
N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r d

at
at

ek
no

lo
gi

 o
g

in
fo

rm
at

ik
k

M
as
te
ro
pp

ga
ve

Stine S. Stavland

Convolutional Neural Networks for
Part-of-Speech Tagging

Masteroppgave i Datateknologi
Veileder: Björn Gambäck

Januar 2020

Stine S. Stavland

Convolutional Neural Networks for
Part-of-Speech Tagging

Masteroppgave i Datateknologi
Veileder: Björn Gambäck
Januar 2020

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for datateknologi og informatikk

Abstract
Inspired by recent work in the fields of Deep Learning and the use of Convolutional
Neural Networks for sequence processing, this Master’s thesis concerns the use of Con-
volutional Neural Networks for the otherwise well-explored Natural Language Processing
task of Part-of-Speech tagging. The main contribution was the development of two tag-
gers using Convolutional Neural Networks with different activation functions and the
results of training and testing the taggers on one of the Norwegian treebanks and one of
the English treebanks of the Universal Dependencies project.

The results of the experiments show that a Part-of-Speech tagger based on Convo-
lutional Neural Networks can achieve comparable performance to a Long Short-Term
Memory based tagger, but state-of-the-art results were not achieved.

i

Sammendrag
Konvolusjonelle nevrale nettverk har vanligvis ikke vært brukt til sekvensprosesserings-
oppgaver, men nylige forskningsarbeid har gitt inspirasjon til å teste ut bruk av kon-
volusjonelle nevrale nettverk for ordklassemerking. To taggere med ulike aktiverings-
funksjoner ble utviklet og testet, en av dem mer grundig enn den andre. Taggerne ble
testet på de norske og engelske delene av Universal Dependencies prosjektet.
Eksperimentene viste at konvolusjonelle nevrale nettverk kan oppnå resultater som

kan sammenlignes med tilbakevendende nevrale nettverk på ordklassemerkingsoppgaven,
men de konvolusjonelle nettverkene når ikke opp til de beste resultatene per i dag.

ii

Preface
This Master’s thesis was conducted at the Norwegian University of Science and Techno-
logy (NTNU) in Trondheim by Stine S. Stavland as the final part of the degree of Master
of Science with specialization in Computer Science. The work was supervised by Björn
Gambäck, whose knowledge and patience were vital to the completion of the thesis.

Stine S. Stavland
Trondheim, 9th January 2020

iii

Contents
1 Introduction 1

1.1 Background and Motivation . 1
1.2 Goals and Research Questions . 2
1.3 Contributions . 3
1.4 Report Structure . 3

2 Background and Resources 5
2.1 Natural Language Processing . 5

2.1.1 Language Modeling . 6
2.1.2 Part of Speech Tagging . 6
2.1.3 Embeddings . 6

2.2 Deep Learning . 7
2.2.1 Optimization algorithms . 7
2.2.2 Convolutional Neural Networks . 8
2.2.3 Recurrent Neural Networks . 9

2.3 Resources . 9
2.3.1 Universal Dependencies . 9
2.3.2 PyTorch . 10

3 Related Work 13
3.1 Natural Language Processing (Almost) from Scratch 13
3.2 Learning Character-Level Representations for Part-of-Speech Tagging . . 14
3.3 Finding Function in Form: Compositional Character Models for Open

Vocabulary Word Representation . 14
3.4 Multilingual Part-of-Speech Tagging with Bidirectional Long

Short-Term Memory Models and Auxiliary Loss 15
3.5 Character-Aware Neural Language Models 15
3.6 An Empirical Evaluation of Generic Convolutional and Recurrent

Networks for Sequence Modeling . 16
3.7 Language Modeling with Gated Convolutional Networks 17
3.8 Part-of-Speech tagging for Norwegian . 17

4 Architecture 19
4.1 Data and preprocessing . 19
4.2 Network architecture . 19
4.3 Input parameters . 20

v

5 Experiments and Results 23
5.1 Experimental Plan . 23

5.1.1 Initial experiments . 23
5.1.2 Testing on one of the Norwegian UD databanks 23
5.1.3 Testing on one of the English UD databanks 24
5.1.4 Testing ReLU architecture . 24

5.2 Experimental Setup . 24
5.3 Experimental Results . 25

5.3.1 Initial experiments . 25
5.3.2 Testing on one of the Norwegian UD databanks 27
5.3.3 Testing on one of the English UD databanks 28
5.3.4 Testing ReLU architecture . 28
5.3.5 Parameter count . 30

6 Discussion 31
6.1 Discussion of Results . 31
6.2 Comparison of Results . 32
6.3 Discussion of Architecture . 33
6.4 Discussion of Experiments . 33
6.5 Final Evaluation . 34
6.6 Future Work . 35

Bibliography 36

vi

List of Figures
4.1 The basic network architecture . 20

vii

List of Tables
2.1 Universal Part-of-Speech tags . 11

5.1 Accuracy in 5-fold crossvalidation for GLU and ReLU 25
5.2 Top five and bottom five results from random search 25
5.3 The base hyperparameters for the first experiment 26
5.4 Results of running the GCNN on the Norwegian data with different

hyperparameters . 26
5.5 Per class measures for base setup with two layers on Norwegian data . . . 27
5.6 Results of running the GCNN on the English data 28
5.7 Per class measures for base setup with two layers on English data 29
5.8 Results of running the ReLU architecture 29
5.9 Parameter counts on the Norwegian data 30

ix

1 Introduction
While people might be fine with pushing buttons and swiping screens to make our com-
puters do what we want them to do today, being able to talk to them and be understood
has been dreamed of since the very beginning of computer science. Humans have a tend-
ency to anthropomorphize objects and animals, and computers are not exempt from the
human need for social interaction. For computers to be able to fulfil such tasks, Natural
Language Processing (NLP) is required.

NLP can be done on several levels, from parsing to sentiment analysis, and the higher
levels are often dependent on the lower. Part-of-Speech tagging (POS tagging) is one
of the lower level methods, but it is important all the same. Many taggers exist, using
a variety of methods. Recent research has among other things focused on developing
taggers for languages with little existing language processing resources and on applying
new machine learning algorithms to the task.
Machine learning is a field of computer science concerned with how computers can

learn from experience. In practice this generally means algorithms that take data as
input and use the given data to produce a function capable of performing the desired
task. There are many different algorithms that fall under the machine learning term,
ranging from simple regression to the use of deep artificial neural networks, often called
Deep Learning.
Deep learning is a field in machine learning that has recently become more relevant.

Though many of the algorithms have been known for years, the computational power
and data amount necessary to make good use of them are relatively recent developments.
As such, it has also become interesting to apply deep learning algorithms to NLP tasks,
POS tagging among them.
One of the more well-known deep learning algorithms is the Convolutional Neural

Network (CNN). It is commonly used for image processing as it preserves topological in-
formation and can be layered to extract increasingly higher-leveled features of the input.
It can also be used for one-dimensional input, or sequences, though other algorithms
aimed at sequence-processing have normally been preferred.
This report will focus on the use of CNNs for POS tagging.

1.1 Background and Motivation

Part-of-speech tagging lends itself well to supervised machine learning algorithms as they
are concerned with predicting labels for input. In this case the labels would be the word
classes associated with the words in the input.

1

More recent developments in machine learning are deep learning algorithms that are
more effective and efficient. Some research has been done on the application of specialized
deep neural networks such as Recurrent Neural Networks (RNNs) and Long Short-Term
Memory (LSTM) networks to the task of POS tagging. Good results have been achieved
with these methods. As POS tagging is a sequence-to-sequence problem, the most
common deep learning models used are those based on RNNs, which have long been
preferred for sequence processing. Plank et al. (2016) use a Bi-directional Long Short-
Term Memory (bi-LSTM) network on many languages of the Universal Dependency
treebanks (Nivre et al., 2015), demonstrating the effectiveness of the bi-LSTM in POS
tagging. As the UD treebanks are freely available in many languages and use a standard
format, they make for a good data source for POS tagging and other NLP tasks.
Bai et al. (2018) showed that models based on CNN can also perform well on sequence

problems. So the interest arose to explore them further and to test the effectiveness of
CNN for POS tagging, using the UD treebanks.

1.2 Goals and Research Questions

The initial aim was to use Deep Learning algorithms for part-of-speech tagging. The
focus then came to be on using CNN models for the task. Compared to other Deep
Learning algorithms, like LSTM, little work had been done with CNN for POS tagging
specifically. It was therefore desired to test the performance of a CNN model and
consider whether CNN could be considered a viable alternative to the more commonly
used algorithms for POS tagging.

Goal Investigate the usefulness of CNNs for part-of-speech tagging:
Test and consider whether CNN can be thought of as a useful alternative to more
traditional sequence-processing algorithms for POS tagging.

These research questions were then relevant to consider:

Research question 1 Can a CNN achieve good results for Part-of-speech tagging?
What level of performance can be expected from a CNN on the POS tagging task,
and how does it compare to the results of other algorithms?

Research question 2 How does a CNN-based Part-of-Speech tagger perform on a Nor-
wegian dataset?
The Norwegian language is one of many languages for which there are few exist-
ing NLP-resources. Can a CNN-based Part-of-Speech tagger be useful for tagging
Norwegian?

Research question 3 How does the CNN perform on different languages?
Is the performance consistent across different languages? How does it compare to
different algorithms on different languages?

2

1.3 Contributions
The contributions of this Master’s thesis are the development of a CNN-based Part-of-
Speech tagger using Gated Linear Units and a CNN-based Part-of-Speech tagger using
Rectified Linear Units, and the results of training and testing the two taggers on the
Norwegian and English parts of the Universal Dependencies project. The two taggers
will be made available on GitHub.

1.4 Report Structure
The thesis has five chapters in addition to this introduction. The chapters and their
contents are as follows:

Background and Resources introduces methods, algorithms and terminology related to
Part-of-Speech tagging and Deep Learning.

Related Work contains a review of some work related to CNN and Deep Learning for
Part-of-Speech tagging.

Architecture describes the architecture and data used in the experiments.

Experiments and Results describes the experiments performed and their results.

Discussion contains the discussion of the results reported in the Experiments chapter, a
final summary of the work, and suggestions for future work.

3

2 Background and Resources
This chapter gives an introduction to and overview of some methods, algorithms and
terminology related to Deep Learning and Natural Language Processing.

2.1 Natural Language Processing

Natural Language Processing (NLP) refers to the processing of language and commu-
nication in the forms most commonly used by humans. Even for humans, using and
understanding languages require years of training and experience, and even then we of-
ten make mistakes. Computers are not yet as versatile as the human brain, and even
if they have the advantage of faster processing, they still require good algorithms and
large amounts of suitable data.

NLP can be used for many purposes. As previously mentioned, it can be used to
facilitate communication between humans and computers, both spoken and written. It
can also be used to facilitate communication between humans, for example by translating
between different languages. Another important use is to extract information, especially
from written text. The internet contains massive amounts of readily available written
text that can be used, and many sites have great amounts of user generated content,
allowing processing methods like opinion mining.
There are some inherent challenges in NLP that even humans sometimes struggle

with. One of them is ambiguity, that words and sentences can mean different things.
Another is the difficulty of conveying tone with text, making it hard to convey whether
a statement is meant seriously or sarcastically. Often it comes down to a lack of con-
text. Knowledge of the speaker and the situation that surrounds the statement is often
required to interpret a statement properly. Another challenge lies in the sheer varitey
of languages. It is estimated that between 5000 and 7000 languages are in use today.
Naturally this means there is a great variety in phonology, grammar, writing systems as
well as culture. There is also variation in the languages themselves; different dialects,
sociolects, pronunciations and other forms of non-standardized language and language
features. Finding good solutions to these problems is one of the goals of current research
in NLP fields.
NLP encompasses many specific tasks. Some are lower level tasks that operate on the

word and sentence-level, such as Parsing, Lemmatization, and Part-of-Speech tagging.
Others, such as Speech Recognition, Machine Translation, and Text Generation, are
higher level tasks that often make use the lower level tasks as part of of the process.

5

2.1.1 Language Modeling

Language modeling is the task of modeling the probability of word sequences. It is an
important NLP task which can be used as the basis for many higher level processing
tasks, for example Machine Translation and Text Generation. Part-of-Speech tagging
(POS tagging) can also benefit from Language modeling.
Language modeling is a sequence processing task. Deep Learning algorithms can learn

a language model by predicting the next word in a word sequence based on the previous
words. Markov chains and Hidden Markov Models (HMMs) do the same using n-grams.
N-grams are sequences of n linguistic units, for example words or letters, and are often
useful in creating a statistical language model. The language model learned by a neural
network is distributed and continuous due to being represented by the weights of the
network (see section 2.2).

2.1.2 Part of Speech Tagging

All words in a language can be categorized into word classes, for example nouns, verbs
and adjectives. The word classes are also known as parts-of-speech, and the act of
assigning word classes to words is often called POS tagging. The class of a word gives
a lot of information about the word itself and its neighbours and is therefore often very
useful in NLP. A set of word classes that are used for tagging is called a tagset. There
are many different tagsets for different languages and different collections of annotated
texts.
Some challenges in POS tagging are disambiguation of words, tagging unknown words

and tagging in highly inflectional or agglutinative languages. Most POS tagging methods
require annotated data for statistical inference. Another challenge then is to make
taggers for languages for which such resources do not exist, and which might have little
in ways of digital corpora as well. Code-switching texts that alternate between two
languages and texts that use a form of language that is not standard, such as informal
twitter posts or text messages, are also challenging to tag.
In machine learning terms, POS tagging is a sequence-to-sequence task, meaning that

both the input and the output is a sequence. In this case the input sequence and the out-
put sequence must have the same length, since every word needs to have a corresponding
tag.

2.1.3 Embeddings

Embeddings are real-valued vectors that have low dimensionality and can, among other
methods, be learned by relatively shallow neural networks. The embeddings can be
used as input format for higher-level processing. In the case of word embeddings, the
networks use the context of a word, its neighbours, to create a vector that is close to
vectors of other words that appear in similar contexts. The vectors created in this way
then contain semantic and syntactic information which can be useful for many NLP
tasks. Similarly, character embeddings are real-valued vectors representing individual

6

characters.

2.2 Deep Learning

Deep learning algorithms are variants of Artificial Neural Networks (ANNs) with multiple
hidden layers. ANNs are machine learning algorithms, which are characterized by their
ability to improve their performance on a task with experience.

Machine learning algorithms are often divided into two categories: supervised learning
algorithms and unsupervised learning algorithms. Supervised learning algorithms take
labeled input and learn to associate the input with its label. Classification and regression
are common supervised tasks. Unsupervised learning algorithms do not take explicitly
labeled input. Instead, they learn features of the data they are given. Most machine
learning algorithms can be described as trying to minimize a loss function.
ANNs are inspired by biological neural networks. The neurons are represented by

weights and activation functions applied to the input. The artificial neurons, also called
processing units, are usually organized in layers through which the input is transformed
and then passed on. The layers can have different amounts of artificial neurons, and there
can be different kinds of connections between the layers. There are also many different
activation functions that can be used by the artificial neurons in a given layer. ANNs can
be considered to be universal function approximators if they use nonlinear processing
units and have an appropriate number of them. However, in practice different ANNs
with different layer structures are required for good performance. ANNs with complex
layer structures tend to fall under the Deep Learning category.
There are many different network models and methods of training used in Deep Learn-

ing. Apart from Feed-Forward Neural Networks (FFNs) with linear layers, the major
types of deep learning networks are Recurrent Neural Networks (RNNs) and Convolu-
tional Neural Networks (CNNs). To train the networks, optimization algorithms are
used to update the weights. There are many variations of training methods, though
most build on the same algorithms.

2.2.1 Optimization algorithms

ANNs learn by iteratively having their weights modified to minimize a loss function.
The algorithm used to modify the weights is called the optimization algorithm. The
most commonly used algorithms in Deep Learning are based on gradient descent, which
is an iterative optimization algorithm. For every step it calculates the gradient of the
loss function and moves in the opposite direction, which is the direction of steepest
descent for the function. The backpropagation algorithm is normally used to calculate
the gradient of the individual weights. Gradient descent is often used in the form of
Stochastic Gradient Descent (SGD), which updates weights with every sample.
The learning rate determines the size of the update to the weights and thus the step

size for gradient based algorithms. If it is kept constant, or too big, it might make descent
into minima of the loss function difficult if the area around is too variable. One way to

7

amend this is to use momentum, which adds some of the gradient at the previous step
to the update to keep it moving in the most useful direction. Another way to solve the
potential problem is to change the learning rate during training to avoid unproductive
behaviour. Adagrad (Duchi et al., 2011) and Adam (Kingma and Ba, 2014) are two
examples of optimization algorithms using adaptive learning rates.
There are further methods that are used to improve on the training of the ANNs,

referred to as reqularization techniques. One of them is dropout, where the artificial
neurons have a given possibility of being ignored during training. Some other methods
are weight regularization, batch normalization, and gradient clipping.
Learning rate, momentum, and other values relating to the architecture and training of

an ANN are often referred to as hyperparameters. There can be many hyperparameters
to choose from, and many values one must choose between before finding a set one wishes
to use for training and testing. There are two main ways of finding a good set of values
for the hyperparameters. One is by using Grid Search to run through all combinations of
values in the chosen ranges. This would reveal the optimal values within the given ranges,
but it is rather computationally expensive as all combinations must be checked. The
other alternative is to use Random Search to run through a given number of randomly
chosen sets of values for the hyperparameters in the given ranges. This approach does
not guarantee any optimal solutions, but it generally finds a set of values that work well
enough without needing to check all options.

2.2.2 Convolutional Neural Networks

CNNs (LeCun and Bengio, 1995) are a kind of ANNs that are often used for image
processing because of their ability to capture different levels of spatial features. This
ability can also be extended to temporal features in time series. CNNs do this by
using the operation that gives them their name, the convolution. Convolution in this
case refers to a function, often called a kernel or a filter, being applied to different
subsections of the input and producing output that has the same spatial positioning as
the subsections, allowing the network to both detect features across neighboring input
units and keep important spatial information. By arranging multiple such layers in a
hierarchical structure, a CNN can detect increasingly higher-level features.
An important consideration for CNNs is how to pick out the subsections. The size

and dimensions of the chosen filter determines the number and orientation of the input
units chosen, but not the method by which the input units are chosen. Two important
parameters here are stride and dilation (Yu and Koltun, 2015). Stride refers to the
distance in input units between the different subsections picked out. Dilation refers
to distance between input units used by the filter. Both parameters can be adjusted
to achieve a balance between excessive redundancy and possible loss of features and
information.
It is common to use pooling layers, using for example the max function or the average

function, between the convolutional layers. These layers downsample their input and
provide spatial invariance for the features detected by their input layers.
The input and output to a convolutional layer can have several planes, called channels.

8

These can have individual filters, or all input channels can be used to produce all output
channels. Each filter produces its own output channel.

Residual networks are a variant on CNNs where the input of a convolutional layer or
block of layers is added to its output, which helps alleviate the problem of vanishing
gradients (see section 2.2.3). It means the network needs to learn the residual, the
difference between input and desired output, rather than the desired output itself, which
in practice seems to work well (He et al., 2016).
For classification after the input has passed through the CNN, the output is normally

flattened and used in a regular FFN.

2.2.3 Recurrent Neural Networks

RNNs are a kind of ANNs that use internal loops to imitate memory, which makes them
good for processing sequences. These loops provide an input from the same cell at a
previous stage. Conventional RNNs suffer from the vanishing gradients problem, since
the gradients can become very small when propagated through time, or many layers. A
similar problem is exploding gradients, when the gradients grow very big for the same
reasons. Different variants have been developed to deal with these problems, but they
are more complex and have more parameters that must be learned.
Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997; Chung et al.,

2014) networks, using LSTM units, are a solution to the vanishing gradients problem in
RNNs. They have a cell state separate from the input and output of the cell and uses
sigmoid gates to control what is learned and forgotten at each step. The cell has three
inputs: the cell state, the hidden state and the outside input. The hidden state and the
cell state are separate.
Another variant is the Gated Recurrent Unit (GRU) (Cho et al., 2014; Chung et al.,

2014), which is similar to LSTM units, but has among other things merged the input
and forget gate into an update gate and the hidden state and cell state into one state to
produce a somewhat simpler design that still works well.

2.3 Resources

Of the available deep learning frameworks and NLP resources, the following were chosen
as they were easily available and easy to work with.

2.3.1 Universal Dependencies

Universal Dependencies (Nivre et al., 2017) is a framework for cross-linguistical gram-
matical annotation created by open collaboration of various people and teams. Their
stated goal is to facilitate research and development that requires or benefits from re-
sources in multiple languages. The Universal Dependencies project does this by providing
a consistent annotation of similar language constructs, that also allows for language-
specific extensions.

9

The framework was orginally (Nivre et al., 2015) based on the Stanford dependencies
(de Marneffe and Manning, 2008) and Google universal tags (Petrov et al., 2012), and
used the CoNLL-X format (Buchholz and Marsi, 2006). The current Universal Depend-
encies is the second version, and is based on the revised versions of all the frameworks it
was originally based on. It has an extended tagset, uses universal Stanford dependencies,
and the CoNLL-U format1. The CoNLL-U format includes both the UD POS tags and
optional language specific POS tags. The UD tagset has 17 tags, shown in table 2.1.

Currently there are more than 100 treebanks available using the Universal Dependen-
cies framework, in more than 70 languages.

2.3.2 PyTorch

PyTorch (Paszke et al., 2019) is a Python package that provides tensor computations
with GPU support and a framework for making deep neural networks. It allows the user
to build dynamic networks by recording the operations as they are done and calculating
the gradients based on them. This makes for a more flexible experience than static
networks where the models have to be defined and compiled before being run.
It has a neural network library with implementations of common neural networks and

an optimization module with commonly used optimization algorithms.
PyTorch was designed to be well-integrated in Python and intuitive to use. This and

its dynamic network approach were the main reasons this framework was chosen over
other alternatives, e.g. TensorFlow (Abadi et al., 2015).

1A full description is available at https://universaldependencies.org/format.html

10

ADJ Adjective
ADP Adposition
ADV Adverb
AUX Auxiliary

CCONJ Coordinating conjunction
DET Determiner
INTJ Interjection
NOUN Noun
NUM Numeral
PART Participle
PRON Pronoun
PROPN Proper noun
PUNCT Punctuation
SCONJ Subordinating conjunction
SYM Symbol
VERB Verb

X Other

Table 2.1: Universal Part-of-Speech tags

11

3 Related Work
Many machine learning algorithms have been applied to Natural Language Processing
(NLP) tasks over the years, but the focus here will be on Deep Learning algorithms.
There has been a lot of work on this in recent years, and this chapter will describe that
which is most relevant to the work in this report.

3.1 Natural Language Processing (Almost) from Scratch

Collobert et al. (2011) used a multitasking neural network for multiple NLP tasks, Part-
of-Speech tagging (POS tagging) among them, with almost no preprocessing of the
words. They used look-up tables to get vectors of word embeddings, and tried one
approach in which they used a convolutional layer on the words and another where they
concatenated the vectors of the word embeddings in a window that passed over the
sentence. They also tried two different scoring functions, one for individual words and
one for the whole sentence. The sentence-level scoring function performed better.

They trained the network as a language model on a large amount of unlabeled data,
which greatly improved the word embeddings in the look-up table but took a long time.
Collobert et al. then used the resulting network for jointly training the supervised tasks
with the first layers shared and the top layers specialized. They used Stochastic Gradient
Descent (SGD) for this, and picked random examples from different tasks for updates.
The unsupervised training of the language models appeared to have the greatest effect
on performance, but the multitasking also improved performance on some tasks.
For further improvement, Collobert et al. tried to include linguistic features, two-

character suffixes in the case of POS tagging, and to use ten differently initialized
networks in an ensemble. Both resulted in some improvement. In the end, they im-
plemented their architecture in C and called it Senna (Semantic/syntactic Extraction
using a Neural Network Architecture).
There were many interesting ideas in the work of Collobert et al.. First, there was the

good effect of the unsupervised training of the language models, even if the training took
a long time. Then there was the idea of training a multitasking network on several NLP
tasks simultaneously, which seemed useful. Incorporating linguistic features was also
helpful, though the network did already perform well without them. The ensemble idea,
however, seemed rather computationally expensive and the networks were not necessarily
different enough to justify it and give a good boost in performance. They also used a
Convolutional Neural Network (CNN).

13

3.2 Learning Character-Level Representations for
Part-of-Speech Tagging

dos Santos and Zadrozny (2014) extended the work of Collobert et al. (2011) with a
convolutional layer to get character-level embeddings in addition to the word-level em-
beddings. Like Collobert et al. (2011), dos Santos and Zadrozny also used unlabeled
data to learn the word-level embeddings and they also used the sentence-level scoring
function. They applied their model to POS tagging on English and Portuguese with good
results, with 97.32% accuracy on the Penn Treebank (Marcus et al., 1993) for English
and 97.47% accuracy on the Mac-Morpho (Aluísio et al., 2003) corpus for Portuguese.
Some examples they provide for comparison are Fernandes (2012), who achieved 97.12%
accuracy on the Mac-Morpho corpus, and Søgaard (2011), who had 97.50% accuracy on
the Penn Treebank.
The character-level convolutional layer was useful for extracting morphological inform-

ation from the words, which otherwise might have been given as additional features to
the network. As such, dos Santos and Zadrozny demonstrated that one could achieve
state-of-the-art performance in POS tagging without selecting relevant word features by
hand.

3.3 Finding Function in Form: Compositional Character
Models for Open Vocabulary Word Representation

Ling et al. (2015) used a Bi-directional Long Short-Term Memory (bi-LSTM) network
on characters to make word embeddings. They used it for POS tagging and language
modeling. For the POS tagging they ran a second bi-LSTM on the word embeddings and
used the softmax function for output labels. They tested their models on five languages:
English, Portuguese, Catalan, German and Turkish (Marcus et al., 1993; Afonso et al.,
2002; Martí et al., 2007; Brants et al., 2002; Atalay et al., 2003). Ling et al. had good
results on all of them, with 97.36% accuracy on the English Penn Treebank. They also
tried pre-trained embeddings and added word features and achieved improvement.
A notable thing about the model of Ling et al. was that the character-level embed-

dings required less space than word-level embeddings, as there are fewer characters than
words. This came at the cost of more computation at runtime, however, as getting the
word embeddings from character-level required running a bi-LSTM rather than a simple
look-up. The authors suggested caching as a measure against this. Like dos Santos
and Zadrozny (2014), the model Ling et al. used was able to learn linguistic features
at a character level. However, Ling et al. used a bi-LSTM rather than a convolutional
layer. The bi-LSTM might have worked better for long sequences as it preserves previ-
ous information rather than only finding information in a given range. When using a
convolutional layer, there was the danger that important information could fall outside
the chosen window size.

14

3.4 Multilingual Part-of-Speech Tagging with Bidirectional
Long Short-Term Memory Models and Auxiliary Loss

Plank et al. (2016) studied the effectiveness of bi-LSTMs for POS tagging for 22 different
languages and also measured their sensitivity to data amount and noise. They used ver-
sion 1.2 of the Universal Dependencies data set (Nivre et al., 2015) for their experiments.
Plank et al. also used an auxiliary loss function to improve performance for words that
were rare or not encountered in training, and used both word- and character-level em-
beddings. The character-level embeddings where achieved with a bi-LSTM like Ling
et al. (2015) and the auxiliary loss function was meant to force the network to estimate
word frequency along with the tags.

The combined word- and character-level embeddings worked well and did better than
either alone. Plank et al. also tried to combine embeddings from characters and bytes,
but this did not work as well as the embeddings from the characters alone. While
the combined character- and word-level embeddings performed best, the character-level
embeddings did better than the word-level embeddings alone. The auxiliary loss function
did not seem to have any major effects on the results. As for their experiments with data
amounts, their model performed consistently better than Conditional Random Fields
(CRF) even for low amounts of data. The TnT tagger (Brants, 2000) performed better
than their model on low amounts of data, but for most languages bi-LSTM seemed to
catch up within a thousand sentences. The performance drop with increased noise was
mostly the same for bi-LSTM and TnT up till 30%, at which point TnT did better.
An interesting part of the work of Plank et al. was that they used character-level

information along with word-level information like dos Santos and Zadrozny (2014), but
used bi-LSTM like Ling et al. (2015). Plank et al. also compared the performance of
their model in more languages than the others. Their results on the robustness of bi-
LSTM with respect to lack of data and noise in data were also interesting, as one might
have expected the bi-LSTM to be more sensitive to such difficulties.

3.5 Character-Aware Neural Language Models

Kim et al. (2016) used a convolutional layer for character-level information followed
by a max-over-time pooling layer, a highway layer and a Long Short-Term Memory
(LSTM) layer. The highway layer passed on some dimensions of its input directly to its
output, in this way similar to residual connections. The task they applied their model
to was language modeling. They tested it on English, Czech, German, Spanish, French,
Russian and Arabic,1 with one smaller and one bigger data set for all except Arabic, for
which they only had one. Kim et al. achieved good results and found that character-
level embeddings worked better than word-level embeddings and that the highway layer
helped performance. They also achieved better results with more data. They tried

1The Arabic data came from the News-Commentary corpus: http://opus.nlpl.eu/News-
Commentary.php and the Non-Arabic data came from the 2013 ACL Workshop on Machine Trans-
lation and is available at: http://www.statmt.org/wmt13/translation-task.html

15

combining character-level embeddings and word-level embeddings like dos Santos and
Zadrozny (2014) and Plank et al. (2016), but unlike them, Kim et al. found that it led
to worse performance.
This work was interesting because Kim et al. used a convolutional network for

character-level information combined with a highway layer and LSTM for word-level
information. Like Ling et al. (2015), Kim et al. used only character-level embeddings
and found that their model had less parameters than one using word-level embeddings,
but at the cost of more computations. The highway layer seemed to work well in com-
bination with the convolutional layer.

3.6 An Empirical Evaluation of Generic Convolutional and
Recurrent Networks for Sequence Modeling

Bai et al. (2018) wished to explore the use of convolutional networks in sequence pro-
cessing and decided to compare a farily simple CNN architecture with Recurrent Neural
Network (RNN), LSTM and Gated Recurrent Unit (GRU), which are standard base
algorithms for sequence processing today. In other words, they wished to compare a
generic CNN architecture to generic recurrent network architectures. To do so they
chose a number of tasks commonly used to evaluate recurrent networks.
The chosen tasks were concerned with sequence modeling, which is a kind of sequence-

to-sequence prediction where the output can only depend on input received at current
or previous timesteps. With these considerations they used causal convolutions to avoid
using future inputs, as well as appropriate zero-padding and hidden layers of the same
size as the input to ensure the output sequence would have the same length.
Bai et al. note that their network is similar to previous time-delay networks, but

uses padding for consistent sizes as well as some more recent improvements on the CNN
architecture that allows for longer effective history. The network of Bai et al. uses
residual blocks and dilation that increases exponentially with network depth. When
training the network, they used weight normalization and spatial dropout . They called
their network a Temporal Convolutional Network (TCN).
The article lists some benefits and drawbacks of using TCNs. The structure of the

network allows for parallel training and processing and gives stable gradients, unlike
recurrent network structures. The receptive field of the network is flexible and can be
changed by changing the network depth, the dilation factor, and the filter size. The
network has relatively low memory requirements for training and takes variable length
input. Some drawbacks are that the network can have higher memory requirements
during evaluation and that domain transfer requires changing the parameters to fit the
new domain.
The article describes eight sequence modeling tasks that the TCN, RNN, LSTM and

GRU were tested on. It is noted that these architectures are not necessarily state-of-the-
art for these tasks. The number of hidden units were chosen to keep the models about
the same size as the LSTM model. The GRU network performed well on the adding

16

problem, but slightly worse than the TCN, and the LSTM network did best on the Penn
Treebank, but in all the other tasks the TCN clearly outperformed the other networks.

3.7 Language Modeling with Gated Convolutional
Networks

Dauphin et al. (2017) introduced Gated Linear Unit (GLU) for convolutional networks.
The authors noted that CNNs do not require forget gates like LSTMs, but could benefit
from output gates, which was implemented in the form of GLUs. The GLU multiplied
half of the output of the convolutional layer with the other half, thus gating one half
of the output with the other. The GLU seemed to perform better than ReLU in most
cases measured in their experiments.

For their experiments on the language modelling task, Dauphin et al. used convolu-
tional layers and GLUs stacked into blocks, some implemented with bottleneck layers for
greater computational efficiency, and residual connections adding the input to the output
of a block. They call their model a Gated Convolutional Network (GCNN). Their model
outperformed most of the LSTM-models they compared with on the language modelling
task (on Google Billion words and WikiText-103 primarily, also Gigaword and Penn
Treebank), and could process sentences faster as well as train and converge faster.

3.8 Part-of-Speech tagging for Norwegian

There has been some work on POS tagging for Norwegian that is relevant to mention.
The Oslo-Bergen tagger (Hagen et al., 2000), developed at the University of Oslo and
Uni Computing in Bergen, is a commonly used tagger based on Constraint Grammar.
Its development was part of the early work on NLP for Norwegian, which also involved
the creation of various digital language resources. A tagset was also created, with 358
tags. The earliest versions gave out still ambiguous output, but the most recent version
(Johannessen et al., 2012) has an additional statistical module that removes the remain-
ing ambiguities. The Oslo-Bergen tagger can tag both the Norwegian written standards,
Bokmål and Nynorsk, but the latest statistical module is only for Bokmål. Using the
statistical module, the Oslo-Bergen tagger has an accuracy of 96.5% for Bokmål on the
evaluation text used.
Some other works include Marco (2014), Johansen (2016), and Kåsen et al. (2019).

Marco used the existing FreeLing (Padró and Stanilovsky, 2012) to create a statistical
tagger for Norwegian. They used a simplified version of the Oslo-Bergen tagset and
achieved an accuracy of 97.3% for POS tagging. Johansen trained Google’s SyntaxNet
(Andor et al., 2016) on Norwegian Bokmål and Nynorsk using the Norwegian Depend-
ency Treebank. SyntaxNet is Feed-Forward Neural Network (FFN) based and uses global
normalization. They achieved an F-score of 97.54% for Bokmål. Kåsen et al. tests five
different taggers on transcriptions of Norwegian dialects (Øvrelid et al., 2018). The best
performing tagger was the bi-LSTM model of Plank et al. (2016) with 97.33% accuracy.

17

The Norwegian Universal Dependencies treebanks have been used in some other ex-
periments. Øvrelid and Hohle (2016) converted the Norwegian Dependency Treebank
to Universal Dependencies and reported the first results of testing on it. They used
SVMTool (Giménez and Màrquez, 2004) for the testing and achieved 96.82% on the
POS tagging task.
Straka et al. (2016) developed a pipeline for processing of text in CoNLL-U format

that performs multiple NLP tasks, POS tagging among them. It was tested on many
of the UD treebanks, and it had 97.2% accuracy on Norwegian and 94.5% accuracy on
English. The tagger part was based on MorphoDiTa (Straková et al., 2014), while GRUs
and LSTMs were used for lower level processing. They called their pipeline "UDPipe".
Velldal et al. (2017) worked on joint dependecy parsing for Bokmål and Nynorsk on the

Universal Dependencies treebanks, with POS tagging as part of the process. Their best
results were achieved using UDPipe, separately rather than joint, with 97.07% accuracy
on Bokmål.
Bohnet et al. (2018) tested a Meta-BiLSTM, which used character and word based

encodings with separate loss functions, on the language specific tags of the UD treebanks.
They report an accuracy of 99.75% on Norwegian Bokmål.
It should be noted that in nearly all these experiments the data, the tagset, or both

were different. This means the results cannot readily be compared.

18

4 Architecture
The architecture that was tested was a Gated Convolutional Network (GCNN) (see sec-
tion 3.7) implemented in Pytorch and the data used was from the Universal Dependencies
project (see section 2.3.1). The architecture used only character-level embeddings.

4.1 Data and preprocessing

The data used in the experiments came from the Universal Dependencies project and
was already in a standardized format (see section 2.3.1). The only preprocessing required
was to separate the words and the part-of-speech tags from the other data and transform
them into a suitable input format. The data was also already divided into a develpment
set, a training set, and a test set. As the data split seemed reasonable and contained
similar variation the existing partioning was used.

Rather than using sentences as input to the network, the sentences were concatenated
and divided into sections of equal length for less variation in sample sizes. On the other
hand, the words remained variable length, which meant the samples could not be stored
as tensors and had to be passed into the network one by one.
The data of the UD treebanks were divided into sentences. These were concatenated

into one text, then divided into sequences of same length. The sequences were then
shuffled before training, using a fixed seed so all tests with the same sequence length
had the same order of sequences.

4.2 Network architecture

The basic architecture was a one-dimensional Convolutional Neural Network (CNN).
For nonlinearity, Gated Linear Units (GLUs) (see section 3.7) were used after the con-
volutional layers. The layers were organized into residual blocks with one or more gated
convolutional layer between the residual connections. The input to each convolutional
layer was padded with zero-padding at both ends to ensure the sequence length was
preserved.
The architecture (see fig. 4.1) was composed of two parts in sequence: a character-

level network and a word-level network. The output of the character-level part was
a single tensor per word. The output of the word-level network was a vector of log-
probabilities of part-of-speech tags. The first layer of the character-level network was
an embedding layer which mapped from integer character representations to real-valued
character vectors. The vectors were then passed through one or more residual blocks

19

Figure 4.1: The basic network architecture

before the output was passed through a layer of average pooling to reduce the word
length dimension to one.
The input to the network was a list of variable length words with integer repres-

entations of the characters. All the characters of the word were passed through the
character-level part of the network together. The first part of the character-level net-
work was an embedding layer mapping the integer representations of the characters to
vectors.
Since the character-level part of the network gave out tensors of the same size, the

tensors were concatenated for input to the word-level part of the network. The word-
level part consisted of one or more residual blocks, followed by a convolutional layer to
reduce the output to the right number of classes. The output was then passed through
a LogSoftmax layer to obtain log-probabilities.

4.3 Input parameters

The program took many variables relating to the architecture and training setup as
input. For both the character-level part and the word-level part the program took lists
of kernel size (see section 2.2.2), dilation, and number of hidden units, where each item

20

in the lists corresponded to one residual block and adding items meant adding residual
blocks. Naturally, the length of the lists for one part of the network had to correspond
with the length of the other lists meant for that part of the network. If left undefined,
each list would default to a single value. The size of the character embeddings was also
given as input.

The files with the data to be used were non-optional input parameters. A file with
training data, a file with test data, and a file containing the part-of-speech tags to be
used were all required to run the tests. In addition, a file with a predefined character
vocabulary could be given. If a character vocabulary was not given, it was constructed
from the training data.
The training setup required a number of values to be specified. The sequence length for

text-sequences was given this way, as was the learning algorithm, with the alternatives
being Adagrad, Adam, and SGD (see section 2.2.1). The learning rate for the algorithm,
as well as momentum if applicable, could also be given. Dropout could be used by giving
a non-zero value for it.

21

5 Experiments and Results
5.1 Experimental Plan
The goal of the experiments was to see how well a Convolutional Neural Network (CNN)
performed on the Part-of-Speech tagging (POS tagging) task. The first thing to do was
to develop an architecture to use. This was accomplished by implementing and testing
different variations on the development part of the Bokmål part of the Norwegian UD
treebank. The second experiment was to train and test the developed architecture on the
training and testing part of the same treebank. Different values of hyperparameters were
tested to find out which gave the best result and to see what results might be expected
of the architecture. The third experiment was to train and test the architecture on an
English UD treebank with the hyperparameters determined in the former experiment
to test its performance on another language. Finally, a simpler CNN architecture was
tested for comparison.

5.1.1 Initial experiments

The goal of the initial experiments was to develop a good network architecture and find
good hyperparameters. There were a lot of adjustable parameters and parts, so random
search (see section 2.2.1) was attempted using the development set of a Norwegian UD
treebank to determine the basic experimental setup for the following experiments. No
fixed seed was used, and the search was constrained to run only 51 iterations due to the
fact that it was time consuming to run it on the PC. All results were saved for later
comparison, and the best and worst results were used to guide choice of hyperparameters
for the later experiments.

There was also an attempt to compare the architecture using GLU and the architecture
using ReLU using 5-fold crossvalidation. The data used was the predefined development
set of the Bokmål part of the Norwegian UD treebank. A fixed seed was not used, and
5 folds were used instead of the more common 10 because it took a long time to run on
the PC.
The initial experiments were not performed rigorously as they were only meant to

guide development of the architecture for the later experiments.

5.1.2 Testing on one of the Norwegian UD databanks

The results of the initial experimentation encouraged a more systematic investigation
of the effects of different hyperparameters, so this was done on the training and test
parts of the Bokmål part of the Norwegian UD treebank. The goals were to gain better

23

understanding of the effects of the different hyperparameters as well as measure the
performance of the architecture on the Norwegian dataset. The treebank used was the
Bokmål version, based on the Bokmål section of the Norwegian Dependency Treebank,
with 310k tokens.

5.1.3 Testing on one of the English UD databanks

Some tests were run on one of the English UD treebannks to test how the architecture
performed on a different language. There were four English UD treebanks. Of them,
the GUM treebank (Zeldes, 2017) was chosen as it was the second largest of the listed
English treebanks with 101k tokens, and had the most variation in text sources. The
best performing hyperparameters from the previous experiment were used, as well as
base parameters.

5.1.4 Testing ReLU architecture

During the initial development and experiments a version of the architecture using ReLU
activation instead of Gated Linear Unit (GLU) was considered. The initial experiments
indicated that the Gated Convolutional Network (GCNN) performed better, but at a
steep rise in parameters. It was decided to run a larger test to see clearer how the CNN
model with ReLU units performed in comparison to the GCNN.

5.2 Experimental Setup
The architecture in all the experiments except the initial experimentation were trained
with the Adagrad algorithm (see section 2.2.1) for 15 epochs with an initial learning
rate of 0.01. Only the training part of the treebanks were used for training while the
accuracy given in the results was measured on the test part of the treebanks. The
experiments were run on a PC with an Intel Core i5 8th Gen. This led to the experiments
generally taking 5-8 hours per complete run, which ended up reducing the scope of the
experiments somewhat. All experiments, excepting some of the initial experiments, were
run with fixed seed due to the stochastic nature of training neural networks. Negative
log-likelihood was used as loss function.
Where dilation was used it was doubled for every residual block, so with 2 residual

blocks the dilation would be 1 for the first and 2 for the second. The character part and
the word-level part were considered separately, so both started with 1 at the first block.
It should be noted that for the GCNN the effective number of units is half the given
number due to the use of GLUs, since GLUs use one half of the output to gate the other
half (see section 3.7).
The performance measures reported here are accuracy and macro-F1. Accuracy was

chosen for ease of understanding and comparison with results reported by others. The
F1-score was computed by averaging the F1-scores of the individual word-classes and
was chosen for an alternative measurement and comparison between results.
The UDPOS tagset (see section 2.3.1) was used in all experiments.

24

Fold GLU ReLU
1 0.921 0.884
2 0.905 0.913
3 0.917 0.905
4 0.917 0.901
5 0.930 0.888
Average 0.918 0.898

Table 5.1: Accuracy in 5-fold crossvalidation for GLU and ReLU

Sq.L Emb. Hidden Units Dilation Kernel Size Accuracy
80 400 300 | 300 2 | 1 4 | 3 0.934
40 100 300 400 400 | 100 4 4 2 | 1 2 2 2 | 3 0.934
50 100 100 200 | 100 200 8 1 | 1 2 3 4 | 3 2 0.927
60 200 200 400 100 | 200 1 2 4 | 4 2 2 2 | 3 0.925
30 400 100 400 | 200 100 100 4 2 | 1 2 1 2 2 | 4 2 4 0.925
50 400 100 | 200 300 8 | 8 8 3 | 4 3 0.833
80 100 100 | 200 300 8 | 8 8 2 | 4 3 0.830
30 200 200 | 300 400 200 8 | 1 2 8 2 | 3 4 4 0.817
80 400 400 | 200 300 100 8 | 2 2 8 4 | 4 2 3 0.813
80 100 200 400 200 | 100 400 400 8 8 1 | 2 4 4 2 2 2 | 4 4 3 0.692

Table 5.2: Top five and bottom five results from random search

5.3 Experimental Results

The results of the experiments are summarised here. For discussion of the results, see
chapter 6.

5.3.1 Initial experiments

As the results of the 5-fold crossvalidation in table 5.1 shows, the architecture using
GLUs scored better on average on the development set. It was therefore decided to use
this architecture for further experiments.
The results of the random search were largely inconclusive, but some patterns could

be seen. The best and worst results are given in table 5.2, and they suggest that the
network performed better with more units in the character-level part than the word-
level part, that small dilations might be beneficial, and that differences in kernel size
had little effect. The base hyperparameters in table 5.3 were chosen based on the initial
experimentation.

25

Hyperparameter Value
Character embedding size 100
Character net size 2x200
POST net size 1x100
Training algorithm Adagrad
Initial learning rate 0.1
Batch length 80
Dilation 1 (no dilation)
Kernel size 3
Training rounds 15

Table 5.3: The base hyperparameters for the first experiment

Variation Accuracy F1
No variation (base) 95.63% 89.8%
With dilation 95.69% 89.9%
Character embedding 200 units 95.78% 89.7%
Character net 1x400 units 95.37% 89.7%
Character net 4x100 units 95.52% 89.7%
Character net 3x200 units 95.88% 90.8%
POST net 1x200 units 95.56% 90.3%
POST net 2x200 units 95.76% 90.1%
Batch length 30 95.51% 89.9%
With two convolutional layers in residual block:
No other changes 96.08% 90.2%
With dilation 96.12% 89.9%
Character embedding 200 units 95.95% 88.1%
Character net 1x400 units 96.06% 89.2%
Character net 2x100 units 95.55% 88.6%
Character net 4x100 units 95.28% 86.4%
POST net 1x200 units 96.02% 89.9%
POST net 2x200 units 95.54% 89.5%
With dilation and dropout 0.5 95.59% 90.7%
With dilation and dropout 0.2 96.65% 92.1%
With fixed character vocabulary and dilation 96.19% 88.6%
With fixed character vocabulary, dilation, and dropout 0.2 96.52% 92.2%

Table 5.4: Results of running the GCNN on the Norwegian data with different
hyperparameters

26

Class Precision Recall F1
ADJ 0.949 0.946 0.947
ADP 0.967 0.970 0.968
ADV 0.968 0.953 0.960
AUX 0.926 0.964 0.945
CCONJ 0.985 0.996 0.990
DET 0.964 0.975 0.969
INTJ 1.000 0.636 0.778
NOUN 0.952 0.971 0.961
NUM 0.988 0.988 0.988
PART 0.994 1.000 0.997
PRON 0.970 0.980 0.975
PROPN 0.965 0.920 0.942
PUNCT 1.000 1.000 1.000
SCONJ 0.920 0.911 0.915
SYM 1.000 0.727 0.842
VERB 0.939 0.930 0.934
X 0.737 0.133 0.225

Table 5.5: Per class measures for base setup with two layers on Norwegian data

5.3.2 Testing on one of the Norwegian UD databanks

The results of running some different variations of parameters compared to those given
in table 5.3 are shown in table 5.4. The best result was 96.65% accuracy achieved by
using dilations and dropout with two convolutional layers in the residual blocks. The
F1-score of this result was the second best, but only by 0.1%. The variant with two
layers in the residual blocks generally performed better in terms of accuracy, but the F1
scores were often somewhat lower.
There was not a lot of variation in the results, and the differences were not very large.

Using dilation improved accuracy somewhat for both the one-layer and two-layer variant,
but the F1-score of the two-layer variant was slightly lower. Increasing the character
embedding size from 100 to 200 only gave better accuracy for the model with one layer
in the residual blocks, and had a negative effect on the F1-score. Using a single block
with 400 hidden units instead of two blocks with 200 hidden units gave a little worse
results for all measures, but the accuracy of the one-layer block model suffered worst.
Using 100 hidden units in four blocks also gave worse results in all cases. Adding another
block with 200 hidden units with the one-layer block model improved both accuracy and
F1-score.
Increasing the word-level part of the model to 200 hidden units lowered the accuracy

for both variants, though the F1-score of the one-layer variant went up a little. Adding
another block with 200 hidden units improved accuracy for the model with one-layer
blocks, but gave worse results for the model with two-layer blocks.

27

Using two blocks of 100 units for the character-level part of the two-layer block model
gave better results than using four blocks of 100 units. Using a sequence length of 30
rather than 80 for the one-layer block model reduced the accuracy.
Building on the best accuracy achieved so far, the two-layer block model with dilation

was tested with dropout and fixed character vocabulary. Using a dropout probability of
0.5 reduced the accuracy and increased the F1-score, but a dropout probability of 0.2
improved both accuracy and F1 score. The fixed character vocabulary gave a higher
accuracy and lower F1 score, but in conjunction with a dropout probability of 0.2 the
accuracy came out a bit worse than the test using only dropout while the F1-score
was slightly higher. The test results of the two-layer block with dilation and dropout
probablity of 0.2 appear to be the best of the set.
Table 5.5 shows the results per class for the two layer block model with the hyperpara-

meters of table 5.3. The X class, used for words that cannot be classified, has the lowest
score by all given measures. The X class, the interjection class (INTJ), and the symbol
class (SYM) were the classes with the fewest occurences and the lowest F1-scores.

Hyperparameters Accuracy F1
Experiment 1 base 92.55% 81.5%
Experiment 1 base with dilation and dropout 0.2 92.99% 83.6%
Experiment 1 base with dilation, dropout 0.2,
and POST net 1x200 units

92.70% 83.4%

Table 5.6: Results of running the GCNN on the English data

5.3.3 Testing on one of the English UD databanks

The results of running the GCNN architecture on the English UD treebank with some
different hyperparameters are shown in table 5.6. The result using the best hyperpara-
meters from the former experiment was 92.99%. A test was run with the base parameters
of table 5.3 for comparison, and a test with 200 hidden units for the word-level part of
the model was run to see if the effect on results was the same. Both tests came out
worse than the one using the best hyperparameters of section 5.3.2.

Table 5.7 shows that, as with the Norwegian databank, the lowest scores were those
of the X class, the interjection class, and the symbol class. Those classes were the ones
with fewest occurrences in this case as well.

5.3.4 Testing ReLU architecture

Running a ReLU architecture on the Norwegian data yielded a better result than the
GCNN with one layer in the ResBlock of comparable size (see table 5.8) and similar
accuracy to the GCNN with two layers in ResBlock of twice the size. It performed
slightly worse on the English treebank, with 92.19% accuracy compared to 92.99% for
the GCNN.

28

Class Precision Recall F1
ADJ 0.844 0.768 0.804
ADP 0.962 0.962 0.962
ADV 0.849 0.848 0.848
AUX 0.949 0.966 0.957
CCONJ 0.993 0.991 0.992
DET 0.990 0.979 0.984
INTJ 0.000 0.000 0.000
NOUN 0.903 0.905 0.904
NUM 0.935 0.971 0.953
PART 0.927 0.991 0.958
PRON 0.954 0.970 0.962
PROPN 0.887 0.911 0.899
PUNCT 0.994 0.996 0.995
SCONJ 0.813 0.831 0.822
SYM 0.762 0.516 0.615
VERB 0.880 0.894 0.887
X 0.583 0.212 0.311

Table 5.7: Per class measures for base setup with two layers on English data

Hyperparameters Data Accuracy F1
Experiment 1 base parameters with dilation Norwegian 96.09% 90.3%
Experiment 1 base parameters with dilation English 92.19% 82.6%

Table 5.8: Results of running the ReLU architecture

29

Architecture Parameter count
Base GCNN double layer 1078917
Base GCNN single layer 537917
Base ReLU double layer 567917

Table 5.9: Parameter counts on the Norwegian data

5.3.5 Parameter count

The parameter count of the network rose very quickly when using GLUs, especially
when using the version with two layers in the residual block. As shown in table 5.9, the
GCNNs had far more parameters compared to the architecture using ReLUs when the
same number of units was chosen for the layers. As mentioned in section 5.2, the GCNN
also has effectively half the number of units per layer compared to the ReLU architecture.
Due to the high parameter count the GCNN with two layers in the residual block took
longer to train than the other architectures.

30

6 Discussion
In this final chapter the experiments and the results that were presented in chapter 5
and the architecture that was presented in chapter 4 will be discussed and evaluated.
How well the research questions were answered and whether the goal of the research was
achieved will also be considered. Finally, the work will be concluded and ideas for future
work presented.

6.1 Discussion of Results

The results of the first experiments, described in section 5.3.1, were meant to guide
development of the architecture and choice of hyperparameters rather than later eval-
uation. However, some trends were observed, some of which were further explored in
later experiments. The architecture using Gated Linear Units (GLUs) appeared to per-
form better than the one using ReLUs, which was why GLUs were chosen for the main
experiments. There were no major differences between different hyperparameter values,
but there were some. Small dilations seemed to have a positive effect, which makes
sense, since using larger values might cause information to be lost. On the other hand,
no trends were observed with kernel sizes. Having a larger character-level part than
word-level part appeared to work better than the opposite, and similar results were also
observed in the next experiment.

The largest experiment involved testing different values of various hyperparameters
on a Norwegian dataset, and expanded on the trends seen in the first experiments in
a more systematic way. Especially of note is that for Norwegian, and perhaps English
too, the architecture benefited from having a larger character-level part and a smaller
word-level part. This might be because word-internal information was more useful than
information about the context of the words, or it might have been that information did
not pass properly through to the word-level part of the network as it had to pass through
the character-level part first. The best performance was achieved using dropout, which
forced the architecture to use more of its learning capability. Using a fixed character
vocabulary also had a positive effect on the performance when used on its own, but com-
bining dropout and fixed character vocabulary resulted in worse accuracy. This might
have been due to both methods doing the work of improving character representations.
Using two convolutional layers in the residual blocks gave better results at the cost of
higher parameter count, and seems to strike a nice balance between too few and too
many layers between the residual connections. The range of the results achieved was not
very large, so one might expect further testing of the architecture not to deviate too far
from that range.

31

As described in section 5.3.3, the implemented architecture performed worse on the
English dataset than the Norwegian dataset. There are many possible reasons for this.
It might be due to differences between the English treebank and the Norwegian one. The
Norwegian treebank was three times as large as the English treebank used, which might
be why the architecture did better on the Norwegian treebank. The English treebank
also had greater variation in text types and sources, and the architecture might have
struggled to handle this. Another possibility might lie in the fact that the hyperpara-
meters were chosen based on experimentation on Norwegian data and might not work
as well on English data. The architecture itself might also be less effective on English
than Norwegian due to differences between the languages.
In the last experiment, the network using ReLU performed about as well as the Gated

Convolutional Network (GCNN) with a lot fewer parameters. The GLUs appeared
to perform better than the ReLUs in the initial experiments, and the main difference
between initial experiments and the later ones was that the first used the development
set of the Norwegian treebank while the latter used the Norwegian and English training
and test sets. The development set was a lot smaller, so the results might have been
misleading. The testing was not performed as rigidly in the initial experiments either,
which might also have been important. In any case, the results of the experiments are
not enough to draw any definite conclusion about which architecture is better.

6.2 Comparison of Results

Plank et al. (2016) achieved respectively 95.87% and 91.62% accuracy on the Norwegian
and English treebanks of UD v1.2 with their bi-LSTM model using character embeddings
only. The GCNN architecture explored in this report was tested on UD v2.1, and its
best results were 96.65% accuracy on the Norwegian UD treebank and 92.99% on the
English treebank. The GCNN achieved better results on this measure, but it used far
more parameters and probably more adjustments as well. It should be noted that Plank
et al. might have used different treebanks as they used an earlier version of the UD
treebanks, and that the different versions of UD might have affected results as well.
State-of-the-art results on the UD treebanks are 98.5% accuracy on the Norwegian

treebank and 96.1% on the English treebank, achieved by Heinzerling and Strube (2019)
on UD v1.2 using BERT (Devlin et al., 2019), BPemb (Heinzerling and Strube, 2018),
and character embeddings. The GCNN architecture did not achieve state-of-the-art
results.
Bohnet et al. (2018) reported higher accuracy on the UD treebanks, but they used the

language specific tags and not the UD tags, so the results cannot truly be compared.
Both Plank et al. and Heinzerling and Strube have a notable lower accuracy on English

than on Norwegian, as did the Convolutional Neural Network (CNN) based architectures
described in this report.

32

6.3 Discussion of Architecture

The architecture differs in many ways from the Temporal Convolutional Network (TCN)
of Bai et al. (2018) and GCNN of Dauphin et al. (2017). The net drew input from both
future and past inputs in the sequence and used zero-padding on both sides to preserve
sequence length. The input itself was taken in the form of fixed length sequences, like
in Bai et al. (2018), but variable length was allowed for individual words. Other options
exist for all of these architectural decisions, but the focus was on developing a functional
tagger, so the effects of these options and other architectural decisions were not explored
in this thesis.

The exploration of different hyperparameters for the architecture was limited, both in
which were chosen to be explored and what values of them were explored. However, given
the relatively small range of the results, it seems unlikely that other hyperparameters
would yield major differences in the results.
The GCNN ended up suffering from a likely excessive and rapidly growing parameter

count. All tested variants of the CNN-based architecture required fairly few training
rounds, but the high parameter count of the GCNN also impacted training time. In Wu
et al. (2019) they propose lightweight convolutions which greatly reduce the parameter
count of a GCNN, but at the time of testing Pytorch lacked optimization for this,
which meant the training time grew many orders larger when an implementation was
attempted. If the ReLU architecture achieves similar performance as the GCNN, as
the last experiment seems to indicate, it would, with its lower parameter count, be
preferable.
A notable aspect is that the architecture uses only character embeddings. These were

not pre-trained. If they were, the performance might have improved, as in Plank et al.
(2016) and Collobert et al. (2011). While character embeddings worked pretty well for
Norwegian and English as tested here, one would not expect them to work as well with
all languages. Their effectiveness would depend on how much information can be extrac-
ted from within the word. The experiments of Plank et al. (2016) show that whether
character embeddings or word embeddings work best depends on the language. For all
the languages Plank et al. tested, a combination of word embeddings and character
embeddings worked better than either alone. In a similar way, word embeddings might
have been tested here too.
The architecture might be sensitive to data amount and variation, though further tests

would be required to confirm or deny this.

6.4 Discussion of Experiments

Though multiple experiments were run, only the GCNN on Norwegian data was explored
in any kind of depth. The architecture was only tested on two different languages, and
those languages were related. While the experiments ended up being fairly limited
considering the many possible languages that could be tested, the experiments were
enough to establish what performance might be expected from the GCNN architecture.

33

Different values for some hyperparameters for the GCNN architecture were explored
when running the architecture on the Norwegian dataset. This exploration resulted in
finding a set of values for those hyperparameters which performed well, but there were
also many other variables related to the architecture and its training which were left
unexplored. There was not enough time to test all the variables, but in retrospect it is
clear that the experiments could have benefited from more rigorous testing in the early
phase. Had the adjustments been tested with a systematic approach from the beginning,
the capabilities of the CNN-based architectures could have been explored further. More
thorough testing early on might also have led to the use of ReLU rather than GLU, or
at least a better comparison of the two.
One of the variables not explored was the choice of learning algorithm. Different learn-

ing algorithms and learning rates were not tested in a systematic way beyond finding
some that achieved acceptable results, because it was considered more interesting to
explore other variables. The Adagrad algorithm was used for training in all the exper-
iments. This was not necessarily the optimal choice, and notably most of the articles
reviewed in chapter 3 used different algorithms.
The experiments were conducted to see what results might be expected from the

architecture, and this goal was achieved. However, more extensive testing would be
required to ensure statistical significance. Having statistically significant results would
of course be preferable, but the fact that the experiments were run on a PC limited how
many and how long experiments could be run. Still, it would have been useful to run at
least one set of hyperparameters for every experiment with different seeds to get more
statistically significant data.

6.5 Final Evaluation

The goal of the research, as stated in chapter 1, was to investigate the usefulness of CNNs
for Part-of-Speech tagging (POS tagging). Judging by the results, the performance of
a CNN-based architecture is comparable to that of a LSTM-based architecture on the
POS tagging task, but one cannot say CNNs perform better than more commonly used
sequence-based algorithms on POS tagging in general. A more rigorous comparison
would be required to make any claims of this, or the contrary. Following on that, the
CNN-based taggers did not achieve state-of-the-art results on the Norwegian dataset, so
even though CNNs perform well enough to be useful, they cannot be said to be more
useful than more common sequence-processing algorithms. Additionally, the tests only
used the UD tagset, and tests with the language specific tagset were not performed,
though the architecture allows for it. This was to better compare results with other
experiments on the UD treebanks and to compare performance accross languages. As for
how CNNs perform on different languages, the only other language tested was English.
The architecture performed worse on the English treebank than the Norwegian treebank,
but a similar drop in performance was seen in the experiments of others who used
different algorithms.
Although the CNN-based architectures tested in the experiments did not impress

34

with their performance, they were nonetheless up to the task set to them. They did not
measure up to state-of-the art results, but the results were comparable to the results
of a bi-LSTM. The use of CNN for sequence processing is yet limited, but it is likely
that better performance can be achieved if it continues. There are also many different
mechanisms that can be used in conjunction with CNN, as well as different variants of
CNN that can be further explored and which are often used in other contexts.

6.6 Future Work
As for the work detailed here, there are many interesting directions that might be ex-
plored further. The work here only used character embeddings, and as Plank et al.
(2016) have shown, the combination of word embeddings and character embeddings
tend to work better than either alone. This would therefore be useful to incorporate,
and it would also be interesting to examine how the architecture performed with only
word embeddings. It would also be interesting to try different ways of creating the em-
beddings, as well as pre-training them and the network as a whole. There are also many
other variations on CNN and CNN-architectures that might be tested, for example light-
weight convolutions. Additionally, it would be of interest to test what effect differences
in the data, such as data amount or variation, would have on the training and final
results. Finally, testing with more languages, and using tagsets specific to the chosen
languages might be interesting.

35

Bibliography
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Ra-
jat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Mar-
tin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Susana Afonso, Eckhard Bick, Renato Haber, and Diana Santos. Floresta sintá(c)tica:
a treebank for Portuguese. In Proceedings of the Third International Conference on
Language Resources and Evaluation (LREC 2002), pages 1698–1703, Las Palmas de
Gran Canaria, Spain, 2002.

Sandra Aluísio, Jorge Pelizzoni, Ana Raquel Marchi, Lucélia de Oliveira, Regiana Man-
enti, and Vanessa Marquiafável. An account of the challenge of tagging a reference
corpus for Brazilian Portuguese. In Proceedings of the 6th International Conference
on Computational Processing of the Portuguese Language, PROPOR’03, pages 110–
117, Faro, Portugal, 2003. URL http://dl.acm.org/citation.cfm?id=1758748.
1758769.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman
Ganchev, Slav Petrov, and Michael Collins. Globally normalized transition-based
neural networks. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, pages 2442–2452, Berlin, Germany, 2016. Association for
Computational Linguistics. doi: 10.18653/v1/P16-1231. URL https://www.aclweb.
org/anthology/P16-1231.

Nart B. Atalay, Kemal Oflazer, and Bilge Say. The annotation process in the Turkish
treebank. In Proceedings of 4th International Workshop on Linguistically Interpreted
Corpora (LINC-03) at EACL 2003, pages 33–38, Budapest, Hungary, 2003. URL
https://www.aclweb.org/anthology/W03-2405.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling. Computer Research Re-
pository (CoRR), abs/1803.01271, 2018. URL http://arxiv.org/abs/1803.01271.

37

Bernd Bohnet, Ryan McDonald, Gonçalo Simões, Daniel Andor, Emily Pitler, and
Joshua Maynez. Morphosyntactic tagging with a meta-BiLSTM model over con-
text sensitive token encodings. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, pages 2642–2652, Melbourne, Australia,
2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1246. URL
https://www.aclweb.org/anthology/P18-1246.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George Smith. The
TIGER treebank. In Proceedings of the workshop on treebanks and linguistic theories,
Sozopol, Bulgaria, 2002.

Thorsten Brants. TnT — a statistical part-of-speech tagger. In Proceedings of the Sixth
Applied Natural Language Processing Conference ANLP-2000, pages 224–231, Seattle,
Washington, USA, 2000.

Sabine Buchholz and Erwin Marsi. CoNLL-X shared task on multilingual dependency
parsing. In Proceedings of the Tenth Conference on Computational Natural Language
Learning (CoNLL-X), pages 149–164, New York City, USA, June 2006. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/W06-2920.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
RNN encoder–decoder for statistical machine translation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
1724–1734, Doha, Qatar, October 2014. Association for Computational Linguistics.
doi: 10.3115/v1/D14-1179. URL https://www.aclweb.org/anthology/D14-1179.

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. Computer Re-
search Repository (CoRR), abs/1412.3555, 2014. URL http://arxiv.org/abs/1412.
3555.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost) from scratch. Journal of Machine
Learning Research, 12:2461–2505, 2011.

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling
with gated convolutional networks. In Proceedings of the 34th International Conference
on Machine Learning, ICML’17, pages 933–941, Sydney, New South Wales, Australia,
2017. JMLR.org. URL http://dl.acm.org/citation.cfm?id=3305381.3305478.

Marie-Catherine de Marneffe and Christopher D. Manning. The Stanford typed de-
pendencies representation. In Coling 2008: Proceedings of the workshop on Cross-
Framework and Cross-Domain Parser Evaluation, pages 1–8, Manchester, UK, August
2008. URL https://www.aclweb.org/anthology/W08-1301.

38

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of deep bidirectional transformers for language understanding. In Proceed-
ings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 4171–4186, Min-
neapolis, Minnesota, USA, June 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1423. URL https://www.aclweb.org/anthology/N19-1423.

Cícero Nogueira dos Santos and Bianca Zadrozny. Learning character-level representa-
tions for part-of-speech tagging. In Proceedings of the 31 st International Conference
on Machine Learning, pages II–1818–II–1826, Beijing, China, 2014.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research (JMLR),
12:2121–2159, July 2011. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?
id=1953048.2021068.

Eraldo Luıs Rezende Fernandes. Entropy guided feature generation for structure learning.
PhD thesis, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brasil,
Sept 2012.

Jesús Giménez and Lluís Màrquez. SVMTool: A general POS tagger generator based on
Support Vector Machines. In Proceedings of the 4th LREC, Lisbon, Portugal, 2004.

Kristin Hagen, Janne Bondi Johannessen, and Anders Nøklestad. A constraint-based
tagger for Norwegian. In 17th Scandinavian Conference of Linguistics. Odense Work-
ing Papers in Language and Communication 19, pages 31–48, University of Southern
Denmark, Odense, Denmark, 2000.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, Las Vegas, NV, USA, June 2016.

Benjamin Heinzerling and Michael Strube. BPEmb: Tokenization-free pre-trained sub-
word embeddings in 275 languages. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC 2018), pages 2989–2993,
Miyazaki, Japan, May 2018. European Language Resources Association (ELRA). URL
https://www.aclweb.org/anthology/L18-1473.

Benjamin Heinzerling and Michael Strube. Sequence tagging with contextual and non-
contextual subword representations: A multilingual evaluation. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pages 273–291,
Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
v1/P19-1027.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

39

Janne Bondi Johannessen, Kristin Hagen, André Lynum, and Anders Nøklestad.
Obt+stat. A combined rule-based and statistical tagger. In Gisle Andersen, editor,
Exploring Newspaper Language. Corpus compilation and research based on the Nor-
wegian Newspaper Corpus, pages 51–65. John Benjamins Publishing Company, 2012.

Bjarte Johansen. Training googles syntaxnet to understand norwegian bokmål and nyn-
orsk. In NIK: Norsk Informatikkonferanse, pages 13–18, Bergen, Norway, November
2016.

Andre Kåsen, Anders Nøklestad, Kristin Hagen, and Joel Priestley. Tagging a Norwegian
dialect corpus. In Proceedings of the 22nd Nordic Conference on Computational Lin-
guistics, pages 350–355, Turku, Finland, 2019. Linköping University Electronic Press.
URL https://www.aclweb.org/anthology/W19-6140.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. Character-aware
neural language models. In Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence (AAAI-16), pages 2741–2749, Phoenix, Arizona, USA, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
Computer Research Repository (CoRR), 2014.

Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time-
series. In The handbook of brain theory and neural networks, pages 276–279. The MIT
Press, 1995.

Wang Ling, Tiago Luís, Luís Marujo, Ramón Fernandez Astudillo, Silvio Amir, Chris
Dyer, Alan W Black, and Isabel Trancoso. Finding function in form: Compositional
character models for open vocabulary word representation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, page 1520–1530,
Lisbon, Portugal, 2015.

Cristina Sánchez Marco. An open source part-of-speech tagger for Norwegian: Build-
ing on existing language resources. In Proceedings of the Ninth International Con-
ference on Language Resources and Evaluation (LREC’14), pages 4111–4117, Reyk-
javik, Iceland, May 2014. European Language Resources Association (ELRA). URL
http://www.lrec-conf.org/proceedings/lrec2014/pdf/801_Paper.pdf.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large
annotated corpus of English: The Penn treebank. Computational linguistics, 19(2):
313–330, 1993.

M Antonia Martí, Mariona Taulé, Lluıs Márquez, and Manuel Bertran. Anotación
semiautomática con papeles temáticos de los corpus CESS-ECE. Procesamiento del
Lenguaje Natural, 38:67–76, 2007.

Joakim Nivre, Željko Agić, Maria Jesus Aranzabe, Masayuki Asahara, Aitziber Atutxa,
Miguel Ballesteros, John Bauer, Kepa Bengoetxea, Riyaz Ahmad Bhat, Cristina

40

Bosco, Sam Bowman, Giuseppe G. A. Celano, Miriam Connor, Marie-Catherine
de Marneffe, Arantza Diaz de Ilarraza, Kaja Dobrovoljc, Timothy Dozat, Tomaž Er-
javec, Richárd Farkas, Jennifer Foster, Daniel Galbraith, Filip Ginter, Iakes Goenaga,
Koldo Gojenola, Yoav Goldberg, Berta Gonzales, Bruno Guillaume, Jan Hajič, Dag
Haug, Radu Ion, Elena Irimia, Anders Johannsen, Hiroshi Kanayama, Jenna Kan-
erva, Simon Krek, Veronika Laippala, Alessandro Lenci, Nikola Ljubešić, Teresa Lynn,
Christopher Manning, Cătălina Mărănduc, David Mareček, Héctor Martínez Alonso,
Jan Mašek, Yuji Matsumoto, Ryan McDonald, Anna Missilä, Verginica Mititelu,
Yusuke Miyao, Simonetta Montemagni, Shunsuke Mori, Hanna Nurmi, Petya Osen-
ova, Lilja Øvrelid, Elena Pascual, Marco Passarotti, Cenel-Augusto Perez, Slav Petrov,
Jussi Piitulainen, Barbara Plank, Martin Popel, Prokopis Prokopidis, Sampo Pyysalo,
Loganathan Ramasamy, Rudolf Rosa, Shadi Saleh, Sebastian Schuster, Wolfgang
Seeker, Mojgan Seraji, Natalia Silveira, Maria Simi, Radu Simionescu, Katalin Simkó,
Kiril Simov, Aaron Smith, Jan Štěpánek, Alane Suhr, Zsolt Szántó, Takaaki Tanaka,
Reut Tsarfaty, Sumire Uematsu, Larraitz Uria, Viktor Varga, Veronika Vincze, Zdeněk
Žabokrtský, Daniel Zeman, and Hanzhi Zhu. Universal Dependencies 1.2, 2015. URL
http://hdl.handle.net/11234/1-1548. LINDAT/CLARIN digital library at the
Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and
Physics, Charles University, Prague, Czech Republic.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Lene Antonsen, Maria Jesus Aranzabe,
Masayuki Asahara, Luma Ateyah, Mohammed Attia, Aitziber Atutxa, Liesbeth Au-
gustinus, Elena Badmaeva, Miguel Ballesteros, Esha Banerjee, Sebastian Bank, Ver-
ginica Barbu Mititelu, John Bauer, Kepa Bengoetxea, Riyaz Ahmad Bhat, Eckhard
Bick, Victoria Bobicev, Carl Börstell, Cristina Bosco, Gosse Bouma, Sam Bowman,
Aljoscha Burchardt, Marie Candito, Gauthier Caron, Gülşen Cebiroğlu Eryiğit, Gi-
useppe G. A. Celano, Savas Cetin, Fabricio Chalub, Jinho Choi, Silvie Cinková,
Çağrı Çöltekin, Miriam Connor, Elizabeth Davidson, Marie-Catherine de Marneffe,
Valeria de Paiva, Arantza Diaz de Ilarraza, Peter Dirix, Kaja Dobrovoljc, Timothy
Dozat, Kira Droganova, Puneet Dwivedi, Marhaba Eli, Ali Elkahky, Tomaž Erjavec,
Richárd Farkas, Hector Fernandez Alcalde, Jennifer Foster, Cláudia Freitas, Katarína
Gajdošová, Daniel Galbraith, Marcos Garcia, Moa Gärdenfors, Kim Gerdes, Filip
Ginter, Iakes Goenaga, Koldo Gojenola, Memduh Gökırmak, Yoav Goldberg, Xavier
Gómez Guinovart, Berta Gonzáles Saavedra, Matias Grioni, Normunds Grūz̄ıtis,
Bruno Guillaume, Nizar Habash, Jan Hajič, Jan Hajič jr., Linh Hà Mỹ, Kim Har-
ris, Dag Haug, Barbora Hladká, Jaroslava Hlaváčová, Florinel Hociung, Petter Hohle,
Radu Ion, Elena Irimia, Tomáš Jelínek, Anders Johannsen, Fredrik Jørgensen, Hüner
Kaşıkara, Hiroshi Kanayama, Jenna Kanerva, Tolga Kayadelen, Václava Kettnerová,
Jesse Kirchner, Natalia Kotsyba, Simon Krek, Veronika Laippala, Lorenzo Lamb-
ertino, Tatiana Lando, John Lee, Phuong Lê Hồng, Alessandro Lenci, Saran Lertpra-
dit, Herman Leung, Cheuk Ying Li, Josie Li, Keying Li, Nikola Ljubešić, Olga Lo-
ginova, Olga Lyashevskaya, Teresa Lynn, Vivien Macketanz, Aibek Makazhanov, Mi-
chael Mandl, Christopher Manning, Cătălina Mărănduc, David Mareček, Katrin Mar-
heinecke, Héctor Martínez Alonso, André Martins, Jan Mašek, Yuji Matsumoto, Ryan

41

McDonald, Gustavo Mendonça, Niko Miekka, Anna Missilä, Cătălin Mititelu, Yusuke
Miyao, Simonetta Montemagni, Amir More, Laura Moreno Romero, Shinsuke Mori,
Bohdan Moskalevskyi, Kadri Muischnek, Kaili Müürisep, Pinkey Nainwani, Anna Ne-
doluzhko, Gunta Nešpore-Bērzkalne, Luong Nguyễn Thi., Huyền Nguyễn Thi. Minh,
Vitaly Nikolaev, Hanna Nurmi, Stina Ojala, Petya Osenova, Robert Östling, Lilja
Øvrelid, Elena Pascual, Marco Passarotti, Cenel-Augusto Perez, Guy Perrier, Slav Pet-
rov, Jussi Piitulainen, Emily Pitler, Barbara Plank, Martin Popel, Lauma Pretkalnin, a,
Prokopis Prokopidis, Tiina Puolakainen, Sampo Pyysalo, Alexandre Rademaker, Lo-
ganathan Ramasamy, Taraka Rama, Vinit Ravishankar, Livy Real, Siva Reddy, Georg
Rehm, Larissa Rinaldi, Laura Rituma, Mykhailo Romanenko, Rudolf Rosa, Davide
Rovati, Benoît Sagot, Shadi Saleh, Tanja Samardžić, Manuela Sanguinetti, Baiba
Saul̄ıte, Sebastian Schuster, Djamé Seddah, Wolfgang Seeker, Mojgan Seraji, Mo Shen,
Atsuko Shimada, Dmitry Sichinava, Natalia Silveira, Maria Simi, Radu Simionescu,
Katalin Simkó, Mária Šimková, Kiril Simov, Aaron Smith, Antonio Stella, Milan
Straka, Jana Strnadová, Alane Suhr, Umut Sulubacak, Zsolt Szántó, Dima Taji,
Takaaki Tanaka, Trond Trosterud, Anna Trukhina, Reut Tsarfaty, Francis Tyers,
Sumire Uematsu, Zdeňka Urešová, Larraitz Uria, Hans Uszkoreit, Sowmya Vajjala,
Daniel van Niekerk, Gertjan van Noord, Viktor Varga, Eric Villemonte de la Clergerie,
Veronika Vincze, Lars Wallin, Jonathan North Washington, Mats Wirén, Tak-sum
Wong, Zhuoran Yu, Zdeněk Žabokrtský, Amir Zeldes, Daniel Zeman, and Hanzhi Zhu.
Universal Dependencies 2.1, 2017. URL http://hdl.handle.net/11234/1-2515.
LINDAT/CLARIN digital library at the Institute of Formal and Applied Linguist-
ics (ÚFAL), Faculty of Mathematics and Physics, Charles University, Prague, Czech
Republic.

Lilja Øvrelid and Petter Hohle. Universal dependencies for Norwegian. In Proceed-
ings of the Tenth International Conference on Language Resources and Evaluation
(LREC’16), pages 1579–1585, Portorož, Slovenia, May 2016. European Language Re-
sources Association (ELRA). URL https://www.aclweb.org/anthology/L16-1250.

Lilja Øvrelid, Andre Kåsen, Kristin Hagen, Anders Nøklestad, Per Erik Solberg, and
Janne Bondi Johannessen. The LIA treebank of spoken Norwegian dialects. In Pro-
ceedings of the Eleventh International Conference on Language Resources and Eval-
uation (LREC 2018), Miyazaki, Japan, May 2018. European Language Resources
Association (ELRA). URL https://www.aclweb.org/anthology/L18-1710.

Lluís Padró and Evgeny Stanilovsky. FreeLing 3.0: Towards wider multilinguality.
In Proceedings of the Language Resources and Evaluation Conference (LREC 2012),
Istanbul, Turkey, May 2012. ELRA.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca An-
tiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,

42

Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Associates, Inc., Vancouver, Canada,
2019. URL http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf.

Slav Petrov, Dipanjan Das, and Ryan McDonald. A universal Part-of-Speech tagset. In
Proceedings of the Eighth International Conference on Language Resources and Evalu-
ation (LREC’12), pages 2089–2096, Istanbul, Turkey, May 2012. European Language
Resources Association (ELRA). URL http://www.lrec-conf.org/proceedings/
lrec2012/pdf/274_Paper.pdf.

Barbara Plank, Anders Søgaard, and Yoav Goldberg. Multilingual part-of-speech tagging
with bidirectional long short-term memory models and auxiliary loss. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics, page
412–418, Berlin, Germany, 2016.

Anders Søgaard. Semisupervised condensed nearest neighbor for part-of-speech tagging.
In Proceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics: Short Papers, pages 48–52, Portland, Oregon, USA, 2011. Association for
Computational Linguistics. URL http://dl.acm.org/citation.cfm?id=2002736.
2002748.

Milan Straka, Jan Hajič, and Jana Straková. UDPipe: Trainable pipeline for pro-
cessing CoNLL-u files performing tokenization, morphological analysis, POS tagging
and parsing. In Proceedings of the Tenth International Conference on Language Re-
sources and Evaluation (LREC’16), pages 4290–4297, Portorož, Slovenia, May 2016.
European Language Resources Association (ELRA). URL https://www.aclweb.org/
anthology/L16-1680.

Jana Straková, Milan Straka, and Jan Hajič. Open-Source Tools for Morphology, Lem-
matization, POS Tagging and Named Entity Recognition. In Proceedings of 52nd
Annual Meeting of the Association for Computational Linguistics: System Demonstra-
tions, pages 13–18, Baltimore, Maryland, USA, June 2014. Association for Computa-
tional Linguistics. URL http://www.aclweb.org/anthology/P/P14/P14-5003.pdf.

Erik Velldal, Lilja Øvrelid, and Petter Hohle. Joint UD parsing of Norwegian Bokmål
and Nynorsk. In Proceedings of the 21st Nordic Conference on Computational Lin-
guistics, pages 1–10, Gothenburg, Sweden, May 2017. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/W17-0201.

Felix Wu, Angela Fan, Alexei Baevski, Yann N. Dauphin, and Michael Auli. Pay less
attention with lightweight and dynamic convolutions. Computer Research Repository
(CoRR), 2019.

F. Yu and V. Koltun. Multi-Scale Context Aggregation by Dilated Convolutions. Com-
puter Research Repository (CoRR), November 2015.

43

Amir Zeldes. The GUM corpus: Creating multilayer resources in the classroom. Lan-
guage Resources and Evaluation, 51(3):581–612, 2017. doi: http://dx.doi.org/10.1007/
s10579-016-9343-x.

44

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r d

at
at

ek
no

lo
gi

 o
g

in
fo

rm
at

ik
k

M
as
te
ro
pp

ga
ve

Stine S. Stavland

Convolutional Neural Networks for
Part-of-Speech Tagging

Masteroppgave i Datateknologi
Veileder: Björn Gambäck

Januar 2020

