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Abstract

Conflict-free Replicated Data Structures provide strong eventual consistency
by ensuring that alterations to the model resolve the same regardless of execu-
tion order, conceptually providing a distributed system with both consistency
and availability. This report examines the viability of a completely CRDT-based
data model for a distributed decision support system to be used by the Norwe-
gian Red Cross under the name Operativt Beslutningsstøttesystem (OBS). The
domain of search and rescue is an intuitive fit for CRDTs due to the capabil-
ity of seamless merges with other replicas and guaranteed service regardless of
connection.

The product of this report is a proof-of-concept implementation for a data
model providing strong eventual consistency with constant availability using
Conflict-free Replicated Data Types (CRDTs) for OBS. The solution implements
several known CRDTs adapted to fit the hierarchial structure of the model
required for the system while ensuring that data is not lost due to concurrent
operation and demonstrates that CRDTs are able to provide a sufficient data
model while handling a demanding set of requirements.
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1 | Introduction

1.1 Situation

The Red Cross is one of several main actors in the Norwegian voluntary res-
cue service, able to supply all resources and personnel required for search and
rescue operations. Although the techniques used in planning and leading these
operations are relatively modern the methods implementing them are mostly
analog with some simple digital map systems used. In an effort to realize this
untapped potential a project is underway to consolidate all aspects of search
and rescue operations in a single dedicated system under the name Operativt
Beslutningsstøttesystem (OBS).

1.2 Motivation

The goal of this report is to explore the viability of Conflict-free Replicated
Data Structures to provide the functionality required of OBS. The guaranteed
consistency regardless of concurrent operation makes CRDTs an intuitive fit for
such a system where functionality must be guaranteed even in situations where
connection to a central server would be difficult or impossible.

1.3 Research Questions

In order to conclude on whether OBS can be suitably implemented using CRDTs
the following research questions needs to be answered

• Q1 : Are the properties of a CRDT-based data model suitable for use in
the case for OBS?

• Q2 : If Q1 holds, are the components required to express the data model
for OBS possible to implement using CRDTs?

• Q3 : If Q2 holds, can a system providing the required functionality be
built on these components?
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1.4 Report overview

The introduction chapter introduces the situation and formulates research ques-
tions that drives the report. The background chapter covers the relevant the-
ory regarding the search and rescue domain, distributed systems in general and
CRDTs in specific. Chapter 3 details the requirements provided for OBS. Chap-
ter 4 proposes a solution for OBS using CRDTs conforming to the requirements
detailed while Chapter 5 describes a proof-of-concept implementation of said
solution. Chapter 6 validates the implementation against the requirements pre-
sented while Chapter 7 addresses the research questions and concludes with the
state of the current model as well as future work on this project. This thesis
is a further development of the specialization project (TDT4501) and parts of
Chapter 1-4 and 7 are based on the report for that subject.
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2 | Background

2.1 Search and Rescue

Search and rescue (SAR) refers to the field governing locating and rescuing miss-
ing persons. This thesis will focus on search operations as they are the most
complex in terms of planning and leading. Search operations are anchored in
statistics gathered by the International Search and Rescue Incident Database
(ISRID) and are based on the concept of searching from the most relevant lo-
cation (based on intelligence gathering, often the last known location of the
missing person or some clue considered relevant) and outwards with an increas-
ing radius [1].

Figure 2.1: Roles and responsibilities in a SAR-operation

A SAR-operation typically consists of a leader element as well as several
units conducting the search (see Figure 2.1). The leader element is responsible
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for gathering intelligence to define areas where the missing person(s) are most
likely to be found as well as planning missions within this area of operation
and distributing available resources into units to handle the execution of said
missions.

Several different types of units can be involved in any given operation such
as foot patrols, ambulance, K9 or snowmobile/all-terrain vehicle units. To fa-
cilitate communications each unit and mission in an operation will be given a
unique callsign enabling accurate and efficient control over radio communication.
These names can be considered human readable ID-values.

As operations are often started on short notice and in unpredictable locations
the immediate response tends to be rather ad-hoc as availability of personnel
and their arrival time to the area of operations can vary greatly. As such it is
not uncommon for the leadership roles to change hands as the operation unfolds.

2.2 Distributed systems

2.2.1 Consistency in distributed systems
According to the CAP-theorem a distributed system is forced to prioritize be-
tween three attributes - consistency, availability and partition tolerance [2]. The
typical interpretation is that a partitioned/distributed system must prioritize
between consistency and availability.

As sacrificing availability, for instance through forcing operations to pass
through a centralized server, would present a bottleneck potentially eroding
much of the performance advantages of distributing the system in the first
place a common approach is to sacrifice consistency through optimistic updates
(meaning that updates are accepted if its preconditions exists locally with the
assumption that it will resolve with concurrent updates).

When designing a distributed data model the process of consolidating con-
current operations (operations performed in parallel) must be designed accord-
ing to some philosophy of operation regarding what to prioritize. Seeing how
each operation is performed without knowledge of the other and with its pre-
conditions met they can both be viewed as valid operations.

A common practice is to prioritize persisting user input over removing it
if the conflict between these operations should arise (for example if an item
is concurrently removed and modified then the modify operation should win
persisting the item). While this ensures that no user input is lost due to the
data model being distributed it does open up the possibility of odd behaviour
like the phenomenon in Amazon Dynamo where deleted items in a shopping cart
would re-appear [3]. In some cases, such as in those where losing data could be
critical to the operation of the system, these cases could be considered the price
to pay to ensure that no data is lost.
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Eventual consistency

A common way of implementing a distributed system is to sacrifice immediate
system-wide consistency by optimistically allowing updates at any node with-
out costly synchronization between other nodes. This approach ensures service
availability at multiple partitions executing in parallel with the knowledge that
the partitions will converge eventually.

Operational transformation is a common way of achieving eventual consis-
tency, used by several online collaborative frameworks such as Apache Wave [4].
OT handles consistency by transforming operations to maintain their intention
as the operations propagate through the set of replicas. This manual handling
of cases demands that the framework can handle any possible sequence and
combination of operations and transform them correctly, forcing much resource
usage into design, validation and maintenance of such a structure [5] as well as
poorly scaling execution time with larger collection of operations to transform
[6].

Strong eventual consistency

Strong eventual consistency is a guarantee in a distributed system, where clients
update the data stored independently of each other, that two client will be at
exactly the same state the moment they have applied the same set of operations.
Strong eventual consistency, if attained, would allow a system to provide both
Consistency (eventually all replicas are guaranteed to reach the same state) and
Availability (each replica can safely perform any changes with a guarantee that
it will eventually converge with the other replica) in a distributed system.

2.3 Conflict-free Replicated Data Types

Conflict-free Replicated Data Types are data types providing strong eventual
consistency by design, rather than through application-level logic. This is ac-
complished by designing data types and operations to result in the same state
regardless of the execution order of concurrent operations, meaning that any
two replicas will be in equivalent states when they have observed the same
changes as illustrated in Figure 2.2. This property allows a CRDT-based dis-
tributed system to adopt an optimistic updating approach with the guarantee
of an eventually consistent data model.

There are two approaches to implementing CRDTs - state based and op-
eration based. As they can be reduced to each other, implementation-specific
factors will dictate which is the better choice [7]. This report will focus on the
operation-based implementation as it provides several features desired in the
domain-specific application(see Chapter 3.2).
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Figure 2.2: Illustration example for a replicated system using CRDTs. Replicas
converge once all operations have been viewed. Colours represent the state of
the replica, with equal colours representing equivalent states.

2.3.1 Operation-based CRDTs
The domain for an operation-based CRDT consists of some initial state common
to all replicas and a set of operations that, when applied, alters the state of the
replicas. For any domain implementing such a data type to provide strong
eventual consistency two factors need to hold [7]

1. Causal delivery must hold for application of operations (an operation will
only be applied if its preceding operations have already been applied)

2. Any two operations where its preconditions are met will commute (same
state will be reached regardless of execution order)

The payload of communication between replicas will consist of the operations
applied to the common initial state. As long as each operation is commutative
and no operation will be run unless its preconditions are met (as described
above) two replicas receiving the same operations will be in the exact same
state regardless of delivery order or concurrently performed work.

2.3.2 Data Types
Much work has already been put into exploring the expressiveness of CRDTs.
The data types described below will be used as building blocks for the imple-
mentation of the data model.

Observed Remove set [7]

The OR-set is an unordered set where each element has a unique identifier. For
each element a set of client ids will also be included listing which client has
performed the add-operation on it. Two operations are allowed on the set

• add(element) - adds an element to the set and marks it as added by the
current client

• remove(element) - removes an element from the set by removing all client
marks observed at the relevant replica
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This data type is a CRDT as sequential operations will resolve without issue
(add and remove operations resolves based on order and are idempotent meaning
repeated executions have no effect) and concurrent operations will favor add()
(two separate clients with concurrent add/remove operations will converge on
the element remaining in the set as its client list will reflect that the element
was added).

A property worth noting is that this structure does not account for sequential
add-operations from the same client. This behaviour will be expanded upon in
our implementation (see Chapter 4.1.2).

Multi-Value Register [7]

The multi-value register is a map using vector clocks to maintain consistency.
MVRs supports a single operation

• assign(key, value) - assigns a value to the provided key.

This data type is a CRDT as sequential assigns will result in the last value
being assigned, while for concurrent assigns both values will be assigned to the
key as a set leaving the user to resolve the conflict.

Replicated Growable Array [8]

The replicated growable array is a data structure that supports a sequence of
atoms such as those found in documents. The structure is built using a hash
table mapping unique keys to slots of the following structure

S l o t {
Object , // contents o f the element
S4Vector , // unique s t r u c tu r e r e s o l v i n g c o l l i s i o n s
Key , // the unique key f o r the element
NextSlot // po in t e r to the next s l o t in the sequence

}

Sequence is provided by including a pointer in each slot to the next plot in
the sequence. The S4Vector is generated when an element is added to the RGA
(derived from the vector clock of the operation) and consists of the following 4
parameters

• SessionId - the current session number (incremented on new session such
as when membership changes)

• SiteId - a globally unique identifier for the site running the replica

• Sum - the sum of the vector clock for the operation

• Seq - the value of the vector clock for the replica performing the operation
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Globally unique keys for the slots is generated by hashing the S4Vectors. Or-
der is defined between S4Vectors Sa and Sb by checking the following statements
in order

1. Sa[SessionId] < Sb[SessionId]⇒ Sa ≺ Sb

2. Sa[Sum] < Sb[Sum]⇒ Sa ≺ Sb

3. Sa[SiteId] < Sb[SiteId]⇒ Sa ≺ Sb

On insertion of an element its final position will be determined by the order-
ing defined above. The S4Vector orders operations on which session they belong
to and the sum of its vector clock (intuitively ordering operations by how many
operations that precedes them) with the globally unique client id (SiteId) used
as a fallback guaranteeing order. The following operations are implemented on
the RGA

• insert(S4Vector, Object, LocationSlot) - for the given LocationSlot, tra-
verse its NextSlots until a slot with an S4Vector succeeding the provided
S4Vector is found. Place the object between those two slots

• delete(key) - marks the provided slot as a tombstone, kept in memory

As it can be shown that S4Vectors are ordered and transitive [8], each replica
will reach the same result after the same operations are performed. Tombstones
are kept in the structure to allow concurrent operations on deleted slots to be
performed.

2.3.3 Garbage Collection
Providing strong eventual consistency comes with some drawbacks. As the
state of the data model at any time is generated from the entire history of
operations until that point the entire history needs to be preserved. Where a
more traditional data model can safely discard deleted or stale data a CRDT
data model cannot afford that luxury as some replica somewhere may have
branched out concurrently with any other replica at any point.

Deleted entries are commonly referred to as tombstones (a data structure
representing the space some piece of data used to occupy). Several garbage col-
lection mechanics are proposed using version vectors and client lists utilizing the
known participating clients to purge tombstones once all clients have observed
operations rendering them obsolete [7][8].
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3 | Requirements

3.1 Data Model

Figure 3.1: Conceptual view of required data structures (boxes represent entities
and arrows linking them represent relations between them)

The required data structures for the system are shown in Figure 3.1 (collected
from Appendix A). The finished system should also be able to complete the tasks
outlined in Appendix B. A model capable of fulfilling the requirements presented
will need to represent different types objects linked together in a meaningful way.
The base components required for a data model for the system are objects with
associated attributes and relations between them.
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3.1.1 Objects
Data objects are central to any data model, serving as containers for informa-
tion. In our context they refer to separate types of containers representing a
self-contained object. The minimum required types of data objects are repre-
sented as rectangles in Figure 3.1. Each object requires a unique identifier to
ensure that we can directly address any object in the system without the risk
of collision.

Another requirement of some of the objects (units and missions) is the usage
of human readable IDs (e.g. callsigns) as described in Chapter 2.1. The collision
or loss of updates on this value could have consequences on communication
during the operation and needs to be handled with care to avoid such issues.

3.1.2 Attributes for objects
The data objects defined in the system also needs to be able to store information
about themselves. To provide this functionality we need to amass a portfolio
of data types that can express the attributes required. The proposed solution
must, as an absolute minimum, be able to handle document editing.

3.1.3 Relations
Relations in the system refer to the way data objects are linked to each other.
This is represented by the arrows in Figure 3.1. The data model must be able
to handle relations between objects.

Another aspect of the relations in the search and rescue domain is (by no
means uniquely) the hierarchial nature of relations. An example of this would
be a unit executing a mission, both managed by an operation. As long as the
unit is executing the mission it is implicitly managed by its operation - severing
the link upwards would leave the model inconsistent. A data model must ensure
the consistency of the relation hierarchy to avoid such unintended behaviour.
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3.2 System Requirements

OBS is required to operate regardless of environment (network availability) at
a level that allows parallel operation with no loss of data or functionality as
a result. The system principles outlined in Appendix A accounts for how the
system as a whole should be implemented. Two of the principles outlined in the
document requires the support of the data structure (outlined in R1 and R2).
The nature of search and rescue operations as conducted by the Norwegian Red
Cross (Chapter 2.1) also makes some functional demands of the system (outlined
in R3 and R4). The intended roadmap for development of features for OBS
also dictates R5.

• R1 : Offline over Online Data - The system must continue to operate
regardless of connection status

• R2 : Data Availability over Consistency - The system must prioritize
availability over consistency in an implementation, ensuring that work is
allowed to progress at a tempo unimpeded by synchronization processes
such as two-phase locks

• R3 : Variable client participation - The system must be able to handle
a changing set of participating clients

• R4 : User input must be preserved - The overall principle on reso-
lution of concurrent operations should be to avoid loss of user input due
to concurrent operations

• R5 : Data model must be easy to build solutions on top of - As the
system is intended to be easy to develop functionality for, working with the
data model should not require knowledge of the underlying mechanisms
of CRDTs
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4 | Proposed data model

4.1 Components

The data model can be generalized into objects and relations. The data object-
s/database classes (as represented by the boxes in Figure 3.1). Each object will
require a set of data and metadata fields. In addition relationships are defined
between objects - some of them will also implement qualifications/data to the
connection (for example a unit managed by an operations can have a callsign
assigned to it).

4.1.1 Objects

ID-values

Any new object regardless of creation time or client of origin in the distributed
system must be guaranteed a unique ID. This is the only property the ID must
provide as it will refer to unique constructs generated while using the data model.
A Lamport clock [9] for each client combined with its client id will guarantee
uniqueness as long as each client has a unique ID and for each operation at some
client each sequential operation will increment a persistent counter.

Human readable ID-values/callsigns

The core parts of any search and rescue-mission are the units at work and the
missions they are tasked to perform. In order to facilitate rapid communication
and administrative control of the operation these resources are assigned callsigns
(such as unit 2-1 or mission 1). These values are typically issued sequentially
and must be accounted for as an identifier since any collision or oversight in
these could cause communication difficulties.

Although the system should enforce unique assignment of callsigns the auto-
matic resolution of such collisions has the potential to cause more problems than
it solves (as we cannot guarantee complete device distribution a unit can have
its callsign altered without its knowledge causing potential communication fail-
ure). As such the Multi-Value register was chosen to maintain the assignment
of callsigns, leaving the user to resolve any such conflicts.
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Attributes

Each object in the data model will have to host a selection of data and metadata
to provide the desired functionality. The usage of RGAs will allow concurrent
editing of sequential data. The S4Vector ensuring strong eventual consistency
for this data type can be expressed by using client ids and vector clocks which
the system is perfectly capable of. As each object type can be defined with a set
of legal attributes they can be initialized with a map connecting attribute key
to its data which can be any appropriate CRDT allowing for sets or sequential
data as described above.

Vector clocks

Vector clocks are required to reason about execution order (sequential or con-
current) in RGA, MVRs and the modified OR-set used for relations (see Chap-
ter 4.1.2). For a defined client list a vector clock is a simple thing to implement
and reason about. However due to the distributed nature of operation execution
we must consider the client list to be variable. As we have unique client ids one
approach to this is to initialize an empty map as a clock and assign the pair
(client_id, timestamp) on an operation. If we define the value ’0’ for a client
that is not represented in the map it will produce equivalent functionality (with
a performance overhead compared to the simpler vector structure).

4.1.2 Relations

Figure 4.1: Relationship hierarchy

Objects in the data model are organized in a hierarchy (Figure 3.1). This
implies that changes in relationships should propagate up and down to keep the
total structure consistent (for instance a unit that executes a mission should
implicitly be managed by the operation the mission is managed by). In order
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to enforce this across replicas we define relations by OR-sets with cascading
operations as shown in Figure 4.1. The desired outcome is that alterations higher
up in the hierarchy could be reverted if concurrent operations has occurred
modifying the relations further down.

Operations on the OR-sets implementing this behaviour consists of add() and
remove(). Each operation is also expanded to include a vector clock as defined in
Chapter 4.1.1 to ensure that concurrent operations are detected (in the default
implementation of OR-sets sequential add()-operations do nothing, we require
it to further the vector clock to be able to correctly handle concurrency).

Attributes on relations

In addition to handling the existence of relations some also need to handle
attributes for them (units belonging to an operation will need to have the option
for a callsign and missions will need a mission name as described in Chapter 2.1).

We accomplish this by using a Multi-Value Register to map callsigns or mis-
sion names to the target of the relation. The behaviour of the MVR-structure
regarding concurrent, colliding assigns is desirable in this context as described
in Chapter 4.1.1. The resulting object will have the following legal operations
with target_id representing the id value of the target of the relation and hu-
man_readable_name represents the property of the relation such as the callsign
for a unit or the name for the mission

• assign(target_id, human_readable_name) - runs the following sequence
of operations

– MVR.assign(human_readable_name, target_id)

• remove(target_id) - runs the following sequence of operations

– MVR.assign(human_readable_name, remaining_set) where remain-
ing_set refers to the set of values fromMVR.get(human_readable_name)
minus target_id

As such we end up with two relation types - with and without attributes
assigned. Both types supports the cascading behaviour described ensuring that
concurrent work will prioritize maintaining user input by maintaining a consis-
tent relation hierarchy.

Garbage collection

Cascading operations as implemented above maintain the structure of the data
model but does generate more data as each operation on a relation multiplies
based on the number of defined cascading dependencies. To lessen the impact
of this we expand the operations on the relation objects to be marked if they
are the result of a direct operation or a cascading one. While direct operations
are required to provide history the cascading operations are only used to ensure
a consistent model. Remember that, for sequential operations for both OR-sets
and MVRs, the last operation will ’win’. This leaves us with the following
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Proposition 1. If ∃operationb ⇒ (operationa ≺ operationb) then operationa

can be safely discarded without affecting the outcome of the set of operations

Proof. (∀operation‖operationa ⇒ (operation‖operationb∨operation ≺ operationb)),
meaning that operationb will either come after or concurrently resolve with the
same set of operations as operationa leading the payload of operationa having
no effect on the resulting state

This proposition allows us to discard the payload for all non-concurrent
cascading operations (operations that aren’t the result of cascading still needs
to be maintained due to logging). A tombstone must be left to ensure causal
order of operations (Chapter 2.3.1) eating into some of the advantage of this
method of garbage collection. The total value of this method and discussion on
its inclusion is further elaborated on in Chapter 7.1.1.
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4.2 Structure

This section covers architectural definitions regarding how the system should
be implemented to allow the system to provide strong eventual consistency
along with some performance optimizations. These choices are intended to be
maintained through the implementation of an API, as proposed in Chapter 4.3.

4.2.1 Schema
While we are able to ensure uniqueness between objects (by the globally unique
lamport clock id value) we are not able to guarantee no collisions between their
attributes if the user is allowed to add them at their own discretion. A solution to
this is to ensure that new objects are initialized with its legal attribute fields by
having it conform to a strict schema. Such a schema would define how an object
should be initialized ensuring that concurrent operations on the same objects do
not cause duplicate fields or collide unintentionally. A partial implementation
for a schema is provided in Chapter 4.2.1, defining id values and relations for a
subset of the data model. This could be expanded upon in an implementation
of the system.

4.2.2 Read-optimized data
While the basic structures defined in Chapter 4.1.1 provides the functionality
required of the data model it is not optimized for all usage patterns. In order to
increase efficiency of polling the data model relation data should be duplicated in
both ends. As proposed in Chapter 4.1.2 a single structure maintains the actual
data for the relationship (for any relation the relation data structure would be
stored in one end of the relation leaving the other side with no efficient way of
accessing its relations).

To allow for quicker reads this data could be replicated in both objects. As
the views proposed can be extrapolated from the data types defining the relation
they do not need to be replicated across clients - they can be generated at each
replica with identical results given the same observed operations. How these
structures could look is provided in Chapter 4.2.1.
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4.3 API

Several of the proposed structures in Chapter 4.1, such as the implementation of
relation hierarchies using cascading operations (Chapter 4.1.2), rely completely
on being updated as a structure rather than updating the components it consists
of. As such a data model using these components must implement a layer
ensuring that only safe operations are performed on the model. As the data
model is also intended to serve as a platform for feature development the model
must also not require knowledge of the underlying mechanisms of the data model
as outlined in R4.

The best way to resolve the requirements listed above is to implement an
API handling alterations of the underlying data model. This interface would
need to only allow operations fitting their preconditions. Another responsibility
would be to maintain the denormalizing data replication structures referred
to in Chapter 4.2.2. Having an API handle changes to the data model also
simplifies the development process as a middle layer is handling the data model
logic allowing the developer to focus on feature implementation rather than
wrestling with the mechanics of the data model.

4.4 Logging

Operation based CRDTs consists of an initial state and a set of operations
performed. As a consequence of this design choice the sequence of operations
can be viewed as a change log for a system implementing them. In the simplest
implementation there are some problems with this assumptions however, as
the sequence of concurrent operations cannot be determined. Another issue
regarding the total sequence of operations is that they are defined this is a
relative measurement of time from the systems perspective, with no immediate
relation to human time.

These issues should be resolved in order for the system to provide logging,
and could be done as simply as appending a local timestamp (milliseconds since
epoch) to each operation. This will allow us to reason about order of execution
in the aftermath of a SAR-operation.
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5 | Data model implementa-
tion

In order to determine the viability of a CRDT-based data model in OBS a proof-
of-concept data model was implemented. The data model was implemented
using Java and the project can be found at

https://github.com/jrlhlme/master.

This data model covers a subset of the structures required for a full-feature
release (the subset shown in Figure 5.1). This subset was chosen as it covers the
functional aspects of the full model, being relations with attributes (as outlined
in Chapter 4.1.2) and the cascading behaviour between relations (as outlined in
Chapter 4.1.2).

Figure 5.1: Scope for the proof-of-concept model implementation
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5.1 Architecture

Figure 5.2: Overview of components in the implemented model with arrows
indicating usage pattern

The implemented model can be divided into a hierarchy of components with
high or low order purpose in the functionality of the data model. The main
component types and their relations to each other are shown in Figure 5.2.
Each component are presented in detail in the following sections.

5.2 Primitives

Primitives refer to the most basic data structures in the data model and en-
compass the fundamental data types as well as operations directly on them.
The data model implemented uses observed remove sets as well as multi value
registers. Both of these share the same operation-handling structure in the form
of the tree.

5.2.1 Operation tree
As both implemented primitive data types are operation-based CRDTs some
structure keeping track of sequence and concurrency between replicas is needed.
This is accomplished through a tree-like structure containing operations and
organizing them into child-parent relationships based on the preconditions of
the operations. Each operation is assigned a vector clock for its operation as
well as a set of vector clocks indicating the preceding operations serving as
parents in the tree.

The role of the tree structure is to organize incoming operations and detect
concurrency. When concurrency is detected the tree will produce the root of
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the concurrency (where two or more replicas diverged in the tree), leaving the
resolution of said operations to the implemented primitive data type.

5.2.2 Modified OR-set
The most basic data type in our data model is the OR-set with vector clock
modification to allow for sequential adds (as outlined in Chapter 4.1.2). Be-
haviour is intended to maintain user input, with sequential operations resolving
according to their ordering and concurrent operations prioritizing add opera-
tions to the point that any single add will win over any number of concurrent
remove operations.

5.2.3 Multi-Value Register
The MVR implementation in the data model is built using the OR-set imple-
mentation described above, being a register that maps id values to OR-sets
determining what value the id corresponds to. Behaviour as defined in Chap-
ter 4.1.2 is implemented when generating operations for the underlying OR-set,
enforcing the intended behaviour.

5.3 Components

5.3.1 Objects
Objects in the data model are intended to hold information about their state.
Existence of an object in the data model is handled by designated OR-sets
holding id values. These id-values map to created objects to allow the developer
to access the data as an object.

These objects are intended in a full implementation to hold information de-
rived from operations on the underlying CRDTs allowing read-optimized data
for attributes and relations to other objects as proposed in Chapter 4.2.2. In-
cluding this feature would also greatly increase the performance of relation op-
erations as this would allow direct references to the relations rather than having
to iterate through the list of relations in the worst case.

In the implemented data model objects serve as anchor points for relations.
The cascading principles as described in Chapter 4.1.2 are not extended to
objects as of this implementation. Implementing this feature would also increase
the amount of operations generated. As the state of an object is dictated by the
relations it is connected to (a Unit not connected to an Operation is not involved
in the execution of said Operation) the delete functionality is disabled on objects
in the API (Appendix C) with no real functionality loss. The implementation
of this feature is discussed in Chapter 7.3.
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5.3.2 Relations
Relations in the data model are defined by three separate maps mapping the
source id to a MVR which maps attributes to destination id(s). This structure
allows the data model to maintain relations between objects and assign an
attribute to any given relation if required.

Figure 5.3: Relationship cascading behaviour in the partial implementation

Cascading relationship operations as discussed in Chapter 4.1.2 are imple-
mented in the data model with behaviour as mapped in Figure 5.3. When a
relationship is assigned or removed the operation will automatically generate
operations for other connected relations. Examples of this behaviour can be
found in the Test class in the data model with a full description of the cases
included in Chapter 6.1.4.

5.4 Object storage

The Object storage class is a centralized class managing all entities used to store
data and contains the components described in Chapter 5.3. Another role of
the class is to transform simple functional calls such as creating objects and
assigning/removing relations into operations on the underlying primitive data
objects while maintaining properties such as cascading. Operations resulting
from cascading are also labeled as such so that garbage collection mechanisms
such as the one outlined in Chapter 4.1.2.

5.4.1 Operation Storage
The Operation storage class maintains the operations performed on its desig-
nated Object storage class as well as keeping track of operations to export when
exchanging operations with another Operation storage instance. The stored
information of operations performed can serve as a log of changes done to the
system as operations are stored sequentially based on execution.

5.4.2 API
The API for the implemented data model consists of the public functions in the
Object storage class (specifications can be found in Appendix C). The API is
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intended to function as the single contact point for developers working on top of
the data model and does not require knowledge of the underlying logic to use.

5.5 Garbage collection

Garbage collection in CRDTs typically require consensus on data structures
that are stale and can safely be removed among a known set of participating
clients [7]. These constraints are in conflict with the system requirements for
our implementation as it requires a lock on a set of data structures (violating
the principle of availability over consistency (R2)) as well as a known client
list (which we are unable to obtain in our domain (R3)). These constraints
render us unable to completely remove tombstones from stale objects in our
data model.

The cascading behaviour described in Chapter 4.1.2 does allow for some
garbage collection. As the cascading operations are not needed for logging
purposes their contents can be purged once it can be ascertained that they have
no impact on the state of the object they were performed on (Chapter 4.1.2).
The object storage class that handles cascading behaviour on relation operations
also marks operations as cascading or not, thus allowing the above mentioned
functionality (some further work on this is required, see Chapter 7.3).
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6 | Validation

6.1 System Requirements

Several requirements for a data model implementation for OBS were outlined
in Chapter 3.2. This chapter considers to what extent the proposed solution is
able to fulfill these requests.

6.1.1 R1 - Offline over Online data
To guarantee functionality OBS must operate regardless of connection status.
The CRDT-based system proposed has each implementation operating com-
pletely independently with the possibility to synchronize with other implemen-
tations at any time. All legal operations in the system are guaranteed to resolve
as the data types are conflict free. As such the system is guaranteed functional-
ity regardless of connection status as it makes no functional distinction between
being connected or not.

6.1.2 R2 - Data availability over Consistency
As each implementation operates independently to each other availability con-
cerns are non-applicable when using the CRDT-based proof of concept data
model. Each client has immediate availability of all observed alterations to its
implementation.

6.1.3 R3 - Variable client participation
In addition to the connectivity concerns above no assumptions can be made
regarding the client list when the data model is in use. The way vector clocks are
handled (by defining a zero value for any client not represented in a given vector
clock as proposed in Chapter 4.1.1) allows the model to provide functionality
regardless of participating clients.
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6.1.4 R4 - User input must be preserved
Using CRDTs allows for defining behaviour on concurrent operations performed
on the system. In our case operations adding or maintaining data structures
are essential to persist when concurrent to remove operations as in this case
the alterations made may not be visible to a user removing data and as such
the decision to remove was made on an incomplete basis. This behaviour is
achieved in the implemented data model by ensuring that operations adding to
or editing data takes precedence in concurrent operations. Cascading operations
are also implemented to persist a relationship hierarchy regardless of concurrent
operation of the system.

To demonstrate the properties described above several test cases were in-
cluded in the file Test.java in the implemented data model. The results below
can be replicated by executing said class and will output the state of each client
after each step.

Test Case 1

1. Starting conditions : Operation (id:1-1), Unit (id:1-2) and Mission (id:1-3)

2. Client 1 :
add relation between Operation (id:1-1) and Unit (id:1-2)
remove relation between Operation (id:1-1) and Unit (id:1-2)
Client 2 :
add relation between Operation (id:1-1) and Unit (id:1-2)

3. Outcome after synchronization : add operation from client 2 is concurrent
to the remove operation in client 1, resulting in the relation between the
operation and the unit remaining
State of both clients : Operation (id:1-1), Unit (id:1-2) and Mission (id:1-
3) with the following relations : Operation(id:1-1)-Unit(id:1-2)

Test Case 2

1. Starting conditions : Operation (id:1-1), Unit (id:1-2) and Mission (id:1-3)
with the following relations : Operation(id:1-1)-Unit(id:1-2), Operation(id:1-
1)-Mission(id:1-3)

2. Client 1 :
remove relation between Operation (id:1-1) and Unit (id:1-2)
remove relation between Operation (id:1-1) and Mission (id:1-3)
Client 2 :
add relation between Unit (id:1-2) and Mission(id:1-3)

3. Outcome after synchronization : cascading adds from add operation in
client 2 takes precedence over the two remove operations, persisting all
relations from start condition as well as adding the new relation between
Unit (id:1-2) and Mission(id:1-3)
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State of both clients : Operation (id:1-1), Unit (id:1-2) and Mission (id:1-
3) with the following relations : Operation(id:1-1)-Unit(id:1-2), Operation(id:1-
1)-Mission(id:1-3) and Unit(id:1-2)-Mission(id:1-3)

Test Case 3

1. Starting conditions : Operation (id:1-1), Unit (id:1-2), Mission (id:1-3)
and Mission (id:1-4) with the following relations : Operation(id:1-1)-
Unit(id:1-2), Operation(id:1-1)-Mission(id:1-3) and Unit(id:1-2)-Mission(id:1-
3)

2. Client 1 :
remove relation between Operation (id:1-1) and Unit (id:1-2)
Client 2 :
add relation between Operation (id:1-1) and Mission(id:1-4)
add relation between Unit (id:1-2) and Mission(id:1-4)

3. Outcome after synchronization : cascading remove from client 1 will re-
move the relation between Unit(id:1-2) and Mission(id:1-3), however cas-
cading adds from client 2 will persist the relation that client 1 attempted
to remove
State of both clients : Operation (id:1-1), Unit (id:1-2), Mission (id:1-
3) and Mission (id:1-4) with the following relations : Operation(id:1-1)-
Unit(id:1-2), Operation(id:1-1)-Mission(id:1-3), Operation(id:1-1)-Mission(id:1-
4) and Unit(id:1-2)-Mission(id:1-4)

6.1.5 R5 - Data model must be easy to build solutions on
top of

As described in the requirements OBS should fit into a microservice architec-
ture with multiple independent development teams. This naturally extends
to any data model implemented and, as such, puts high demands on usabil-
ity. The implemented proof-of-concept data model relies on the ObjectStorage
class to provided a higher-level API for altering the database (as outlined in
Appendix C) while handling the data model specific CRDT logic in the back-
ground. This allows developers with no knowledge of the internal workings of
the data model or CRDTs to implement features using the data model.
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7 | Discussion

7.1 Research Questions

7.1.1 Q1
Are the properties of a CRDT-based data model suitable for use in the case for

OBS?

A CRDT-based data model have several native advantages. The guaranteed
convergence property of strong eventual consistency enables full functionality
when online, offline, or in cases where the network is intermittent (satisfying
R1 and R2). The small payload consisting only of the actual operations also
helps in cases where bandwidth is limited, as less data must be exchanged.

Garbage collection is a potential problem as prolonged usage would cause old
data (tombstones) to use increasing amounts of space but SAR-operations are
not expected to last for long amounts of time lessening this problem somewhat.

While the collision-free nature of a CRDT-based data model sounds like a
perfect fit in theory there are some aspects of the SAR-domain that robs us of
some of the potential advantages. Operations colliding due to concurrency are
both executed on valid preconditions (although at different replicas), and as such
should be preserved. As the collision originates from the domain rather than the
data model abstraction of it, automatically resolving the collision could lead to
loss of data - the conflict in itself is necessary data that needs to be addressed.
This does not mean that we get no use of this property however, as on such
collisions the proposed relation handling easily rolls back to a consistent state.

In sum CRDTs provide a set of properties that surpasses merely intuitive
suitability. In addition to this the downsides of CRDTs are less pronounced in
the problem-specific domain, meaning that a CRDT-based data model would
be quite suitable for implementing OBS.
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7.1.2 Q2
Are the components required to express the data model for OBS possible to

implement using CRDTs?

As outlined in Chapter 3.1, the system desired consists of linked unique
objects serving as attribute containers. The proposed solution provides generic
CRDTs for this situation capable of expressing a set of objects in a hierarchially
linked structure. Globally unique IDs ensure no collisions when creating objects
concurrently.

Relations are also capable of hosting attributes enabling the use of human
readable IDs such as callsigns. The attributes for the objects was not outlined
in time for the delivery of this report but the hardest case, sequential data
editing, can be provided using RGAs. Globally unique objects, relations and
attributes represent the required data model in its entirity, meaning that CRDTs
are sufficiently expressive to be used in an implementation of OBS.

7.1.3 Q3
Can a system providing the required functionality be built on these

components?

In Chapter 7.1.1 we showed that R1 and R2 holds for the system. The
modified vector clock structure, while adding complexity to the system, allows
us to handle the case of a changing participation list (R3). In order to satisfy
R4 much collision resolution is moved from the model to the user (as outlined in
Chapter 7.1.1). As such a system constructed on the components proposed could
provide the required functionality while ensuring strong eventual consistency.
The data model implementation outlined in Chapter 5 is designed based on the
requirements outlined and its validation testing described in Chapter 6.1 shows
that the functionality required is possible to obtain through a pure CRDT-based
data model.
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7.2 Conclusion

The goal of this report was to explore the viability of using CRDTs to fulfill the
requirements of OBS. The proposed solution has been shown as conceptually
viable for usage - being able to utilize the strong attributes of CRDTs such as
strong eventual consistency and offline usage while minimizing the impact of the
weaknesses such as garbage collection. The proof-of-concept implementation of
the data model shows that a CRDT-based data model is capable of handling
the system requirements imposed on it by the Search and Rescue domain.

7.3 Future work

As the implemented data model described in Chapter 5 serves as a proof-of-
concept several features should be expanded upon if the model should be used
in its intended role. Future work divided into components of the system are
listed below.

• Operation Storage - The provided operation storage is limited to two
clients for testing purposes. In order to expand this functionality to serve
any number of clients a protocol enabling a client to supply operations
regardless of origin should be implemented.

• Garbage Collection - A mechanism for removing the unnecessary con-
tents of operations marked by the system as resulting from cascading
operations as described in Chapter 4.1.2 should be implemented, reducing
the amount of information that needs to be stored.

• Object functionality

– Attributes for objects as described in Chapter 4.1.1 must be imple-
mented. Sequential data in the form of text or similar can be imple-
mented using the RGA data type. Relation information must also
propagate into these objects allowing for much better read time as
discussed in Chapter 4.2.2.

– Cascading behaviour for relations could be extended to include the
objects they connect allowing users to remove objects. This expan-
sion is not strictly necessary as the state of objects could be main-
tained by considering its relations, and the implementation would
cause further operations to be generated (although the effect of this
could be mitigated by implementing the garbage collection function-
ality discussed above).

• Collision resolution transparency - as the system will maintain struc-
tures on concurrent operation the user should be informed whenever the
synchronization process between clients causes this. This could be han-
dled in the Tree class for each data type implementation as it contains
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information on the concurrent operation allowing it to report to the user
when concurrent operation has forced the system to prioritize one above
another.
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Foundations 
Incident response requires resilient and fault-tolerant information systems. Incidents are 

defined as unplanned situations that require a coordinated response. The response follows 

a standardized approach to command, control, and coordinate units performing actions 

required to resolve the situation. Each action is performed asynchronously and 

decentralized, forming a series of immutable events which combined resolves the situation. 

This is essentially an eventually consistent append-only log of historical events, which the 

Incident Response Management System (IRMS) should model accordingly. The Ubiquitous 

Language (taxonomy) of IRMS and the Incident Command System (ICS) overlap on key 

concepts and design only, the hierarchical composition and coordination of responders 

differs. IRMS is essentially a subset of ICS, by defining a simplified and leaner organizational 

(compositional) model with only two levels of command, control, and coordination; Incident 

and Unit (search team, K9, snowmobile, rescue boat). 

Domain in Minimal Viable Product 
A minimal viable product must implement following entities: 

• Incident 

• Clue 

• Person 

• Vehicle 

• Operation 

• Mission 

• Personnel 

• Transport 

• Unit 

• Tracking 

• Log 

System Principles  
Based on the fundamentals briefly covered above, the implementation of IRMS must abide 

to the following principles: 

• Offline over Online Data 

• Data Availability over Consistency 

• Service Choreography over Orchestration  

• Microservice over Layered Architecture 

• High Cohesion and Low Coupling 

 

Offline over Online Data. Internet connectivity on scene must be assumed to be 

intermittent and of low bandwidth in general, and non-existing in extraordinary situations. 

IRMS must therefore be resilient to low bandwidth and intermittent connectivity.  
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Data Availability over Consistency. Our response to incidents is inherently distributed 

processes with soft states that are eventually consistent. Each process manages a group of 

associated state objects which are considered a unity in the context of data changes. In 

Domain-Driven Design (DDD), this is called an Aggregate. State is shared between these 

processes regularly as state change events, written or verbally. This gives high degree of 

freedom, resilience and fault tolerance on an organizational level. When sharing state, the 

CAP theorem dictates that we have to choose between availability and consistency when 

network partitions or failures can occur. Traditional database transactions with ACID 

guarantees would require IRMS to implement a two-phase commit, which is inherently 

fault-intolerant and hard to implement with high availability in mind. IRMS architecture 

must instead adhere to BASE semantics (Basically Available, Soft state, Eventual 

consistency), when implementing state sharing between processes. 

 

Service Choreography over Orchestration. Since our response is inherently distributed in 

areas of intermittent Internet connectivity, centralized coordination of concurrent 

modification of shared states (Service Orchestration) using two-phase commit and 

synchronous operations is violating the principle of Data Availability over Consistency. 

According to this principle, IRMS must implement state sharing that is eventual consistent, 

which implies asynchronous communication between services using messages (Service 

Choreography). Each message contains a state change, representing the action performed 

by the process governing the aggregate described above. Messaging must be provided by 

the Infrastructure Layer (see below) and ensure that same message applied multiple times 

must not change the result (Idempotence) by supporting Versioning and Optimistic Locking. 

 

High Cohesion and Low Coupling over Provisioning. A single codebase compiled into a 

monolith could be deployed with all dependencies included. It simplifies configuration 

management and deploy scripts greatly, compared to a system based on a microservice 

architecture. Although modular monolith design could have high cohesion and low coupling, 

this is not enough for this project. Our open source strategy and team sourcing model 

requires parallel and highly decoupled workflows performed by autonomous teams 

(separation of concerns). The IRMS architecture must support this. 

 

Microservice over Layered Architecture 

At this point, the IRMS architecture most suitable to fulfil all principles above, is a 

Microservice Architecture based on Service Choreography using Event Sourcing (ES) and 

Command Query Responsibility Segregation (CQRS). This results in an architecture that 

allows for highly cohesive and low coupled services, enabling the use of multiple 

autonomous development teams. It also allows us to implement eventual consistent sharing 

of states between services, which favours availability over consistency, a trait shared by the 

coordinated response that IRMS must support. This however, does not exclude conceptual 

layers in the microservice architecture, or inside each service. The four conceptual layers of 

User Interface, Application, Domain and Infrastructure commonly found in DDD, are still 

viable architectural solutions. This principle only states that when in conflict, the 

microservice architecture principles take precedence over layered architecture principles.  
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Proposed Architecture 

The proposed IRMS architecture is modelled on DDD principles. Services are grouped in the four 

conceptual layers commonly used in DDD. The components in the User Interface layers are called 

Apps. All other components are Services. For completeness, the Incident Preparedness 

Management System (IPMS) is also modelled in. 

Context map 
The Context Map (DDD) models the relationships between the Bounded Contexts (DDD) in IRMS. 

 

The bounded context Incident Response uses Anti-Corruption Layers to decouple from specific API 

implementations for services it consumes. This entails that the bounded context of Incident 

Response defines stable internal APIs for each external service type it depends on. The anti-

corruption layers translate between the internal API and the API of consumed services. If multiple 

implementations of the same type of service must be supported, an Open Host Service must be 

implemented in the bounded context of Incident Response for each of these types. 

Architecture Layers 
IRMS consists of the following four conceptual layers (IPMS modelled on the right): 

 

Event Stream Management 

Event Processing 

Event Store 

Sessions Identity, Authorization, Roles, SSO 

IAM 

Team 

Mission 

Incident 

Insight 

Incident 

Command 

Profile, Consent, Competence, Affiliation   
PII 

Tracking Aggregates 

U
se

r 
In

te
rf

ac
e

 
In

fr
as

tr
u

ct
u

re
 

A
p

p
lic

at
io

n
 

Alerting 

Service 

Incidents Response Aggregates 

D
o

m
ai

n
 

Incident 

Preparedness 

Management 

Follow-Up 

Management 
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B | OBS use cases
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C | API for data model

Operation :
c reateOperat ion ( )
getOperat ion ( id )

Unit :
c reateOperat ion ( )
getUnit ( id )

Miss ion :
c reateOperat ion ( )
getMiss ion ( id )

Re la t i on s :
ass ignOperat ionUnit ( operat ion , unit , name)
removeOperationUnit ( operat ion , unit , name)

ass ignOperat ionMiss ion ( operat ion , miss ion , name)
removeOperationMission ( operat ion , miss ion , name)

as s i gnUni tMis s i on ( unit , miss ion , name)
removeUnitMission ( unit , miss ion , name)
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