wind turbine controller while
obeying constraints, in all operating regions and in the presence of modeling errors.

1.3 Problem formulation
Develop a MPC controller for the STAS model, and investigate if it can improve power
tracking and reduce fatigue on the turbine. Develop a Linear Parameter-Varying (LPV)
system from interpolation of STAS linearizations and test performance of the controller
on this system.

1.4 Contributions
A linear MPC that showed improved power tracking of the STAS model was developed
and tested. A linearized version of STAS was reduced from 103 to 24 states to speed up
computation time of the MPC and give room for more advanced control schemes. LIDAR
feed forward MPC was used to improve power tracking, with noisy measurements made
to be similar to the specifications of real LIDARs. The possibility of reducing fatigue on
the turbine structure with MPC was investigated, but concluded that it was not promising,
possibly due to the structure of the STAS model or due to the much faster dynamics of
the turbine moments compared to the MPC step size. A LPV system was developed from
interpolation of linearizations of the STAS model and from a set of reduced linearized

2



systems. A MPC was made to run on the interpolated reduced system and shown to give
better power tracking than a simple Proportional-Integral (PI) controller when applied to
simulations of the full interpolated system.

The work done in this thesis will be presented in January at the EERA DeepWind’2020
conference [26] in Trondheim.
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Chapter 2
Background

In this section the needed theory and nomenclature is explained. It first covers wind tur-
bines in general, with standard nomenclature and modeling, as well as how one models
the wind close to the turbine. Next the theory behind MPC is covered, before a brief intro-
duction to STAS is given. After this, model reduction is explained, and then finally how to
create a LPV system by interpolation of several Linear Time-Invariant (LTI) systems.

2.1 Wind turbine theory
In the following section the wind turbine and a standard way of modeling it is described.
It starts with simple nomenclature, before delving into the different subsystems of the
turbine and finally explaining some common wind phenomena. Most of the definitions
and models are from [3].

2.1.1 Nomenclature
The wind turbine is composed of several different parts, illustrated in figure 2.1. The na-
celle is the part containing the generator, flywheel and gearbox. This is connected through
the drive shaft to the rotor, which is composed of the hub and blade, as well as pitch actu-
ators inside the hub that control the pitch of the blades. The pitch subsystem is explained
further in section 2.1.5. The nacelle sits on top of the tower, which is connected to the
foundation. In the interface between tower and nacelle sits a yaw motor, that makes it pos-
sible to turn the wind turbine to face the wind direction. In this thesis the yaw controller is
ignored and the turbine is assumed to face the wind at all times.

A wind turbine can be viewed as a series of interconnected subsystems. This is usually
done by dividing the system into three parts; the aerodynamic subsystem, the mechanical
subsystem and the power generator unit. A block diagram of this way of looking at the
turbine is illustrated in figure 2.2.
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The aerodynamic subsystem models how the rotor generates a torque, Tr, and a force, FT ,
on the drive shaft. This torque and force is dependent on the current wind velocity field
at the rotor plane, ~V , the pitch of the blades, β, and the rotational velocity of the rotor,
Ωr. They also depend on the axial displacement of the blades, yb, caused by flapping and
tower bending, which will be explained later.

The mechanical subsystem includes the rotor, hub, drive shaft and the mechanical parts of
the generator, as well as the tower and foundation. It is usually further divided into two
parts; the drive train and the structure. The drive train transfers the aerodynamic torque on
the blades to the generator shaft. The structure contains the tower and foundation and is
excited by the thrust force. The mechanical subsystem determines the rotational speed of
the generator, Ωg , as a function of the aerodynamic torque and force as well as the torque
coming from the power generator unit, Tg .

This leads to the final subsystem, the power generator unit. The power generator unit is
the electrical part of the generator, which converts the rotational speed of the generator
into electrical power.

The torque coming from the generator and the pitch of the blades are the controllable
quantities in the turbine, as well as the yaw of the nacelle.

2.1.2 Aerodynamic subsystem
An approach to model the thrust force, FT , and the aerodynamic torque, Tr, is to first lump
the continuous three dimensional wind field into a discrete number of forces acting on the
rotor blades. These forces then give rise to FT and Tr through a stationary mapping

[
FT
Tr

]
=

[
ρπR2

2 CT (ΩrR
Ve

, β)v2
e

ρπR3

2 CQ(ΩrR
Ve

, β)v2
e

]
. (2.1)

Here ρ is the air density, R is the length of the blades, ve is the wind speed relative to the
rotor,

ve = vm − ẏb, (2.2)

i.e. the difference between actual mean wind speed, vm, and the change in axial displace-
ment of the blades, yb, caused by flapping and tower bending. The aerodynamic torque and
the thrust force can be seen to be expressions depending on the two functions CT (λ, β)
and CQ(λ, β), respectively. Here λ = ΩrR

ve
is called the Tip Speed Ratio (TSR). CT is

a nonlinear function representing the drag coefficient of the blades, while CQ is a non-
linear function representing the lift coefficient. Both these functions are typically found
empirically in a wind tunnel.

A typical feature of the drag and lift functions is that they usually have a single maxima
that is close to, or at, zero pitch. The drag function has its maximum at a lower TSR than
the lift function.
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(a) Torsion (b) Edgewise

(c) Flapwise (d) Tower bending

Figure 2.3: Relevant mode shapes of a wind turbine.

2.1.3 Mechanical subsystem and bending modes
A typical model for the mechanical subsystem is derived using the Multibody System
(MBS) approach, and one such model can be found in [3]. It is a control-oriented approach
to modeling that only focuses on the modes of the system that are relevant to control. The
mechanical degrees of freedom that are most affecting the fatigue of the wind turbine,
and thus most important for this thesis, are shown in figure 2.3. These are mostly self-
explanatory, except maybe for the first one, torsion. Torsion refers to the twisting of the
drive shaft because of a difference in the angle of the rotor and the angle of the generator.

2.1.4 Power generator unit
Since the induction generators used in modern wind turbines have much faster dynamics
than the rest of the wind turbine systems, a steady-state-model of the power generator unit
will be sufficient. Most modern wind turbines use a squirrel-cage induction generator, that
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is decoupled from the grid frequency and voltage via a DC-DC converter.

The frequency and voltage operation points of the generator can be controlled. The most
common control scheme is to keep the flux constant while controlling the rotational speed
of the generator. This is done by keeping the ratio between voltage, Ug and frequency,
fg on the generator side constant. The effect of this is that the rotational speed of the
generator at no-load condition, Ωz , can be seen as control input, which gives the following
linear approximation of the torque characteristic

Tg = Bg(Ωg − Ωz). (2.3)

No-load condition here means Tg = 0.

2.1.5 Pitch subsystem
Modern wind turbines have blades with adjustable pitch. These are sometimes controlled
by a single motor controlling all blades to the same pitch, but most newer turbines have
one motor for each blade, giving control of each blades pitch separately.

The motors are nonlinear servo motors, but operation in their linear region can be described
by

β̇ = −1

τ
β +

1

τ
βd, (2.4)

where β and βd are the actual and desired pitch angles, respectively. According to [3] β
varies from−2° to 30° and changes at a maximum rate of±10°/s. In the rest of this paper
β will refer to the collective pitch of the blades.

2.1.6 Wind model
The wind field that hits the turbine is a complex function of the atmospheric conditions,
the topology of the landscape and the state and geometry of the turbine. However a much
simpler model often suffices. A simple wind model can be described by two parts: a
deterministic component and a stochastic component. The deterministic component is de-
scribed by a function of the mean wind speed at hub height, vm(h), and the current location
of the blade element in question. The stochastic part describes the random deviations from
the mean wind speed.

The deterministic part of the wind speed is further divided into two main components: the
wind shear caused by the height of the element, i.e. that the wind is slower closer to the
ground, and the tower shadow, which refers to the diverting effect of the turbine tower on
the wind velocity in the volume below the hub. Both of these effects give rise to dips in
the developed torque and force each time a blade moves down and in front of the tower.
This leads to oscillatory fatigue on the mechanical subsystem, mainly the drive train and
the blades, at three times the frequency of rotation for a three-bladed turbine.
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The stochastic part of the wind is random variations in the wind velocity, commonly re-
ferred to as turbulence. Since most wind turbines have a rotational frequency several times
higher than the turbulence bandwidth, the wind turbulence can be modeled as approx-
imately static each rotation[3]. This means that the turbulence’s main effect is to give
rise to periodic variations in the torque and force, as the blades move into the same wind
speed variations. Since the turbulence is more pronounced the longer out on the blade one
looks, it affects the torque more than the force. Thus the aerodynamic torque developed
by the entire rotor will have appreciable fluctuations of frequencies around integers of the
rotational frequency.

2.1.7 Upstream wind speed profile
The wind turbine extracts energy from the air by slowing it down. Actuator disk theory[3]
gives a theoretical lower bound on the velocity at the rotor and far downstream of the rotor,
as functions of the wind velocity far upstream, V∞. This theoretical limit exists because
the law of mass preservation implies that for wind to reach the rotor the rotor can not slow
the wind down to below a certain value. The mean velocity, Vr, at the rotor plane is defined
as

vr = (1− a)v∞. (2.5)

Here a is a parameter of the wind turbine called the axial induction factor, defined from
the thrust, Trotor, on only the rotor

Trotor = 2ρπR2v2
∞a(1− a), (2.6)

and actuator disk theory gives that a is upper bounded by 0.5.

In some cases a more precise model than the above is needed, for example when using
LIDAR measurements to predict the mean wind velocity that is going to hit the rotor. One
such model for the upstream wind profile can be found through vortex sheet theory[17][7].
It gives the velocity v along the symmetry axis upstream of the actuator disc as a function
of the distance from the rotor plane, l, as

v(l)

v∞
= 1− a[1− l

R
(1 + (

l

R
)2)−1/2]. (2.7)

This function is illustrated in figure 2.4. In [17] both experiments and simulations agree
with this model.

2.2 Model Predictive Control
MPC [8] is a control scheme for a dynamic system, that tries to find the input, uopt, that
minimizes a cost function, L(x(t), u(t)), over a finite time horizon, [t0, t0 + T ], given
some constraints. Here x(t) is the state at time t. Stated more succinctly,
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v/v∞

1

1-a

Figure 2.4: Illustration of how vortex sheet theory models the velocity decrease as wind approaches
a turbine

uopt = min
u(·)

∫ t0+T

t0

L(x(t), u(t))dt, (2.8)

subject to the system dynamics and some bounds on the states, for all t ∈ [t0, t0 + T ],

ẋ(t) = f(x(t), u(t), t), (2.9)

umin ≤ u(t) ≤ umax, (2.10)
g(x(t), u(t), t) ≤ 0. (2.11)

There is possibly also some constraint on the final state, x(t0 + T ), stated as

r(x(t0 + T )) ≤ 0. (2.12)

This can be applied to a linear system or linearized version of a nonlinear system, giving
dynamics

ẋ = Ax+Bu, ∀x, u, t. (2.13)

Often one wants to drive the states to a reference, but with different costs of deviation from
the reference for each state and input. A cost function that incorporates these elements is
a quadratic function in the states and inputs,

L(x(t), u(t)) = (x− xref )TQ(x− xref ) + uTRu. (2.14)

Here Q and R are square, positive-definite matrices with the appropriate dimensions, usu-
ally diagonal, representing the cost on the states and controls, respectively.
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Sometimes it is also desirable to put a cost on changes to the inputs

L(x(t), u(t), u̇(t)) = (x− xref )TQ(x− xref ) + uTRu+ u̇TΓu̇, (2.15)

where Γ is a positive-definite matrix with the appropriate dimensions, usually diagonal,
representing the cost on the change of the inputs. Note that when this is implemented
numerically the derivative is often replace by a first order estimation

u̇i = ui − ui−1. (2.16)

Here the division by the time step has been absorbed into the cost matrix Γ.

Direct single shooting method

The problem in equations 2.8-2.12 can be formulated as a NonLinear Program (NLP),
which can be efficiently solved by software libraries like CasADi. To convert the problem
from the above formulation to a NLP formulation, it must be discretized in some manner.
A method to achieve this is to let the controls be piecewise constant, by dividing up the
time horizon, T , into N equal pieces. This gives N parameters for the set of controls,
qi ∈ Rnu , where nu is the number of controls and i = 0, ..., N − 1. The controls are then
simply

u(t; q) = qi, ∀t ∈ [ti, ti + 1). (2.17)

This gives Nnu decision variables to be found, concatenated into the decision variable
vector q.

The simplest way of proceeding is then to look at the states x(t) for t ∈ [t0, t0 + T ] as
dependent variables obtained by forward integration of the dynamics given the inputs up
to time t, with x(t0) = x0. This is the so-called direct single shooting method.

The last thing missing is a method of discretizing the state and input constraints. This is
done by checking the constraints on a finite set of points along the time horizon, usually
the same points where the inputs change values.

The direct single shooting method therefore converts the MPC problem into the following
NLP

min
q∈RNnu

∫ t0+T

t0

L(x(t; q), u(t; q))dt, (2.18)

subject to
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x(ti+1) = x(ti) +

∫ ti+1

ti

f(x(t), qi)dt, i = 0, ..., N − 1, (2.19)

h(x(ti; q), u(ti; q)) ≤ 0, i = 0, ..., N − 1, (2.20)
r(x(t0 + T ; q)) ≤ 0. (2.21)

For the system 2.13 with cost function 2.14 this becomes

min
q∈RNnu

∫ t0+T

t0

(x(t; q)− xref )TQ(x(t; q)− xref ) + u(t; q)TRu(t; q)dt. (2.22)

Direct collocation method

Direct single shooting assumes a piecewise linear state trajectory by only evaluating the
constraints at a finite set of points. Another method, called direct collocation, instead
approximates the trajectory between each node point by a polynomial. This gives the
benefit of allowing us to initialize the state trajectory, typically with information from the
previous MPC step, and according to [8] it shows superior local convergence properties in
particular for unstable systems.

It divides the time horizon into N collocation intervals. In each collocation interval,
[ti, ti+1], the trajectory is approximated by a polynomial of order j, pi(t; vi), with co-
efficient vector vi. Similarly the control is parametrized on each interval as a constant or
piecewise polynomial ui(t; qi), where qi is the vector containing all the coefficients for
each of the input polynomials.

Then j evenly spaced collocation nodes t(1)
i , ..., t

(j)
i are chosen in each collocation interval.

The state at the start of collocation interval i is denoted si. In each collocation interval the
following equalities are added to the NLP to enforce the dynamics at the collocation nodes

sk = pi(ti; vi), (2.23)

f(pi(t
(1)
i ; vi), ui(t

(1)
i ; qi)) = ṗi(t

(1)
i ; v),

...

f(pi(t
(j)
i ; vi), uk(t

(j)
i ; qi)) = ṗk(t

(j)
i ; v).

Continuity across intervals is also enforced by

pk(ti+1; vi) = si+1. (2.24)

12



The integrated cost function of each collocation interval is then an analytic function of
si, vi, qi, and is called li. State and input constraints are usually enforced at each collo-
cation interval boundary, but could also be done on each collocation node. These con-
straints, together with the initial conditions and the terminal constraint, become the re-
maining equations added to the NLP

s0 = x0, (2.25)
h(si, qi) ≤ 0,

r(sN ) ≤ 0.

The final NLP is then to minimize the cost function

min
s,v,q

N−1∑
i=0

li(si, vi, qi) + E(sN ), (2.26)

subject to equations 2.23, 2.24 and 2.25. This large, but sparse, problem is then solved
efficiently with a nonlinear interior point library like IPOPT [32]. Note that the function
E(sN ) represent a cost on the final states deviation from a reference, that can be large if it
is important that the state ends up close to the reference at the end of the time horizon.

2.3 STAS
STAS is SINTEF’s wind turbine simulator, and is explained in detail in [13]. Here follows
a short summary of the way STAS is built up.

STAS consists of the interconnection of several different modules, which again consists
of the interconnection of submodules. For values of the states, inputs and the parameters
percent power output and mean wind speed it gives out the nonlinear dynamics, as well
as a high precision linearization of the dynamics. At the highest level STAS is only two
modules, a wind turbine module and an electrical grid module. The wind turbine is in turn
composed of aeroelastic, electrical, actuator and control modules, while the electrical grid
consists of components like cables and transformers. At the lowest level one finds single
components, such as blade elements or electrical cables.

Each module gives out their respective nonlinear and linearized dynamics, and these are
connected to give the overall nonlinear and linearized dynamics. One such output takes
about 40 minutes to compute on a Intel Core i7-8700 CPU running at 3.2 GHz, with 32
GB of RAM. Thus the STAS model is not feasible to simulate in the time domain in the
current iteration. What follows now is a brief description of each module in the turbine
model.

The aeroelastic module encompasses the local blade aerodynamics and the structural com-
ponents: blades, low-speed shaft, nacelle, tower, and foundation. The aeroelastic module
is further decomposed into an aerodynamic module and a structural module.
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The aerodynamic module handles the dynamic relationships between the incoming wind,
the turbine wake, blade structural motions, and the aerodynamic forces along the blades.
It implements a version of the Blade Element Momentum (BEM) method. The gist of the
BEM method is to estimate the change in the flow field due to the vortex wake – not by
actually modeling the wake, but rather by assuming an ideal streamwise flow pattern, and
performing a control volume analysis, a much-used approach in fluid mechanics.

The structural module accounts for the deformation of the turbine structure, including
rotor rotation, under the applied forces. It is a multibody, corotational finite-element beam
representation of the wind turbine. The turbine consists of a number of bodies: foundation,
tower, nacelle, drive shaft, and blades. Each body can move rigidly in space, and deform
elastically.

The electrical module is based on elementary equivalent-circuit models of the turbine and
grid electrical components, where the electrical states consist of currents through induc-
tors, and voltages across capacitors.

The actuator module models the pitch actuators. The input is a blade pitch command,
and the output from the module is a torque applied to the pitch degree-of-freedom. The
actuator dynamics is modeled as a second-order filter, with a smoothed saturation on the
pitch angle and pitch rate.

Finally there is a control module, using power set points, measured rotor speed, measured
pitch angle, current electrical power, blade root moments and tower velocity to calculate
the pitch and power command to the system. This module is, however, turned off in the
work done for this thesis, as the goal of this thesis is to develop an alternative to this
controller.

STAS has several ways of creating linearizations, and has in this thesis been set to cre-
ate a reduced linearization with 103 states, where the most relevant simplifications are to
only have one mean wind input and to only include the first two modes of each elements
moment. The inputs to the full connected system are unitless, as they consists of a com-
bination of effects on the different states, but what will be referred to as input 1 is most
directly controlling the power output through controlling the generator speed, while the
one that will be referred to as input 2 most directly controls the pitch. There are some
other interactions between inputs and states, but these are the most direct couplings.

2.4 Model reduction
The MPC problem requires solving an optimization problem at each time step. How com-
putationally heavy this optimization is depends on how many steps the MPC considers,
the convexity of the problem and how many states are involved in the dynamical model
used to predict the response of the system. In order to enable the use of MPC as a real
time controller of the system, it is therefore beneficial to reduce the number of states. This
must of course be done in a way that maintains the accuracy of the model, a goal that can
be reformulated as minimizing some norm between the true and reduced system transfer
function.
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In the following section two different approaches to this end is explored, namely Principal
Component Analysis (PCA) [18] and balanced truncation [33].

2.4.1 Principal Component Analysis
PCA is a method for transforming possibly correlated states into an uncorrelated orthog-
onal basis set, called principle components. By ordering them after singular value size,
the most dominant principal components are placed first. To reduce the system is then just
a matter of removing the least dominant principal components until the desired order is
achieved.

A fixed input is applied to the system, and the state trajectory at certain instances of time
is recorded. This gives a so-called matrix of snapshots of the state

χ = [x(t1), x(t2), . . . , x(tN )] ∈ Rn×Ns . (2.27)

The number of snapshots, Ns, must be much larger than the number of states, n. This
snapshot matrix is then decomposed into a Singular Value Decomposition (SVD) [14], i.e.
orthogonal matrices V and W and diagonal matrix S are found such that

χ = V SZT , (2.28)

where V is n × Ns, while S and Z are Ns × Ns. This can be achieved for any matrix,
and is efficiently computed using MATLAB’s svd function. The diagonal elements of S
are called the singular values of χ. When these elements are put in descending order, a
reduced model for the system can be found by using the nr first columns of V , call it Vr.
Approximating the state by

x(t) ≈ Vrxr(t), xr(t) ∈ Rnr , (2.29)

gives the reduced dynamics

ẋr(t) = V Tr f(Vrxr(t), u(t)), (2.30)
yr(t) = h(Vrxr(t), u(t)). (2.31)

In the linear case this is simply

ẋr = Arxr +Bru, (2.32)
yr = Crxr +Du, (2.33)

where Ar = V Tr AVr, Br = V Tr B and Cr = CVr.
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2.4.2 Balanced Truncation
In a similar manner to the PCA method, balanced reduction looks at the state trajectory
when a certain input is applied. It focuses on an impulse applied to a linear system. This
gives the impulse response h(t) = CeAtB, t ≥ 0. This response can be decomposed into
an input-to-state map x(t) = eAtB and a state-to-output map η(t) = CeAt. The so-called
controllability Grammian is then

P =
∑
t

x(t)x(t)T =

∫ ∞
0

eAtBBeA
T tdt, (2.34)

and the observability Grammian is

Q =
∑
t

η(t)T η(t) =

∫ ∞
0

eA
T tCTCeAt. (2.35)

When the state is linearly transformed into x̂ = Tx, the two Grammians are transformed
by congruence: P̂ = TPTT and Q̂ = T−TQT−1. This means that the eigenvalues of the
product QP, λi(QP) are preserved under the transformation. These eigenvalues are thus
input-output invariants of the system, and are what we call the Hankel singular values.

The Hankel singular values are found by first finding the Grammians of the system as the
solution to the Lyapunov equations

AP + PAT +BBT = 0, (2.36)

ATQ + QA+ CCT = 0. (2.37)

The Hankel singular values are then the square roots of the eigenvalues of the product
PQ. An upper triangular matrix U , satisfying P = UUT and a lower triangular matrix L,
satisfying Q = LLT are then found. Doing a SVD of UTL = ZΣY T gives a balanced
transformation matrix

Tb = ΣZTU−1 = Σ−
1
2Y TLT , (2.38)

with inverse

T−1
b = UZΣ−

1
2 = L−1Y Σ

1
2 . (2.39)

When the system is transformed with Tb, giving Ab = TbAT
−1
b , Bb = TbB and Cb =

CT−1
b the solution to the two Lyapunov equations become equal and diagonal:
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P = Q = Σ = diag(σ1, . . . , σn). (2.40)

If the system is then ordered so the Hankel singular values are descending, a model for the
system reduced to nr < n states is achieved by simply truncating the balanced system at
the desired degree, i.e. by taking the nr × nr, nr ×m, p × nr leading blocks of Ab, Bb
and Cb, respectively.

The benefit to this reduction is that it can be shown [11] to satisfy the following bounds on
the H∞-norm

σnr
≤ ||Σ− Σ̂||∞ ≤ 2(σnr+1 + σnr+2 + . . .+ σn). (2.41)

The H∞-norm is defined as the maximum of the highest peak of the frequency response,
i.e.

H∞ = σmax[D + C(jω −A)−1B]. (2.42)

2.5 Interpolation of Linear Time-Invariant systems
When a LTI system is acquired from a nonlinear system it only gives a good approximation
for the system dynamics when the state is close to the linearization point. For highly
nonlinear models this will generally not be adequate. To remedy this while allowing for
the continued use of linear control algorithms, the system could be linearized for many
state values, spaced finely throughout the state space. These linearizations could then be
interpolated to give a mapping from state to linear system to be acquired at the start of each
control loop. This will only capture the systems dependency on the states, not any possible
dependency on any of the derivatives, ẋ, ẍ, ..., but in most cases this will be sufficient.

For large dimensionality this is unfortunately often times not feasible, as it would require
the acquisition of a lot of linearized systems, which can be both expensive and time-
consuming. However, in many cases it is possible to parametrize the set of equilibrium
points by a number of parameters that are fewer than the number of states. This leads
to a LPV system, which is the industry standard way of efficiently acquiring a linearized
system from a nonlinear model that remains accurate for the whole state space.

2.5.1 Coherence of LTI systems
When creating a LPV system by interpolation of many LTI systems, a very important
first step is to make sure the linearized systems for different parameters are coherent and
transform them in such a way that the states represent the same physical state in each
system. Coherence refers to the fact that such a transformation is possible to find. More
accurately, coherence is defined in [5] in the following way: For ease of writing, a linear
system
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ẋ = Ax+Bu (2.43)
y = Cx+Du (2.44)

is referred to as H , and written as

H =

[
A B
C D

]
. (2.45)

Now, say one has a set of k LTI models

Hl =

[
Al Bl
Cl Dl

]
(2.46)

obtained for fixed operating conditions p = p̃l, l = 1, . . . , k, from a parameter dependent
nonlinear system. The LTI models are said to be represented in a coherent state space form
if their system matrices Al, Bl, Cl and Dl, for l = 1, . . . , k, are evaluations of

H(p, ṗ, ...) =

[
Al Bl
Cl Dl

]
=

[
T (p̃)AS(p̃)T (p̃)−1 T (p̃)BS(p̃)
CS(p̃)T (p̃)−1 DS(p̃)

]
(2.47)

where T (p) is a bounded non-singular continuously differentiable transformation matrix,
depending on the same parameters p that the equilibrium states depend on. The matrices
AS(p), BS(p), CS(p) and DS(p) are the true linear parts of the system dynamics at the
parameter value p. Coherence is usually a problem only in two scenarios. The first is
when the local linearized model is found empirically by fitting to the input-output map of
the system. If the LTI systems are linearizations of the nonlinear dynamics, they should
be coherent. The other scenario is when the LTI systems are acquired through such a
linearization of the nonlinear dynamics, but then reduced to a smaller state space to speed
up computation time. The reduced systems are then unlikely to be coherent unless some
thought was put into the reduction.

Most methods for checking coherence also give rise to the solution to the next problem:
transforming each local linear system so they represent the states in the same way. A
method of checking coherence and finding this transformation is given in [5].

2.5.2 Transforming the reduced systems to a common basis
When LTI systems are reduced to a smaller state space in order to speed up computations,
their reduced systems are typically not reduced in the same manner, meaning a set of
coherent LTI systems with the same basis will have reduced systems that do not represent
the states in the same way. To remedy this one can use a single projection matrix to reduce
all the systems, but this often leads to poor performance in parts of the state space where
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the projection hides some of the important dynamics. A better solution is to transform the
reduced systems into having the same basis. This is done in [21], and an outline of the
method is now given.

Several coherent LTI systems are found for different parameter values pl, l = 1, . . . k:

ẋ(t) = Alx(t) +Blu(t), (2.48)
y(t) = Clx(t). (2.49)

Each of the k models is reduced to nr states using different projection matrices Vl,Wl ∈
Rn×nr . This leads to k reduced order systems

ẋ∗r,l(t) = WT
l AlVlxr,l(t) +WT

l Blu(t) = Ar,lxr,l(t) +Br,lu(t), (2.50)

yr,l(t) = ClVlxr,l(t) = Cr,lxr,l. (2.51)

The LPV system is then found as

ẋr(t) = Arxr(t) +Bru(t), (2.52)
yr(t) = Crxr(t). (2.53)

where

Ar =

k∑
l=1

ωl(p)Ar,l, Br =

k∑
l=1

ωl(p)Br,l, (2.54)

Cr =

k∑
l=1

ωl(p)Cr,l (2.55)

interpolate the reduced order system matrices. Without transforming the reduced systems
in some manner this will however not give good results, as the reduced systems have
different bases and interpolating them might cause odd dynamics. The reader is referred
to [21] for an example of this problem.

Each reduced system can be transformed in the following manner without changing the
input-output behavior

ẋr,l(t) = MlArT
−1
l x∗r,l(t) +MiBlu(t) = A∗r,lx

∗
r,l(t) +B∗r,lu(t), (2.56)

yr,l(t) = ClT
−1
l x∗r,l(t) = C∗r,lx

∗
r,l. (2.57)
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The method seeks to make the reduced systems represent the states in the same manner by
finding Ml’s and Tl’s that do so.

It starts by finding the Tl’s that reproject all the reduced states into a common subspace.
This does however not make the states x∗r,l represent the same thing, since when they are
projected back into the original full state space by x̂ = Vlxr,l = VlT

−1
l x∗r,l they will still

lie in the subspace spanned by their respective projection matrices Vl, and thus not have
the same meaning. To remedy this, the Tl’s are chosen so they make the state vectors x∗r,l
compatible with respect to a subspace spanned by the columns of a matrix K ∈ Rn×q .

Two state vectors x∗r,l ∈ Rq×nr are called compatible w.r.t a matrix K ∈ Rn×nr if the
images of their basis vectors under a transformation Tl ∈ Rnr×nr , backprojecting using
the matrices Vl ∈ Rn×nr and reprojecting into the subspace spanned by the columns of
matrix K, are identical.

The result of choosing the Tl’s in this manner is that starting from a given reduced state
vector x∗r,l, transforming it to a local reduced coordinate system

xr,l = T−1
l x∗r,l, (2.58)

projecting it back to the original subspace using the associated projection matrix Vl,

x̂l = Vlxr,l = VlT
−1
l x∗r,l, (2.59)

and finally reprojecting it to the subspace spanned by the columns of K,

KT x̂l = KTVlxr,l = KTVlT
−1
l x∗r,l, (2.60)

the same vector is obtained for all the reduced systems. The Tl’s that achieve this is

Tl = KTVl, (2.61)

leading to

KTV1xr,1 = KTV2xr,2 = . . . = KTVkxr,k =: x∗r . (2.62)

Note that K needs to be orthogonal in order for this to work, since it needs to be possible
to project the common state vectors x∗r back to the original high dimensional state space by
Kx∗r . It also needs to be chosen such that no transformation matrices Tl become singular.

To choose the K matrix, the method tries to find the nr directions in the state space that
are most important to approximate the dominant dynamics of the involved local models,
where nr is the order of the reduced models. Call the matrix of all the columns of all the
Vl’s for Vall,
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Vall = [V1, V2, . . . , Vk]. (2.63)

Taking the SVD of this gives

Vall = UΣNT , (2.64)

where the first k × nr columns of the orthogonal matrix U form a basis for the subspace
spanned by Vall. Sorting the SVD by the size of the singular values means the basis vector
is sorted by their relative importance, so taking K to be the first nr columns of U means
K captures the most important directions in Vall.

Transforming the systems with the transformation matrices Tl therefore means all the re-
duced systems will backproject the same reduced state to the same state x̂, but still does
not guarantee that the state equations are given with respect to the same basis. The reduced
system dynamics

ẋr(t) = W tAV xr(t) +WTBu(t), (2.65)

lies in the orthogonal subspace of W . If there was a full column rank matrix S ∈ Rn×nr

with the property that

det(WTS) 6= 0, (2.66)

projecting the system dynamics in the following manner

(WTS)−1ẋr(t) = (WTS)−1WTAVXr(t) + (WTS)−1WTBu(t) (2.67)

would map vectors along the orthogonal complement of W onto the subspace spanned by
S. This means that the reduced system’s dynamics would now be rooted in the subspace
spanned by S, without changing the solution xr(t).

Since a full column rank matrix with the above needed property 2.66, K, has already been
found, a reasonable choice for the Ml’s is

Ml := (WT
l K)−1. (2.68)

This, in summary, transforms the state so all the systems backproject the same vector into
the same full state vector and gives all the reduced systems a common basis. The method
thus makes it possible to transform the reduced systems in such a way that they can be
interpolated.
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2.5.3 Independent interpolation of elements
When coherence has been confirmed and the LTI systems are transformed into the same
basis, the LPV system is obtained by interpolation of the LTI systems. The standard way
of doing this is to assume that the elements in the system matrices are independent of each
other and only functions of the parameters p. The problem is then to find the best fit for
each element, that captures the non-linearity without making the LPV too computationally
expensive. Typically one tries to fit a polynomial or some other basis function on the
element, increasing the order of the interpolating function until a trade-off is achieved
between computation time and accuracy. This leads to a mapping between parameters p
and linear system, i.e.

H(p) =

[
A(p) B(p)
C(p) D(p)

]
. (2.69)

This mapping can then be used to get a linear system at each control step, allowing for the
use of linear control methods of a nonlinear system if the control step is small enough and
the interpolation is precise. What step size is small enough and how to measure a good
interpolation is of course non-trivial.
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Chapter 3
Method

In this chapter the development of the system is explained. First it covers the implementa-
tion of the linear MPC, then how the system was reduced to speed up computations, before
the attempts at reducing the change of moments of the turbine are explained. It then goes
on to talk about feed forward MPC using LIDAR measurements and explains the method
used to create a LIDAR noise model to test the performance of the feed forward MPC.
Finally it outlines how the MPC was modified to control a LPV system instead of a LTI
system.

For all the different iterations of the MPC the pitch is restricted to the interval [−2, 30]
degrees (≈ [−0.035, 0.524] radians). In all scenarios the MPC runs an optimization over
the time horizon at each step, but then only the first of the calculated inputs is used. At the
next iteration the optimization is done again with the starting state being the latest state
from the simulation run in parallel with the MPC. In all situations the simulated system
with controller is allowed to converge before any changes in wind is applied.

As explained in section 2.3, the inputs are defined as unitless in this thesis, but input 1
controls the power set point through controlling the generator speed and voltages, while
input 2 controls the motors controlling the collective pitch of the blades.

3.1 Linear MPC

The first step towards a MPC for the STAS model was to make a MPC controlling the
power of a single linearization of the model. Using the CasADI [1] framework, the collo-
cation NLP was set up, and solved via the nlpsolver function, using the IPOPT [32] solver.
The first implementation had the MPC controlling the generator speed and pitch reference
in a stepwise manner. The resulting NLP is equations 2.23-2.26, with the instantaneous
cost
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li(si, vi, qi) = (xref − si)TQ(xref − si), (3.1)

where si, as a reminder, is the state at the ith collocation boundary. Q is all zero except
for the diagonal elements corresponding to the power state. Note that the STAS model
has a power state that is most dependent on the difference between generator and rotor
rotational speed, some voltages and currents in the generator and grid, as well as on the
blade pitch angles and the wind input. The reference is zero except for the power state,
which the system is told to drive towards the rated speed of 10 MW.

The stepwise input lead to the addition of harmonics to the system, so in an attempt at
reducing this addition of harmonics the NLP was set up with linearly changing inputs over
each collocation interval. That is to say, the MPC controls the value of the inputs at the
collocation boundaries, while in between it moves linearly between the boundary input
values. To state it mathematically, if t is in collocation interval i, giving t ∈ [ti, ti+1), then

u(t) = ui +
t− ti

ti+1 − ti
(ui+1 − ui). (3.2)

Another approach that was tested to remove the harmonics, was to add two lowpass filter
states, making the MPC control the inputs to this filter, and having the filter outputs be the
inputs to the turbine. Several tunings for this was tried before good results were achieved.
The first attempt at lowpassing the system inputs was with stepwise input, but linearly
changing inputs to the filter was also tried. With the sample and hold inputs the gains for
the power input filter gave best performance when set to 0.01, while the best gain for the
pitch input filter was found to be 0.1. When using linearly varying inputs to the filter it
was found that the gains could be set a little higher without adding harmonics, but it did
not lead to as good power tracking than with the stepwise input to the filter. In this case
the power filter gain was set to 1 and the pitch filter gain set to 0.3.

The inclusion of the lowpass filter states gave better results, but also made the system more
computationally heavy, and it was no longer possible to keep the MPC running in real time
without removing all but two of the control intervals, which gave very poor performance.
In addition, the author believed that having the MPC control set points of a PI controller
might lead to better performance, but this would mean increasing the computation time
even more as it meant adding two more states. Therefore the next step was to reduce the
system to fewer states.

3.2 Model reduction
To make the system run in real time the linearized system had to be reduced to fewer states.
Real time in this thesis refers to being able to finish calculating the optimal input to the
system before the next input is demanded. If the time horizon of the MPC is T seconds
divided intoN intervals, then this definition of real time capability implies that the optimal
input should always be found in less than T/N seconds.
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To achieve this the system was first reduced with balanced reduction using the tbr function
of the sssMOR [6] toolbox, but it could not be reduced to any less than 62 states without
loss of convergence to the desired power. This setup had the MPC control a lowpassed
input, and two of the states where therefore the internal states of this filter.

The system was then reduced with PCA, by simulating the system with constant input
for 120 seconds, at step size of 0.01, giving 12000 snapshots. Every 10th of these were
collected into a snapshot matrix containing 1200 snapshots. An ordered SVD transfor-
mation of this matrix was made using MATLAB’s svd function. Taking only the twenty
first columns of the V matrix in the svd(see section 2.4.1) gave a projection matrix used to
project the system down to only 20 states, which allowed the MPC to run in real time with
as much as 20 control intervals on a 40 second time horizon.

The result of this was a system reduced from 103 states down to only 22 states, since two
states was added back in to serve as the states of the filter used to lowpass the input. The
resulting controller ended up converging fast, but with a small bias. This is a typical case
where including a PI filter would give better performance, so this was implemented next.

3.2.1 Controlling PI set points
To remove the bias stemming from the error in the reduction, the MPC was made to control
the set points of a PI controller controlling power and pitch. The time horizon was 25
seconds with 5 control intervals, which gave a run time with a mean of 0.35 seconds and a
max of 0.548 seconds, meaning it only used 33.33 seconds of CPU time for a simulation
lasting 500 seconds. This leaves room for more sophisticated methods, like feed forward
wind measurements, and extending the prediction model to a LPV system.

3.3 Reducing moment derivatives
To reduce fatigue, it is desirable to reduce the change in the moments of the different parts
of the wind turbine. An attempt at making the MPC achieve this was done by putting a
cost on the derivative of the moments of the blade roots and the tower nodes. This did
however only lead to a slightly faster convergence to zero of the moment derivatives, but
made the power tracking much worse. No further attempts at reducing the fatigue was
therefore undertaken.

3.4 LIDAR feed forward
With modern LIDAR or RAdio Detection And Ranging (RADAR) sensors, it is possible
to use the reflection of electromagnetic waves off small particles in the air to remotely
estimate the wind speed. There are now several companies specializing in such sensors for
wind turbines. Especially LIDAR sensors have become popular.

According to [25] simulations show that the Root Mean Square (RMS) error between
measured and actual wind speed is 0.26 m s−1 below 50 m from the rotor and 0.62 m s−1

at 275 m from the rotor. In [19] the deviation between a LIDAR system and a laser Doppler
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Figure 3.1: Side view of a simplified version of the wind measurement field from a hub mounted
LIDAR with 10 measurement planes. The fact that each measurement plane consists of several
vertical slices is not possible to see on the drawing as each vertical slice is situated behind each other
in this side view.

anemometer was found to be below 0.1 %. According to [4], using state of the art LIDARs,
it is possible to get an estimate of the wind speed that is within 0.5 percent of the wind
speed measured with a mast top-mounted cup anemometer at 2.5 rotor diameters upstream
of the turbine. The DTU 10 MW reference turbine considered in this thesis has a rotor
diameter of 178.3m m, which would mean this error would be at 445.75 m, which is 45.75
m further than the LIDAR in this thesis measures. So it therefore seems likely that the
LIDAR will provide some upstream wind velocity information, and thus be beneficial.

Following the specs of the ZX-TM, a state of the art hub mounted LIDAR from ZX LI-
DARS [34], such a sensor gives 10 measurement planes equally spaced between 10 m and
400 m away from the sensor. The measurement planes consists of measurements of the
component of the wind speed moving towards the sensor, divided into 10 vertical slices
with 30 point measurements in each slice. A simplified side view of this is illustrated in
figure 3.1. Placing this sensor at the nacelle, pointed out between the blades, gives 10
measurement planes aligned with the turbine’s plane of rotation. It measures at 50 Hz, a
rate much higher than how often the MPC will be updated, so it is assumed that the MPC
has fresh measurements each iteration.

Because of how STAS simplifies the actual wind field at the rotor plane into a single mean
rotor plane orthogonal velocity, the measurement planes from the LIDAR are only used for
their mean value. These measurements represent an estimate of the mean of the orthogonal
part of the wind speed, v̂(l), as a function of distance from the rotor plane, l, sampled at
the measurement distances l = [l1, . . . , lk].

To make this information usable for the MPC, it is necessary to convert this to an estimate
of the mean wind speed at the plane of rotation as a function of time, v̂(t). The κ mea-
surements v̂j,space = v̂(lj), ∀j = 1, . . . , κ, could give rise to κ estimates v̂j,time = v̂(tj)
of the wind speed at the nacelle at times t = [t1, . . . , tκ], if one could somehow estimate
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how the speed of the measured wind planes would change as it moves towards the nacelle
and also when they would arrive at the nacelle. The latter of these two is rather easy if the
former estimate is good.

To reformulate the latter question: If one knows the starting position, lparticle,0, of a
particle on a line and what the speed, vparticle(t), of the particle along the line will be
for all times, how does one find the time, timpact, where it hits l = 0? This is equivalent
to setting the origin of the position axis at the starting position of the particle, and finding
when the particle arrives at l = −lparticle,0. This leads to the following equation

lparticle,0 = −
∫ timpact

0

vparticle(t)dt. (3.3)

Solving this equation for timpact will then give the answer.

If the effect of the blades on the wind is neglected a rather simple, yet efficient approx-
imation for the evolution of the speed of this particle would be to assume that the speed
remains constant. This would simplify equation 3.3 to

lparticle,0 = −
∫ t

0

vparticle(0)dt = −vparticle(0)timpact, (3.4)

which leads to the following expression for the time when the particle hits the turbines

timpact =
−lparticle,0
vparticle(0)

. (3.5)

This would mean that the mean wind velocity at the rotor plane at time timpact could
be approximated as vparticle(0). In other words, if the velocity of each particle does not
change as it approaches the turbine, the transformation between measured velocities in
space, vκ,space, at time tmeas, and estimated velocities at the nacelle at time t, is the
transformation tκ = tmeas − lκ/vκ,space. Note here that the positive x-axis is pointing
out from the hub, so assuming the turbine is oriented against the wind, vκ,space is always
negative.

Of course in reality the velocity of each particle does not remain constant. The assumption
about constant velocity could still be argued to be the best estimate one has if the effect
of the turbine blades was negligible and no more information was given. The effect of the
turbine blades does, however, need to be accounted for, as a wind turbine extracts energy
from the wind by shedding velocity from it.

To account for the effect of the turbine on the wind speed measurements, the upstream
wind speed from vortex sheet theory could be used. Note that none of the simulations in
this thesis include this effect. This is because any such effect would simply be removed
again in the controller, and therefore not give any indication of the whether the system
for accounting for it works. However, in a real controller this effect would need to be
accounted for, and a method for doing so is therefore now included for completeness.
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The upstream wind velocity can be approximated by equation 2.7. In [17] some error is
observed between the experimental results and this model, but it is rather small, in the order
of 2-4 % in the l/D = −2 range. This error should be dominated by the measurement
noise from the LIDAR.

This model for how the wind velocity changes as it approaches the rotor could then be
used to predict the mean wind speeds that will hit the rotor blades. To achieve this, one
must find the velocity that the measured wind plane will have when it hits the rotor, and at
what time it hits the rotor. First the different v∞ for each measurement is found by solving
2.7 for V∞

v∞ =
V (lmeas)

1− a[1− lmeas

R (1 + ( lmeas

R )2)−1/2]
. (3.6)

This can then used to find the velocity at the time of impact

v(x = 0) = v∞(1− a), (3.7)

and the velocity of the measured wind plane at all velocities l as

v(l) = (1− a[1− l

R
(1 + (

l

R
)2)−1/2])v∞. (3.8)

The time of impact of each of these measured wind planes can then found by integrating
using Euler’s method

xκ+1 = lκ + v(lκ)dt (3.9)
tκ+1 = tκ + dt (3.10)
t0 = tmeas (3.11)
l0 = lmeas (3.12)

until lκ+1 ≤ 0. The time of impact is then approximated as timpact ≈ tκ+1, which will
give a good approximation if dt is sufficiently small.

Using the ZX-TM LIDAR and equation 3.5 gives predicted mean velocities, v̂i,time, i ∈
[1, 10], at the rotor plane for 10 future time points, t = [t1, ..., t10]. These are then
smoothed using a lowpass filter, making sure that the speed at the nacelle at the mea-
surement time is unchanged. Then these velocities are interpolated using a second-order
spline preserving the first derivatives. This velocity as a function of time is then used in
the prediction step of the MPC.
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3.4.1 Measurement noise and filtering

Zero mean Gaussian noise was then added to each measurement, with the power of the
noise increasing linearly as a function of distance from the turbine to account for the fact
that measurements should give less information about future wind inputs the further away
they are. To combat this increased noise, the predicted wind inputs stemming from the
measurements where filtered with a lowpass filter with cutoff frequency of 0.1. All the
resulting smoothed wind speed predictions where then given a correction to make the
current wind speed match the last applied wind input. The reason for not adding any noise
on the current rotor plane average velocity estimate is that any error in this estimate will
affect the PI controller as well as the MPC, since the estimated power output of the turbine
is a function of the same estimate of the rotor plane average velocity. On many turbines
this estimate is made by a wind observer using the measured generator and rotor speed
together with the measured pitch, by inversion of a static aerodynamic model [20].

3.4.2 Finite difference noise model

In order to more robustly test the performance of the feed forward MPC a more realistic
noise model is needed. The main problem with simply adding white noise on each mea-
surement at each step is that it neglects some of the spatial and temporal correlation that
would be seen in real LIDAR measurements. The solution that ended up being imple-
mented used a finite difference scheme to solve the transport equation

∂α

∂t
+ c

∂α

∂x
= 0, (3.13)

with some modifications that will be explained below.

The main idea is to discretize the space 800 m in front of and behind the wind turbine
into 200 states, αi, i ∈ [1, 200], representing the mean velocity of the wind plane at each
of the distances and then getting an approximation of the rate of change of each of these
velocities through a finite difference approximation of equation 3.13. At first a first order
centered approximation was tried, which has the following expression

∂αi
∂x
≈ αi+1 − αi−1

2d
, (3.14)

where d is the distance between the states. Plugging this into eq. 3.13 and rearranging
gives the following approximation of each of the states derivative

∂αi
∂t
≈ αi−1 − αi+1

2d
. (3.15)

This gives a state space representation
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α̇ =
1

2d



0 1 0 0 . . . 0 0
−1 0 1 0 . . . 0 0
0 −1 0 1 . . . 0 0
...

...
. . . . . . . . .

...
...

...
. . . . . . . . .

...
0 0 0 . . . −1 0 1
0 0 0 . . . 0 0 0


α+
−1

2d



1
0
0
...
...
0
0


w, (3.16)

where w is the inlet velocity driving the changes to the rest of the states. The state furthest
downwind of the rotor is set to have zero derivative, so it remains at the starting value
of 14 m s−1. Because of the first order approximation the system is unstable when time
simulated with Euler integration, leading to some very unphysical wind velocities of above
100 m s−1 in some parts of the state space. A second order forward difference,

∂αi
∂x
≈ −αi+2 + 4αi+1 − 3αi

2d
, (3.17)

was therefore used instead, giving the following approximation of the state derivative

∂αi
∂t
≈ αi+2 − 4αi+1 + 3αi

2d
. (3.18)

This produces the state space representation

α̇ =
1

2d



−4 1 0 0 . . . 0 0
3 −4 1 0 . . . 0 0
0 3 −4 1 . . . 0 0
...

...
. . . . . . . . .

...
...

...
. . . . . . . . .

...
0 0 0 . . . 3 −4 1
0 0 0 . . . 0 0 0


α+
−1

2d



1
0
0
...
...
0
0


w. (3.19)

Time integrating this equation with first order Euler integration with only a step input as
the inlet velocity w gives the state velocities as a function of time and distance from rotor
seen in figure 3.2. Note that the figure only shows the states located between 0 and 600
meter upstream of the rotor. The velocity at zero distance from the rotor is the velocity at
the rotor plane that is used for all subsequent simulations as the actual rotor plane average
wind velocity. All inlet noise, process noise and gusts are added to a separate velocity state
space obeying the same dynamics in eq. 3.19, that is sampled at the measurement distances
to get the LIDAR measurements. The rationale is that adding inlet noise to this measured
velocity state space will give correlated noise propagating towards the rotor, while process
noise will simulate the uncorrelated variation in the measured wind speed. The added
gusts are thought to further test the robustness of the controller, possibly thought of as a
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Figure 3.2: Wind velocity as a function of distance from rotor and time, without any noise. The
input to the simulation is given by the velocity at zero distance from the rotor.

gust moving into the LIDAR measured volume but then not hitting the rotor plane. How
these disturbances are added is now explained.

Noise is added on the inlet by adding zero mean Gaussian noise to the inlet velocity. Pro-
cess noise is added by adding uncorrelated zero mean white noise to all the state deriva-
tives. What will be referred to as gust is inserted by giving a temporary increase to the
derivative of a state upstream of the rotor. In the most extreme case depicted in the results
the Gaussian inlet noise has a power of 2, the process noise has a power of 0.5 while the
gust is an increase of 10 m s−2 to the derivative of the state at 350 m upstream, lasting
for 4 seconds. The velocity state space that the LIDAR measures from is plotted in figure
4.15.

3.5 Linear Parameter-Varying System
Since the full wind turbine system is highly nonlinear, the LTI system acquired by lineariz-
ing the STAS model will only be valid in a small region around the linearization point. A
LPV system is created by interpolating many of these linearization points to account for
the non-linearity. Since the steady state equilibrium points of STAS only depends on two
parameters, the mean wind input to the system and the fraction of actual power output to
the rater power, this process does not need to linearize for all state values, only for the
parameters.

The full system was linearized for all combinations of ten different values for the two
parameters, spanning the whole range of possible parameter values. This gave a grid of
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100 linear systems, equally spaced throughout the parameter space. Coherence between
the systems is assumed, since these systems came from high precision linearizations of the
nonlinear model. Thus the process of obtaining the interpolated LPV system was now just
a matter of interpolation. The linearization process took three days each time, but after
many attempts where some bug caused the structure of the linearized systems to become
unphysical for some parameter values, the project was abandoned due to time constraints.
A smaller set of three verified linearizations was provided by SINTEF, linearized at mean
wind speeds 14 m s−1, 12 m s−1 and 8 m s−1, and it was decided to use these instead. This
lead to a less-than-ideal interpolated system, but at least it allowed further investigations
into whether the main ideas worked.

Following the standard approach in the literature, each element in each of the system
matrices was assumed to only need to be fitted with the same element from the other
linearization points. The original idea was to choose the order of the interpolating polyno-
mials by finding a tradeoff between computation time, memory use and some error norm
on the transfer function. But since the LPV ended up being constructed from only three
linearizations, all at the same percent power output, the interpolating polynomial ended up
being of order three, interpolating the system as a function of the mean wind input.

This gave a mapping between parameters and LTI systems for all possible parameter val-
ues. At the start of each MPC iteration, the current parameters are used to give the current
LTI system, which is then used by the MPC to predict the system behavior. To allow a
similar performance and computation time as for the single linearization, this system also
needs to be reduced. The first reduction attempt was with a single projection matrix since
an interpolation of several reduced systems does not work unless the reduced systems are
transformed in some manner first. The optimal projection matrix was found by creating
and concatenating the snapshot matrices for all linearized systems and using this to create
the PCA based projection matrix as explained in 2.4.1. This was then applied at each step
to the current linearized system, to give a reduced system. This reduced system was then
used by the MPC to control the set points of the PI regulator, like before. This did however
not lead to satisfactory power tracking. Adding a cost on the rate of change of the inputs
made the power tracking made the system stable, but the power tracking was still very bad,
so a better solution was sought after.

Instead of using only one static reduction, each system was reduced and transformed ac-
cording to the discourse in section 2.5.2. The reduced systems could then be interpolated,
which was done in a similar manner to the full system interpolation.
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Chapter 4
Results

This chapter details the results that came out of the work done for the thesis. It first shows
the response of the different flavors of the full linear MPC, before the results of the model
reduction are presented. Then the response of the feed forward MPC is displayed, includ-
ing the performance of feed forward MPC on the finite difference noise model. After this
the performance of different controllers on the interpolated LPV system is demonstrated,
before ending with the MPCs performance with regards to fatigue reduction.

In all the tested systems and scenarios the tuning of the PI controller is the same. This
is deliberately done so this does not cause any unfair advantage to any of the controllers.
Furthermore, in the full linear case, the scenarios testing the linear reduced systems, as
well as the scenarios detailing the attempts at reducing the moment derivatives, the MPC
has a time horizon of 25 seconds divided into 5 control intervals.

4.1 Full linear system
In this section the results of different variations of the full linear MPC can be found.

The MPC predicting using the full linear system, controlling a stepwise input, gave the
results seen in figure 4.1. The power tracking is poor, and contains a lot of jumps as the
system does not respond well to jumps in the input.

Running the MPC on the full linear system with the MPC controlling a filtered input gave
the plots seen in figure 4.2.

Running the MPC on the full linear system with linearly changing inputs gave the plots
seen in figure 4.3. This lead to worse power tracking capabilities than the lowpassed input,
but less jitter on the system. A hybrid version was therefore implemented, with the MPC
controlling linearly varying inputs to a filter, the output of which is used as inputs to the
system. This lead to the performance seen in figure 4.4. Lowpassing the input looked
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Figure 4.1: System response of linear MPC using full system for predictions, with step inputs to the
system.

promising, and gave hope of good performance if the MPC were to control the set points
of a PI controller. It did however suffer from long computation times, meaning it could
not run in real time. The next step was therefore to reduce the system to fewer states, the
results of which are covered in the next section.
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Figure 4.2: System response of linear MPC using full system for predictions, with the MPC con-
trolling filtered inputs to the system.
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Figure 4.3: System response of linear MPC using full system for predictions, with linearly varying
inputs.
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Figure 4.4: System response of linear MPC using full system for predictions, with the MPC con-
trolling linearly changing inputs to a filter. The output of the filter is the input to the system.

4.2 System reduction
To make the system run in real time the linearized system had to be reduced to fewer
states. The system was first reduced with balanced reduction, but it could not be reduced
to any less than 62 states without loss of power tracking. The system performance with this
reduction scheme can be seen in figure 4.5. Note that here the MPC controls a lowpassed
input, and two of the states are therefore the internal states of this filter.

The system was then reduced with PCA, resulting in a system that could be reduced down
to only 22 states, where two of the states where states of the filter used to lowpass the
input. The result can be seen in 4.6. The results can be seen to track the power reference
well before the jump in wind speed, but gives a bias after.

To remove the bias stemming from the error in the reduction, the MPC was made to control
the set points of a PI controller. This resulted in convergence, as can be seen in figure 4.7.
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Figure 4.5: System response of MPC with predictions using system reduced to 62 states with bal-
anced reduction. The time horizon is 25 seconds divided into 5 control intervals.
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Figure 4.6: System response of MPC with predictions using system reduced to 22 states with PCA.
The time horizon is 20 seconds divided into 5 control intervals.
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Figure 4.7: System response of MPC with predictions using system reduced to 24 states with PCA,
controlling set points of PI controller. The time horizon is 25 seconds divided into 5 control intervals

4.3 Feed forward wind measurements
To predict future wind inputs to the system and adjust the controls ahead of time, LIDAR
wind measurements where simulated and used in the MPC’s predictions. To better illus-
trate the behavior of the system and its advantage over a pure PI controller, the wind input
is now a ramp function instead of a step. The resulting behavior of a simple PI controller
can be seen in figure 4.8, while the response of the MPC controller without feed forward
can be seen in figure 4.9. Finally the response of the feed forward MPC can be seen in
figure 4.10. As the plots show, the feed forward from the LIDAR measurements lead to
a large improvement in power tracking capabilities. The root mean square error between
actual and desired power for the three different controllers can be seen in table 4.1, and
further illustrate this point.

Controller description ERMS
Simple PI controller 1.7502

MPC without feed forward 1.7504
MPC with perfect feed forward 0.0979

Feed forward MPC with uncorrelated Gaussian noise 0.3279
Table 4.1: Root mean square error between actual and desired power for different controllers and
noise models, showcasing the benefits of LIDAR feed forward.

This performance is assuming the LIDAR measurements of the wind speed are perfect
measurements of the mean wind speed of the planes of wind at the measurement distances.
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Figure 4.8: PI controller responding to ramp wind input.

In the next step, additive white noise was added to each measurement at each iteration,
and the resulting performance can be seen in figure 4.11. The white noise had a power
changing linearly between 0.01 at 10 m to 0.02 at 400 m. To counteract the noise the
measurements are filtered in the prediction with a lowpass filter with cutoff frequency of
0.1.

Since uncorrelated white noise is not a realistic noise model for turbulent wind speed
measurement, a more sophisticated noise model was incorporated, using Finite Differ-
ence Method (FDM) techniques to solve the transport equation. A simple PI controller
responding to the wind seen in figure 3.2 is plotted in figure 4.12. The same wind input to
the system was controlled by a feed forward MPC with simulated LIDAR measurements
from a separate FDM velocity state space with Gaussian inlet noise with a power of 1. The
velocity state space can be seen in figure 4.13 while the response of the controller is shown
in figure 4.14.

Similarily, figure 4.15 contains a plot of a velocity state space with inlet noise with power
of 2, process noise with a power of 0.5 and a gust giving a 10 m/s2 increase to the deriva-
tive of the velocity state located 350 m upstream of the rotor, lasting for 4 seconds. The
response of the controller when the LIDAR measurements come from this velocity state
space is illustrated in figure 4.16.

The RMS error of the pure PI controller and the two variations of the noisy finite difference
based measurements can be seen in table 4.2.

The feed forward controller has lower RMS error than the pure PI controller, even in the
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Figure 4.9: MPC without feed forward responding to ramp wind input. The MPC controls PI set
points, and has a time horizon of 40 seconds divided into 15 control intervals.
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Figure 4.10: Feed forward MPC with noiseless LIDAR measurements responding to ramp wind
input. The MPC controls PI set points, and has a time horizon of 40 seconds divided into 15 control
intervals.
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Figure 4.11: Feed forward MPC with LIDAR measurements with additive Gaussian noise, respond-
ing to ramp wind input. The MPC controls PI set points, and has a time horizon of 40 seconds
divided into 15 control intervals.

presence of gusts, inlett- and process noise on the measured wind state space. Note that
the actual input to the system does not have the have these effects.

Controller description ERMS
Simple PI controller 2.0135

Feed forward MPC with inlet noise 0.3605
Feed forward MPC with gust, inlet and process noise 0.4660

Table 4.2: Root mean square error between actual and desired power, comparing pure PI control
over feed forward MPC with finite difference noise.

41



0 50 100 150 200 250

Time [s]

 9.900

 9.950

 10.000

W
a
tt

 [
M

W
]

Power [MW]

Actual

Desired

0 50 100 150 200 250
Time [s]

-0.004

-0.002

 0.000

A
n
g
le

 [
ra

d
]

10
-2 Pitch [rad]

0 50 100 150 200 250
Time [s]

  9.00

 10.00

 11.00

In
p
u
t

Input 1

0 50 100 150 200 250
Time [s]

 -1.00

  0.00

  1.00

In
p
u
t

Input 2

0 50 100 150 200 250
Time [s]

  2.70

  2.80

  2.90

  3.00

R
o
t.

 s
p
ee

d
 [

ra
d
/s

]

Rotor speed [rad/s]

0 50 100 150 200 250
Time [s]

 13.00

 13.50

 14.00
V

el
o
ci

ty
 [

m
/s

]

Wind speed [m/s]

Figure 4.12: Pure PI controller responding to the same input wind as the feed forward MPC con-
trollers seen in figures 4.14 and 4.16.
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Figure 4.13: Measured wind velocity as a function of distance from rotor and time, with Gaussian
noise on inlet. Note that the added Gaussian noise at the inlet of the state space gives correlated
noise propagating towards the rotor. This profile is then measured at the 10 measurement distances
spaced equally between 10 and 400 meters from the rotor.
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Figure 4.14: Feed forward MPC with LIDAR measurements from the wind profile seen in 4.13.
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Figure 4.15: Measured wind velocity as a function of distance from rotor and time, with Gaussian
noise on inlet, process noise between wind states and an added gust. This profile is measured at the
10 measurement distances spaced equally between 10 and 400 meters from the rotor.
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Figure 4.16: Feed forward MPC with LIDAR measurements from the wind profile seen in 4.15.

4.4 Interpolation
In order to better approximate the behavior of the nonlinear system, a parameter-varying
system created by interpolation of linearized systems for three different wind speeds was
created.

Both of the systems exposed below use feed forward with perfect LIDAR measurements
and have a cost function that penalizes a difference between subsequent inputs. They both
use a time horizon of 25 seconds divided into 5 control intervals.

4.4.1 Interpolation of full system
The system was linearized for three different wind speeds, and then each element of the
system matrices was interpolated separately. The optimal projection matrix was found
and applied at each step to the current linearized system, to give a reduced system. This
reduced system was then used by the MPC to control the set points of the PI regulator,
like before. This resulted in a loss of power reference tracking, most likely because the
reduction was not well suited for all operating points, thus making some of the important
dynamics be hidden from the MPC’s predictions. The result can be seen in figure 4.17.
Note that the controller in this case pushed the pitch to its lower limit, which also would
have caused the controller to have less operating room if another change in wind would
occur.

Using a simple PI controller on the interpolated system gives much better performance, as
can be seen in figure 4.18. It did however lead to the rotor speed increasing when the wind
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went from 14 m s−1 to 13 m s−1. In all the other scenarios and for all the other controllers
the rotor speed has gone down. The author found this very peculiar, but found no other
explanation than that it too is an artifact of the interpolation and its lack of precision.

4.4.2 Interpolation of reduced system
Instead of interpolating the full system and using a single projection matrix to reduce the
system, the different linearization points where reduced, transformed to a common basis
according to the method in section 2.5.2 and then interpolated. Running the MPC on this
reduced system with the interpolated full system as the real simulated system gave the
results seen in figure 4.19. The RMS power error improved compared to both the MPC
with a single projection matrix and to the simple PI controller, but the controller ended
up with a small bias. The author does not know exactly why the bias occurred, but it
seems plausible that it stems from the interpolation in some manner. The RMS error for
the three cases can be seen in table 4.3. This lead to better power tracking than the simple
PI controller run on the full interpolated system.

Controller description ERMS
Simple PI controller 10.6732

Feed forward MPC with interpolated full system and only one reduction 3.7638e+03
Feed forward MPC with interpolated reduced system 6.5850

Table 4.3: Root mean square error between actual and desired power for three different controllers,
controlling the interpolated full system.
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Figure 4.17: System response when running MPC using the interpolated full system with only one
static projection matrix for predictions and the interpolated full system as actual system dynamics.
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Figure 4.18: System response when using a PI controller on the interpolated full system.

46



0 50 100 150 200 250

Time [s]

 10.00

 10.20

 10.40

W
a
tt

 [
M

W
]

Power [MW]

Actual

Desired

0 50 100 150 200 250
Time [s]

  0.00

  5.00

 10.00

 15.00

A
n
g
le

 [
ra

d
]

10
-2 Pitch [rad]

0 50 100 150 200 250
Time [s]

  9.90

 10.00

 10.10

 10.20

 10.30

In
p
u
t

Input 1

0 50 100 150 200 250
Time [s]

  0.00

  0.05

  0.10

  0.15

In
p
u
t

Input 2

0 50 100 150 200 250
Time [s]

  2.70

  2.80

  2.90

R
o
t.

 s
p
ee

d
 [

ra
d
/s

]

Rotor speed [rad/s]

0 50 100 150 200 250
Time [s]

 13.00

 13.50

 14.00
V

el
o
ci

ty
 [

m
/s

]

Wind speed [m/s]

Figure 4.19: System response when running MPC using interpolated reduced system for predictions
and interpolated full system as actual system dynamics.

4.5 Moment reduction
To reduce fatigue, it is desirable to reduce the change in the moments of the different parts
of the wind turbine. An attempt at making the MPC achieve this was done by putting a cost
on the derivative of the moments of the blade roots and the tower nodes. This did however
only lead to a slightly faster convergence to zero of the moment derivatives, but made the
power tracking much worse. The reason for this might be the fast dynamics of the moments
compared to the step size in the MPC, or because of some inherent uncontrollability of the
moments in the STAS simulator. The RMS errors between desired and actual states with
and without the cost on the moment derivatives can be seen in 4.4.

The moment derivatives and other relevant states for MPC with only a cost on the power
error can be seen in figure 4.20, and with a cost on both the power error and the moment
derivatives in figure 4.21. Note that a wide range of costs was tried, and the shown per-
formance is with the cost that gave the largest reduction in the RMS value of the moment
derivatives. In both these cases the MPC controls lowpass filtered inputs.

State ERMS with cost ERMS without cost
Power 35.7951 1.2205

Blade root moment derivative 607.9099 642.4736
Tower moment derivative 1.3149e+04 1.3155e+04

Table 4.4: Root mean square error between actual and desired states with and without a cost on the
blade root and tower moment derivatives.
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Figure 4.20: System response to a step input in wind without cost on any of the moment derivatives.
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Figure 4.21: System response to a step input in wind with cost on the moment derivatives of the
blade root and tower..
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Chapter 5
Discussion

The results and the work done for this thesis leads to some interesting observations, which
will now be discussed.

5.1 The importance of model reduction
To make the MPC work in real time a reduction of the state space was needed. This did not
lead to a noticeable decrease in performance, even when reduced from 103 states to 24. It
would seem like a lot of the dynamics are nonessential to the MPC and the control problem
at hand. Reducing the system in this manner lead to more computation time available for
more advanced control schemes, and was necessary to make real time feed forward MPC
with PI set point control possible.

5.2 Controlling PI set points
This leads to the next discussion point, that controlling the PI set points gave better per-
formance than making the MPC control the inputs to the system directly. This is possibly
because the PI controller then handles some of the fast dynamics, while the MPC takes
care of constraint handling and wind preview using the LIDAR measurements. In most
wind turbine applications of MPC this seems like the way to go, as it gets the benefits
from both MPC and PI control.

5.3 LIDAR cost/profit analysis
Another subject of discussion is whether or not a LIDAR is worth investing in. It can
be rather costly, so it needs to give an economic advantage that outweighs the cost. In
the simulation it can be seen that both in the case of perfect measurements, and even in
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the presence of a non-negligible amount of noise, the feed forward MPC gives substantial
decrease in power error. In most real grids a deviation in both the positive and negative
direction from the desired power set point leads to a financial penalty. To make a rather
simple initial estimate of this penalty, lets assume that it is the same both in the positive
and negative case, and set it equal to the price of the lost revenue from selling the power.
Assume first that a change in wind input like the one in 4.8 occurs once every minute. This
is a rather conservative estimate, as can be understood by looking at for example the real
wind speed measurements from the 85 m high wind turbine in figure 13a in [31], where
the wind speed clearly fluctuates a lot more than this assumption. The megawatt hours lost
from such an event is calculated by

∆MWh =

T∑
k=1

abs(Pk − Pref )dt, (5.1)

where T is the time needed for the error to converge to zero, Pk is the power at time interval
k, Pref is the desired power and dt is the time step in hours. Calculating this for the power
controlled by the PI controller in figure 4.8 gives a loss of 3.2463e-04 MW h. For the noisy
feed forward in figure 4.11 this calculation gives 1.1261e-04 MW h. Assuming such an
event occurs every other minute the loss of energy in a year is 169.7635 MW h for the PI
and 59.1878 MW h for the MPC. That is to say, with the noisy feed forward, 169.7635 -
59.1878 = 110.5757 MW h more energy could be sold each year. According to [30] the
average energy price in the CWE region (The Netherlands, Belgium, Germany, France and
Austria) in 2018 was about 50 euro per MW h. Taking this as the electricity price leads to
an average increase in revenue

∆revenue = 110.5757× 50 = 5528.8 euro (5.2)

each year. It has proven difficult to get an estimate of the price of nacelle mounted wind
turbine LIDARs, since one has to be an actual company owning wind farms for the LIDAR
companies to give a price offer. However, assuming it costs around the same as a high per-
formance LIDAR for Simultaneous Localization And Mapping (SLAM) and remote object
sensing applications, like the Ouster OS-1 [22], it would cost around 10 000 USD. This
means that in two years the LIDAR will have given an increase in profit. And this is as-
suming such a gust only occurs every minute, and that no other use, like yaw-optimization,
can be found for the LIDAR measurements.

5.4 Accuracy of simulated LIDAR measurements
Now that the cost of the LIDAR has been justified assuming the simulation results are cor-
rect, a discussion of the accuracy of the simulated LIDAR measurements is needed. First
of all, the simulated LIDAR only measures at the distances that the ZX-TM LIDAR [34]
measures at, thus it does not have the full future wind input, only a subset of the current
wind speed as a function of distance from the rotor. This is, however, better information
than a real LIDAR would give, as in a real situation the measurements would also have
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an error compared to the real wind plane average velocity. This is partially accounted for
by the addition of white noise to each measurement, but since the real measurement noise
most likely would not have a Gaussian distribution and also be correlated in some manner,
the filtering would not work as well as in the simulation. What is worse, the real wind field
would change as it approaches the rotor, thus meaning that even with perfect measure-
ment of the instantaneous velocity as a function of distance from rotor the predicted future
mean wind speed hitting the rotor would not be exact. An attempt at simulating this effect
is what is done with the finite difference noise, but although the MPC proved to handle this
kind of noise and thus gives hope that it would work on a real turbine, empirical studies
are still needed to verify.

5.5 Discussion of control of LPV system
In the work done for this thesis it was shown that the MPC using an interpolated reduced
system gave better performance than the PI controller, when applied to the full interpolated
LPV system. This gives hopes that the MPC would work on the full nonlinear STAS
model, as the LPV system is a closer approximation of the nonlinear model than the single
LTI system. However, it would be a huge benefit to be able to test this on the STAS model
directly, so making the STAS model possible to simulate in the time domain should be a
main focus if this work is taken further. Also a better interpolation using a larger set of
linearized systems would be beneficial.

5.6 STAS not directly suitable for fatigue reduction using
MPC

The results of trying to reduce the moment derivatives of the STAS model, as seen in
figures 4.21 and 4.20, do not give much hope for fatigue reduction with MPC on the
current iteration of the STAS model. The moments are not controllable, and to be able
to have an impact on the magnitude of the moment derivatives the goal of power tracking
has to more or less be ignored. Even then, the reduction of the magnitude does not seem
to reduce the amount of zero crossings of the moment derivatives, which according to
[29] is the main cause of fatigue on wind turbines. This leads to the conclusion that in
the current state, STAS is not well suited for fatigue reduction using MPC. This might be
because of a lack of controllability of the moments in the STAS model or because of the
much faster dynamics of the moments compared to the MPCs time discretization. Another
plausible reason for the lack of moment control is that STAS might not add the proper
moments to the system, maybe since the wind input has been simplified to a single mean
wind velocity.
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Chapter 6
Conclusion

In this thesis a MPC was developed for STAS, SINTEF’s offshore wind turbine simulator.
The first iterations used a single linearization of the STAS model, controlling the generator
speed and collective pitch of the blades. To achieve better performance, several different
types of inputs were researched, from step-inputs, to lowpassed inputs and linearly varying
inputs before finally settling on making the MPC control set points of a PI controller,
regulating power and pitch.

The main objective for the MPC is to track a desired power output, but an attempt at reduc-
ing the fatigue through minimizing the moment derivatives was also done. This did how-
ever not prove promising, possibly because of a lack of controllability of the moments in
the STAS model or because the moments have faster dynamics than the time-discretization
of the MPC.

To speed up computation time and give room for more advanced control schemes, the
model was reduced. First it was reduced from 103 to 62 states with balanced reduction
and then down to 24 states with PCA. This made it possible to make more predictions each
step while keeping the system real time capable.

A large improvement in power tracking error was seen when feed forward MPC was imple-
mented using simulated LIDAR measurements, following the specifications of a ZX-TM
nacelle mounted LIDAR. It lead to a fivefold reduction in RMS error even in the presence
of a non-negligible amount of additive gaussian noise on the measurements. Another noise
model was also implemented, using a finite difference scheme to simulate correlated noise
that changes as it approaches the rotor. Also in this case the system gave a substantial
reduction in the RMS error. A subsequent analysis of the cost and benefits of investing
in a LIDAR showed that even in a rather conservative estimate the LIDAR should pay for
itself within two years.

Finally a LPV system was created from interpolations of several linearizations of the STAS
model. The system did not behave well when only one static projection matrix was used
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to reduce the system in all operating conditions. Better performance than the PI controller
was achieved when each linearization was reduced separately and transformed into a form
where they could be interpolated. The resulting reduced size LPV system proved to be
good enough for predictions to give a lower RMS power error than the PI controller, when
using the full interpolated system as the simulated real system.

The above results and discussion leads the author to conclude that MPC, especially when
coupled with LIDAR wind measurements, is a promising subject of research for better
power tracking and energy capture in offshore wind turbines, as well as to achieve grid
stability in a world with higher and higher penetration of renewable energy.
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Chapter 7
Future work

This section covers what could possibly be done in the future if the work of this thesis is
to be continued.

Turbines have several operating regions [3], with different goals and constraints in the
different regions. The work in this thesis focuses on the operating region where the turbine
is at full load, but below rated rotor speed. A logical extension of the current system
would be to have it operate at more than just this region. This would require different cost
functions and constraints in the different regions, and smart switching between these. This
is not an insurmountable task, as it has been done before [12] for other models, and is a
crucial step towards real turbine application.

Another important next step is to create a state estimator. Not all states are directly mea-
surable, and those that are have some kind of measurement error, so to use the full state in
the MPC prediction, a state estimator is needed.

Since the MPC developed for this thesis did not prove very promising at reducing the
fatigue of the turbine, it seems promising to couple the MPC with a low-level PI controller
to dampen drive train and individual pitch control to reduce fatigue from tower shadow and
wind speed height gradient. This way one would get the benefits of constraint handling
and wind preview of the MPC, while the fast fatigue-causing dynamics can be handled by
the PI.

Yet another future improvement would be to make the STAS model possible to simulate in
the time domain, not just the frequency domain. This would give a much better validation
of the system and expose potential errors stemming from e.g. the way the LPV system has
been created. The step after this would then be to test the system on a real wind turbine,
to weed out modelling errors and validate if the system would work outside of a simulated
environment. An alternative to simulating with STAS in the time domain would be to
validate the controller on a simulator already capable of doing time-simulation, like Ashes
[2] or FAST [28].
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Another improvement to STAS, that actually is currently on the way, is to couple it with
a flow model. This would give more realistic inputs, moments and power response and
would be one step closer to the real world.

Finally another vein of research the author would want to investigate is to make a first-
principle model of the turbine with as few states as possible and check if one could get
good performance controlling the STAS model using a MPC predicting with linearizations
of this new model.
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Glossary

Ashes A design and analysis software for onshore and offshore wind turbines. 54

CasADi An open-source tool for nonlinear optimization and algorithmic differentiation.
11

CPU Central Processing Unit. 25

FAST National Renewable Energy Laboratory’s primary computer aided engineering tool
for simulating the coupled dynamic response of wind turbines. 2, 54

IPOPT A software library for large scale nonlinear optimization of continuous systems,
stands for Interior Point OPTimizer. 23

MATLAB A multi-paradigm numerical computing environment and proprietary program-
ming language developed by MathWorks. 15

nlpsolver CasADi’s nonlinear program solver function. 23

RAM Random Access Memory. 13

SINTEF Selskapet for industriell og teknisk forskning ved Norges tekniske høgskole.
1–3, 13, 32

sssMOR MATLAB library for sparse state space model reduction. 25

STAS The wind turbine simulator developed at SINTEF. 1–4, 13, 14, 23, 24, 26, 31, 47,
51, 52, 54, 55

tbr Function in sssMOR MATLAB library for creating a balanced realization from a
sparse system. 25
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ZX LIDARS Company making LIDARs for wind turbines. 26

ZX-TM Nacelle LIDAR from ZX LIDARS. 26, 28, 50, 52
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List of Acronyms

BEM Blade Element Momentum. 14

FDM Finite Difference Method. 39

LIDAR LIght Detection And Ranging. 2, 3, 9, 23, 25, 26, 28–31, 38, 39, 44, 49, 50, 52,
53

LPV Linear Parameter-Varying. 2–4, 17, 19, 22, 23, 25, 31–33, 51–54

LTI Linear Time-Invariant. 4, 17–19, 22, 23, 31, 32, 51

MBS Multibody System. 7

MPC Model Predictive Control. 1–4, 9, 14, 23–26, 28, 29, 32–34, 36, 38, 39, 44, 45, 47,
49–55

NLP NonLinear Program. 11–13, 23, 24

PCA Principal Component Analysis. 2, 3, 15, 16, 25, 32, 36, 52

PI Proportional-Integral. 2, 3, 24, 25, 29, 33, 34, 36, 38, 39, 44, 45, 49–54

RADAR RAdio Detection And Ranging. 25

RMS Root Mean Square. 2, 3, 25, 39, 45, 47, 52, 53

SLAM Simultaneous Localization And Mapping. 50

SVD Singular Value Decomposition. 15, 16, 21, 25

TSR Tip Speed Ratio. 6
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