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Abstract
Underwater robotics makes it possible to explore the ocean in new ways, and can now be
used for environmental sensing. In this thesis, the ideas of underwater sensing are applied
to concentrations of pollutants from a factory in Frænfjorden, Norway. Statistical models
combined with data from the fjord may be used to monitor the contaminant distributions
over space and time. The basis for the statistical modelling is spatio-temporal Gaussian
processes developed from the advection-diffusion stochastic partial differential equation.
The aim of the thesis is to use the statistical model when exploring different decision
strategies for the movement of underwater vehicles. The model and strategies can be
used on board the vehicles for efficient sampling of the fjord. The focus is on identifying
excursion sets, and a myopic (greedy) decision criterion for minimising the probability of
misclassification with respect to the excursion set is derived in closed form.

A simulation study of pollution concentration in Frænfjorden is performed, compar-
ing different exploration strategies for autonomous underwater vehicles. When a vehicle
is following a random surveying plan, the average misclassification rate with respect to
the excursion set is 13.1 %. This is reduced to 10.3 % when using the misclassification
probability decision strategy. The vehicle then efficiently finds excursion set borders, but
often does not explore enough of the domain to identify the whole set. Adding variance
reduction to the decision criterion makes the vehicle explore more, but predetermining a
whole path for the vehicle beforehand is seen to perform just as good for the Frænfjorden
model. The misclassification rates are 9.9 % and 9.7 % using each of these two strategies,
respectively.
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Sammendrag
Utviklingen av undervannsrobotikk gjør det mulig å utforske havet på nye måter, og denne
teknologien kan nå brukes i miljøovervåking. I denne oppgaven er undervannsovervåking
anvendt på konsentrasjon av forurensing fra en fabrikk i Frænfjorden, Norge. Statis-
tiske modeller kombinert med data fra fjorden kan brukes til å overvåke fordelingen av
forurensingen i tid og rom. Gaussiske prosesser utviklet fra en stokastisk partiell dif-
ferensialligning, adveksjon- diffusjonsligningen, brukes som en basis for modelleringen.
Målet med arbeidet er å bruke den statistiske modellen i utforsking av forskjellige beslut-
ningsstrategier for bevegelsen til undervannsfarkoster. Modellen og strategiene kan brukes
om bord på farkostene for effektiv overvåking av fjorden. Fokuset er på overskridelses-
mengder (excursion sets), og et myopisk (grådig) beslutningskriterium for å minimere
sannsynligheten for feilklassifisering med hensyn til overskridelsesmengden er utledet
med analytisk løsning.

Et simuleringsstudie for forurensingskonsentrasjon i Frænfjorden er gjennomført for
å sammenligne forskjellige utforskningsstrategier for autonome undervannsfarkoster. Når
en farkost velger posisjoner for målinger tilfeldig, blir i gjennomsnitt 13.1 % av området
feilklassifisert. Dette reduseres til 10.3 % når strategien for å minimere sannsynligheten
for feilklassifisering benyttes. Farkosten finner effektivt deler av overskridelsesmengden,
men utforsker ofte for lite av domenet til å identifisere hele mengden. Ved å legge til vari-
ansreduksjon som en del av kriteriet, utforsker farkosten større områder, men å bestemme
hele ruten til farkosten på forhånd viser seg å være like bra for modellen for Frænfjorden.
Feilklassifiseringsratene er henholdsvis 9.9 % og 9.7 % for disse to strategiene.
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Chapter 1

Introduction

Recently, the environmental impact of human activities on oceans and coastal areas has
been in focus. Oil spills are known to have big consequences for life at sea and along the
coast, and macro and micro plastics have also proved to be extremely harmful. In Norway,
disposal of mining waste into fjords is a never ending controversy. Environmental activists
have protested against the planned seafills in Førdefjorden and Repparfjorden for some
years, and the decisions have also been appealed. In late November 2019, however, the
final appeal for Repparfjorden was dismissed, and the mining company Nussir ASA can
start their work (Garvik, 2017; Verstad et al., 2019). When mine tailings are deposited into
a fjord, it is important that the contamination is monitored, to make sure that the polluted
area is not extended beyond what is permitted, and that the damage is minimal.

In this thesis, the focus is on ocean pollution in Frænfjorden. The factory of the mining
company Omya Hustadmarmor AS is located in Elnesvågen in Frænfjorden, as shown in
Figure 1.1, and waste is deposited into the fjord close to the factory. This is one out
of five currently active seafills in Norway (Setså, 2019). Various tools can be used to
monitor the movements of the pollutants, and the development of autonomous underwater
vehicles (AUVs) opens for new techniques. In the past few years, AUVs have become less
expensive and more robust, and can now be used in scientific field work (Fossum et al.,
2018), as shown in Figure 1.2. AUVs may then also be used for environmental sensing.

This thesis considers spatio-temporal random processes for modelling the pollution
dynamics in the inner part of Frænfjorden. These are processes explaining phenomena that
evolve and have dependencies in both time and space. We focus on a dynamical spatio-
temporal statistical model, where the process values are modelled based on the values in
the past and by values in spatially near locations (Cressie and Wikle, 2011). According
to Cressie and Wikle (2011), it may be convenient to think of the development in time for
different spatial positions as multivariate time series, but spatio-temporal processes may
also be seen as spatial fields moving in time.

Equations describing known physical phenomena are useful for developing models for
spatio-temporal processes (Cressie and Wikle, 2011; Sigrist et al., 2015b). The process is
often expressed through a partial differential equation (PDE) or a stochastic PDE (SPDE).
The latter expresses partial derivatives in time and/or space in the same way as do PDEs,
but uncertainty terms are also present. Then the resulting process is not deterministic, but a

1



Chapter 1. Introduction

Figure 1.1: Position of Omya Hustadmarmor AS in Frænfjorden outside of Molde, on the west coast
of Norway. Figure taken from Glette (2019).

Figure 1.2: An AUV in action. Courtesy of Gunhild Elisabeth Berget.

stochastic process. There is a one-to-one mapping between describing the process through
a time-space covariance function and the use of SPDEs (Hartikainen et al., 2011). In this
thesis, the advection-diffusion SPDE is the basis for the process model. The SPDE and a
spatial covariance function are used for explaining the process.

2



The spatial field is modelled by probabilistic Gaussian random fields, also called Gaus-
sian processes (GPs). The GPs are built up by jointly Gaussian distributed variables, and
the class is closed under linear transformations; linear combinations of GPs are also GPs.
The advection-diffusion SPDE is linear. Thus, if the stochastic noise term is Gaussian and
the process is initialised by a GP, the process is determined by spatio-temporal GPs. Spa-
tial and spatio-temporal GPs are both denoted GP. Spatio-temporal GPs are used in many
applications, such as neuroimaging (Hyun et al., 2016), Machine Learning (Hartikainen
et al., 2011; Rasmussen and Williams, 2006), geostatistics and environmental sciences
such as precipitation analysis (Liu et al., 2019; Sigrist et al., 2015b).

An area where some quantity of interest is above a given threshold or critical limit is
called an excursion set (ES). ESs may be of particular interest in environmental sensing.
Bolin and Lindgren (2015) work on ESs in the application of air pollution exceeding the
limits set by the European Union, which is one example where allowed levels of pollutants
are law regulated. If levels are exceeded or if certain substances move into the wrong areas,
the consequences may in many situations be large.

The aim of the thesis is to use spatio-temporal GPs to model the pollution in Frænfjor-
den, and explore different strategies for efficient ocean monitoring by AUVs. The AUV
will then obtain data from positions chosen based on some decision criterion. Consider
the ES of a system based on the GP model. A decision criterion for minimising the mis-
classification probability with respect to the ES is derived and used in a simulation study
for pollution in Frænfjorden. In this way, the ideas of GPs, ESs and AUV technology are
combined.

The thesis is organised as follows: In chapter 2, the underlying model for concentration
is developed in a generic framework, while model parameters for the situation in Fræn-
fjorden are found in chapter 3. The methods of ESs and decision strategies are presented
and derived in chapter 4, and in chapter 5, the details of the simulation study for Frænfjor-
den are given. Finally, the results of the simulation study are presented and discussed in
chapter 6 and chapter 7, respectively.

3
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Chapter 2

Model specifications

In this chapter, theory of GPs in both a spatial and spatio-temporal setting is presented.
First, a spatial model is obtained, and equations for data assimilation in the spatial set-
ting are introduces. Further, a spatio-temporal process model is developed based on
the advection-diffusion SPDE, and finally, handling new data in time is shown using the
Kalman filter.

The random variable describing the quantity of interest in this thesis is X . It may
depend on both time, t, and space, s, and is then denoted X(t, s). In the general case,
both variables are continuous, but they are both discretised at some point in the thesis. The
spatial component is two-dimensional, and given in the Cartesian coordinates east and
north. That is, s = (se, sn)ᵀ. If the temporal component is fixed, it may be introduced as
a subscript: Xt(s), meaning that Xt is a spatial variable. This notation is often used in the
discrete time case, to emphasise that the time variable may not vary arbitrarily, and is in
that sense fixed. When the spatial component is fixed, s = si, regular notations, X(t, si)
or Xt(si), are used. In a vector setting, it might sometimes also be convenient to refer to
the vector itself rather than specific elements. Then brackets indicate the vector element,
withXt[i] = Xt(si).

2.1 Spatial model
First consider the spatial setting for a fixed time t, so that X(t, s) = Xt(s).

2.1.1 Gaussian processes and initial state
Let D ⊂ R2 be some finite 2-dimensional domain. The variable of interest is some
continuous field, {Xt(s); s ∈ D ⊂ R2}, where Xt(·) represents the concentration of
pollutants. It could also represent other continuous spatial quantities, such as temper-
ature or terrain height. The field is, as mentioned, modelled by a GP, meaning that
(Xt(s1), Xt(s2), . . . , Xt(sk)), for any configuration (s1, s2, . . . , sk) ∈ D, k = 1, 2, . . .
are jointly Gaussian,

(Xt(s1), Xt(s2), . . . , Xt(sk)) ∼ Nk(µt,Σt) (2.1)

5



Chapter 2. Model specifications

Grid

Figure 2.1: Regular spatial grid on the domain D = [1, 44] × [1, 22] ⊂ R2. The number of grid
nodes is N = 968.

(Cressie and Wikle, 2011). Here, the notation ∼ means follows the distribution of, Nk(·)
denotes a k-variate Gaussian distribution, µt the k-dimensional mean vector and Σt the
k × k covariance matrix of the distribution. The GP is discretised onto a regular grid
covering D, Ds. The grid is given in Cartesian coordinates, with Ne grid points in the
east direction and Nn in the east direction. Then N = Ne ·Nn is the size of the grid, or,
equivalently, the number of grid nodes. Let

Xt = (Xt(s1), Xt(s2), . . . , Xt(sN ))ᵀ (2.2)

for {si ∈ Ds ⊂ R2} be theN -vector representing the discretised GP. Figure 2.1 illustrates
the uniform grid of N = 44 · 22 = 968 nodes on the domain D = [1, 44]× [1, 22] ⊂ R2.

In the spatio-temporal setting, the system model is updated as time passes and as new
data gets available. To start the process, a model for the initial state is needed. The initial
state is modelled by a spatial GP as described in this section, for time t = 0. We have

X0 = (X0(s1), X0(s2), . . . , X0(sN ))ᵀ, (2.3)
X0 ∼ NN (µ0,Σ0). (2.4)

The mean and covariance matrix for the initial state will be determined from available
model data specific to the application, but some general features are discussed here. The
initial state covariance matrix contains information about the level of noise in the system,
i.e. variance for the value in each grid node. Further, the matrix takes into account the
spatial correlation between the variables. It is common to assume isotropic correlation,
where the correlation only depends on the Euclidean distance between variables on the
grid. The distance between grid nodes si and sj is denoted ||si − sj ||. Let ∆s denote
the distance between two arbitrary points. The correlation is given by a positive definite
correlation function, ensuring that the resulting matrix is positive definite. Denote the
function ρ(∆s) and the marginal variance (noise) σ2

0 . Then

Σ0[i, j] = σ2
0ρ(||si − sj ||), (2.5)

6



2.1 Spatial model

where [i, j] indicates row i and column j of the matrix.
A few common correlation functions are the Exponential and the Matern correlation

functions (Cressie and Wikle, 2011). Further, the exponential correlation function can
be combined with a cosine to get some periodic effect. The function can then be called
Damped Cosine. See Table 2.1 for the details on the correlation functions considered here.
The range parameter φ is the distance until values are approximately uncorrelated. When
∆s = φ, we have correlations exp {−3} ≈ 0.05 and (1 + 5) · exp {−5} ≈ 0.04.

Exponential exp {−3∆s/φ}
Matern (1 + 5∆s/φ) exp {−5∆s/φ}

Damped Cosine exp {−3∆s/φ} cos (3∆s/φ)

Table 2.1: Some possible spatial correlation functions. The Matern correlation is shown for smooth-
ness parameter 1.5 and φ is the range parameter controlling the distance until node values are un-
correlated.

To visualise how the spatial correlation changes as a function of the distance between
points in the domain, variograms, γ(·), are often used. A variogram is defined as

γ(si − sj) =
1

2
Var(Xt(si)−Xt(sj))

=
1

2
(Var(Xt(si)) + Var(Xt(sj))− 2Cov(Xt(si), Xt(sj))) ,

(2.6)

(Cressie and Wikle, 2011). Inserting the variance and isotropic correlation function, we
obtain

γ(si − sj) =
1

2
(2σ2

0 − 2σ2
0ρ(||si − sj ||) = σ2

0(1− ρ(||si − sj ||)). (2.7)

Figure 2.2 shows variograms of the different correlation functions with parameters φ = 25
and σ2

0 = 0.6. All variograms stabilise at the horizontal line of σ2
0 as the distance increases,

meaning that values at positions far away from each other are uncorrelated. When the
values are below this line, the correlation is positive. We see that the Damped Cosine
function has a faster decrease in correlation, and that the correlation is negative (variogram
above the horizontal line) for some distances before stabilising at 0 correlation. We further
notice that the Matern correlation function has derivative 0 at ∆s = 0, so the correlation
is larger for small distances than for the others.

For illustration, a test example is constructed. The grid is as in Figure 2.1, and the
mean value of the initial state X0 is set as shown in Figure 2.3. Here, the concentration
values decrease linearly with the Euclidean distance from grid point (se, sn)ᵀ = (11, 11)ᵀ

until they reach 0. The maximum value is 12.
Each of the correlation functions described in Table 2.1 with parameters as in Figure

2.2 are used to construct covariance matrices, and we can sample from each corresponding
distribution. Assume we can sample from a standard Gaussian distribution, Z ∼ N(0, 1),
and let z be a vector containing N independent standard Gaussian samples. To sample
from the multivariate distribution of X0, as given in equation (2.4), the Cholesky decom-
position, Σ0 = LLᵀ, is computed. The lower triangular matrix L is called the Cholesky

7



Chapter 2. Model specifications

Variograms for different correlation functions

Figure 2.2: Variograms for different correlation functions with variance σ2
0 = 0.6 and range φ =

25. The variance is added as a horizontal line and the range as a vertical line in the display.

Test example initial mean

Figure 2.3: Initial mean in test example. The values decrease linearly from position (se, sn)ᵀ =
(11, 11)ᵀ.

8



2.1 Spatial model

Samples from initial state

(a) Exponential correlation function. (b) Matern correlation function.

(c) Damped Cosine correlation function.

Figure 2.4: Samples from initial state of the test example. The samples are identical except use of
correlation function in the covariance matrix.

factorisation of Σ0 and a sample ofX0 is

x0 = µ0 +Lz (2.8)

(Eidsvik et al., 2015). One sample from each distribution is shown in Figure 2.4. The only
difference between these samples is the correlation function. The sample with the Matern
correlation function in Figure 2.4b stands out by being smoother than the others, which is
a result of the 0 derivative at distance 0. The effect of negative correlation in the Damped
Cosine compared to the Exponential function is not easy to spot in these samples. In the
following, the Matern correlation function is used.

2.1.2 Data assimilation

The GP is used in a Bayesian setting. Assume that a measurement from the system is
available at time t. In a Bayesian and spatial setting, a model reflecting the knowledge of
the system prior to obtaining this new data is called the prior distribution or model. The
model is updated to include the new information, and this model is called the posterior
model. In addition, the probability function of the new data (given the underlying system)
is called the likelihood. We will see, in section 2.2.2, that in a spatio-temporal setting, the
prior and posterior distributions for each time step are often called predictive and filtering
distributions. In this setting, the prior and posterior are mostly referred to before and after
the whole process.

9



Chapter 2. Model specifications

Now we consider the case where the state is fixed at time t and the data is obtained
at this time. We have Xt ∼ NN (µt,Σt). The new data is obtained from measuring
one or several points on the grid, corresponding to vector elements d = (d1, . . . , dm)ᵀ,
1 ≤ m ≤ N . That is, the value in sdj ∈ Ds is measured for all j ∈ 1, . . .m. In this
thesis, m = 1 for the most part, meaning that only one position is measured at a time. The
expected value of the measurement is the true system value in grid points sd1 , . . . , sdm . In
addition, there is some measurement error, ε. Let the random vector of measurements be
denoted Y , such that the measurement at time t is

Y t = HtXt + εt, (2.9)

whereHt is a m×N matrix specifying which grid point is measured at time step t. Each
row has a 1 on the vector position of one of the measured values, and the rest are zeros. We
call this the design matrix. Each measurement error εj is Gaussian distributed with mean
zero and standard deviation τ , and they are independent. That is, ε ∼ N(0, τ2Im), where
0 is a vector of only zeros, and Im is the m×m identity matrix. Assume that ε andX are
independent. Further, let Y t |Xt denote a random vector that follows the distribution of
Y t whenXt is given. Since linear combinations of Gaussian distributed random variables
are Gaussian distributed themselves,

Y t |Xt ∼ N(HtXt, τ
2Im). (2.10)

This is the likelihood in the Bayesian framework, and may also be called the data model.
Of course, the real values in the system are unknown. By the formulas for double expecta-
tion and variance (Casella and Berger, 2002), Y t is marginally Gaussian distributed with
mean and covariance matrix

E[Y t] = E[E[Y t |Xt]]

= E[HtXt] = Htµt,
(2.11)

Cov(Y t) = E[Cov(Y t |Xt)] + Cov(E[Y t |Xt])

= E[τ2Im] + Cov(HtXt)

= τ2Im +HtΣtH
ᵀ
t .

(2.12)

We want to take the measured values into account and update the model for the whole
system. That is, we are interested in finding the distribution of Xt |Y t, i.e. that of Xt

given the observed Y t, or the so-called posterior distribution in the Bayesian setting. If
two random vectors have joint distribution[

U
V

]
∼ NNu+Nv

([
µu

µv

]
,

[
A C
Cᵀ B

])
, (2.13)

withA = Cov(U),B = Cov(V ) and C = Cov(X,Y ), the distribution of U |V is

U |V ∼ NNu
(µu +CB−1(v − µv),A−CB−1Cᵀ), (2.14)

10



2.2 Spatio-temporal model

with v the realisation of V ; see equation A.3 in appendix A of Eidsvik et al. (2015). By
matrix computation of

Cov(Xt,Y t) = E [(Xt − µt)(Y t −Htµt)
ᵀ] (2.15)

with Yt = HtXt + ε,
Cov(Xt,Y t) = ΣtH

ᵀ
t . (2.16)

Let the realisation of Y t be yt. Then the distribution ofXt |Y t is

Xt |Y t ∼ NN (µt |yt
,Σt |yt

), (2.17)

µt |yt
= µt + ΣtH

ᵀ
t (τ2Im +HtΣtH

ᵀ
t )−1(yt −Htµt), (2.18)

Σt |yt
= Σt −ΣtH

ᵀ
t (τ2Im +HtΣtH

ᵀ
t )−1HtΣ

ᵀ
t , (2.19)

which is the posterior distribution at time t. Observe that when the data model and the
prior distribution are Gaussian, then so is the posterior distribution.

2.2 Spatio-temporal model

2.2.1 Process model
Now time is introduced as a variable and spatio-temporal GPs considered. A spatio-
temporal stochastic process may be in continuous or discrete time. In this thesis we mostly
consider the discrete case, though some derivations start out in the continuous case. For
discrete or fixed time t, the system is denoted as in equations (2.1) and (2.2), while for an
arbitrary time and space location, denote the state variable X(t, s).

A common model for explaining development over time, it the Autoregressive model
of order 1, AR(1). This is one of the simplest models used in time series theory and is a
Markov process where the state at the next time step only depends on the previous one. The
process is stationary in time, with all state vectors having the same distribution as long as
no data is introduced (Cressie and Wikle, 2011). Let time be discrete, with t = 0, 1, 2, . . . .
If the mean at position s is µs, the AR(1) model is on the form

Xt+1(s)− µs = φ · (Xt(s)− µs) + ε(s). (2.20)

The constant φ is the correlation between Xt+1(s) and Xt(s) and is thus restricted by
|φ| ≤ 1. The εs are zero-mean random variables. They are independent and identically
distributed in time, but correlated in space. We let φ be the same for all time steps and
spatial positions. The state variables can be collected in a vector like for the initial state,
see equation (2.2). We have the initial stateX0 ∼ NN (µ0,Σ0). The spatial AR(1) model
is then

Xt+1 − µ0 = φ(Xt − µ0) + ε. (2.21)

In multivariate time series theory, it is called a vector autoregressive model (Cressie and
Wikle, 2011), and φIN is the propagator matrix. We say that ε is ”white” (uncorrelated)
in time and ”coloured” (correlated) in space. Its covariance matrix is determined by the

11



Chapter 2. Model specifications

fact that all state vectors, X0,X1,X2, . . . are equally distributed, Xt ∼ NN (µ0,Σ0).
We have

E[Xt+1] = µ0 + φ(E[Xt]− µ0) = µ0, (2.22)

Cov(Xt+1) = Σ = φ2Cov(Xt) + Cov(ε)

= φ2Σ0 + Cov(ε)

=⇒ Cov(ε) = (1− φ2)Σ0.

(2.23)

In this thesis, we consider a more complex relationship between consecutive state vec-
tors, but the process is still linear, and has the Markov property in time. The spatio-
temporal process of spreading of a medium in a fluid can be expressed by the advection-
diffusion SPDE (Sigrist et al., 2015b), and the process model is based on this. The equation
is

∂

∂t
X(t, s) = −vᵀ∇X(t, s) +∇ ·D∇X(t, s) + ζX(t, s) + η̃(t, s), (2.24)

with v the drift vector for advection, D the diffusion matrix, ζ ∈ [−1, 0] a damping con-
stant controlling the auto regressive relationship between state vectors in time (Richardson,
2017) and η̃(t, s) is the noise term of the SPDE, and is also called the innovation term. It
is assumed a temporarily white and spatially coloured GP (Sigrist et al., 2015b). All terms
collected to a N-vector gives η̃(t, ·) ∼ NN (0, Q̃t). The covariance matrix is constructed
in the same way as the initial state covariance matrix (equation (2.5)), but the parameters
and correlation function may differ. These depend on the application, and the specifics of
the model used in this thesis are described in chapter 3. One can have additional informa-
tion about the system. This may be a point source for the pollutants or information along
the boundary. This is added as a term R̃(t, s) to the right hand of the SPDE,

∂

∂t
X(t, s) = −vᵀ∇X(t, s) +∇ ·D∇X(t, s) + ζX(t, s) + R̃(t, s) + η̃(t, s), (2.25)

where R̃(t, s) = 0 if we have no additional information in s at time t.
The SPDE in equation (2.25) has been solved in different ways. Sigrist et al. (2015b)

use spectral representation with Fourier terms, and this solution is also implemented as a
package for the statistical software R (Sigrist et al., 2015a). Solutions are fast and accurate,
but stationarity in space is required, which is not a plausible assumption in the application
for Frænfjorden. Another simple approach is to use a method of finite differences, and this
is done in this thesis. Let the spatial component be discretised as before as s = (se, sn)ᵀ

and likewise v = (ve, vn)ᵀ. Then

vᵀ∇X(t, s) = ve
∂

∂se
X(t, s) + vn

∂

∂sn
X(t, s). (2.26)

Further, in this thesis we let the diffusion be isotropic. Then the diffusion matrixD can be
replaced by a constant D, and

∇ ·D∇X(t, s) = D∆X(t, s) = D

(
∂2

∂s2e
X(t, s) +

∂2

∂s2n
X(t, s)

)
. (2.27)
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2.2 Spatio-temporal model

Forward differences are used in time and central differences in space. Let the spatial
grid Ds have resolution dse in east direction and dsn in the north direction. Further, let
the time be discretised with steps of dt. Thus

∂

∂t
X(t, s) ≈ X(t+ dt, s)−X(t, s)

dt
,

∂

∂se
X(t, s) ≈ X(t, s+ (dse, 0)ᵀ)−X(t, s− (dse, 0)ᵀ)

2dse
,

∂

∂sn
X(t, s) ≈ X(t, s+ (0, dsn)ᵀ)−X(t, s− (0, dsn)ᵀ)

2dsn
,

∂2

∂s2e
X(t, s) ≈ X(t, s+ (dse, 0)ᵀ)− 2X(t, s) +X(t, s− (dse, 0)ᵀ)

ds2e
,

∂2

∂s2n
X(t, s) ≈ X(t, s+ (0, dsn)ᵀ)− 2X(t, s) +X(t, s− (0, dsn)ᵀ)

ds2n
.

(2.28)

All inserted in (2.24), we obtain

X(t+ dt, s) = X(t, s) + dtR̃(t, s) + dtη̃(t, s)

+ dt

(
ζ − 2D

ds2e
− 2D

ds2n

)
X(t, s)

+ dt

(
ve

2dse
+

D

ds2e

)
X(t, s− (dse, 0)ᵀ)

+ dt

(
− ve

2dse
+

D

ds2e

)
X(t, s+ (dse, 0)ᵀ)

+ dt

(
vn

2dsn
+

D

ds2n

)
X(t, s− (0, dsn)ᵀ)

+ dt

(
− vn

2dsn
+

D

ds2n

)
X(t, s+ (0, dsn)ᵀ).

(2.29)

It is a usual approach to apply forward differences in time, but Richardson (2017) proposes
to use backward differences, to ensure not having to invert dense matrices in filtering and
posterior sampling. It has also been suggested to let the discretisation in space depend on
the direction of the advection field in a so-called ”upwind scheme”. The central differences
are here used so that it can be used in all advection directions.

Now let us introduce some scaling of the time discretisation, so that time changes can
be denoted t + 1 instead of t + dt. If the time is really {t = t0 + j · dt; j = 0, 1, 2 . . . },
with t0 the time for the initial state, let us refer to the time steps j = 0, 1, 2, . . . . This
variable is henceforth denoted t. In addition, we only consider a finite number of time
steps, t = 0, 1, . . . , T , T ∈ N. Ignoring the boundary for now, the terms of equation
(2.29) can be collected for all spatial positions in the domain to obtain a process model on
the form

Xt+1 = At+1Xt +Rt+1 + ηt+1. (2.30)

Here, Xt is the state N -vector at time step t for all spatial positions and At+1 is the
N × N propagator matrix for time step t + 1 including the information about advection,
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Chapter 2. Model specifications

diffusion and damping from the finite differences. We see that the state at one time step
only depends on the state one time step earlier, so the process is a Markov process in
time. It is possible to let the advection and diffusion vary with time and spatial position:
v = v(t, s) = (ve(t, s), vn(t, s))ᵀ,D = D(t, s). In the general model, we therefore write
At+1, since the propagator matrix may vary with time. Let ηt+1 be the innovation N -
vector for the same time step. We have ηt+1[i] = dt·η̃(t, si). Thus ηt+1 ∼ NN (0,Qt+1),
Qt+1 = dt2Q̃t+1. Further, ηt+1 is independent of Xt. The N-vector Rt+1 is simply
dt · R̃t+1, where R̃t+1 is the collection of all terms R̃(t, s). The parameters v, D, ζ, R
and Q are fixed, but unknown, and must be specified in the context of an application. In
this thesis, we assume that they are all independent of time, as long as the time step length
dt is fixed. Then the process model can be simplified as

Xt+1 = AXt +R+ η. (2.31)

This process model describes the time dynamics of the state vector, and the model is (in
general) not stationary in time. We let the advection or drift field vary in space: v =
v(s) = (ve(s), vn(s))ᵀ, so the elements ofA vary for each row, butA is the same for all
time steps.

In the test example, we let the drift of pollution be in the east direction, with a constant
speed of ve(s) = 0.05 m/s, diffusion constant D = 0.1 m2/s and ζ = −0.0001. The grid
and time scales are set to be similar to the situation in Frænfjorden, which will be clear in
chapter 3. The distance between each grid node is 20.1 m and one time unit is 10 minutes.
We use 1 minute time steps, i.e. dt = 0.1, and let the covariance matrix of η̃ be the same
as the initial state covariance matrix.

When parameters are found so all terms are known in the propagator matrixA, the co-
variance matrixQ and the constant vectorR for all time steps 1, . . . T , the process model
can be used to update the state model as time passes. Assume that Xt ∼ NN (µt,Σt).
Then since Xt is a GP and the model is linear, Xt+1 is also a GP. The mean and covari-
ance matrix are

E[Xt+1] = E[AXt] + E[R] + E[η] = Aµt +R, (2.32)
Cov(Xt+1) = Cov(AXt) + Cov(η) = AΣtA

ᵀ +Q. (2.33)

The latter is correct because of the independence between η andXt. By simple induction,
when the initial state is Gaussian distributed, all statesXt are Gaussian distributed.

The boundary must of course also be considered, in form of a set of boundary condi-
tions (BCs) for the SPDE. There are several approaches for setting the BCs, depending on
what information is available or what kind of physical properties the boundary has. For
the test example, 0 Dirichlet BCs are used. Dirichlet BCs require knowledge of the state
values, and can be seen as a constant source along the boundaries. In the discretisation
for the boundary nodes, the state random variable for the position outside the grid is re-
placed by the known value at the boundary. For the left boundary, X(t, s − (dse, 0)ᵀ) is
outside the grid, and replaced by the known boundary value at this position, say βs. Then
the X(t, s − (dse, 0)ᵀ)-term in equation (2.29) becomes dt( ve

2dse
+ D

ds2e
)βs. This term is

not part of the propagator matrix; all BC terms are collected in the R vector on the right
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2.2 Spatio-temporal model

Test Example Samples

(a) Initial state sample. (b) Sample after 30 steps.

(c) Sample after 60 steps. (d) Sample after 90 steps.

Figure 2.5: Samples from the test example using the advection-diffusion SPDE process model. The
time steps are of 1 minute, the distance between each grid node is approximately 20 m and the
advection is 0.05 m/s in the east direction.

hand side of equation (2.31). With 0 along the boundary, no information is contained in
this vector for the test example. A few snapshots of the process over time is shown in
Figure 2.5, starting from the initial state. Some boundary effects can be seen close to the
right boundary as pollutants move in that direction, but these are small and far from the
pollutants. The scale in Figure 2.5b is slightly changed because of these numerical effects.

Using Dirichlet BCs is convenient, but if the values along the boundary are in fact not
known, the approach will add a sense of false certainty in the values near the boundary.
For the initial state of the test example, the concentration of pollution is 0 or very close to 0
along the boundary. We use Dirichlet BCs with 0 concentration along the boundary for the
whole process. How appropriate this is depends on the movement of the pollutants. Con-
sider a case where the advection is in the north direction. After a while, the concentration
is far from 0 near the boundary, and we get some numerical effect close to the boundary, as
shown in Figure 2.6. When the movement is in the east direction, however, the pollutants
can move quite far without getting close to boundary, and the BCs are more realistic.

Figure 2.7 shows the mean and variances for concentrations in the test example after
some time steps. We see that the mean pollution is influenced by the advection, and moves
east over time. The variance is affected by the BCs. Along the north and south boundary,
the variance very close to the boundary is small, since the BCs state that we know the
values on the boundary. Further, the drift of the pollutants is in the east direction. This
means that setting BCs on the west boundary to 0, equals having incoming 0 concentration
at all times here. After some time, we therefore have close to 0 concentration further
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Dirichlet BCs

Figure 2.6: An example where the advection is in the north direction with 0 Dirichlet BCs. The 0
concentration along the north boundary then becomes unrealistic.

Test example distribution

(a) Mean after 30 steps. (b) Mean after 60 steps.

(c) Variance after 30 steps. (d) Variance after 60 steps.

Figure 2.7: Test example mean and variance after 30 and 60 time steps using the SPDE model.
The mean follows the advection, and the Dirichlet BCs affect the variance along the boundaries, in
particular on the western side of the domain.
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2.2 Spatio-temporal model

Wrapping BCs

Figure 2.8: An example where the advection is in the north direction with wrapping BCs. The pol-
lution that moves out of the domain through the north boundary enters through the south boundary.

into the area, and the variance here is small. Along the right boundary, we get higher
variance due to the numerical effects seen when pollution is about to leave the area, and 0
concentration along the boundary is unrealistic at times. In the rest of the area, the variance
increases from 0.6 initially to 0.76 after 30 steps and 0.91 after 60 steps.

Other BCs may also be considered. One solution that is often used in spatial statistics
is so-called torus or wrapping BCs. Then the domain is assumed wrapped around itself like
a torus, so that the upper and lower boundaries are connected, and likewise for the left and
right boundaries. In this case, the neighbours needed in the finite differences discretisation
are always present, though sometimes on the other side of the domain. The advantage with
this approach is that the model does not require additional information about the boundary.
Rectangular grid wrapped around a torus is also indirectly implied when solving the SPDE
using the fast Fourier transform, as done by Sigrist et al. (2015b). The disadvantage is that
the different parts of the domain are affected by each other. Fluids moving out of the
domain through one boundary, reenters through the opposite, as demonstrated in Figure
2.8 for advection in the north direction. To avoid this problem, the domain should be made
large enough for the real area of interested not to be affected too much. This means that
the SPDE must be solved on a system that is e.g. 4 times bigger than the one really of
interest, which is computer demanding.

If the domain boundary is modelling a solid boundary, like land around the fjord,
setting the normal derivative (derivative orthogonal to the boundary) to 0, will be a good
BC. This is called a Neumann BC. Then no fluid/pollutants can flow out of the domain.
The BC for the eastern boundary in a square domain is

∂

∂se
X(t, s) = 0, (2.34)

for s ∈ Be, with Be the set of grid nodes directly near the eastern boundary. Discretised
by central differences this becomes
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Chapter 2. Model specifications

X(t, s+ (dse, 0)ᵀ)−X(t, s− (dse, 0)ᵀ)

2dse
= 0

=⇒ X(t, s+ (dse, 0)ᵀ) = X(t, s− (dse, 0)ᵀ).

(2.35)

Equation (2.35) can be inserted into equation (2.29) for the eastern boundary nodes, and
similar expressions derived for the other boundaries. If we have a solid boundary, the
advection field should also reflect this by not pointing out of the domain. If not, similar
effects as for the Dirichlet BCs will be present along the boundary. It is also possible to
let the derivative be non-zero, but this again requires additional information. We then get
constants that can be included in the vectorR of equation (2.31), just as for Dirichlet BCs.
It is also possible to have different BCs for different time steps, but this is not considered
in this thesis.

2.2.2 Data assimilation – Kalman filter
Now we have the tools needed for updating the model both as time goes by and as new
information gets available. The set of equations evolving from combining these is called
a Kalman filter, and is derived in this section on the form of those of Cressie and Wikle
(2011) and Särkkä (2013), though some names are changed. First, some new notation is
introduced.

Let Y 1:t be all available data from time step 1 to t and define

µt | t−1 = E[Xt |Y 1:t−1], (2.36)

P t | t−1 = Cov(Xt |Y 1:t−1) = E[(Xt − µt | t−1)(Xt − µt | t−1)ᵀ |Y 1:t−1], (2.37)

and likewise

µt | t = E[Xt |Y 1:t], (2.38)

P t | t = Cov(Xt |Y 1:t) = E[(Xt − µt | t)(Xt − µt | t)ᵀ |Y 1:t]. (2.39)

We have seen that the state vector is always Gaussian distributed, since the processes of
updating the state are always linear in Gaussian distributed random vectors. In the Kalman
filter, updates with respect to time and new data are computed sequentially, and the state
vector is still always Gaussian distributed.

Consider the state at time t, and assume that the distribution of Xt−1 given Y 1:t−1 is
known. We have

Xt |Y 1:t−1 ∼ NN (µt | t−1,P t | t−1), (2.40)

Xt |Y 1:t ∼ NN (µt | t,P t | t). (2.41)

The Kalman filter consists of updating the distribution of Xt in two steps. First, in the
prediction step, the forecasting or predictive distribution of equation (2.40) is obtained.
In this step, the process is updated in time, without adding any new data from time t − 1
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to time t. Thus, the expected value and the covariance matrix are updated according to
equations (2.32) and (2.33). WithXt−1 |Y 1:t−1 ∼ NN (µt−1 | t−1,P t−1 | t−1), we get

µt | t−1 = Aµt−1 | t−1 +R, (2.42)

P t | t−1 = AP t−1 | t−1A
ᵀ +Q. (2.43)

Figure 2.9 shows a drawing of one step prediction and dependencies between the state
vectors and the data. The data needed to obtain the forecasting distribution of Xt is also
indicated in the display.

X0 X1 Xt−1 Xt XT

Y 1 Y t−1 Y t Y T

Figure 2.9: One step prediction in the Kalman filter. Data up to time t− 1 is needed to calculate the
forecasting distribution of Xt, as marked in the display. Arrows indicate dependencies between the
state vectors and obtained data.

The second step, called the filtering step, accounts for new data at time t, and we call
the distribution in equation (2.41) the filtering distribution. The formulas for the mean and
covariance matrix correspond to the ones in equations (2.18) and (2.19) with the predictive
distribution of Xt |Y 1:t−1 as the prior, but are usually written in a slightly different way.
We found the marginal distribution of Y t in equations (2.11) and (2.12), and similarly we
can find that

Y t |Y 1:t−1 ∼ N(Htµt | t−1,St), (2.44)

St = HtP t | t−1H
ᵀ
t + τ2Im. (2.45)

The covariance matrix, St, has dimensions m ×m, where m is the number of measured
values, i.e. the dimension of Y t. Using the new notation and predictive distribution,
equations (2.18) and (2.19) become

µt | t = µt | t−1 + P t | t−1H
ᵀ
tS
−1
t (yt −Htµt | t−1), (2.46)

P t | t = P t | t−1 − P t | t−1H
ᵀ
tS
−1
t HtP

ᵀ
t | t−1. (2.47)

Further, we define the N × m matrix Kt = P t | t−1H
ᵀ
tS
−1
t the Kalman gain and note

that P ᵀ
t | t−1 = P t | t−1 because of covariance symmetry. Then finally the filtering step

equations are
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X0 X1 Xt−1 Xt XT

Y 1 Y t−1 Y t Y T

Figure 2.10: Filtering step in Kalman filter. Data up to time t is needed to calculate the filtering
distribution of Xt, as marked in the display. Arrows indicate dependencies between the state vectors
and obtained data.

µt | t = µt | t−1 +Kt(yt −Htµt | t−1), (2.48)

P t | t = (IN −KtHt)P t | t−1. (2.49)

The dependencies are demonstrated in Figure 2.10. It is also possible to obtain these
equations by first defining the filtering mean as the predictive mean weighted by the new
measurement, as in equation (2.48). The weight, the Kalman gain, can then be found using
least squares method. The result is the same either way. In this thesis, the dimension of
Y t is usually 1 for all t, and the covariance matrix St is then also of dimensions 1× 1.

Figure 2.11 shows the effect on the distribution of obtaining data. It is mainly visible
in the variance displays. There is some noise in the measurement, but the variance is
very small in the area of measurements just after the data is obtained; around 0.01 in
Figure 2.11d. The variance is gradually increased away from the measured area. As time
passes, the distribution is forecasted and the uncertainty is increases. The variances in the
measured locations after forecasting 30 new steps are around 0.2-0.4. The area of low
variance is also moved due to the advection. The measured locations are marked in Figure
2.11c.

If we were to use the AR(1) model for developing the state model over time, the
Kalman filter is slightly different. As long as no data is ever introduced, the state distribu-
tion is the same for every time step. When introducing data, the distribution is changed ac-
cording to the Kalman filtering. The filtering equations are still valid as given in equations
(2.48) and (2.49), but the forecasting equations are different. The forecasting distribution
is characterised by

E[Xt |Y 1:t−1] = µt | t−1 = (1− φ)µ0 + φµt−1 | t−1, (2.50)

Cov(Xt |Y 1:t−1) = P t | t−1 = φ2P t−1 | t−1 + (1− φ2)Σ0. (2.51)
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2.2 Spatio-temporal model

Test example: Kalman filter

(a) Mean forecasted 30 steps. (b) Variance forecasted 30 steps.

(c) Filtered mean at 30 steps. Data is ob-
tained from 30 locations, marked with small
grey crosses.

(d) Filtered variance at 30 steps.

(e) Mean after forecasting 30 more steps. (f) Variance after forecasting 30 more steps.

Figure 2.11: Demonstration of the distribution mean and variances when the model is updated in
time and due to new data. The equations specifying the mean and covariance matrices are called a
Kalman filter.
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Chapter 3

Frænfjorden model

The GP model described in chapter 2 is now applied to a case of concentration of pol-
lutants from mining waste in Frænfjorden. The mining company Omya Hustadmarmor
AS produces calcium carbonate (lime) and releases mining deposits into the fjord. The
permitted deposition area is shown by the orange dashed line in Figure 3.1. The transport
lines for the tailings from the production site, as used in 2018, are marked in black in the
same display.

Outside the deposition area, there is an upper limit to the permitted turbidity, or particle
concentration. Monitoring stations are placed around the area to control the deposits and
the environmental impacts (Glette, 2019). The research organisation SINTEF and NTNU
have an ongoing project where adaptive AUV sampling is tested in Frænfjorden, and more
field work in the area is expected. Berget et al. (2018) build a GP model for Frænfjorden
and simulate sampling from an AUV, and identifying ESs would be particularly useful
near the limit of the permitted area. A picture of the AUV used in the work by NTNU in
Frænfjorden is shown in Figure 3.2. It is possible to use many different sensors with the
AUV, but in this thesis, only the concentration of contaminants is of interest.

In this chapter, parameters for the initial state model and SPDE process model for
Frænfjorden are estimated based on model data from the fjord.

3.1 Parameter estimation
Data from two SINTEF ocean models is used to build a model for Frænfjorden. Data from
these models is also used by by Berget et al. (2018). Drift data is from the numerical ocean
model SINMOD (Slagstad and McClimans, 2005) at 01.04.2013 and 02.04.2013. Pollu-
tion concentration data is provided by the model DREAM (Dose-related Risk and Effect
Assessment Model) from 26.03.2013 to 04.04.2013. Among others, DREAM calculates
the transport, exposure, dose and effects of chemicals in marine environments. The model
is 3-dimensional and time-dependent (Rye et al., 2008), and the ocean dynamics in this
model is delivered by SINMOD (Berget et al., 2018). The drift data is used as the advec-
tion field in the SPDE, while the pollution concentration is used to build an initial model
and estimate the covariance matrix for the innovation term in the process model.
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Figure 3.1: Area for tailing placements from Omya Hustadmarmor AS in Frænfjorden marked by
the orange dashed line. Black lines show transport of tailings. Figure taken from Glette (2019).

Figure 3.2: The AUV used in Frænfjorden work. Picture taken from AUR lab (nd).
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Area of research

(a) 2 m below fjord surface. (b) 22 m below fjord surface.

Figure 3.3: Frænfjorden at 2 and 22 m below the surface. Grey area indicates land, and the fjord is
noticeably slimmer at depth 22 m than at the surface. The blue area indicates the area studied in this
thesis. This area is in the inner part of the fjord, close to the location of Omya Hustadmarmor AS
and outlet positions.

The outlets of pollutants happen at depth approximately 20 m (Glette, 2019), and a
2-dimensional grid is made by considering only depth 22 m of the DREAM data. For
the convenience of having a regular, rectangular spatial grid, we only consider a small
area in the inner part of the fjord, close to outlet positions and Omya Hustadmarmor AS.
The area is shown in Figure 3.3 and displays the fjord just below the surface and at depth
22 m. For the latter, the fjord is quite slim, and the considered area is about the same
width as the fjord in south-north direction. By choosing this small area, there is water
and potentially pollution in every grid node. The grid is the same as shown for the test
example in Figure 2.1, with Ne = 44 grid nodes in the east-west direction and Nn = 22
nodes in the north-south direction. The nodes are in the DREAM data given as coordinates
of longitude and latitude. By the calculator from National Geospatial-Intelligence agency
(Length of degree, nd), at latitude 62.845 degrees, one degree of latitude equals 111459 m
and one degree of longitude equals 50941 m. This means there are approximately 20.1 m
between each grid node in both directions.

The drift varies in both space and time. We therefore consider some shorter time pe-
riods, and assume that the drift is constant in time. Assuming that tidal streams are the
main source of difference in the advection field and concentration flow, the data is split
into periods starting at high tides, so that we have 18 periods for concentration and 4 for
advection. It is found that the first period of concentration differs a lot from the other
periods, especially in correlation, so this period is disregarded, leaving 17 relevant periods
of concentration data. We assume the AUV is in the water sampling for 30 minutes, and
for estimating parameters it is decided to consider data for 1-hour periods starting from a
fixed time in the tide cycle. Qualitative study of some of the high to low tide periods of
DREAM concentration leads to the choice of considering the hour starting from 5 hours
after high tide, that is, approximately the last hour before low tide. In this period, in-
spection of concentration indicates that the drift is approximately constant. There are also
some larger changes in the concentration field which might make the analysis interesting.
The DREAM data has temporal resolution of 10 minutes, so we have 7 realisations of
DREAM concentration data for each of the 17 1-hour periods. The drift data has one real-
isation every 20 minutes, so for this we have 4 realisations for each of 4 time periods. We
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DREAM data: concentration

(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Concentrations from different time series at 5 hours after high tides. A source position
with particularly high concentration of pollution is marked by a black circle.

assume realisations from different time periods are independent, since the time between
the periods are as much as approximately 12 hours.

Figure 3.4 shows some realisations of concentration from DREAM at 5 hours after
high tide, and Figure 3.5 shows the same realisations, but with concentrations on log scale
(log(concentration + 1)). We use concentration + 1 here to avoid getting −∞ values
where the concentration is 0. There is a source position, or a deposition position, where
the concentration is especially high. This marked by a black circle in the displays. The
concentrations are given in parts per billion (ppb).

We see that the concentrations in Figure 3.4 decrease very fast from the source, and
consider the concentration on log scale for the rest of the thesis. DREAM data is first used
to build an initial state model for Frænfjorden, and then further to estimate parameters
needed in the SPDE process model, as given in equation (2.25). We let the DREAM data
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DREAM data: log concentration

(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Dream data at 5 hours past high tides. A source position with particularly high concen-
tration of pollution is marked by a black circle. The values are on the form (log(concentration + 1),
and these are used to build the initial state model for Frænfjorden.
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represent exact observations of the concentration in the domain. To use the notation of
chapter 2, we assume we have knowledge of a set of Xs, not Y s. This type of data is
easier to use for parameter estimation.

3.1.1 Initial state model
To build the initial state model, we consider the DREAM data on log scale at five hours
after each high tide, some of which as shown in Figure 3.5. We already know that the
initial state should be a GP, and need to determine the mean vector and covariance matrix.
The initial mean is taken to be the mean for each position over the 17 realisations, and
is shown in Figure 3.6. The mean varies from position to position, so the model is not
stationary in space.

Figure 3.7 shows the empirical standard deviation of concentration for each position.
We see that even though the concentrations vary somewhat through the realisations, the
standard deviation is typically below 1. For the initial state model, we want a covariance
matrix on the form of equation (2.5). Thus we need to decide on one marginal variance
σ2
0 and a correlation function with range parameter. We do this by fitting theoretical vari-

ograms to empirical variograms. Figure 3.8 shows empirical variograms for the 17 initial
state realisations subtracted the mean. They mostly have approximately the same size and
shape. The mean variogram is used to fit the parameters of the covariance matrix.

At large distances, the empirical variograms differ a bit, due to little data at these
distances, but the mean variogram does not have a dip in the end indicating negative
correlation before stabilising at 0 correlation. Thus, the regular Matern or Exponential
correlation functions seem better choices than the Damped Cosine. Figure 3.9 displays
the same mean empirical variogram together with variograms for Matern and Exponential
correlation functions from Table 2.1. The range parameter, φ, and noise σ2

0 are marked as
a vertical and a horizontal black line, respectively. These are set to fit the empirical vari-
ogram as well as possible. Both theoretical variograms actually match the empirical one
very well. We make a covariance matrix for each correlation function and draw a sample
as in equation (2.8) from the corresponding initial state models. These are shown in Figure
3.10. We see that the sample with Matern correlation is a lot smoother than the sample
with Exponential correlation and also more similar to the DREAM data from Figure 3.5.
Though the variograms do not match completely, the essence of the DREAM data seems
to be captured. Thus, the initial state covariance matrix is given by equation (2.5), inserted
σ2
0 = 0.6 log(ppb)2 and the Matern correlation function from Table 2.1 with φ = 500 m.

3.1.2 SPDE parameters
Now the initial state distribution is determined, and the parameters for the SPDE process
model are to be estimated. The parameters v and D are provided by SINMOD, and do not
need estimation. The unknown parameters from equation (2.25) are the damping constant
ζ, any information in the constant vector R̃ and the covariance matrix of η̃, Q̃.

First we consider the advection parameter v and diffusion constant D, as given by
SINMOD. We let the advection vary in space but be constant in time. The mean and
standard deviation of drift data across all 4 periods between 5 and 6 hours after high tide
for each grid position are shown in Figure 3.11 for both directions. The displays show
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Mean initial log concentration

Figure 3.6: Mean log concentration of pollution in Frænfjorden at 5 hours past high tide. The mean
is found from 17 realisations of DREAM data. The position marked by a black circle has particularly
high initial concentration.

Empirical standard deviation

Figure 3.7: Empirical standard deviation of log concentration for each grid position over the 17
realisations of DREAM data for initial state.
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Empirical variograms

Figure 3.8: Empirical variograms for the 17 realisations of DREAM concentrations on log scale for
initial state model. The mean variogram is marked by a dashed black line.

Fitted variograms

Figure 3.9: Mean empirical variogram together with variograms of the Matern and Exponential
correlation functions. The range parameter, φ = 500 m, is marked by a vertical line, and variance
σ2
0 = 0.6 log(ppb)2 by a horizontal line.
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Samples with different covariance functions

(a) Sample with Matern correlation.

(b) Sample with Exponential correlation.

Figure 3.10: Samples from the initial state distribution for Frænfjorden using two different correla-
tion functions. The sample with Matern correlation is a lot smoother than the one with Exponential
correlation.

31



Chapter 3. Frænfjorden model

Mean drift and standard deviation

(a) Mean drift in the east direction. (b) Standard deviation of drift in the east direc-
tion.

(c) Mean drift in the north direction. (d) Standard deviation of drift in the north di-
rection.

Figure 3.11: Mean and standard deviation for advection over 4 1-hour periods.

that the standard deviations are quite large in some areas, meaning that the drift is actually
changing quite a bit also within this 1-hour period. It seems that assuming constant drift
field is not a very realistic assumption, as the field varies also for smaller periods. The
variation is seen both within one period and between different periods. However, if we let
the field vary with time, the propagator matrixA from equation (2.31) must be recalculated
for each change in the advection, which means a lot more computations. We stick with the
assumption of time independent parameters in this thesis. The means in Figure 3.11 are
used as the fixed advection field in the model.

Figure 3.12 shows the directions of the average advection field. The lengths of the
arrows indicate the relative speed of the drift. The drift in the east direction is positive
for all positions, so the pollutants flow towards the east, though in different speeds for
different positions in the domain. In the north direction, the pollution flows south for some
positions and north for others. In general, pollutants located to the west in the domain drift
towards the south. In the middle of the domain, the advection speed is low and only in the
east direction, while the drift is towards the north-east in the eastern part of the domain.

The diffusion constant, D, is also given as 0.1 m2/s. Before using the drift field and
diffusion constant, we must scale them to fit the time and space units used in the DREAM
data. As earlier stated, we have DREAM realisations every 10 minute (600 s), and the
distance between each grid node is 20.1 m. In simulation, we use 1 minute time steps, i.e.
dt = 0.1.

Now consider the parameters that are not already given. From Figure 3.5, we see that
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Drift directions

Figure 3.12: Arrows indicating the drift direction in each grid position and the relative drift speed.

there is incoming pollution from the left/west, and it varies a bit how far it has come at
the initial time 5 hours after high tide. The source position in the area, though with very
high concentration itself, does not seem to supply the area with more pollutants. The
contaminants seem to be coming from an outlet to the west of the domain. Therefore,
we do not add a point source to R, but rather account for pollution drifting into the area
through BCs. Only information from the BCs are then contained inR.

As we have seen, we use only a small area of the fjord where there is no land, so that
concentration data is found in every grid point. The advantage of this is that we get a
regular grid, and the propagator matrix from section 2.2.1 is easier to make. However,
choosing BCs is not simple. Assuming 0 concentration along the boundary does not look
realistic from the data. Using other Dirichlet BCs or non-zero Neumann BCs require
information about the area that is not available. Dirichlet BCs are chosen for the western
boundary where pollutants are coming into the area. Dirichlet BCs should reflect absolute
knowledge about the concentration in this area. This is of course not true in practice. In the
model, we assume that the concentrations along the western boundary are constant in time
and equal the initial mean, as this is our best guess. On the other boundaries, 0 Neumann
BCs are applied, meaning that there can be no flow out of these boundaries. We can see
in the drift direction plot, Figure 3.12, that there is actually flow across the boundaries,
but the largest concentration values are located far from the boundary, and we assume
the effect will be small. The southern and northern boundaries of the domain are quite
close to fjord boundaries, as seen in Figure 3.3b, so here the assumptions should be quite
good. Finding the ideal BCs is not the focus in this thesis, but some other BCs are also
tried. Wrapping BCs are disregarded because of the large domain needed, as explained
in section 2.2.1. Various Dirichlet BCs on all boundaries are tested, as well as non-zero
Neumann BCs where the normal derivatives along the boundaries are set equal the drift in
that direction. In the end, the combination of Dirichlet and 0 Neumann BCs are considered
the most convenient choice for the work in this thesis.

Figure 3.13 shows the development of one DREAM data series within the 1-hour pe-
riod. The corresponding initial state is found in Figure 3.5d. The high concentrated pol-
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lution seems to move towards south-east throughout the hour, just as seen in Figure 3.12.
There does not seem to be any damping in the DREAM data, so ideally we would set
ζ = 0. However, for stability reasons (Richardson, 2017), there should be a slight damp-
ing. Therefore, we set ζ = −0.0001 in simulations. This small damping is not included
when estimating the innovation term covariance.

For simplicity, we assume that the covariance matrix Q̃ has the same correlation struc-
ture as the covariance matrix for the initial state, i.e. that it follows a Matern correlation
function. To find the range and variance for Q̃, we take a similar approach as with the
initial state, and use empirical variograms to fit the Matern correlation function. We still
disregard the first series, and thus have 17 1-hour series consisting in 7 realisations in each.

Let xt and xt+1 be consecutive realisations of DREAM data. The innovation term
should explain why xt+1 differs from the prediction x̂t+1 = Axt + R from equation
(2.31). Since we have set the source constant to 0, R only consists of constants from the
Dirichlet BCs. There are no unknown parameters in the predictions. From the DREAM
data, we can find the residuals xt+1 − (Axt +R). Figure 3.14 shows the previous data
xt (Figure 3.14a), the prediction x̂t+1 (Figure 3.14c), true xt+1 (Figure 3.14b) and the
corresponding residuals (Figure 3.14d) for one step in the series of DREAM data from
Figure 3.13. We see that the error in the prediction is mainly around the front of the highly
concentrated pollution, and for higher concentrations, the size of the error tends also to be
bigger. The Dirichlet BCs on the left boundary will never be completely correct using the
initial state expected values, and the residuals are therefore also larger along this boundary.
The residuals should be explained by the innovation term if the process follows the SPDE
model. It seems that the innovation term variance should be larger for positions of high
concentration than for positions of low concentration. In this thesis, however, the variance
is considered the same across the whole grid.

We use the residuals to make empirical variograms. The variograms for the realisations
within one time series tend to be similar, as Figure 3.15 demonstrates. Further, the mean
variograms for each series are displayed in Figure 3.16 together with the overall mean in
dotted line. We see that for large distances the variograms blow up. However, there is not
much data this far apart, so the variograms are not reliable for large distances. Vertical lines
have been added at distance 500 m, and we consider only distances smaller than this. Like
for the initial state, the variograms are following approximately the same shape, and we
therefore assume the mean variogram represents the system, and use this to fit the param-
eters of the Matern correlation function. The result is found in Figure 3.17. Considering
only the smaller distances before the empirical variogram blows up, the range and variance
are both quite small. The parameters are set to φ = 120 m and σ2 = 0.1 log(ppb)2. It
looks like the Matern-based variogram does not fit the data perfectly, and even that the
empirical variogram has a dip that might suggest negative correlation for some distances.
However, the scale on the y-axis is very small, so the difference is minimal. We have seen
that the Matern correlation function results in smoother samples than the Exponential and
the Damped Cosine, fitting the general appearance in the DREAM data. It could be con-
sidered if the same feature does not have to hold for the innovation term. However, in this
thesis, the Matern correlation function is kept and used in simulations.

Since the movement of the DREAM data is based on SINMOD, and we use the drift
field from SINMOD, it might not be very surprising that the noise in the DREAM data
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DREAM data: log concentration within one hour

(a) (b)

(c) (d)

(e) (f)

Figure 3.13: The concentration development of one series of DREAM data, following the displays
in alphabetical order. The series starts at 10 minutes after the time of initial state. Incoming pollution
from the western side moves in south-east direction.
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DREAM data, prediction and residuals

(a) Previous DREAM data. (b) True DREAM data.

(c) Prediction. (d) Residuals.

Figure 3.14: One demonstration of prediction and residuals when using the SPDE model to predict
concentration for the next step. The DREAM data for time t is used for the prediction, and the
prediction is compared to the true DREAM data for time t + 1. The residuals should be due to the
innovation term if the data follows the SPDE model.

Empirical variograms within a series

(a) (b)

Figure 3.15: Empirical variograms for two series of DREAM data. The shapes are very similar
within each series. We only consider the distances to the left of the vertical line, as the variograms
tend to blow up for large distances, and there is nearly no data for such distances.
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Mean empirical variograms

Figure 3.16: Mean empirical variograms for the 17 series of DREAM log concentration. We only
consider the distances to the left of the vertical line.

is small. In this setting when DREAM is considered the ”truth”, we therefore get small
variance for the innovation term. In practice, this might be a bit larger. To help ensure
numerical stability and positive definiteness, we add a small nugget effect of 0.012 to the
innovation term variances in simulations.

Finally, all necessary parameters are set to make a model for the pollution development
in Frænfjorden. In chapter 5, this model will be used in a simulation study concerning data
collected by AUVs.

3.2 Model variations

Some variations on the Frænfjorden model will also be used in simulations. Parameter
values that could be possible for Frænfjorden, but are on the outer extremes of what one
can expect, are considered. The reason is to check the model sensitivity in how best to
obtain measurements in the area. It is seen that the advection data from SINMOD is not
constant, so the advection speed may be both higher and lower than what is considered in
the preceding section. Therefore, this seems the most pressing model parameter to test.
We focus on varying the amplitude of the speed, and keep the direction field the same, for
best being able to compare the different scenarios.

Let the drift velocity be ve in the east direction and vn in the north direction, as before.
The advection for the Frænfjorden base case, as already found, is determined as the mean
advection in each direction. For variation, the absolute speed (

√
v2e + v2n) is computed

for each position and all realisations of SINMOD data. We compute the mean speed for
each position over the relevant realisations, as well as the empirical variance. Then we
can choose ”extreme” values that are still in the range of what is possible based on the
SINMOD data. We use the speed of the base case ±3 standard deviations. The standard
deviations are different in each position, i.e. we scale the speed in each position differ-
ently, but the direction in each position stays the same. The direction in each position is
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Residuals variogram

Figure 3.17: Mean empirical variogram over the 17 time series together with the variogram for the
fitted Matern correlation function. The variance, σ2 = 0.1 log(ppb)2 is marked by a horizontal line,
and the range, φ = 120 m, by a vertical line.

ensured by calculating direction (angle) based on the drift from the base case. Subtract-
ing 3 standard deviations gives two slight negative numbers (−0.0475 and −0.0039), and
since the speed must be non-negative, we simply truncate these to 0. Because of the small
values (in amplitude), this is not noticeable in practice. The mean speed is 0.051556 m/s
for the Frænfjorden base case, 0.07307 m/s for the high advection case and 0.03004 m/s
for the low advection case.

For further comparison, an AR(1) model for Frænfjorden will also be used. The model
is given in equation (2.21), and given the initial distribution, only the parameter φ is un-
known. The parameter is estimated by finding the sample correlation between consecutive
realisations of DREAM data for each grid position. We have K = 17 assumed indepen-
dent time series, and T = 7 realisations in each time series. As mentioned, we let the
DREAM data be considered the complete accurate concentrations for the respective times,
i.e. we have realisations x(k)

t for times t = 1, . . . T and time series k = 1, . . .K. Further,
let xti be the average concentration in grid node si at time t over the K time series. We
can then calculate the sample correlation between the concentration for some times t and
t+ 1 for position si as

Corr (Xt(si), Xt+1(si)) ≈

∑K
k=1

(
x
(k)
t (si)− xti

)(
x
(k)
t+1(si)− xt+1i

)
√∑K

k=1

(
x
(k)
t (si)− xti

)2∑K
k=1

(
x
(k)
t+1(si)− xt+1i

)2 .
We estimate φ as the mean correlation over all positions and times, which gives φ1 =

0.9522. We call this φ1 because it corresponds to the correlation between concentration
10 minutes apart. As we will use 1-minute intervals in simulations, we need some scal-
ing. Assume the relation φ = exp{−dt/θ} for some constant scale θ. Since dt = 1
corresponds to 10 minutes, we have φ1 = exp{−1/θ} and can find θ = −1/φ1. Finally,
φ = exp{−0.1/θ} = 0.9951 is obtained for use in simulations. We see that the correla-
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tion is very large with this data, but it is hard to determine whether it is too large. It might
simply be that the AR(1) model, which assumes stationarity, is not a good model for the
data.
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Chapter 4

Method

The work in this thesis is on sensing of the concentration of pollution in Frænfjorden
using AUVs. The aim is to choose locations from where the AUV obtains concentration
measurements to get the best possible picture of where the concentration is above some
critical limit. To do this, we need some tools for mapping where the concentration is below
and above the limit. This is done in the first section of this chapter.

Further, we need some decision strategies for the movements of the AUV. The focus
is mainly on adaptive decision strategies, and one main criterion is derived in this chapter.
The ideas of this chapter are to be used together with the model for Frænfjorden from
chapter 3 in a simulation study. Therefore, finally, the ideas of Monte Carlo simulation are
presented.

4.1 Excursion sets and probabilities

ESs tell where the values in a system are above some critical limit. The aim in this thesis
is to be able to make a good prediction of the ES of the system based on measurements.
Identifying ESs is important in several environmental applications (Angulo and Madrid,
2010; French and Sain, 2013). Sommerfeld et al. (2018) have temperature change as ap-
plication, and French and Sain (2013) explore both temperature and extreme precipitation.
In the spatial setting, there exists a lot of work on ESs, on providing conservative esti-
mates (Azzimonti et al., 2015) and credible regions (French and Hoeting, 2016). Bolin
and Lindgren (2015) work in a Bayesian Gaussian setting, using properties of the poste-
rior distribution, and they have also developed an R package for probabilistic ESs (Bolin
and Lindgren, 2018). Let l be the critical limit of the system. A random ES over Ds can
be defined as

ESrandom = {si ∈ Ds : X(si) > l}, (4.1)

withX(si) the random variable for the state in position si. In this thesis, we are interested
in predicting such ESs. Considering the ESs fixed, with the true value at position si given
as x(si), we have:
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ES and EP

(a) True EST . (b) EP for time T = 30 when no data is ob-
tained, i.e. EP(0)

T .

Figure 4.1: ES and EP for time T = 30 and concentration limit 3.

ESfixed = {si ∈ Ds : x(si) > l}. (4.2)

In a system changing over time, different definitions of the ES are used. There exists
work where the ES is defined very general, e.g. by Angulo and Madrid (2010) and Adler
(2000), so that the ES is higher dimensional when adding temporal dependencies. If the
interest is the ES at some fixed time, say after the final time step T , we can use a fixed-time
ES:

EST = {si ∈ Ds : xT (si) > l}. (4.3)

This can be useful if some decision is to be made at time step T , so that the situation at
that point in time is particularly important. A similar definition is used by French and Sain
(2013), and this ES is also the focus in this thesis.

Another possibility is to map where the system value is ever above the critical limit.
Discretised in time, this means that a position is part of the ES if the system value is above
l at any time step 0, 1, . . . , T . Call this the maximal ES,

ESmax = {si ∈ Ds : max
t=0,...,T

xt(si) > l}. (4.4)

This approach is useful if we want to map the total area where values may be high, or
if there are some positions that are especially sensitive to high values, and is somewhat
similar to the motivation of Adler (2000). However, extreme value statistics is a whole
field in itself, and computations with this ES is outside the scope of this thesis.
An ES is usually represented by a N -vector with ones for all si with x(si) > l and zeros
otherwise. We may also write

ES(si) =

{
1 x(si) > l,

0 otherwise.
(4.5)

For the sample from the test example at time T = 30 in Figure 2.5b, the EST is shown in
Figure 4.1a.

Since the true systems are not available in practice, it is useful to define the excursion
probability (EP), which is the probability of the value in a position to be above the critical
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limit. Let EP(t′′)
t′ (si) be this probability for the state value in grid location si at time t′

given measurements up to time step t′′. That is,

EP(t′′)
t′ (si) = P (Xt′(si) > l |Y 1:t′′)

= 1− Φ

(
l − E[Xt′(si) |Y 1:t′′ ]√

Var(Xt′(si) |Y 1:t′′)

)
,

(4.6)

where Φ(·) is the univariate standard Gaussian cumulative distribution function (CDF),
as shown in Figure 4.2 and P (·) denotes probability. We always have t′ ≥ t′′, and the

Figure 4.2: Univariate standard Gaussian CDF. The symmetry 1−Φ(u) = Φ(−u) is demonstrated
by red arrows.

dependencies are as shown in Figure 2.9 if we insert t′ = t, t′′ = t − 1. The set of
these probabilities for all si ∈ Ds is denoted EP(t′′)

t′ . EPs will be used to predict ESs, by
using a cutoff for classification at EP(T )

T = 0.5. That is, if EP(T )
T (si) ≥ 0.5, we predict

ÊST (si) = 1. In Figure 4.1b, EP(0)
T is shown for the test example sample at time T = 30

in Figure 2.5b.

4.2 Decision-making strategies
Let a path denote the set of grid points that measurements are obtained from, sorted in the
order they are visited in. In this thesis, the distances between consecutive grid nodes in the
path are approximately equal, assuming the AUV travels at approximately constant speed
and obtains measurements at uniform time intervals. From one position, the AUV can
move in any direction, though not out of the domain. Consider the domain of Frænfjorden
and assume the AUV moves 2.8-3.2 grid node distances, 56-64 m, in the time interval
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between each measurement. Then from a position away from the domain boundaries, 16
positions can be reached for the next measurement, all located on an approximate circle
around the current position. The grid and positions are shown in Figure 4.3. The number
of possible positions is smaller close to the boundary.

Grid

Figure 4.3: Grid showing the possible positions for an AUV to move. The current position is marked
by a triangle, and the positions to consider are marked with circles.

Deciding where the AUV should move, depends on the final aim of the process, and
decisions in one step affect the possible decisions and outcome in future steps. In general,
all possible steps of the future must be taken into account to find the overall optimal solu-
tion in sequential decision making. This is not feasible in practice, as all possibilities grow
exponentially for each step. The diagram of Figure 4.4 demonstrates this for three steps
forward in time when the number of possible positions in each step is 2. In the situation
of Figure 4.3, where there are 16 possible positions, the number of combinations grows
extremely fast. It is therefore common to use greedy, or myopic, strategies, where the next
position is chosen as though it is the last step. Only one step forward in Figure 4.4 is then
seen, as though the graph is cut after time t+ 1.

In the decision strategy, some sort of criterion or objective function is needed to eval-
uate the possible decisions. Different types of objective functions have been studied for
assessing the quality of obtaining different information, the value of information, as called
by Bhattacharjya et al. (2013) and Eidsvik et al. (2015). In this thesis, the value of letting
the AUV visit one position compared to another needs assessment. Fossum et al. (2018)
use a combination of variance reduction and temperature gradient intensity as objective
function for deciding where to send AUVs. The aim is often to reduce uncertainty of
some sort (Azzimonti et al., 2015; Bhattacharjya et al., 2013; Chevalier et al., 2013), and
Bect et al. (2012) suggest criteria for minimising both the variance and the probability
of misclassification with respect to the ES. Chevalier et al. (2013) later use the expected
variance reduction of EP as objective function. The focus in this thesis is on reducing the
probability of misclassification.

In the following section, a new myopic decision criterion based on the expected mean
misclassification probability (EMMP) is derived. Using the EMMP as decision criterion,
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Sequential decision making

t t+ 1 t+ 2 t+ 3

Figure 4.4: Number of possible decisions increases exponentially for each increased number of
future steps to consider. This diagram shows the development when the number of positions to
consider in each step is 2 and at 3 steps forward in time the number of possible combinations is 8,
i.e. the number of nodes at position t+ 3.

the path can be made adaptively as the measurements are obtained. When data at one
position is obtained, the EMMP for all possible next positions should be computed, and
the one with the lowest EMMP chosen. The chosen positions become part of the path. This
procedure is repeated until some stopping criterion is reached. In this thesis, the focus is
on time based operations, meaning that the operation is stopped after some fixed time. The
EMMP criterion for adaptive sampling is the main strategy in this thesis, but a few others
are also considered.

One simple adaptive approach is to choose the position with the current EPt−1t (equa-
tion (4.6)) closest to 0.5, so that data is obtained from the position with the highest mis-
classification probability at time t given all data up to time t− 1, Y 1:t−1. The most naive
adaptive strategy is to choose positions at random. This makes out a good reference case
for comparison, as all strategy should at least be better than randomly drawing a position
among the possibilities for each step. It is also possible to choose all positions before any
measurements are obtained. Some such predetermined paths are made to compare with
the adaptive ones. In a later section in this chapter, a hybrid criterion partly based on the
EMMP criterion is also discussed.

4.2.1 Expected mean misclassification probability
It is desired to obtain a state model that predicts the ES at time step T as well as possible.
Optimally, we would want to choose measurement positions so that the EP(T )

T is the best
possible approximation of the of the EST . A criterion for where to draw measurements
based on the probability of misclassification is now derived. In chapter 2, the number of
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new data points at time t is m, i.e. the data model is given for the random vector Y t. This
notation would also be valid in the following derivation. However, the decision strategy is
to be used in adaptive decision making, and in this thesis only one position will be chosen
for each time step. Therefore, m = 1 in the following, and the data is given by the random
variable Y . Further, the decision is made time step by time step, and the time is fixed
for one set of calculations. To simplify notations somewhat, the time subscripts are not
included during derivation.

Given some state vector X = (X(s1), . . . X(sN ))ᵀ, one could predict an ES based
on the EP for X . Assume classification cutoff at 0.5,we want to push the EPs towards 0
or 1 to reduce the probability of misclassification. We call X the target state vector if it
is used to predict ESs in this way, and its distribution the target distribution. Let the grid
node in which to obtain the next measurement be identified by d, i.e. the measurement
is obtained in position sd. The random variable for data in sd is denoted Yd and one
realisation of Yd is yd. We are interested in the distribution ofX given Yd. More specific,
we want to choose d such that P (X(si) > l |Yd) is as close as possible to 0 or 1 for
all si ∈ Ds. Consider min{1 − P (X(si) > l |Yd), P (X(si) > l |Yd)}. This is the
probability of misclassification in grid node si at cutoff 0.5. From this we can define the
mean misclassification probability (MMP) for the ES with the target distribution ofX ,

MMPyd =
1

N

N∑
i=1

min{1− P (X(si) > l |Yd), P (X(si) > l |Yd)}. (4.7)

As before, let X |Yd denote the random vector following the distribution of X given
Yd. Assume X |Yd ∼ NN (µx | yd ,Σx | yd) with µx | yd = (µx | yd1, . . . µx | ydN )ᵀ and
diag(Σx | yd) = (σ2

x | yd1, . . . σ
2
x | ydN )ᵀ. Then

MMPyd =
1

N

N∑
i=1

min

{
Φ

(
l − µx | ydi
σx | ydi

)
, 1− Φ

(
l − µx | ydi
σx | ydi

)}

=
1

N

N∑
i=1

MPydi,

(4.8)

where MPydi is the misclassification probability in grid node si if one measures the value
yd in position sd.

We want to choose d such that the MMP is as small as possible. However, we can-
not evaluate the MMP, since the data at position sd, yd, is not available at the decision
time. Instead, we calculate the expected MMP, EMMP, over all possible values Yd. Then
different positions can be compared based on the expected value. For a fixed d, we need

EMMPd = EYd
[MMPyd ] =

1

N

N∑
i=1

EYd
[MPydi] =

1

N

N∑
i=1

∫
yd

MPydip(yd)dyd, (4.9)

with p(yd) the probability density function (PDF) of Yd. Since we only consider obtaining
new data in one position per time step, the integral is one-dimensional. Nevertheless, some
observations and simplifications are convenient.
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First, define a new univariate variable for grid point si as follows:

Udi =
l − µx | ydi
σx | ydi

. (4.10)

To calculate the expected value and variance of Udi, the distribution of X is needed. We
will see, however, when considering specific target states, that σx | ydi really only depends
on position sd, not the value yd. Further, µx | ydi is linear in Yd. With d fixed, we then have

E[Udi] = µudi
=
l − E[µx | ydi]

σx | ydi
, (4.11)

Var(Udi) = σ2
udi

=
1

σ2
x | ydi

Var(µx | ydi). (4.12)

Thus, the distribution of Udi does not depend on the actual value of Yd. Since Udi is linear
in Yd, which is a Gaussian distributed random variable, Udi is also Gaussian distributed:

Udi ∼ N(µudi
, σ2
udi

). (4.13)

Now observe that MPydi (equation (4.8)) depends only on the random variable Udi.
Therefore, the expected value in equation (4.9) is really only the mean of expected values
with respect to the distribution of variables Udi, i = 1, ...N .

1

N

N∑
i=1

EYd
[MPydi] =

1

N

N∑
i=1

EUdi
[MPydi]. (4.14)

That is, each element i of EMMPd is the integral over all possible values of Udi. With this
knowledge, inserting MPydi from equation (4.8) into equation (4.9) leaves the problem

EMMPd =
1

N

N∑
i=1

∫
yd

min {Φ(udi), 1− Φ(udi)} p(yd)dyd

=
1

N

N∑
i=1

∫
udi

min {Φ(udi), 1− Φ(udi)} p(udi)dudi =
1

N

N∑
i=1

EMPdi.

(4.15)

With the same notation as before, EMPdi is the expected misclassification probability in
position si if one chooses to measure in position sd. It does not depend on the actual
measured value in this position, and can therefore be evaluated prior to obtaining the mea-
surement.

For convenience, EMPdi, Udi and udi are in the following denoted by EMPi, Ui and
ui. The problem to be solved is

EMPi =

∫ ∞
−∞

min {Φ(ui), 1− Φ(ui)} p(ui)dui. (4.16)

Because of the symmetry of Φ, as shown in Figure 4.2, 1 − Φ(ui) = Φ(−ui). Also,
Φ is monotonically increasing, so Φ(Ui) ≤ Φ(−Ui) whenever Ui ≤ −Ui. This means,
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min {Φ(Ui),Φ(−Ui)} equals Φ(Ui) when Ui < 0 and Φ(−Ui) when Ui > 0. Thus,
equation (4.16) can be reformulated into

EMPi =

∫ 0

−∞
Φ(ui)p(ui)dui +

∫ ∞
0

Φ(−ui)p(ui)dui. (4.17)

Let Z be a random variable with standard Gaussian distribution. Then

Φ(ui) = P (Z < ui) =

∫ ui

−∞
p(z)dz, (4.18)

and ∫ 0

−∞
Φ(ui)p(ui)dui =

∫ 0

−∞

∫ ui

−∞
p(z)p(ui)dzdui = P (Z < Ui, Ui < 0). (4.19)

Observe that Z and Ui are chosen to be independent, so that p(z)p(ui) is their joint PDF.
By the same argument for the second integral in equation (4.17), it is obtained that

EMPi = P (Z < Ui, Ui < 0) + P (Z < −Ui, Ui > 0)

= P (Z − Ui < 0, Ui < 0) + P (Z + Ui < 0,−Ui < 0).
(4.20)

Define

Vi = Z − Ui, Ai = Z + Ui,

Wi = Ui, Bi = −Ui.

Then
EMPi = P (Vi < 0,Wi < 0) + P (Ai < 0, Bi < 0). (4.21)

Here, Ai is unrelated to the propagator matrix in the process model of section 2.2.1. The
joint distribution of Vi and Wi can be obtained by finding the expected values, variances
and the covariance between the variables. As they are both linear combinations of univari-
ate Gaussian distributed variables, they jointly follow a bivariate Gaussian distribution. We
have E[Vi] = E[Z]−E[Ui] = 0−µui = −µui , Var(Vi) = Var(Z)+Var(Ui) = 1+σ2

ui
,

E[Wi] = µui , Var(Wi) = σ2
ui

and Cov(Vi,Wi) = Cov(Z − Ui, Ui) = Cov(Z,Ui) −
Var(Ui) = 0− σ2

ui
= −σ2

ui
. Thus,[

Vi
Wi

]
∼ N2

([
−µui

µui

]
,

[
σ2
ui

+ 1 −σ2
ui

−σ2
ui

σ2
ui

])
= N2(µ∗

i ,Σ
∗
i ), (4.22)

and similarly, [
Ai
Bi

]
∼ N2(−µ∗

i ,Σ
∗
i ). (4.23)

Further,

P (Vi < vi,Wi < wi) = Φ2

([
vi
wi

]
;µ∗

i ,Σ
∗
i

)
, (4.24)
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with Φ2(·;µ∗
i ,Σ

∗
i ) the bivariate Gaussian CDF with expected value µ∗

i and covariance
matrix Σ∗

i . Then

EMPi = Φ2

(
0;µ∗

i ,Σ
∗
i

)
+ Φ2

(
0;−µ∗

i ,Σ
∗
i

)
, (4.25)

where 0 = (0, 0)ᵀ.
For computational reasons using statistical software, it is convenient to have the bivari-

ate distribution on standard form, with means 0 and marginal variances 1. We transform
Vi, Wi, Ai and Bi so they each marginally are univariate standard Gaussian. For Vi and
Wi we obtain

Ṽi =
Vi − (−µui

)√
σ2
ui

+ 1
∼ N(0, 1),

W̃i =
Wi − µui

σui

∼ N(0, 1),

Cov(Ṽi, W̃i) = − σui√
σ2
ui

+ 1
,

P (Vi < 0,Wi < 0) = P

(
Ṽi <

0− (−µui
)√

σ2
ui

+ 1
, W̃i <

0− µui

σui

)
,

(4.26)

and likewise for Ai and Bi. Define

Σ̃i =

[
1 ρ̃
ρ̃ 1

]
and z̃i =

 µui√
σ2
ui

+1
−µui

σui

 (4.27)

with ρ̃ = − σui√
σ2
ui

+1
. Then finally

EMPi = Φ2

(
z̃i; 0, Σ̃i

)
+ Φ2

(
−z̃i; 0, Σ̃i

)
. (4.28)

Now reintroduce the notation with d to emphasise that z̃i = z̃di and Σ̃i = Σ̃di depend
on the choice of position sd through Ui = Udi. Insert equation (4.28) into equation (4.15)
to obtain

EMMPd =
1

N

N∑
i=1

(
Φ2

(
z̃i; 0, Σ̃i

)
+ Φ2

(
−z̃i; 0, Σ̃i

))
. (4.29)

We have now derived a general criterion which can be used to evaluate different pos-
sible measurement positions. The lower EMMPd, the better is the position considered to
be. The aim is to use the criterion to decide where to draw the next measurement. That is,
the EMMP criterion should be used dynamically to choose position for one time step at a
time. To compute EMMPd, the target state vector X has to be defined and from there the
distribution of Udi must be derived. In the next sections, some possible target models are
defined, and the corresponding distributions derived.
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4.2.2 EMMP with forecasted distributions
As mentioned in section 4.1, the aim in this thesis is to predict an ES as accurately as
possible, and the focus is on fixed ES for time T (equation (4.3)). Because of this, we use
the state vector at time T , XT , as our target state. Further, we would optimally use the
distribution of this given the measured values for all time steps, Y 1:T . This means that
we would want to choose the position for time step t such that EP(T )

T (si) = P (XT (si) >
l |Y 1:T ), i = 1, . . . , N (equation (4.6)) is as close as possible to 0 or 1. For choosing grid
node for step t, we should then consider all possible positions and measurement values for
steps t+1, . . . , T as well. This is computationally infeasible, as the possible positions and
values to consider will be immense, as seen in Figure 4.4.

Instead we focus on a heuristic, myopic method, meaning that we choose a local op-
timum at time step t considering only the data for the next measurement when choosing
position. Let the target state at time step t beXT , but now condition only on measurements
for time steps 1, . . . , t,Y 1:t. At time t, the measurements for t = 1, . . . t− 1,Y 1:t−1, are
already obtained. We know the distribution of XT |Y 1:t is Gaussian, and the only un-
known part is Yt. The analytic derivation of the base criterion from section 4.2.1 can be
used to evaluate different grid node candidates for the measurement at time step t. To cal-
culate EMMPd for grid node sd we need the mean and variance of variable Udi in equation
(4.10) and for that we need the mean and variance of all elements of the target vector, up
to the unknown value in position sd at time step t, ytd.

At time step t with data from all time steps up to t − 1 available, the distribution of
Xt |Y 1:t−1 is known, and reflects current knowledge of the state. From there we can take
T − t prediction steps to obtain the distribution of XT |Y 1:t−1. To find the distribution
ofXT |Y 1:t, we must take one filtering step fromXt |Y 1:t−1 to findXt |Y 1:t and then
T − t prediction steps to get to the distribution of XT |Y 1:t. The procedure is shown
schematically in Figure 4.5.

Let the notation of mean and variance be as in section 2.2.2. Then µt | t−1 and P t | t−1
are known, and µt | t and P t | t are given by the filtering equations (2.48) and (2.49). Note
thatµt | t depends on the measured value at time t, whileP t | t does not. Both depend on d,
but the dependency is dropped in the notation for readability. We let the propagator matrix
A, the source vector R and the covariance matrix of the innovation term η of the process
model (equation (2.31)) be constant for all time steps, but add the time step subscript to
keep track of the predictive steps. Performing T − t prediction steps, like in equations
(2.42) and (2.43), results in

µT | t = AT . . . (At+2(At+1µt | t +Rt+1) +Rt+2) · · ·+RT

= AT−tµt | t + (AT−t−1 +AT−t−2 + · · ·+A+ 1)R,
(4.30)

P T | t = AT (. . . (At+2(At+1P t | tA
ᵀ
t+1 +Qt+1)Aᵀ

t+2 +Qt+2) . . . )Aᵀ
T +QT

= A(. . . (A(AP t | tA
ᵀ +Q)Aᵀ +Q) . . . )Aᵀ +Q.

(4.31)

Also note that

µT | t−1 = AT−tµt | t−1 + (AT−t−1 +AT−t−2 + · · ·+A+ 1)R, (4.32)
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Xt |Y 1:t−1 Xt+1 |Y 1:t−1 XT |Y 1:t−1

Xt |Y 1:t Xt+1 |Y 1:t XT |Y 1:t

Forecasting

Fi
lte

ri
ng

Figure 4.5: Schematic drawing of Kalman filter forecasting and filtering to reach the distribution of
X given data up to time t− 1 or time t.

by same calculations.

The random variable Udi from equation (4.10) for target state vectorXT , conditioned
on Y 1:t is

Udi =
l − µT | t[i]√
P T | t[i, i]

. (4.33)

We need to calculate the mean and variance of Udi. At time step t, all measurements
up to time t − 1 are known, and all calculations are therefore really given Y 1:t−1. As
seen in equations (4.11) and (4.12), finding the distribution of Udi given Y 1:t−1 involves
computing the mean and variance for µT | t, and since µT | t is a function of µt | t (equation
(4.30)), the same must be calculated for the latter. Note that for these computations, µt | t
and µT | t must be considered random variables, and in the expression for µt | t in equation
(2.48), the observed yt should be interchanged with the random variable Y t. The notation
E[µ |Y ] can be seen as the expected value of a random vector µ |Y , or as E[µ] when Y
is given. In this setting, the latter is more convenient.

From equations (2.44) and (2.45), Ytd |Y 1:t−1 ∼ N(Htdµt | t−1, Std), and in the
one-dimensional data case, Std = HtdP t | t−1H

ᵀ
td+ τ2. The d in the notation is added to

emphasise dependence on the position sd. Likewise, the Kalman gain in equations (2.48)
and (2.49) is in the following denoted Ktd. Using these equations and the distribution of
Ytd |Y 1:t−1, we find
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E[µt | t |Y 1:t−1] = E[µt | t−1 +Ktd(Ytd |Y 1:t−1 −Htdµt | t−1)]

= µt | t−1 +Ktd(E[Ytd |Y 1:t−1]−Htdµt | t−1)

= µt | t−1 +Ktd(Htdµt | t−1 −Htdµt | t−1)

= µt | t−1,

(4.34)

Cov(µt | t |Y 1:t−1) = Cov(µt | t−1 +Ktd(Ytd |Y 1:t−1 −Htdµt | t−1))

= KtdVar(Ytd |Y 1:t−1)Kᵀ
td = KtdStdK

ᵀ
td.

(4.35)

Then we also obtain

E[µT | t |Y 1:t−1] = AT−tE[µt | t |Y 1:t−1]

+ (AT−t−1 +AT−t−2 + · · ·+A+ 1)R

= AT−tµt | t−1 + (AT−t−1 +AT−t−2 + · · ·+A+ 1)R

= µT | t−1,

(4.36)

Cov(µT | t |Y 1:t−1) = AT−tCov(µt | t |Y 1:t−1)(AT−t)ᵀ

= AT−tKtdStdK
ᵀ
td(A

T−t)ᵀ.
(4.37)

Finally, we can find the mean and variance of Udi |Y 1:t−1:

E[Udi |Y 1:t−1] =
l − E[µT | t[i] |Y 1:t−1]√

P T | t[i, i]
=
l − µT | t−1[i]√
P T | t[i, i]

, (4.38)

Var(Udi |Y 1:t−1) =
1

P T | t[i, i]
Var(µT | t[i] |Y 1:t−1)

=
1

P T | t[i, i]
AT−t[i, ]KtdStdK

ᵀ
td(A

T−t[i, ])ᵀ,

(4.39)

where [i, ] indicates row i of the matrix. From here, the calculation of the criterion is given
in section 4.2.1.

If we want to consider the same target, but with the spatial AR(1) model instead of the
SPDE model, the formulas are somewhat simplified. Equation (4.30) becomes

µT | t = φT−tµt | t +

T−t−1∑
k=0

φk(1− φ)µ0, (4.40)

with µt | t as in equation (2.48), and equation (4.31) becomes

P T | t = φ2(T−t)P t | t +

T−t−1∑
k=0

φ2k(1− φ2)Σ0. (4.41)

Likewise we get

Cov(µT | t |Y 1:t−1) = φ2(T−t)Cov(µt | t |Y 1:t−1), (4.42)

with Cov(µt | t |Y 1:t−1) and the rest of the criterion like before.
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4.2.3 EMMP with other target states

We again consider the SPDE model, but look at some simpler target distributions. It might
be interesting to investigate how important it is to focus on the predictive distribution of
XT . What if we only try to optimise the current state, that is use Xt as target state?
How much does this affect the final approximation of EST ? By doing this, we skip all the
forecasting steps of equations (4.30) and (4.31). A lot of computation time and possible
storage capacity are saved in this approach. We still condition on Y 1:t in the criterion, and
Y 1:t−1 is given. In this case,

Udi =
l − µt | t[i]√
P t | t[i, i]

, (4.43)

where P t | t is given in equation (2.49). We already computed the mean and variance of
µt | t given Y 1:t−1 in equations (4.34) and (4.35), and we get

E[Udi |Y 1:t−1] =
l − µt | t−1[i]√
P t | t[i, i]

, (4.44)

Var(Udi |Y 1:t−1) =
1

P t | t[i, i]
(KtdStdK

ᵀ
td)[i, i]. (4.45)

We can imagine an even simpler case where we assume a pure spatial state in our
criterion calculations. Let the initial state model X0 be the prior distribution, and assume
no time dynamics. Then the model is only updated due to new data. Let us denote the
model given the t − 1 first measurements X0 |Y 1:t−1, though the subscript 0 does no
longer indicates time step 0, but rather that this is the updated initial state model. Then
let the target state be X0, and condition on Y 1:t. The mean and covariance matrix of
X0 |Y 1:t−1 ∼ Nn(µ0 | t−1,P 0 | t−1) are known. To find the mean and variance of the
variable

Udi =
l − µ0 | t[i]√
P 0 | t[i, i]

(4.46)

given Y 1:t−1, we can use the filtering equations from section 2.2.2, or equivalently the
equations for the posterior distribution of section 2.1.2. Let Std = HtdP 0 | t−1H

ᵀ
td + τ2.

Then Yt |Y 1:t−1 ∼ N(Htdµ0 | t−1, Std) and

µ0 | t = µ0 | t−1 + P 0 | t−1H
ᵀ
tdS
−1
td (Ytd −Htdµ0 | t−1). (4.47)

We, analogously to the previous derivations, find

E[µ0 | t |Y 1:t−1] = µ0 | t−1, (4.48)

Cov(µ0 | t |Y 1:t−1) = (P 0 | t−1H
ᵀ
tdS
−1
td )Var(Ytd |Y 1:t−1)(P 0 | t−1H

ᵀ
tdS
−1
td )ᵀ

= P 0 | t−1H
ᵀ
tdS
−1
td )Std(P 0 | t−1H

ᵀ
tdS
−1
td )ᵀ

= P 0 | t−1H
ᵀ
tdS
−1
td HtdP

ᵀ
0 | t−1,

(4.49)

which gives
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E[Udi |Y 1:t−1] =
l − µ0 | t−1[i]√
P 0 | t[i, i]

, (4.50)

Var(Udi |Y 1:t−1) =
1

P 0 | t[i, i]
P 0 | t−1[i, ]Hᵀ

tdS
−1
td HtdP 0 | t−1[i, ]ᵀ. (4.51)

4.2.4 Hybrid criterion
A feature of the myopic approaches is that they look for local optima, that is, solutions
that give immediate reward, and they fail to see solutions that might bring a better reward
in the future. In this context, the AUV may get stuck in one area of the domain and fail
explore other parts. Then important features might go undiscovered. Increasing the num-
ber of steps results in exponential growth of computational complexity, and it is therefore
infeasible planning far ahead.

Instead of extending the model to look several steps ahead, one can set up a hybrid
strategy, trying to balance the trade-off between exploration of the domain and exploitation
of known information (Zhang and Yu, 2013). One approach is to use a ε-greedy approach,
where one chooses the next step e.g. at random for exploration with probability ε, and
otherwise optimises the next step based on short-term reward, as called by Zhang and Yu
(2013). It is also possible to combine different decision criteria by adding weights to each,
and thus balancing the need of exploration and the EMMP criterion. Berget et al. (2018)
use this weighted approach. One of the criteria they use is to choose positions with high
variance. Then the overall variance in the system is reduced, and it also ensures that the
AUV travels to places in the domain so far unexplored. As noted in section 4.2, variance
is often used as a decision criterion, and seems to be a good exploration criterion.

In this thesis, a variant of the ε-greedy approach is tested. The idea is to start with the
predictive EMMP criterion from section 4.2.2 for k steps, and then use the same criterion
for the next k steps with probability ε. Otherwise, variance is used in a decision crite-
rion for the next k steps. More specific, the total variance reduction for the next step is
compared:

ϑ(t, d) = trace(P t | t−1 − P t | td), (4.52)

where d is the identifier for a possible grid node for next step, and trace is the sum of
the diagonal elements of a matrix. The matrices P t | t−1 and P t | td are the forecasting
and filtering covariance matrices for time step t, respectively, and the subscript d is added
to P t | td to emphasise dependence of position sd. The formulas are found in equations
(2.43) and (2.49). The AUV will move to the position sd∗ with the largest ϑ(t, d∗).

Optimally, we would want to use the EMMP criterion as much as possible, since this
is the criterion developed in this thesis which aims to find the EST and reduce the mis-
classification rate. Thus, we want to keep using this criterion with large probability until
the degree of exploration is too low, or the AUV is stuck in some small area. If this hap-
pens, we want to reduce ε to increase the probability of switching to the variance criterion.
There are many different approaches for tuning ε. In this thesis, an approach considering
the earlier visited positions is considered.
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From the beginning, the probability ε is quite high, as we want the default to be the
EMMP criterion, call this ε0. For each k time steps, the type of decision criterion is
reevaluated. The number of times the AUV has been inside a circle of radius r from the
current position is then found. This number, n, is at least 1, since the AUV is currently
inside the circle. The probability ε is then reduced by a factor 1

n , i.e.

ε = ε · 1

n
. (4.53)

The probability is decreased until the decision criterion is changed. Then it is set back to
ε = ε0. The procedure is shown schematically in Algorithm 1.

Algorithm 1: Algorithm for choosing position using the hybrid decision strategy at
time t. The default probability of using the EMMP criterion is ε0, and the probability
is updated every kth step.

1 if t > 1 and t mod k == 1 then
2 if Strategy == Variance then
3 ε = ε0;
4 end
5 neighbourhood = grid nodes inside circle with radius r from current AUV

position;
6 n = number of times AUV has visited neighbourhood;
7 ε = ε · 1n ;
8 draw u from Uniform(0, 1) distribution;
9 end

10 if u < ε then
11 Strategy = EMMP;
12 Choose position with smallest EMMP
13 else
14 Strategy = Variance;
15 Choose position with largest ϑ(t, d);
16 end
17 return position

The idea with this hybrid decision strategy is to let the AUV explore more of the
domain and not be stuck in one small area. If the AUV has been very close to the current
position earlier, this means that the AUV has turned and come back to the same area, as
long as we set r smaller than the distance between two consecutive visited positions. We
assume this is an indication of the AUV having to explore more. However, there is some
randomness in the strategy, and one risks moving away from interesting areas too early, or
in less desirable directions.

4.3 Monte Carlo simulation
We aim to compare various decision strategies for AUV sampling in Frænfjorden. There is
no way to analytically assess the different strategies, since most strategies are adaptive and
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each decision depends on the updated model with all measured values up to that step. For
the predetermined paths, we could compute the EMMP for the whole path if all positions
were visited at the same time, but when the path is visited over time, this is no longer
possible. We therefore assess the strategies by performing a simulation study where paths
are simulated using several time series samples from the Frænfjorden SPDE model. This
is called Monte Carlo simulation, or ”playing the game of Monte Carlo”.

For the simulation study, time series replicates from the model must be made. Using
the model parameters specific for Frænfjorden, i.e. those found in chapter 3, the propa-
gator matrix A, the vector R and the innovation term covariance matrix, Q, are found.
Algorithm 2 shows how to simulate one spatial time series from the model. The final time
step is T . Sampling from the initial state distribution and the distribution of the innovation
term, η, is performed as in equation (2.8), withL the Cholesky factorisation of the relevant
covariance matrix.

Algorithm 2: Simulating one time series replicate from SPDE process model.

1 FindA,R andQ ;
2 Sample x0 from initial state distribution NN (µ0,Σ0);
3 for t = 1, . . . T do
4 Sample η∗ from innovation distribution NN (0,Q);
5 xt = Axt−1 +R+ η∗;
6 end
7 x = (x0,x1, . . .xT );
8 return x

For each such time series sample, a decision strategy can be used to simulate an AUV
path. The time series replicate is then considered the true spatio-temporal system. Since
the true systems are available, it is easy to evaluate the decision strategy based on the
posterior model after data is obtained in all T positions of the path. The procedure should
be repeated many times when evaluating, so that the individual Monte Carlo samples are
not important for the result. We are interested in the performance of a strategy on average
for the model, not the specific simulated time series. Algorithm 3 shows how to simulate
one path in general. The model on board the AUV is updated according to the Kalman filter
of section 2.2.2. For each new time step, the model is forecasted according to equations
(2.42) and (2.43), and after each measurement is obtained, the model is filtered according
to equations (2.48) and (2.49). Here, the distribution of the on-board model is simply
called the AUV distribution. The measurement variance is τ2.
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Algorithm 3: Algorithm for simulating measurements and a path for the AUV when
the true system is known for all time steps. The distribution of the model on board
the AUV is called the AUV distribution for all time steps.

1 Let x = (x0,x1, . . .xT ) be a the simulated spatial time series;
2 AUV distribution = initial state distribution;
3 for t = 1, . . . T do
4 Forecast AUV distribution one time step;
5 Choose position sdt for step t using given decision strategy;
6 LetHtd be the design matrix indicating the position sdt ;
7 Sample measurement yt from data model distribution N(Htdxt, τ

2) ;
8 Filter AUV distribution to include yt at sdt ;
9 end

10 Y 1:T = (y1, . . . yT )ᵀ;
11 return AUV distribution for time step T given Y 1:T .
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Chapter 5

Simulation study for
Frænfjorden

A simulation study is performed to study how to conduct efficient sampling of concen-
tration in Frænfjorden to get an accurate prediction of the ES for a fixed time T . In this
chapter, the different tests and setup for the simulations, as well as some numerical aspects
of the study, are explained.

5.1 Simulation setup
For the simulation study, we assume that the model of Frænfjorden from chapter 3 de-
scribes the concentration state in Frænfjorden perfectly, and simulate spatial time series
from this model. In total 1000 realisations from the initial state distribution are drawn, and
then the process model (equation (2.31)) is used to create time series, as described in Al-
gorithm 2. Because of the small variance of η estimated in chapter 3, the variations in the
series are mainly due to the different realisations of the initial state vector. We set Dirich-
let BCs along the western boundary and Neumann BCs along the others, as described in
section 3.1.2.

The ES at time step T , EST from equation (4.3), is of interest. To define the ES, the
critical limit, l, of the area is needed. For simplicity, we set l = 8.5 log(ppb), as the
values in the area are usually between 5 and 11 log(ppb). In real applications, the limit
should be clear from the operational objective. Figure 5.1 shows a comparison of the
model at initial state and at time step T when no data is present. We see that the high
concentrations in the model mean have expanded from the initial state to time step T ,
due to the movement included in the SPDE and the constant incoming pollutants from the
Dirichlet BCs at the west boundary. Over time, the incoming known concentrations result
in a very low variance on the west side of the domain, as seen in Figure 5.1d. There is
also some numerical effect along the eastern boundary, but these are small, as assumed in
section 3.1.2.

We let the time period for AUV operations be 30 minutes, with one sample every 1
minute, starting 1 minute after initial state. Thus, each of the 1000 time series consists
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Mean, variance and EP

(a) Initial mean concentration. (b) Concentration mean, forecasted T steps.

(c) Initial concentration variance. (d) Concentration variance, forecasted T steps.
No data is obtained.

(e) Initial EP, EP(0)
0 . (f) EP of forecasted model, EP(0)

T .

Figure 5.1: Model concentration, variance and EP initially and after T = 30 time steps. Critical
limit for the EP is l = 8.5 log(ppb).
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of 31 samples, for time steps t = 0, 1, . . . T (T = 30), and measurements are drawn
for t = 1, 2, . . . T . The AUV moves with speed between 0.5 and 2 m/s (AUR lab, nd).
Assuming it can have an average speed of a bit over 1 m/s, it should be able to spend some
seconds deciding where to go next, move about 60 m, and do one measurement every 1
minute. We let the possible positions for each step be as explained in section 4.2 and
shown in Figure 4.3. In practice, the AUV would probably do measurements continuously
along the way, but only decide the next direction at some points. For simplicity, we assume
the measurements are only obtained in the selected positions. In all simulations, we let the
AUV do its first measurement at the middle position on the southern border of the sampling
area.

The measurement variance τ2 is not easy to set, as there are several factors that are un-
certain. The measurement errors in the sensor are probably small compared to variability in
the AUV position and in the concentration within the discretised grid node. Calibration of
sensors attached to the AUV has shown hard (Cetinić et al., 2009; Rogowski et al., 2013).
In addition, what is measured is optical backscattering in form of attenuation coefficient,
as a measure of turbidity, which has to be converted to a measure of (log) concentration,
and there is some uncertainty in this transformation as well. The Wet Labs ECO 3 sensor
user manual (Eco 3, 2007) suggests a attenuation error of about 4 % at attenuation coeffi-
cient 1 m−1. Since the log concentrations in the area vary between approximately 5 and
11 log(ppb), assuming measurement standard deviation of 4 % of the log concentration
values gives τ between 0.2 and 0.44 log(ppb). Since this is a simulation study, it is im-
portant that some information is indeed gained from doing observations, and at the same
time that the observations are not too close to being exact. The initial variance in a posi-
tion is 0.6 log(ppb)2. The random noise is very small, and the variance over time is not
changed much for most of the domain, see Figure 5.1c and 5.1d. For measurements to be
informative, their variance should be considerably smaller than the original concentration
variance. We choose τ2 = 0.1 log(ppb)2, i.e. τ ≈ 0.316 log(ppb). Then the variance is of
the same size order as the original concentration variance, but considerably smaller, and
the standard deviation is within the 4 % range.

5.2 Test cases
Several models and strategies for deciding the AUV paths are introduced. From these,
we construct test cases combining model and decision strategy. These test cases are used
for choosing AUV paths in the simulation study, and are explained in this section. Most
strategies are myopic. For each test case, paths are simulated according to Algorithm 3 for
each time series replicate.

First consider two strategies where the AUV is using the SPDE model from section
2.2.1 and the EMMP criterion from section 4.2.1 to decide where to obtain data. That is,
the SPDE process model is assumed to describe the concentration dynamics in the system,
and since this is a simulation study, this model is the same as the underlying model for the
simulated spatial time series. For the decision criterion, we consider one case where the
forecasted distribution ofXT as target distribution and condition on all data Y 1:t. Details
can be found in section 4.2.2. This test case is the main focus in this thesis, as it uses
both the main model and criterion described and developed in the thesis. The test case
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is denoted {SPDE: EMMPXT }, indicating the model and the strategy used to create the
results. We also consider a similar case where the SPDE model is used, but the forecasted
distribution is ignored. Instead, the distribution ofXt is used as target distribution for step
t, still conditioned on data Y 1:t. This method is less accurate, but also more computer
efficient. The test case is denoted {SPDE: EMMPXt}, and details are found in section
4.2.3.

Consider the EMMP criterion using the distribution of the state at time T , but let
this distribution be determined by the simpler spatial AR(1) time series model intro-
duced in section 2.2.1. In this case, the model differs from the underlying model in the
simulated concentration states, but it is simpler, so computations are faster than for the
{SPDE: EMMPXT } case. When the AR(1) model is used, the calculations needed for
the EMMP criterion are found in equations (4.40) to (4.42), and we denote the test case
{AR(1): EMMPXT }. Further, we consider a spatial model, where the true state is as-
sumed constant over time, and the initial state model for Frænfjorden from section 3.1.1
is used for the AUV sensing. One then assumes that the changes forward in time the next
T = 30 minutes are negligible. There is not much sense in forecasting to time step T , as
the model stays the same as long as no new data is obtained. We therefore denote this test
case {Spatial X0: EMMP}, where X0 represents the initial state model, and is the target
state for the EMMP criterion, conditioned on Y 1:t.

Now we have described four test cases using the EMMP decision criterion but different
models. For the remaining 5 test cases, the SPDE model is the foundation for the AUV
paths, but the decision strategies vary. We consider two cases with the simple decision
criteria mentioned in section 4.2. The test cases are denoted {SPDE: EP(t−1)

t 0.5} and
{SPDE: random}. We also make two cases where the paths are predetermined, and the
AUV thus visits the same positions in each spatial time series replicate. We let each
predetermined path be as comparable as possible to the adaptive paths. That is, they consist
of 30 measurement points with a distance of about 60 m between each point, and the time
between each obtained measurement is 1 minute, just as before. The first position is also
at the middle position of the southern border. Two different approaches for predetermining
measurement points are considered. In the first one aims to explore an as big part of the
domain as possible. It is seen in earlier work that the AUV is set to measure along the
diagonals of the research areas (Fossum et al., 2018), so this strategy is used for this path.
In addition, the path is intended to move across areas with EP(0)

T close to 0.5. The path is
shown together with EP(0)

T in Figure 5.2a, and the test case is called {SPDE: Predetermined
diagonals}. The second predetermined path intends to explore the area where EP(0)

T is
close to 0.5 uniformly, and the result is shown in Figure 5.2b. The test case is called
{SPDE: Predetermined uniform}.

Finally, one test case using the hybrid decision criterion described in section 4.2.4
is made. The distance between each position visited by the AUV is still approximately
60 m. To set the probability ε, we need to define the radius of the neighbourhood around
the current position where we count the number of earlier measurements. This should be
small enough to be certain that the AUV has returned to the same area several times. Thus,
we need the radius, r, smaller than 2.8 grid node distances. We set r = 40.2 m, or 2 grid
node distances. Further, we set the initial probability ε0 = 0.9 and the number of steps
before ε is updated and the strategy might be changed, to be k = 5. The idea is that the
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Predetermined paths

(a) Path along diagonals. (b) Uniform path near positions of EP(0)
T close

to 0.5.

Figure 5.2: Decision of positions for predetermined paths. Both use EP(0)
T as a basis.

AUV then gets some time to explore locally or move to another part of the domain before
the strategy is again (potentially) changed. We denote this test case {SPDE: Hybrid}.

5.3 Time evaluation

All code for calculations in this thesis is written using the statistical software R. The vari-
ous strategies demands different amount of calculations, and thus different amount of time
is needed to use the strategies. Table 5.1 shows approximate timings from simulating one
path with each strategy using a MacBook Pro 2015 laptop with i5 core. We assume these
are comparable to computer time needed by the AUV. What is most relevant in practice,
is the Choose next step column, as this shows the approximate time needed from obtain-
ing one measurement until the next position is decided and the AUV can start moving in
that direction. One would like to spend the time the AUV is in the water as efficiently as
possible, meaning that this pure calculation time should be small. If it exceeds about 15
s, the AUV will not be able to move the distance assumed in this simulation study and
still measure every 1 minute. In addition, the AUV is affected by currents, so that it is
unfeasible to stand still.

For all paths using the EMMP strategies, time to compute the filtering and forecasting
distributions (equations (2.40) and (2.41)) for each step is part of the decision time, as
this is needed after a measurement is obtained before the AUV can decide where to go
next. For the test case {Spatial X0: EMMP}, there is no forecasting since there is no
time dynamic, and time is therefore saved. For cases {AR(1): EMMP XT } and {SPDE:
EMMPXT }, evaluating each position is much slower, as for each position considered for
the next step, covariance matrices forecasted to time step T are needed. The times vary for
the {AR(1): EMMP XT } test case because the forecasting to time step T is coded with
a for loop, and the number of times to loop decreases as the current time step t increases.
Thus, the time needed to decide is shorter as time passes.

The most computer demanding test case is {SPDE: EMMP XT }. Forecasting T − t
steps ahead in time for each time step includes a lot of matrix multiplications, which
require computer resources. Even after several attempts on making computations faster
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Consider 1 position Choose next step
SPDE: EMMPXT 2.5 s 40 s
SPDE: EMMPXt 0.05 s 3 s
SpatialX0: EMMP 0.05 s 1.5 s
AR(1): EMMPXT 0.4-0.6 s 8-11 s

SPDE: EP(t−1)
t 0.5 0 s 2 s

SPDE: Random 0 s 0 s
SPDE: Predetermined diagonals - -
SPDE: Predetermined uniform - -

SPDE: Hybrid 0.5/2.5 s 10/40 s

Table 5.1: Approximate running times using a MacBook Pro 2015 laptop with i5 core. The times
are assumed comparable to computing times on board the AUV. For thy hybrid test case, the numbers
represent times for the variance and EMMP criterion, respectively.

and computing most of the matrix multiplications beforehand, decision time is about 40 s
for each step for case {SPDE: EMMPXT }. This is of course a lot more than is feasible for
real-time computations on board an AUV. It should be noted that the less accurate {SPDE:
EMMP Xt} case only needs 3 s to choose next step, which is acceptable for real-time
calculations.

The test cases {SPDE: EP(t−1)
t 0.5} and {SPDE: Random} spends no time evaluating

each possible position, but for {SPDE: EP(t−1)
t 0.5}, the distributions need to be updated

before the EP(t−1)
t can be computed, and thus the AUV spends some time deciding the

next step. For the predetermined paths and test case {SPDE: Random}, the AUV does not
have to stop and wait at all. For the {SPDE: Hybrid} case, there is quite a difference in
time between using the EMMP criterion and the variance reduction criterion. The numbers
before the slash in Table 5.1 represent the variance computations, which are a lot faster.
The strategy is designed so use the EMMP criterion most of the time, so one average one
does not save much time, however.

When running on a more powerful server, and running code in parallel, the time could
be reduced by up to 90 %. Because of this, more time is not spent on improving the
code for this simulation study. However, calculations on board an AUV is the goal. If
to be used for field work, the code must be translated into the language Python to be
compatible with currently running code, and further improvements can then be tested.
Some possibilities for further improvements are exploiting that the propagator matrix, A,
from the process model is a sparse matrix, considering the misclassification probability
on only parts of the domain when choosing positions, to deal with smaller matrices in the
decision computations, or writing the algorithms in another language, such as C. One can
also let the number of positions to consider in each step be fewer.

5.4 Numerical issues
During the simulations of test case {SPDE: EMMP XT }, some numerical issues are en-
countered. The issues arise when forecasting to time step T to evaluate the EMMP of
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potential next positions. In this calculation, the covariance matrix of µT | t is needed, as
given in equation (4.37). Numerically, this matrix is not always positive definite, as recog-
nised by negative eigenvalues. The error is clearly numerical, and a small nugget effect in
the innovation term covariance matrix and a slight damping in the SPDE are added trying
to push values away from zero. This does not always solve the problem. Since the matrix
is not part of the main model, but only used in the decision strategy, it is used without
amendment, but during simulations, it happens that diagonal elements, i.e. variances, also
become numerically negative. In these cases, the computation is aborted and the whole
replicate skipped. Fortunately, this issue arise for only 1 out of 1000 time series replicates.
As a result, we have 999 paths for the {SPDE: EMMP XT } test case.
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Chapter 6

Results and analysis

AUV sensing is simulated as in Algorithm 3 on the 1000 time series samples using the
parameters estimated for Frænfjorden. The results from this main simulation study are
presented in this chapter. Each section considers a few of the test cases introduced in
section 5.2. The goal is to reduce prediction error with respect to EST . At time step T ,
data from T positions is obtained, Y 1:T , one measurement for each time step, and the
distribution of the state vector XT |Y 1:T should be as informative as possible regarding
EST .

The main decision strategy discussed in this thesis is the EMMP decision criterion,
and after each simulated path, we can compute the posterior MMP. Analogous to equation
(4.7), we obtain

Posterior MMP =
1

N

N∑
i=1

min{1− P (XT (si) > l |Y 1:T ), P (XT (si) > l |Y 1:T )}.

(6.1)
In this chapter, the Posterior MMP is referred to simply as MMP. Further, actual misclas-
sification rate for the paths can be calculated since the true systems are available. For the
classification, a probability cutoff of 0.5 on EP(T )

T is used, matching the EMMP criterion.
The misclassification rate after one simulated path is

Misclassification rate =
1

N

N∑
i=1

(
(EP(T )

T (si) ≥ 0.5) 6= EST (si)
)
, (6.2)

where EST (si) is as in equation (4.5) at time T . We assume the logical True and False are
also given as 1 and 0, respectively, and can thus be summed over. We want to evaluate the
strategies on average, and thus focus on the mean of all calculated MMPs or misclassifi-
cation rates. We also study the spatial misclassification rate. Then, the rate is calculated
over all B = 1000 samples for each grid node separately, to see where in the domain
misclassification is more common, and

Spatial misclassification rate(si) =
1

B

B∑
b=1

(
(EP(T )b

T (si) ≥ 0.5) 6= ESbT (si)
)

(6.3)
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(a) Misclassification rate in each grid node over
all 1000 samples using EP(0)

T for classification.
(b) MSE in each grid node over all 1000 sam-
ples when prediction is the mean of the SPDE
forecasted distribution at time T , with no data
available.

Figure 6.1: Spatial misclassification rate and MSE using the distribution from the SPDE model at
time T without obtaining any data.

is the misclassification rate for grid node si. Superscript b indicates time series replicate
number b. Considering the SPDE model distribution at time T without obtaining any data,
results in an average misclassification rate of 18.2 % with standard deviation 11.9 %. The
spatial misclassification rate is displayed in Figure 6.1a. We will see, in the proceeding
sections, how much these misclassification rates are improved when obtaining data ac-
cording to the various test cases.

Though not the main focus, we can also compare how well the posterior distribution
at time step T predicts the actual concentration at that time. We consider the concentra-
tion variance at the end of each run, and also the mean squared error (MSE). After one
simulated path,

MSE =
1

N

N∑
i=1

(E[XT (si) |Y 1:T ]− xT (si))
2
, (6.4)

and mean MSE is the average of this over the 1000 samples. Like for misclassification
rate, MSE for each spatial position is also considered, showing the average squared error
of concentration in each grid node over all samples. This is shown for the case where no
data is obtained in Figure 6.1b. The misclassification rate and MSE can be computed since
this is a simulation study, and the true full systems are available. In other situations, these
are not available, and the MMP and model variances are left for evaluating the strategies.
Expected squared error can be factorised into a bias term and a variance term, explain-
ing the bias-variance trade-off in statistical prediction and machine learning (James et al.,
2013). The bias is how much the expected value of the predictor differs from the expected
value of the concentration. In this study, the predictor is the posterior mean µT |T . If the
bias is small, the mean posterior variance and the spatial MSE are quite similar. The unit
for the MSE and the variances is log(ppb)2, but this is not included in plots and discussion
in this chapter, since it is not important for interpretation. The mean posterior variance is,
for grid node si,

Mean variance =
1

B

B∑
b=1

P T |T [i, i]b. (6.5)
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6.1 SPDE model and EMMP strategy
First consider the two test cases {SPDE: EMMPXT } and {SPDE: EMMPXt} using the
SPDE model and the EMMP criterion.

Test case Mean MMP Mean misclass. rate SD misclass. rate
SPDE: EMMPXT 0.104 0.103 0.073
SPDE: EMMPXt 0.103 0.105 0.075

Table 6.1: Mean MMP and misclassification rate for the two test cases using the SPDE model and
the EMMP strategy. The misclassification rate is for cutoff at probability 0.5.

The mean final MMP and misclassification rate and the misclassification standard devia-
tion are displayed in Table 6.1. The two test cases are not significantly different. The mean
misclassification rate is about 10% for both test cases. The misclassification rate is smaller
for the predictiveXT case, but not by much. The variation in misclassification rate is also
quite similar for the two cases, and so is the mean MMP. The sample standard deviation
for the MMP is approximately 0.026 for both cases. The MMP is actually slightly smaller
for the Xt case, showing that minimising the (expected) probability of misclassification
does not necessarily lead to actual lower misclassification rate. The MMP is dependent
on the underlying model, and since these two cases use the same model, the MMPs are
comparable. Misclassification rate is a better means of comparing the test cases, but when
this is not possible, we see that the MMP is quite similar to the misclassification rate.

Figure 6.2 displays some paths made by the two different adaptive strategies. The
paths are drawn upon the final EP(T )

T , and the true EST is also shown for each sample.
In a lot of the simulated replicates, the ES is divided into two separate parts of the domain,
one in the western part of the domain and one in the eastern. In these cases, the AUV
rarely discovers both parts, but gets stuck in one area, mostly the western part. Because
the strategies are myopic, the AUV only looks one step ahead, and therefore prioritises
to move to places with immediate reward, in form of reduction in EMMP. To discover
other areas of high concentration, the AUV must move across areas where the probability
of high concentration is very low, so there is little immediate gain. Figure 6.2c shows an
example of a case where the western side of the domain is researched first, and the AUV
never moves away from this area again. The EP(T )

T is below 0.5 in the eastern area, and
the positions are classified as 0, or not part of the EST . The true EST is shown in Figure
6.2a, and most of the eastern half of the system is misclassified in this case. In the system
shown by the EST in Figure 6.2b, the AUV moves around a lot more for both test cases.

Though paths are different for the two strategies, on average they explore the area in
a very similar way. We can see this by studying the mean variance after T time steps
for both test cases, see equation (6.5). These are shown in Figure 6.3a and 6.3b for the
{SPDE: EMMPXT } and the {SPDE: EMMPXt} case, respectively. The variance is
small near the path of the AUV, so a mean path is visible in the variance plot. It should be
noted that the positions with small variance move as time passes by, due to the forecasting
process model (equation (2.31)). Thus the exact path is not visible, but some general
features are nevertheless interesting. The starting position near the central south node is
recognised as the purple area close to the middle of the southern border. Further, the
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Example paths

(a) EST for time series 1. (b) EST for time series 2.

(c) Final path using the {SPDE: EMMP XT }
test case on time series 1 together with EP(T )

T .
(d) Final path using the {SPDE: EMMP XT }
test case on time series 2 together with EP(T )

T .

(e) Final path using the {SPDE: EMMP Xt}
test case on time series 1 together with EP(T )

T .
(f) Final path using the {SPDE: EMMP Xt}
test case on time series 2 together with EP(T )

T .

Figure 6.2: Final simulated paths for two sampled time series and the two test cases {SPDE: EMMP
XT } and {SPDE: EMMP Xt}. The paths are displayed together with the corresponding EP(T )

T s,
and the ESs at time step T for the two samples are also shown. The EP(T )

T should look as much like
the ES as possible.
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AUV mostly moves west in both cases, so the variance is small in the north-west direction
from the starting position. The mean path is shifted slightly to the east for the predictive
{SPDE: EMMPXT } test case compared with the {SPDE: EMMPXt} case, though this
is barely visible. The shift is due to the prediction forward in time. The movement of
pollutants in the area is, roughly speaking, to the east, so the area with EP(t)

T close to 0.5

is farther to the east than for EP(t)
t .

Posterior variance

(a) Mean variance after time step T for the
{SPDE: EMMP XT } test case.

(b) Mean variance after time step T for the
{SPDE: EMMP Xt} test case.

(c) Sample standard deviation for the poste-
rior variance after time step T for the {SPDE:
EMMP XT } test case.

(d) Sample standard deviation for the poste-
rior variance after time step T for the {SPDE:
EMMP Xt} test case.

Figure 6.3: Mean and standard deviation for the posterior variance in each grid node after T time
steps for the two test cases using the SPDE model and the EMMP decision strategy.

Figure 6.3c and 6.3d show the corresponding sample standard deviation of the posterior
variance. These displays show the variation in variance for each position over all simulated
spatial time series, and tell more about where the AUV moves in each case. The standard
deviation is very small close to the starting position, since the AUV always starts at the
same place. Further, we can see that the AUV usually chooses the same positions in the
beginning, due to the small standard deviation in the north-west direction from the starting
position. Since very little data is obtained at this point, the models are very similar in each
run, and thus the decisions are similar as well. The standard deviation is relatively high in
the north-eastern part of the domain. This tells us that, even though the AUV on average
does not obtain much information from this area due to the large mean variance, this varies
much from sample to sample. Mainly, it seems the AUV moves into this area when there
is a connected area of high concentration across a bigger part of the domain, as in 6.2d
and 6.2f. Another interesting observation from Figure 6.3 is the movement of the AUV in
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Spatial misclassification rate

Figure 6.4: Misclassification rate in each grid node over all 999 samples for test case {SPDE:
EMMP XT }.

the northern part of the domain. There is a small area of small standard deviation (purple)
in the middle/west part, close to the northern boundary. The mean variance in this area
is relatively high. This means that the AUV very rarely moves into this area. Just to the
west of this area, however, the mean variance is relatively small, but the variation quite
big. In all displays of Figure 6.3, the incoming small variance in the western part is due
to the Dirichlet BCs, and movement of the AUV in this area does not make much of a
difference on the variance. Again, the plots for the two test cases are without substantial
differences. Because the AUV in both test cases tends to get stuck in the western area, this
area is explored thoroughly in both cases, and the advantage of predicting forward in time
seems to be lost.

We may also study the misclassification rate in space, computed as in equation (6.3).
We have seen that the movements of the AUV in the two test cases are very similar, so the
misclassification rates are also very similar in space. Figure 6.4 shows the misclassifica-
tion rate at each grid node for test case {SPDE: EMMPXT }. The misclassification rate
is largest at a point on the left boundary. This is because the concentration here, according
to the BCs, is 8.485 log(ppb), and due to the noise term in the SPDE (equation (2.31)),
there is some randomness and the concentration may be higher or lower than the limit of
8.5 log(ppb) around this point. This makes the concentration in this area hard to predict.
The misclassification rate is quite large just around the western concentration front. Be-
cause of this, there will also be immediate reward in exploring this area in more detail, and
the AUV thus fails to explore other parts of the domain. The whole east side of the domain
also has quite large misclassification rates. As we have already seen, the AUV often does
not explore this area.

Table 6.2 shows the average MSE at the final time step and the corresponding sample
standard deviation. The MSEs are close to identical for the two approaches. Since this
is a simulation study, and the model on board the AUV is the same as the model used
to simulation the concentration data, the concentration predictions should not be biased.
The MSEs for each spatial grid point are very similar to the variances in Figure 6.3a and
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MSE

Figure 6.5: MSE in each grid node over all 999 samples for the {SPDE: EMMP XT } test case.

6.3b, as then should be expected. The MSE for case {SPDE: EMMPXT } is shown in
Figure 6.5. The MSE is largest to the north-east of the domain, while it is very small in
the western part of the domain. Comparing Figure 6.5 to the spatial misclassification rate
in Figure 6.4, we see that the misclassification rate is large in some areas where the MSE
is small. This shows that the high misclassification rate is then due to the concentration
being very close to the limit for the ES, and not due to bad concentration prediction. We
also note a line of large MSE close to the eastern boundary due to the BCs. The same type
of effect can be found in the variance plots in Figure 6.3.

Test case Mean MSE SD MSE
SPDE: EMMPXT 0.273 0.158
SPDE: EMMPXt 0.276 0.153

Table 6.2: Mean and standard deviation for MSE for the two test cases using the SPDE model and
the EMMP decision strategy.

The analysis of these two first test cases does not indicate any advantage in using
the forecasting strategy, as the results are close to identical. Further, the forecasting is
quite computer demanding, and as explained in section 5.4, this sometimes also leads
to numerical issues regarding positive definiteness. For efficient computations on board
AUVs, using the distribution ofXt instead ofXT is a lot more convenient. However, the
similarity seems to be due to the fact that the AUV only explores one small area when the
ES is disconnected, and there might be more to gain on the forecasting strategy in different
situations.

6.2 EMMP strategy with simpler models
Now we will look at the effect of using simpler distributions when modelling the concen-
trations on board the AUV, and consider the test cases {SpatialX0: EMMP} and {AR(1):
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EMMP XT }. The mean MMP, mean misclassification rate and the standard deviation of
the misclassification rate are displayed in Table 6.3. Since the models used in these test
cases are different from the underlying SPDE model, and also different from each other,
the mean MMPs, which are calculated from the on-board model (see equation (6.1)), are
not comparable, and cannot be used for evaluating the test cases. The misclassification
rates, however, can still be used, and it can be seen that these are larger for both these test
cases than for the test cases from section 6.1, as found in Table 6.1. The misclassification
rate is slightly smaller using the AR(1) model than the spatial model, but the difference is
not very big. Immediately, the impression is that it is important to include the temporal
advection-diffusion dynamics in the model. The simple use of an AR(1) model, which
assumes a stationary time series, does not capture the dynamics nearly as well, though this
is slightly better than ignoring temporal effects completely.

Test case Mean MMP Mean misclass. rate SD misclass. rate
SpatialX0: EMMP 0.112 0.140 0.079
AR(1): EMMPXT 0.132 0.135 0.079

Table 6.3: Mean MMP and mean misclassification rate for two test cases using the EMMP decision
strategy, but different models. The misclassification rate is for cutoff at probability 0.5.

Analysing other features substantiate this hypothesis. The MSE is significantly larger
for test cases {SpatialX0: EMMP} and {AR(1): EMMPXT } than {SPDE: EMMPXT }
and {SPDE: EMMP Xt}, and the difference between the spatial case and the AR(1) case
is very small, as can be seen in Table 6.4.

Test case Mean MSE SD MSE
SpatialX0: EMMP 0.486 0.191
AR(1): EMMPXT 0.482 0.190

Table 6.4: Mean and standard deviation for MSE for two test cases using the EMMP decision
strategy, but different models.

The large average MSE is due to very large MSE in some parts of the domain, as the
spatial MSE for test case {AR(1): EMMP XT } in Figure 6.6a shows. The prediction in
the areas with large MSE is particularly bad as a result of large concentration variation
and incorrect dynamics in the model. If no data is obtained, the concentration prediction
is the distribution mean at time T . With the correct process model, the MSEs for the
various spatial positions are as in Figure 6.1b, while if one uses simply a spatial model
with no movement from the initial state, the MSE is as shown in Figure 6.6b. Comparing
Figure 6.6a to the latter two plots, it is clear that the {AR(1): EMMP XT } test case does
not have the correct model, but that prediction is improved by obtaining new information,
as the areas with large MSE are smaller in Figure 6.6a than in Figure 6.6b. The mean
variance for test case {AR(1): EMMP XT } is shown in Figure 6.7a. The variances and
spatial MSE are not similar, due to the difference in models. Formulated with the bias-
variance factorisation, the biases of the prediction models are large. The results are similar
for the two test cases {AR(1): EMMPXT } and {SpatialX0: EMMP}.
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MSE

(a) MSE in each grid node over all 1000 sam-
ples for the {AR(1): EMMP XT } test case.

(b) MSE in each grid node over all 1000 sam-
ples when prediction is the initial state mean
with no data available.

Figure 6.6: MSE in each grid node for {AR(1): EMMP XT } test case, compared to prediction only
based on the initial state distribution. Because the initial state and the AR(1) model do not include
the advection-diffusion time dynamics, the MSE is very large in some areas.

Posterior variance

(a) Mean variance after time step T for the
{AR(1): EMMP XT } test case.

(b) Sample standard deviation for the poste-
rior variance after time step T for the {AR(1):
EMMP XT } test case.

Figure 6.7: Mean and standard deviation for the posterior variance after T time steps for two test
cases using the EMMP decision strategy, but different models.

These simple models are not based on solving (S)PDEs, and thus have less boundary
effects in their distributions. BCs are usually chosen based on assumptions, and boundary
effects are often unwelcome. Having the opportunity of making a model without the use
of BCs may therefore be of interest. In a simulation study like this, however, where the
incoming pollution at the west border is known, the simpler models miss out on this infor-
mation. The lack of information is visible in the mean variance in Figure 6.7a. The belt
with small variance close to the western border is missing, compared to the variances in
Figure 6.3. The standard deviation of the variance is also quite large in this area, as Figure
6.7b shows, since the variance depends on whether the area is visited or not. The mis-
classification rates are bigger in this area as well, compared to the test cases based of the
SPDE model; see Figure 6.8. The biggest difference between Figure 6.8 and 6.4, however,
is that the misclassification rates in the middle area are larger for the AR(1) model case.
In other words, the AR(1) model does not manage to predict the extent of the pollutants in
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Spatial misclassification rate

Figure 6.8: Misclassification rate in each grid node over all 1000 samples for the {AR(1): EMMP
XT } test case.

the area at time T , since the model does not capture the movement over time.
Some example paths for the two test cases are shown in Figure 6.9. The AUV decision

strategy is myopic EMMP, and the general features are the same as for the previous test
cases. The paths are shown with the EP(T )

T s calculated from the spatial and the AR(1)
models, respectively.

6.3 SPDE model with simpler decision strategies
Two test cases with simple, dynamic decision strategies are considered, as well as two test
cases where the path is predetermined, so that no decisions are made during simulation.
All these test cases use the SPDE model for the AUV; the same as the underlying model of
the time series replicates. We first have a quick look at the simple dynamic strategies, test
cases {SPDE: EP(t−1)

t 0.5} and {SPDE: Random}, before moving on to the predetermined
paths, test cases {SPDE: Predetermined diagonals} and {SPDE: Predetermined uniform}.

Test case Mean MMP Mean misclass. rate SD misclass. rate
SPDE: EP(t−1)

t 0.5 0.115 0.119 0.080
SPDE: Random 0.131 0.131 0.080

Table 6.5: Mean MMP and mean misclassification rate for two test cases using the SPDE model,
but simpler decision strategies. The misclassification rate is for cutoff at probability 0.5.

Table 6.5 shows comparable MMPs and misclassification rates for the two test cases
{SPDE: EP(t−1)

t 0.5} and {SPDE: Random}. Again, we see that the MMP gives a fair
estimate of the misclassification rate, but since the misclassification rate is available in the
simulation study, we use this for evaluation. Both test cases have larger classification error
than the test cases from section 6.1, but smaller than those in section 6.2. In particular,
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Example paths

(a) EST for time series 1. (b) EST for time series 2.

(c) Final path for time series 1 for test case
{Spatial X0: EMMP}.

(d) Final path for time series 2 for test case
{Spatial X0: EMMP}.

(e) Final path for time series 1 for test case
{AR(1): EMMPXT }.

(f) Final path for time series 2 for test case
{AR(1): EMMPXT }.

Figure 6.9: Final simulated paths for two sampled time series and the two test cases {AR(1): EMMP
XT } and {Spatial X0: EMMP}. The paths are displayed together with the corresponding EP(T )

T s,
and the ES at time step T for the two samples are also shown. The EP(T )

T should look as much like
the ES as possible.
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Spatial misclassification rate

Figure 6.10: Misclassification rate in each grid
node over all 1000 samples for the {SPDE:
Random} test case.

MSE

Figure 6.11: MSE for each grid node over all
1000 samples for the {SPDE: Random} test
case.

we note that having the right model and choosing positions at random is better on average
than the EMMP decision strategy when the model is incorrect, see Table 6.3. Spatial
misclassification rate for case {SPDE: Random} is shown in Figure 6.10. Comparing to
that of the {AR(1): EMMP XT } test case in Figure 6.8, we see that the misclassification
rate is smaller to the far west for the {SPDE: Random}, since the model on board the AUV
is correct in this case. And further, compared to not obtaining any data, as seen in Figure
6.1a, we can clearly see that misclassification rates are decreased when adding data, even if
the positions are chosen at random. All so far discussed test cases have considerably lower
misclassification rate than if no data is obtained, resulting in the average misclassification
rate of 18.2 %.

Now consider only the test cases using the SPDE model. Choosing the next position
at random gives good results for comparing. All strategies trying to lower the misclassi-
fication rate should on average give lower rate than the random strategy; if not it can be
disregarded at once. The test case {SPDE: Random} has 13.1%, and {SPDE: EP(t−1)

t 0.5}
11.9 %, so the latter clearly has a more efficient strategy. The EMMP strategies are visibly
better than both, with 10.3 % misclassification rate for test case {SPDE: EMMPXT }.

Test case Mean MSE SD MSE
SPDE: EP(t−1)

t 0.5 0.331 0.171
SPDE: Random 0.316 0.159

Table 6.6: Mean and standard deviation for MSE for the two test cases using the SPDE model, but
simpler decision strategies.

Average MSE for test cases {SPDE: EP(t−1)
t 0.5} and {SPDE: Random} are shown in

Table 6.6. These are quite similar for the two test cases, and slightly larger than for the
{SPDE: EMMPXT } and {SPDE: EMMPXt} cases. Neither of the four strategies aims
to minimise the MSE, to the small difference is not very surprising. The spatial MSE for
test case {SPDE: Random} is displayed in Figure 6.11, and it is here clearly visible that
on average, the random path moves around in a small area close to the starting position,
as one expects from a spatial random walk. The MSE and the variances are again similar,
since the assumptions of the model on board the AUV match the underlying true model.
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Paths for the same simulated time series as in Figure 6.2 and 6.9 are shown in Figure
6.12 for test cases {SPDE: EP(t−1)

t 0.5} and {SPDE: Random}. The movements in these
test cases are different from those we have seen so far, but it is also clear that the {SPDE:
EP(t−1)

t 0.5} test case tries to explore the domain in a similar fashion to the EMMP strategy,
while the other of course chooses steps at random. The difference between them can in
particular be seen in Figure 6.12c and 6.12e.

Now consider the two test cases using predetermined paths. The paths are shown
in Figure 5.2, and the key MMP and misclassification numbers are found in Table 6.7.
The {SPDE: Predetermined uniform} test case sampling gives larger misclassification rate

Test case Mean MMP Mean misclass. rate SD misclass. rate
SPDE: Predet. diagonals 0.095 0.097 0.059
SPDE: Predet. uniform 0.118 0.119 0.080

Table 6.7: Mean MMP and misclassification rate for the two test cases using the SPDE model and
where the paths are predetermined. The misclassification rate is for cutoff at probability 0.5.

than the test cases{SPDE: EMMP XT } and {SPDE: EMMP Xt}, while using test case
{SPDE: Predetermined diagonals} results in the lowest misclassification rate on average.
In this test case, the path is designed to explore as much of the domain as possible with the
available restrictions of step length and time. As already discussed, the ES is often divided
into separate parts, so that there are areas of high concentration both at the west and the
east side of the domain. Both are rarely discovered using the myopic EMMP decision
strategy. In the {SPDE: Predetermined diagonals} case, however, the big areas are usually
discovered, though some details might be missing.

Spatial misclassification rate is displayed for test case {SPDE: Predetermined diago-
nals} in Figure 6.13. Comparing this display to the one for test case {SPDE: EMMPXT }
in Figure 6.4, the main difference is that the rate is lower in the eastern area for the {SPDE:
Predetermined diagonals} case. We have already seen that the details around the western
high concentration front are hard to predict, and now it can be noted that even though the
predetermined path explores the western area in less detail than {SPDE: EMMPXT }, the
misclassification rates are very similar in this area. It seems there is not much to gain by
staying in the same area for a long time, like the AUV often does using the EMMP strategy.
The {SPDE: Predetermined diagonals} test case is of course helped by the western BCs,
so that concentrations are known with large certainty in positions that are never visited.
Figure 6.14 shows some examples of what the AUV discovers in the two test cases with
predetermined paths.

The MSE for the same two test cases are listed in Table 6.8. It is smallest for test case
{SPDE: Predetermined diagonals}, but also the test case {SPDE: Predetermined uniform}
predicts the concentration better than the EMMP strategy test cases, on average. The
EMMP criterion is developed to reduce the probability of misclassification with respect to
ESs, and prediction of concentration at positions where it is certain to be above or below
the critical limit of the ES does not help classification. Thus, it is as must be expected that
strategies with paths covering more of the domain result in smaller MSE.

Spatial MSEs for the two test cases using predetermined paths are shown in Figure
6.15. The paths are clearly visible. Figure 6.15b reveals very few areas with high MSE for
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Example paths

(a) EST for time series 1. (b) EST for time series 2.

(c) Final path for time series 1 using test case
{SPDE: EP(t−1)

t 0.5}.
(d) Final path for time series 2 using test case
{SPDE: EP(t−1)

t 0.5}.

(e) Final path for time series 1 using test case
{SPDE: Random}.

(f) Final path for time series 2 using test case
{SPDE: Random}.

Figure 6.12: Final simulated paths for two sampled time series and the two test cases {SPDE:
EP(t−1)

t 0.5} and {SPDE: Random}. The paths are displayed together with the corresponding
EP(T )

T s, and the ES at time step T for the two samples are also shown. The EP(T )
T should look

as much like the ES as possible.
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Spatial Misclassification Rate

Figure 6.13: Misclassification rate for each grid node over all 1000 samples for the {SPDE: Prede-
termined diagonals} test case.

Test case Mean MSE SD MSE
SPDE: Predetermined diagonals 0.165 0.060
SPDE: Predetermined uniform 0.232 0.122

Table 6.8: Mean and standard deviation for MSE for the two test cases using the SPDE model and
where the paths are predetermined.

the {SPDE: Predetermined diagonals} test case. The variance is similar. Since the path is
the same in all runs and the variance is only dependent on the positions for measurements,
not the measured values themselves (equation (2.49)), the variance is the same at the end
of every run, and variance standard deviation is 0 in every grid node.

6.4 SPDE model with hybrid decision strategy

We have seen that for minimising misclassification rate in the Frænfjorden situation, ex-
ploration of the whole domain is important, as predetermining a path exploring big parts
of the domain has so far resulted in the lowest misclassification rate, as well as the best
concentration predictions (lowest MSE). Second best is using the myopic EMMP strategy.
The hybrid decision strategy introduced in section 4.2.4 is developed to remedy these re-
sults, in an attempt to combine the EMMP strategy with a strategy for exploring new areas.
The strategy {SPDE: Hybrid} is tested on the same 1000 time series replicates as all other
test cases. The key numbers for this case are listed in Table 6.9. The mean misclassifica-
tion rate is not quite small enough to beat the predetermined diagonals path, but the results
are very close, and there is a clear improvement from the pure EMMP strategy. The spatial
misclassification rate is shown in Figure 6.16. In the eastern part of the domain, the error
is smaller than that of case {SPDE: EMMP XT } in Figure 6.4.

The mean posterior variance in Figure 6.17a shows that the hybrid strategy often results
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Example paths

(a) EST for time series 1. (b) EST for time series 2.

(c) {SPDE: Predetermined diagonals} for time
series 1.

(d) {SPDE: Predetermined diagonals} for time
series 2.

(e) {SPDE: Predetermined uniform} for time
series 1.

(f) {SPDE: Predetermined uniform} for time
series 2.

Figure 6.14: Final simulated paths for two sampled time series and the two test cases {SPDE:
Predetermined diagonals} and {SPDE: Predetermined uniform}. The paths are displayed together
with the corresponding EP(T )

T s, and the ES at time step T for the two samples are also shown. The
EP(T )

T should look as much like the ES as possible.
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MSE

(a) {SPDE: Uniform}. (b) {SPDE: Predetermined diagonals}.

Figure 6.15: MSE for each grid node over all 1000 samples for the two test cases using the SPDE
model where the path is predetermined. The shapes of the paths are clearly visible as the MSE is
very small in the measured positions.

Spatial Misclassification Rate

Figure 6.16: Misclassification rates for each grid node over all 1000 samples for the test case using
the SPDE model and the hybrid decision strategy.
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Test case Mean MMP Mean misclass. rate SD misclass. rate
SPDE: Hybrid 0.097 0.099 0.069

Table 6.9: Mean MMP and misclassification rate for the test case using the SPDE model and the
hybrid decision strategy. The misclassification rate is for cutoff at probability 0.5.

Posterior variance

(a) Mean posterior variance. (b) Sample standard deviation for the posterior
variance.

Figure 6.17: Mean and standard deviation for the posterior variance after T time steps for the
{SPDE: Hybrid} test case.

in paths going towards the west, like in the {SPDE: EMMP XT } case, but on average the
variance is lower in the north-east for the hybrid case, meaning that the AUV is more often
moving into this area. The same can be observed by studying the MSE. The mean MSE
is 0.224 with sample standard deviation 0.124, which is an improvement from the pure
EMMP strategy test cases. The prediction error is still not quite as small as for the {SPDE:
Predetermined diagonals} test case, but this hybrid strategy makes the AUV explore the
domain more than does the pure EMMP strategy. In Figure 6.17b the standard deviation of
the variance is displayed. The standard deviation is larger for the hybrid case than the pure
EMMP cases in some areas, indicating that the hybrid strategy paths are more varying, as
is expected because of the randomness and the variance criterion, as described in section
4.2.4. The example paths made from the {SPDE: Hybrid} test case in Figure 6.18 show
that the pattern of moving along the ES boundary is sometimes broken, so that the AUV
explores new areas. Figure 6.18c shows an example where the strategy is maybe not the
most successful, while the AUV is actually quite close to discovering a new area of high
concentration in Figure 6.18d.

There are also cases where the strategy works extremely well, as Figure 6.19 shows.
Here, the paths for the {SPDE: EMMP XT } and {SPDE: Hybrid} test cases are both
shown, as well as the actual ES at time T . While the AUV stays in the western area using
the pure EMMP strategy, it moves both east and south and discovers several areas of high
pollution concentration using the hybrid strategy. Because of the randomness in the hybrid
strategy, it will sometimes work really well and sometimes not. On average, we see that
for this model for Frænfjorden, exploration is important, and using the hybrid criterion
improves the results of identifying the EST , and also lowers the MSE, compared to a pure
EMMP strategy.

84



6.4 SPDE model with hybrid decision strategy

Example paths

(a) EST for time series 1. (b) EST for time series 2.

(c) Final path for time series 1 using test case
{SPDE: Hybrid}.

(d) Final path for time series 2 using test case
{SPDE: Hybrid}.

Figure 6.18: Final simulated paths for two sampled time series and the test case {SPDE: Hybrid}.
The paths are displayed together with the corresponding EP(T )

T s, and the ES at time step T for the
two samples are also shown. The EP(T )

T should look as much like the ES as possible.
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Hybrid vs. EMMP path

(a) EST .

(b) {SPDE: EMMP XT }. (c) {SPDE: Hybrid}.

Figure 6.19: Final paths for a time series replicate where the hybrid decision strategy leads the AUV
to discover several high concentration areas that it misses using the pure EMMP strategy. The paths
are shown together with the respective EP(T )

T s, which should look as much as the displayed EST as
possible.
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Chapter 7

Further discussion

In chapter 6, we found that having the correct SPDE model is important for the classi-
fication results. The AR(1) and the spatial model with EMMP decision criterion result
in larger misclassification rates than choosing positions at random using the SPDE model.
The AR(1) is performing slightly better than the pure spatial model, since the AR(1) model
includes some temporal variation. The test cases using the SPDE model with EMMP deci-
sion criterion perform fairly well, and better than more naive strategies, but the AUV often
fails to explore the domain enough to find all areas of high concentration. Because of this,
the predetermined path exploring a big fraction of the domain has the lowest misclassifi-
cation rate, though a hybrid strategy using the EMMP and a variance criterion has almost
equal performance.

For further discussion, some other simulation studies are performed and presented in
this chapter. The results of these lead to discussions of the Frænfjorden model and the
performance of the different strategies. BCs and model assumptions are discussed first,
before moving on to the sensitivity of the input model parameters, and at the end there are
some remarks about the pure spatial model and starting position for the AUV paths.

7.1 Boundary conditions and model assumptions
A clear challenge in the building of the Frænfjorden model is to choose realistic BCs, as
discussed in sections 2.2.1 and 3.1.2. The largest effects we have seen are from the western
boundary, where Dirichlet BCs are used. We have perfect data along the boundary, and
this propagates into the area through the process model and advection field. Over time, the
concentrations in the area to the far west of the domain are almost certain, as we have seen
several times, e.g. in Figure 5.1d. Such perfect information is not realistic in practice, but
allows us to have a perfect model in the simulation study, so that the results are focused
on different strategies for the AUV. The initial state model expected values for the grid
nodes farthest to the west are used for the Dirichlet BCs. A consequence in the simulation
of time series replicates is that the transit from the initial state sample concentrations to
the concentrations on the boundary may be quite sharp, and there is sometimes a sort of
border between the concentration of pollutants already in the domain at initial time and
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ES with different BCs

(a) Initial state mean concentrations along the
western boundary.

(b) Initial state sample concentration along the
western boundary.

Figure 7.1: EST from one simulated time series with two different BCs.

the incoming pollution as time passes. This means that some samples lack the smoothness
seen in the Frænfjorden data. An example is displayed in Figure 7.1a. In this ES it is very
easy to see the limit between initial pollution and where the concentration comes from the
boundary, and it does not look very realistic. Such a hard transit is fortunately not very
common.

A new study is performed on time series replicates simulated in a slightly different way.
To make the samples somewhat more realistic, the BCs are set to the initial concentration
for the respective initial state sample. The ES in Figure 7.1b shows how the new BCs
follow the initial state sample, so that the transit is smooth. The model on board the AUV
still uses initial mean along the boundary. This leads to unfortunate results in the western
area, as the SPDE model on board the AUV now does not match the underlying model of
the simulated time series in this area. This simulation study shows some of the things that
may happen if one uses Dirichlet BCs without really having this information available,
and the situation may thus be closer to what one would experience when dealing with real
data.

The AUV paths are not the same in the two studies, but the differences are not sub-
stantial. What makes the AUV choose different positions are the different observed values
in the western area. Otherwise everything is the same from the AUV test case perspective.
However, the model on board the AUV reflects a false certainty about the concentration
close to the western boundary, since the incoming concentration according to the model
is not the actual incoming concentration. Therefore, the variance is too small in this area,
and concentration predictions and classifications are not corrected by new data. The mis-
classification rate is therefore overall higher, and the MMP is not a good estimate for the
classification error. The MMP is calculated from the model on board the AUV, and is
therefore very similar in the two simulation studies, while the misclassification rate of e.g.
the {SPDE: EMMP XT } test case is on average 11.7 % in the new study, from 10.3 %
when the BCs are correct. Likewise, test case {SPDE: Random} and {SPDE: Predeter-
mined diagonals} get misclassification rates 14.6 % and 11.1 %, respectively. The spatial
MSE is large in the western area, and does not have the same shape as the model variance.
The increase in mean MSE for test case {SPDE: EMMP XT } is from 0.273 to 0.338, test
case {SPDE: Random} has MSE 0.390 and {SPDE: Predetermined diagonals} 0.231. The
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Residual QQ plot

(a) {SPDE: EMMP XT }. (b) {SPDE: Hybrid}.

Figure 7.2: QQ-plots for the standardised measurement residuals for test cases {SPDE: EMMPXT }
and {SPDE: Hybrid} of the original simulation study. The residuals are Gaussian distributed, and
the theoretical and sample quantiles match almost perfectly. Each display shows 30000 residuals.

benefit of using the SPDE model compared to the AR(1) or spatial model is smaller when
the BCs are incorrect. The AR(1) and spatial model do not have any BCs, and the misclas-
sification rates are not changed much for the test cases using these models. For the spatial
test case, the mean misclassification rate is now 13.6%, which is actually a small decrease.
The constant, smooth, incoming pollution might be easier to predict for the cases without
BCs.

One way of checking model assumptions is to study the residuals between measured
values and their predicted values, which should be Gaussian distributed with mean zero if
assumptions hold. The predicted value for the measurement is the mean of Yt |Y 1:t−1, as
given in equation (2.44), and divided by the variance in the same equation, the residuals
should be standard Gaussian distributed. Since this is a simulation study, we already know
that everything should be Gaussian. One can check the Gaussian assumption by making a
QQ-plot (quantile-quantile-plot). Figure 7.2 shows QQ-plots with the standardised residu-
als from test cases {SPDE: EMMPXT } and {SPDE: Hybrid} from the original simulation
study discussed in chapters 5 and 6. The standardised residuals from a standard Gaussian
distribution should, when sorted and plotted against theoretical residuals, approximately
follow the straight line, and we see that the result is almost perfect here. With 30 residuals
for each time series replicate, and 1000 (or 999) replicates, this is not surprising. For one
single time series or with fewer samples, there will of course be some deviation from the
line even when all model assumptions are correct.

When simulating with incorrect BCs, however, the QQ-plots become as shown in Fig-
ure 7.3. There is clear displacement from the straight line at the ends. The displacement
tells that the sample quantiles are more extreme than the theoretical quantiles, suggest-
ing that the sample residuals come from a distribution with heavier tails than the standard
Gaussian, so that the residuals become more extreme. What happens is that due to the in-
correctly small variance from the western boundary, where the BCs give a false certainty,
the residuals from measurements near this boundary are too big. In other words, we can
clearly see the result of having different models for the simulated time series replicates
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QQ-plot residuals

Figure 7.3: QQ-plot for the standardised measurement residuals of the study with different BCs
for test case {SPDE: EMMP XT }. The sorted residuals deviate from the straight line at the ends,
indicating heavier tails on the sample distribution.

and the AUV sampling, even though the difference is only in the BCs. For the test cases
using the AR(1) model and the spatial model, the measurements are not drawn from the
distribution used by the on-board model, and the residuals after subtracting mean and di-
viding by the variance in the model, are therefore not standard Gaussian in the original
simulation study either. We can see this in Figure 7.4. The deviation from the line is large,
with more extreme residuals than one expects in the standard Gaussian distribution. It is
easy to see that the model assumptions in these cases do not match the (simulated) reality.
Doing some diagnostic plotting of the residuals can therefore be a good way of evaluating
model assumptions.

We have seen that the misclassification rate in the simulation study for Frænfjorden
is affected by the BCs. In this model, there is incoming pollution of high concentration,
so the BCs greatly affect the dynamics in the model and the resulting ES. The domain
was chosen because there seemed to be interesting pollutant dynamics. In hindsight, for a
simulation study it would be a better idea to choose a domain where most of the pollution
stays inside the domain during the relevant time period, as the model would then not be so
dependent on the boundary. It is safer to choose a domain for the model where one does
not expect anything interesting to happen along the boundary, and which is large enough
for boundary effect not to affect the area of interest significantly. However, the model in
this thesis is based on a real situation, and such are rarely ideal.
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Residual QQ plot

(a) {Spatial X0: EMMP}. (b) {AR(1): EMMP XT }.

Figure 7.4: QQ-plots for the standardised measurement residuals for test cases {Spatial X0:
EMMP} and {AR(1): EMMP XT } of the original simulation study. The sorted residuals do not
follow the straight line, indicating that the model assumptions are not fulfilled and that the tails of
the sample distributions are too heavy.

7.2 Effect of parameter change

To test model sensitivity, all test cases are run on 100 time series replicates for higher
and lower advection speed, as described in section 3.2. We use the same seeds for the
randomness, so that the initial state and innovation (noise) samples are the same as for
the 100 first sample in the original study, and the only difference in the time series is
essentially related to the changed advection parameter. The aim is to see how the results
of the test cases depend on the parameters in the model. The same advection is used both
when simulating the time series and in the model on board the AUV for the test cases using
the SPDE model. The AR(1) parameter φ is not straightforward to update corresponding
to the increased or decreased drift field, so for this test case, the same parameter is used
for the on-board model. Since only 100 replicates are used, there is more uncertainty in
the results for these simulation studies, but some general tendencies are discussed in this
section.

In general, the change in misclassification rate when varying the advection slightly is,
at least partly, due to the effect of the BCs in the western area. When the speed of the drift
field is larger, the known concentration on the boundary reaches further into the domain,
and the misclassification rate is lower. Approximately two columns more from the west
in the grid are affected by the BCs for high advection than in the original Frænfjorden
simulation study, and likewise two columns less when the advection speed is low. The
numerical boundary effects along the eastern boundary are also larger for high advection,
resulting in larger variance in this area. This is as expected, since this means the speed
of the advection towards this boundary is larger, and the condition of no flow across the
boundary less realistic and harder to fulfill numerically. In the rest of the domain, the
model variance does not vary significantly for the three models.

Because of the boundary effects, some interesting features might be lost, as it is hard
to know exactly how much of the change is due to the BCs. There are still some tendencies
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of change between the different test cases. In particular, we may study what happens to the
test cases {Spatial X0: EMMP} and {AR(1): EMMP XT }. While the test cases using
the SPDE model have higher misclassification rates with low advection and lower for high
advection, the results are opposite for these two test cases. As one would expect, when the
drift speed is small, the error of not including time dynamics is smaller than when the drift
speed is large. The test cases with these simpler models for low advection still do not per-
form as well as the EMMP strategy with SPDE model, but the difference is significantly
lower. The {Spatial X0: EMMP} test case now has about the same performance as the
{SPDE: EP(t−1)

t 0.5 } test case, with misclassification rates of 12.8 % and 12.7 %, respec-
tively. The {SPDE: Random} case now has a misclassification rate of 13.6 % on average.
The {SPDE: EMMPXt} and {SPDE: EMMPXT } test cases both have misclassification
rates of about 11 % when advection speed is low.

There is a slight indication that the test case {SPDE: Predetermined diagonals}, which
has given the best results so far, is not outperforming the {SPDE: Hybrid} test case, at
least when parameters are changed. The predetermined path is designed to move across
the areas with the most prior uncertainty with respect to the ES, i.e. where the original
EP(0)

T is close to 0.5. When the advection speed is changed, the positions no longer capture
the same features. When drift speed is low, the two cases both have a misclassification rate
of 10.7%. For high advection, the test case {SPDE: Hybrid} has average misclassification
rate of 9.4 %, which is lower than the 9.6 % of the {SPDE: Predetermined diagonals}
case. The difference is not very big, and with a sample size of only 100, we can only
conclude that the performance of {SPDE: Hybrid} and {SPDE: Predetermined diagonals}
are quite similar. For high advection, the {SPDE: EMMP Xt} and {SPDE: EMMP XT }
test cases have misclassification rates of 9.9 % and 10.1 %, respectively. In general, the
internal variations between the different test cases are small. It seems, therefore, that the
performance of the different decision strategies are not dependent on the exact parameter
configuration used in this thesis.

The test cases are also run with smaller measurement variance τ2 on 100 original time
series replicates. In this case, we use τ = 0.05. The results are, unsurprising, improved
for all test cases. The internal order between the test cases are still mostly the same, but
again the hybrid test case has lower mean misclassification rate than the predetermined
diagonals test case. The mean misclassification rates for these 100 time series are 8.4 %
for test case {SPDE: Predetermined diagonals}, 8.1% for test case {SPDE: Hybrid}, 8.8%
for {SPDE: EMMP XT } and 8.9 % for {SPDE: EMMP Xt}.

7.3 Other remarks
The pure spatial model considered in this thesis is the initial state model for Frænfjorden.
We have seen that the test case using this model does not perform as well as the cases
using the SPDE model that includes temporal changes. It does not capture the movement
of the pollution, and does not have information about the concentration along the boundary
provided by the BCs. What if we, instead of using the model for the initial time step,
consider a spatial model based on the prior knowledge of the state at time T ? Would the
spatial model then predict EST more accurately?

As a test, the initial state model is forecasted T = 30 steps using the SPDE model, and
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this forecasted distribution ofXT is used in a new spatial test case, denoted {Spatial XT :
EMMP}. Paths are simulated for this test case on the original 1000 time series replicates.
The key numbers we then get are mean MMP 0.107, mean misclassification rate 0.126 and
mean MSE 0.362. For this new spatial model, there are still no time dynamics included
in the model on board the AUV, but the boundary effects are correct at time step T and
the spatial model is closer to the reality at time T than when considering the initial state
model. Therefore, both the misclassification rate and the MSE are improved quite a bit, as
can be seen by comparing to the results in Table 6.3 and 6.4.

The results are still quite far from the results of test cases {SPDE: EMMP XT } and
{SPDE: EMMP Xt}, and even further from {SPDE: Hybrid} and {SPDE: Predetermined
diagonals}. This shows that the SPDE model is not better only because of the much
discussed BCs. Including the time dynamics in the on-board model really is the best
approach. Figure 7.5a shows the spatial MSE from test case {Spatial XT : EMMP}. We
see that the concentration prediction is now very accurate close to the western boundary,
and compared to the MSE from test case {Spatial X0: EMMP} in Figure 7.5b, most of
the areas with really bad predictions are gone. Nevertheless, it is clear from the QQ-plot
of residuals in Figure 7.5c that model assumptions are still not correct. A pure spatial
model can perhaps be considered acceptable if the advection speed is very small or the
time period in question very little. Especially if good BCs are in addition proving hard
to find, spatial models are convenient, since choosing bad BCs may lead to unfortunate
results, as discussed in section 7.1.

Starting positions are not studied thoroughly in this thesis, but the AUV paths seem to
be sensitive to starting position, as it tends to get stuck along the boundary of the part of
the ES that it discovers first. If there is only one connected ES, the AUV moves around
the whole boundary a lot more, and there is reason to believe that the starting position is
not very important in these cases. Also, the gain of thoroughly exploring the western ES
front is quite small in this simulation study, as a big part of that area is well-known without
any additional data because of the Dirichlet BCs. In other scenarios, one may expect the
EMMP decision strategy to be beneficial compared to paths such as the predetermined
diagonals, which explores big parts of the domain, but may then fail to discover details
along the ES borders.
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Spatial model for time T

(a) MSE in each grid node for the {Spatial XT :
EMMP} test case.

(b) MSE in each grid node for the {Spatial X0:
EMMP} test case.

(c) QQ-plot for the standardised measurement
residuals for test case {Spatial XT : EMMP}.
The tails of the sample distribution are too
heavy.

Figure 7.5: MSE and residuals QQ-plot for the test case {Spatial XT : EMMP}. MSE for the test
case {Spatial X0: EMMP} is displayed for comparison.
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Conclusion

In this thesis, spatio-temporal GPs are used to model the flow of contaminant concentra-
tion in Frænfjorden, Norway. The advection-diffusion SPDE is solved by finite differences
to create the model, and parameters are found from the numerical data models DREAM
and SINMOD. Further, simulations of different strategies for AUV environmental sensing
are explored for the established model, with the aim of gaining information on the concen-
tration ES after T time steps, EST . A myopic decision strategy based on the probability of
misclassification, EMMP, is derived, and compared with more naive strategies. Using the
EMMP strategy with the forecasted distribution ofXT is quite computer demanding.

Letting the AUV use the SPDE model, EMMP strategies are performing better than
other naive dynamic strategies in predicting the ES. Choosing positions at random results
in an average misclassification rate of 13.1 %, and using the EMMP criterion reduces it
to 10.3-10.5 %. If a spatial model or a spatial AR(1) time series model is used on board
the AUV, however, the predictions are not as good, and the mean misclassification rate is
approximately 14 %. It seems that even over a small time period like 30 minutes, it is im-
portant to consider time dynamics. The simpler models perform better when the advection
speed is lower, as the change in time is then smaller. Simulating from the Frænfjorden
model, there are often several areas of high concentration in the area, so that the EST is
split in several disconnected parts. The test cases using the EMMP strategy efficiently
finds one part, but often fails to explore the rest of the domain. Because of this, predeter-
mining a path exploring a large part of the domain often predicts the EST better, with an
average misclassification rate of 9.7 %. Some initial work is done on finding an adaptive
strategy that explores greater parts of the domain. A hybrid strategy is introduced, where
the position for the next step is sometimes chosen based on reduction in variance instead
of the EMMP, and though the results are not better than the predetermined diagonals test
case, it seems to have potential. Using the hybrid strategy, the mean misclassification rate
is 9.9 % in the simulation study. The test cases exploring the most of the domain are also
seen to have the lowest MSEs. In practice, the misclassification rate and the MSE are not
available, since the true concentrations are unknown. However, we have seen that if the
model assumptions hold, these are on average very similar to the MMP and the posterior
model variances, respectively. In the developed model, the BCs on the western side of the
domain have large effects on the concentrations near the boundary and also on the results,
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as they affect the ES in this part of the domain. When perfect information is not available,
as it rarely is in practice, one should, if possible, choose the domain so that the features of
interest are not greatly affected by the boundary.

As we have seen that correct time dynamics are important for the results, future work
should include improving the model for Frænfjorden. The advection field is considered
constant in this thesis, but letting the field vary in time, or considering anisotropy in the
diffusion, are some suggestions for a more nuanced model. The finite differences scheme
could be improved, and more accurate model parameters could perhaps also be found by
e.g. maximum likelihood estimation. Further work on improving the EMMP strategy
is needed, and testing it in different situations could be interesting. Though the AUV
tends to get stuck in one part of the domain in the situation where several areas have high
concentrations, it seems to be a good strategy if there is only one ES border to be found. So
far, forecasting to time T to use the distribution of XT is not seen to have any advantage
over using the distribution Xt when making decisions for time t. This should, however,
be tested in situations where there is only one area of high concentration. For the EMMP
strategy to be feasible to use on board an AUV, some improvements on the computations
of the EMMP criterion are needed. This is in particular important if the distribution of
XT is to be used. Future work for Frænfjorden should also include more research on the
hybrid decision strategy. Some tuning of parameters is needed to balance the two decision
strategies for better performance. Adaptive criteria are dynamic and may discover features
unforeseen by the model or explore areas in greater detail. These are advantages over
predetermined paths, where one only has prior knowledge when making the decisions.
Nevertheless, as it is seen that the predetermined paths are actually performing quite well,
further work could also exploit this knowledge, since live computations from the AUV
are then not required. Simple AUV strategies may in the future be combined with other
environmental sensing techniques to optimise ocean monitoring.
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