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Sammendrag

I denne oppgaven presenteres et forsøk p̊a å gjenskape den s̊akalte primærsirkelen
av pikselmatriser i vektorrommet av vekter i et konvolusjonelt nevralt nettverk
(CNN) trent p̊a et bildedatasett, ved hjelp av åpen kildekode programvare. Totalt
100 CNN ble trent til omtrent 98 prosent nøyaktighet p̊a et datasett av h̊andskrevne
siffer (MNIST), og en punktsky av 6400 nidimensjonale vektmatriser ble tetthets-
filtrert til 1920 vektmatriser og Mapper-algoritmen ble brukt til å generere nerven
av punktskyen. Her er det gjort funn som støtter opp om hypotesen om at et CNN
observerer bilder p̊a samme m̊ate som det primære synssenteret hos pattedyr. Sen-
sitivitetsanalyser ble utført for å teste styrken i det foreg̊aende eksperimentet. En-
kle parameterjusteringer i tettsfiltrering og Mapper-algoritmen medførte at sirkel-
topologien ble brutt. En idealisert primærsirkel ble diskretisert og p̊aført vektene
til et CNN som et utrenbart nettverkslag. Dette nettverket ble trent p̊a MNIST-
datasettet og testet p̊a et hittil usett datasett av naturlige bilder av av reelle hus-
nummerskilt (SVHN). Hypotesen om en dramatisk økning i testnøyaktighet gitt et
p̊aført topologisk rom har ikke blitt bekreftet. Til sist ble sammenhengen mellom
en sirkulær topologi i treningsdata og testnøyaktighet testet for 100 trente CNN.
Det er grunn til å stille spørsm̊al om tidligere observerte gunstige topologiske effek-
ter p̊a CNN har hatt en tidsbegrenset gyldighet, gitt den raske utviklingen innen
maskinlæringsmodeller og infrastruktur generelt.
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Summary

In this thesis we present an attempt to reproduce the so-called primary circle of
pixel patches in the vector space of weights in a Convolutional Neural Network
(CNN). In total 100 CNNs were trained to about 98 per cent test accuracy on a
dataset of hand written digits (MNIST). A point cloud of 6,400 nine-dimensional
weight vectors were density filtered to 1,920 points, and the Mapper algorithm was
applied to generate the nerve of the point cloud. We have findings supporting the
hypothesis that a CNN observes images in the same manner as the mammalian
primary cortex. Sensitivity analysis were performed on that experiment. Simple
parameter adjustments made the circle topology in the data vanish. An idealized
discretized primary circle was enforced on a layer of the CNN and frozen from
training adjustment. This network was trained on the MNIST set and tested on
unseen house number sign photos (SVHN). The hypothesis of a large increase in
test accuracy on the unseen data was not confirmed. Ultimately the connection
between a circular topology in the CNN weights and train-test accuracy during
training was tested. There was no sign of any correlation between them. There
seem to be good reason to ask whether previously reported benefits on applying
topological information on CNN structures has been of limited duration, given the
development of the machine learning field and infrastructure in general.
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Chapter 1
Introduction

With Topological Data Analysis (TDA) we can qualitatively analyze the shape
of a discrete set in Euclidean space known as a point cloud. The building block
of TDA is the simplicial complex, which in turn are built from simplices, that
is points, edges between pairs of points, solid triangles and so on. By iterating
over a distance between pairs of points we can connect pairwise points together
with edges, thus build nested simplicial complexes. The shape of the point cloud
is determined by persistent homology, a topological tool counting the number of
connected components and n-dimensional holes in the complexes.

The Mapper algorithm is a topological clustering method of the original point
cloud. The point cloud is projected down to an open covering of a low-dimensional
space via a filter function. The covering is then pulled back into the original data,
linking nodes formed in the coverings by edges, thus forming an approximation to
a Reeb graph of the point cloud.

The mammalian primary cortex (MPC) is connected to the pair of eyes via the
optic nerve in the brain of mammals. The MPC interprets the electro-chemical
visual signal as a pattern of lines and edges. Several studies suggest that the space
of 3 × 3 pixel patches found in natural images is helpful to understand the MPC.
These patches are suggested to distribute around manifolds in R3 in a specific
manner.

A feedforward neural network (FNN) is a directed acyclic graph structure with
weighted edges. By use of linear algebra computers can push e.g image data sets in
a forward flow trough the network, and classify the images compared to a ground
truth. Adjusting the parameters of the FNN is done via a backwards flow called
backpropagation, using gradient vectors to adjust the parameters of the networks.
The flow in both directions is the training process, building a model for inference
on unknown data sets.

A convolutional neural network (CNN) shares the concept of inference and back-
propagations similarly to the FNN. The main idea of the CNN is that feature maps
identify similar spatial structures in the data set. The CNN has been successfully

1



applied in large scale to e.g. image recognition, translation and semi-self-driving
cars. There seem to be building evidence that the CNN perceives image data in a
similar manner to the mammalian primary cortex.

Literature summary

The work in this thesis builds upon a trail of at least four important research results.
The first result is the paper of van Hateren and colleague [36]. The authors build
on the discovery that the primary visual cortex (MPC) cells in maqaque monkeys
interprets the visual signal as a pattern of edges and lines, using the receptive
field in the simple cells of the MPC. They compared statistical properties of the
receptive fields against similar properties of pixels in natural images. The authors
assembled a database of natural images, that was applied in following research.

The study of natural image patches was moved forward by amongst others Lee
and colleagues [25]. The authors suggested that the most interesting statistical
pattern of natural images is revealed in the space of 3× 3 pixel patches. The data
source of this work was the database of natural images collected by the previously
mentioned authors in [36]. The space of those patches was density filtered to provide
only high contrast patches. These patches were found to distribute in a specific
pattern over the 7-sphere ⊂ R8, corresponding to a novel probability distribution.

Building on the concept of natural image patches on a manifold, Carlsson and
colleagues [5] used a topological approach to reduce the dimensionality of the patch
space to a topological space called the “three circle space” (S1)3, also known as
the parametrization of the Klein bottle. They further partitioned the three unit
circles in the primary circle and the two secondary circles. Each circle has a clear
diametric pattern of patch distribution, including a pairwise intersection over two
patches.

The most recent work and also the starting point of this thesis are the two
papers from Carlsson and colleague [13, 6]. First the authors develop an novel
perspective of the CNN [16, Chapter 9] using algebra and category theory. The
motivation was seemingly to abstract away the linear algebra in order to more
freely generalize the successful concept of CNN to other structures, among them
the idealized primary circle. By use of proprietary software they did a number of
machine learning experiments on several data sets including the MNIST [12]. The
motivation of these experiments was three-fold. First to reveal the primary circle
in a 9-dimensional weight vector space; second using an discretized primary circle
to generalize a trained CNN to other datasets; third using the same discretization
of the primary circle to gain a general increase in training times.

Note that the CNN perceives the world like the primary cortex is also recently
suggested by Grace in [26]. The FNN is presented in [16, Chapter 6] and [29]. The
CNN is presented in [16, Chapter 6]. TDA literature used in this thesis are for
example [11, chapter VII] and [14, page 104] .
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Motivation and research goals

The original work [13] is performed by use of proprietary software. Neither the
source code nor detailed methods using those libraries are given. Here we attempt
to reproduce parts of those results with open source software (OSS) exclusively.
The main research targets are naturally inherited from the original work. The
goals of this thesis are to use TDA and OSS tools to achieve the following.

• Reproduce the primary circle in a vector space of CNN weights

• Run basic sensitivity analysis of the weight data

• Apply discretized primary circle to weight space, test generalization

• Test correlation between 1-homology generators and train-test accuracy of a
CNN

• Contribute to the OSS community

Outline

In Chapter 2 we present compact summaries of TDA; the neural network structures
FNN and CNN; and a small introduction to data analysis methods used here. To
conclude the theory chapter and validate the software libraries, computiational
examples of persistent homology and Mapper are found in Section 2.1.5. In Chapter
3 we present the tools and algorithms necessary to reproduce this work. In Chapter
4 we present results and running discussion of four experiments. The first result
is the main goal of reproducing the primary circle in the weight vector space; next
follows the sensitivity analysis of the first experiment; the last results are those of
applying the discretized primary circle for generalization and the first homology
vs. accuracy test. In Chapter 5 we conclude this thesis with a general discussion
and future work.
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Chapter 2
Theory

2.1 Topological data analysis

This section is a brief summary of the author’s survey on persistent homology [24]
preceding this thesis. There is rich textbook literature on simplicial homology. We
have for example followed the books of Hatcher [17, page 107], [11, chapter 3, 4 and
7]. For the Mapper routine we refer to the original work of Carlsson and colleagues
in [33].

Simplicial complexes

The building block of simplicial homology is the simplicial complex, containing an
abstract simplex or several abstract simplices.

Definition 2.1. Let S be a discrete set. An abstract simplicial complex is a finite
collection of subsets K ⊆ S such that if an element σ is in K, then all subsets
v ⊆ σ are elements of K.

An element σ of the abstract simplicial complex K is called a simplex, for which
the plural is simplices. A simplex of cardinality k+1 has dimension k and is called
a k-simplex. In other words the cardinality |σ| = k + 1 where k ≥ 0. A k-simplex
where k ≥ 1 has at least one face, that is a subsimplex v contained in σ with k or
fewer elements. We can restate the definiton of a simplicial complex as a collection
of simplices where all faces of a simplex σ in K is also in K. Furthermore we require
that all intersections σ ∩ τ of simplex pairs σ and τ are faces of each individual
simplex. A 0-simplex is called a vertex, the 1-simplex is an edge and a 2-simplex
is often called a triangle. The dimension of a simplicial complex is the dimension
of its largest simplex.
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The Čech complex

Definition 2.2. Let U = {Ui}i∈N be an open cover of a topological space X, such
that the union ∪n Ui = X. For each subcover Ui let vi be its only vertex. For all
k + 1 intersecting subcovers there is a k-simplex of k + 1 vertices. This collection
of simplices form the simplicial complex N (U ) known as the nerve of the cover.

Before stating the nerve lemma, recall that a good cover of a topological space
contains only contractible intersections of subcovers.

Lemma 2.3. Let U = {Ui}i∈N be a good cover of a topological space X. The
nerve N (U ) is homotopy equivalent to X.

For a metric space we have the metric version of the nerve. Recall that a point
cloud is a finite collection of points in a metric space.

Definition 2.4. Let X be a point cloud in a metric space M . Let Bx(ε) denote an
open ball centered at a point x in X with radius ε. The associated Čech complex
Čech(ε) is assembled in the following way. Let Čech(ε)0 = X. For each point
(x, y) ∈ Čech(ε)0 there is an edge [xy] ∈ Čech(ε)1 if and only if Bx(ε) ∩By(ε) 6= ∅.
For all points (x, y, z) ∈ Čech(ε)0 there is a triangle [xyz] ∈ Čech(ε)2 if and only if
Bx(ε) ∩ By(ε) ∩ Bz(ε) 6= ∅. In general, there is a k-simplex [vo, ..., vk] ∈ Čech(ε)k
for all points (x0, .., xk) ∈ Čech(ε)0 if and only if Bx0

(ε) ∩ · · · ∩Bxk
(ε) 6= ∅.

If X is a point cloud in a metric space M , then the Čech complex Čech(ε)
approximates the nerve N (U ) of the collection U = Bx(ε)x∈X . Therefore Čech(ε)
is homotopy equivalent to the subset ∪x∈XBx(ε) of M by Lemma 2.3.

Vietoris-Rips complex

Computing the Čech complex requires checking all possible intersection of ε balls.
The following complex is less computationally intensive whilst providing a good
approximation to the Čech complex.

Definition 2.5. Let (M, ε) be a point cloud with real valued metric ε > 0. The
Vietoris-Rips complex Rips(ε) of M is the simplicial complex built of k-simplices
σ = {v0, ..., vk} where all pairs of points (vi, vj) ∈ σ are within distance |vi− vj | ≤
2ε.

Referring to the classical example of ε-balls on the nodes of an equilateral tri-
angle,we know that Čech(ε) ⊆ Rips(ε). It can be shown that for a finite point
cloud in Euclidean space, Rips(ε) ⊆ Čech(

√
2 ε). This inclusion confirms that

Čech(ε) ⊆ Rips(ε) ⊆ Čech(
√

2 ε). The Rips complex is a good approximation to
the Čech complex in the interval [ε,

√
2 ε).

2.1.1 Simplicial homology

Algebraic topology extends the concept of simplicial complexes to simplicial ho-
mology. Let K be a simplicial complex of dimension n. Let σp = [v0...vp] be any
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p-simplex in K. A p-chain c =
∑p
i=0 aiσi is a linear combination with coefficients

ai in the field Z2 = {0, 1}. The collection of all possible p-chains is called the
chain group Cp. Given the addition operation, additive identity c = 0 and inverse
element −c, we have an additive abelian group (Ck,+) for all k in N. Since we are
working over a field the chain groups Cp(K) are |Kp|-dimensional vector spaces
generated by p-simplices. Let Cp be the vector space of all p-chains. The boundary
operator ∂p : Cp → Cp−1 is a linear map, formally written as

∂p(v) :=

n∑
i=0

(−1)i
∑
j 6=i

vj .

Composing a pair of boundary operators ∂p−1 ◦ ∂p always returns zero. We can
compose the linear boundary operator to a sequence of vector spaces known as a
chain complex

...Cp+1
∂p+1−−−→ Cp

∂p−→ Cp−1...
∂2−→ C2

∂1−→ C1
∂0−→ 0

where ker ∂p = Zp ⊆ Cp is the subspace of p-cycles, and Im ∂p+1 = Bp ⊆ Cp is the
p-boundary subspace.

Definition 2.6. The p-th homology group (or vector space if over a field)

Hp(K) = Zp(K) / Bp(K)

is generated by the non-bounding cycles in in Zp. All cycles in the boundary
subgroup are sent to zero by the quotient.

The rank of the simplicial homology vector space Hp is called the p-th Betti
number βp, effectively the number of p-dimensional holes in the point cloud.

Persistence modules

A filtration of a simplicial complex K is a sequence of subcomplexes K0 ⊂ K1 ⊂
... ⊂ K growing in dimension and cardinality. By functoriality of Hp, the inclusion

maps i : Ki ↪→ Kj in the filtered complex induce linear maps f ji : Hp(Ki) →
Hp(Kj) between homology vector spaces. We can assemble these finite-dimensional
vector spaces by taking their direct sum thus getting the persistence module M =
Hp(K) ⊕ Hp(K1) ⊕ · · · with the homology groups as submodules. The graded
module M is acted upon by the polynomial ring F [t]. The action of F [t] on Mi

shifts the homology class α ∈ Hp(Ki) “upwards” in the module by tkα = fk+ji (α).
This captures the intuition of persistence, homology classes “born” in the filtration
step i and “dying” in a later step j. Alternatively, the indeterminate tk maps all
α from Hp(Ki) to Hp(Kj=i+k).

Persistence intervals and barcodes

There is a structure theorem stating that a graded module over a polynomial ring
is isomorhic to the direct sum of a finitely generated free module and a torsion
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module.

M ∼=

(
n⊕
i=1

tki · F [t]

)
⊕

 m⊕
j=1

(tlj · F [t]

/
tmj · F [t])

 . (2.1)

Here the left summand tki · F [t] represents a finitely generated free module of the
homology generators that exist in filtration step ti and persist infinitely. We denote
this the persistence interval [ti,∞). The right summand represents a finite torsion
module that exist in filtration step lj and dies in mj . This is the persistence
interval [lj , lj + mj). A multiset of k-th persistence intervals can be visualized
in a diagram called a barcode diagram Bk(Ki). Examples of the free modules as
barcodes are “everlasting” connected components, that is the H0(K) generator
for the final complex in the filtration. The alternative visualization method of
persistence modules is the persistence diagram, which shows persistent intervals
as points (x, y) in a plane with the x-axis representing “birth date” and y-axis
representing “death date” of the interval. Examples will be demonstrated in Section
2.1.5.

2.1.2 Stability of persistent homology

When sampling data from point clouds, how can we trust persistent homology to
return reproducible results? We need an assertion of stability as presented below.

Definition 2.7. Let D1 and D2 represent two persistence diagrams equipped with
a L∞ metric δ. A δ-matching D of two persistence diagrams is a bijection D :
D1 ↔ D2 satisfying the following conditions.

• Two points p1 and p2 are matched if the distance d between them is less than
δ.

• Any points closer to the diagonal than δ are not matched.

The δ-matching filters away all the points close to the diagonal in the diagrams.
These points are often considered as noise, since the k-cycles they represent only
last a relatively short time before bounding. Then by definition all the remaining
points assumed important need to have a close neighbour.

Definition 2.8. The bottleneck distance is the infimum of distances δ which main-
tain the δ-matching. Formally we write db(D1, D2) = inf {δ ≤ 0 | ∃ D}.

The following definitions are used in the Rips stability theorem given by [8].
Let P and Q define metric spaces. Furthermore let the Gromov-Hausdorff distance
dGH(P,Q) be described as “the difference between two metric spaces” [35], and
small when all points in P are “close” to a point in Q.

Theorem 2.9. Let Bp(Rips(P )) and Bp(Rips(Q)) define the p-th persistent ho-
mology barcodes of the metric spaces P and Q. Then

db(Bk(Rips(P ), Bk(Rips(Q)) ≤ dGH(P,Q).

8



2.1.3 Computing persistent homology

The boundary operator ∂ is the linear map between the homology vector spaces
and give rise to the boundary matrix D. The following is a reminder of computing
homology of a simplexwise filtration K for the classical “empty triangle” with
simplices K = {[a], [b], [c], [ab], [ac], [bc]}.

D =


0 0 0 1 1 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


Reading the filtration order from left to right we observe the three first zero-

columns indicataing the birth of the three 0-cycles. The three next columns indicate
which 0-cycle is the boundaries of which 1-cycle. It can be shown [2] that reducing
the boundary matrix to R = DV lets us read off the Betti numbers for K. Com-
puting p-th homology is essentially finding Rank(∂p) for all p, also known as the
Betti numbers βp.

The basis for the essential homology classes generates the infinite persistence
intervals [j,∞). We read these off of V shown here the following way.

R =


0 0 0 1 1 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 = DV =


0 0 0 1 1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1


First we identify a zero column rj on R. If the column index j is not a pivot

index i on R, this column is a free persistence module in dimension d of the simplex
σ represented by the column Dj . Next we find a non-zero columnn rj with its
unique pivot index i. We read off the persistence interval [i, j) that is the torsion
persistence module. The cardinality of these modules is the Betti number βk for the
respective cycles. In the triangle example, we find two essential homology classes
by reading off column 1 and column 6 in V . There is one “everlasting” connected
component and similarly one 1-dimensional hole never dying. Note that reducing
the boundary matrix to the Smith normal form allows even simpler interpretation
of the complex homology.

2.1.4 The Mapper algorithm

The introduction of the Mapper algorithm was the proceeding by Gurjeet Singh et
al. [33]. It seems that one of the driving question in the development of Mapper
was finding an alternative method to qualitatively reveal structure hidden in the
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sheer size of a large dataset. One of the reference papers was the natural image
patch statistics paper by Lee and co-authors [25].

The first step of the Mapper method is a function f mapping from a point
cloud X to a parameter space Z. The function is called a filter or data lens.
The motivation for the filtering is to project a possibly large higher-dimensional
dataset down to a lower dimensional space. The next step is to choose an open
overlapping cover of Z, where each cover shares possibly a large number of samples
or points. The last step is pulling back the covering to a cluster of the original
point cloud. The nodes sharing points are linked with an edge, thus approximating
the nerve or Reeb graph [7] of the covering. The intuition of the Mapper algorithm
is perhaps that topological information inherent in a dataset might help discover
subtle connections that ordinary clustering or dimensionality reduction methods
may fail to find.

Figure 2.1 illustrates a classical toy example for the Mapper concept. Compu-
tational examples are presenteded on Figure 2.2.

Figure 2.1: An illustration of the Mapper concept. On the left figure there is a toy
sampling of the circle. In the middle figure all points of the circle are projected down to
their y coordinate. The y-axis is equipped with a 3 overlapping covers. Each subcover
share points by overlapping (not shown in the figure). The coverings are pulled back to
the circle, and each resulting cluster node that share points is linked with an edge. The
result is the Reeb graph, nerve or topological circle informing about the circular topology
of the original point cloud.

2.1.5 Computational examples

To conclude the theory section on TDA, we present samplings of three different
topological spaces. The samplings in the Figure 2.2 are all performed by sampling
1000 points with random noise introduced. The Mapper configuration is single
linkage clustering with relative gap size = 0.6, max fraction = 0.3 and the covering
is ten 2-cubes with 0.6 overlap. The circle persistence diagram in dimensions 0 and
1 is shown in the middle figure. A corresponding Mapper complex in the right
figure.

The persistence diagram shows one first homology generator indicating the
circle. The persistence diagram of the annulus indicate the circle topology whilst
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the Mapper complex indicates more samples surrounding the non-bounding 1-cycle.
The persistence diagram for the torus shows two generators of the first homology in
the persistence diagram. Note the absence of the free persistence module, ususally
indicating infinite life of e.g. the first born connected component, in all persistence
diagrams.

Figure 2.2: Three different topological perspectives of three different topological spaces.
The general row layout for the figure is geometric plot, persistence diagram and Mapper
complex read from left to right. Top row shows the radius 1 circle sample. Middle row
shows an annulus with inner diameter 0.5 and outer diameter 1. Bottom row shows the
sampled torus. Note that the barcodes are “hidden” in the persistence diagrams, and can
be read as the horizontal lines from any point to the diagonal.
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2.2 Neural networks

This brief presentation of neural networks is mainly based on the online book by
Nielsen [29] and the online book from Goodfellow et. al [16, chapter 6 and 9].

2.2.1 The feedforward neural network

Starting from the input layer nodes we have a pre-determined activation value
vector a0 for an input vector of dimension n. Collecting all weights connected to
the first input layer l = 1 in the weight matrix w1 we can compute all activations
in the first layer. By basic linear algebra we have

z1 =

L∑
w1a0 + b1

which generalizes to

zl =

L∑
wlal−1 + bl

further in the network. Applying the regulating function we have the general
activation value vector

al = σ(

L∑
wlal−1 + bl)

= σ(z).

The feedforward flow terminates with computing the final activation value vec-
tor aL in the output layer L. In order to train the network we need to compute
the loss function

C = c ||yj − aL||

where c is some constant and yj is the label or ground truth of the particular train-
ing example indexed j. Minimizing the loss function corresponds to maximizing the
accuracy of the network, a process called training. With a cost vector we can com-
pute the loss gradient ∇C, enabling the backpropagation procedure for adjusting
the weights.

Backpropagation

The backpropagation algorithm defines the way a FNN learns from the loss function
gradient ∇aC. First we have assume a completed forward pass of a batch of k
training examples. We define the output error

δL = ∇aC } σ′(z)

where the right side is the elementwise multiplication of the loss gradient vector
∇aC and the output activation error gradient vector σ′(z). With the output error
we can backpropagate and find the error

δl = ((wl+1)T δl+1) } σ′(zl)
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for each layer L− 1, L− 2, .., l1, l0. The principle is taking the known error vector
δl+1 and map this “backwards” one layer by the transposed weight matrix (wl+1)T .
Scaling the backwards step with the activation gradient we find the total error for
that layer.

After computing the error for all layers we update all weight matrices wl and
bias vectors bl with the rule

wl → wl − ĉ
∑

δl(al−1)T

bl → bl − ĉ
∑

δl.

This is known as the gradient descent algorithm, where we minimize the loss by
incrementally moving in the direction of the negative gradient i.e “down the hill-
side” of the loss function landscape. The constant ĉ is proportional to the learning
rate, that is the stride taken for each gradient descent step.

The cross-entropy cost function

The gradients of the cost function with regards to the weights and biases is the
foundation of the learning process of a neural network. When using e.g. the basic
quadratic cost function the first gradients are

∂C

∂bL
= (aL − y)σ′(zL)

∂C

∂wL
= (aL − y)σ′(zL)x,

where the x represents a training example batch and y is the corresponding label
vector. The dependency of the differentiated sigmoid can cause of the network
learning rate decreasing. Large values of z cause small changes in the sigmoid of z.
This is known as the vanishing gradient problem . The cross entropy cost function

C = − 1

n

∑
x

[y ln a+ (1− y) ln(1− a)]

over n training examples x compared to the respective labels y, improves this
situation by not depending on the sigmoid gradient. The paper of de Boer et. al.
[10] and [19] seem to give an early representation of the subject.

Softmax activation function

While the cross entropy cost function is without dependency of the differentiated
sigmoid neuron, the softmax activation function does not depend on the sigmoid
at all. The formal definition is

Sj = aLj =
ez

L
j∑

k e
zLk
,
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where zj is the weighted value of the output neuron j, and
∑n
k zk is the sum of all

neurons in the output layer. What makes the softmax activation function special
is that the sum over all output neurons

∑
j a

L
j = 1. This makes the softmax in

practice a discrete probability distribution.

Dropout

The dropout procedure can be described as dropping half of the hidden neurons
for each minibatch. Therefore the training process is done on a number of N/n
“different” networks, where N is the number of training examples, and n is the
number of inputs in each minibatch. The first references are the papers from NIPS
and Hinton et. al. [23, 18].

Alternatives to the sigmoid output

The RELU neuron has the formula max(0, z), effectively the absolute value of z.
The origin of using the RELU can be traced to e.g. the papers [15, 28].

2.2.2 Convolutional neural networks

The first noticable difference between the feedforward neural network and the CNN
is the shape of the input data. Instead of a (n, 1)-dimensional input matrix, we
have an (m,n)-dimensional input matrix representing each training example. For
example the input data of the MNIST hand written digit dataset is of dimension
(28, 28). A principal illustration is shown in Figure 2.3.

Figure 2.3: A principal illustration of a convolutional neural network. The layer I
denotes the input data matrix. The letter C denotes a convolutional layer. The letter P
denotes a pooling layer; FC is a fully connected layer and O is an output layer.

Local receptive fields

The local receptive field is a a × a field convolving over the elements in the input
matrix. E.g a 3×3 field of grayscale values between 0 and 255 in an MNIST image.
This field is convoluted over the whole input matrix by the stride parameter, or
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step length if one wish. For each step or stride the sum
∑
g}w of that particular

patch p and a weight matrix w is sent to one hidden neuron in the first hidden
layer. The first hidden layer is now of dimension (m−a+1, n−a+1). An example
is the (28,28) MNIST matrix sent to a (24,24) hidden input matrix by a 3× 3.

Shared weights

The CNN uses shared weights from every input matrix to all hidden neurons. One
weight matrix for each hidden sublayer. The reason for calling these particular
weights feature maps is that each map supposedly represents a specific spatial
perception of the input data. Perhaps an intuitive perspective is that each weight
vector “reads” different geometric features in the point cloud. Shared weights also
represents a dramatic decrease in the total number of parameters used in the total
network. If we use a 3 × 3 sized field of shared weights with three feature maps,
we have a total of 3 × 3 × 3 = 27 weights plus one bias for the first two layers of
our network. Compare that to 784× 30 = 23, 520 weights in the first two layers of
an FNN.

Pooling

If the hidden neurons represents one kind of dimensionality or perhaps parameter
cardinality reduction, the concept of x-pooling is another. In a similar fashion to
the receptive fields, the pooling algorithm traverse a hidden layer with a b × b
lens. The algorithm used in this thesis is the max-poolingwhich chooses the largest
activation value out of 4 for each patch. This algorithm effectively reduces the next
layer by a factor of 4. If our first hidden layer is 24 × 24 = 576, the pooling layer
is 576× 1/4 = 144 = 12× 12.

The fully connected layer

From the last hidden or pooling layer, all receptive fields in all sublayers must wire
to at least one fully connected layer. This layer is similar to an “ordinary” hidden
layer of stacked nodes in a FNN. The difference is that this layer is connected to all
receptive fields in all feature or pooling maps of the previous layer. It might help
to think of this summation as “flattening” the last hidden stack of feature maps.

The output layer

There are many parameter choices when it comes to the output layer of a CNN.
Here we will use dropout [18, 34], which is leaving a certain fraction of nodes out
for each forward pass. This will mimic variations by introducing a so called thinned
networks. We will also use cross entropy loss function and Softmax activation, in
addition to a variation of gradient descent called ADAM, founded in [22].
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2.3 Data analysis

Density filtration

In the original work of Carlsson et. al. [13] the nine-dimensional point cloud of
spatial information from the CNN is first reduced by a density filtration. This is
in accordance with the inspirational work by Mumford et al [25] where the authors
only cared about 20 per cent of the “densest points” in the set of natural images.
Here we use the notation ρ(k, p) to indicate the density estimator k-th nearest
neighbor, and p as the decimal number proportional to the percentage of the most
dense points one wist to filtrate. Example of a density filtration used in this thesis
is ρ(200, 0.3) which denotes using the 200-th nearest neighbor and filtering out 70
per cent of the less dense points. The pseudocode in Algorithm 1 hopefully serves
as an explanation.

Algorithm 1: Finding the p-th densest points of a point cloud

input : A point cloud X with m data points
output: A point cloud X̂ with n = p×m data points
For all m points, compute the condensed distance matrix D;

Compute redundant distance matrix D̂ from D ;

For all m points in D̂, find index j of its k-th nearest neighbor;
Append index j to a list ;

Identify k-th nearest distance dj in D̂, add to list d ;
Sort distances dj ∈ d in ascending order;

Let d̂ be the p×m first indices of distance list d;

Select X[ d̂ ]

Clustering

The clustering algorithm used in the original paper is a version of agglomerative
clustering with a single-linkaged criteria [21]. The agglomerative clustering is tree-
based, which means a dendrogram can illustrate the clusters in a schematic manner.
All samples start as individual nodes from the same height of the dendrogram,
eventually ending up with the same distance to the root node r. The single linkage
term comes from choosing the minimum distance in the distance matrix D when
choosing which node pair to cluster, for each clustering step. A pseudocode for
assembling the single linkage clustering is shown in Algorithm 2.

Principal Component Analysis

As discussed in the theory section, a Mapper lens projects high dimensional data
down to something humanly comprehensible. In the original work the authors
have chosen to consistently use the two first components of Principal Component
Analysis (PCA) as a lens. This method is derived for example in the book of Jolliffe
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Algorithm 2: Agglomerative clustering with single linkage

Result: A dendrogram representing a node tree with all leaves equidistant
from the root node.

input: A point cloud X with m× n data points
Initial condition: all points is a node ;
Compute a distance matrix D1 for the point cloud ;
Find point pair (a, b) with least pairwise distance d1 ;
Collapse (a, b) to a node u equidistant between the point pair ;
Reduce distance matrix to D2, where u replace (a, b) ;
Find point(s) c with least pairwise distance d2 to u ;
Collapse (u, c) to a equidistant point v ;
Reduce distance matrix to D3 ;
Continue until all points in Di have a corresponding node. ;

[20]. Mainly the method fits the data onto an ellipsoid, where the axis represent
principal components eigenvectors scaled by their eigenvalues. The intention of the
ellipsoid representation is to read off the ratio of variance in the data explained by
each mutually orthogonal eigenvector.
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Chapter 3
Method

In this chapter we present the research methods used in this report. The goal is that
a competent student could reproduce this work with minimal own interpretation.
The caveat of methods including software is that the software most likely will
have evolved or expired between this experiment and the eventual reproduction.
Version numbers are provided for the sake of determining the functionality available
for these experiments.

Introducing the software libraries

Here we aim to briefly introduce the software libraries used in the report. The com-
putational examples of the theory presented in Figure 2.2 will serve as validation
of the topological tools.

The software used for all neural network computations was Pytorch version 1.4.0
[30]. The main software library for computing topology in the report was giotto-tda
[1] version 0.1.4. This is an open source software (OSS) solution under development,
itself building on other OSS libraries e.g. the Ripser library developed by Ulrich
Bauer [3].

Quite some time was spent during this work getting familiar with the Scikit-
TDA library [31]. The Mapper complex in the first experiment is done with the
Kepler Mapper library from Scikit-TDA. Due to consistency concerns and time
constraints, giotto-tda was preferred for both persistent homology as well as Mapper
computations for the remaining experiments.

Based on the plots in Figure 2.2 on Page 10, the software library seem to
return the basic topological results we would expect. The exeption is that giotto-
tda returns a memory error when attempting to compute the second persistent
homology dimension. This way we can not for example “confirm” the void of the
torus in Figure 2.2h.
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3.1 Analysing prior work

In this section we describe the steps necessary to reproduce the original work [13].
We describe training a convolutional neural network, apply density filtration and
compute persistence diagrams and Mapper complexes.

Training the CNN

As described in [13, Table 1] we train a CNN with the settings given in Table 3.1.
The network returns about 99% accuracy on the MNIST data table [12]. The data
set has 60.000 training images and 10.000 test images. Numerous tutorial exist on
the internet for training CNN on the MNIST data set, each one corresponding to
the preferred deep learning library.

Table 3.1: The structure of the CNN used in the first experiment. This network ar-
chitecure is denoted M(64, 32, 64) troughout the report. Note that the pooling layers are
not defined separately. The filter notation a× b× c simply indicates the height and width
of the receptive fields, and the height of the convolution layer. Note the use of softmax
activation and cross entropy loss function for the output layer. Also note the use of both
dropout and a specific stochastic gradient descent variant on the output.

Convolution layer 1 Convolution layer 2 FC layer Output

3× 3× 64 filters 3× 3× 32 filters 64 nodes 10 nodes

ReLU ReLU ReLU Softmax,
Cross entropy

2× 2 max-pooling 2× 2 max-pooling Dropout 0.5
ADAM

The network parameters was set to learning rate lr = 0.001, and other Pytorch
parameters betas = (0.9, 0.999) and eps = 1e− 08. Each network was trained over
86 epochs, that is complete passes of all 60,000 training example images. The 60,000
training images was partitioned into 469 batches of 128 images in each batch. A
running training accuracy has been computed for each epoch and batch, then added
to a log file. For each completed network training, the Pytorch model was saved to
a file. Also after training each network, 10,000 test images partitioned in batches
of 128 was sent to the model, and a test accuracy between 0 and 1 was logged to
file. In total 100 networks was trained, a procedure that took approximately 17
hours with a NVIDIA RTX2080 graphics card with 8 GB video memory.

The useful output of the networks was the weight matrices used for generating
the hidden neurons in the 64 feature maps of the first convolutional layer. With a
receptive field of 3×3, this is a vector space in R9. There was 64 shared weights for
each network, in total 64×100 = 6400 9-dimensional weight vectors. The resulting
point cloud was stored as a Numpy array and saved to file.

20



Data analysis of the weight vectors

Each point i.e row in the (6400, 9) matrix was mean-centered and normalized with
the scale function in the Scikit-learn library. Explicitly this is the operation z =
(x− µ)/σ where µ is the mean and σ is the standard deviation of the sample.

A density filter ρ(200, 0.3) based on the k-nearest neighbour density estimator
was applied with k = 200 and p = 0.3 to return 1920 points. This filtration is not
a dimensional reduction, rather a cardinality reduction of the point cloud. First
we estimate density by finding the k-th nearest neighbor of each data point. By
measuring the pairwise distance d between these points we achieve a inverse density
estimator ρ. Here n = 6400, percentage p = 0.3 leading to the reduced point cloud
of 0.3 × 6400 = 1920 nine-dimensional points. Note that the condensed distance
matric is sparse, and not readily inspectable. The redundant distance matrix is the
humanly readable distance matrix with a set of redundant distance observations.
The computations are performed on the redundant matrix, since this representation
allows intuition over rows and columns.

We validate the density filtration algorithm by applying it to a point cloud of
1000 points in a circle sampled with noise. A correct implementation should by
intuition preserve the topology of the original point cloud. We test the algorithm
on row standardization as given in the original work and compare with column
standardization. The density estimator used was the 30-th nearest neighbor, from
which the 30 per cent most dense points was kept. The persistence diagram of the
same topology to the right, shows a relative long-lived first-homology generator.
The first result is shown in Figures 3.1. By inspection both algorithms seem to
capture points in dense clusters.

Figure 3.1: The circle with 1000 sampled points, density filtered with column standard-
ization.

The row standardization algorithm seen in Figure 3.2 does not seem to preserve
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topology, while column standardization does.

Figure 3.2: The circle with 1000 sampled points, density filtered point cloud with row
standardization, the method used in the original work an this report.

Mapper lens and clustering

As in the original work we have chosen the first two components of PCA as the data
lens. The cover of the parameter space is 30 2-cubes with 0.66 overlap. The cluster-
ing method used is a hierarchical method with a single linkage ward. There are two
parameters set for the Kepler Mapper library. These are distance threshold = 15
and min samples = 10. The distance treshold determines the dendrogram dis-
tance treshold for not merging clusters. A larger distance treshold results in fewer
clusters, which was necessary to form the circular topology in the Mapper complex.
The minimum number of samples was hard coded in the Mapper source code in
order to reduce a lot of nodes with just 1 or 2 samples. The combination of these
two settings made the circular topology appear in the Mapper complex.

As in the original work [13], we have applied Variance Normalized Euclidean
(VNE) clustering metric. This is the ordinary Euclidean metric applied after
dividing each column by its variance.

A short recipe for finding the mean weight patches to plot adjacent to the
Mapper complex follows. After the Mapper complex is generated, use the HTML
visualization to find nodes distributed on the complex. Then use the element
indices of the samples in the node to identify data points in the point cloud. Next
we compute the mean of those 9-vectors. Plot that mean as a 3 × 3 matrix and
assemble them on their identified place on the image of the Mapper complex. Note
that several attempts were tried to automate a kind of weight simulation. These
were abandoned due to the complexity of the source code knowledge necessary to
modify dependencies. Therefore the process was to pick a random node on the
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complex, identify sample indices and then send those indexes to the “patch plot”
algorithm.

3.2 Sensitivity analysis of prior work

These experiments mainly reuse the algorithms from the main experiment. Any
difference in parameters are stated in the results chapter. The Mapper libraries
used in these experiments came from the giotto-tda library. The clustering method
was a version of agglomerative clustering with two parameters relative gap size
and max fraction. The relative gap size is a fraction of “the largest linkage distance
in the full dendrogram”. This is an upper bound on how large a linkage distance
can be before breaking into a new tree or cluster. The maximal fraction parameter
sets an upper bound of the number of samples as max fraction ∗ (n samples− 1)
clusters before starting from the “bottom” with a new leave node.

3.3 Topological spatial effects on the CNN

In this section we test the second half of the motivation for the original work. The
first hypothesis is that applying a topological space to the first convolutional layer
in a CNN trained on MNIST, will double the test accuracy for unseen data set.

Generalizing by topology

The following procedure is based on our interpretation of the derivation in Section
5.2 of [6, page 17] and the implementation details found in the first paragraph of [13,
Section 6]. For testing generalization of the topology to be discovered, we apply a
idealized primary circle to the weight vectors mapping from the first convolutional
layer. We interpret a 3 × 3 pixel patch as the subset L = {−1, 0, 1} × {−1, 0, 1}
Next we recognize the formula

qm,n,θ(p) =
∑

(i,j)∈L

p(m+ i, n+ j) · fθ(i, j)

where
fθ(i, j) = i cos(θ) + j sin(θ) (3.1)

as the sum of the elementwise product of the individual pixel grayscale values in
the patch, and one element of a weight 9-vector. Recall the mapping from an input
image to a hidden neuron in one of the feature maps in the first convolutional layer.
This mapping is the function q.

The issue is how to implement this as a discretization of the primary circle
found in Figure 2 of [6, page 10]. Especially since the paper states [6, page 19,
(5.5)] that the discretization is the set µ16, that is the 16th roots of unity. That
number makes seemingly no correspondence to the eight patches of the primary
circle, nor the 64 feature maps in the first convolutional layer. The solution that
makes most sense is to keep the network structure to M(64, 32, 64) and compute
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one weight patch for each of the 64th roots of unity angles as described in Algoritm
3.

Algorithm 3: Computing the weight patches for discretizing the primary
circle as the set of 64th roots of unity

input: Parameter n = 64
Result: 16 different 3 ×3 patches
for each θ in µ64, the 64th roots of unity do

compute Eq. 3.1 over L ;
save result to a 3× 3 matrix wθ;
append matrix wθ to array w ;

Save w as a Pytorch tensor;

Implement the test procedure as described in Algorithm 4 with Pytorch
using the network structure M(64, 32, 64). The layer freezing was done with
self .conv1.weight.requires grad = False in Pytorch.

Algorithm 4: Testing generalization of CNN

Result: 3 CNN models from different initialization
Set the weights of the first convolutional layer to w from Algorithm 3;
Freeze the first convolutional layer from changing during training;

Train 3 networks with 86 epochs each on the MNIST dataset;
Save the trained model;
Test accuracy for the SVHN dataset rescaled to 28× 28;
Log results;
Set the weights of the first convolutional layer to random Gaussian;
Freeze the first convolutional layer from changing during training;
Train 3 networks with 86 epochs each on the MNIST dataset;
Save the trained model;
Test accuracy for the SVHN dataset rescaled to 28× 28;
Log results;
Train 3 networks with nothing fixed or frozen layers;
Log results;

Testing homology versus CNN training

Use the M(64, 32, 64) network structure. Recall that ρ(100, 0.1) denotes a density
filtration based on the 100-th nearest neighbor density estimator, filtering 10 per
cent of the densest points. The pseudocode of this experiment is given in Algorithm
5.
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Algorithm 5: Testing 1-homology versus testing accuracy

input: The MNIST training and testing data sets
Result: Longest lived 1-homology vs testing accuracy during training
Train 100 networks on 25 epochs each ;
For each epoch log training accuracy ;
For each epoch send model to testing set and log accuracy ;
For each epoch save the 64 weights 9-vector to matrix ;
After training, collect weights into 25× (6400× 9) matrix ;
Run density filtration ρ(100, 0.1) on point cloud ;
Run persistent homology computation on each of the 25 (640, 9) point
clouds For each 1-dimensional persistence interval, find length;

Record maximal 1-dimensional persistence interval for each epoch ;
Plot log scale of longest H1 and testing accuracy during training ;
Repeat for SVHN dataset
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Chapter 4
Results

We present the computation result using the methods described in Chapter 3. In
Section 4.1 we analyse the prior work of revealing the primary circle. In Section 4.2
we attempt a brief parameter sensitivity analysis on the original work. In Section
4.3 we test for the generalization effects of the discretized primary circle. At last
we test if first homology generators correlate with train-test accuracy of the CNN.

4.1 Analysing prior work

The hypothesis of this experiment is to find the primary circle in the 9-dimensional
weight vector space of weights applied from input examples to the feature maps of
the first convolutional layer C1.

In total one hundred M(64, 32, 64) networks was trained on the MNIST training
data set over 86 epochs each. Unfortunately the running training accuracy was
not logged. Only test accuracy i.e accuracy on the MNIST testing dataset per
network was logged for this experiment. The mean test accuracy for the 100 trained
networks was 98.77 per cent, with a standard deviation of 0.11. The running
training loss mean for all 100 networks is shown in Figure 4.1.
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Figure 4.1: The mean training loss logged for each batch iteration for each epoch for
each of the 100 networks. Recall that this represents 86 epochs of training on 60,000
images in batches of 128 images.

Two kinds of ρ(200, 0.3) density filtration was applied to the point cloud of
6400 9-dimensional weight vectors as decribed in Section 3.1. The first step in
the experiment was to try dropping the sample standardization of the point cloud
before density filtration. In Figure 4.2 we can see both the two first components of
PCA and the persistence diagram in 0 and dimension 1 as a result. The PCA plot
is dense and centered and the persistence diagram show no persistence relatively
far from the diagonal. On inspection there are no circular topology in the point
cloud of 1920 9-dimensional points without sample standardization.
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Figure 4.2: Left figure shows the first two PCA components of the density filtered point
cloud of 1920 9-dimensional points with no sample standardizing prior to density filtration
Right figure shows the persistence diagram for homology dimensions 0 and 1.

Next we apply sample standardization before density filtering and thereafter
compute PCA 1 and 2, and then compute persistence diagrams of the density fil-
tered point cloud. The variance ratio of the first two principal components are
(0.28, 0.21) respectively. That is, the variance explained by the first two PCA com-
ponents are 28 per cent and 21 per cent. From Figure 4.3 we see the PCA plot
which shows that the points are more dense towards the edges. The persistence
diagram of the 2-dimensional point cloud of two principal components have a rela-
tively long-lived generator of H1. Based on the two plots there seem to be a circular
topology in the point cloud of 1920 points after applying sample standardization,
density filtration and PCA.
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Figure 4.3: Left figure shows PCA 1 and PCA 2 for the density filtered point cloud of
1920 2-dimensional points after sample standardizing. Right figure shows the persistence
diagram for homology dimensions 0 and 1.

The previously mentioned PCA decomposition also served as the data lens
used to generate the Mapper complex. The complex was computed by applying
the NVE clustering metric described in Section 3.1 and the PCA data lens. The
Mapper complex of the 9-dimensional point cloud of cardinality 1,920 is seen in
Figure 4.4a. The complex clearly has a 1-dimensional hole indicating a circular
topology. However we could not adjust parameters to produce the more circular
shape found in [13, Figure 2, page 3]. As mentioned in the method section certain
attempts were made to reduce “noise” and enforce more samples per node. Still
this was the final result.

Also seen in the same figure are imposed mean valued patches of weight vectors.
The result is not the obvious primary circle as in the original work [13, page 3].
There is a similarity perhaps in the pattern, but no clear pointer to discovering
“opposite” edges and lines on the diagonal. There could be numerous reason for
the discrepancy. First there is the choice of “interesting nodes” as described by
Carlsson et al. Which node, and only one node at the time? As mentioned there
was several abandoned attempts to automate the visualization of weights for the
individual nodes. The sheer number of nodes could also play a role, in the generated
Mapper complex we have more than 500 nodes. An estimated count of nodes in the
original could be about 250 nodes, based on a point cloud of 1920 points. Without
the original source code and a more clear method for the discovery this is how close
we get to the coveted primary circle.

The persistence diagram of the point cloud with 1920 9-dimensional points do
indicate a 1-dimensional hole by presenting a relatively large 1-dimensional barcode
in Figure 4.4b.

The hypothesis of this experiment is partially fulfilled. We manage to generate
similar weight patch pattern as the primary circle, and succeed in reproducing a
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circular topology in the density filtered point cloud.

Figure 4.4: The left figure presents the Mapper complex for the density filtered 9-
dimensional point cloud and VNE metric clustering. The right figure shows the persistence
diagram for the same point cloud for homology dimensions 0 and 1.

4.2 Sensitivity analysis

We do a basic sensitivity analysis of the weight point cloud extracted from the
weight space. There are no concrete hypothesis attached, other than twisting some
parameter knobs and report the eventual effects. Due to practical restrictions of
access to the computer lab, and the fact that one run of 100 networks with 86
epochs took 17 hours, that training attempt was considered sufficient as the source
of these experiments.

In Figure 4.5 we present the result of the topological information after choosing
10 per cent of the densest points. This is a ρ(200, 0.1) density filtration. With
a point cloud of only 640 9-dimensional points it is perhaps no surprise that the
circular topology breaks. The PCA plot shows a cluster like formation of the most
dense points. The persistence diagram show no relatively large barcodes, and the
Mapper complex has several connected components. This result is perhaps not
so interesting in its own right, but it does show that there is a sensitivity of the
number of points “required” for the circular topology to appear.
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Figure 4.5: Results from choosing 10 per cent of the 200-th nearest neighbors density
estimator filtration. The figure layout is PCA plot to left, persistence diagram of data
lens in the middle, right column is the Mapper complex of point cloud.

In Figure 4.6 we see the result of changing the density estimator to the 100-th
nearest neighbor and keep the 30 per cent most dense points. The PCA looks nearly
identical to Figure 4.4a, while the persistence diagram appear to show several 1-
dimensional interesting barcodes. The Mapper complex is quite dense, with several
holes corresponding seemingly to the persistence diagram. There are more nodes
in the complex, that means more nodes have common samples, thus they are closer
or denser in the covering. Looking at the data with a more greedy eye for density
makes the circle less apparent.

Figure 4.6: Results from choosing 30 per cent of the 100-th nearest neighbors density
estimator filtration. The figure layout is PCA plot to left, persistence diagram of data
lens in the middle, right column is the Mapper complex of point cloud.

In Figure 4.7 we present the result of choosing only one component of the PCA
as the Mapper data lens. The PCA plot does not show any particular topology,
while the persistence diagram of the data lens suggest several 1-dimensional holes.
The Mapper complex is quite uninteresting, a graph where the nodes contain several
hundred samples each. This result is contrary to the classical toy example of
Mapper, where the 1-sphere is collapsed onto the line, but by “Mapper definition”
restores the circle after pulling back the cover. The covering was 1D, and it should
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pull back a circle if there was one.

Figure 4.7: Results from choosing the first component of the data lens with the
ρ(200, 0.3) density filtration. The figure layout is PCA plot to left, persistence diagram
of data lens in the middle, right column is the Mapper complex of point cloud.

4.3 Topological spatial effects on the CNN

We present the result of testing how enforcing the discretized primary circle on
C1 affect generalization of the CNN on unseen data, as described in Section 3.3.
Even though two of the networks was trained with the first convolutional layer
frozen, the training accuracy started around 90 per cent and levelled rapidly as
seen in Figure 4.8. Perhaps this is an indication that training time has decreased
considerably since the experiments in the original work? The 3 networks are trained
to between 98 and 99 per cent test accuracy on the MNIST data set with 40 epochs,
approximately half of the epochs used in the original work.

Figure 4.8: Training 3 networks M(64, 32, 64) on the MNIST dataset with two different
weight configurations for C1. Then tested on the rescaled SVHN data set. The left figure
shows C1 initialized with the discretized primary circle but left free for adjustment during
training. Right figure shows C1 initialized with the discretized primary circle and frozen
from adjustment. Running training accuracy is shown in blue, running training loss in
orange.
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We also train the same network configuration with random Gaussian weights
applied to C1. The running training accuracy and training losses of the frozen and
free layer is shown in Figure 4.9. Based upon these plots alone the networks seem
to train in the same manner. Yet an indication that the CNN models of today are
robust against perturbation.

Figure 4.9: Training 3 networks M(64, 32, 64) on the MNIST dataset with two different
weight configurations for C1. Then tested on the rescaled SVHN data set. The left figure
shows C1 initialized with 64 random Gaussian weights but left free for adjustment during
training. Right figure shows C1 initialized with 64 random Gaussian weights and frozen
from adjustment. Running training accuracy is shown in blue, running training loss in
orange.

There is quite an amount of interpretation behind performing this experiment.
What does it really mean to “fix the first convolutional layer”? Is it initializing
weights and then let the gradient descent adjust the weights, or is it freezing the
layer so that it is protected from training? And what is the “perfect discretization
of the primary circle”? A discretization usually gets more accurate the finer the
partition. That is why we decided on using the set of 64 roots of unity to 64 feature
maps instead of the 16 roots of unity suggested in the paper [6, page 19, (5-5)].
Could we compute even more n-th roots of unity to achieve an even finer circular
discretization? Yes, but we leave that to future work.

In Table 4.1 we see the result of the experiments compared to the results in [13,
page 7]. Recall that this process is about training the CNN on one data set, then
testing on another data set. For sake of comparison we ran two configurations of
the prior weight initializations. We guess that the original work means that C1 is
frozen from training adjustment. The first we note is the near doubling of testing
accuracy of the vanilla network on the SVHN data set. It is also interesting to
observe that the discretized circle shows the largest effect when not frozen. The
Gaussian initialization has also increased by a factor of 5/3. Is this all due to more
efficient CNN implementations today than for approximately two years ago? Note
that we did not achieve the same testing accuracy from enforcing the primary circle.
A final note is that the testing accuracies the SVHN set achieve could variate with
±2− 3% per cent between networks. Perhaps a more precise experiment could use
for example 100 networks as previously applied.
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In this experiment we do not confirm the hypothesis. We fail to see that the
enforced topological information dramatically increases testing accuracy on unseen
data compared to the vanilla and random weight initializations.

Table 4.1: The results of testing how different weight initializations perform when train-
ing on MNIST and testing on SVHN dataset. Run 1 has no initialization of weights
and C1 is free for gradient adjustment. Run 2 has C1 initialized with random gaussian
weights and free for the gradient adjusting. Run 3 has C1 initialized with random gaus-
sian weights and frozen for gradient adjusting. Run 4 has C1 initialized with weights from
the discretized primary circle and free from gradient adjusting. Run 5 has C1 initialized
with weights from the discretized primary circle and frozen from gradient adjusting. NA
means “Not Applicable”. All accuracies are mean values of 3 trained networks.

Author Run 1 Run 2 Run 3 Run 4 Run 5

Carlsson et. al 11 % NA 12 % NA 28 %

This author 20.4 % 21.5 % 20.0 % 24.6 % 23.7 %

Testing first homology generator vs. running testing accuracy

As the last experiment, we present the result of attempting to discover a correlation
between testing accuracy and 1-st homology as described in Section 3.3.

The result is presented in Figure 4.11. There seem to be no correlation between
the longest lived first homology and testing accuracy. Note that the accuracy starts
already at 95 per cent with Pytorch, while the accuracy in the original work starts
at approximately 0.3 per cent. Is this experiment still valid with todays’ network
architecture?

There are several concerns with this experiment. The size of the point cloud is
100×25×64 = 160000 9-dimensional points. During the sampling standardization
prior to density filtration, there are consistent numerical errors due to standard
deviation close to 0. Debugging is complicated with these complex accumulations,
while the author has given this algorithm several rounds of quality control.

We do not meet the expectation of seeing a correlation between 1-st homology
generator and train-test accuracy in this experiment.
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Figure 4.10

Figure 4.11: Log scale plots of the longest persisting first homology generator and
testing accuracy for each epoch

Perhaps out of curiosity more than research value. How does the 1-cycles evolve
during training of the CNN? By inspecting the algorithm during run time we note
that the 1-cycles has large birth values with near zero persistence from the start.
We also note that the persistence diagram return 700 0 and 1-cycles for each of
the 25 epochs. Is the data too similar or is the persistence computing library not
sufficiently tested for edge cases?
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Chapter 5
Discussion

The research goals of this thesis has evolved over the time spent studying and
implementing the two papers [13, 6] preceding this thesis. The main goal after
successfully reproducing the original work was initially to find parameters in the
network architecure or e.g. the density filtration to make the eventual primary
circle disappear. After some experimental progression was made the full motiva-
tion of Carlsson and colleague appeared gradually. Realizing that the authors had
used topological features to achieve gains in both training performance and gener-
alization was intriguing and became the main focus towards the end of the project
period.

Discussing theory

The theory section on TDA 2.1 is perhaps too brief, and nearly stripped for illus-
trations. This report is written for a reader comfortable with persistent homology,
and perhaps less so for neural networks. The section on neural networks is also
short. Hopefully the interested reader is interested enough to seek knowledge on
the vast literature on both subjects. The authors’ intention was to keep the total
amount of reproduction to an infimum.

A short note on the matching criteria in Definition 2.7 for the stability theorem
for persistence diagrams. The stability Theorem 2.9 seem to build upon the notion
of “points near the diagonal are noise”. By solely focusing on the “outliers” in the
diagram there seem to be of concern that actually interesting homology generators
could “hide” in the presence of larger generators of the same dimension.

Open source software

Open source software (OSS) is often a fruit of academic labor. Public funding of
research returns to society in the form of free tools for students and researchers.
An emerging trend is that commercial companies are adjusting business models
towards OSS for both transparency and profit. The fact that OSS enables for
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example students to reproduce part of work originally performed by closed source
companies is laudable.

The authors of the Scikit-TDA library deserves praise for developing during
their time as graduate students. Some contribution by the author was made to
the GitHub repository [32], but is seems that active development unfortunately
has stalled as of January 2020. Creating and maintaining OSS is time and focus
consuming. If there is no large community around a OSS project they tend to be
vulnerable when the founders leave academics or pursue less free positions. Luckily
there are newcomers to the OSS scene.

At the time of writing this report, the giotto-tda crew seem to make an extraor-
dinary and praiseworthy effort to serve TDA for free to the data science community.
Least we do not forget the shoulders upon whom the mentioned developers stand.
Contributions from e.g. Ulrich Bauer creating libraries such as Ripser and PHAT
[4] are invaluable to anyone involved in TDA. There are also more up and coming
stars in TDA, for example Leland McInnes attracting considerable attention for his
UMAP clustering algorithm [27]. Also noteworthy are the authors of the Mapper
based classifier, claiming classification performance on digit data sets near equal to
neural networks [9].

The goal of both using and contributing to OSS has been fulfilled. Not so
many pull requests has been delivered to the repositories, while delivering several
bug reports and running dialogue with the maintainers. In practice the author
has switched between a dormant repository and one currently under development
i.e. beta status. This has caused quite a few dead ends in time and progress. In
retrospect, all of those challenges has added value to the learning experience.

Interpreting prior work

During this investigation, the author has been required to interprete and extrap-
olate methods and results, sometimes extensively. This is to be expected when
reproducing other work, one can not list every detailed step in the method sec-
tions. Still there was one experiment that could particularly benefit from more
implementation details. The discretization of the primary circle in Section 3.3 and
4.3 included an uncomfortable amount of guesswork, also described in the results.

The hypothesis of revealing the primary circle in the weight vectors of the CNN
can quite easily be discussed, based on simple sensivity analysis. That could be
missing the point as previously mentioned. One could take an alternative perspec-
tive. It seems more reasonable to infer that the original motivation was to show
that if a neural network is tuned to a circular topology in the feature space, then
we unlock the potential benefits.

Discussing results

The main discussion of the results in the experiments are subsequently written next
to the respective results.

38



Future work

There are a number of experiments to be further explored. For instance one can
attempt to reproduce the Klein bottle topology of the other data sets in the ex-
periment. There is also room for many more variants of applying the discretized
primary circle in 4.3. For example, run tests of 100 networks to reduce uncer-
tainty of mean results. There could also be several more attempts to test the
discretization itself, how many or how few roots of unity and still achieve some
better performance? Also, there is the concept on classifying data based on Map-
per complexes. This represent the most interesting route for the author, perhaps
one could compete with neural networks for classification? Note that Carlsson and
colleague started on the algebraic perspective on the CNN structure [6, page 3].
This could perhaps trigger the interest of the student more inclined towards pure
math.
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