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Project Description

Introduction
This is a specialization project done in collaboration with Kongsberg Maritime (KM). The
work will be continued in the master thesis.

Main objective
The main objective of the overall project is to explore how stereo vision can used as a
supplementary position system in autodocking operations using computer vision and deep
learning techniques. The camera system should deliver accurate localization estimates
nearby the dockside, run real-time and be robust with respect to outdoor conditions. For
this project, the scope is limited to succeed part of the working system. This includes
to successfully train and test a deep learning based object detection model and evaluate
how well it detects and classifies different markers (used as reference objects) in various
docking operations. Hopefully, the project will converge towards a supplementary navi-
gation system for ship docking in near future and thereby add valuable insight for fully
autonomous ships.

Tasks
• Literature study on autonomous systems, relevant sensors and markers for localiza-

tion tasks as well deep learning techniques for computer vision applications.

• Prepare a laptop for deep learning based computing (includes parallel processing
software such as CUDA).

• Record a dataset with markers in autodocking scenarios using a small, flexible USV.

• Prepare recorded dataset for deep learning tasks (includes calibration of a fisheye
camera).

• Train and validate a deep learning based object detection model. Test the detector
and evaluate its accuracy.

• Test and compare different marker configurations.

• Present some suggestion for future work based on the results and research.



Abstract

The focus on autonomy in the maritime industry has increased significantly the recent
years. Autonomous vessels have potential to reduce costs and improve safety dramatically.
However, there are several challenges to face before fully autonomous ships may enter the
commercial market. One of them is autonomous docking.

The overall project is a study of how a low-cost stereo vision system can be used as
a redundant position system in docking operations. That is, when GPS is not available
or redundant position estimates is desirable, autonomous vehicles can obtain navigation
information with cameras mounted on the vehicle. A vision-based navigation system con-
sisting of an object detector followed by classical stereo vision techniques are proposed.
For this report, the object detection model (e.g. the backbone of the perception pipeline)
has been given extra attention. To achieve a low-latency pipeline with accurate and fre-
quently localization estimates from a camera-system, it is necessary to have a fast and
precise detection model available. To face the challenge of robust detections with respect
to outdoor conditions, a learning based object detection model is proposed since it can han-
dle variations in the scene affected by environmental changes as long as such examples is
widely represented in the dataset. The key idea is to utilize data-driven methods in outdoor
environments where classical computer vision techniques may fall short. To simplify the
task of locating the camera relative to its surroundings, easily identifiable markers with
assumed known global coordinates is used to obtain reference points.
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Chapter 1
Introduction

This is a specialization project done in collaboration with Kongsberg Maritime (earlier
Rolls-Royce Marine). It is a case study on how stereo cameras can be used as a redundant
position system for auto-docking operations with computer vision and deep learning meth-
ods. More specific, the goal is to measure the relative distance and orientation between the
quay and the camera system on board an Unmanned Surface Vehicle (USV) with high ac-
curacy in real-time. In addition to the cameras, several sensors such as Global Navigation
Satellite System (GNSS) and radar already exists on most ships today and deliver position
measurements. In that sense, the camera system produce redundant measurements. How-
ever, the need for redundancy (i.e. duplication of critical measurements) increases as an
autonomous ship need to be extremely reliable and perform well at all time. This is crucial
in order to succeed the business of autonomous ships and maintain trust among investors,
the crew, passengers and so on.

GNSS is used as the main position system on board most ships today. The technology
is well-established and GNSS on board ships often holds a high standard. However, in
docking operations without a human operator presented (i.e. auto-docking), the need for
position estimates with centimeter precision is desirable and the GNSS may fail to produce
such high precision estimates. The consequences of ignoring this problem can be dramat-
ically: The vehicle can hit the quay with a great amount of force, expensive damages may
occur and the safety for passengers is in danger. Therefore, it is proposed to apply a local
visual-based navigation system in the last meters of the docking and optimize the position
of the ship based on both systems. The key idea is to have a low-cost backup position sys-
tem specialized for auto-docking environments that can prevent the ship from unfortunate
manoeuvres based on inaccurate or lack of GNSS measurements.

1.1 Motivation
The main motivation behind the project is to explore how computer vision and deep learn-
ing based methods can be used to develop a new position system. The idea is to place

1



Chapter 1. Introduction

Figure 1.1: Proposed vision-based navigation system for the overall project.

cameras on a portable and flexible test platform such as the Otter USV (see Figure 1.2).
This allows for flexible choices of docking environments as well as the opportunity for
testing and recording of data at different outdoor conditions. The Otter USV also contains
a RTK GPS with centimeter precision which can be used as ground truth to evaluate pose
estimates from the camera system. Further, it is proposed to place the cameras in a pair to
achieve stereo vision view between the front of the USV and the quay. Figure 1.1 illus-
trates (on high level) how the vision-based navigation system is intended to work and how
the pose estimates may be used by the USV together with other navigation measurements.
For now, the intention is that the reader get some context of the "end-product". Further
details around this system will be reviewed in Chapter 6. In this report however, the cam-
era system will be limited to a single camera and aim to develop, test and verify that some
modules of the whole camera system works as intended. Specifically, the object detection
module in Figure 1.1 will be given extra attention.

On the hardware side, the focus will be on cameras and lenses suited for auto-docking
operations. For instance, wide angle fisheye lenses is used to cover as much as possible
of the quay during the docking operation. This allows for a small number of cameras
installed. As the focus is not on existing sensors on older ships (like ferries), it is hard
to compare directly how the cameras mounted on a small USV performs in comparison.
For instance, the camera views and baseline are completely different. In addition, one can
expect the USV to oscillate more at sea due to a less stable construction (compared to a
ferry or a cargo ship). Anyway, there are reasons to believe that many of the ideas and
principles from the proposed vision-based navigation system can be transfered to bigger
ships.

2



1.1 Motivation

Figure 1.2: The Otter is a small and portable Unmanned Surface Vehicle (USV) suited for mapping
and monitoring of its surroundings at sea. Image courtesy by Maritime Robotics [1].

The development of autonomous ships have proceeded fast and in 2016, Kongsberg
Maritime (earlier Rolls-Royce Marine) sold their first auto-crossing system to Fjord1 [17].
Auto-crossing is a big step towards fully autonomous ships as it controls the ship au-
tonomously between the quays, and the captain only takes the control when it’s docking
(and undocking) the quay. The system is also optimized to be energy-efficient and new
fully electric ferries like MF Gloppefjord takes great advantages of this as it reduces charg-
ing time at the quay. However, to complete the autonomous pipeline from quay to quay, the
auto-crossing system need to be extended and include the ability for autonomous docking.
Lately, the first public version of autonomous docking has been demonstrated in a fully
autonomous ferry transit in Finland by KM in December 2018 [2]. The demonstration was
done on the finish ferry Falco by Finferries as shown in Figure 1.3.

One may question the motivation behind a thesis about autonomous docking when it is
already demonstrated. However, the fact is that although it is demonstrated in public, some
challenges remains before a robust autonomous docking system can enter the commercial
market.
One challenge is the strict requirements for redundancy. Unexpected events such as loss of
signal/error in the GNSS measurements due to satellite signal blockage can occur and set
the ship in a dangerous position. Other limitations of the GPS includes multipath effects,
interference, jamming and occasional high noise content [18]. For instance, the multipath
phenomen is a well-known challenge in the Norwegian fjords where satellite signals tend
to reflect via the mountain sides and confuse the GNSS receiver as it receives multiple
signals from the same source (i.e. the satellite) [19]. Autonomous cars also suffers from
related problems: Self-driving cars in the city can loose GNSS signals due to satellite sig-
nal blockage from the buildings. Obviously, indoor applications suffers as well.
High speed applications (e.g. a car) with the lack of position estimates and the absence of
a human operator can be an extremely dangerous combination. Therefore, it has been done
extensively research on how sensors like camera and lidar can benefit from their strengths,
both standalone and in a sensor fusion system. The goal is to use such sensors in a local
navigation system to prevent vehicles from dangerous situations where life may get lost.

3



Chapter 1. Introduction

Figure 1.3: The ferry Falco during the world’s first fully autonomous ferry transit December 2018.
Image courtesy of Teknisk Ukeblad [2].

Although the auto-docking operation is not considered as a high speed application, the
redundancy problem is still serious for ships in general. A system completely redundant
to traditional position systems is therefore desirable and one can benefit from the related
research on autonomous cars that tries to solve many the same problems. There are several
relevant sensors that may be used and they are reviewed in detail in Chapter 2.

Another challenge is cyber security threats. Navigation and sensory systems are vul-
nerable to several cyber-physical attacks such as jamming, spoofing and bitstream manip-
ulation. Lately, Russia is accused for jamming the GPS signals in the air-craft traffic in the
north part of Norway and Finland. The signals from the satellites considered as weak and
can easily be corrupted by sending signal noise from the ground and thereby jamming the
GPS signals [20]. Although air-crafts have several navigation system to use in case one
fails, this is considered to be a serious security risk in general. If jamming signals reach
the ground, it can cause problems for a lot of vehicles including ships executing risky nav-
igation manoeuvres. This motivates the need for other systems than GNSS to address this
issue. In addition, the sensor measurements should be encrypted to increase resilience of
autonomous vehicles.

The economical aspect is also important, specially for older ships. To make a lot of
new installations on older vessels may not be beneficial. For instance, it could be hard to
configure the new sensors with older equipment and one can question if it is economical
enough to make a profit of the investment. For a shipowner, it is therefore desirable to use
the equipment already installed and reduce it to a software installation. New ships how-

4



1.2 Contribution

ever should be built with sensors on an flexible infrastructure that enables and simplifies
the possibility for auto-docking (if not already installed).
In addition, it is a huge cost for shipowners to subscribe for differential corrections on
GNSS signals (i.e. decimeter precision) or Real Time Kinematic (RTK) GPS (e.g. cen-
timeter precision). Research on sensor fusion may change this in the future, and work on
visual-based localization system is definitely an important part of this.

1.2 Contribution
This project explores different methods that are needed for estimating the position of an
USV during docking operations. Specially, it has been paid a lot of attention to the object
detection model which is considered as the backbone of the pose estimation system. A
data-driven learning method is explored to achieve robust, fast and precise detections in
various outdoor conditions. To achieve this, considerable amount of time was used to col-
lect data and prepare them. This includes evaluating data relevant for the detection tasks,
correct distortion from the fisheye images with a camera calibrator and label ground truth
examples for the learning task.
In addition, a surprisingly complex "cocktail" of software packets are required to run deep
learning models locally on laptops (with a powerful GPU) which means that several chal-
lenges may occur on the way before you can even do simple tests with the deep learning
model. When the deep learning model is able to run, a more interesting part of the thesis
starts. That is, to train and evaluate the deep learning model.
A lot of time has also been spent on practical work relevant for the master thesis. This
includes to find suitable equipment for a camera rig which should be water-proofed for
outdoor use and make sure the rig fit the test platform (e.g. the USV). It has also been paid
attention to practical work related to the machine vision camera system, a pair of GiGE
PoE cameras and fisheye lenses. Short summarized, this includes connecting the cameras
with a laptop using a PoE switch (a combined power supply and data transmitter) and an
available IP address and then record a camera stream using a SDK for FLIR blackfly cam-
eras.
At last, the deep learning model YOLOv3 has been integrated into ROS (Robot Operating
System) and this work will be continued in the master thesis. ROS is a flexible framework
for writing robot software and supports many machine vision cameras (like blackfly cam-
eras) and offers also bridging between openCV and ROS.
In addition to the practical work, a considerable literature study was done within the field
of computer vision and deep learning as well as related works for autonomous position
systems in the maritime industry. This aim to reflect the motivation and theory behind the
methods used in the project.

5



Chapter 1. Introduction

1.3 Structure
The project have now been introduced and several challenges that a fully autonomous ship
must face with a special emphasize on auto-docking have been shown. Chapter 2 contains
a brief introduction to autonomy, positioning principles and relevant sensors and markers
for localization tasks. Chapter 3 introduces theory within the field of computer vision and
deep learning related to the implementation. Chapter 4 reviews the choice of software and
hardware for the project. Chapter 5 and 6 focus on the methods applied in the project and
briefly introduce the whole pipeline which will be continued in the master thesis. Chapter
8 presents the results followed up by an discussion. At last Chapter 9 summarize the
findings in the thesis and give some suggestions for future work.

6



Chapter 2
Related work

This Chapter presents literature references to related work within autonomous systems and
sensors and markers for localization.

2.1 Autonomous Systems

We start this Chapter by mention a couple of autonomous systems and their history, in
order to get some context within the field of autonomy. Systems that can change their
behaviour in response to unanticipated events during operation are called "autonomous"
[21]. The Johns Hopkins Beast is considered the worlds first autonomous system purely
based on feedback control, a theory that was founded in the field of cybernetics. In the
1960’s, the mobile automation drove around in the hallway, and when the batteries ran
low it was able to search for a black socket and plug itself in to charge, all by its own.
The robot did not use a computer and was purely based on transistors controlling analogue
voltages, and it used sonar and photocell optics to navigate itself [21].
Since the 1960’s, the development of autonomous systems have proceeded a long way.
Today, autonomy within the car industry have received a lot of attention. Several compa-
nies like Tesla and Uber among many others are working hard on autonomous solution for
the commercial market. However, the strict security requirements make it challenging to
turn vision into reality and the scepticism among many people will not disappear as long
as accidents related to autonomous vehicles still occurs.
The last years, autonomy has also been given more attention by the maritime industry,
and companies like Kongsberg Maritime, Volvo Penta, Wärtsila, Rakuten and Maritime
Robotics are all working on solutions for autonomous ships. Kongsberg Maritime is, in
collaboration with DNV-GL and Yara, working on the first fully autonomous cargo ship
Yara Birkeland as shown in Figure 2.1. It is estimated to be launched by the first quarter
of 2020 and gradually move from manned operations to fully autonomous operations by
2022 [22].
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Figure 2.1: Yara Birkeland is a result of a strategic collaboration between Kongsberg Maritime,
DNV-GL and Yara where the goal is to make the first fully autonomous cargo ship. Image Courtesy
of Teknisk Ukeblad [3].

2.1.1 Applications for autonomy in the maritime industry
The rise of autonomous ships opens up for several new applications using different sen-
sors, most likely in a sensor fusion system. Among these you find applications such as
situational awareness, risk assessment and auto-docking and the use of each application is
shown in a control system perspective in Figure 2.2.

Auto-docking

The travel of a vessel from quay to quay normally consists of three different modes: un-
docking, transit and docking. Since the un-docking is more or less the inverse operation
of docking, one can reduce the problem into two modes, namely docking and transit. As
mentioned in Chapter 1, Rolls-Royce Marine has already delivered their auto-crossing
product, and thereby making the transit mode autonomous. One of the most critical parts
of the transit of a maritime vessel is the docking operation. It is the last operation of
the transit when a vessel is slowly approaching and then connects to the quay. Then, to
maintain its static position, the vessel thrust against the dockside and connects a rope or
some other robust connections between the vessel and the quay. In general, the ship should
connect to the quay using fine-tuned manoeuvres. How the docking operation is performed
in detail will differ from vessel to vessel. For instance, a small flexible USV will have
many more ways to dock compared to a ferry or a cruise ship. Also, the consequences of a
docking failure will be severe for a large scale ship as it may cause damage on passengers,
the dockside or the ship itself, while a small USV may only inflict small damages on itself.
Aside from the consequences, the main objective for the vessel (independent of the size)
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Figure 2.2: A classical guidance, navigation and control system with auto-docking proposed as a
local navigation system nearby the quay. Other autonomous applications, like situational awareness
and risk assessment, can be used for human-decision support as shown the guidance block. Unlike
situational awareness and risk assessment, auto-docking is intended to work more independently of
a human operator.

is to be maneuvered in a slowly, energy-efficient and precise manner. And such operations
may be challenging, even for a trained crew.
The strict requirements for precision and redundancy in an autonomous docking makes it
challenging to develop. As already mentioned, a lot of companies are working on solutions
for automatic docking system these days and they are choosing different approaches to
solve it. Volvo Penta’s system is heavily dependent on sensors mounted on the quay,
and can therefore not be used unless the quay is configured for automatic docking [23].
Wärtsila develops an auto-docking system which, in contrast to Volvo Penta’s system,
relies heavily on the ships dynamical positioning (DP) system based on GNSS and inertial
measurements units (IMU) to avoid drift in the position estimates [24]. This also makes it
very dependent of satellites signals. Both systems are just prototypes and are not ready for
commercial use yet. It is also worth to mention that Volvo Penta focusing on auto-docking
for private yachts and the size of a yacht makes it more comparable with an Otter USV,
which is the intended test platform for this project.

Situational awareness

Situational Awareness (SA) is crucial for maritime operations where the goal is to identify
dangerous threats as soon as possible to maintain safe operations [25]. Autonomous ships
must be able to handle a lot of complex situations and in order to do so, the ship needs
to be aware of the situation in the first place. Different sensors can be used to monitor
the surroundings and detect possible threats. For instance, cameras are already installed at
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most ships today and are typically used for manually monitoring by the crew. However,
this can be quite unilaterally in the long run. Most of the time, no unexpected events
occurs. But this "safe picture" can change in a moment. Therefore, it is desirable to have
a system that detects threats early, and reports about it to the crew immediately. The rise
of machine learning algorithms makes it possible to detect and classify various threats in
real-time. It doesn’t necessarily need to handle the final navigation decisions on its own.
Instead it can be used for human decision-support to give the crew better insight in difficult
and unexpected situations that must be handled quickly.

Risk assessment

Risk assessment involves analyzing what can go wrong, how likely it is to happen, what
potential consequences are and how tolerable identifiable risks are [26]. To be able to
perform risk analysis, one need sensors that can gather information about each individ-
ual risk and visualize them in an intuitive way. The risk assessment may be complex and
consists of many individual risks. Depending on the level of autonomy, there are several
approaches on how autonomously risk assessment can be. One approach is to gather and
visualize raw sensor data and let the human operator handle a lot of information about each
single risk for decision-making. In the other end, one may let the Artificial Intelligence
(AI) algorithms process the sensor data and make decisions on its own (e.g. end-to-end
solution). Both approaches obviously have weaknesses. Bringing too much complex in-
formation to a human operator may lead to human mistakes. On the other hand, fully
autonomously solutions (i.e. neural networks) may not be desirable. Even with excel-
lent performance, a black-box approach is not suitable for applications with safety-critical
and/or economical-impactful issues. The deep layer structure makes it hard to achieve
trustworthy and understandable predictions as the algorithms have no "consciousness" and
thereby no answer on how they arrive at the final decision. As with SA, there is a solution
in between using a human-machine interface. The algorithms detects each risk, visualize
and make an intuitive overview of them, but leave the final decision to the operator. With
this approach, the burden of heavy manual monitoring is gone, while it is ensured that
the final (critical) decisions are based on someone that can defend and interpret for their
choices (e.g. reliable).

Now, some background on autonomous systems is presented. In addition, several hot
applications within the maritime industry are presented. One of them is auto-docking.
With auto-docking in mind, we will further introduce and explore the principles of posi-
tioning in order to develop a new localization system.
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.
Figure 2.3: Trilateration principle in three dimensions. Image courtesy of [4]

2.2 Positioning
Positioning is the process of determining and describing the position of an object with
respect to a coordinate system. When navigating, it is common to use an "Earth-Centered
Earth-Fixed" (ECEF) coordinate system that rotates with the earth. The position in earth
coordinates is given in latitude, longitude and height. Further, a position system should be
able to estimate location of some object based on sensor measurements. In this context, the
principles of trilateration and triangulation are very central and is widely used by satellites
and GNSS systems today. Trilateration involves measuring distances between the robot
itself and objects of interest around it. The spheres (with measured radius) around these
objects will intersect in one or several points. With at least 3 such points, it is possible to
localize the robot itself with respect to these objects as shown in Figure 2.3. If distance
measurements are not available, it is possible to localize the robot with direction measure-
ments (i.e. heading). If the direction from a robot to an object is known, the object could
be anywhere on this line [4]. Therefore, a second direction measurement to another object
is needed to triangulate and find the robot.

In this project, it is assumed that the absolute position (ECEF) of some static marker
at the quay is known. Thus, the focus relies on estimating the relative position and orien-
tation between the marker and the camera. Since the cameras are mounted to the rig, they
are assumed to be fixed with respect to the USV and one can perform simple coordinate
transformations to obtain the relative pose of some other point of interest at the USV (e.g.
the tip of the boat).
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2.3 Sensors
To make a position system, one need to know which sensors to use. Some weaknesses of
GNSS are discovered in Chapter 1 and it is proposed to find alternative sensors completely
redundant to the GNSS system. Optimally, an autonomous navigation system should cover
all scenarios without intervention of a human operator. Therefore, the ultimate navigation
system may use sensor fusion to benefit from strengths of each sensor and provide ro-
bustly and reliable measurements compared to what one sensor can provide alone. For
this project, the focus is limited to auto-docking (or places nearby land) with visual land-
marks. With this application in mind, several sensors have been considered and compared
against each other. We will now present some sensors both already in use and some good
alternatives that could be installed.

Electro Optical Camera

An Electro Optical (EO) camera is a passive sensor that can record images of the scene in
front of it. Optical cameras are passive as they measures the reflected light emitted from
the sun. They provide a very defined way of determining the resolution. By counting pix-
els, often in vertical and horizontal (i.e. 1920 x 1200, 1280 x 720, etc), one can measure
the resolution with a high level of certainty. Furthermore, images of the scene can be com-
bined with geometrical calculations and priori information of some object to estimate the
relative pose between the camera and the object in the scene. How it is obtained, depends
on the number of cameras in use (i.e. monocular or stereo vision). By using a feature
detector, one can extract geometrical information from detected features of interest in the
scene. Both classical feature detectors and learning based approaches (i.e. deep neural
networks) can be used to achieve this.
Images provide rich and meaningful information compared to many other sensors and can
be used for a lot of applications such as object recognition and localization tasks. It has
been done extensively research on visual-based localization systems lately, specially for
indoor and outdoor vehicle navigation such as drone inspection, autonomous cars and now
autonomous ships. This may be due to the fact that visual-based position systems are con-
sidered more robust and reliable compared to other sensor-based localization systems [18].
In addition, cameras are considered inexpensive compared to laser sensors and GPS and
provide high localization accuracy as well.

However, there are some drawbacks. Vision-based algorithms are highly sensitive to
environmental conditions such as light conditions, illumination changes, motion blur, tex-
tures and presence of heavy rain, snow and fog [18]. Therefore, one may expect that such
algorithms do not perform well under certain outdoor conditions. This could for instance
be an auto-docking operation. One approach to deal with this problem is to use active
markers like red fog-light (which already exists on many docksides) or similar. Today
they are used by the captain to navigate in bad weather, but they can obviously be used for
visual-based position systems as well. Another approach is to widely represent examples
of different environmental conditions in the dataset, specially those occurring under real
outdoor operations. With such a dataset, a machine learning approach could potentially
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learn how to recognize objects in different contexts, even under extreme outdoor condi-
tions.
Another drawback is the great amount of memory an image contains which makes im-
age processing generally a computationally expensive task. For visual-based localization
tasks, computations often involves several steps like acquisition of the camera images, ex-
traction of detected features, matching features between frames and calculate position via
pixel displacement between frames.

IR Camera

While optical cameras provide images based on light reflecting off the object, infrared
cameras measures heat energy emitted by the object [27]. They perceive light of wave-
lengths, both inside and outside the visible spectrum [4]. That means they cannot provide
real-world colors the same way optical cameras does. Instead, they can be used to iden-
tify colors outside the visible spectrum. Since infrared cameras measures heat transmitted
from objects, one can use fiducial markers to produce colors corresponding to tempera-
tures higher or lower than its surroundings. This makes it easier to create a marker that
stand out from the scene and detect it in the dark. Of course, one can also use an external
light source to light up the marker to reduce the problem of darkness. Just like an optical
cameras, infrared cameras are passive as it does not send any signals out.

Another interesting aspect is the way IR cameras measure resolution. While optical
cameras count pixels to measure resolution, infrared cameras usually follow the Johnson
Criteria which estimates the number of line pairs across a target. However, there are
some problems with this criterion. For example, thermal cameras can sometimes detect
objects at a further distance than optical cameras because a hot object emits a lot of heat
energy relative to its surroundings. However, if the hot object are cooled down, it may be
impossible to detect the same small object far away [27]. Since optical cameras have a
more defined way of determining what details we can see, it is hard to compare resolution
directly.

Lidar (Light detection and ranging)

Another promising sensor used for many localization tasks is lidar. It is specially popu-
lar in the development of fully autonomous cars nowadays (except Tesla and particularly
Elon Musk [28]) and is widely used for object detection, obstacle avoidance and 3D map-
ping. It is a laser-based technology that use Time-Of-Flight (TOF) to measure distance to
surrounding objects. In TOF systems, a short laser pulse is sent out and the time until it
returns is measured (see Figure 2.4). In addition, some lidars spin a beam in a circle, emit
a pulse at regular intervals and measure how long it takes to return. Hence, it returns a 360
degree point cloud containing information about objects it hits nearby. Because lidars use
a fine laser-beam, they can estimate distance with high resolution [4]. And they can target
a wide range of materials, but also remove some of interest. For instance, one can apply
filtering methods to denoise even thick snow [29]. These capabilities make the lidar very
robust to different outdoor conditions.
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Figure 2.4: Time-of-flight principle. Image courtesy of [4].

In comparison with cameras, lidars provide a much wider Field of View (FOV) as well as a
greater range. This enables possibilities for measuring longer distances. One can of course
discuss how important longer distances are if only the last couple of meters is critical for
the auto-docking operation.

One drawback of lidar is the price, specially for high-resolution versions. However,
the increasing use of it, specially in the automotive industry, push the price down every
year and it is expected to be less expensive in near future [30]. Morover, utilizing lidar data
for real-time applications may be challenging due to a high computational cost caused by
the high-resolution point cloud.
Another aspect is the placement of a lidar. For a small USV, one may only need one single
lidar on top of it to map its surroundings. For bigger ships, like a ferry, one have to install
multiple lidars at appropriate positions to cover the entire area around the vessel, including
the radar dead zone. It is also worth to mention that lidars, in comparison to cameras, are
not usually installed at older ships. And installation of lidars involves certification for
maritime use which makes them a bit more expensive than regular lidars. However, this
drawback is not emphasized too much as the main focus of this project is to explore new
innovative methods that can be used for future ships and not rely too much on what sensors
is installed already.

Radar (Radio detection and ranging)

The radar is widely used in the maritime industry. It is an active sensor that sends out radio
waves in all directions by rotating 360 degrees and receives reflected signals in return, and
map its area around based on this. Indeed, radar is the lidar of radio waves .
The radar is considered very robust to disturbances and varying environmental conditions
which makes it ideal for outdoor applications (most ships have radar installed today). Now,
given a threshold depending on the magnitude of returned radio waves, it is possible to fil-
ter out objects of interest such as snowfall, leaf and birds. Furthermore, radio waves have
the ability to more easily penetrate materials and this makes radar a better choice (than a
lidar) in presence of fog/smoke [4].

Until now, radar sounds like the perfect sensor for outdoor localization. As with the
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other sensors, it also have weaknesses. Radio waves normally reflects off solid surfaces
meaning that objects located behind such surfaces will not be detected by the radar. The
area that cannot be seen by the radar is called the dead zone. One approach to deal with this
problem is to install antennas (radar reflectors) near the docking in a height such that the
radar can detect them (i.e. out of the dead zone). This requires, of course, more installation
on the quay as well as solid constructions to avoid oscillations due to windy conditions. In
addition, the angular precision is lower than laser based methods like lidar. This is due to
the fact that radio waves cannot make as narrow beams as lasers [4].

Comparison

As seen, all sensors have benefits and drawbacks. The objective of the project is to make a
simple, low-cost position system that deliver accurate estimates and is robust with respect
to outdoor applications such as autodocking. With this objective in mind, electro optical
cameras is a natural choice due to its price, flexibility, accuracy and amount of informa-
tion stored in every image. However, optical cameras is highly sensitive to environmental
changes and may be useless if the lens is covered by heavy rain or in extreme presence
of fog and snow. In such scenarios, a laser based method (i.e. lidar or radar) will most
likely deliver more reliable information of its surroundings. No optimal sensor covering
all scenarios exists today and a sensor fusion system is most likely needed to provide a
better picture for extreme outdoor scenarios.

2.4 Markers
In order to locate the quay relative to the ship under autodocking operations, there should
be some features on the quay for the computer vision system to detect. In this context,
some kind of markers are proposed to detect such features (inside the markers) easily.

Fiducial markers

A lot of markers exists out there and among these we find 2D barcode systems such as QR
codes. A QR code can store hundreds of bytes (e.g. a lot of information) and works typ-
ically great with a stable, slow-varying camera capturing high resolution images nearby.
In contrast, a visual fiducial marker has a small information payload (perhaps 12 bits),
but is designed to be detected even at very low resolutions which allows for long range
detections. They provide camera-relative position and orientation of a tag and are also de-
signed to detect multiple markers in a single image. In addition, they are easy to recognize
and distinguish from one another [31]. This allows for fast, accurate and robust detections
which is the first step of the pose estimation. Therefore, they are, not surprisingly, a pop-
ular choice for several pose estimation applications.
Several fiducials markers exist and among these you find bar-codes, data matrix, QR codes
and special 2D markers made for localization tasks such as ArUco marker, ARToolkit,
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ARTag and April Tag. Since this project focuses on outdoor localization, markers such as
ArUco markers and April tags are specially interesting.

In addition, a clever choice of colors for the fiducial markers may help it to stand out
from the scene, depending on how the background looks like. And obviously, a sufficient
marker size must be chosen depending on the range from the marker the vehicle is sup-
posed to localize itself. One approach to solve this may be to place a marker inside another
marker, so that different markers can be detected at different ranges.
The markers should obviously be placed nearby the quay where the USV is supposed to
dock. One configuration could be several pairs of ArUco markers at the waterfront with a
fixed distance between each pair. A similar configuration is shown in Figure 2.5 where the
robot operate at a close range with high localization precision.

Natural landmarks

In addition, it might be possible to use naturally-occuring landmarks. One benefit is that
we use what is already in the scene. This could be buildings or some static features at
the quay. Furthermore, it obviously increases the operation opportunities as it allows for
a much higher level of perception in undiscovered environments. However, it is generally
harder to provide ground-truth position trajectories with naturally-occuring landmarks,
and they also stores a great load of memory compared to simple fiducial markers [31].
Another drawback is that there are not too many common features for quays in general.
This makes it more challenging to generalize and a machine learning approach would may
require specific datasets for each quay.

Storing GPS coordinates

It is possible to store information about the position and orientation of the marker (in a
global inertial reference frame) inside the marker itself. This makes it possible for a com-
puter vision system without hard coded position information about each marker at each
quay on-board. However, it may be desirable with a simple, distinct marker rather than
a sophisticated marker filled with a lot of information in order to simplify the detection.
This trade-off should be considered when making a marker for robust marker detection for
outdoor applications.

Maintenance of outdoor markers

2D barcode systems also needs to be well maintained. If they are changed or distorted
or simply just snow covers it, it may be useless as a reference point in a position system.
Other environmental factors like fog may reduce the camera sight and make the markers
useless as well.
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Figure 2.5: Boston Dynamics newest robot Handle combines depth cameras with ArUco markers
to localize itself accurately and thereby handle different logistics tasks with a mobile manipulator.
Image courtesy of Boston Dynamics [5].

CNN for marker detection

Detecting and locating fiducial markers in complex backgrounds is a challenging step. A
lot of research have been done in this field. Zhang et al. [32] propose a method to detect
non-uniformely illuminated and perspective distorted 1D barcode based on textual and
shape features, while Xu et al. [33] developed an approach for detecting blur 2D barcodes
based on coded exposure algorithms. The mentioned methods show high detection rates
on certain barcodes, but their performance may be affected by environmental conditions.
The mentioned methods are based on handcrafted features using prior knowledge of spe-
cific conditions. However, convolutional neural networks (CNN) have shown outstanding
robustness in terms of detecting objects in arbitrary orientations, scales, blur and different
light conditions with complex backgrounds as long as such examples are widely repre-
sented in the data set [34]. Therefore, a machine learning approach may be recommended
to achieve robust outdoor detections of fiducial markers.

How many markers are needed?

Another question is how many markers are needed to get a pose estimate. Since we as-
sume the position and the orientation of the marker in a global inertial reference frame are
known, the range from the marker and its attitude, respectively, is known. Therefore, only
one marker is needed to estimate the position and orientation of the camera in a global
reference frame. However, it may be recommended to place several markers nearby the
quay to achieve redundancy. If one single pose estimate differ significantly from the other
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pose estimates of other markers at the same time or simply just differ more than a certain
threshold compared to the previous pose estimate, it is natural to reject it. Therefore, plac-
ing several markers can potentially increase the robustness of pose estimates. From Figure
2.5, one can observe that the depth camera will detect two ArUco markers in a pair for
close range operations where the robot manipulator needs to know its pose accurately in
order to successfully operate safe and effective.

Markers for relative motion

In this project, it is assumed that the marker is static and fixed to the quay. However, it
is also possible to estimate the relative motion between two objects (i.e. none are static
with respect to its surroundings). In [35], a camera system is combined with two Motion
Measurements Units (MRUs) in a sensor fusion algorithm to estimate the relative motion
between two vessels. By placing one MRU at the first vessel and the other inside an ArUco
cube at the second vessel, the camera system can measure all 6DOFs between the cam-
era body fixed coordinate system and the secondary MRU’s body-fixed coordinate system
(inside the ArUco cube). By assuming both MRUs are fixed with respect to each vessel
(as well as the camera), the absolute orientation and position offset between the two body-
fixed coordinates of the two MRUs can be calculated quite easily. Together with MRU
measurements, relative motion between the vessels can be obtained which allows an off-
shore crane onboard the first vessel to pick up the ArUco cube onboard the second vessel
safely as shown in [35].
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Chapter 3
Theory

This Chapter aims to introduce the theory related to the techniques used in the implemen-
tation in Chapter 6. This includes theory related to the structure of a convolutional Neural
Network as well as how it can be trained and evaluated. In addition, different state-of-the-
art object detection models will be reviewed and compared. At last, the chosen model for
the implementation, YOLOv3, will be given some extra attention.

3.1 Convolutional Neural Networks

On the highest level, a CNN can be seen as a black-box. The input data can be one (or
several) images and the output is typically the predicted class score for each class it has
been trained for. The black-box name is frequently used in context of CNNs with deep
layer structure. It has been proved that the interpretability of a CNN tend to decrease as
the number of hidden layers increase (which again means the CNN tend to be more black-
box-like). In other words, when a CNN is treated as a black-box, the humans can only
control the input and observe the output of the model, but have no idea on why the model
arrived at a some specific decision.

Figure 3.1: Black-box view of a CNN for image classification.
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Figure 3.2: The biological neuron to the left and its mathematical model to the right. Image courtesy
of Stanford University [6].

3.1.1 Neurons and layers
The field of Neural Networks (NN) has originally been inspired by biological neural sys-
tems, but has since diverged and become a matter of achieving good results for machine
learning tasks. To understand how a CNN is built up we first take a look how neurons
works (on high level) and its connection to biological systems:

Each neuron receives input signals from its dendrites and produces output signals along
its (single) axon, as seen in Figure 3.2. The axon typically branches out and connects via
synapses to dendrites of other neurons (e.g. connects neurons to the next layer). The mag-
nitude of the input signal traveling along the axons (x) depends on the synaptic strength
(w). The basic idea is that the synaptic strength w is learnable and control the influence of
one neuron on another. In the basic model, the dendrites carry the signal to the cell body
where they all get summed. If the final sum is above a certain threshold, the neuron can
fire, sending a spike along its axon. And the firing rate (out of each neuron) is modeled
with an activation function f [6].
Now, with some background on neurons and its biological inspiration we further define
the most fundamental terms of any neural network, which is neuron, activation function
and layer. These terms gives the basis for any neural network.

Definition 3.1.1. Neuron: A single instance of one layer of a neural network. A neuron
receives one or multiple inputs and sum them together to produce a single output that is
passed through an activation function.

Definition 3.1.2. Activation function: An activation function decides whether a neuron
will be pushed forward into the next layer in the neural network or not. In addition, the
activation function aim to introduce non-linearity into the output of a neuron.

Definition 3.1.3. Layer: A set of neurons, each receiving the same input instances. The
input instance(s) can vary as they may be weighted differently.

The input x of the network in Figure 3.3 is a 1-dimensional input which is weighted
by some of the weights in W 1. In context of image classification, it could be a single,
monochromic pixel. But how is the activation output of a neuron in a certain layer l com-
puted? For a specific example, the output of the upper neuron z2

1 in Figure 3.3 is obtained
by multiplying the input signal x (a pixel value) with the weight w1

11, and summing it with
the bias b21. The single result, z2

1 = w1
11x + b1, is then processed through an activation
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Figure 3.3: Single layer, fully connected neural network.

Table 3.1: Model parameters of a neural network.

Model parameter Description Vectorized form
wl

jk Weight parameter enter-
ing layer l a neuron j
from neuron k

W 1 ∈ Rj×k

blj Bias parameter of layer l
to neuron j

b1 ∈ Rj×1

alj Activation function (e.g.
output) of layer l to neu-
ron j

a1 ∈ Rj×1
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a21 = σ(z2
1) which becomes an input signal for neurons in the next layer. Note that the

next layer receives input from several neurons and hence, it need to sum these. Now, these
computations for a specific layer can be generalized for an arbitrary layer l. That is, the
linear operations of a single neuron l can be defined as

zl
j = wl

jka
l−1 + blj (3.1)

And the operation can obviously be expanded from a single operation to include all
activations spanning the whole layer such that

zl = W l al−1 + bl (3.2)

This linear operation is passed through the activation function al = σ(zl) = σ(al−1 +
bl) introducing a nonlinear output value. Observe the model parameter bl which is usually
referred to as the bias. The bias is used to adjust the triggering delay of the activation
function. Further details on activation functions will be presented later in this Chapter.
Finally, Table 3.1 summarizes the inputs and output in a neural network layer (except the
input layer of pixel values from the original image).

3.1.2 Building blocks of a CNN
Convolutional layer

The core of the CNN is the convolutional layer. It consists of a set of learnable filters.
Every filter is small spatially (along width and height), but extends through the full depth
of the input volume. A filter kernel slides (convolves) the input image by multiplying the
values in the filter with the original pixel values of the image (e.g. element wise multi-
plication). These multiplications are all summed up to a single number. After sliding the
filter over all the locations, all the these single numbers (sorted into an array) represents a
feature map.

The network treat these filters as model-parameters, e.g. they can be learned. Intu-
itively, the network will learn filters that activate when they see some type of visual feature
such as an edge [8]. As an example, see Figure 3.4 where a region of the image (the recep-
tive layer) is convolved with the filter. This filter will indeed be activated as the element
wise multiplication and summation will result in a very big number. However, when the
same filter is slided over other locations in the image the same significant number will
not be produced and in that sense not be activated. Every filter will initially be small spa-
tially and look for low-level features such as in Figure 3.4. As the feature maps are passed
through the layers in the CNN, the number of filters will decrease but also increase in size
spatially. In other words, all the filters representing activation of low-level features in the
first layers will be transformed to less, but more complex, high-level features. In other
words, many small filters are needed to build representations of complex classes (even for
a cartoon mouse).

With some intuition on how the convolutional layer works, we can describe it more
generally. What characterizes any respective convolutional layer are hyperparameters.
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Figure 3.4: Convolutional filter visualized. A specific filter slides over the original image and
activates when it recognize the low-level feature it is looking for. Image courtesy by [7].

Note that the hyperparameters are not related to any optimization, in contrast to the model-
parameters. A convolutional layer can be described by 4 hyperparameters:

1. K number of filters: It controls the number of low-level features to learn from the
input image in CNNs.

2. Spatial extent F: The region in the input image that a CNN is sliding over.

3. Stride S: It specifies how many pixels we slide the filter for each time. E.g. when
the stride is 2, the filter jump 2 pixels at a time.

4. Amount of zero padding P: It is used to pad the input volume with zeros around the
border. It allows us to control the spatial size of the output volumes.

Given some input volume of size W1 × H1 × D1 (i.e. RGB input image have 3
channels such that D1 = 3), it can be shown that the spatial size of the output is given by

W2 = 1 +
W1 − F + 2P

S
(3.3a)

H2 = 1 +
H1 − F + 2P

S
(3.3b)

From equation (3.3), the size of the convolutional layer output will be W2×H2×K.
That is, the amount of neurons equals W2×H2×K and for large input images results in
a large amount of weights. Fortunately, CNNs take advantage of parameter sharing. That
is, parameters are shared between neurons throughout the depth of the layer and results in
K ∗ F ∗ F ∗D1 unique weights. In contrast, if every neuron had a unique weight as in a
fully connected layer, the total would be W2∗H2∗K∗F ∗F ∗D1 model-parameters [36].
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Rectified Linear Unit

To determine if a neuron has been activated (e.g. fired), the batch of input images normally
process through an activation function to create an activation map. Rectified Linear Unit
(ReLU) is one popular activation function used between layers in a CNN the last years.
ReLU is specially designed for scale invariance and efficient computations which makes it
an suitable candidate for activations of a convolutional layers. It is an non-linear activation
function that thresholds output of the convolutional layer such that σ(Z1) = max(0,Z1).
E.g., it returns 0 if it receives any negative input, but for any positive value Z1 it returns
that value back.

Many activation functions struggles with the vanishing gradient problem. That is, un-
less the input value is within a narrow range, the flat derivative makes it difficult to update
(and hopefully improve) the weights through gradient descent. And the problem increases
with the number of layers in the CNN. In comparison with other activation functions like
sigmoid and tanh, ReLU face the vanishing gradient problem in less degree. This is be-
cause the derivative is 1 for positive inputs (e.g. half of the range) which allows gradient
descent to keep progressing. In contrast, the derivative of tanh converges towards zero for
input values outside the range (−2, 2).

Pooling layer

A limitation of the feature map output of a convolutional layer is that they produce the
exact position of features in the input. This makes the feature map very sensitive, e.g.
small movements in the position of the features in the input image will result in a different
feature map. A common approach to address this problem is to apply a downsampling
technique called pooling. It creates a lower resolution version of an input image that still
contains the important structural elements, but without the fine detail that may not be use-
ful for the learning task (e.g. it controls overfitting). Hence, the resulting pooled feature
map represents a summarized version of the features detected in the input image [37].

In neural networks, it is common to periodically insert pooling layers between the con-
volutional layers. Beside controlling overfitting, its main function is to reduce the amount
of parameters and computations in the network. Further, different pooling operations ex-
ists and shortly said they determine how the output feature map (from each convolutional
layer) is filtered. The two common pooling operations is average pooling and max pool-
ing. Average pooling calculate the value for each patch of the feature map, while max
pooling calculate the maximum value for each patch of the feature map (see Figure 3.5).
The pooling layer require two hyperparameters: Stride S and Spatial dimension F. Note
that max pooling is mostly used, and specially with 2×2 pixel size. A bigger pixel size
will tend to loose a lot of information.

24



3.1 Convolutional Neural Networks

Figure 3.5: Max pooling operation.

Fully connected layer

In a Fully Connected (FC) layer, each neuron has full connectivity to all activations in
its pervious layer, as seen in Figure 3.3. In classification tasks, this is normally the final
layer. That is, after feature extraction is done the model outputs the data into one or sev-
eral classes which can be done using a FC layer. It is usually the most computationally
expensive layer.

From Figure 3.1, we can observe the black-box view of the CNN outputting activa-
tions in the final FC layer, which are the final classification scores. A classification score
represents a measure of the relative activation strength of a class compared to the other
classes, and the scores typically lie in the interval (0, 1). To obtain a relative classification
score, the output activations for each layer need to be related to each other in a meaningful
way. In this context, a normalized softmax function is typically used to achieve this. It is
defined as

σ(zl)k =
ezk∑j
i=1 e

zi
for k = 1, ..., j (3.4)

The function normalizes the input zl into a vector of values that follows a probability
distribution whose sums up to 1 in total. Hence, the output vector al = σ(zl) produce
values in the range (0, 1) for each class k. The number of classes k are defined by the
number of neurons in the final FC layer. Or more generally, when the softmax function is
used in intermediate layers, the number of output activations is denoted by the number of
neurons j in the lth layer.

3.1.3 The big picture

Now, with some intuition on how the most commonly used building-blocks of any CNN
works, we can finally take a look at a typical (high-level) CNN architecture. The general
architecture follows the recipe: INPUT-CONV-RELU-POOL- ... -CONV-RELU-POOL-
FC. That is, a repetition of CONV- RELU-POOL between input and output. Here, the
pooling layer ensures that the spatial size is reduced throughout the network. Figure 3.6
shows an example architecture for image classification of a car. It consists of 6 convo-
lutional layers, each with a ReLU layer in between. It is also down-sampled by 3 max-
pooling layers after some of the ReLU activations. The final classification scores are
obtained in the FC layer using some kind of activation function (i.e. softmax).

25



Chapter 3. Theory

Figure 3.6: Activations of an example CNN architecture for car recognition. Image courtesy of
Stanford university [8].

3.1.4 Training a CNN
The process of determining the optimal model parameters for a CNN is called training.
Ground truth classes (made by an annotation program) are compared with model predic-
tions to minimize an objective function. For each input, the weights and biases of the
network is adjusted to minimize this objective function. That is, to correct the probability
for the image instance with respect to ground-truth annotations. Usually the mentioned
objective function is backpropagated and then, the weights and biases are updated using
using a Gradient Descent (GD) algorithm (e.g. an optimizing procedure). This section
will look into details regarding the most commonly used training procedures for CNNs.

Backpropagation

During a forward-pass of a batch of annotated training images through a CNN, the CNN
outputs a vector of activation outputs aL as described in 3.4. Further, the ground truth for
each class can be defined as

y = {y ∈ Rj×1, 0 ≤ yj ≤ 1} (3.5)

When tuning the model-parameters to achieve better classification the euclidean dis-
tance distance between the CNN output, aL, and the desired (ground-truth) output, y, is
subject to a quadratic cost function:

C =
1

2N

∑
x

∥∥y(x)− aL(x)
∥∥2 (3.6)

where a single sample from a batch is denoted x, N is the batch-size of the training
examples and L is the total amount of layers in the neural network. Now, this cost func-
tion, often referred to as the loss function, is what we want to minimize. That is, we want
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to minimize the term
∥∥y(x)− aL(x)

∥∥2 for all samples x in a batch.
Now, having defined the cost function, the next step is to investigate the impact the weights
and biases in the neural network have on the cost function. E.g. in order for backpropaga-
tion to work we need to compute the partial derivative of the cost function with respect to
any weights and biases denoted as

∂C

∂wl
,
∂C

∂bl
(3.7)

To do this, we need to make some assumptions about our cost function, C, in order to
apply backpropagation. The first assumption is that the cost function can be written as an
average over cost functions Cx for individual training examples x:

C =
1

N

∑
x

Cx (3.8)

where

Cx =
1

2

∥∥y − aL
∥∥2 (3.9)

This assumption lets us compute the partial derivative ∂Cx/∂w
l and ∂Cx/∂b

l for
a single training example. Then, ∂C/∂wl and ∂C/∂bl are obtained by averaging over
training examples. Secondly, we assume that the cost function can be written as a function
of the activation outputs from the neural network such that C = C(aL). Note that the
desired output yL is a fixed parameter and in that sense, not a parameter we would like to
change by adjusting the weights and biases. Intuitively, it does not make sense to change
the ground truth to be learned during training and C should therefore be a function of the
output activations aL only.

To understand how the weights and biases in a network changes the cost function,
we define a small linear change to the activation function, σ(zlj + ∆zlj), to determine
its effect on the outcome of the cost function. This change then propagates through the
layers causing the overall cost to change by ∂C

∂zl
j

∆zlj . Further, we introduce an intermediate

quantify, δlj which defines the error in the jth neuron in the lth layer:

δlj =
∂C

∂zlj
(3.10)

and subsequently in vectorized form δl is the error in the layer l. Now, backpropagation
gives a way to find this error, δl for each layer, and relate them to ∂C

∂wl and ∂C
∂bl . Four
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equations describe the backpropagation procedure:

δL = ∇aC ◦ σ
′
(zL) (3.11a)

δl = ((wl+1)δl+1) ◦ σ
′
(zl) (3.11b)

∂C

∂blj
= δlj (3.11c)

∂C

∂wl
jk

= al−1k δlj (3.11d)

First, equation (3.11a) describes the error in the output layer of the network which are
necessary (initially) for computation of equation (3.11b). That is, to compute the error in
the previous layer with respect to the last output layer. Or more generally, as the equations
backpropagates throughout the network, the error in the l layer with respect to the next
layer l + 1. In addition, equation (3.11c) describes the rate of change of the cost with
respect to any bias in the network, while equation (3.11d) describes the rate of change of
the cost with respect to any weight in the network. As the reader may observe, these equa-
tions are solved from top to bottom making a chain of computations for each layer. By
this, backpropagation involves to solve this chain of computations from the output layer
to the previous layer and repeat this process throughout the network until it reach the first
layer. This means we can finally measure the impact the weights and the bias in the neural
network have on the cost function, as earlier mentioned. For more information on how the
backpropagation equations are derived, see [38].

Gradient descent

With some knowledge on how the cost function C is computed for a given input, it is time
to review a popular optimization technique called Gradient Descent (GD) which is used
broadly when training a CNN. It is used to adjust the model-parameters such that the cost
function is minimized. Specifically, the weights and biases in the network can be updated
according to

W l →W l − η ∂C

∂wl
jk

(3.12a)

bl → bl − η ∂C
∂bl

(3.12b)

where η is the learning rate controlling the step-size for each computations. Indeed,
a low learning rate will cause smaller steps towards the local minima of the cost function
and thereby slowing the learning process. On the other hand, a too high learning rate can
cause divergence in training as the steps are too big and may never reach the local minima
at all. Also pay attention to the minus sign in front of η as it is desirable to move towards
the local minima (using small steps along the gradient) and not away from it! From Fig-
ure 3.7, we can see how some weight proceeds step-wise along the gradient of the cost
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Figure 3.7: Gradient Descent procedure illustrated in 2 dimensions. For simplicity, the cost func-
tion, here denoted as J(w), is only optimized with respect to the weights w. Image courtesy of
hackernoon [9].

function C given some initial starting point. Also notice how the steps tend to decrease as
the weights gets closer to the optimal minimum. Further, the weights and biases are only
updated after each batch of training images are evaluated. The batch size determines the
size of the subset of training images used for one iteration and also, how many images is
averaged over at the same time. Therefore, in order to reduce the sensitivity from noisy
outliers in the cost function, it may be desirable to pick a batch size which are not too small.

At last, it is worth to mention that the gradient descent algorithm may be infeasible
when the training data is huge. That is, the computational cost of gradient descent scales
linearly with training data set size n meaning that if n is high, the computational cost of
gradient descent is also high [39]. Stochastic Gradient Descent (SGD) is used to address
this problem. The main idea is to use randomly (e.g. stochastic) selected training examples
to evaluate the gradients. This smaller subset of the whole training set is still representative
due to the randomly selected images. The path to reach the minima is usually noisier due
to its randomness. However SGD algorithm do still reach the minima in shorter training
time if the training parameters are tuned correctly.

3.1.5 Evaluating a CNN

To evaluate a CNN, some metrics are needed to measure its accuracy. Concretely, the
accuracy of a CNN is determined by calculating the Precision-Recall (PR) curve for the
CNN given a set of annotated test-images. This means the model evaluation metrics pre-
cision and recall are needed. Shortly said, the precision represents the relevant instances
of detection, while the recall is the amount of relevant instances that are retrieved [40].
To compute these metrics it is necessary to introduce the four distinct output instances
(i.e. possible outcomes of a binary classification). Table 3.2 describes these four possible
outcomes given a data set with labeled ground truth objects. Note that the ground truth
objects in the test images are annotated, usually manually by a human evaluator.

With these four possible outcomes, the precision and recall of a CNN can be computed
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Table 3.2: Relevance representations.

Full name Abbrevation Description
True Positive TP The amount of positive classifications

correctly classified with respect to
ground truth.

False Positive FP The amount of positive classifica-
tions wrongly classified with respect to
ground truth.

False Negative FN The amount of ground truth not identi-
fied by the classifier.

True Negative TN The amount of correct rejections by the
classifier relative to ground truth.

as

p =
TP

TP + FP
(3.13a)

r =
TP

TP + FN
(3.13b)

where p denotes the precision and r denotes the recall. Given the definition of precision
and recall, the Average Precision (AP) can be computed. According to VOC2012 doc-
umentation [41], AP can be computed using the Area Under Curve (AUC) method, that
is:

1. Compute a version of the measured precision/recall curve with precision monoton-
ically decreasing, by setting the precision for recall r to the maximum precision
obtained for any recall r′ < r.

2. Compute the AP as the area under this curve by numerical integration.

The AUC method is used for evaluation in ImageNet as well, a popular data set re-
viewed in Chapter 5. Note that although the principle of measuring AP follows the same
procedure, the exact calculation may vary from dataset to dataset. Further, for the multi-
class scenario, the term mean Average Precision (mAP) is used. This is simply the mean
of AP computed for all classes. These definitions of AP and mAP will be used throughout
the thesis.
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Figure 3.8: Object detection compared to closely related concepts. Image courtesy of [10].

3.2 Object Detection
Now, some theory related to CNNs have been presented and it is time to look into what ob-
ject detection is and review some state-of-the-art object detection models within the deep
learning field.

Object detection involves detecting and classifying multiple objects and where they are
in the image marked by rectangle shaped bounding boxes. In this context, there does also
consist closely related concepts like classification and segmentation, but how do they dif-
fer? First of all, classification simply focus on whether a single object exist in an image or
not, but its pixel coordinates (e.g. localization) is left unknown. Further, there are mainly
two types of segmentation. Semantic segmentation is able to distinguish between classes
(but not between objects within a class) at pixel-level. Usually, colors are used to illustrate
this as shown in the left image of Figure 3.8. Instance segmentation is a slightly harder
task as it aim to not only distinguish between classes, but also distinguish between objects
at pixel-level. In fact, instance segementation only differ slightly from object detection.
That is, object detection use bounding boxes to assign classes, while instance segmentation
assign each class at pixel-level (which is more computationally expensive). Mask R-CNN
is a known model for instance segmentation.

3.2.1 State-of-the-art models
Here, several state-of-the-art models is presented. Both single shot detectors and region-
based detectors will be reviewed. Note that at the time this thesis was written, Faster
R-CNN may not represent state-of-the-art anymore (in context of real-time performance),
but it represents together with its predecessors how fast the development of CNN for object
detection progress.

Faster R-CNN

Before discussing the Faster R-CNN, it is neccessary to review its predecessors, R-CNN
and fast R-CNN, to get some context of the basiscs for these models as well as how they
are improved step by step.
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Figure 3.9: R-CNN framework. R-CNN takes input image, creates a set of regions, computes
features for each proposals using a deep CNN and classifies each region using class-specific linear
SVMs. Image courtesy of [11].

It all started with an early application of CNN to object detection called Region-based
CNN (R-CNN). The overall goal of R-CNN is to take in an image and correctly identify
where the main objects in an image is located. This is done by four steps (see Figure 3.9):

1. Generate a set of region proposals for an image.

2. Process the region proposals using a CNN.

3. Compute task-specific output.

4. Linear regression: Improving the bounding boxes.

The first step, region proposal, creates bounding boxes using selective search. Selec-
tive search is a method that looks at the image through windows of different size (also
called sliding window) and for each tries to group together pixels in same region by tex-
ture, color or intensity to identify objects. Next, the region proposals is transformed to
standard square size and pass it through the CNN as shown in the slide. Overall, the con-
vNet works as an feature extractor and classifier, e.g. it transform the input region layer
by layer to final class scores. The third step, is the final layer of the CNN where a support
vector machine (SVM) classifies whether this is an object or not, and if so, what object it
is. Finally, we tighten the box to fit the true dimensions of the object by running a simple
linear regression on the region proposal [11]. To sum up, the R-CNN takes in sub-regions
of the image corresponding to objects and outputs new bounding box coordinates for the
object in the sub-region.

Now, although R-CNN works fine, it is quite slow as it:

1. requires forward pass of the CNN for every single region proposal for every single
image.

2. have to train three different models separately: the CNN to generate image features,
the classifier that predicts that class and the regression model to tighten the bounding
boxes. This results in a quite slow and ineffective pipeline.
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The improved version, Fast R-CNN, address problem 1 (which introduced slow per-
formance) by applying ROI (Region of Interest) pooling. ROI pooling refers to cropping
a part of a feature map and resizing it to a fixed size [42]. Specifically, this means to run
the CNN once per image and find a way to share computations for sub-regions. For one
image, it shares the forward pass of the CNN across its subregions. The CNN features
are obtained by selecting a corresponding region from the CNN’s feature map. Then the
features in each region are pooled (often max-pooled). By potentially running thousands
of regions through the CNN with R-CNN, you only need one per image with Fast R-CNN
which dramatically speeds up the performance.

Problem 2 is solved by using a single network to compute all three modules (extract
image features, classify with SVM and tighten bounding boxes with regressor) at the same
time. Notice that the SVM classifier is replaced with a softmax activation on top of the
CNN to output classifications. It also adds a linear regressor in parallel to output bounding
box coordinates [42]. In other words, all outputs needed come from one single network.

Even with the improvements in Fast R-CNN, there was still a bottleneck with the re-
gion proposer. The first step, selective search was applied to generate a set of region
proposals which is fairly slow. A team of researchers at Microsoft realised that the con-
volutional feature map used by the region-based detector can also be used for generating
region proposals. Therefore, by reusing the same CNN computations instead of running a
separate selective search algorithm increased the performance greatly [42].

Mask R-CNN

Briefly said, Mask R-CNN extend faster R-CNN for pixel level segmentation. The basic
idea of Mask R-CNN is to go one step further and locate exact pixels of each object in-
stead of just bounding boxes. This is known as instance segmentation. It adding a binary
mask to the Faster R-CNN that outputs whether or not a given pixel is a part of an object.
However, the binary mask lead to some problems. The regions of the feature map selected
by the ROI Pool becomes slightly misaligned. As an example, an 128 × 128 image with
15×15 region reduced to a feature map of 25×25 pixels will give a corresponding region
of 2.93 × 2.93 pixels. ROI pool will round these numbers to 2 pixels. However, using
ROIAlign (Realigning ROl pool) such roundings is avoided by using bilinear interpolation
[42]. With this improvement, Mask R-CNN can generate more precise segmentations.

YOLO (You Only Look Once)

YOLO (You Only Look Once) is a popular single shot detector used for object detection
tasks. The main difference between YOLO and the R-CNN models is that R-CNN use
different region proposals and run those proposals through a CNN, while YOLO passes
the (whole) image just once.

As seen from Figure 3.10, YOLO divide the input image into smaller grids. And each
grid cell predicts a constant number of bounding boxes. If the center of an object falls into
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Figure 3.10: YOLO framework. Given an input divided into S×S grids, YOLO produce bounding
box predictions (upper image) and a class probability map (lower image). These predictions are
merged to final detections as seen in the right image. Image courtesy of [12].

a grid cell, that grid is responsible for detecting that object [12]. Each bounding box con-
tain a confidence scores on how certain it is that an object exist or not within the bounding
box. Notice that many of the bounding boxes (in the upper image in Figure 3.10) will have
very low confidence score and based on a threshold, most of them disappear. Actually,
there are only 3 bounding boxes (representing the dog, the bike and the car) left based on
the threshold. Every grid also predicts a class (visualized by colors) as seen in the lower
image in Figure 3.10. This works as a classifier and gives a probability distribution over all
the possible classes that the network has been trained on. More details about how YOLO
will be explained in the next section.

SSD (Single Shot Detector)

The SSD (Single Shot Detector) approach is based on a feed-forward convolutional net-
work that produces a fixed-size collection of bounding boxes and scores for the presence
of object class instances in those boxes, followed by a non-maximum suppression (NMS)
step to produce the final detections [13]. As with YOLO, SSD only uses a single shot to
detect multiple objects within the image. In addition to the early layers inspired by the
standard architecture VGG-16 for high quality image classification, SSD is characterized
by several interesting features. Among these we find multi-scale feature maps which allow
predictions of detections at multiple scales. Another feature is default boxes and aspects
ratios. That is, we associate a set of default bounding boxes with each feature map cell (as
seen in Figure 3.11), for multiple feature maps at the top of the network. At each feature
map cell, we predict the offsets relative to the default box shapes in the cell. As seen from
Figure 3.11, we evaluate 4 default boxes of different aspect ratios at each location in sev-
eral feature maps with different scales (e.g. 8× 8 in (b) and 4× 4 in (c)). For each default
box, we predict both the shape offsets and the confidences for all object categories [13].
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Figure 3.11: SSD framework. There are 4 default boxes of different height-width ratios at each
location in the feature maps with different scales ((b) and (c)). For each default box, we predict
both the shape offsets and the confidences for all object categories. At training time, we match these
default boxes (e.g. anchor boxes) to the ground truth boxes in (a). Image courtesy of [13].

Comparison

It is somehow hard to have a fair comparison among the different object detectors. A bunch
of different papers use different datasets for benchmarking state-of-the-art object detection
models. And besides the choice of model, several other things impact the performance
such as the choice of feature extractor (VGG16, ResNet, etc), input image resolution and
other training parameters like batch size, learning rate and so on.

Therefore we will only discuss briefly some key characteristics for the models we have
reviewed. An important aspect to discuss when comparing object detection models is the
speed-accuracy tradeoff, where speed is denoted as inference time (e.g. the time it takes
for the input data to pass through all the layers in the CNN). Since both YOLO and SSD
is in fact single shot detectors, they provide an effective pipeline which allows for low
inference time. In comparison, a region-based method like Faster R-CNN use different
region proposals and run each region through the CNN.

An improved model, R-FCN (Region-based Fully Convolutional Network), is used for
benchmark testing on COCO dataset along with YOLOv3 and SSD. From Figure 3.12,
one can observe that all the different configurations of YOLOv3 (320 × 320, 416 × 416
and 608× 608 input resolution) is faster than the region-based CNNs (FPN FRCN and R-
FCN). However, FPN FRCN is slightly more accurate than YOLOv3-608 (but more than
3× slower compared to YOLOv3-608). The SSD models have slightly more equal charac-
teristics to YOLOv3, but they are all achieving lower mAP and inference time compared
to YOLOv3.
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Figure 3.12: Inference time and corresponding mAP for different networks. The networks is tested
at COCO dataset (80 classes) with 0.5 IOU threshold. Image courtesy of [14].

Figure 3.13: Intersection over Union (IoU) metric visualized.

3.3 YOLOv3
So far, different object detectors have been reviewed (including YOLO) as well as the-
ory related to CNNs. As seen from the benchmark test in the previous section, YOLOv3
provides a good tradeoff between mAP and inference time compared to other (reviewed)
models. YOLOv3 is specially characterized by its low inference time enabling for detec-
tions in real-time. This section aim to present a more detailed description of YOLOv3
which will be used in the implementation.

Bounding box predictions

It turns out that most bounding boxes have a certain height-width ratios. So instead of di-
rectly predicting a bounding box, YOLOv3 predict offsets from a pre-defined set of boxes
with a particular height-width ratios. These predefined boxes are referred to as anchor
boxes. In [43], a k-mean clustering algorithm is runned to obtain a number of anchors
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Figure 3.14: Bounding box prediction. The width and height of the blue box is predicted using
offsets from the prior known anchor boxes. In the figure, only the closest anchor box with width pw
and height ph is shown. The other anchor boxes is illustrated in Figure 3.15. The center coordinates
of the box is predicted using a sigmoid function. Image courtesy of [14].

boxes which gives a good tradeoff for recall vs. complexity of the model. In YOLOv3 9
anchor boxes is applied, while YOLOv2 have 5 anchor boxes (see Figure 3.15).

The network predicts coordinates for each bounding box, tx, ty , tw, th. Now, given
that the cell is offset from the top left corner of the image (cx,cy) and the bounding box
prior has width pw and height ph (e.g. the anchor box), then the predictions correspond to:

bx = σ(tx) + cx (3.14a)
by = σ(ty) + cy (3.14b)

bw = pwe
tw (3.14c)

bh = phe
th (3.14d)

That is, we predict location coordinates relative to the location of each cell. During
training, sum of squared error loss is used to improve bounding box coordinate predictions
[14].

Furthermore, YOLOv3 predicts an objectness score for each bounding box using lo-
gistic regression. The score is 1 if the bounding box prior overlaps a ground truth object
by more than any other bounding box prior. This means only one bounding box prior is
assigned for each ground truth object. If the bounding box prior is not the best but overlap
a ground truth object more than a threshold of 0.5, the prediction is ignored [14].

Class predictions

As seen from Figure 3.10, YOLO also predicts a class probability map. This section will
go into details on the class predictions.
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Figure 3.15: The 5 different anchor boxes used in YOLOv2 providing different height-width ratios.
They are applied at different scales. In comparison, YOLOv3 provides 9 anchor boxes, 3 for each
scale.

So how do YOLO figure out if a bounding box contains a specific type of object?
Recall that YOLO divide the input image into S × S smaller grids (see Figure 3.10). And
each grid cell predicts C conditional class probabilities, Pr(Classii|Object). That is, given
that an object exist, what is the probability that this object has a specific class. We only
predict one set of class probabilities per grid cell, regardless of the number of boxes B.
At test time, we multiply this conditional class probability with the confidence value for
the individual box confidence prediction, Pr(Object) (e.g. how confident the model is that
the box contains an object). In addition, we multiply with IoU which takes the union of
ground-truth bounding box and the predicted bounding box (see Figure 3.13) to obtain the
following equation:

Pr(Classi|Object)× Pr(Object)× IOUtruth
pred = Pr(Classi)× IOUtruth

pred (3.15)

This equation gives us the class specific confidence scores for each box. In other words,
both the probability of that class appearing in the box and how well the predicted box fits
the object [12].

At last, the output activation for classification is slightly changed. In earlier versions
of YOLO, class scores where produced using a softmax function and the class with the
maximum score was assigned to be the class of the object contained in the bounding box.
However, softmax rests on the assumption that classes are mutually exclusive (e.g. if one
object belongs to one class, it cannot belong to another). As an example to illustrate its
weakness, classes like Person and Women are not mutually exclusive. Now, YOLOv3 ad-
dress this problem by using a logistic classifier instead which is able to perform multilabel
classification for detected objects [15].

Predictions across scale

In order to detect small objects in the image well, YOLOv3 predicts boxes at 3 different
scales. YOLOv3 have 9 anchors which are grouped into 3 different groups according to
their scale. Each group is assigned to a specific feature map for detecting objects (de-
pending on their pixel size). We now introduce some technical details related to how the
features is extracted from those scales.
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3.3 YOLOv3

Figure 3.16: The content of a feature map for a single grid cell. B refers to the number of bounding
boxes a grid cell can predict. Image courtesy of [15].

Features from those scales is extracted similar to a feature pyramid network (FPN).
From our base feature extractor, we add several convolutional layers where the last rep-
resents a 3-d tensor with bounding box prediction, objectness and class predictions (see
Figure 3.16). Next we take the feature map from 2 layers previous and upsample it by
a factor of 2. We also take a feature map from earlier in the network and merge it with
our upsampled features using concatenation. With this method, the resulting feature map
provide meaningful semantic information and finer-grained information from the earlier
feature map (e.g. better spatial information on object locations). We then process the com-
bined feature map through a few more convolutional layers to predict boxes for final scale
[14].

Network architecture

The network architecture used for the YOLO model (independent of version) is referred
to as Darknet. For YOLOv3, a new network for performing feature extraction is used. In
YOLOv2, Darknet-19, an originally 19-layer network supplemented with 11 more layers,
is used. However, YOLOv2 often struggled with small objects due to loss of fine-grained
features. As obtained in the previous section, YOLOv3 is now able to detect smaller
objects with the use of feature maps with finer-grained information. Now, YOLOv3 uses a
variant of Darknet (Darknet-53), an originally 53 layer network trained on ImageNet. See
Figure 3.17 for details. For the detection task, 53 more layers are stacked onto it, giving
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Chapter 3. Theory

Figure 3.17: Original Darknet-53 architecture used by YOLOv3. Image courtesy of [14].

us a 106 layer architecture for YOLOv3. As there exists several variants slightly different
from the original Darknet-53 architecture (i.e. YOLOv3-spp, YOLOv3-tiny, etc), it will
not be given more detailed information about the specific architecture(s).
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Chapter 4
Hardware and Software Choices

This Chapter represents the software and hardware components chosen for the project.

4.1 Hardware

This section introduces the hardware used in the project. This includes a camera, a com-
puter, markers and a small USV.

Camera

The camera used in this project is GoPro Hero Session 5. It is small and flexible, and
can be remoted wirelessly from a smartphone. Some of the motivation for using a goPro
camera in this project was that it can easily be mounted anywhere on a small USV and
controlled wirelessly from the quay. This makes it easy to record docking operations of
the USV. In addition, it provides a fisheye lens which is useful for the application since a
wide field of view allows the camera to see the markers as often as possible. The specific
camera settings used for the project is reviewed in Chapter 5.

Computer

The main computer used for this project was a 17.4 inch Alienware laptop. It has a intel
core i7 (7th gen) CPU, 8 GB RAM and a Nvidia GTX 1060 GPU. It is runned with Ubuntu
16.04 LTS. For future work, a more compact PC (i.e. Jetson Xavier or similar) may be used
for computations on-board a small USV.

Marker configuration

After reviewing different types of markers in Chapter 2, the final choice of marker for
testing in this thesis was ArUco markers. These fiducial markers are easy to recognize and
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contain a small information payload which allows for fast, accurate and robust detections.

The main configuration is three markers fixed to a piece of wood with 75 cm between
each one as shown in Figure 5.2. For comparison, different colors have been tested to
see if some colors was easier to detect rather than others. Also, two different sizes (A3
paper size and A4 paper size) of the markers was made to check how much the size of
the marker affect the accuracy of the detections from different ranges and views. These
marker configurations will be reviewed in more detail in Chapter 5.

Otter USV

The Otter USV made by Maritime Robotics (see Figure 1.2) is the physical platform for
this project. It is small, flexible and easy to navigate around the quay. The camera was
mounted on the front of the USV.

4.2 Software
This section provides a wide range of software environments used in the project. Some of
them are related to deep learning frameworks while other are used for more basic computer
vision tasks like image acquisition and processing and camera calibration.

OpenCV

OpenCV is an open source computer vision and machine learning software library. It
contains more than 2500 optimized algorithms including both classic and state-of-the-art
computer vision and machine learning algorithms. The library has been used frequently
through the project.

Matlab

Matlab is one of the most used mathematical softwares among engineers around the world
and provides toolboxes for a wide range of applications. One relevant toolbox used for
this thesis is the camera calibrator.

CUDA

When training and testing deep neural networks, it is desirable to utilize parallel processing
to speed up the pipeline. In this context, the Graphical Processing Unit (GPU) have shown
amazing parallel computing capabilities and is therefore a natural choice for deep learning
applications which may have hard real-time requirements. In order to utilize the power of
parallel processing on a GPU, some software is needed to enable it. CUDA is one such
platform developed by Nvidia which allows for thousands of GPU cores to run in parallel
and hence, it reduces the training time significantly. CUDA is a prerequisite for running
the deep learning model YOLOv3 in (hard) real-time. It supports languages like python,
C/C++ and fortran.
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Darknet

Darknet is a software environment for the deep learning object detection model YOLOv3.
Briefly said, it contains all modules you need to run YOLOv3. The software is mainly
written in C which allows for effective computing and low runtime (compared to lan-
guages like Python). Both openCV and CUDA must be installed and enabled in order to
run Darknet in real-time.

FlyCapture

Flycapture is a Software Development Kit (SDK) for FLIR blackfly cameras. For this
project, it was used to control the camera (i.e. record images) from a laptop. This SDK
will most likely be investigated more in the master thesis.

ROS

The Robot Operating System (ROS) is a flexible framework for writing robot software. It
is open-source and provides tools for visualization, monitoring and simulation. Further,
it simplifies the communication and data transfer across multiple systems. Different sub-
modules communicates via messages, they receive data and output processed information.
ROS also offers bridging between openCV and ROS. Further, blackfly cameras is widely
supported by ROS. For this project, YOLOv3 have been integrated into the ROS envi-
ronment to ensure that bounding box information can be used by other modules in future
work. However, this work is not reflected in the results in this thesis, but may play an
important role for future work in the master thesis.
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Chapter 5
Data Acquisition

In order to explain the methods explored in the project, it is natural to start with the datasets
as these lays the basis for data-driven learning methods in the computer vision field. This
Chapter focus on the various data sets as well as the construction of a dataset designed for
auto-docking operations.

5.1 ImageNet
As it is very time consuming to train a CNN from scratch, it is common use a pre-trained
model. Objects in general have a lot of low level features (like corners and edges) in
common and training on a big, general dataset let the network learn these general patterns
rather than only be trained on a small dataset with very specific features. This makes the
model more general and ensures that it is not overfitted in the first place. For this exper-
iment, YOLOv3 is pretrained on ImageNet which contains 1.2 million images with 1000
different categories. Further, transfer learning is applied by domain-specific fine-tuning on
a smaller dataset with different docking scenarios. This custom dataset is reviewed in the
next section.

5.2 Collecting Data
On April 5th, 2019, data collection was conducted to gather camera data of different mark-
ers on a quay at Trondheim Harbour. The experiment consisted of navigating a small USV
around the harbour and slowly approaching the dockside from different angles. A flexible

Table 5.1: Camera specifications for the experiment.

Camera settings
Camera resolution camera mode fps
GoPro Hero session 5 3840 x 2160 Wide FOV 30
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Table 5.2: Split between training, validation and test images.

Training, validation and test data
Dataset Training Validation Test
Custom 770 96 96

GoPro camera was mounted at the front of the USV and records where taken with settings
as shown in Table 5.1 using a GoPro remote app.

Obviously, only relevant examples (i.e. images showing at least one marker) from the
records was included in the custom dataset. Sampling of the relevant videos resulted in a
custom dataset consisting of 962 images. Sampling methods effectively removes redun-
dancy in the dataset as two frames in a row (i.e. a video sequence) shares almost the same
patterns. This allows for effectively covering more variations in the dataset without us-
ing weeks for labeling. In addition, YOLOv3 performs on-line data augmentation which
improves existing training data. Distortion from the wide FOV GoPro camera was also
removed during the process using a camera calibrator. This is reviewed in more detail in
Chapter 6.

5.2.1 Train, validation and test data
The custom dataset was randomly shuffled and then, 80 % of it was assigned to training,
and 10 % was assigned to validation and 10 % was assigned to test data. Figure 5.3 shows
how many images each set contains. By this, we ensure that the training, test and valida-
tion set is independent which is essential for evaluating the accuracy of the trained model
on unseen data. It also ensures that sufficiently amount of data is trained on while some is
left for validating the training and pick the most optimal weights for testing. At last, some
test data verifies how accurate the model performs on unseen data.

The dataset in considered quite small, which sets a limit on how general the model
can be. However, one may not need a very big custom dataset for detecting simple ArUco
markers. Recall that YOLOv3 performs data augmentation online to produce synthetic
data from the custom dataset and thereby improve training. The most important improve-
ment may therefore be to increase the variations of how the markers looks like from dif-
ferent views and different environmental conditions.

5.2.2 Classes and marker configurations
Classes

The custom dataset contains in total four classes, where three of them is different ArUco
markers and one is a natural occurring landmark. Figure 5.1 shows all the different mark-
ers for each class. As seen, the ArUco markers of a class shares many patterns, but vary
in size and color. Variation within each class (except class 3) is included to see if some

46



5.2 Collecting Data

Figure 5.1: All the different markers within each class in the custom dataset. The ArUco markers
(class 0-2) within the same class shares many patterns, but vary in size and color. Class 3 contains
only one single natural occuring landmark, a yellow bollard.

Table 5.3: Number of ground truth labels for each class in the part of the custom dataset used for
training/validation. Each class name is simply chosen as numbers from 0 to 3 corresponding to its
class number.

Classes in custom dataset
Class name Marker type ground truth labels

0 ArUco marker 945
1 ArUco marker 948
2 ArUco marker 955
3 Natural landmark 329

specific color or physical size of the ArUco markers is easier to detect compared to others.
Class 3 contains only one single natural occurring landmark and is included to compare
against ArUco markers in different contexts. Further, Table 5.3 shows that there is a bal-
ance between the first three classes (i.e. how often they occur in the dataset), while the last
class, in comparison, have less ground truth labels in the dataset. This may not be a big
problem as the last class only shows up as one type of object (as seen in Figure 5.2).

The reader may wonder why not ArUco markers with different patterns stays within
the same class (as they all could have been defined as a class "markers"). For this project,
the motivation is to verify if the detection model is able to distinguish between the mark-
ers. And for future work, it will hopefully simplify the pipeline of the whole working
system. Normally, a real-time pose estimation system with ArUco markers need some sort
of tracking capabilities to know that the detected markers between consecutive frames in
fact corresponds. This is usually done by assigning an object id for each object in a frame
and look for small pixel displacements between consecutive frames in order to the update
object id for each object.
However, in our case, only one marker for each class shows up in one marker configura-
tion. By this assumption, one can simplify the tracking problem and assume that the class
number corresponds to the object id. One can also apply simple filtering methods on top
in case the machine learning algorithms makes wrong predictions. This will be explored
further in future work.
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Figure 5.2: The four different marker configurations in the custom dataset. Note that lower subim-
age is an extension of the marker configuration in the upper image. That is, a yellow bollard (natural
landmark) "extends" the row of markers making a total of four markers.

Marker configurations

While the classes tries to sort different markers by their patterns, the marker configurations
shows which combination of markers (three or four markers in a row) that are used for
each time. That is, only one marker configuration is used simultaneously when the USV
approach the dockside. Figure 5.2 and Table 5.4 summarizes how the different marker
configurations looks like and how often they occur in the custom dataset. One may observe
that there are very few examples of A4 markers. Unfortunately, this is due to limited
recorded data relevant for the thesis. However, the patterns learned from the other marker
configurations (in the same class) may compensate for the low presence of A4 size paper
configuration. The goal is to make one detector (instead of several more fine-tuned) that is
able to detect and classify all the markers across the different marker configurations.
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Table 5.4: The different marker configurations in the custom dataset provided with their physical
size and number of occurrences (e.g. images). Note that the physical size of the natural landmark is
left unknown.

Marker configuration images physical size
(cm × cm)

A3 black/white ArUco marker 279 28 × 28
A4 black/white ArUco marker 13 14 × 14
A3 colored ArUco marker 314 28 × 28
Natural landmark + A3 black/white ArUco marker 353 unknown

5.2.3 Additional test videos
In addition to the custom dataset, it was decided to manually pick out some test videos
showing different parts of the docking operation with different marker configurations. The
main motivation is to see how the trained object detector performs in real-time in certain
situations rather than on randomly picked test images. These scenarios will be reviewed in
Chapter 7. To ensure that these test videos is independent of the custom dataset, they were
manually handpicked before the custom dataset was made. In other words, the rest of the
relevant material is leaved to the custom dataset.
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Chapter 6
Implementation

This Chapter focus on the backbone of the pipeline, namely the object detection model.
How the datasets are prepared and how the model can be trained, validated and tested
within the framework will be reviewed. In addition, an overview of the whole perception
pipeline is included in order to get some context of how the project work contributes
towards a robust, real-time pose estimation system.

6.1 Pipeline Overview

This section aim to briefly introduce how the whole perception pipeline works. The final
working system employ a complementary part-based approach that uses a combination of
data-driven deep learning methods, utilizing data wherever required, and at the same time
use classical computer vision techniques when the scope and complexity of the task is re-
duced. These design choices where chosen to make the pipeline more intuitive and easier
to debug compared to an end-end-end deep learning pipeline.

Figure 6.1: The locally visual-based navigation system revisited from Chapter 1.
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It consists of three main modules as shown in Figure 6.1, where the object detection is
deep learning based and the stereo matching/3D reconstruction modules relies within the
classical computer vision field. A final working system assumes the deep learning based
model is trained for its application and that the stereo vision system is calibrated.

This is how it works briefly said: The object detection model receives a sequence of
frames from the left and the right camera. The trained object detection model outputs
predicted bounding boxes around the detected markers and a corresponding confidence
score. Each marker with distinct patterns is sorted into different classes such that pairs of
predicted bounding boxes around the same marker (from the left and the right camera) can
easily be found by its class. These pairs of bounding boxes is feeded into a stereo matcher
which finds corresponding points in the two images. Note that the search space is reduced
dramatically which may favor classical computer vision methods. Now, these points may
be corners given by the pattern of each fiducial marker. Also note that if the cameras are
aligned to be coplanar, image rectification is not needed and the search of corresponding
points is reduced to one dimension. Once the pair of points is matched, 3D reconstruction
(for each pair of matched points) can be obtained directly using stereo triangulation to cal-
culate a disparity (e.g. depth) map. The down-right corner of Figure 6.1 shows how a pair
of corresponding points together with the position of each camera is used to construct and
intersect lines to obtain 3-D coordinates of the point. From the disparity map, the relative
3D pose between one of the cameras and points in the markers can then be obtained from
each frame in the sequence.

To speed up the pipeline, it is proposed to sample every second frame from each cam-
era. That means, for each frame, switch between images from the left and the right camera
and feed the (resulting) consecutive sequence of frames into the object detection model.
As the docking operation in general is a slow-varying process, one can assume that the left
and right image (e.g. two consecutive frames) forms a image pair that approximately rep-
resents the same time instance. Hopefully, this assumption will not affect the overall 3D
point estimation significantly. Another, more process heavy approach would be to run two
instances of YOLOv3 simultaniously (e.g. in parallel). Most likely will both approaches
be tried in future work.

The pipeline is partly inspired by a thesis performing 3D pose estimation with an older
version of YOLO (v2) and a monocular camera [44]. Instead of using fiducial markers,
natural occuring cones on the track is used as reference objects. In comparison to our
proposed stereo vision pipeline, the implementation in this thesis is fairly more compli-
cated as it is based on a monocular system and object priors. The reader is encouraged to
compare section 6.2 in [44] with our proposed pipeline in this section to understand why.
In addition, we propose to use classical computer vision techniques for stereo matching
(referred to as keypoint regressor in [44]), while a machine learning approach is applied
for the same problem in the formula thesis. The reason for this choice is that we believe
classical descriptors are sufficient for stereo matching when the problem is reduced (e.g.
only detect points in bounding boxes and not in the whole image). The final working sys-
tem in this thesis was used in several formula student competitions in 2018 and proved
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Figure 6.2: Object detection pipeline.

that the computer vision pipeline not only works in theory and for simple tests, but also on
the track where accurate and robust estimates in real-time is required.

6.2 Object Detection Pipeline

Before diving into each sub-part of the process, lets briefly get an overview of the learning
based pipeline. Figure 6.2 summarize the whole pipeline from how raw data is collected
to a fine-tuned object recognition model.

In step 1, data is collected and prepared based on the predefined learning task which is
to robustly detect and distinguish between markers placed at some dock-side from different
views in docking operations. Step 2 involves transforming the prepared data to a format
that the deep learning model understand. As YOLOv3 is a supervised learning method, it
needs ground truth labels. These can be provided using an annotation program to manually
label ground truth objects that are supposed to be learned. In step 3, the labeled data is
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fed into the model together with pre-trained weights. When training looks promising, stop
training, validate the weights and conclude your final weights for testing. In Step 4, the
fine-tuned model is tested on new unseen data (i.e. test data). Statistical metrics like mAP,
IOU and Recall is central, both for evaluating training and for testing the final model.
Finally, the model is tested more extensively in operational use, in step 5. Here, you may
encounter challenges which was not presented in the dataset the model was trained for.

6.2.1 Step 1: Data preparation and pre-processing

In the field of supervised learning, data is essential for training CNNs. Data is used to give
ground truth examples that is relevant for the learning task. But before any such examples
can be learned by the model, the data should be prepared and transformed to a format that
the model understands. The first step is to gather a custom dataset that represents examples
of what the model should learn. Chapter 5 describes in detail how the custom dataset is
gathered and which data that is included in it.

In addition, it is often prefered to do some image processing to prepare the input data.
It may be to speed up the pipeline (e.g. reduce the image size), to simplify a complex
and noisy image or to make it more "correct" (e.g. remove distortion) with respect to
the real world. In this context, both camera calibration and downsizing of raw data is
applied. Camera calibration is a widely used technique to remove distortion in the image
and deserves some attention given in the next section.

Camera calibration

A consequence of using fisheye cameras is that distortion will always occur (at least to
some extent). As the final goal is to estimate 3D points accurately, it is desirable to correct
input images for distortion so the mapping between 3D coordinates and the image plane is
correct.

In total, 31 fisheye images of a 8x8 checkerboard was taken from different views and
orientations using a GoPro camera (same as in the custom dataset). Figure 6.3 shows one
shot of the checkerboard pattern taken from a certain view. By using the single camera
calibrator toolbox in Matlab [16], 31 images were added and 22 of them were approved by
the calibrator app. Further, the prior length of the squares (22 mm) was given (necessary
for computing any extrinsic parameters) in Matlab. A fisheye camera model was chosen
in order to get correct calibration.
To evaluate the camera calibration, the reprojection error is used as a measure. The original
mean reprojection error (of the 22 images) was 0.62 in pixels. To improve the calibration,
outliers (images with the highest reprojection error) was removed and a re-calibration was
done. In total, 4 images where removed and the 18 remaining images gave 0.53 mean
reprojection error in pixels as shown in Figure 6.4. With 4K resolution images provided by
the GoPro camera, this is considered as quite good results. Therefore, the model with the
given reprojection error was saved and applied on the custom dataset to correct distortion.
Figure 6.5 verifies a successfully calibration process.
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Figure 6.3: The camera calibrator app in Matlab [16] estimates camera intrinsics, extrinsics, and
lens distortion parameters. Here, the app provide corner detections of the checkerboard pattern for
one of the 22 approved images during the calibration process.

Figure 6.4: Reprojection error after re-calibration.

Figure 6.5: The upper image is distorted, while the lower image is undistorted after the calibration
process. It is easy to recognize the difference since the quay represents straight lines in the real
world.
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Figure 6.6: The annotation tool Yolo Mark in use during the labeling process.

6.2.2 Step 2: Labeling process
When the custom data is prepared and necessary pre-processing is done, the next step is
to make ground truth labels from each image in the dataset representing what the model
should learn. These ground truth labels is used to tell the deep learning model what the
correct answer is (i.e. a supervised model). An annotation program called Yolo Mark
(suited for YOLOv3) is used to achieve this. In practice, the annotation process goes like
this: For each image, simply drag rectangle shaped bounding boxes around each relevant
object (e.g. the markers) and assign its class. Figure 6.6 shows 3 different markers marked
by bounding boxes with colors corresponding to each class. In general, precise labeling is
very important for the learning process. Often, unexpected learning is a result of inaccurate
or lack of labels. For instance, only labeling some parts of the object can be dangerous as
the model then learns that this is the whole object.

6.2.3 Step 3: Training and validation procedure
This section explains implementation details relevant for the final training regime.

Transfer learning and fine-tuning

Transfer learning is a widely used technique in the deep learning field. The method aim to
transfer the learning outcome of low level features that many object shares in common and
also, avoid to train the model from scratch which can be very time-consuming, even for
GPUs [45]. For this project, model parameters trained on a big and general dataset called
ImageNet (reviewed in Chapter 5) was used such that the model already have learned
general patterns. The intention is to use these pre-trained model parameters as a starting
point and fine-tune them with the custom dataset. In Figure 6.2, these inputs are denoted
"pre-trained weights" and "labeled train/val data". The pre-trained model parameters used
for this project is called "darknet53.conv.74" and are usually refered to as the pre-trained
weights. For more information about transfer learning, see here [45].
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Table 6.1: The final choice of training parameters for the YOLOv3-spp architecture.

Training model and parameters
Architecture YOLOv3-spp
Batch size 64
Subdivision 64
Width 608
Height 608
Channels 3
momentum 0.9
decay 0.0005
Learning rate 0.001
Burn in 1000
Max batches 10000
Policy steps
Steps 8000,9000
Scales 0.1,0.1
angle 0
saturation 1.5
exposure 1.5
hue 0.1

Training parameters

Table 6.1 summarize the final choice of training parameters. The first horizontal row shows
the network architecture, the second consider parameters related to GPU processing power,
while the third focus on the input image. The fourth controls how the model parameters
(e.g. the weights) are updated, the fifth involves parameters relevant for the learning rate
and the last serves parameters related to data augmentation. Given the chosen network
architecture, all of the parameters can be adjusted in the configuration file. Now, each of
the parameters deserves some attention:

• Architecture: Different versions of the original YOLOv3 network exists. For this
project, the original YOLOv3 network architecture with spatial pyramid pooling
(SPP) was chosen as it achieved the best MaP (60.6 %) on COCO dataset using 0.5
IOU threshold.

• Batch size and Subdivision: The batch size determines the size of a subset of the
training images used for one iteration. For a large number of images, it is not practi-
cal or necessary to use all in the training set at once to update the weights and hence,
a batch of images is used instead. It also tells us how many images is averaged over
at the same time which helps generalizing the training more. The batch size is set to
64 which is a default value.
Subdivision involves splitting images in one batch into several mini-batches. The
intention is to control how many images is trained for in parallel (i.e. the number of
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images processed by the GPU simultaneously). With a quite high image resolution
(608x608), it was necessary to divide the batch into 64 mini-batches so the GPU did
not run out of memory (e.g. the Nvidia GTX 1060 in use).

• Width, Height and Channels: The input images for training is resized to Width ×
Height. Choosing high resolution increase accuracy during training, but slower the
processing time. A bit high image resolution (608x608) is chosen as it is desirable
to learn detection of small objects during training. Channels is chosen to 3 as the
model should process RGB images (e.g. 3 channels).

• Momentum and decay: Some parameters are used to control how the weight is
updated. The CNN is usually updated based on a small batch of images and not
the entire dataset. Due to this reason, the weight updates may fluctuate quite a bit.
In this context, the parameter momentum is used to penalize weight updates differ
largely between iterations [46].
A CNN typically have millions of model parameters and can easily overfit to any
training data. One way to approach this problem is to use regularization techniques
which artificially forcing your model to be simpler. In this context, one such tech-
nique is to add a penalty parameter in the cost function (also called the loss func-
tion). The decay parameter controls this and aims to penalize large weight values
and consequently simplify the complexity of the model and prevent overfitting.

• Learning rate: The learning rate controls how aggressively the model should learn.
Picking too low learning rate may lead to slow learning process. Picking too big
learning rate is far more dangerous as it most likely cause divergence in training
loss and never reach an optimum during training. However, learning rates are all dy-
namic in modern gradient descent based networks. Some combination of problems
and networks does train with learning rates bigger than "normal". The initial value
is chosen to be 0.001 (default value).
Burn in: It has been empirically found that the training speed tends to increase if
the learning rate is lower for a short time after initialization [46]. This short time
is controlled by the burn in parameter. The value is set to 1000, meaning that the
learning rate is lower between until iteration 1000.
Max Batches: Max batches determines how many iterations the network is trained
for and hence, the total training time. Different tests showed that 10000 iterations
was enough to find an optimal model and to confirm over fitting using a validation
set.
Policy, steps and scales: Policy determines how a learning rate should increase or
decrease. For this project, the learning rate is changed stepwise during training.
Given a stepwise policy, steps decides at which iterations the learning rate should
be changed. At 8000 iterations, the learning rate is scaled by 0.1 and after 9000
iterations, it is once again scaled by 0.1. These scalings are determined by the scale
parameter.
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Figure 6.7: Training loss with the chosen training regime.

• Angle, saturation, exposure and hue: As data collection and labeling can be very
time consuming, it is proposed to make synthetic data based on the collected data
to produce even more and improve the learning outcome. This is called data aug-
mentation and aims to fill the gap between limited data of real images and strict
requirements for robustness of outdoor detections. In this context, the angle param-
eter determines how many degrees a given image can be rotated (+-). The colors in
the image can also be transformed by adjusting the parameters saturation, exposure
and hue. The default values are used for training.

Given the training regime described above, the network was trained locally using a
Nvidia GTX 1060 GPU. Also, the model is trained with the default IOU threshold 0.5. One
training with the given training configurations took approximately 48 hours to succeed.
This is indeed a matter of hardware. Figure 6.7 shows training loss during training.
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Validate training

When the training period is succeeded, it is desirable to measure somehow which model
parameters performs optimally across time (e.g. iterations or epochs). By definition, deep
learning models usually learns the optimal model parameters towards the end as the learn-
ing is an optimization process (if training parameters is tuned correctly). But the main
problem is that deep learning algorithms look for deep complex patterns that humans not
even understand when the model is trained too long. And consequently, it would no longer
fit to the expectations of a human evaluator (i.e. overfitted to training data). Therefore, it
is desirable to validate the training using a validation set. The validation set is a sub-part
of the custom dataset (left away from training) which is used for model selection. That is,
picking the model that performs most accurate on unseen data. Several accuracy measures
exists like MaP, Recall and IOU as reviewed in Chapter 3.

Now, the model selection serves some comments. Among data scientists, the normal
practice is usually to save the model during training for each epoch, train for a large num-
ber of epochs and retain the value with the lowest loss on the validation set. Unfortunately,
the used framework does not offer these capabilities by built-in functions. For this project,
validation MaP (instead of validation loss) is used to validate the training data due to its
ease of availability in the framework. It is also widely used and accepted in the data sci-
ence community. In Table 6.2, MaP calculations is performed to validate training for every
thousand iteration. Note that MaP is derived from AP of each class (i.e. the mean of the
APs across the classes). Also note that AP is usually derived from precision-recall (PR)
curve. For this project, the Area Under Curve (AUC) approach is used to compute AP for
each class, that is, to compute the area under the interpolated PR curve to obtain the APs
for each class. For more information about the method, see 3.1.5.

The final model is therefore chosen as the one with the highest calculated MaP on the
validation set, which is, after 6000 iterations. Notice how the MaP slightly decrease for
the last computed models in Table 6.2. This may indicate overfitting. Now, in comparison
with the normal validation practice described, this is not an optimal model selection. As
seen from Figure 6.7, the training loss oscillates a bit and a peak may occur right before
some of the saved model parameters (which is saved for each thousand iteration). In other
words, instead of retaining the optimal model parameters during training, different model
parameters are saved at certain intervals and the optimal model is most likely hidden in
between some of the saved models. A work around could be to sample saved model pa-
rameters more frequently, but a local laptop could easily run out of memory as one model
parameter file stores more than 250 MB. In addition, a small validation set also makes it
harder to select an optimal model and one may also consider (in the future) to use other
techniques such as cross-validation when working with small validation sets (or simply
collect more data for validation).
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Table 6.2: Comparison of MaP for different weights with training configuration.

MaP comparison on validation set
Iterations MaP (%)

1000 93.02
2000 98.77
3000 97.74
4000 99.73
5000 99.38
6000 99.74
7000 99.73
8000 99.71
9000 99.44

10000 99.11

6.2.4 Step 4: Test procedure
The test set will be used to test the final model (chosen in the validation procedure) on new
unseen data and hence, verify how well the model works in reality. As described in Chap-
ter 5, the custom dataset is well mixed together and randomly shuffled before it was split
into training, validation and test set. This means that the 10 % of the custom dataset as-
signed for testing represents a wide range of scenarios from the dataset. As with validation
procedure, MaP will be used as the main accuracy measure. In general, one can accept the
model if the MaP value achieves a considerable high value. This value, of course, depends
on how big and challenging the dataset is. For our case, the dataset is considered quite
simple as the classes contains easily identifiable markers and one can therefore expect the
CNN to deliver high MaP values on the test set.

Now, the final model (trained for 6000 iterations) was tested on the test-set (e.g. 96
unseen random images in the custom set) and achieved 99.73 % MaP among all the classes.
This result will be reviewed and discussed in detail in Chapter 7.

6.2.5 Step 5: Operational use
If the results from the test set is satisfying, the next step is to test the object detection model
in operational use (i.e. the last step before the model is ready for commercial use). That
could be test scenarios (in real-time) that the model is trained for. Of course, the variation
and complexity of the operational environments is constrained by the training data and
in that context, data collection is essential. That is, the real-time data for operational use
should be reflected by the training data. In other words, the more general and robust
detection model you want to achieve, the more expensive will the data collection process
be. In the next Chapter, additional test data will be used to evaluate how the detector
performs (offline) in different scenarios.

61



Chapter 6. Implementation

62



Chapter 7
Results and Discussion

Having introduced the relevant datasets and the theory and implementation concerning
YOLOv3, it is time to look into the results followed up by a discussion.

This Chapter can be divided into three parts. First, the results of the custom test-set
is presented which tells us how well the detector performs on unseen data with accuracy
metrics. Then, to get some context of how the detector works in real-time docking op-
erations, additional test videos (without ground truth labels) is used to test the detector
more extensively. The goal is to relate some of the observations in these test videos to the
statistical metrics from the custom test-set. A video analysis containing a wide range of
docking scenarios is presented and with this as a basis, several remarks are done. Some of
the motivation behind is to test how well a deep CNN can help cameras, which are highly
sensitive to environmental changes. E.g. how cameras can overcome its main weakness
by using data-driven methods. The final goal is to test and observe the robustness of the
learning based detector for outdoor docking operations using a suitable marker configura-
tion. The different docking scenarios in clip 1-6 in 7.2 will be used to investigate this. At
last, the results in 7.1 and 7.2 is summarized.

7.1 Custom Test-Set
This section presents results related to custom test-set with a special focus on accuracy
metrics.

From Table 7.1, Average Precision (AP) for each class on custom test-set is presented
along with True Positives (TP) and False Negatives (FP) for IOU threshold 0.5 (same
threshold as the model is trained for). Recall that the data from the custom test-set rep-
resents 10% of the (randomly shuffled) custom data set. This ensures that a varied set of
images is tested. Also recall how Precision and Average Precision (AP) is defined from
3.1.5. These metrics summarize the detection quality and is used to evaluate the detector.
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Table 7.1: AP for different classes on custom test set.

custom test set
Class AP (%) TP FP
0 99.99 95 1
1 98.94 94 0
2 100 95 0
3 100 31 0

Figure 7.1: Various images from the custom test-set provided with detections, where natural land-
marks occurs in two of them.

Figure 7.2: A false positive from the custom test-set.
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Results

The overall mAP achieved across the classes is 99.73%, that is, the mean of the APs for
class 0-3 (see Table 7.1). Figure 7.1 shows six different images from the custom test-set
successfully detected and classified by the detector. These images also includes natural
occurring landmarks and shows, together with Table 7.1, that there is no difference in de-
tection quality between the ArUco markers and the natural landmark. It reflects some of
the performance of the detector.

From Table 7.1, one can also observe that the model predicts a false positive (FP) in
the custom test-set. Figure 7.2 visualize this, e.g. the ArUco marker placed in the middle
is wrongly classified as class 0. This was however the only FP presented in the custom
test-set.

Discussion

Table 7.1 shows that all individual APs achieves a very high value and in that sense, the
model is able to detect and classify all the markers very accurately. As obtained, the
model is able to detect the natural landmark with the same (extremely) high accuracy as
the ArUco markers, although this landmark is more rich in sense of its features.

Another aspect is the weather during data collection. As it was a sunny day during
the records, this may simplify the challenge of detecting markers. Other more challenging
weather conditions can potentially introduce new challenges, i.e. how to robustly detect
objects in presence of fog, heavy snow or rain or completely other light conditions.
Hopefully, a more comprehensive and challenging data set will be collected in future work
in order to deal with these challenges.

The false positive presented in the custom data set is not a big surprise. The markers
presented in Figure 7.1 are so small that it is hard to distinguish between the markers, even
for humans. What is more remarkable is the fact that the CNN is able to detect and classify
all the other markers correctly from long ranges (e.g. very small objects). With this obser-
vations, several questions arise. How small objects can a CNN detect and classify without
producing false positives? And how small can objects be labeled in the annotation pro-
gram (e.g. assigned ground truth to be learned)? At some point, the markers becomes so
small that they may not be distinct from other features in the image. For instance, to label
only some black and white pixels as an ArUco marker (i.e. a 3x3 pixel image) can be very
dangerous. The consequence could be that the detector starts to detect a bunch of objects
in the image, because it finds small patterns that are more or less equal to those black and
white pixels assigned as the ArUco marker. This consideration is important when ground
truth labels are made for the detector.

At last, the custom data set is considered quite homogeneous. This makes the learning
task easier as the test data tends to be quite similar to the training data. The drawback is,
of course, that the model loose some of its generality and may not be able to detect the
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markers in other contexts. This may specially be a challenge for the natural landmark as it
contains more features and may look quite different from different angles. In comparison,
the ArUco markers are quite distinct and simple and the patterns looks quite similar from
different angles.

7.2 Video Analysis
Now, as the custom test-set is relatively small and thus gives limited insight, it was decided
to add more test videos to observe how the model performs on more unseen data. Hope-
fully, more extensively testing will find weaknesses and challenges that didn’t showed up
in the custom test-set. This may add value and more insights for future work. Table 7.2
shows the different test videos. Among the aspects that will be investigated in this sec-
tion is comparisons of different marker configurations, detection quality on long and short
ranges and related challenges to these aspects. Note that the same fine-tuned detector is
used for all the videos (clip 1-6). The 6 different clips is concatenated into one single
video. A link to the video can be found at:

https://youtu.be/8-3frymRwdk

Discussion

In this part, each clip is discussed in detail and several remarks is done for each clips. In
addition, some general remarks not specified to a single clip is also provided.

Clip 1

The clip shows that the model is able to detect and classify the markers with high confi-
dence score, both for long and short ranges. Not surprisingly, the confidence score oscil-
lates a bit more at long ranges since the objects are very small and therefore, the model
produce more "unsure" predictions. Figure 7.3 shows the confidence score of the markers
for four different ranges during the docking operation. Observe that the left marker in
the upper image has has a confidence score of 94% at one time instant, while the three
other images (closer to the dockside) provides a higher confidence score, approximately
99-100%.

Clip 2 and 3

Clip 2 and 3 shows, not surprisingly, that the small ArUco markers (20 cm× 20 cm) cause
more oscillating confidence scores during the long range detections and also produce sev-
eral false positives. Comparison of detection quality with clip 1 verifies more or less that
bigger markers should be chosen to simplify the detection task, specially when the USV
is far from the dockside. When comparing with clip 1, it is clear that the A3 size markers
(or maybe even bigger markers) should be chosen to ensure accurate and robust detections
during the whole docking operation.
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Table 7.2: The additional test videos tries to cover a wide range of scenarios.

Additional test data
Clip Video length Marker configuration Description
1 0.00-1.04 A3 black/white The USV is slowly ap-

proaching the dockside from
the side and un-dock when
it is close to the markers. It
explores both long and short
range detections during the
docking operation.

2 1.04-1.34 A4 black/white The USV is standing more
or less still and detect small
ArUco markers from a far
distance.

3 1.34-1.46 A4 black/white The USV un-dock with the
same small ArUco markers
as in clip 2.

4 1.46-2.13 A3 colored The USV is approaching the
same dockside from another
angle than the first three
video clips. It provides mid-
dle and short range detec-
tions of colored markers.

5 2.13-2.48 Natural landmark This clip contains a natural
occuring landmark in addi-
tion to ArUco markers. All
markers are located at an-
other dockside. The USV
is slowly approaching the
dockside from a far distance.

6 2.48-3.04 Natural landmark The USV is approaching the
same dockside as in clip 5,
but from a shorter range.
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As earlier mentioned, it is very remarkable that the model is able to distinguish be-
tween the small objects, and specially the A4 size markers in clip 2 ans 3. It shows how
well YOLOv3 robustly can detect objects at different scales. There is no way a human
evaluator can do the same. Only prior knowledge about the scene, like the relative posi-
tion between the markers can help us to distinguish between them. In fact, as long as all
the markers can be detected (but not classified) and the order is fixed, knowledge about the
relative order between the markers can be used to distinguish between them.

Clip 4

From clip 4, one can observe that there are no significant differences in detection quality
between "standard" black/white ArUco markers and colored ArUco markers. This can
be seen directly by comparing the confidence score of the marker in the middle with the
left and the right marker. As all the markers, independent of its color, results in almost
perfectly detections, they can all be used in a final marker configuration for the specific
dockside. However, the color of the marker should in general be chosen to stand out from
the scene, e.g. the choice of color depends on how the dockside as well as other back-
grounds looks like. In other words, there is no guarantees for that the markers (used in this
project) will perform the same way for other docksides.

One may also observe that although the USV is approaching the dockside from an-
other angle, the light conditions are almost the same. And consequently, the detector does
not seem to be affected by slightly different light conditions. Due to a short record period
(approximately 2 hours in the morning), it was not possible to provide a dataset with more
varying light conditions. It is therefore interesting, for future work, to record a data set
with various light conditions during a day, in addition to various weather conditions from
day to day. With such a dataset, one can experiment with the robustness by testing the
detector under (very) different environmental conditions.

Clip 5 and 6

In clip 5 and 6, one can observe a natural occuring landmark (the yellow bollard), in addi-
tion to the three ArUco markers. Other natural landmarks was also considered, including
the red ladder at the dockside. While it is easy to recognize the red ladder in clip 6, it
becomes considerably harder to recognize the same landmark in clip 5 where the USV ap-
proach the dockside from a longer distance. Specially note how the red ladder struggling
to stand out from the background scene (e.g. the brown/dark docking) during the whole
docking operation. As seen, the scene can be completely changed due to different light
conditions dependent of the angle and the range from the docking and therefore, natural
landmarks must be carefully chosen to address this challenge. For the same reason, the
yellow bollard was chosen as the natural landmark as it was quite easy to recognize it dur-
ing the whole docking operation (e.g. in clip 5 and 6).
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Another interesting aspect is a comparison of detection quality between fiducial mark-
ers and natural landmarks. As can be observed during clip 5 and 6, the ArUco markers
achieves a higher overall confidence score compared to the natural landmark, although
the difference is not considerably high. There may be several reasons why. First of all,
the ArUco markers provides a very simple pattern to recognize and in that sense an easy
detection task for a trained CNN. The natural landmark have, in comparison, more fea-
tures and may vary more in different contexts. Secondly, the natural landmark only have
329 ground truth labels, while the ArUco markers have 945-955 labels (depending on the
marker). Therefore, providing more ground truth labels of the landmark in the custom data
set may reduce the small gap in confidence scores. However, the mentioned observations
favorizes ArUco markers marginally. In addition, it is easier to detect keypoints from the
corners of a an ArUco code compared to a more complex natural landmark. These key-
points will be used for stereo matching and 3D reconstruction later which makes ArUco
markers a safe choice.

Other remarks

As seen in Figure 7.4, outdoor light also introduce other (maybe unexpected) challenges.
The light reflecting from the water confuses the detector which produce a false positive.
This may specially be a challenge when the water is flat (e.g. no waves) such that less
distorted candidates can be produced in the water near the dockside. However, this ob-
servation was done during an early stage in the training phase (e.g. not reached the early
stopping point). When training for more epochs, the model was able to reject such can-
didates. In addition, prior knowledge on relative positions between the markers can be
used to reject false positives. For instance, since the detector produce two candidates of
class 2 in Figure 7.4, one can reject the candidate in the water since the object of class 2
always occur to the right of the other markers (of class 0 and 1). Most likely, it will have a
lower confidence score as well and one can pick the one with the highest confidence score.
Simple filtering methods like this can be used to make the detection system more robust,
but it is of course desirable that the CNN is able to make decisions robustly on its own.

Another aspect is that 3D reconstruction with stereo vision techniques will most likely
not be performed at long ranges due to a relatively small baseline between the cameras,
approximately 0.5 m. This is because stereo vision converges to monocular vision when
the depth (between the cameras and markers) is significantly bigger than the baseline. The
baseline is indeed constrained by the size of the USV. Therefore, the most critical is to
have a detection system that works reliably on middle and short ranges from the dockside.
However, monocular vision techniques together with prior knowledge of the geometry the
markers can be used to produce 3D pose estimates as well. One approach is to develop a
two-phase system where stereo vision is used for the last couple of meters, and monocular
vision is used before the USV reach this distance. This way, one can extend the overall
perception range. Where the phase-shift is executed precisely, e.g. where stereo vision
does not provide accurate 3D pose estimates anymore, will be figured out in future work.

Lastly, from clip 1-6, several false positives can also be observed. This confirms, not
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surprisingly, that there is a little gap in accuracy between the custom test-set (providing
96 test images) and the other test videos. On the other hand, the model performs almost
perfectly on clip 1-6 and many of the false positives can in fact be rejected if the confi-
dence threshold is increased (it is set to 0.25). On the other hand, a too high confidence
threshold will tend to reject true positives. A suitable value in between should be chosen
to deal with this tradeoff.

7.3 Summary
Throughout section 7.1 and 7.2, different aspects of the object detection model has been
investigated, with a special focus on suitable marker configuration for simple and robust
recognition during a docking operation. The results shows that there is a small gap in accu-
racy between the custom test-set and the additional videos. However, the detection quality
is still considered very satisfying as seen from clip 1-6. Despite a well performing object
detector is obtained, it is always relative to how challenging the data set is. Therefore, to
increase insight and to make sure the detector works under more extreme conditions, it is
proposed to collect a more comprehensive and challenging dataset for future work.

Furthermore, it is clear that fiducial markers like ArUco markers is suitable for outdoor
marker recognition. The results showed that YOLOv3 was able to detect and classify the
ArUco markers very well (as expected). The results also showed that all the fiducial mark-
ers performed well independent of its color, but not surprisingly decreased in detection
quality when the smallest marker configuration (e.g. A4 size paper) were chosen. This
was particularly visible at long ranges from the quay. The general approach is indeed to
use an appropriate size of the markers depending on the detection range for the applica-
tion. Natural landmark did also showed promising results. However, as a safe starting
point, fiducial markers will most likely be used for future development.

To summarize, the results obtained in section 7.1 and 7.2 confirms that the fine-tuned
object detection model (aka the backbone of the perception system) works well for outdoor
marker recognition under docking operations. This lays a solid basis for future work and
allows us to progress further and complete the pose estimation pipeline.
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Figure 7.3: Comparison of detections for different ranges under a docking operation.
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Figure 7.4: Light reflecting from the water confuse the detector during an early training stage.
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Chapter 8
Conclusion

This Chapter concludes the thesis. That is, summarizing the most important findings and
presenting some future challenges.

8.1 Overview

This thesis has investigated how a deep learning based detector is able to detect markers
during various docking operations. The motivation was to provide robust detections with
an elecro optical (EO) camera. The detector use the state-of-the-art object detection model
YOLOv3 as a starting point.

Figure 6.2 summarizes the different steps needed to achieve fine-tuned object recogni-
tion for a specific application (such as marker detection). That is, how a custom dataset is
collected and prepared for supervised methods within the field of deep learning. Further,
a large, general dataset (ImageNet) was applied to learn general patterns and reduce over-
fitting issues. With the prepared custom dataset and the pre-trained model parameters as a
basis, the deep CNN was trained, validated and tested.

As the reader may recognize, a CNN is just a piece of the learning-based pipeline (al-
though CNN is the core). In other words, there are more to object recognition than neural
networks. Intuition about the quality, amount, relevance and variance of the data used for
the learning task may be just as important. Since humans in general have no idea on the
specific decision process throughout the layers in deep CNNs (e.g. black box), intuition
about input data and corresponding output classifications is crucial.
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8.2 Findings

8.2.1 Markers
We start by give some important remarks about ArUco markers and natural landmarks.

In addition to the great detection quality obtained with ArUco markers, we find the
natural landmarks to perform well. One clear benefit of using natural occuring landmarks
is that we use what is already in the scene. In [44], natural occuring cones is used instead
of fiducial markers as reference objects. Indeed, placing fiducial markers around a track
for racing cars is impractical. In comparison, a docking operation is more constrained and
the environment around the dockside is assumed to be well known in prior. For this reason,
a few fiducial markers placed around the quay may not be impractical. This could be static
features easily recognisable at the dockside. Several companies use fiducial markers for
visual-based navigation these days. This includes the robot Handle from Boston Dynam-
ics which use several pairs of ArUco markers for close range operations (see Figure 2.5).

Further, we find the fiducial markers to be even more robust with respect to environ-
mental changes. For instance, as outlined in 7.2, several natural landmarks looks com-
pletely differently depending on how the scene is affected by environmental changes (i.e.
different light conditions). The red ladder in clip 5 and 6 is one such example.
In addition, the results shows that the model produce slightly lower (and more oscillating)
confidence score for the natural landmark. Still, not many false positives are produced
although the natural landmark is considered more challenging to detect due to its rich
amount of features. This proves some of the great potential a data-driven detection model
like YOLOv3 have.

8.2.2 The detection model
Next, we presents some important findings from the detection model.

Due to the promising accuracy metrics achieved from the custom test-set in 7.1 (99.73%
mAP), we find the model to perform very satisfying. An important point is that the same
model parameters is used for all the docking scenarios. This gives a somehow more gen-
eral model compared to several fine-tuned models for each marker configuration. In an
early development stage of the training process, this approach was also applied which
gave, not surprisingly, even better results due to more homogenous datasets. On the other
hand, these models did in fact produce significantly more false positives for docking oper-
ations looking slightly different from the training data.

Furthermore, YOLOv3 achieves surprisingly high detection quality for small objects.
This may be due to recently improvements in YOLOv3. YOLOv2 often struggled with
small objects due to loss of fine-grained features. As discussed in 3.3, YOLOv3 approach
this problem by improving the feature maps. It predicts bounding boxes at 3 different
scales, where 3 different anchor boxes is used for each scale which allows for more fine-
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grained feature information.

At last, YOLOv3 is characterized by real-time performance. That is, the inference
time is so low that humans is not able to observe a time delay while the input image is
processed throughout the network. Clip 1-6 in 7.2 illustrates this clearly. As the reader
may have observed, the focus on real-time performance have not been given a lot of at-
tention in the thesis. The reason is simply that a navigation system not necessarily require
position estimates in (hard) real-time. However, the tradeoff between speed and accuracy
deserves some attention. As seen from the final training configuration in Chapter 6, the
width and height of the input images is resized to 608 × 608 (which was also used at test
time). This resolution achieved a good tradeoff between speed and accuracy. However, a
lower resolution like 416 × 416 did indeed reduce the inference time making the detec-
tor even faster, but at the same time slightly less accurate. Particularly small objects in the
image suffered from the reduced resolution (as it affected the detection quality negatively).

8.3 Future work
Deep CNNs for object detection is a field of heavy research and the methods are improved
every year. By the time the thesis was written, YOLOv3 is considered a state-of-the-art
recognition model suitable for many computer vision applications. One of these is auto-
docking.

Further, as the proposed working system is developed (see Figure 1.1), one can ben-
efit from research in the same field. In [47], a path planning algorithm for underactuated
vehicles with limited field of view is proposed, in particular for vehicles that cannot con-
trol its sway motion and can only move forward. As the test platform Otter USV is an
underactuated vehicle, this paper is indeed relevant for my work. A stereo vision system
provides only a limited field of view, even with fisheye lenses. Therefore, to control the
vehicle such that markers are included in the camera view is particularly interesting (since
the working system only works when the markers are visible for the cameras).

In Chapter 1, the overall idea for the project was introduced for the reader where the
deep learning based detector was a minor part of the proposed working system. Figure 1.1
gives an overview of the different modules proposed to compute 3D pose estimates with
stereo vision cameras. As obtained from the results in Chapter 7, the deep learning based
detector is able to produce satisfying marker detections and classifications (for one camera
feed).
For the master thesis, the plan is to continue the work and extend the pipeline. That is,
to develop software to perform stereo matching of predicted bounding boxes and 3D re-
construction of matched points (see Figure 1.1). Software frameworks such as ROS will
be investigated and ROS may be a good candidate for integration of the modules into the
final working system. And obviously, calibration of the stereo camera system is needed to
relate the left camera to the right and recover depth. The proposed extensions represents
classical techniques within the field of computer vision.
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At last, YOLOv3 have shown great detection capabilities for the recorded custom dataset
(described in chapter 5), but it is still left unknown how the model handle a more challeng-
ing dataset. Therefore, it is proposed to collect a more comprehensive dataset for more
robust detections (i.e. harsh and challenging weather conditions).

The plans are preliminary and can be adjusted during the work. Now, some of the
mentioned suggestions for future work can summarized by the following list:

• Prepare a more compact PC for deep learning computations on-board a small USV.

• Mount the cameras on a camera rig and perform stereo calibration.

• Extract a pair of bounding boxes from left and right camera, and perform 2D-2D
feature matching and triangulation for 3D pose estimation.

• Merge sub-modules into a complete 3D pose estimation system in Robotic Operat-
ing System (ROS).

• Synchronize and compare camera pose estimates with ground truth RTK GPS mea-
surements.

• Record a broader data set covering several weather and light conditions, with a spe-
cial focus on USVs in docking operations.
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