
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f M

at
he

m
at

ic
al

 S
ci

en
ce

s

M
as

te
r’

s
th

es
is

Karina Maria Vallejos

Diffie-Hellman based key exchange

Master’s thesis in MLREAL
Supervisor: Kristian Gjøsteen

December 2019

Karina Maria Vallejos

Diffie-Hellman based key exchange

Master’s thesis in MLREAL
Supervisor: Kristian Gjøsteen
December 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Acknowledgements

This thesis ends my five year long education at NTNU. This project has been both inter-
esting and educational, and I’m forever grateful for all the memories and friendships I’ve
obtained during my time at NTNU.

On the very outset of this thesis, I would like to extend my sincere and heartfelt gratitude to
my supervisor professor Kristian Gjøsteen for his insight and guidance in these long and at
times tough months of work before submission. I would like to thank my sister Pamela for
all the help I’ve received during my five years of education. We’ve spent countless of late
nights while studying for my exams and proofread my thesis. I will be forever grateful for
the motivation and faith given by my loving and supportive parents, thank you for always
giving me guidance and love through thick and thin. I would also like to thank my fiancè,
Mathias, who has always supported me morally and always kept my spirits up.

Karina Maria Vallejos
Trondheim, December 2019

Abstract
We present a formalism for the analysis of key exchange protocols that combines different
definitional approaches and results - to define security and other important analytical ben-
efits. The use of the results are applied to explain and analyse authenticated key exchange
protocols with the use of the Bellare and Rogaway model and standard Diffie-Hellman
communication. The definition allows for a simple proof of security: one can design and
prove security of key exchange protocols where the communication are authenticated and
secure against an active adversary.

Sammendrag
Vi presenterer formaliserte sikkerhetsbevis av flere nøkkelutvekslingsprotokoller som kom-
binerer ulike definisjonelle tilnærminger og resultater for å definere sikkerhet og andre
analytiske fordeler for nøkkelutveksling. Resultatene anvendes til å forklare og analy-
sere autentiserte nøkkelutvekslingsprotokoller ved bruk av Bellare og Rogaway modellen
og standard Diffie-Hellman kommunikasjon. Definisjonen fører med seg et enkelt bevis
for sikkerhet: man kan designe og bevise sikkerhet for nøkkelutvekslingsprotkoller hvor
kommunikasjonen er autentisert og sikker mot en aktiv angriper.

i

ii

Contents

Acknowledgements

Summary i

Table of Contents iii

1 Introduction 1

2 Key exchange 3
2.1 Diffie-Hellman . 3
2.2 The Diffie-Hellman key exchange protocol 4

3 Authenticated Key Exchange 9
3.1 Signed Diffie-Hellman . 9
3.2 Matching Conversations . 10

4 The KEA protocol 21
4.1 Overview . 21
4.2 The KEA+ protocol . 21
4.3 Secrecy of keys . 26

5 Forward Security 31
5.1 Improving the KEA+ protocol . 31
5.2 HMQV . 34

6 Concluding Remarks 37

iii

Chapter 1
Introduction

In this master thesis, our main goal is to explore and analyse the security in key exchange
protocols, and introduce additions and improvements to obtain authentication. Key ex-
change, or KEX, is a traditional primitive of cryptography. The Diffie-Hellman key ex-
change is a specific method of exchanging cryptographic keys k. These protocols allow
two parties to establish and compute a secret key through public communication, over
an insecure communication channel. Authenticated key exchange, or AKE, doesn’t only
allow parties to compute a share key but also establish authenticity of the parties. This ul-
timately means that a party can compute a shared key only if the player is the one it claims
to be. Many of the desirable properties for AKE protocols have been identified, however
in this thesis we have mainly considered the notion of Forward security. This notion re-
sults in the security of established session keys even if the static keys of one or two parties
are compromised. A natural solution for AKE is to execute a standard Diffie-Hellman
key exchange protocol and sign all communication sent between the parties, which is also
referred to as Signed Diffie-Hellman. However, the Signed Diffie-Hellman AKE can be
broken if an adversary reveals the ephemeral keys of the parties. In addition we wish to
decrease the number of exponentiations computed in this protocol and avoid the use of
signatures to maintain authentication. Hence we proceed to introduce the KEA+ protocol
and HMQV to preserve authentication and the notion of forward security.

The notion of mutual authentication and matching conversation becomes an important
factor in our formalisation of authentication. The terms are introduced by Bellare and
Rogaway [1] and easily explained as the case when the conversation of a responder oracle

1

Chapter 1. Introduction

matches the conversation of an initiator oracle and vice versa.

The thesis will be organized as follows: in Chapter 2, we provide an introduction and
overview on the Diffie-Hellman key exchange as well as the cryptographic and mathe-
matical theory around the discrete logarithm security proof; in Chapter 3, we look at au-
thenticated key exchange and introduce a security proof with three games using standard
Diffie-Hellman communication and the Bellare-Rogaway model; in Chapter 4, we look at
KEA+ in hope to improve previous signed protocol; in Chapter 5; we look further into
the notion of forward security in our model as well an an extension to our model with the
use of the HMQV protocol; in Chapter 6, we summarize our work with some concluding
comments.

2

Chapter 2
Key exchange

In cryptography, key exchange protocols are mechanisms by which keys are exchanged
between two parties to allow for the use of a cryptographic algorithm or protocol. The
players eventually output either a shared key or ⊥ that denotes failure. Key exchange pro-
tocols (KEX, for short) are essential for allowing the use of shared key cryptography to
establish secure communication channels [3]. The key exchange problem describes ways
to exchange keys and other information that are needed to establish secure communica-
tion channels. We can say that a KEX-protocol is called secure if it is infeasible for an
adversary to distinguish the value of a key generated by the protocol from a random value.

In the following sections we analyse the security of the Diffie-Hellman key exchange pro-
tocol. The Man-in-the-Middle attack is the common attack that will be taken into con-
sideration during the following sections, with a passive and active adversary. The basic
idea behind Man-in-the-middle attack is that an adversary have full control of the commu-
nication channel and can violate a given security property, for instance confidentiality or
authenticity [1], i.e an active adversary can attempt to impersonate both participants.

2.1 Diffie-Hellman

The Diffie-Hellman key exchange algorithm deals with the following dilemma. Alice and
Bob want to share a secret key for use in a symmetric cipher, however their communica-
tion line is insecure. Information exchanged between Alice and Bob is observed by an

3

Chapter 2. Key exchange

adversary Eve. How can Alice and Bob share a key without making it available to their
adversary? Diffie and Hellman suggested the notion of public key encryption. Firstly the
protocol is presented, subsequently the security goals are explained.

We use the convenience of a cyclic group Z∗p for a prime p and a generator g. For every
element x ∈ Z∗p, there is a i ∈

{
0, ..., p − 2

}
such that x = gi modulo p. i is called the

discrete log of x with respect to g

2.2 The Diffie-Hellman key exchange protocol

• Alice and Bob agree on a large prime p and a generator g

• Alice chooses a $←Z∗p and computes X = ga modulo p. Alice sends X to Bob.

• Bob chooses b $← Z∗p and computes Y = gb modulo p. Bob sends Y to Alice.

• Alice computes KA = Y a modulo p, and Bob computes KB = Xb modulo p

• Finally they use KA and KB as key to exchange messages using a private key en-
cryption scheme.

A protocol diagram is given in Figure 2.1. The Diffie-Hellman protocol is susceptible to
two attacks: the discrete logarithm attack and the man-in-the-middle attack. When defin-
ing security, it is important to keep in mind the anticipated adversary. For this section,
we will focus on passive adversaries. A passive adversary can eavesdrop on the commu-
nication channel and learn information such as g, X and Y without interfering with the
protocol.

The discrete logarithm attack: The adversary Eve, can intercept the values X and Y ,
and from these values find a from X = ga and b from, Y = gb. Then she can calculate
K = gab modulo p. If the adversary can obtain K then the key is no longer secret. Let’s
make a proof that is more rigorous, by introducing a few assumptions:

Definition 2.1 - Discrete Logarithm (DL) assumption:
For a group G with 〈g〉, it is hard to compute a given a random eleven ga.
Definition 2.2 - (Computional) Diffie-Hellman (DH) assumption:
For a group G with 〈g〉, it is hard to compute gab given random elements ga,gb.

4

2.2 The Diffie-Hellman key exchange protocol

Definition 2.3 - (Decisional) Diffie-Hellman (DDH) assumption:
For a group G with 〈g〉, it is hard to distinguish gab from a random group element gc, given
random group elements ga,gb.

Alice Bob

a
$← Zm

X ← gamod p

X

b
$← Zm

Y ← gbmod p

Y

KA ← Y amod p KB ← Xbmod p

Output : kA Output : kB

Figure 2.1: The Diffie-Hellman key exchange.

If you have a machine which can efficiently solve the DL-problem in some group, you can
easily construct a solver for the DH-problem. If you have a solver for the DH-problem,
you can also decide the DDH-problem. This means that, DDH is at least as easy, or easier,
as DH, and DH is at least as easy as DL. Or for the other way around, DL is at least as hard
as DH, and DH is at least as hard as DDH. Another way of looking at it is the assumption
to be hard, where hard can be defined as not doable for a reasonable user. If DDH is hard,
then DH must be hard too. If DH is hard, then DL must be hard. Thus, hardness of DDH
is a stronger assumption than the hardness of DH, which is still stronger than DL.
So, evidently we see that DDH⇒ DH⇒ DL.

As previously mentioned, a passive adversary can obtain X = ga and Y = gb by
eavesdropping on the communication channel. Let’s say the adversary try to compute
a = loggX . Success would contradict the DL assumption (Definition 2.1). Similarly for
computation of b = logg Y . If an adversary A can find K from a and b, then we can use
A to solve the DH-assumption. Under the Diffie-Hellman assumption (Definition 2.2),
adversary A cannot find key K given a and b. However, if K is used to encrypt small
messages, say a 1-bit message m ∈ {0, 1}, where ciphertext C = gMK, m can be recov-
ered deterministically from the quadratic residuosity of a and b. To avoid this problem,
we introduce the Decisional Diffie-Hellman assumption (Definition 2.3) to exclude leak of

5

Chapter 2. Key exchange

partial information. We can look into the security under DDH assumption.

Let f be a balanced function, that is

f : 〈g〉 ⇒ {0, 1}

Pr[f(u) = 0] = Pr[f(u) = 1] = 1
2 for u ∈ 〈g〉

Suppose that A guesses f(K):

Pr[A(a, b) = f(K)] > 1
2 + ε

for a non-negligible ε.
Let’s define a distinguisher D for DDH:

D(ϕ, gb, gc) :=

{
1, A(ga, gb) = f(gc)

0, A(ga, gb) 6= f(gc)

DH-triples:
Pr[D(a, b,K) = 1]
= Pr[A(a, b) = f(K)]
> 1

2 + ε

Random triples:
Pr[D(a, b, gc) = 1]
= Pr[A(a, b) = f(gc)]
> 1

2

We see that the advantage of D exceeds the advantage of A, and this contradicts with the
Decisional Diffie-Hellman assumption.

Let DDH be the set of tuples (ga, gb, gab)| where a, b ∈ 0, 1, ..., p− 1.

Definition 2.4:
Let A be a CDH-algorithm for a group G in probabilistic time algorithm, for a fixed α > 0
and a large n, satisfy:

Pr[A(p, g, ga, gb) = gab] >
1

nα

where g is the generator of the group G.

6

2.2 The Diffie-Hellman key exchange protocol

Definition 2.5:
Let A be a DDH-algoritghm for a group G in probabilistic time algorithm, for a fixed α >
0 and a large n, satisfy:

Pr[A(g, p, ga, gb, gab) = ”True”− Pr[A(g, p, ga, gb, gc) = ’True’] >
1

nα

where g is the generator of the group G. The difference between the two probabilities
above is often called the advantage of algorithm A [2]. The definition captures the notion
that the distributions p, g, ga, gb, gab and p, g, ga, gb, gc are computationally indistinguish-

able.

One approach to make this protocol safe from this attack is by choosing some of the
parameters with more care. The following are recommended [1]:

1. The prime number p must be very large, preferably more than 300 digits

2. The generator g must be chosen from the group 〈 Z∗p, x 〉

3. a and b must both be large and random numbers of at least 100 digits long, and used
only once

Still, no algorithm for the discrete algorithm problem exists with computational complex-
ity O(xr) for any r, all are unfeasible [9].

7

Chapter 2. Key exchange

8

Chapter 3
Authenticated Key Exchange

Now that we have a secure protocol for passive adversaries, what happens with our security
when we have an active adversary? The Diffie-Hellman protocol doesn’t provide authenti-
cation of the communicating parties, meaning that a man-in-the-middle attack is possible.
Thus, it is essential to use authentication and key establishment together. A protocol that
achieves this is called authenticated key establishment (AKE). KEA is a Diffie-Hellman
based key-exchange protocol that provides mutual authentication for the parties, which
will be discussed in Chapter 4. AKE allows parties to compute the shared key while also
ensuring authenticity of the parties. This means that a party can compute a shared key only
if it is the one it claims to be. A natural solution for a authenticated key exchange protocol
is to execute a Signed Diffie-Hellman key exchange, and sign all the communication sent
between the parties.

3.1 Signed Diffie-Hellman

A digital signature is a cryptographic system used for verifying the authenticity of digital
messages. Simply put, it is a way to validate the authenticity and integrity of any data.
Digital signatures often use a public key encryption system. Consider the following: How

can Bob be sure that it was Alice who sent the message, and not an adversary pretending to

be Alice? As we have seen, the Diffie-Hellman protocol is sensitive to a man-in-the-middle
attack, where the adversary runs the protocol separately with Alice and Bob. Alice and
Bob are not able to distinguish each other’s bits from Eve’s bits, which can compromise

9

Chapter 3. Authenticated Key Exchange

Alice Bob

a
$← Zm

X ← ga

ga, SA(g
a, B)

b
$← Zm

Y ← gb

gb, SB(g
b, A)

k = gab k = gab

Figure 3.1: A first attempt signed Diffie-Hellman authenticated key-exchange.

the protocol. With the use of a digital signature it can provide authentication in their
conversation. Before encrypting the message to Bob, Alice can sign the message using
her private key. When Bob decrypts the message, he can verify Alice’s signature by using
her public key. Let’s illustrate such a signature key exchange protocol by using a two
passes protocol, that was suggested by Shoup [8]. Let G be a group of order p and let g

be the generator. Denote the signature of a message M under the secret key of a party A
as SA(M). This protocol has 2 passes, where an initiator A picks a secret key a at random
and sends to a responder B a tuple ga, SA(ga,B). The responder B picks a secret key b and
replies with the tuple gb, SB(gb,A). The parties will then verify each other’s signatures
and if accepted, compute a shared session key K = gab. The protocol is illustrated in
Figure 3.1.

3.2 Matching Conversations

If we remove the encryption on the signatures, then the protocol will become insecure [8].
If we consider an adversary A controlling a different identity. Then A could generate its
own signature, if the protocol did not have the encryption on the last message. This would
result in a situation where B "thinks" he is talking to A, but in fact shares a key with A,
who "thinks" he is talking to B.

A security requirement that was introduced by Bellare and Rogaway [1] considers a multi-

10

3.2 Matching Conversations

Send(U,s,M) Send message M to oracle
∏s
U

Reveal(U,s) Reveal session key (if any) accepted by
∏s
U

Corrupt(U,K) Reveal state of U and set long-term key of U to K
Test(U,s) Attempt to distinguish session key accepted by oracle

∏s
U

Figure 3.2: Representation of queries used in the Bellare-Rogaway model.

party experiment with unauthenticated communication channels. Bellare and Rogaway
published the first mathematical proof that a simple entity authentication protocol was
secure. They define a protocol where an adversary controls all communication between
the participating parties and also interacts with the algorithms in the protocol offered by the
cryptographic game. This section will give an informal definition of the Bellare-Rogaway
model (BR-93, in short). The adversary selects honest parties to take part in key-exchange
sessions. The adversary must select a test session and then be given a challenge, which
is either the session key of the test session or a randomly selected key. The adversary’s
goal is to distinguish between these two cases. Within the field of security, an adversary
refers to an attacker that undertakes an attack on a system or protocol. The adversary,
very often, has malicious intents where the goal is to disrupt or prevent proper operation
of a secure system. The BR-93 model allows different types of adversaries, e.g passive
and active attacker. It also includes different queries, as shown in Figure 3.2, that we
can see as the adversary capabilities in the protocol. Bellare and Rogaway define mutual
authentication (MA) through an experiment with the running of adversary A. After the
session is terminated by A, each oracle

∏s
i,j has had a certain conversation ksi,j with the

adversary and reached a certain decision δ ∈ {A,K, ∗} . The security of the MA protocol
can be defined through the distribution on mentioned conversations and decision, in what
Bellare and Rogaway call good or bad executions. For any oracle

∏s
i,j , let the following

sequence capture its conversation:

Λ = (τ1, α1, β1), (τ2, α2, β2), . . . , (τm, αm, βm)

where the sequence encode that at time τ1 oracle
∏s
i,j was asked α1 and responded β1; at

a later time when τ2 > τ1 oracle was asked α2 and responded β2 and so forth until time
τm where the adversary A stop asking any further questions and terminates the sessions.
The introduction of more notions are required to further explain mutual authentication, for
this we need to explain the notion of an initator and a responder oracles. Let oracle

∏s
i,j

have the sequence (τ1, α1, β1); if α1 = λ we call oracle
∏s
i,j the initiator oracle. If α1 is

any other string we call
∏s
i,j the responder oracle. Let the R be odd, R = 2q − 1, where

11

Chapter 3. Authenticated Key Exchange

R is the number of moves. Let
∏

be the R-move protocol in the presence of an adversary
A and two oracles

∏s
A,B and

∏t
B,A that accedes in conversations K and K ′, respectively.

Definition 3.1: We say that K ′ is a matching conversation with K if there exist τ0 < τ1 <

. . . < τR and α1, β1, . . . ,q , βq such that K is prefixed by

(τ0, λ, α1), (τ2, β1, α2), (τ4, β2, α3), . . . , (τ2q−4, βq−2, αq−1), (τ2q−2, βq−1, αq)

and K ′ is prefixed by

(τ1,1 , β1), (τ3, α2, β2), (τ5, α3, β3), . . . , (τ2q−3, αq−1, βq−1)

We say that K is matching conversation to K ′ if there exist τ0 < τ1 < . . . < τR and
α1, β1, . . . ,q , βq such that K ′ is prefixed by

(τ1,1 , β1), (τ3, α2, β2), (τ5, α3, β3), . . . , (τ2q−3, αq−1, βq−1), (τ2q−1, αq, ∗).

and K is prefixed by

(τ0, λ, α1), (τ2, β1, α2), (τ4, β2, α3), . . . , (τ2q−4, βq−2, αq−2), (τ2q−2, βq−1, αq)

The first two sequences explains if the conversation of a responder oracle matches the
conversations of an initiator oracle. The last two sequences defines when the conversation
of an initiator oracle matches the conversation of a responder oracle. In other words, if
every message sent out by

∏t
A,B , the initiator oracle, is subsequently delivered to

∏t
B,A,

and the response is returned to
∏t
A,B , then we say that the conversation of

∏t
B,A matches

that of
∏t
A,B , and similarly the other way around.

A notion that will prove to be very helpful in the following section is the notion of partner.
The partner of an oracle proves itself to be a crucial element when defining security.
Partners have been defined as having the same session identifiers which consists of a series
of messages exchanged between the two. Partners must both have accepted the same
session key and recognise each other as partners. However, the definition given from
Bellare and Rogaway [1], in the presence of an adversary as powerful as the one they define
it is unclear what it could mean to be convinced that one has engaged in a conversation
with a specified partner. This because, every bit communicated has been communicated to
the adversary instead. The Test query may only be used for an oracle which has not been
corrupted and that has accepted a session key that has not been revealed during a Reveal
query.

12

3.2 Matching Conversations

Alice Bob

a
$← (0, 1, . . . , n− 1)

x← ga

x

b
$← (0, 1, . . . , n− 1)

y ← gb

zB ← xb

σB = S(zb,m)

y, σB

Verify: (x, y,A,B, σB)

zA ← ya

σA = s(zA,m
′)

σA

Verify: (x, y,A,B, σA)

Figure 3.3: Digital Signature Protocol with standard Diffie-Hellman communication.

In addition, the partner of the oracle to be tested must not have had a Reveal query. To
further look at the security requirements, we’re going to present three games using the
Bellare-Rogaway model. Each game will look and act very similar, although there are
some small changes between them. A detailed description of each game will then be
followed by an explanation of their difference. As mentioned, the games run using the
BR-93 model where the adversary interacts with the oracles through queries. We assume
it has full control over the communication network through a Send query which allows it
to send arbitrary messages to any oracle. There are additional queries that the adversary is
allowed to use shown in table 3.2. A simulator will receive the queries from the adversary
and we let the simulator run the games between the oracles. The oracles will run a standard
Diffie-Hellman communication.

Introduction Before introducing the games, we will give a formal description of how
the games run. The oracles will either take the role as an initiator or a responder, de-
pending on the query sent by the adversary. We let R1, R2, . . . , Rn be the number of all

13

Chapter 3. Authenticated Key Exchange

responder oracles, and for each responder oracle we have a player Pj . Player Pj has a
conversation with another player Pi. During the conversations we denote the initiator with
the following notation I/i/Pi/Pj , where player Pi is the initiator I and has a conversation
with player Pj . Conversely, the responder oracle is denoted R/j/Pj/Pi where player Pj
is the responder R and has a conversation with player Pi.

Game 0 The standard game where the oracles use standard Diffie-Hellman communi-
cation with signatures in the Bellare-Rogaway model. The initiator I/i/Pi/Pj select
ephemeral public keys xi at random and sends it to the responder R/j/Pj/Pi. The re-
sponder also select the public key yi and sends it back to the initiator. Initiator must verify
the signature and message from the responder and they agree on a secret key ki, as shown
in Figure 3.4.

Game 0 I/i/Pi/Pj

1 : ai
$← (0, 1, . . . , n− 1)

2 : xi ← gai

3 : Send xi
4 : Get (yi, σR,j)

5 : σI,i ←
6 : Send σI,i

7 : ki ← H(yai
i)

Game 0 R/j/Pj/Pi

1 : bi
$← (0, 1, . . . , n− 1)

2 : yi ← gbi

3 : Send yi
4 : Get (yi, σR,j)

5 : σR,j ←
6 : Send σR,j

7 : kj ← H(xbii)

Figure 3.4: A representation of Game 0.

Game 1 This game runs the same steps as Game 0, however with a small change. In
Game 0 we draw ai, . . . , aN , bi, . . . , bN at random, while in this game the simulator
makes sure that they are distinct. The initiator check that ai 6= ak∀i, k and the responder
checks that bi 6= bk∀i, k. For every Alice that is finished, there exists a Bob that is talking
to Alice and they have a matching conversation. To summarize the above we only change
Step 1 from Game 0, however the other steps remain the same.

Game 1 R/j/Pj/Pi

1 : ai
$← (0, 1, . . . , n− 1)\(a1,2 , . . . , ai)

Modification We observe that this game has a small change from our previous game, but
why isn’t the game above different from Game 0 ? We previously drew ai, . . . , aN , bi, . . . , bN

14

3.2 Matching Conversations

at random, however in this game they are still random but distinct. In essence, we only
make sure that ai 6= ak and bi 6= bk in Game 1. From the birthday paradox we know
that if we draw n different values and if we draw n random values, we really can’t tell the
difference if we don’t draw to many values. From this we can’t tell the difference between
the two games.

Consequences The consequence after changing the first step in Game 0 is that it disal-
lows that for some

∏s
i there exists distinct oracles

∏t
i and

∏t′

i , such that
∏s
i is a partner

to both
∏t
i and

∏t′

i , this would break uniqueness.

Comments The modification done in this game, ai 6= ak and bi 6= bk, would in reality
never be possible because Person A would not be able to know what random number
Person B chose. However since the game runs with the BR-93 model, using a simulator,
we are able to accomplish this. From the birthday paradox we know that we don’t see the
difference between the two, so we can’t tell the difference between the games.

Game 2 In this game we want to check that there is no forgery in the signatures. This
game does also run as the ones above, however we skip the verification step. We omit the
signature and verification, and only check if it truly was Bob that sent y and σR,j . This
means that we only change Step 4. The players run the Signed Diffie-Hellman as before
and whenever player I/i/Pi/Pj obtain a signature σR,j from player R/j/Pj/Pi, it will
ignore the signature and message if it was not sent from that player.

Modification We argue that this change is still not observable, and that it doesn’t make
the game different from the previous one. However this is a more drastic difference in
steps so far, how does is still not make the game different? Firstly, our only objective in
this step is to verify if the signature was truly sent by a responder oracle, and is not a forged
signature. From the protocol we know that if Alice accepts the query she will send x to
Bob, and receive y and σR,j back. She will continue to reply with σI,i and agree on a key.
If we don’t have a forged signature, then Alice will produce a key, which means that the
responder oracle was the one sending y and σR,j ,and there exists a matching conversation
between the players. We intend to make a reduction to prove that this is an observable
change for the adversary.

15

Chapter 3. Authenticated Key Exchange

Reduction In our reduction, we hope that the valid signature is made precisely for player
k because then we would have obtained our signature. We let the simulator pick verifica-
tion key vkk from player k, and let vkk = vk. Whenever the adversary needs to make a
signature, the adversary sends a message mi and receives a signature σi from the simula-
tor. The adversary’s objective is to produce (m′, σ′) that is a valid signature σ′ for message
m′. The adversary has the opportunity to send query many times and for each time he runs
player k, as an initiator or responder, he must create a signature. Conclusively, we receive
our (m′, σ′) that was not created by the simulator. We can easily verify the signature be-
cause we already have access to the verification key vk. This means that the only way that
the change in Step 4 is noticeable is if we get a (y, σ) that is valid and not made by the
simulator. However, this would imply that we have an adversary that is capable to produce
forged signatures. Our reduction is presented in Figure 3.5.

A
Sim
−

vkk = vk

vk
mi

σi m′σ′

σi

Figure 3.5: Reduction from Game 0.

Consequences What we are able to establish with the (unobservable) change done in this
game, is the notion of partnering, and we obtain a passive DH that we’ve previously proven
secure. From figure 3.7 we have an adversary against key exchange denoted AKEX and
a simulator denoted SimKEX . In the reduction from Game 2 we also have an adversary
against signatures, which we will be denote A and a simulator Sim shown in Figure 3.5.
Let Fi be the case where we receive a signature that was not produced from an oracle in
game i. Let E be the case where b = b′ in game i, and let Hi be the case where the group
elements that the oracles pick in Step 1 are unique in game i. We begin by looking at the
advantage for the adversary against key exchange, where

AdvAKEX =
∣∣Pr[E0]− 1

2

∣∣
=
∣∣Pr[E0]− Pr[E1]

∣∣
+
∣∣Pr[E1]− Pr[E2]

∣∣
+
∣∣Pr[E2]− 1

2

∣∣
16

3.2 Matching Conversations

Next we want to further look at the statement done in Game 1 where modification was that
the simulator picks element ai 6= ak and bi 6= bk. We look at the following equations

E0|H0 = E1|H1∣∣Pr[E0]− Pr[E1]
∣∣ ≤ Pr[¬H0] ≤ n2

2|G|

which means that

H0 : Pr[H0] ≥ 1− n2

2|G|
H1 : Pr[H1] = 1

This states the fact that the group elements chosen in Game 1 are all unique and different,
which we have already argued for using the birthday paradox. Now, what we are really
interested in proving in Game 2 is that the probability is low to observe a forged signature
and therefore the game is not noticeably different from the previous ones. We argue that
the probability for this is

AdvSigBSig =
1

n
Pr[Gi]

=
1

n
Pr[F1]

=
1

n
Pr[F2]

Where G denotes all games i, and we wish to prove that the probability is the same for
Game 1 and Game 2. Firstly, we know that

Pr[E2|¬F2] = Pr[E1|¬F1]

in Game 1 and Game 2. By this, we can finally begin to conclude the following probability∣∣Pr[E2]− Pr[E2]
∣∣ =

∣∣Pr[E2|F2] · Pr[F2] + Pr[E2|¬F2] · Pr[¬F2]

− Pr[E1|F1] · Pr[F1]− Pr[E1|¬F1] · Pr[¬F1]

= Pr[F1]
∣∣Pr[E2|F2]− Pr[E1|F1]

∣∣
≤ Pr[F1]

= n · AdvBSig

17

Chapter 3. Authenticated Key Exchange

This means that this change is only noticeable if the adversary manage to forge a signature.
And if that probability is small then we are we are not able to see the difference between
games.

Figure 3.7: Algorithm on key exchange between oracles, in the presence of an adversary using
queries on A1 and B1.

Conclusion We have presented three games that differ in a few steps, however proven
that they still are not different from one another. We will finally look at a statement that
we wish to prove as a conclusion to this chapter, as well as shining a light on two security
notions that has been proved. We begin by proving the notion of secrecy, the adversary
can’t guess for a Test query. Remember that Ei is the event where b = b′.∣∣Pr[E0]− Pr[E1]

∣∣ ≤ ε∣∣Pr[E2]− Pr[E1]
∣∣ ≤ Pr[F2]∣∣Pr[E0]− 1

2

∣∣ = AdvPassiv-KEX
A

≈ cAdvDDH
B

where ε is some small negligible value.

18

3.2 Matching Conversations

Furthermore we want to look at the notion of matching conversations that was presented
earlier and prove authentication. We can accomplish this by analysing the following event
U that says

U : An oracle is finished and there are no other oracles with matching conversations

or there are more than one oracle with matching conversations

Let Ui be the event U in game i. When Game 2 is finished we know that the event F has
not occurred and there was not made a forged signature, which ultimately means that they
all have a matching conversation. The probability for U2 will then be

Pr[U2] = 0 (3.1)

and further,

Pr[U0] = Pr[U0]− Pr[U1] + Pr[U1]− Pr[U2] + Pr[U2]

≤
∣∣Pr[U0]− Pr[U1]

∣∣+
∣∣Pr[U1]− Pr[U2]

∣∣
≤ ε+ Pr[F2] + Pr[U2]

= ε+ Pr[F2]

where ε is some small negligible value.

In addition to the probability of Fe being small we also know from (3.1) that the probabil-
ity for U2 is small. This reasoning, in addition to the fact that we have different and unique
values in our public keyXi and yi, we have established unique partnering. Which also ful-
fils the authentication requirement, and we have matching conversations and authenticated
key exchange.

19

Chapter 3. Authenticated Key Exchange

20

Chapter 4
The KEA protocol

4.1 Overview

In our previous section our goal was to investigate the security analysis in a Signed Diffie-
Hellman key exchange. We wish to consider a new 2-pass key exchange protocol that
continue to give authentication, however without the use of signatures. In this section our
goal is to study the security of the KEA+ protocol, using the same approach with the BR-
93. We wish to prove that both authentication and secrecy of keys are preserved in this
protocol. We intend to divide our security analysis in two parts, where in Part 1 we have
honest players that either have matching conversations or have distinct keys and in Part 2

we have an adversary that doesn’t have the keys.

4.2 The KEA+ protocol

KEA was designed by NSA in 1994, although it did not become available to the public
until 1998. KEA involves two parties, A and B with their respective secret keys a and b
and public keys ga and gb. KEA protocol first execute a Diffie-Hellman communication
where the parties select secret keys x and y and exchange the public keys gx and gy . Each
party will compute gay and gbx, then compute a session key k by applying hash function
H
(
gay, gbx

)
. However there are attacks available against the KEA protocol, the AKE

security of KEA can be violated if an adversary can register arbitrary public keys [6]. An

21

Chapter 4. The KEA protocol

example for an attack against the KEA protocol is Unknown Key Share Attack. A solution
is to modify the protocol and make it resistant to such attack, and this is done in the KEA+
protocol. This protocol incorporate the parties identities in the computation of a session
key. The parties compute the key k as follows H

(
IdA, IdB , X, Y, g

ay, gbx
)
. This protocol

is depicted in Figure 4.1.

A: a, ga B: b, gb

x
$← Zm

X ← gx

X

y
$← Zm

Y ← gy

Y

k = H(IdA, IdB , X, Y, Y
a, Bx) k = H(IdA, IdB , X, Y,A

y, Xb)

Figure 4.1: The KEA+ protocol.

This 2-pass protocol has exactly the same communication as the original Diffie-Hellman
protocol, however this protocol doesn’t provide delivery guarantees that would be desir-
able. In other words, it doesn’t provide assurance that the other party actually completed
the session, however we will address this case in this section.

As indicated formerly, we divide our security analysis in two parts. We introduce our
first part, where we intend to prove that we have honest players that either have match-
ing conversations or have distinct keys. So far we have looked at two variants of signed
Diffie-Hellman which we have improved, and looked at the security notions. From Fig-
ure 4.1 we see that KEA+ is a 2-pass protocol, where there is very likely that we obtain
many matching conversations. Whenever a player outputs X , many players can receive
X and therefore have matching conversations. As stated above, there isn’t provided some
assurance that the other party has completed a session and have matching conversations.

22

4.2 The KEA+ protocol

However our main goal at this moment is to prove authentication. Let V be the event that

V : i) An oracle is finished with key k, and

ii) there are two or more oracles of the same role that is finished with key k, or

iii) there is one oracle that i finished with key k but doesn’t have matching conversation

We will analyze event V by introducing two new games, denoted Game 1 and Game 2.
The games run the same BR-93 model, where the oracles communicate with one another,
and take part as an inititator or responder. Let
Game 1: All keys k, X and Y sent between the parties must be different.
Game 2: We have no collision in H . This means that we are not able to obtain the same
key k if we put different values in H .

O0

I/A

O1

R/?

O2

R/?

O3

I/?

x0

y0
k0

y3

x3

k3

k1
y1

x1

k2

x2

y2

Figure 4.2: Representation of interaction between oracles in ii).

We initiate our analysis by considering ii) in event V . The standard game contains an
oracle O0, as an initiator, that outputs x0 and receives y0 and produces a key k. To satisfy
ii) there must be two or more oracles of the same role that are finished with key k. We wish
to further divide this point into two parts. One where we have the case of two reponder
oracles O1 and O2, and a new case where we have another initiator oracle O3. The key k

23

Chapter 4. The KEA protocol

produced by the oracles is a hash function H(IdA, IdB , X, Y, Y
a, Bx) from Figure 4.1.

The oracles O1 and O2 acting as responders, have received a message x but are unsure
of which player they’re communicating with. These oracles also outputs their y’s and
produce a key k. In our last case, we have another initiator O3 who outputs a message but
is unsure of whom he is communicating with. Figure 4.2 depicts a simple representation
on the communication between the oracles, where we observe that the oracles outputs
distinct keys. However we ask the following two questions

What if k0 = k3?

What if k0 = k1 = k2 = k3?

If we allow the keys k0 and k3 to be identical, we automatically know that x0 = x3

because the keys are the same. The key k0 is a hash of H(IdO1 , IdO3 , X0, Y0, Y
a
0 , B

x)

and the key k3 is a hash of H(IdO3 , IdO0 , X3, Y3, Y
a
3 , B

x) which evidently implies that
if k0 = k3, it follows that x0 = x3 because Game 2 doesn’t accept collision which means
that the input must be the same. In other words, we have established the following

k0 = k3 =⇒ x0 = x3 ∧ y0 = y3

By allowing the keys to be the same we also have settled a relation between the two
initiator oracles and that is the case that O0 = O3, which means that we can’t have two
oracles as initiators. Further we look at the case where k0 = k1 = k2 = k3. So far we
do not encounter any problems because the adversary is fully capable in making x0 = x1

or x0 = x1 = x2 = x3. However it is problematic with a collision with the y-values.
Because if x0 = x1 = x2 = x3 it follows that y2 = y1 which implies that the oracle have
the same y-values which we already have stated in Game 1 that is not allowed and also
established the relation that O1 = O2. To summarise we have stated the following,

x0 = x1 = x2 = x3 =⇒ O0 = O3

y2 = y1 =⇒ O1 = O2

This means that the ii) can’t happen, and we can’t have two or more oracles of the same
role that is finished with key k. We look further into analysing iii) in event V , where
we initially stated that an oracle that is finished with a key k doesn’t have a matching
conversation. Let O1 be another oracle that acts as a responder, and receives x1. It replies
with y1 and then produces a key k1 that has the same hash function as the one from Figure
4.1. However this oracle doens’t know which player it is communicating with, but let us

24

4.2 The KEA+ protocol

say for now that is not oracle O0. Hence,

(O0, O2) 6= (O1, O3)

Where (O0, O2) denotes a conversations between O0 and another oracle O2. In addition,
we also let

k1 = k0 (4.1)

If O0 doesn’t have matching conversations, this would imply that

(O0, O2) 6= (O1, O3) ∨ (x1, y1) 6= (x0, y0)

O0

I/A

O1

P/?y0

x0

k0 k1
y1

x1

Figure 4.3: Representation of interaction between oracles in iii).

However for Figure 4.1 to be true, it would mean that the values in the hash function for k1
must be same values in the hash function for k0, since we have established in our games
that two keys can’t be the same with different values in their hash functions. This implies
that the identities of the oracles that are inside the hash function must also be same as well
as all other values. If this is the case, it means that O0 must have a matching conversation
with O1 when it is finished with its key k. Statement iii) in event V can not happen. To
summarize the above, statement ii) and iii) in event V can’t happen, which means that we
have obtained authentication and concludes the proof in Part 1 - we have honest players
that either have matching conversations or distinct keys. We have so far not commented
on or taken into account the secrecy of keys.

Our attention have mainly been on the hash function used in this protocol, and the notion
of authentication comes trivially by all the values we have inside this function. Now we
will focus on the secrecy of keys where we allow the adversary to use Test queries to get
the key, and check whether he sees the difference between the two. By this commence to
prove Part 2 - that we have an adversary that doesn’t have the keys. We introduce a new

25

Chapter 4. The KEA protocol

event F , where we let

F : The adversary ask for H(IdA, IdB , A,B,X, Y,B
x, Y a)

Let A be a oracle that is an initiator and is communicating with B, that behaves the same
way as Figure 4.3. However we stress that y does not come from a oracle with matching
conversation. This means that y can either come from the adversary or the adversary has
taken another oracles y and sent it toA. This is where authentication is important, because
we want to prove that the adversary can’t obtain k just by sending y to the oracle. We let
the event E be the case where

E : b′ = b

which is the same case from Figure 3.7. The probability for a simple guess from the
adversary is given below and we are also interested in the probability for the adversary to
guess E when he has asked for the hash function. In reality, we can assume that it would
be close to 1.

Pr[E|¬F] =
1

2∣∣Pr[E]− 1

2

∣∣ =
∣∣Pr[E|F] · Pr[F] + Pr[E|¬F] ·

(
1− Pr[F]

)
− 1

2

∣∣
=
∣∣Pr[F]

(
Pr[E|F]− Pr[E|¬F]

)∣∣
=
∣∣Pr[F]

∣∣(Pr[E|F]− 1

2

)∣∣
≤ 1

2
Pr[F]

4.3 Secrecy of keys

As stated above, we have previously not taken into account any possible tampering on y
by the adversary, however focused on implicit authentication meaning that we are satisfied
only on having matching keys k between the parties and obtain a matching conversation.
Let k0 be the key produced by oracle A with the hash functionH(idA, idB , A,B,X, Y,B

x, Y a).
Essentially we have known values X and Bx, however the value Y is sent by someone
else, which could possibly be the adversary. The adversary wins if he can produce key
k just by sending Y , and we wish to prove that this is not possible. In essence, we want
to utilize the adversary to calculate a Diffie-Hellman problem, essentially the Decisional
Diffie-Hellman problem. The problem we want to send to the adversary is the following
tuple (X,B,W) and verify if he can deliverBx, meaningW = Bx. Recall that the adver-

26

4.3 Secrecy of keys

sary can ask many queries when he ask for H , because if event F happens then we know
that one of the hash-queries is in the tuple. Nonetheless we do stumble on a problem;
Decisional Diffie-Hellman states that the he can’t tell the difference between gc and gab.

Sim A

(X,Y)

(U, V,W)

0/1

Z

Z
?
= gxy

Figure 4.4: A depiction of the Gap oracle.

A solution The Gap problem

The solution to our problem is to utilize gap problems or gap Diffie-Hellman, and use this
Gap oracle whenever our event F happens. In this game we are allowed to recognize the
right answer. A gap problem is to solve a decision problem with the help of an oracle. An
example for such a problem is given a problem x and a relation f where the adversary’s
goal is to find y satisfying f(x, y) = 1. With the use of an oracle for help, it can send
(x′, y′) and get response of whether f(x′, y′) = 1 or not [7]. In our model we have a Gap

Oracle that we have access to, that can help us identify real DDH-tuples. As previously
used in our other game we have a simulator, denoted SimKEX that runs the conversations
between players, and we wish to prove the secrecy of keys from the adversary A. Both A
and SimKEX have access to an oracle that outputs the hash value of an input r computed
r = (IdA, IdB , A,B,X, Y,W,R) and W = Y a and R = Xb. SimKEX calculates r by
using both X and Y sent between the players.

The Gap Oracle In our game there is an interaction between a simulator and an adver-
sary B where the objective is to produce Z where Z = gXY , as shown in Figure 4.4. The
adversary is allowed to use a Test query where it sends a tuple (U, V,W) and receives 0

27

Chapter 4. The KEA protocol

or 1, where

1 if logW = logU logV

0 else

Whenever the adversary asks for the hash function for k, i.e. H(idA, idB , A,B,X, Y,W,R)

where W = Y a and R = Xb, we can simply take our tuple of (X,B,W) and run it in
our Gap oracle. We obtain our Z if the adversary wins in Gap oracle, which also means
that the adversary has managed to produce the hash function for k. However this also
means that we break the Diffie-Hellman problem when we manage to notice Z = gab, so
whenever the adversary wins we also win.

The model Our model will run a standard random-oracle model, which essentially means
that our oracle will pick aH(r) at random, for every r received from eitherA or SimKEX .
The oracle will register and store every pair (r,H(r)). In addition to this, it will also check
r and add 1/0 if W and R are correct.

(r, h, 1) if W = Y a and R = Xb

(r, h, 0) else

To check whether r is correct, we can simply send this quest to the Gap Oracle and check
if the (A, Y,W) and (B,X,R) are correct DDH-tuples. The oracle will check for every r
if this has been asked before, if so it will output the correspondingH(r). If not, it will pick
a new random value and output this. So far this model is rather simple where the random
oracle mainly store pairs and check whether new inputs has been previously asked.

We will make a small change to this model. SimKEX will omit W and R in further
requests for H(r), which means that it will send r with all its previous values apart from
the last two that it will leave blank. The random oracle will function as previously and
store all submissions if not received at a prior occasion. On any occasion where A sends
r, the oracle will check with the Gap Oracle if it is correct and if it is stored. If it is correct
and stored, it can substitute r with the values that were initially blank by the simulator
with the correct W and R sent by A. If the received r is not correct it will yet again pick
H(r) at random and output this value. The small change done in our model is the simple
issue that SimKEX doesn’t calculate any keys and the random oracle store all submissions
independent if they’re correct or not.

With this model we can say that if A wins, then we can win the gap problem. A can send

28

4.3 Secrecy of keys

Test queries to the oracles where the objective is to obtain the right k. The description
above is only the machinery that takes place in our game, Figure 4.5 depicts the game
more detailed. We receive X̃ and Ỹ from the Gap Oracle. When received r from A we
use the same oracle to verify for correct values, and lastlyA outputs a b′. We’re ultimately
dependent on which oracle the adversary is going to send its query to. We have three
different cases of where A sends Test query. Firstly it can send a query to a responder
oracle that doesn’t have matching conversations. Secondly it can ask a query to an initiator
that doesn’t have a matching conversation and thirdly it can ask a query to an oracle that
does have a matching conversation. Ultimately we can only hope for and guess which
oracel that gets asked the Test query by A and assign input that we have control over.

Figure 4.5: An illustration of the communication between A and SimKEX with the Hash Oracle
and Gap Oracle.

We look at the case where the query is sent to a responder that doesn’t have matching
conversations. In this case we have control over Y which essentially means that we have
the public keyB, while the inputX is sent byA which means that we don’t have access to
neither R nor Xb. In addition, we have control over public key A and also W since W =

Y a, which means we have the DDH-tuple (A, Y,W) so we let A be X̃ and Y be Ỹ . We
know the hash query is k = (IdA, IdB , A,B,X, Y,W,X

b) even though we don’t know
how to calculate the value of W , because it is the answer to the DDH-problem. However
we know that k is calculated using this hash query, and if A is able to distinguish it from
a random value it means that the adversary has asked for the hash value and essentially
given us W , and lastly let Z̃ be W .

29

Chapter 4. The KEA protocol

Now we can approach the second case where the oracle is an initiator without a matching
conversation. In this case we have control over X and therefore let X be our X̃ and let
B be Ỹ . The value k is the same hash as above, where it initially consists of two blank
spaces forW andR since the simulator doesn’t calculate these values. We use Gap Oracle
whenever A outputs a key k and check if it contains the correct DDH-tuple. In this case it
is R that we don’t know since W = Y a and we don’t have control over Y . We can use the
same argument as our previous case. If A is able to distinguish k from a random value it
means that the adversary has asked for the hash value and essentially given us R, and let
Z̃ be R. The last case is easy to prove. In this case we let X be X̃ and the public key B
be Ỹ , since we have control over both X and Y .

Summary A can send Test query to an oracle and expect k back. The main question
is which oracle receives the query, and hope that we choose the right oracle to put X̃ and
Ỹ in and we are certain that there are three cases to choose from, where the goal is that
the adversary cannot see the difference between these cases. In which case A will either
obtain a k that is calculated or a randomly chosen value. If A calculated the right hash
query, then we can simply use this query to solve the Gap Diffie-Hellman problem. In
addition, if event F doesn’t happen, it means that the adversary has to see the difference
between a chosen value and a chosen value, which is not possible.

We additionally intend to introduce a new adversary query, Long-term key reveal whereA
can ask for the players long-term key. If we add this query to our current protocol, we will
lose our secrecy of keys. Our next section will introduce an improved protocol that will be
secure against this attack.

30

Chapter 5
Forward Security

Forward secrecy, also known as perfect forward secrecy, is a feature of key agreement
protocols that assures that session keys will not be compromised even if the private key
is compromised. It protects past sessions against future compromises of secret keys that
may happen. To establish forward security the objective is to not use single key, e.g private
key, to generate all the sessions keys. In this section our intention is to improve the KEA+
protocol and obtain forward secrecy.

5.1 Improving the KEA+ protocol

We start this section by introducing a new attack against the previous KEA+ protocol. The
communication in the Diffie-Hellman protocol and KEA+ are both similar, however the
keys are calculated differently. Recall that the keys kDH and kKEA+ are calculated

kDH = gxy

kKEA+ = H(IdA, IdB , X, Y, g
ay, gbx)

for Diffie-Hellman and KEA+ respectively. Both parties have a long-term private key, e.g.
a and b, and initially know the public key of all other participants. So far we’ve seen
many possible and strong adversary queries as explained in Figure 3.2, and our intention
is to propose two new queries, Long Term key reveal and Ephemeral key reveal. We begin
by introducing the Long Term key reveal adversary query, where A has the capability of

31

Chapter 5. Forward Security

learning the long-term private keys. In this section we wish to make a new and secure
version of the previous protocol with this new query. Immediately we come across a
complication with this query with the key kKEA+ considering that the adversary obtains
the values a and b that are both necessary to obtain kKEA+. Thus our current change must
be in the way our keys are calculated. We let Fresh′ be the requirement that no Long
Term key reveal can be asked before the partners are finished with the protocol. This is a
requirement necessary because forAlice’s case, it shouldn’t matter if she lost her key. She
should still be convinced that she is communicating with Bob. Therefore, a player can’t
be compromised before its partner is finished with the protocol, if soA breaks Fresh′ and
can’t use a Test query.

As previously stated, it is necessary to update the calculation of key k. Our contribution is
to combine the keys kDH and kKEA+ such that our new key k is calculated as follows

k = H(IdA, IdB , X, Y, g
ay, gbx, gxy)

With this small change, we have a new protocol that is secure even with the new query. We
intend to prove that this protocol is secure using the three cases explained in the previous
section. In these cases we still let X̃ and Ỹ be the same values that we chose earlier.

Case 1. X̃ = A, Ỹ = Y

Case 2. X̃ = X, Ỹ = B

Case 3. X̃ = X, Ỹ = B

In our previous protocol we had to utilize the Gap Oracle, however in this protocol we
only need to utilize plain Diffie-Hellman. It doesn’t affect the players if A learns the long
term keys a and b in this protocol, because it’s still not possible to calculate the value gxy ,
and we assume these three cases as secure against this attack.

This model in addition includes a new notion of an Ephemeral Key Reveal adversary query.
So far our protocol fails to be secure under this new query, since X and Y can be revealed.
When the adversary obtain X and Y it essentially has all the values needed to compute
the current suggestion on key k. NAXOS is a protocol that builds on earlier ideas from the
KEA and KEA+ protocols [4]. Its purpose was to establish shared symmetric keys between
parties and for it to be secure in a very strong sense, the protocol should be secure even if
the adversary either learns the long-term key of a participant or learns the short-term data.
In order to not break freshness there must a requirement for when it is allowed to use both
queries to the different parties. If an adversary ask for the long term key and the ephemeral

32

5.1 Improving the KEA+ protocol

key to the same player it will conclusively obtain the same information as the player and
thus break freshness and consequently not be able not use a Test query. Our requirement is
that an adversary A can’t ask both queries to the same player. Even with this requirement
it is still necessary to revise the previous k now that A can obtain ephemeral keys. In
the NAXOS protocol the intuition was to design a protocol that combined the long-term
private key with the ephemeral key inside the hash function [4]. Therefore, an approach is
to further add a value to the hash function as follows

k = H(IdA, IdB , X, Y, g
ay, gbx, gxy, gab)

Our goal is to prove the three cases to be secure with the new key k, and it’s done similarly
to the way we proved it in our previous section. We begin by analysing the case where
we have an initiator oracle without matching conversation. We know that we have a tuple
(u, v,W) where W is the answer to the DH-problem. Our task is to let U and V be values
in our protocol that we have control over and then the Gap Oracle will do the rest. In our
first case, we control B and X , and therefor let U = B and V = X . Our key k contains
the keys gab, gay, gbx, gxy , because the adversary has access to both A and Y the keys
gab, gay and gxy are ruled out and we’re left with gbx, hence we let U = B and V = X .
Even though, we must take into account that the adversary can communicate with the re-
sponder beforehand and obtain information about X . Let Xe and Ye be the ephemeral
keys to adversary and the responder oracle respectively, and they both output key k. The
adversary can use a Reveal query on the key k and our task is to know when it sends a
query on the keys geb, geye , gbxe , gyexe . We let our assumption be that we have produced
the keys, and from this assumption know geb, geye and gyexe . Considering no knowledge
of gbxe , we must observe when the adversary ask for the hash-function. We repeatedly use
the Gap Oracle whenever the adversary ask for the hash-function and verify if it is correct.
Consider that this step doesn’t give us W , however we ensure consistency of keys which
ensures that the adversary works as usual.

Our second case is with a responder oracle without matching conversation. This case
is similar to the one above, however we let U and V be other known values. Since we have
control over A and Y we let U = A and V = y and run a similar approach as before.

The last case is easier to prove, because we have matching conversation and control both
X and Y , hence we let U = X and V = Y . In this case we’re certain that X and Y won’t
be used in other conversations, even though there is a possibility that X is sent to other
oracles we’ve already made the assumption and guessed that the oracle that will receive

33

Chapter 5. Forward Security

this X and omit other cases. If we use Decisional Diffie-Hellman we obtain our W and
use this value in our hash-function.

5.2 HMQV

The Hash MQV or simply HMQV protocol is a variant of MQV, where the MQV protocol
is an efficient authenticated Diffie-Hellman protocol that uses public-key authentication.
The HMQV protocol holds the MQV’s security goals in the random oracle model under
the computational Diffie-Hellman assumption [5]. Its communication is identical to the
basic DH protocol as shown in Figure 2.2 except that the identities A, B may include
a public-key certificate. Party A possesses a long-term private key a and corresponding
public key A = ga and B’s public and private key pair is (b, B = gb). The ephemeral DH
values exchanged are X = gx, Y = gy , where x, y are chosen by the players A and B
respectively. The protocol is depicted in Figure 5.1.

A = ga B = gb

x
$← Zm

X ← gx

X = gx

y
$← Zm

Y ← gy

Y = gy

k ← H(e, (Y Br)x+sa) k ← H(e, (XAs)y+rb)

Figure 5.1: The HMQV protocol.

Where e = (IdA, IdB , A,B,X, Y), r = H(e, 2) and s = H(e, 1).

The new key k still contain all elements that we introduced in chapter 5 only raised to
the powers s, r and sr. If we consider (XAs)y+b it is evident that we obtain (gx+as)y+rb

which is (gxy+say+rbx+srab). The last expression can be written as gxy(gay)s(gbx)r(gab)sr,
that are the same elements that are contained in our previous calculations of k. If the key k
is calculated differently however contain more or less the same values, why do we wish to
use HMQV? The argument lies behind the number of exponentiations, the HMQV has a

34

5.2 HMQV

fewer number of exponentiations than our previous protocol and is thereby much quicker
to calculate. In addition, take notice that the values s and r are hash-values that are more
or less random that implies in a way that we have a random linear combination. Because
the values are random, it proves to be a difficult task for someone to predict what the linear
combinations are unless you know all of the values. Accordingly, if an adversary is able to
predict the keys k with random s and r it implies that the adversary is capable to predict all
values. Our theory is that the security of HMQV should come trivially from the security
of the last protocol.

We let t = (gxy(gay)s(gbx)r(gab)sr) and t′ = (gxy(gay)s
′
(gbx)r

′
(gab)sr

′
). Where t

is the calculation with a random s, r and t′ is a new calculation with new s′, r′ when
rewinding the protocol. If the adversary is capable to calculate both t and t′ then it is able
to obtain both r and s which is a trivial proof. However, if the adversary has knowledge
of two values, say a public key and a ephemeral key, it is able to calculate t. We look at
our previous cases where we put U and V for other values. In the case where we have
a matching conversation, we let U = X and V = Y . We know both of the values A
and B and are capable of calculating gab, gay and gbx and can easily obtain the value gxy .
However in the case where we have a responder, we let U = A and V = Y and we don’t
know the values A or Y . In this case we know the values gab and gbx but not the values of
gxy and gay . We are interested in gay because it’s the solution to the DH-problem. In this
case we can, in the HMQV protocol, calculate (tt′)

(s−s′) and obtain gay .

To explain more detailed, we assume that the adversary manage to guess the value t cor-
rectly. We can test this by sending the values (gx+as)y and axs to the Gap Oracle, because
we know the values (since we’ve chosen the values y). Then we rewind back and initiate
a new run of the protocol, and if the adversary run the game as normal it will send X and
receive Y back. At that point, when the adversary wants to calculate r and s we simply
pick new values r′ and s′.

35

Chapter 5. Forward Security

36

Chapter 6
Concluding Remarks

We conclude this thesis by summarizing the desired goals that have been achieved in this
project as well as acknowledging a few concluding remarks that can be helpful for further
work. In this master thesis we essentially analyzed the security of key exchange protocols
that use standard Diffie-Hellman communication, where our goal was to prove the secrecy
of keys and authentication between the players. The initiative to use signed Diffie-Hellman
was to provide authentication between the players against an active adversary. Still, this
protocol can be broken if an adversary reveals the ephemeral key of the parties. We went
about solving this problem by mainly adjusting a few steps in this protocol. Such a 2-move
protocol did however achieve implicit authentication although with some modifications
it was able to obtain explicit authentication with signatures. The KEA+ protocol does
provide authentication between the players as well as secrecy of keys, even though it is a
2-move protocol, however it falls short when the adversary has the ability to ask for the
ephemeral or long-term keys. Thus, our approach to update the calculation of the key k
in the KEA+ protocol was enough to make this protocol secure against such adversary
queries.

There exists various methods and ways to achieve a goal or proof. The path one chooses
contains some but not all characteristics, and hence neglect other important elements. One
aspect that was not discussed in this thesis is the fact the players in the signed Diffie-
Hellman protocol are however left with an evidence that there has been a key exchange,
namely the signatures. In the other protocols that were analyzed, the players don’t have
this kind of evidence.

37

Chapter 6. Concluding Remarks

38

Bibliography

[1] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. 1993.

[2] Colin Boyd and Anish Mathuria. Protocols for authentication and key establishment.
Springer Science & Business Media, 2013.

[3] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use

for building secure channels. 2001.

[4] Cas JF Cremers. Session-state reveal is stronger than ephemeral key reveal: Attack-
ing the naxos authenticated key exchange protocol. In International Conference on

Applied Cryptography and Network Security, pages 20–33. Springer, 2009.

[5] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. 2005.

[6] Kristin Lauter and Anton Mityagin. Security analysis of KEA authenticated key ex-

change protocol. 2006.

[7] Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of prob-
lems for the security of cryptographic schemes. In International workshop on public

key cryptography, pages 104–118. Springer, 2001.

[8] Victor Shoup. On formal models for secure key exchange. Citeseer, 1999.

[9] William Stallings. Cryptography and network security: principles and practice. Pear-
son Upper Saddle River, 2017.

39

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f M

at
he

m
at

ic
al

 S
ci

en
ce

s

M
as

te
r’

s
th

es
is

Karina Maria Vallejos

Diffie-Hellman based key exchange

Master’s thesis in MLREAL
Supervisor: Kristian Gjøsteen

December 2019

	Acknowledgements
	Summary
	Table of Contents
	Introduction
	Key exchange
	Diffie-Hellman
	The Diffie-Hellman key exchange protocol

	Authenticated Key Exchange
	Signed Diffie-Hellman
	Matching Conversations

	The KEA protocol
	Overview
	The KEA+ protocol
	Secrecy of keys

	Forward Security
	Improving the KEA+ protocol
	HMQV

	Concluding Remarks

