
Multivariate Quadratic
Cryptosystems

December 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Simon Alexander Milne

2019
Sim

on Alexander M
ilne

NT
NU

N
or

w
eg

ia
n 

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n 
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f M

at
he

m
at

ic
al

 S
ci

en
ce

s





Multivariate Quadratic Cryptosystems

Simon Alexander Milne

Master of Science
Submission date: December 2019
Supervisor: Kristian Gjøsteen, IMF

Norwegian University of Science and Technology
Department of Mathematical Sciences





Acknowledgments

This master’s thesis is written during the autumn semester of 2019, as the final part of my
time as a student at NTNU. This thesis has been both interesting and educational!

First I would like to thank my supervisor, Kristian Gjøsteen, for all the help and pa-
tience along the way, it has been very appreciated!

Thank you to my girlfriend, friends and family, for all the love and support during my
studies.

A special thanks to my friend Audun, for being an amazing friend and study partner
throughout our years as students, and my friend Oskar, for the help in making my years as
a student in Trondheim as fun as possible.

Simon Alexander Milne
Trondheim, December 2019





Abstract
We describe the properties of multivariate system of polynomials, and both the properties
of Gröbner bases, and how to calculate them. Furthermore, we describe two multivariate
quadratic cryptosystems, the Matsumoto-Imai cryptosystem and the HFE cryptosystem.
Finally, we describe two attacks against the Matsumoto-Imai cryptosystem, where the first
attack is a direct attack based on Gröbner bases, and the second attack takes advantage of
how the cryptosystem is constructed.

Sammendrag
Vi beskriver egenskapene til multivariate ligningssystemer, og både egenskapene til Grøb-
nerbaser, og hvordan man beregner dem. Videre beskriver vi to multivariate kvadratiske
kryptosystemer, kryptosystemet Matsumoto-Imai og kryptosystemet HFE. Til slutt beskriver
vi to angrep mot kryptosystemet Matsumoto-Imai, der det første angrepet er et direkte an-
grep basert på Grøbnerbaser, og det andre angrepet utnytter hvordan kryptosystemet er
konstruert.

i



ii



Table of Contents

Acknowledgments i

Summary i

Table of Contents iv

1 Introduction 1

2 Background 3
2.1 Public-key cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Multivariate system of polynomials 5
3.1 Multivariate system of polynomials . . . . . . . . . . . . . . . . . . . . 5

3.1.1 Ideals and varieties . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1.2 Greatest common divisor . . . . . . . . . . . . . . . . . . . . . . 6
3.1.3 Monomial ordering . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.4 Reduction of multivariate polynomials . . . . . . . . . . . . . . . 10

3.2 Gröbner basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.1 Monomial ideals . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Hilbert basis theorem . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.3 Gröbner bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.4 Properties of Gröbner bases . . . . . . . . . . . . . . . . . . . . 16

4 Multivariate quadratic cryptosystems 19
4.1 Matsumoto-Imai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Hidden field equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iii



5 Attacking multivariate quadratic cryptosystems 25
5.1 Gröbner basis attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Patarins attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.1 Weak keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.2 General attack . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.3 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Bibliography 33

iv



Chapter 1
Introduction

In todays world cryptography plays an important role in the security of modern commu-
nication. As cryptography becomes more and more central in our modern world, we also
need the cryptosystems we use to be as secure as possible, so further development of both
our current and new cryptosystems are always in progress.

Today some of the most common cryptosystems in use are known as RSA and Diffie-
Hellman, which both are public-key cryptosystems, and their security are based on math-
ematical problems that are so large that current computing technology cannot solve it in
reasonable time. Even though our current computing technology cannot break these sys-
tems in reasonable time, quantum computers have been said to be able to do so. These
quantum computers are not far away, and the introduction of them threathens the security
of both the RSA and the Diffie-Hellman. That means we have to develop new cryptosys-
tems, which will remain secure even against quantum computer attacks.

One such candidate for a new cryptosystem is called multivariate quadratic cryptosys-
tem. This is a public-key cryptosystem based on multivariate quadratic polynomials over a
field k, and is believed to be a good candidate for post-quantum cryptography, because of
the difficulity in solving systems of multivariate quadratic polynomial equations. In this
thesis we will look at some of the earliest attempts of these type of cryptosystems, along
with a few attacks on one of them.

The thesis will be organized as follows: in Chapter 2, we give a quick overview of
what a public-key cryptosystem is; in Chapter 3, we study the mathematical properties of
multivariate systems of polynomial equations, and we study the so-called Gröbner bases,
both the mathematical properties, and how to calculate them given a set of multivariate
polynomial equations; in Chapter 4, we study the construction of both the Matsumoto-
Imai system, and the HFE system, which are both multivariate quadratic cryptosystem;
in Chapter 5, we look at two types of attacks against the Matsumoto-Imai system. The
first attack uses Gröbner bases to directly attack the system of polynomials, which makes
it possible to recover all of the plaintext for a given ciphertext. The second attack takes
advantage of how the cryptosystem is constructed, which makes it possible to recover
almost all of the plaintext for a given ciphertext.

1



2



Chapter 2
Background

2.1 Public-key cryptography
The classical cryptosystems, such as The Shift Cipher an The Substitution Cipher, are
known as symmetric-key cryptosystems. Lets say that Alice and Bob are using such a
cryptosystem. First they secretly choose a key K together, and from this K they get an
encryption rule eK and a decryption rule dK . In these cryptosystems, either dK is the
same as eK , or it is easy to derive from it. So an exposure of either eK or dK makes the
cryptosystem insecure. One drawback with this system is that it is necessary for Alice and
Bob to communicate the key K on a secure channel before they can use the system. So
if Alice and Bob for example were to live far away from each other, it could be hard for
them to find a secure channel to do this on.

So how can we bypass this? We introduce a new type of cryptosystems, called as-
symetric cryptosystems, or public-key cryptosystems. The main idea in this system is
that it is supposed to be impossible to compute dK given eK . When that is the case, we
call the enryption rule eK the public key, which will be available for everyone to use. So
now Alice, or anybody else, can send an encrypted message to Bob using the encryption
rule eK , without any prior communication. Bob will now be the only person who knows
the decryption rule dK , known as the private key, so only he can decrypt the received ci-
phertext. One way to imagine the system: Bob has a mailbox which can be locked with a
combination lock. Now anybody, for example Alice, would be able to put something in-
side the mailbox, and then lock it with the combination lock. Then Bob is the only person
who can open it, since he is the only one who knows the combination for the lock.

It is also important to notice that this type of cryptosystem is not necessarily fully
secure. If Eve were to observe a ciphertext y sent from Alice to Bob, she could encrypt
every possible plaintext by using the encryption key eK , since it is a public key, until she
finds the unique x such that y = eK(x). This x will be the decryption of y, so when
studying public-key cryptosystems we study their computational security. We want the
public encryption function eK to be easy to compute, while computing the decryption
should be hard for anyone else than Bob.[1]

3



4



Chapter 3
Multivariate system of polynomials

3.1 Multivariate system of polynomials
In a multivariate system of polynomials, we have a system consisting of n polynomials in
some degree d, inm variables. In Chapter 4 we will look at some public-key cryptosystems
where the public key contains a system of n multivariate polynomials of degree 2, in n
variables. In this chapter we will look at some properties of general systems of multivariate
polynomials. We will mainly follow the structure of [2], with some additions from [3].

3.1.1 Ideals and varieties
When we have a system of polynomials, we define the set of solutions to these polynomials
in the following way.

Definition 3.1.1. Let k be a field, and f1, ..., fn polynomials in k[x1, ..., xn]. Then we
define

V(f1, ..., fn) = {(a1, ..., as) ∈ kn|fi(a1, ..., as) = 0 for all 1 ≤ i ≤ n}. (3.1)

as the affine variety defined by f1, ..., fn.

This affine variety is the set of all solutions to a system of polynomials, such that
f1(x1, ..., xn) = · · · = fn(x1, ...xn) = 0.

Further we will look at how ideals relate to these affine varieties.

Definition 3.1.2. Let f1, ..., fn be polynomials in k[x1, ..., xn]. Then we have

〈f1, ..., fn〉 = {
n∑
i=1

hifi|h1, ..., hn ∈ k[x1, ..., xn]}, (3.2)

where we note that 〈f1, ..., fn〉 is in fact an ideal.

5



If there now exist f1, ..., fn ∈ k[x1, ..., xn] such that 〈f1, ..., fn〉 = I , we say that I
is finitely generated. Later, in Section 3.2.2, we will prove the fact that every given ideal
in k[x1, ..., xn] is finitely generated. We will also see later that even though a given ideal
may have many different generating bases, we can choose one useful type of basis called
a Gröbner basis.

One useful property we get from ideals that we will prove later, is that when we have
a given set of polynomial equations, the variety only depends on the ideal they generate.
When we have a basis that generates this ideal, we can also find the variety from this basis.
We state the following proposition.

Proposition 3.1.1. Let f1, .., fn and g1, ..., gn be bases of the same ideal in k[x1, ..., xn],
such that 〈f1, ..., fn〉 = 〈g1, ..., gn〉. Then V(f1, ..., fn)=V(g1, ..., gn).

By this proposition we can determine the varieties by looking at any basis for a given
ideal. We will later see that the mentioned Gröbner basis is a useful type of basis for
determing varieties.

3.1.2 Greatest common divisor
In this section we will look at the use of finding the greatest common divisor of polynomi-
als, and what advantages that gives us. We start by looking at the univariate case.

Proposition 3.1.2. Let k be a field, and g a nonzero polynomial in k[x]. Then any poly-
nomial f ∈ k[x] can be written as

f = qg + r, (3.3)

where q, r ∈ k[x], either r = 0 or deg(r) < deg(g), and q, r are unique.

This is also known as the division algorithm, where we divide the polynomial f by g.
Furthermore, we describe the structure of all ideals on k[x] in the following corollary:

Corollary 3.1.1. For a field k we can write every ideal as 〈f〉, for any f ∈ k[x]. Now, f
is unique up to multiplication by a nonzero constant in k.

This type of ideals, which are generated by one element, are called principal ideals.
From Corollary 3.1.1, we say that k[x] is a principal ideal domain, or PID for short. We
say that the generator of an ideal k[x] is the nonzero polynomial with the minimum degree
contained in the ideal. So when the ideal is generated by one element then that is our gen-
erator, but it’s not necessarily straightforward to find our generator if the ideal is generated
by two or more elements. Then we would have to check the degrees of all the possible
polynomials in the ideal, and there could be an infinite amount of polynomials. To make
this calculation easier, we start by introducing a definition of the greatest common divisor
of two polynomials.

Definition 3.1.3. A greatest common divisor of two polynomials f, g ∈ k[x], is a poly-
nomial h which satisfies

1. h divides f and g

6



2. If p is another polynomial which also divides f and g, then p divides h. When h has
these properties, we write h = gcd(f, g).

The gcd of polynomials also has some useful properties going forward.

Proposition 3.1.3. If we have f, g ∈ k[x], then:

1. gcd(f, g) exists, and is unique up to multiplication by a nonzero constant in k.

2. gcd(f, g) is a generator of the ideal 〈f, g〉.

We illustrate the use of this with an example.

Example 3.1.1. What is the generator of the ideal 〈x5 − 1, x3 − 1〉 ⊆ k[x]? We calculate
the greatest common divisor of the two polynomials, by using the Euclidian algorithm:

x5 − 1 = x2(x3 − 1) + x2 − 1

x3 − 1 = x(x2 − 1) + x− 1

x2 − 1 = (x+ 1)(x− 1) + 0

This means that we have

gcd(x5 − 1, x3 − 1) = gcd(x3 − 1, x2 − 1)

= gcd(x2 − 1, x− 1) = gcd(x− 1, 0) = x− 1.

Now, by using the result from Proposition 3.1.3, we get that the generator of this ideal is
given by

〈x5 − 1, x3 − 1〉 = 〈x− 1〉.

The next question now would be, what do we do if we have an ideal generated by three
or more polynomials? We expand the definition we wrote above, such that it includes any
number of polynomials.

Definition 3.1.4. The greatest common divisor of polynomials f1, ..., fn ∈ k[x] is a
polynomial h such that

1. h divides every polynomial f1, ..., fn.

2. If p is a polynomial which divides f1, ...fn, then it also divides h.

With these properties, we write h = gcd(f1, ..., fn).

This leads to some useful properties, which we give in the following proposition.

Proposition 3.1.4. Let f1, ..., fn ∈ k[x] with n ≥ 2. Then:

1. gcd(f1, ..., fn) exists, and is unique up to multiplication of a nonzero constant in k.

2. gcd(f1, ..., fn) is a generator of the ideal 〈f1, ..., fn〉.

3. for s ≥ 3, we have gcd(f1, ..., fn) = gcd(f1, gcd(f2, ..., fn)).

7



3.1.3 Monomial ordering
When we are calculating Gröbner bases we will be reducing multivariate polynomials,
and so it is important to be consistent in the use of pivoting terms during the calculation.
For linear polynomials we choose the pivot to be term of greatest order, using the order
x1 � x2 � ... � xn � 1. In the case of polynomials with only one variable, we would
order the pivoting terms by their degree, x1d � x2

d−1 � ... � x2 � x � 1. This is
necessary for the division progress to terminate. But how do we order the pivoting terms
when we are dealing with more than one variable? We will in this section discuss some of
the orderings we use when we are calculating Gröbner bases.

Definition 3.1.5.

1. A polynomial of the form f = x1
α1x2

α2 · · · xnαn with α1, α2, ..., αn ∈ N is called
a monomial.

2. The monomial x10x20 · · · xn0 is usually written as 1.

3. All of the possible monomials in k[x] are contained in the set Tn.

4. For c ∈ k, f = cx1
α1 · · · xnαn is called a term.

5. Every polynomial f ∈ k[x] can be written as a sum of terms:

f = c1t1 + · · ·+ cmtm, (3.4)

with m ∈ N, c 6= 0 and all the monomials ti distinct from eachother.

6. The set Supp(f) = {t1, ..., tn} is called the support of f. For a subset F ⊂ k[x] of
polynomials, we extend this definition to Supp(F ) = ∪f∈FSupp(f).

7. For a monomial t = x1
α1x2

α2 · · · xnαn with α1, α2, ..., αn ∈ N we have that
deg(t) = α1 + α2 + · · ·αn is the degree of the monomial t.

As we mentioned above, it’s not necessarily obvious which ordering we should follow
when we are working with polynomials with more than one variable. There are however
some properties the ordering should follow, where for example Buchberger’s algorithm
requires that the set of monomials

Tn = {x1α1 · · · xnα1 |α1, ..., αn ∈ N} (3.5)

follow an admissible ordering given in the following definition.

Definition 3.1.6. Let σ ⊆ Tn × Tn be a complete relationship defined on Tn. Instead
of (t1, t2) ∈ σ we write t1 �σ t2, and an order is admissible if for every ti ∈ Tn, the
following holds:

1. ti � 1 for all ti 6= 1 and;

2. If t1 � t2, then for every monomial t3, t1t3 � t2t3.

8



Now, there are several orderings possible, but there are only three orderings most com-
monly used, since they are most useful in practice. We present them in the next definitions,
but it is helpful to first define the logarithm of a monomial as:

log(x1
α1 · · · xnαn) = (α1, ..., αn). (3.6)

Definition 3.1.7. For the lexicographic (lex) ordering we have

t1 �lex t2 (3.7)

for whenever the first non-zero component of log(t1)− log(t2) is positive.

If we specify the polynomial ring as k[x1, x2, ..., xn], the ordering of variables

x1 �lex x2 �lex · · · �lex xn (3.8)

would be implied. The ordering is called lexicographic, since it is the order the terms
would be given as in a dictionary.

Definition 3.1.8. For the graded lexicographic (glex) ordering, we have:

t1 �glex t2 (3.9)

if either deg(t1) � deg(t2), or both deg(t1) = deg(t2) and t1 �lex t2.

In this ordering the monomials are first ordered by their total degree, and the monomi-
als with same total degree are then ordered by the lexicographic ordering. This ordering is
not used as much, since the next one often produces a Gröbner basis with fewer terms.

Definition 3.1.9. For the graded reversed lexicographic (grevlex) ordering, we have:

t1 �grevlex t2 (3.10)

if either deg(t1) � deg(t2), or both deg(t1) = deg(t2) and the last non-zero component
of log(t1)− log(t2) is negative.

Also here the monomials are first graded by their total degrees, and then they are
ordered by the negation of the lexicographic ordering of the variables in reverse order.
This ordering gives the same results as the graded lexicographic ordering when working
with two variables, but they will differ for three or more variables.

We give an example to show how the orderings differ.

Example 3.1.2. Let f(x1, x2, x3) = (x1+x2+x3)3+x2 be a polynomial in k[x1, x2, x3]
with k = GF (2) and x1 �lex x2 �lex x3 implied. Then the three orderings gives us:

• Lexicographic order: f(x1, x2, x3) = x1
3 + x1

2x2 + x1
2x3 + x1x2

2 + x1x3
2 +

x2
4 + x2

3 + x2
2x3 + x2x3

2 + x3
3

• Graded lexicographic order: f(x1, x2, x3) = x2
4+x1

3+x1
2x2+x1

2x3+x1x2
2+

x1x3
2 + x2

3 + x2
2x3 + x2x3

2 + x3
3

9



• Graded reverse lexicographic order: f(x1, x2, x3) = x2
4 +x1

3 +x1
2x2 +x1x2

2 +
x2

3 + x1
2x3 + x2

2x3 + x1x3
2 + x2x3

2 + x3
3

The last two orderings may look similar, but one notable difference is that in the graded
lexicographic ordering, none of the last four monomials contains the variable x1, while for
the graded reverse lexicographic ordering the last four monomials are all divisible by the
variable x3. This makes a difference for both the properties and sizes for the corresponding
Gröbner basis.

Furthermore, every polynomial in k[x] contains a term that is maximal with respect to
an ordering. We add the following definition.

Definition 3.1.10. 1. Given f ∈ k[x]\{0} with an admissible ordering σ on Tn, there
exists a unique representation f =

∑m
i=1 citi for f , with m ∈ N+, ci ∈ k\{0},

ti ∈ Tn, and t1 �σ · · · �σ tm

2. The leading monomial of f is t1. This is the maximal monomial in Supp(f) with
respect to an ordering σ, which we denote LMσ(f), or for simplicity, LM(f).

3. The leading coefficient is c1, which we for simplicity denote LC(f).

4. The leading term is c1t1, which we for simplicity denoteLT (f). This is the product
of the leading coefficient and the leading monomial:

LT (f) = LC(f) · LM(f). (3.11)

3.1.4 Reduction of multivariate polynomials
Given a set F of polynomials, we can now use the ordering σ we defined above, and
reduce one polynomial to another modulo F . Our idea is to expand our algorithm for
reducing polynomials with one variable, such that we can divide f ∈ k[x1, ..., xn] by
f1, ..., fn ∈ k[x1, ..., xn]. Then we can express our polynomial f on the form

f = q1f1 + · · ·qnfn + r, (3.12)

where both the qi’s and the remainder r lie in k[x1, ..., xn]. When characterizing the
remainder here, we use one of the monomial orderings we discussed above. The algorithm
here follows the same idea as in the one-variable case. We want to cancel the leading term
of f , with respect to a term ordering, by multiplying some fi by an appropriate monomial,
and then subtract. This monomial will then be given as one of the qi’s in the equation
above. We continue this process until we no longer can eliminate the leading term of f .
We show this by an example.

Example 3.1.3. We have the polynomial f = x1
2x2 + 1 and want to divide it by f1 =

x1x2 + 1 and f2 = x1 + 1, by using the lex order x1 � x2. We start in the same way
as for the one-variable case, so first we want to remove the leading term of f , namely
LT (f) = x1

2x2. We see that both the leading term of f1 and the leading term of f2 divide
LT (f), but since f1 is listed first, we begin by dividing f by f1.

x1
2x2 + 1 = x1 · (x1x2 + 1) + (−x1 + 1).

10



Now we have the remainder r = (−x1 +1), which we can reduce further, since LT (f2) =
x1 divides the leading term of the remainder. We get

x1
2x2 + 1 = x1 · (x1x2 + 1) + (−1) · (x1 + 1) + 2.

We now have the remainder r = 2, and since none of the leading terms of f1 and f2 divides
two, we cannot reduce f any further. So f divided by the polynomials f1 and f2 is given
by

f = x1 · f1 + (−1) · f2 + 2.

This example shows how the division algorithm works, but one could also meet another
occurance when dealing with the algorithm. We illustrate it with another example.

Example 3.1.4. We have f = x1
2x2+x1x2

2+x2
2, and want to divide it by f1 = x1x2−1

and f2 = x2
2 − 1. We use the lex order x1 � x2, and the first steps proceed as they did in

the previous example. First we divide by f1 to remove LT (f) = x1
2x2, giving us a new

leading term for f , which we then remove by dividing by f1 again

x1
2x2 + x1x2

2 + x2
2 = x1 · (x1x2 − 1) + x1x2

2 + x1 + x2
2

= x1 · (x1x2 − 1) + x2 · (x1x2 − 1) + x1 + x2
2 + x2

So now we have the remainder r = x1 + x2
2 + x2, with LT (r) = x1. But neither

LT (f1) = x1x2 or LT (f2) = x2
2 divides this leading term. However, this is not the final

remainder, since LT (f2) divides x22, a term in our remainder. So if we now move the
term x1 to the remainder, and let x22 + x2 be our intermediate divident, we can continue
to divide by this. Every time the leading term of the intermediate divident cannot be
reduced, we move it to the remainder, until our intermediate divident is zero. Now we
have the leading term x2

2 which we can further reduce with f2

x1
2x2 + x1x2

2 + x2
2 = (x1 + x2) · (x1x2 − 1) + (1) · (x22 − 1) + x2 + 1 |x1

= (x1 + x2) · (x1x2 − 1) + (1) · (x22 − 1) |x1 + x2 + 1

Since x2 + 1 couldn’t be reduced any further, we moved it to our remainder. We now have
our final remainder, r = x1 + x2 + 1, where none of the terms can be reduced further by
f1 or f2. We can then write f as

f = (x1 + x2) · f1 + f2 + x1 + x2 + 1

These examples illustrate how the division algorithm works. It also shows what kind
of properties we want the remainder to have, that none of its terms can be reduced any
further. It is also implied by this algorithm that if the remainder is equal to zero after
dividing a polynomial f by F = (f1, ...fn), then

f = q1f1 + · · ·qnfn (3.13)

such that f ∈ 〈f1, ..., fn〉. Meaning we can use this algorithm to check wether any given
f ∈ k[x1, ..., xn] is in 〈f1, ..., fn〉, when f1, ..., fn ∈ k[x1, ..., xn]. But is this condition a
necessity for being in the ideal? Unfortunately not, since the order of how we divide by
the polynomials in the set matters.

11



Example 3.1.5. Let f = x2y − y be the polynomial we want to divide by F = (f1, f2),
when f1 = x1x2−1, f2 = x1

2−1 ∈ k[x1, x2], with lex ordering. If we follow that order,
we get

x1
2x2 − x2 = x1 · (x1x2 − 1) + 0 · (x12 − 1) + (x1 − x2), (3.14)

but if we now divide by F = (f2, f1), we get

x1
2x2 − x2 = x2 · (x12 − 1) + 0 · (x1x2 − 1) + 0. (3.15)

So the second calculation shows that f ∈ 〈f1, f2〉, but then the first calculation shows that
you don’t need a remainder of zero for that to be true.

Looking back at the problem of finding the variety to a given set of polynomials
f1, ..., fn ∈ k[x1, ..., xn], we said that we can then turn to the ideal I they generate, which
further means we can turn to any generating set for I . Does then a generating set where
we easier can find the variety exist? With the use of this division algorithm, along with
a few extra properties, we will see that we can create Gröbner bases we have mentioned
earlier, where this is possible.

3.2 Gröbner basis

3.2.1 Monomial ideals
Before we describe the Gröbner bases, we need to describe a certain type of ideals, namely
monomial ideals. We define them as the following:

Definition 3.2.1. An ideal I ∈ k[x1, ..., xn] is called a monomial ideal, if there exists a
subset A ⊆ Zn (possibly infinite), such that I consists of all the polynomials which are
finite sums of the form

∑
α∈A hαx

α, hα ∈ k[x1, ..., xn]. If such a subset exists, we have
I = 〈xα|α ∈ A〉.

Further we characterize all the monomials which lie in such a monomial ideal.

Lemma 3.2.1. Let I = 〈xα|α ∈ A〉 be a monomial ideal. Then a monomial xβ lies in the
ideal, if and only if for some α ∈ A, xβ is divisible by xα.

We now want to show that any polynomial f can be shown to be in a monomial ideal,
by looking at the monomials of f .

Lemma 3.2.2. Let I be a monomial ideal, and f ∈ k[x1, ..., xn]. Then we have the
following equivalences:

1. f ∈ I

2. Every term of f lies in I .

3. f is a k-linear combination of the monomials in I .

From part 3 here we know that a monomial ideal is uniquely determined by its mono-
mials, which leads to the following corollary.

12



Corollary 3.2.1. Two monomial ideals are the same if and only if they contain the same
monomials.

The most important part about monomial ideals that we need further on, is that every
monomial ideal in k[x1, ..., xn] is finitely generated. We get the following theorem, known
as Dickson’s lemma.

Theorem 3.2.1. Let I = 〈xα|α ∈ A〉 ⊆ k[x1, ..., xn] be a monomial ideal. Then we can
write I on the form I = 〈xα1 , ..., xαs〉, where α1, ..., αs ∈ A. From this, I has a finite
basis.

So now we have that every such ideal is finite, and we also know that for
I = 〈xα1 , ..., xαs〉, that a polynomial f is in I if and only if the remainder of f after
dividing by xα1 , ..., xαs is zero.

3.2.2 Hilbert basis theorem
We are now closing in on the useful generating sets we have previously mentioned. One
key feature we will use from now on, is that if we choose a monomial ordering, then each
f ∈ k[x1, ..., xn] will have a unique leading term LT (f). We can then describe, for any
ideal I , its ideal of leading terms as the following.

Definition 3.2.2. Let I ⊆ k[x1, ..., xn] be an ideal, not {0}, and fix a monomial ordering
on k[x1, ..., xn]. Then we have:

1. We denote the set of leading terms of nonzero elements in I by LT (I), such that

LT (I) = {cxα| there exists f ∈ I\{0} with LT (f) = cxα}. (3.16)

2. We denote the ideal generated by the elements of LT (I) as 〈LT (I)〉.

We know that the leading terms are important when we are using the division algo-
rithm, so there is one thing worth noting when it comes to 〈LT (I)〉. If we have a finite gen-
erating set for an ideal I , I = 〈f1, ..., fn〉, then 〈LT (I)〉 and 〈LT (f1), ..., LT (fn)〉 is not
necessarily the same ideal. By definition we have LT (fi) ∈ LT (I) ⊆ 〈LT (I)〉, implying
〈f1, ..., fn〉 ⊆ 〈LT (I)〉, but 〈LT (I)〉 can still be strictly larger than 〈LT (f1), ..., LT (fn)〉.

We will now show that 〈LT (I)〉 is a monomial ideal, which allow us to use the prop-
erties from above, namely that 〈LT (I)〉 is generated by a finitely many leading terms.

Proposition 3.2.1. Let I ⊆ k[x1, ..., xn] be an ideal, different from {0}. Then

1. 〈LT (I)〉 is a monomial ideal.

2. There exists g1, ..., gt ∈ I such that 〈LT (I)〉 = 〈LT (g1), ..., LT (gt)〉.

Proof. 1. If we have elements g ∈ I\{0}, then the leading monomials LT (g) generate
the monomial ideal 〈LM(g)〉|g ∈ I\{0}. Now, LM(g) and LT (g) only differ by a
nonzero constant, so we have 〈LM(g)〉|g ∈ I\{0} = 〈LT (I)〉, and so 〈LT (I)〉 is
a monomial ideal.

13



2. Now 〈LT (I)〉 is generated by the monomials g ∈ I\{0}. From Theorem 3.2.1 we
know that 〈LT (I)〉 = 〈LM(g1), ..., LM(gt)〉 for finitely many g1, ..., gt ∈ I . Since
LM(gi) and LT (gi) only differs in a nonzero constant, we have that 〈LT (I)〉 =
〈LT (g1), ..., LT (gt)〉.

With Proposition 3.2.1 and the division algorithm, we can now prove that there exists
a finite generating set for every polynomial ideal. The following theorem is known as
Hilbert Basis Theorem.

Theorem 3.2.2. Every ideal I ⊆ k[x1, ..., xn] has a finite generating set, meaning that
I = 〈g1, ..., gt〉 for some g1, ..., gt ∈ I .

Proof. If I = {0}, then we can take {0} as the generating set, which is finite. If I
consists of some nonzero polynomial, we construct the generating set g1, ..., gt for I in the
following way. We start by choosing a monomial ordering on the set, and then compute
the leading terms by using the division algorithm. Then I will have an ideal of leading
terms 〈LT (I)〉. From Proposition 3.2.1 we then know that 〈LT (I)〉 = 〈g1, ..., gt〉 for
some g1, ..., gt ∈ I , and we claim that I = 〈g1, ..., gt〉. Since gi ∈ I , it is clear that
〈g1, ..., gt〉 ⊆ I . We need to prove that I ⊆ 〈g1, ..., gt〉. Let f ∈ I be any polynomial.
Using the division algorithm to divide f by (g1, ..., gt), we get an expression on the form

f = q1g1 + · · ·+ qtgt + r, (3.17)

where the terms of r are not divisible by any of the LT (g1), ..., LT (gt). We claim that
r = 0, and notice that

r = f − q1g1 − · · ·qtgt ∈ I. (3.18)

If we now have r 6= 0, then LT (r) ∈ 〈LT (I)〉 = 〈LT (g1), ..., LT (gt)〉, and thus by
Lemma 3.2.1 LT (r) must be divisible by some LT (gi). This contradicts the meaning of
a remainder, so r = 0, and we have

f = q1g1 + · · ·qtgt + 0 ∈ 〈g1, ..., gt〉, (3.19)

meaning that I ⊆ 〈g1, ..., gt〉.

3.2.3 Gröbner bases
We are now ready to define the Gröbner bases we have previously mentioned. We give the
following definition.

Definition 3.2.3. Fix a monomial ordering on k[x1, ..., xn]. Then a finite subset G =
{g1, ..., gt} of an ideal I ⊆ k[x1, ..., xn], not {0}, is called a Gröbner basis if

〈LT (g1), ..., LT (gt)〉 = 〈LT (I)〉. (3.20)

Using 〈∅〉 = {0}, we say that ∅ is the Gröbner basis for the zero ideal {0}.

14



Equivalently, if we have a set (g1, ..., gt) ⊆ I , then this set is a Gröbner basis if and
only if every leading term of I is divisible by some LT (gi).

Corollary 3.2.2. Fix a monomial ordering. Then every I ⊂ k[x1, ..., xn] has a Gröbner
basis, and every Gröbner basis of an ideal I is a basis of I .

Proof. For a nonzero ideal, the set G = (g1, .., gt) we constructed in Theorem 3.2.2 is a
Gröbner basis by definition. To prove that every Gröbner basis is a basis, we note that if
〈LT (I)〉 = 〈LT (g1), ..., LT (gt)〉, then we have from Theorem 3.2.2 that I = 〈g1, ..., gt〉,
such that G is a basis for I .

We end this section with a consequence of Theorem 3.2.2, the Hilbert Basis Theo-
rem. Up until now we have used affine varieties as the solutions to a specific finite set of
polynomials:

V(f1, ..., fn) = {(a1, ..., as) ∈ kn|fi(a1, ..., as) = 0,∀i}. (3.21)

We have previously said that we can turn to the ideal I ∈ k[x1, ..., xn] they generate for
finding this affine variety, which we will now prove.

Definition 3.2.4. Let I ∈ k[x1, ..., xn] be an ideal. We denote V(I) as the set

V(I) = {(a1, ..., as) ∈ kn|f(a1, ..., as) = 0 for all f ∈ I}. (3.22)

A nonzero ideal I will always contain infinitely many different polynomials, but V(I)
can still be defined as a finite set of polynomial equations.

Proposition 3.2.2. Let V(I) be an affine variety. Now, if I = 〈f1, ..., fn〉, we have
V(I) = V(f1, ..., fn).

Proof. By the Hilbert Basis Theorem, I = 〈f1, ..., fn〉 for a finite generating set. We
claim that V(I) = V(f1, ..., fn). Now if we have fi ∈ I , then fi(a1, ..., as) = 0, since
f(a1, ..., as) = 0 for any f ∈ I . Thus V(I) ⊆ V(f1, ..., fn). Now let (a1, ..., as) ∈
V(f1, ..., fn) and f ∈ I . Since I = 〈f1, ..., fn〉, we have

f =

n∑
i=1

hifi (3.23)

for some hi ∈ k[x1, ..., xn]. Now

f(a1, ..., as) =
n∑
i=1

hi(a1, ..., as)fi(a1, ..., as) (3.24)

=

n∑
i=1

hi(a1, ..., as) · 0 = 0. (3.25)

So V(f1, ..., fn) ⊆ V(I), and we have V(I) = V(f1, ..., fn).

The most important thing we notice from this proposition is that varieties are deter-
mined by ideals, which also means that we can turn to any basis for a given ideal, to find
the variety.

15



3.2.4 Properties of Gröbner bases

We now know that every nonzero ideal I ⊆ k[x1, ..., xn] has a Gröbner basis. In this
section we will look closer at some of the properties of these Gröbner bases. We start by
proving that the remainder after dividing by a Gröbner basis is unique.

Proposition 3.2.3. Let I ⊂ k[x1, ..., xn] be an ideal and G = {g1, ..., gt} a Gröbner basis
for this ideal. For a given f ∈ k[x1, ..., xn] there exists an r ∈ k[x1, ..., xn] that have these
two properties:

1. No term of r is divisible by any of LT (g1), ..., LT (gt).

2. There is g ∈ I such that f = g + r.

Also, r is here the remainder after dividing f byG, and it does not matter how the elements
are listed in G when using the division algorithm.

Proof. The division algorithm gives us f = q1g1 + · · ·qtgt + r, where r satisfies 1. If
we now set g = q1g1 + · · ·qtgt ∈ I , we satisfy 2 as well. So there exists an r, and
we need to prove that it is unique. Suppose that f = g + r = g′ + r′ satisfy both 1
and 2. Then r − r′ = g′ − g ∈ I . If we assume r 6= r′, then LT (r − r′) ∈ 〈LT (I)〉 =
〈LT (g1), ..., LT (gt)〉. Then, from Lemma 3.2.1 we have that LT (r−r′) must be divisible
by some LT (gi). But by 1 in the proposition, none of the terms of r, r′ are divisible by
one of LT (g1), ..., LT (gt), so we must have r = r′, and thus uniqueness is proved. This
uniqueness of r also proves the last part of the proposition.

From this proposition we can also add a corollary, which tells us when a given poly-
nomial f lies in an idea.

Corollary 3.2.3. Let I ⊆ k[x1, ..., xn] be an ideal and G = {g1, ..., gt} its Gröbner basis.
Then a polynomial f ∈ k[x1, ..., xn] lies in I if and only if

f ∈ I ⇐⇒ f 7→G 0, (3.26)

where 7→G denotes dividing by the basis G.

Proof. If the remainder is zero, we have already seen that f ∈ I . Now if f ∈ I , then
f = f + 0 satisfies both of the conditions in Proposition 3.2.3, and so 0 is the remainder
of f after dividing by G.

Generally an arbitrary basisB does not form a Gröbner basis, since if some polynomial
in B reduced to a nonzero irreducible polynomial modulo B, then that polynomial would
have to be added to B in order to complete the basis. But since every polynomial in the
basis has to be reduced to zero with respect to the basis, for it to be a Gröbner basis, the
process of finding this basis may be very time inefficient. However, Buchberger showed
that it is enough to consider the S − polynomials for finding Gröbner bases, which are
given by the following definition.

16



Definition 3.2.5. The S-polynomial of two polynomials f and g in B is given by:

spoly(f, g) =
M

LT (f)
· f − M

LT (g)
· g (3.27)

where M = lcm(LT (f), LT (g)).

We give an example of how we compute the S-polynomials.

Example 3.2.1. Let f = 2x1
4x2 + x1

2x2
3 + x1x2 and g = 4x1

3x2
2 − x1

2x2
2 be

polynomials in R[x1, x2] with grlex ordering. So LT (f) = 2x1
4x2, LT (g) = 4x1

3x2
2

and M = lcm(LT (f), LT (g)) = 4x1
4x2

2. Then the S-polynomial is

S(f, g) =
4x1

4x2
2

2x14x2
· f − 4x1

4x2
2

4x13x22
· g

= 2x2 · f − x1 · g
= x1

3x2
2 + 2x1

2x2
4 + 2x1x2

2.

With Definition 3.2.5 we can now write the following theorem for when a basis is a
Gröbner basis, which is also known as Buchberger’s criterion.

Theorem 3.2.3. A basis G = {g1, ..., gt} is a Gröbner basis if and only if for every pair
i 6= j

spoly(gi, gj) 7→G 0, (3.28)

for all gi, gj ∈ G

So if we now compute the S-polynomial of two polynomials in a given basis G, and
that reduces to a nonzero polynomial which can’t be reduced any further modulo G, then
that polynomial would have to be added to the basis. When every S-polynomial of every
pair of polynomials in the basis is reduced to zero modulo G, we have computed our
Gröbner basis. In Chapter 4 we will describe one multivariate quadratic cryptosystem
called Matsumoto-Imai, and in Chapter 5 we will describe an attack on this system with
the use of a Gröbner basis.

We have seen that a Gröbner basis can be found by computing the S-polynomial of
every pair of polynomials in a given set of polynomials. However, if the given set contains
a large number of polynomials and variables, the process of calculating the S-polynomials
can be extremely time consuming. Therefore there has been several computer algorithms
developed over the years since the introduction of Gröbner bases, such as Buchberger’s
algorithm, which one can find an example of in [2]. We will not go into the details of these
algorithms in this paper, but they are highly necessary when computing Gröbner bases.

17



18



Chapter 4
Multivariate quadratic
cryptosystems

We will in this chapter present two multivariate quadratic cryptosystems, and we will
mainly follow the structure of [3].

4.1 Matsumoto-Imai

4.1.1 Construction
Let k be a finite field of characteristic two and let q = 2m be the number of elements in k.
If we now let g(x) ∈ k[x] be any irreducible polynomial of degree n, then we can identify
the field K ∼= k[x]/g(x) as the extension field of degree n over k. Let φ : K → kn be the
standard k-linear isomorphism between K and kn given by

φ(a0 + a1x+ ...+ an−1x
n−1) = (a0 + a1 + ...+ an−1). (4.1)

Now k is a subfield of K, and is embedded in kn in the standard way:

φ(a) = (a, 0, ..., 0) ∀a ∈ k (4.2)

Further, we now choose a variable θ such that both 0 < θ < n, and

gcd(2mθ + 1, 2mn − 1) = 1, (4.3)

and define the map F̃ over K to be

F̃ (X) = X1+2mθ . (4.4)

and with the conditions we had on the variable θ we get that F̃ is an invertible map, such
that we can easily find the inverse map. If we let ~ be an integer such that

19



~(1 + 2mθ) ≡ 1 mod (2mn − 1), (4.5)

then we have that the inverse map F̃−1 is given by

F̃−1(X) = X~. (4.6)

Furthermore, we define the map F̄ over kn to be

F̄ (x1, ..., xn) = φ ◦ F̃ ◦ φ−1(x1, ..., xn) = f̄1(x1, ..., xn), ..., f̄n(x1, ..., xn), (4.7)

where f̄1(x1, ..., xn), ..., f̄n(x1, ..., xn) ∈ k[x1, ..., xn]. Finally, to fully describe the MI
public key cryptosystem, we choose T and S to be two invertible affine transformations
over kn, such that the map over kn is defined as

F (x1, ..., xn) = (T ◦ F̄ ◦ S)(x1, ..., xn) = f1(x1, ..., xn), ..., fn(x1, ..., xn), (4.8)

where f1(x1, ..., xn), ..., fn(x1, ..., xn) ∈ k[x1, ..., xn] are quadratic polynomials. This
is because in the map F̃ (X) = X · X2mθ , both X 7→ X and X 7→ X2mθ (because
X 7→ X2 is k-linear) are k-linear transformations, such that X 7→ X ·X2mθ is quadratic
over k. These polynomials are now the public polynomials, which anyone can use to
encrypt messages.

We can now fully describe the cryptosystem.

Public key
The public key for the MI cryptosystem contains:

1. The field k with its multiplicative and additive strucure;

2. The n polynomials f1(x1, ..., xn), ..., fn(x1, ..., xn) ∈ k[x1, ..., xn] of degree 2.

Private key
The private key contains the two invertible affine transformations S and T . It is also
possible to include the variable θ in the private key, but since it is lesser than n choices for
θ and n is rarely quite large, it does not make any attack significantly harder by keeping it
a secret.

Encryption
Given a plaintext (x1, ..., xn), we have the associated ciphertext (y1, ..., yn), where

yi = fi(x1, ..., xn), (4.9)

for i = 1, .., n. Since the public key is available to everyone, anyone can encrypt a mes-
sage.

20



Decryption
When we have a ciphertext (y1, ..., yn), we can decrypt it by computing

F̄−1(y1, ..., yn) = (S−1 ◦ F−1 ◦ T−1)(y1, ..., yn)

= (S−1 ◦ φ ◦ F̃−1 ◦ φ−1 ◦ T−1)(y1, ..., yn).

We can decrypt a ciphermessage by doing a step-by-step computation in the following
way:

1. Start by computing (z1, ..., zn) = T−1(y1, ..., yn);

2. Then compute (z̄1, ..., z̄n) = (φ ◦ F̃−1 ◦ φ−1)(z1, ..., zn);

3. And finally compute (x1, ..., xn) = S−1(z̄1, ..., z̄n).

An overview of the construction is given in figure 4.1. One can see that that decipher-
ing is straightforward as long as you have the private key, as it should be. In chapter (5)
we will look at some ways to attack this cryptosystem. One of the attacks focuses on the
public polynomials and their corresponding ciphertext, while the other attack takes advan-
tage of how the map F̃ is constructed. The second attack led Patarin to propose a new
cryptosystem inspired by the MI-cryptosystem, which we will look at in the next section.

kn kn K K kn kn

kn kn

kn kn

- - - - -

?
-

6
?

-

6

S φ−1 F̃ φ T

id
F̄

id

id

F

id

Figure 4.1: Construction of the MI-cryptosystem

21



4.2 Hidden field equations
In 1996 Patarin proposed a new cryptosystem called the Hidden Field Equations cryptosys-
tem, or HFE for short. It is a further development of the Matsumoto-Imai cryptosystem we
saw above, where the difference is that he wanted to replace the map F̃ with a new map
that would make the system more secure.

4.2.1 Construction
The construction of HFE is very similar to the Matsumoto-Imai cryptosystem. We have
that k is a finite field with q elements, and g(x) ∈ k[x] an irreducible polynomial of degree
n. Then we can identify K ∼= k[x]/g(x) as a degree n field extension of k. Also, k does
not need to have characteristic two here. Also here φ is the standard k-linear map that
identifies K with kn, φ : K → kn, where

φ(a0 + a1x+ ...+ an−1x
n−1) = (a0 + a1 + ...+ an−1). (4.10)

As we mentioned above, the construction is very similiar to the MI-system, but there
is one main difference. In the MI-cryptosystem we described above, we used the map
F̃ (X) = X1+qθ , but in the HFE-cryptosystem we replace it with the following map

F̃ (X) =

r2−1∑
i=0

i∑
j=0

aijX
qi+qj +

r1−1∑
i=0

biX
qi + c, (4.11)

where we choose the coefficients aij , bi, c ∈ K randomly, and we choose r1, r2 such that
the degree of F̃ (X) is less than some parameter d. The public key polynomials are now
given by

F (x1, ..., xn) = (T ◦ F̄ ◦ S)(x1, ..., xn) = f1(x1, ..., xn), ..., fn(x1, ..., xn), (4.12)

where as in the previous section F̄ = φ ◦ F̃ ◦ φ−1, and T, S are the secret invertible affine
transformations on kn. As in the MI construction, the polynomials
f1(x1, ..., xn), ..., fn(x1, ..., xn) ∈ k[x1, ..., xn] are here quadratic, since both X 7→ Xqi

and X 7→ Xqj are k-linear transformations, such that X 7→ Xqi ·Xqj is quadratic over k.

Public key
The public key consists of

1. The field k, with its multiplicative and additive structure;

2. The n polynomials f1(x1, ..., xn), ..., fn(x1, ..., xn) ∈ k[x1, ..., xn] of total degree
2.

22



Private key
The private key consists of

1. The map F̃ ;

2. The two invertible affine transformations T and S.

In the construction of the MI-cryptosystem we noticed that if we kept the parameter θ
secret, we could still find the map F̃ by guessing. Here, it is nearly impossible to guess
the map.

Encryption
A given plaintext message (x1, ..., xn) corresponds to a ciphertext in the following way:

(y1, ..., yn) = F (x1, ..., xn), (4.13)

or equivalently

yi = fi(x1, ..., xn) for i = 1, ..., n. (4.14)

Decryption
Given a ciphertext (y1, ..., yn), we can decrypt it in the following way:

1. Compute (ȳ1, ..., ȳn) = T−1(y1, ..., yn).

2. Let Y = φ−1(ȳ1, ..., ȳn). Compute the set

Z = {Z ∈ K|F̃ (Z) = Y } (4.15)

We can compute this Z by using a variant of the Berlekamp algorithm, suitable
for use over the field K. If d = degF̃ (X), then the complexity of this step is
O(nd2 log d+ d3). From this we see that F̃ cannot have too large degree, since the
decryption process would become very inefficient, thus making the cryptosystem
itself inefficient. Equivalently, we cannot choose r1, r2 to be too large.

3. For each element Zi ∈ Z , compute

(xi1, ..., xin) = L2
−1 ◦ φ(Zi) (4.16)

Optimally, we would like that the map F̃ is a one-to-one map as it were in the MI-
cryptosystem, such that one would get unique solutions for the elements in Z . It is
however possible that Z contains multiple solutions, and in that case we may have
to search a while to find the corresponding plaintext (x1, ..., xn) to the ciphertext
y1, ..., yn).

23



24



Chapter 5
Attacking multivariate quadratic
cryptosystems

5.1 Gröbner basis attack
In this section we will look at how we can attack the MI-cryptosystem by using a Gröbner
basis, which we discussed in Chapter 3. This attack only needs the public polynomials
and the ciphertext that was sent, such that we do not really need to know how the MI-
cryptosystem is constructed. So we have the system of polynomials and the associated
ciphertext such that

f1(x1, ..., xn) = y1
...

fn(x1, ..., xn) = yn.

Since the values for y1, ..., yn are known, we can move them over to the left hand side,
such that we get the system

f1(x1, ..., xn)− y1 = 0

...
fn(x1, ..., xn)− yn = 0.

In this system we now have n polynomials in n variables, so we can find the solu-
tion by Gaussian elimination, but for a secure MI-cryptosystem this would be very time
consuming. Therefore we try to solve the system using a Gröbner basis instead. From
chapter 3 we know that V(f1(x1, ..., xn)− y1, ..., fn(x1, ..., xn)− yn) will give us the so-
lutions for all the unknown variables in our system. We also know that if we have an ideal
I = 〈g1, ..., gn〉, then V(I) = V(g1, ..., gn), meaning that solutions for the ideal generated
by some polynomials will be the same as the solutions for that system of polynomials. We

25



let I = 〈f1(x1, ..., xn)−y1, ..., fn(x1, ..., xn)−yn〉. Further, we also know from Chapter
3 that it is sufficient to look at any basis for an ideal to find the solutions for this ideal, and
we also know that every ideal has a Gröbner basis. So by finding a Gröbner basis for our
system

f1(x1, ..., xn)− y1 = 0

...
fn(x1, ..., xn)− yn = 0,

then the solutions we find in that basis will be the same solutions as for the original
system. Calculating the Gröbner basis G can be done as in Chapter 3, where we find the
S-polynomial of every pair of polynomials in the basis, and then reduce it with respect
to G. Calculating G would be the most time consuming part of our attack, so optimally
we would like to have a computer algorithm which could calculate this efficiently. An
advantage of this attack is that when we findG, we will have at least one polynomial which
only contains one variable, let us say xn for example. If it’s only one polynomial, finding
the solution(s) for xn is straightforward. If there are several polynomials containing only
one variable, we can calculate the greatest common divisor for these polynomials, and
then find the solution(s) from this resulting polynomial. A method for calculating the gcd
of several polynomials was presented in Chapter 3.

Further, we will also have some polynomials in G containing only this variable xn and
another variable, lets say xn−1. So by inserting the solution(s) we found for xn, we can
follow the same procedure to find the solution(s) to xn−1. Following this procedure step-
by-step backwards, we can find all of the solutions to our original system. One important
notice however, is that we don’t necessarily find only one solution for each variable in
each step, so we might have to check for several solutions each time. In the end though, by
how the MI-cryptosystem is constructed, we will find the unique solution to every variable
x1, ..., xn, which would be the plaintext we seek.

This attack will work on any set of polynomials with an associated ciphertext, but
if we want this to be an efficient attack we would need a good computer algorithm for
computing G, since this computation will be the most time consuming part of our attack.

26



5.2 Patarins attack
In 1995 Patarin[4] proposed an attack on the Matsumoto-Imai cryptosystem, where the
idea is to take advantage of how the map F̃ is constructed. As in Chapter 4, we have a field
k with q = 2m elements chosen, and n is both the degree of the extension field K over k,
and the number of components in k that we have in each message. If g(x) is an irreducible
polynomial of degree n in k, we can identify the extension field as Kn

∼= k[x]/g(x). As
in Chapter 4, we choose θ such that

F̃ : X 7→ X1+2mθ (5.1)

is an invertible map, where F̃−1 = X~ is the inverse map, when ~ is the multiplicative
inverse of X1+2mθ modulo X2mn − 1. If now B is a basis of Kn, we can express F̃ in B
as:

F̃ (x1, ..., xn) = (f1(x1, ..., xn), ..., fn(x1, ..., xn)), (5.2)

where f1, ..., fn are n polynomials in n varibles of degree 2. Again, as in Chapter 4,
this comes from the fact that both X 7→ X and X 7→ X2mθ are linear functions, so
F̃ = X ·X2mθ is a quadratic function, and its components can be expressed quadratic in
B.

Unlike in Chapter 4, we now split our message of length n such that n = n1 + ...+nd.
So now we have d integers n1 + ...+nd, and each of those integers will need an extension
of k, Kn1

, ...,Knd of degree respectively n1, ..., nd. So if we now look at an element of
Kne , where 1 ≤ e ≤ d, this element can be seen as a "word" of length ne. Then we will
use some quadratic functions f̃1, ..., f̃d, such that we get d words, then these d words will
be recombined into a word of length n.

Now, if we look at Figure 4.1 in Chapter 4, Patarins attack takes place in K → K.
The notation we will use from now on, is that we have the secret split n = n1 + ...nd, e
an index such that 1 ≤ e ≤ d, and we let x be the plaintext with the associated ciphertext
y. Now when Kne is the extension field of degree ne over k, we denote ae as an element
of Kne such ae is affine in x, and we denote be as an element of Kne such that be is affine
in y. Then by choosing the parameter θe, we get

be = ae
1+2mθe , (5.3)

which is quadratic in a. This leads to a simplification of Figure 4.1 in Chapter 4, which
we can see in Figure 5.1. For simplicity, we will mostly denote a by ae, b by be and θ by
θe in this text.

27



kn kn K K kn kn

x ya b

- - - - -

- - -�
�
���

@
@
@@R �

�
���

@
@
@@R

S φ−1 F̃ φ T

· · ·

· · ·

Figure 5.1: Simple MI construction

5.2.1 Weak keys
Before we look at the general, we start by looking at some weak keys in the Matsumoto-
Imai algorithm that Patarin discovered. They are not necessarily a problem, as they can
easily be avoided. We can write equation (5.3) as a = b~e , where ~e is the multiplicative
inverse of (1 + 2mθe ) modulo (2mne − 1). If α is an integer, we denote by HW (α) the
number of 1 in the expression of α in base 2 (HW stands for "Hamming weight in base
2"). Now let xi be the bits of x, and yi the bits of y, and 1 ≤ i ≤ mn. Now each value
yj , 1 ≤ j ≤ n, has a quadratic expression in the values xi, and similarly for each value
xj , 1 ≤ j ≤ n, we can express each value as a polynomial of degree supHW (~e) in the
values yi. So if we now want to make the expression of xj as polynomials in yi impractible
for an attack, we need to have at least one variable e such that HW (~e) isn’t too small.
Further we will see that it is actually better if HW (~e) isn’t too small for all the variables
e. Lets assume the opposite, that there is a variable e such that HW (~e) is small, and

a = b~e . (5.4)

Let now ai be bits of a and bi bits of b in a basis, with 1 ≤ i ≤ nem. Then since a is
affine in x, there are some values α1i such that a1 = α10 +

∑nm
i=1 α1ixi. By equation

(5.4) we know that a has a polynomial expression of total degree HW (~e) in b1, ..., bnem.
All these values b1, ..., bnem are affine in y1, ..., ynm, so a1 has a polynomial expression
of total degree HW (~e) in y1, ..., ynm. So now we have a polynomial P of total degree
HW (~e) such that

α10 +

nm∑
i=1

α1ixi = P (y1, ..., ynm). (5.5)

This will also be the same for a2, a3, ..., anm, so there are at least nem equations similar
to equation (5.5), which are of degree 1 in the xi, and of total degree HW (~e) in the
yi. So if now HW (~e) is very small for a given e, we can find these nem equations
which are similar to (5.5). To do that, we start by writing out the general form of such an
equation with degree HW (~e), which contains some unknown coefficients. Further, since
we have the public polynomials, we can generate values for x and y by inserting values for
x into those polynomials, and then calculate the associated ciphertext y. After calculating
enough values for the x, y-pairs, we can insert these values into our equation on the general

28



form, such that the only unknowns are the coefficients. By Gaussian elimination on those
equations we will be able to find these coefficients, and we will then have at least nem
similar equations that are independent from (5.5). So now, with these equations and a
given ciphertext y, we immediatly get nem equations of degree 1 in the xi bits of the
plaintext. So now one can do an exhaustive search in 2(n−ne)m instead of 2nm on the
plaintext, which we do not want. So we conclude that we must choose the values ne and
θe such that HW (~e) isn’t too small.

5.2.2 General attack
In this section we will look at the general attack on the MI-cryptosystem proposed by
Patarin. We start by looking at the general case.

As above, we use the notation

b = a1+2mθ . (5.6)

By doing the composition g : x 7→ x2
mθ−1

on each side, we get

b2
mθ−1

= a2
2mθ−1

, (5.7)

and by multiplying each side by a · b we get

a · b2
mθ

= b · a2
2mθ

. (5.8)

Let (a1, ..., ane) be the representation of a in the extension field Kne , and (b1, ..., bne) the
representation of b in Kne . Then the equation (5.8) gives us ne equations of degree 1 in
both the bj values and the aj values. This is because both b 7→ b2

mθ

and a 7→ a2
2mθ

are
linear functions, meaning that in a basis, the ne components of b2

mθ

can be written as a
polynomial of degree 1 in the components of b, where the coefficients are in k = GF (2m).
Further, we have that a is affine in x, and b is affine in y, so if we now write these ne
equations by the components (x1, ..., xn) and (y1, ..., yn) of x and y, we get equations on
the form

n∑
i=1

n∑
j=1

γijxiyj +

n∑
i=1

αixi +

n∑
i=1

βiyi + δ0 = 0. (5.9)

These equations are true for all x, y, when x is the plaintext of y. Since we have the public
polynomials, we can now choose some values for x, and then compute the associated value
for y. Then, by inserting those values for xi and yi in equation (5.9), we will get some
equations of degree 1 in the n2 + n+ n+ 1 = (n+ 1)2 variables γij , αi, βi and δi. So if
we computed enough values for x and y, we can by Gaussian elimination find the values
for all the variables, and we have then found all of the equations on the form of equation
(5.9). This is part 1 of the attack, we have now found every equation on the form of (5.9)
which comes from equation (5.8), but we may also have some equations which doesn’t
come from (5.8). In part 2 of the attack, given a y for which we want to find x, these
equations will give us some equations of degree 1 on the values x1, ..., xn. By Gaussion

29



elimination on these equations, we will find λ independent equations on the form of (5.9),
where x1, ..., xn are the unknown variables, since we can replace y1, ..., yn with the values
we know. We denote λ as the number of variables x1, ..., xn we are able to find from the
others, so in order to figure out how powerful this attack is, we need to evaluate λ further.

Evaluation of λ

Theorem 5.2.1. For all the practical keys and most of the ciphertexts y, the number of λ
independent equations of degree 1 in x1, ..., xn that we will get from equation (5.9) by this
given y, is given by λ ≥

∑d
e=1(ne − gcd(θe, ne)) ≥ 2n

3 . From this we also see that for a
lot of secret keys for most of the ciphertext, we will have λ ≥ n− d.

We will need four lemmas to prove this theorem.

Lemma 5.2.1. Let L be a finite field with q elements. Now let p be an integer, and y an
element of L. Then the equation xp = y has at most gcd(p, q − 1) solutions for x.

Proof. If y = 0, then x = 0 is the only solution, and the lemma is true.
Assume y 6= 0. Then x = 0 isn’t a solution, so we assume x 6= 0, and that xq−1 = 1.
Let µ = gcd(p, q − 1).
Then we know from Bézout’s identity that there exists two integers α and β such that
αp− β(q − 1) = µ. So now

xp = y ⇒ xαp = yα

⇒ xµ · (xq−1)β = yα

⇒ xµ = yα.

And since every equation of degree k in a field has at most k solutions, we get that xµ = yα

has at most µ solutions, and then also for xp = y, as claimed.

Lemma 5.2.2. For all integers m,α and β, we have

gcd(2mα − 1, 2mβ − 1) = 2m(gcd(α,β)) − 1. (5.10)

Lemma 5.2.3. In the extension field Kne with 2mne elements, equation (5.8) has at most
2m(gcd(θ,ne)) solutions in a, for each given b 6= 0.

Proof. For b 6= 0, equation (5.8) has two sets of solutions for a:

1. a = 0.

2. a such that

(a2
mθ−1)2

mθ+1 = b2
mθ−1 (5.11)

The function g : x 7→ x2
mθ+1 is a bijection in Kne . This is because of how we construct

the MI-cryptosystem, where we choose the variables θ and ne such that g satisfy this
property. Therefore, a is a solution of (5.11) if and only if

a2
mθ−1 = g−1(b2

mθ−1). (5.12)

30



We know from Lemma 5.2.1 then, that the equation (5.12) for a given b has at most
gcd(2mθ − 1, 2mne − 1) solutions a. Further, by Lemma 5.2.2 we then know that (5.11)
has at most 2m(gcd(θ,ne)) − 1 solutions in a. Now, by adding the solution a = 0, we get
that for b 6= 0 that equation (5.8) has at most 2m(gcd(θ,ne)) solutions in a, as claimed.

We add a corollary to Lemma 5.2.3:

Corollary 5.2.1. Given a b 6= 0, and if we write the equation (5.8) in a basis on the
components of a, we will get at least ne − gcd(θ, ne) independent equations of degree 1,
in the components of a.

Proof. We have already seen that the equations we get are of degree 1 in the components
of a. If we let λe be the number of independent equations, then we know that we will have
exactly 2m(ne−λe) solutions. But from Lemma 5.2.3 we know that we will have at most
2m(gcd(θ,ne)) solutions, so λ ≥ ne − gcd(θ, ne), as claimed.

Lemma 5.2.4. ∀e, 1 ≤ e ≤ d, let δe = gcd(θe, ne), and let ke = ne
δe

. Then ke is always
odd, and ke ≥ 3.

We can now write out the proof for Theorem 5.2.1.

Proof. Let y be a ciphertext such that for this y we have:
∀e, 1 ≤ e ≤ d, be 6= 0. (And therefore ae 6= 0 as well, since be = ae

1+2mθe ).
Further, we may assume that mne isn’t too small, since then we would have a = b~e

with a small ~, which would give a smallHW (~), and we have already seen that this gives
the weak keys we want to avoid. So with mne not too small, most of the ciphertext y will
be such that ∀e, 1 ≤ e ≤ d, b 6= 0. We saw earlier that for the equations on the form of
equation (5.9), we will find at least all of the equations from (5.8), when we write these
equations with the components of x and y instead of a and b, for all the values of e, 1 ≤
e ≤ d. From Corollary 5.2.1, we know that we will get at least

∑d
e=1(ne − gcd(θn, ne))

independent equations of degree 1 in the components of x. This completes the proof for
part 1 of the theorem. For part 2, we have proved that λ ≥

∑d
e=1(ne−gcd(θn, ne)). From

Lemma 5.2.4 we then have λ ≥
∑d
e=1(ne − ne

3 ) = 2
3

∑d
e=1 ne = 2n

3 .
And since we will have gcd(θ, ne) = 1 for a lot of keys, we also have

∑d
e=1(ne − 1) =

n− d, so λ ≥ n− d. This completes our proof.

This attack we now have described proceeds in two parts:

1. We find all of the equations on the form of equation (5.9).

2. For each specific ciphertext y, we try to find x with the help of equation (5.9). This
would have to be done for every x we try to find from a given y.

5.2.3 An example

As above, let x be the plaintext, y the ciphertext, a affine in x, b affine in y and b = a1+2mθ .
We are looking at what happens in the extension field Ken , and we will in this example
look at the case when m = 1 and θ = 1, such that

b = a3. (5.13)

31



Now let (b1, ..., bne) be the representation of b in Kne , and (a1, ..., ane) the representation
of a. From equation (5.13) we have that all the bj have a quadratic representation in
(a1, ..., ane), since b = a · a2, and a2 is linear because of m = 1. We want to find an
expression which gives us the aj values from the bj values, and one could think of trying

a = b~. (5.14)

But the HW (~) values would most likely be too big, so we probably would not get a
useful expression for the aj values. Instead, we try to multiply both sides of (5.13) by a:

b · a = a4. (5.15)

Since m = 1 we have that a4 is linear in a here, so this equation will give us ne equations
of degree 1 of both the bj values and the aj values. Now if for any b 6= 0, we will have
exactly two solutions: the solution a = 0 and the solution a = b~. Since equation (5.14)
probably is not useful, we sort of lose one equation over GF (2), but even in that case,
equation (5.15) will still be useful. Since a is affine in x, b is affine in y and a4 is linear in
a, we know from equation (5.15) that we have some equations on the form:

n∑
i=1

n∑
j=1

γijxiyj +

n∑
i=1

αixi +

n∑
i=1

βiyi + δ0 = 0. (5.16)

These equations are true for all x, y, when x is the plaintext of y. If b = 0, there is only
one solution for equation (5.15), so there is necessarily at least ne formally independent
solutions like (5.16). (By formally we mean here that the vector-space of the solutions for
the values γij , αi, βi and δi is at least ne). But since (5.15) has two solutions in a when
b 6= 0, we can say that for a given value y, we have at least ne−1 independent equations on
the form of (5.16). Now we choose some values for x, and by using the public polynomials
we compute the associated values for y. Then when we insert these values xi and yi into
equation (5.16), we will get some equations of degree 1 in the (n+1)2 values for γij , αi, βi
and δi. By Gaussian elimination we can now find all of the unknown variables as long as
we have enough values for x and y, and then we will have all of the equations on the form
of (5.16). By inserting the values for the variables and the yi values for which we want
to find the plaintext x, we have ne − 1 independent equations of degree 1, where only the
values x1, ..., xn are unknown. So by Gaussian elimination we will be able to find ne − 1
variables x1, ..., xm from the others.

32



Bibliography

[1] Stinson D.R. Cryptography theory and practice. Taylor & Francis group, LLC, 2006.

[2] O’Shea D. Cox D.A., Little J. Ideals, Varieties, and Algorithms. Springer, Cham,
2015.

[3] Schmidt D.S. Ding J, Gower J.E. Multivariate Public Key Cryptosystems. Springer,
Boston, MA, 2006.

[4] Patarin J. Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Euro-
crypt’88. In: Coppersmith D. (eds) Advances in Cryptology — CRYPT0’ 95. Springer,
Berlin, Heidelberg, 1995.

33



34


