
Sevre Vestrheim
A

utom
atic updating of histogram

s in M
ySQ

L

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Sevre Vestrheim

Automatic updating of histograms in
MySQL

Master’s thesis in Computer Science
Supervisor: Jon Olav Hauglid

December 2019

Sevre Vestrheim

Automatic updating of histograms in
MySQL

Master’s thesis in Computer Science
Supervisor: Jon Olav Hauglid
December 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

When the database query-optimiser optimises a query, several factors are taken into con-
sideration while attempting to decide on the query plan to use. One of these factors is the
order in which tables are joined. When determining the order in which tables should be
joined, the cardinality of each table is one of the essential characteristics investigated. If
any predicates can be applied to tables before join operations begin that will reduce the
execution time, and is as such almost always performed. The selectivity of a predicate is
determined by how many rows in the table which satisfy the predicate. It is approximated
either by using histograms or heuristics. Heuristics are constant values chosen by the de-
velopers of the query-optimiser, and these will seldom provide as accurate estimates as a
histogram. However, a histogram has to be computed, which takes time and resources. If
the data on which the histogram is based changes without the histogram being updated,
the histogram will become stale and will not provide accurate selectivity estimates.

An evaluation of the effects of varying histogram accuracy levels and different strate-
gies of maintaining accuracy is presented in this report. Along with designing the require-
ments for, and implementing, a use-case in which different levels of histogram accuracy
affect query execution times. Initially, nine different updating methods are presented, of
which four are implemented. later another four are suggested as a basis for future work.
Through testing of the implemented updating methods and a set of base class methods, it is
shown that in the given use-case stale histograms perform worse than accurate histograms,
and also worse than no histograms. It is also shown that with relatively simple updating
schemes performance can be significantly improved when compared to using stale his-
tograms. Further, it is shown that the implemented updating scheme in two state-of-the-art
systems performs very poorly in our use-case.

i

Sammendrag

Nr en sprring blir optimalisert av sprreoptimalisatoren i en database er det mange fak-
torer som underskes fr valg av sprreplan blir tatt. En av disse er rekkeflgen tabeller
joines i. Rekkeflgen bestemmes i stor grad av kardinaliteten til tabllen. Dersom noen av
predikatene kan benyttes til filtere vekk rader i tabellene fr join operasjonen begynner, vil
det redusere kjretiden. Dermed blir dette nesten alltid gjort. Selektiviteten til predikatene
blir bestemt av antall rader i tabellen som tilfredstiller predikatet. Dette approksimeres
enten ved hjelp av et histogram eller ved bruk av heuristikker. Heuristikker er kontstante
verdier som blir bestemt av de som utvikler sprreoptimalisatoren. Disse gir sjelden et like
nyaktig estimat som et histogram. Det er dog slik at et histogram m beregnes, noe som tar
opp tid og ressurser. Dersom dataen histogrammet er basert p endres uten at histogramet
beregnes p nytt, vil histogrammet vre feil og gi et unyaktig selektivitets estimat.

Effekten varierende histogram nyaktighet og forskjellige oppdaterings startegier for
histogram har p kjretiden til sprringer evalueres i denne rapporten. Sammen med design
av kravene til ,og implementeringen av, en database hvor histogram nyaktighet har en ef-
fekt p kjrtiden til sprringer. Til begynne med presenteres ni forskjellige oppdateringsme-
toder hvorav fire implementeres. Senere presenteres fire nye som basis for fremtidig ar-
beid. Gjennom testing av de implementerte oppdaterings metodene og en gruppe med base
metoder, vises det at i den gitte databasen yter unyaktige histogram drligere enn nyaktige
histogram, og ogs verre enn ingen histogram. Det vises videre at gjennom relativt enkle
oppdaterings metoder kan ytelsen til databasen kes betraktelig sammenlignet med unyak-
tige histogram. Det vises og at oppdaterings metodene som benyttes i to moderne system
yter drlig i vr database.

ii

Contents

Abstract i

Table of Contents v

List of Figures vi

1 Introduction 1

2 Theory 3
2.1 Database queries . 3

2.1.1 Choosing a query plan . 4
2.2 Histograms and other statistics . 5

2.2.1 Equi-width and equi-depth histograms 6
2.2.2 Frequency- and top-n frequency-histogram 7
2.2.3 Hybrid histogram . 8
2.2.4 Multidimensional histograms 8
2.2.5 Updating histograms . 9

2.3 Cardinality estimation . 12
2.4 Join algorithms . 12

2.4.1 Nested loop join . 13
2.4.2 Sort-Merge join . 14
2.4.3 Hash join . 14

2.5 Evaluating database systems . 16
2.6 Some statistical terms and theory . 16

2.6.1 Uniform distribution . 17
2.6.2 Normal distribution . 17
2.6.3 Confidence interval . 19

2.7 Time-series databases . 20
2.8 Summary . 21

iii

3 State-of-the-Art 23
3.1 Creating histograms . 23
3.2 Updating and maintaining histograms 25
3.3 Missing histograms . 26
3.4 Cardinality estimation . 27
3.5 Summary . 29

4 Design 33
4.1 Use-case . 33

4.1.1 Design requirements . 34
4.1.2 Use-case design . 35

4.2 Different histogram updater architecture approaches 40
4.2.1 Scheduled Job . 40
4.2.2 Built-in . 40
4.2.3 Extension . 41
4.2.4 Plugin . 42

4.3 Plugin workflow . 43
4.4 Updating rules . 44
4.5 Summary . 51

5 Use-case implementation and evaluation 53
5.1 Background and the first development efforts 53

5.1.1 Implementing different use-cases 53
5.1.2 Test scenario . 60

5.2 Implementation results . 62
5.2.1 Checking the use-case and the results interpreter 63

5.3 Summary . 64

6 Implementing updating rules 65
6.1 Rule overview . 65
6.2 Implementing rules . 67

6.2.1 Getting the plugin ready for the new rule architecture 67
6.2.2 Rule one and two, after each DML statement and after n DML

statements respectively . 68
6.2.3 Rule three, after n DML statements also considering statement type 69
6.2.4 Rule six, after a ratio r between table size and updated rows is

reached . 69
6.2.5 Rule seven, after n rows are updated, comparing the change against

histogram boundaries . 70
6.2.6 Rule nine, after the estimated cost of an inaccurate histogram ex-

ceeds the limit I . 71
6.3 Summary . 71

iv

7 Evaluation 75
7.1 What, how and why . 75
7.2 Results of rule testing . 83
7.3 Discussion . 95

7.3.1 Comparing tested rules . 96
7.4 Summary . 98

8 Conclusions and future work 99
8.1 Effects of histograms on query execution times 99
8.2 Future work . 103

Bibliography 107

Appendix 111

v

vi

List of Figures

2.1 Equi-width and equi-depth histograms displayed on the left and right re-
spectively. Figure from [15]. 7

2.2 True distribution of the Traffic dataset is depicted on the left, with the two-
dimensional histogram approximating its distribution on the right. Figure
from [17]. 9

2.3 The split and merge tactic of Gibbons et al. in action. The smallest bucket
just went below the delete threshold, as such it must be merged with one
of its neighbours. Figure from [18]. 10

2.4 Cardinality error for range estimation after inserting rows. The algorithms
of Gibbons et al. are compared with fixed buckets and fixed histograms.
Figure from [18]. 11

2.5 Overview of the structure of a hash join, the different colours represent dif-
ferent values. Different colours can hash to the same bucket, and buckets
will overflow into disk if necessary. 15

2.6 Box plots of values drawn from a uniform distribution 17
2.7 A sample of 10 000 values from a gaussian distribution with the bell curve

of the distribution plotted ontop . 18

3.1 PostgreSQL cardinality estimate errors for JOB and TPC-H queries. Fig-
ure from [5]. 28

3.2 Error level of join cardinality estimation for each system. Each boxplot is
a summary of all queries in the JOB benchamrk. Figure from [5]. 29

3.3 Estimate of query plan cost vs. runtime for different costmodels and car-
dinality estimates. Figure from [5]. 30

4.1 Star schema data model used in example 36
4.2 Linear foreign key data model used in example 37
4.3 The general architecture of statement execution. In the middle we see how

statements enter, are parsed and then optimised before they are executed
on the database. Figure from [4]. 41

vii

4.4 Visual representation of three of the different architectures discussed. . . 42

5.1 An example of how we shifted the temperature as ”time” progressed for
some of the tests performed during use-case implementation. 56

5.2 The distribution of values in the MSM VALUES column used for some of
the tests performed during use-case implementation. 57

5.3 The data model in our use-case displayed in an ER-diagram. 63

7.1 Results of timing a query with four joins and where MSM VALUE > 90
for the three base classes . 76

7.2 An example plot of how rule X responds to changes in its parameter. The
base classes are plotted along side to serves as comparisons 80

7.3 How the distribution of values changed for the MSM VALUE column during
our tests . 84

7.4 The sensitivity to change of parameter values for rule two with a logarith-
mic x-axis . 85

7.5 Results of timing a query with four joins and where MSM VALUE is be-
tween 80 and 100 for rule two using n = 400000 as parameter value . . . 86

7.6 The sensitivity to change of parameter values for rule six 89
7.7 Results of timing a query with four joins and where MSM VALUE < 80

for rule six using r = 0.95 as the parameter value 90
7.8 The sensitivity to change of parameter values for rule seven 91
7.9 Results of timing a query with three joins and where MSM VALUE > 80

for the base classes and rule seven. Using woh = 1 as parameter value. . . 92
7.10 The sensitivity to change of parameter values for rule nine 94
7.11 Results of timing a query with four joins and where MSM VALUE < 90

for rule nine using I = 1000000 as parameter value 95

viii

Chapter 1
Introduction

An SQL query usually has numerous distinct execution plans that all yield identical results
but with varying execution times. There is no known way to compute which of these plans
is the quickest; the only option is to evaluate all and then choose one, this is the job of
the query-optimiser. How does the optimiser choose a plan without spending possibly
hours trying every one? The answer is it does not, it cheats. Firstly the optimiser chooses
what it believes to be the quickest/optimal plan, it gives no guarantee that it is the optimal
plan, it also does not check every single plan, it only tests a subset of the plan space.
Secondly, it employs one of its most powerful tools, the databases statistics. The optimiser
approximates the cost of each plan using statistics and a cost function, once the selected
subset of plans is evaluated, the cheapest plan is chosen.

Database statistics is an umbrella term; there are several different types of statistics
ranging from simple maximum and minimum values of columns to histograms approxi-
mating the distribution of values within a specified column. It can be argued that along
with the total number of rows, the most useful statistic for the optimiser is, in fact, the his-
togram. It approximates the distribution of values within one or more columns and is used
by the optimiser to approximate the result size, cardinality, from different parts of a query.
The ratio between the approximate return number and the maximum possible amount of
returned rows is known as the selectivity of a predicate. The optimiser uses the selectivity
measurement to predict the cost of the different plans better and choose accordingly.

In the widely used MySQL database system, the query-optimiser computes the selec-
tivity of predicates using histograms if the predicate conforms to certain rules. When a
histogram is created, it can be an arbitrarily accurate approximation of the distribution,
meaning that it can be as accurate as we want it to be, with some restrictions such as size
and the time allowed to spend computing the histogram. However, as the data changes, the
histogram may no longer be accurate; it has gone stale. When a histogram goes stale that
should mean that the query-optimiser no longer creates an accurate cardinality estimate
since it is basing its estimate on inaccurate information. This can in-turn result in bad
execution plans being chosen. However, it is not known if this is the case, neither how
much better the execution plan would have been if the histogram used was very accurate.

1

In other words, it is not known to which degree the approximation accuracy of the his-
togram influences query execution times. Since MySQL’s implementation of histograms
currently does not support any automatic updating, it is an excellent candidate for testing
how the approximation accuracy effects the query-optimiser and query execution times of
a modern RDBMS.

To study how the accuracy of a histogram effects query execution, this report will be
looking at a case where continuous distribution change is frequent, namely a time-series
dataset. Time-series data is the term given to data which has a connection to a specific point
in time. Examples of such data are weather and temperature recordings, bank transactions
and financial records. Typical for this data type is that new rows are appended to the
database at a steady and high rate. As the value of incoming rows changes, so does the
distribution of the data as a whole. Queries on these types of datasets typically restrict the
result to a particular period in the data, usually querying data from the last 24-hours, week
or month. This enables the rows that are being queried to have a shifting distribution. In
this project, a fictional time-series dataset with fictional queries is used, due to our need of
control over attributes of both the dataset and workload. While some time-series datasets
are stored in specially designed time-series databases such as Amazon’s Timestream [1],
and Influxdata’s InfluxDB [2] due to their need for high write throughput and fast query
response time. Many administrators of regular RDBMS’ can find themselves needing
to store and query time-series data at some point during the life cycle of their database
system. The use of time-series datasets is almost always as a part of a larger data model
stored in a DBMS. It is therefore not unreasonable to expect MySQL to be able to handle
this kind of workload.

The goal of this project is to; define attributes that have to be met for database per-
formance to improve or deteriorate based on histogram accuracy, investigate the effects of
histogram accuracy on query execution times and query-optimisation and present guide-
lines on when and why histograms should be updated. Achieving these goals required the
project to be split into two development efforts, the first part centred around the develop-
ment and iterative testing of a use-case and its accompanying reactions to histogram accu-
racy. The second part focused on developing and presenting histogram updating guidelines
by implementing them in MySQL and experimenting with different variations of updating
rules and values using the use-case developed in the first part as the ”base”.

To explore these items the report starts with the theory required presented in chapter 2,
it then continues onto presenting the current state of the art in chapter 3 before presenting
the design of both the use-case and the histogram updater in chapter 4. Then the imple-
mentation and iterative testing of the use-case is presented in chapter 5, followed by a
presentation of the implementation done in MySQL in chapter 6. Finally, the results of
testing are evaluated in chapter 7 before the report closes in chapter 8 with conclusions
and suggestions for future work.

2

Chapter 2
Theory

Query optimisation is complicated and combines several different parts of the database
into making a decision on which query plan to use. Understanding the reasoning behind
that decision, how it can be affected, and how it affects query execution time is described
through introductions into different topics. We start by describing how database queries
work and how the database optimises them. We then show a brief example of how a
query plan is chosen. Followed by an introduction into different statistics types, then a
section discussing cardinality estimation, before some examples of the most common join
algorithms are presented along with how the join order plays a role. We close with intro-
ductions into how database systems are evaluated, an introduction of time-series databases
and a summary of some statistical terms and theory. Large sections of this chapter are
parts that were initially presented in the previous work we performed on this topic in [3];
it is included here as well for completeness sake.

2.1 Database queries
Relational Database queries are formulated using the structured query language (SQL)
standard. SQL is generally divided into three different categories, data manipulation lan-
guage(DML), data definition language (DDL) and queries. DML contains the update, mod-
ify and delete statements, although select statements are often included in this group as
well. While DML statements also need optimisation, they are not optimised in the same
way as normal queries. In this report, the term query is used about a select statement
unless otherwise specified, while a statement can be any of the DML or DDL statements
including select. SQL is a declarative language, meaning that it defines what the results
of the query should be not how to obtain the result [4]. Meaning that when the relational
database management system (RDBMS) receives a query, it has to decide how to calculate
the results of the query. The different ways to execute queries are known as execution
plans or query plans and even though they produce the same result, they can have mas-
sively varying execution times[4], [5]. Thus selecting efficient query plans is important
for database performance; this is the task of the query-optimiser.

3

2.1.1 Choosing a query plan

Choosing the optimal plan is not a trivial problem and query-optimisers in modern RDBMS’
are large, complicated and have been developed and refined through years of testing and
research[5]. Their implementation will vary from one system to another, but they all have
a few things in common; The plan believed to be the fastest of those evaluated is chosen,
while no guarantee is given that faster plans do not exist. The search space is limited to
only a subset of the available query plans, often choosing only to consider plans created
by a particular set of join algorithms such as those created by a left/right deep join tree.
Statistics about tables and columns are employed in an attempt to predict the cardinality
of different parts of the query. Cardinality results are used along with heuristics and cost
models to approximate the cost of each plan [4].

For the optimiser to choose a suitable plan it needs to estimate the execution times of
the different plans in the plan space1. Estimating the time required to execute the plan is
directly related to estimating the number of rows needed to process at the different steps
of the plan. Each process has a different cost associated with it; reading rows from disk is
relatively expensive while comparing values in the CPU is cheap. This is where the name
cost-based optimiser comes from. The optimiser approximates the results of different
parts of the query attempting to discover the most efficient combination of steps resulting
in the most efficient execution plan. Initially, it starts with the cardinality of one of the
tables included in the predicate as the result set. It then applies the different predicates to
determine which one reduces the result set the most. The reduction factor from different
predicates is termed the selectivity of the predicate2. Selectivity and cardinality are tightly
linked, multiplying the selectivity of a predicate to the original cardinality results in the
number of rows expected to remain after the predicate is applied. If we have multiple
predicates we wish to evaluate, then the result of the first evaluation is the cardinality for
the second and so on. It is important to remember that selectivity is a ratio, a number
between 0 and 1, while cardinality is the number of rows, an integer larger than or equal
to 0. How the plan reads data from disk also impacts its execution time, the problem with
choosing a retrieval strategy is that there is not one which is always fastest, it depends on
the number of rows that end up being fetched. There are three main strategies for retrieving
data; a linear search which can be applied to any file, a binary search which requires the
search attribute to be ordered and finally an index search which requires the appropriate
index to exist on the search attribute [4]. Below we show how this works for a given query.

Let us try to apply this to choose a query plan for the following query.
SELECT * FROM T1 WHERE C1 < 100 AND C2 < 50;
Firstly we must limit our search space, in this case, there are no joins which make

things a lot easier and makes the possible plan space quite small, because of this we can
check all the possible plans and do not need to limit our search space. Secondly, we check
the cardinality of table T1 and find it to be 100000 rows. Thirdly we try to determine which
of the two predicates C1 < 100 and C2 < 50 have the highest selectivity, meaning
which of the clauses cause the largest reduction in the result set. To do this we look at a

1The plan space is the set of all possible query plans generated by the optimisers different combinations of
allowed join algorithms, the ordering of joins and predicates and different data retrieval strategies [4].

2 The term predicate in this context means any operation that defines a part of the result. Thus C1 < 100 is
a predicate, but T1.C1 = T2.C1, commonly referred to as a join, is also a predicate.

4

histogram for each of the two columns C1 and C2 and find that the predicate C1 < 100
has a selectivity factor of 0.1 and for C2 < 50 it is 0.82.

Then we look at what retrieval strategy we should use for this data. In this case, we
have already created a sorted index for C1 and one for C2. These indexes have been created
for this table since columns C1 and C2 are often used as predicates in queries. We then
choose to fetch the data using index search, since it is faster than fetching all rows using a
linear search, and we have not stored table T1 sorted on the relevant columns. Thus using
a binary search is not possible. We do have to consider whether to fetch the data using
the C1 or C2 index. In this case, we check the selectivity and see, quite clearly, that the
C1 predicate has a much higher selectivity, i.e. lower number, than C2, so naturally, we
choose that one. After we have read all rows into memory, we have already satisfied the
first predicate, and we can check that each row satisfies the second predicate and output
the result.

In this example, knowing that the predicate C1 < 100 would return approximately
10% of table T1’s rows was vital when choosing which of the available retrieval strate-
gies to use. We can see from the selectivity estimates that we expected the result to be
about eight times larger if the other index is used. If we assume the computation time
for checking the second predicate is sufficiently small to be disregarded entirely, the plan
fetching based on C1 should execute about eight times as fast a plan fetching based on C2.
This is not unheard of when considering query plans. The difference between the optimal
and worst query plan can be several orders of magnitude, as shown by Leis et al. in [5].
Thus choosing the optimal plan is not only a convenient way to improve performance but
necessary to answer even relatively simple queries promptly.

2.2 Histograms and other statistics
Modern RDBMS’ create and maintain a host of different statistic types on almost any
data in their tables. The creation and updating of these statistics are handled differently
from system to system and is covered in chapter 3 of this report. In this section, however,
we describe the different types of statistics available and then investigate the type most
interesting to this report, the histogram.

In general the DBMS will store a number of different statistics about tables and columns
[4].

For tables it is common to store:

– The number of rows in the table, cardinality.

– The width of the table.

– The number of blocks occupied by the table on disk.

– The blocking factor bfr, which is the number of tuples per block.

For columns the normal is:

– The number of distinct values, NDV.

– The max and min values.

5

– A histogram.

Not all of the above types, while all are important and have their usages, are the focus
of this report, we will be concentrating on the histogram.

Histograms in databases are designed to approximate the distributions of values in
columns. It is used by the query-optimiser when determining the cardinality of different
parts of a query. The optimiser needs the approximation the histogram provides to approx-
imate the result set of some predicates that can be used in a query [6]. Through the years,
different types of histograms have been developed, with differing strengths and weak-
nesses but all with the intent of improving the approximation accuracy and dependability
of the histogram[6]–[8].

When a histogram is created, a scan of the underlying data must be conducted first.
The scan is usually done in one of two different ways. Either a scan of the entire table is
performed, or only a portion is scanned, known as sampling. When sampling, one relies
on the assumption that the sample is a large enough and random enough to be representa-
tive for the rest of the table. When done correctly, sampling does not necessarily reduce
the accuracy of the histogram as shown by Chaudhuri et al. in [9] where they manage
respectable results using their adaptive sampling algorithm. They also show that when
tables grow beyond a specific size, the number of rows needed to sample stops increasing.
Leveraging this attribute can, in some cases, drastically improve the execution time of the
statistics gathering. After the data is fetched from disk, it is sorted into ”buckets”, the num-
ber of elements in each bucket is then stored in the histogram and can be accessed by the
query-optimiser when needed [4]. If a histogram is said to be an approximate histogram
that generally means the histogram is based on a sample, this notation is used exclusively
in that manner in this report. In other words, the histogram is an approximation of the
underlying data distribution, but that does not mean that the histogram was based on a
sample. If the histogram itself is approximate, that means the histogram is based on a
sample of the dataset. The types of histograms explained and listed in this report are by no
means a comprehensive list; however, they are all relevant and in use in modern DBMS’,
and are for that reason described here.

2.2.1 Equi-width and equi-depth histograms
The difference between histograms is generally in how the data collected is sorted into the
different buckets the histogram contains. There are two simple ways to sort the data into
the different buckets; one can either keep each bucket ”filled” to the same level known
as equi-depth, or each bucket can have the same boundary range, known as equi-width.
E.g. could an equi-width histogram have ten buckets of width ten, which would span the
domain from zero to 100. While an equi-depth histogram for the same domain could have
six buckets, two of which could span almost the entire domain while the remaining four
spanned a small range with higher accuracy. This describes the situation seen in figure 2.1.

The advantages of the equi-depth histogram are quite apparent; it dynamically in-
creases or decreases granularity where it is needed. Thus it is better equipped to adapt
to high data skew. As shown in figure 2.1 the equi-depth histogram adapts to the skew of
the data and more accurately models the distribution of data than the equi-width histogram
does. The disadvantage with equi-depth is increased space requirements, equi-width is

6

Figure 2.1: Equi-width and equi-depth histograms displayed on the left and right respectively. Fig-
ure from [15].

therefore preferred when storage space, and in particular when RAM space is at a pre-
mium. The price per megabyte has decreased substantially in the last twenty years, this
along with improved accuracy means that the equi-depth histogram is preferred to equi-
width in all modern systems [6], [10], [11]. The price of storage, especially primary
(RAM), has decreased so much in the last years that several of the paradigms that shaped
and defined the design of RDBMS’ might no longer apply. An example of this is that
many modern databases have an in-memory option, which means that the database and its
tables are stored entirely in primary-memory. Secondary-memory is used to store back-
ups of the tables and logs creating during operation. These databases are often termed as
IMDB’s, in-memory database, and include both standard RDBMS and their more recent
counterpart NoSQL databases. Switching from disk-based storage to in-memory storage
increases performance drastically. In fact, some systems such as Aerospike [12], Redis
[13], and Oracle TimesTen [14] are even designed from the ground up to be in-memory
systems.

2.2.2 Frequency- and top-n frequency-histogram

The frequency histogram, unlike other histograms, is not an approximation of a distri-
bution; it is a compression method that allows a precise recreation of the distribution of
columns. This type of histogram provides the greatest accuracy in selectivity estimation
[6]. In a frequency histogram, each distinct value will have its bucket, and the histogram
tracks the number of records in each bucket [10]. A histogram of this type allows us to
know without any approximation how many rows in the column will satisfy the predicate.
Creating this type of histogram is only possible if we have as many or more buckets as
distinct values in the column (NDV).

When there are more NDV’s than there are buckets in the histogram, we cannot use
a standard frequency histogram. However, we still want to exploit a fact highlighted by
Ioannidis in [6], namely that accurate data on the most common values has a significant
impact on selectivity estimation. If the n-most frequent values occupy more than a thresh-
old p of rows, then a top-n frequency histogram will provide a better approximation for
the popular values. In this case, the least popular values can be discarded and not stored
in the histogram at all if we assume they have a negligible impact on accuracy [10].

7

2.2.3 Hybrid histogram
In an equi-depth histogram, the number of items in each bucket is kept to a somewhat sim-
ilar level. However, a value cannot span two buckets, unless they are singleton buckets3,
it must be entirely in one bucket. As such, values that are almost popular may be approxi-
mated very poorly by the equi-depth histogram in some cases [10]. The hybrid histogram
is an attempt at achieving the ”best of both worlds” from the frequency and equi-depth
histograms, aiming to improve the accuracy in the cases of almost popular values. Firstly
values are grouped so that none span buckets, secondly, for each bucket, a record of how
many times the endpoint value gets repeated is stored. When using the hybrid histogram,
one does not have to assume a uniform distribution inside the bucket, which is the norm
for histograms, since the repeat count stores the number of times the last value appeared
in the bucket. The repeat count reveals information about the buckets internal distribution
and helps improve accuracy for almost popular values.

2.2.4 Multidimensional histograms
In the descriptions given up to this point, all histograms have been one-dimensional. Mean-
ing that the histogram approximates the distribution of a single column. When a query
includes multiple predicates, its selectivity can be computed by assuming that the columns
are independent, meaning that the selectivity of each column can be multiplied to give the
compound selectivity. This technique, known as attribute value independence (AVI), is
employed by modern systems [16]. However, this assumption is often incorrect and can
result in the DBMS’ either over- or under-estimating the selectivity. [5]

Mit et al. show in [17] that creating and maintaining multi-dimensional histograms
need not be expensive, slow or inaccurate. They achieve promising results with their
dynamic summary data structure providing the basis for on-demand accurate histogram
creation.

When examining figure 2.2, we can see that the two columns are not independent.
They are dependent because observing the value of one of the variables influences our as-
sessment of the probability distribution of the other. If we do not have a multi-dimensional
histogram on these two columns, the optimiser would likely underestimate the number of
rows returned by the query. If instead, we had created a two-dimensional histogram using
the methods and algorithms outlined by Mit et al. in their report, the optimiser could find
better approximations. These would, hopefully, achieve a much more accurate estimate of
the predicate selectivity, which in turn could lead to choosing a better query plan [7].

To avoid these types of misestimations, we should not assume that columns are in-
dependent and rather employ some technique to deal with correlated columns. In [16]
Poosala and Ioannidis explore a novel idea of using singular value decomposition (SVD)
instead of the normal approach using multi-dimensional histograms. Through their re-
search, they conclude that while the SVD approach has the positive trait that it only re-
quires one-dimensional histograms to compute the selectivity, it does not provide sufficient
accuracy when compared with their MHIST-2 algorithm. They show that when using AVI,
they regard estimation accuracy on any multi-dimensional predicates to be inadequate, and

3A singleton bucket is a bucket containing only one value. If a value occurs more times than the depth of our
buckets, it must span buckets and those buckets must then be singleton buckets.

8

Figure 2.2: True distribution of the Traffic dataset is depicted on the left, with the two-dimensional
histogram approximating its distribution on the right. Figure from [17].

recommend abandoning AVI in favour of multi-dimensional histograms computed with
MHIST.

2.2.5 Updating histograms

If a histogram is created correctly then it should, when it is new, be as accurate of an
approximation to the distribution of its column as possible, regardless of it being based
on a sample or not. Meaning that when we create a histogram for a column, we want it
to be an accurate approximation to that column even if it is an approximate histogram.
However, what happens to this approximation as time progresses and the underlying data
changes? In theory, if the data changes in such a way that the distribution of the underlying
column changes then our histogram will at some point no longer be accurate, it has drifted
away from its underlying data set. How long this takes is dependent on how much and
what type of changes are made to the original column and what we define to be accurate
[6]. No matter how long that takes, we should at some point be forced to update our
histogram to keep it accurate, and it is at this time we say the histogram has gone stale.
If the histogram has gone stale, we deem it to no longer be reliable for the optimiser. We
claim that selectivity and cardinality estimates will be too erroneous. When the histogram
has become stale, there are generally two ways to make it accurate and useful again.

A naive implementation is to delete the histogram and recompute it from the ground
up. This approach is simple, and we can use the same algorithm we used to build the
histogram in the first place and delete the old one when we want. However, there is a
drawback; if histograms are quickly going stale, we could end up spending too much
computation power on maintenance. We can mitigate this to an extent by applying the

9

Figure 2.3: The split and merge tactic of Gibbons et al. in action. The smallest bucket just went
below the delete threshold, as such it must be merged with one of its neighbours. Figure from [18].

algorithms Chaudhuri et al. develop and showcase in [9], which would lower the com-
putational cost associated with a histogram update. These algorithms are not available in
MySQL however, and implementing them is outside the scope of this project.

The other option is to keep the original histogram and change only the buckets which
are no longer correct. In literature, this approach is termed incremental updating, and it is
shown to retain accuracy under updates while improving computation time by Gibbons et
al. in [18]. They combine a split and merge technique for buckets with a backing sample
used to check the accuracy and recompute the entire histogram. The backing sample is
a predetermined sample of the table kept up to date as updates arrive at the table. As
buckets reach a threshold difference from their optimum size, the bucket is either split or
merged. When the accuracy of the histogram in total is too far from their error threshold,
in their paper termed γ, they recompute the entire histogram. Depicted in figure 2.3 we
see how before the split and merge operations the frequency of items in the buckets are
quite varying and after we see something which more closely resembles an equi-depth
histogram with optimum item count in each bucket.

In the literature search conducted during this report, no theory could be found, nor
do we believe there exists any theory, defining when a histogram should be marked as
stale. We believe there to be several reasons that cause defining a theoretical optimum
for staleness to be complicated. The two most prominent being the sheer number of vari-
ables which influence the accuracy of histograms, and what we define to be accurate.
How quickly a histogram stops being sufficiently accurate will wary from one database
to another. Some databases see large amounts of traffic and churn on tables while other
databases may have stable data that rarely ever changes. Some databases can have value
distributions that are continually changing due to updates and inserts. While others may

10

Figure 2.4: Cardinality error for range estimation after inserting rows. The algorithms of Gibbons
et al. are compared with fixed buckets and fixed histograms. Figure from [18].

have just as much churn but stable value distributions within columns 4. These types of
uncertainties and differences mean that formulating any generally applicable theory is ex-
ceedingly tricky.

We did, however, discover that in [18] Gibbons et al. performed several tests compar-
ing their algorithm to others. They compare their accuracy with that of other techniques,
including non-updating, fixed histograms. We see in figure 2.4 that our hypothesis of his-
tograms becoming stale after some undetermined amount of time seems reasonably accu-
rate. The estimation error by the non-updating histogram is strictly increasing and would
be providing poor cardinality estimates to a query-optimiser. Both algorithms proposed by
Gibbons et al. maintain accuracy; in fact, they increase in accuracy after the first roughly
100 000 insertions. They also have the benefit of being tunable, meaning that we can tune
γ to achieve a more efficient or more accurate histogram depending on needs.

While Gibbons et al. have done extensive testing comparing efficiency and accuracy
between histogram updating methods. They have not analysed the effects of these differ-
ences in accuracy and efficiency in the context of query execution times in an RDBMS.
Since we do not have any data on this particular situation, we could be forced to consider
the state-of-the-art databases heuristics to be good choices of heuristic values, at least until
we have performed our analysis.

4This can be caused by chance, e.g. two rows are updated in such a way that they swap values, this would not
change the distribution of the column in question, but the table has still been updated.

11

2.3 Cardinality estimation
As pointed out by Christodoulakis and Ioannidis in [8], the join operator is the operator
most sensitive to cardinality approximation errors. A query can often contain several join
operators, the errors from the first approximation will propagate through all the joins. At
each step, the small errors induced will compound into a possibly huge error in the final
estimate. For this reason, inaccurate cardinality estimates for joins can lead to terrible
execution plans. In modern systems accurate estimates for join operator cardinality is one
of the largest contributing factors to reductions in execution time, especially for queries
consisting of several joins [4], [5].

In MySQL, the query-optimiser does not attempt to estimate cardinality using his-
tograms for any predicates that involve two variables/columns, e.g. predicates of the form
C1>C2 or C1=C2 will be estimated with heuristics. It only uses histograms to estimate
cardinality when a column is compared to a constant [19]. Since the predicate in any join
always contains two variables, this means that the MySQL optimiser makes no attempts
to compute cardinality of joining tables, and relies on heuristics and other statistics to
determine the resultant size.

Towards better join cardinality estimates In [8] Christoduolakis and Ioannidis use
histograms on the frequency distributions of join variables to approximate the cardinality
of different join predicates. Their join variables are Zipf5 distributed to more closely
resemble a real-world database. They attempt to find optimal histograms which compute
this cardinality while limiting the worst-case approximation error for any arbitrary query.
They find that given their restrictions on the join type, namely t-clique queries, serial
histograms are always the most optimal. They also conclude that while the most optimal
histograms are always serial, which particular serial histogram it is, is dependent on the
relations involved in the query and their particular frequency distributions. This translates
to finding different histograms for the different join predicates that are common for the
given relation.

In general, the accuracy of complex cardinality estimates is affected by; the ”correct-
ness” of assuming AVI, the accuracy of histograms used to determine predicate selectivity
and the accuracy of the estimated join selectivity. As we will discover later, modern sys-
tems are assuming AVI unless otherwise specified. This is often faulty as values that are
joined together in RDBMS’ are seldom independent of another, which Leis et al. show in
[5] by comparing the results of their tests with the IMDB dataset and using the common
TPC-H benchmark.

2.4 Join algorithms
Many SQL queries require us to join two tables based on a specified relation Ri. The
choice of join algorithm and the ordering of different joins often has the most significant
influence on the execution time of the query plan. Indeed, sometimes the order within one

5In a Zipf distribution the distribution of each item is inversely proportional to its rank in the frequency table.
Meaning that the most frequent item will appear twice as often as the second most frequent, three times as often
as the third most frequent and so on.

12

specific join can have a profound effect as well. Below three principal join algorithms are
described to help give a better understanding of why the query-optimiser is so dependent
on appropriate cardinality estimates for these operators. We will not describe exactly how
the optimiser decides which algorithm to choose, other than that it is mainly based on the
size of tables and by extension the cardinality estimate of predicates 6.

2.4.1 Nested loop join
The simplest solution to joining two tables together is to check every possible combination
of rows 7, this the nested loop algorithm (NLJ). It does not require any particular access
paths on the table or the file and will always find all matches, and it is a generalisation of
many of the algorithms we will explain later [4]. In NLJ we choose one of the two tables as
the inner table and the other as the outer table, it makes a difference which table is chosen
as the inner and outer if they differ in size. It is advantageous to use the smaller table,
fewer blocks on disk, as the outer table as this reduces the total number of I/O operations
to disk[4]. For each row in the outer table search for a match of the join predicate in
the inner table, if there is a match then output the tuple. Once this is done for all rows
in the outer table, we will have found all possible matches between the two tables. The
disadvantage to NLJ is the number of times we have to read the tables to perform the join.
For each row in the outer table, we must read all rows in the inner table resulting in a
no · Ti + To size of reads. Where no is the number of rows in the outer table, Ti is the
size of the inner table and To is the size of the outer table. If we are required to join more
than two tables together, we have to chain our joins, meaning that we first have to join two
tables together and then join the third table to the result of the first join. This result is often
called the intermediate result [4], and when the second join is performed the same rules of
size, outlined above, apply. The smallest table should be chosen as the outer table and the
larger as the inner.

A variation of the regular NLJ algorithm is index based NLJ; it requires an index or
a hash key for one of the tables. If the index exists for table Ti we read table To into
memory and for each line use the access structure to immediately fetch every row in Ti
which satisfies the join condition [4]. This type of join algorithm is typically quicker than
the general NLJ algorithm but necessitates a particular access structure. The cost of this
algorithm can be shown as To + no · x where To is the size of the outer table, no is the
number of rows in the outer table, and x is the cost of using the index for lookup, which
generally has a low cost.

In the case of the regular NLJ, we can see how a reasonable cardinality estimate will
lead the optimiser to choose the optimum ordering of tables. Also, we see how a lousy
estimate can cause it to choose wrong and select a suboptimal plan. Since the index NLJ
requires a specific access structure, it might not always be possible to choose any ordering
of tables, in those cases, the cardinality estimate is not essential for the ordering. However,
it can still be relevant; a lousy cardinality estimate for To can be the reason an index NLJ
was chosen when it was not the most optimal. It is also clear that a poor cardinality

6These modern optimisers are often called cost-based optimisers since they estimate what the cost of execut-
ing a query with each plan is [4].

7Checking every alternative is inefficient and is commonly known as the brute force or exhaustive search
method.

13

estimate can cause the wrong two tables to chosen as the first ones to be joined when there
are several to choose from. It is beneficial to choose joins such that the first one creates an
intermediate result that is as small as possible and then join the smallest available table to
the intermediate result. Which causes each subsequent intermediate result to be as small
as possible, and therefore causes subsequent joins to require fewer computations.

2.4.2 Sort-Merge join

The most efficient join algorithm is the sort-merge join algorithm. If the prerequisites are
in place, it only requires a single pass over both tables to find all pairs of rows satisfying
the join condition. However, not only does it require both tables to be sorted, but they must
be sorted on the join columns themselves. If this is the case, we can start by reading the
first blocks of both tables into memory and choose one as the inner table. Then we look
for a match for the first row in the inner with the outer table. Once located, we choose the
second row in the inner table and continue from the point where we found our first match.
We use R(i) to refer to the i’th record in table R and likewise for S(i). Because the tables
are sorted on the join predicates S(2) must be greater than S(1) and so will the match in
the outer table. E.g. if R(4) matched with S(1) then the match for S(2) must be R(5) or
higher 8. If the tables are not sorted, we can sort them beforehand and then perform the
join using sort-merge join, but this may not always be faster than other algorithms [4].

As stated at the beginning of this paragraph, the sort-merge algorithm is the most
efficient join algorithm if the prerequisites are in place. If the tables in question are sorted
on the join variables, the choice of algorithm is trivial and not dependent on any estimates.
However, if for instance, only one is sorted, it may be beneficial to sort the other table
and use sort-merge join, but we need cardinality estimates and cost models to determine
that. Again, it is evident that even in cases which should be reasonably straightforward,
the choice of join algorithm is not trivial.

2.4.3 Hash join

The last join algorithm to be presented here is the hash join; it consists of two phases, the
partitioning phase and the probe phase. In the partitioning phase, we read the smallest
of the two tables into memory/primary storage and create a hash table. The hash table is
created by hashing the join variable(s) to a set of buckets; once the table has been created,
we can start the probing phase. In the probing phase, we read as much of the larger table
into memory as possible. Once we have read the parts of the table that will fit, we compute
the hash value for the join column(s) and check if the value hashes to a bucket with any
rows in it from the partitioning phase. If it does we check that the value of the row in the
hash bucket matches to the one we just probed if it is a match we output the tuple, if not
it is a false positive and we disregard it. We do this on a per-row basis and once done for
all the rows of the larger table - the join is complete [4]. As seen in figure 2.5 two values,
represented by colours, which are not the same can hash to the same bucket, also when

8Given that the tables do not contain duplicates. If they contain duplicates, then the match for S(2) must be
R(4) or greater.

14

Figure 2.5: Overview of the structure of a hash join, the different colours represent different values.
Different colours can hash to the same bucket, and buckets will overflow into disk if necessary.

rows cannot fit in the hash table we created, they spill to disk/secondary storage and must
be handled in the next round.

This type of join requires us to set up the hash table, to do that we need some part
of memory allocated to the table. If the part allocated to the table is not large enough,
then hash buckets will start to spill into secondary storage until we are done with the
partitioning phase. Any rows that hash to a bucket that has started spilling into secondary
storage during the probing phase will have to be stored in secondary memory, and will
not be evaluated until all rows have been probed. Only then will the rows that spilt into
secondary memory be read into primary storage and processed again. This process will
happen as many times as is necessary until all rows have been hashed and tested [4].
Spilling can have a significant impact on execution time, as shown by Leis et al. in [5].
They show how a query-optimiser wrongly estimates the size of the two tables to be joined
due to inaccurate histograms. Which causes spilling to disk to occur multiple times over,
resulting in an execution time much worse than what could have been achieved with a
nested loop join. This is an example of how a poor cardinality estimate from the optimiser
caused a sub-optimal execution plan. In this the case, it might be that the hash join was
the optimal choice; the problem was that not enough space was allocated in memory for
the hash table, causing it to spill to disk.

15

2.5 Evaluating database systems

Throughput, be that query, insert, update or delete throughput, of a database system is a
measure of its performance, and different database systems, and indeed different databases
using the same system will often have very different throughput levels. When a database
is tested for throughput performance, the TPC benchmarks are often used. There are sev-
eral different types, each designed to model different environments. The TPC-C bench-
mark ”simulates a complete computing environment where a population of users executes
transactions against a database”[20], and the performance of TPC-C is measured in
”new order transactions per minute” the primary metric is the number of transactions
per minute[20]. The TPC-H benchmark ”is a decision support benchmark. It consists of a
suite of business-oriented ad-hoc queries and concurrent data modifications. The queries
and the data populating the database have been chosen to have broad industry-wide rel-
evance. This benchmark illustrates decision support systems that examine large volumes
of data, execute queries with a high degree of complexity, and give answers to critical
business questions.”[20]

There is a problem with the TPC benchmarks; however, as Leis et al. highlight in [5]
where they show that in the TPC-H benchmark, the data in different tables is independent
of another. This means that when Leis et al. examine cardinality estimates errors for
queries in the TPC-H benchmark, they find that PostgreSQL optimiser has almost no error
in its estimates. Which is visualised in figure 3.1, where we see that there is a significant
difference in estimation error between the JOB and TCP-H benchmark, caused by the
JOB benchmark using a dataset from IMDB in which data is not independent [5]. Thus,
the PostgreSQL optimiser should choose good plans for the TPC-H benchmark, while for
the JOB benchmark the chosen plan could be a poor one. If the PostgreSQL optimiser
estimation accuracy was tested solely with the TPC-H benchmark one could argue that the
optimiser predicts cardinality very accurately, however, from Leis et al. testing we now
know that is not the case for the JOB benchmark.

Leis et al. show how important it is to carefully consider, not only the complexity of
queries that are used to test the database, but also the attributes of the data being queried.
We will try to keep this in mind when designing and developing both our queries and our
dataset during the latter half of this report.

2.6 Some statistical terms and theory

Normally when describing statistical distributions, one thinks of them as representing the
selection of elements one would end up with if one were to draw a large amount of them
from a very large set [21]. For instance, if one rolls a dice and records the number, and do
that enough times, one would expect there to be equal amounts of each number. Indicating
that the distribution of rolling dice is uniform, rolling a six is as likely as rolling a one since
after all those rolls there were roughly as many one’s as there were six’s. In the design
and evaluation chapters of this report, statistical distributions and confidence intervals are
employed, the required knowledge to understand their usage in those chapters is presented
and reviewed here.

16

Figure 2.6: Box plots of values drawn from a uniform distribution

2.6.1 Uniform distribution

If an attribute is uniformly distributed, each possible value will have the same proba-
bility of happening for each instance of the attribute. A typical showcase of this is the
dice-example from above; however, there are many other variables which are uniformly
distributed as well. Most things that are uniformly distributed require there to be many
instances before the distribution appears uniform. An example is a random number gen-
erator. They are designed to produce any number with an equal probability. Shown in
figure 2.6 are two examples of values created by a random number generator plotted in
graphs to visualise. In the left plot in figure 2.6, we see that not every number has been
chosen, as it should have been since it was expected that there be the same probability for
each number. Additionally, some numbers have been chosen way more than other num-
bers. This is because not enough samples have been drawn from the uniform distribution.
If on the other hand, one looks at the right plot where 1000 samples have been drawn, it
is easy to see that the distribution is much closer to an even distribution of numbers across
the possible values. A common trait with distributions, and probability and statistics in
general, is that if one does not draw enough samples from the distribution, then the distri-
bution of the samples drawn tends not to be equal to the distribution drawn from [21]. It is
therefore essential to draw enough samples so that one can be sure that the drawn samples
are distributed in the same way as the set they were drawn from.

2.6.2 Normal distribution

One of the most well known and understood distributions is the normal distribution, also
known as the gaussian distribution and the bell curve. It is used to model the probability
distributions of many natural phenomena, such as height, blood pressure and IQ, among
others [21]. In figure 2.7, a plot of values taken from a gaussian distribution with a bell
curve plotted above is shown. It can be seen that the values closely match the bell curve
with a mean of 0, which was the mean of the Gaussian distribution from which the values
were drawn. Some traits about the gaussian distribution; it is mirrored about the mean,
often denoted µ, the area below its curve when plotted on a graph is always equal to one.

17

Figure 2.7: A sample of 10 000 values from a gaussian distribution with the bell curve of the
distribution plotted ontop

There is roughly a 67% chance of drawing a value that is within one standard deviation
of the mean, and roughly a 95% chance to draw one within two standard deviations of the
mean. In figure 2.7 vertical lines are drawn at one, two and three standard deviations from
the mean. In the figure that would then mean that roughly 67% of all values are within the
two innermost vertical lines, and roughly 95% are within the two second most inner lines,
finally roughly 99.7% of values lie within the two outermost lines.

In addition to accurately modelling many natural phenomena, several statistical theo-
rems make use of the gaussian distribution. One such usage is shown below in the confi-
dence interval example, where the sampling distribution follows roughly a Gaussian dis-
tribution when certain conditions are met. When the dataset is created later in this report,
it will have to be populated with values. As mentioned earlier, many query-optimisers
assumes a uniform distribution of values within a column if they do not have access to
statistics about that column. If statistics on the column shows that values are uniformly
distributed then the query plan will be the same whether or not database statistics were used
during optimisation. For this project that is not desired, thus values used for the dataset
will have to be drawn from something other than a uniform distribution. Instead, they will
be drawn from a Gaussian distribution. There are other distributions than the gaussian to
choose from that are also not uniformly distributed, such as the Poisson distribution and
the Exponential distribution [21]. However, they do not provide any significant advantage
in this case, and the Gaussian distribution will, as stated above, accurately model many
natural phenomena, and can, therefore, be used in many different use-cases.

18

2.6.3 Confidence interval
Statistics give the ability to conclude on the attributes of a large set based on attributes and
values of a relatively small subset. When doing so, it would be very nice to be able to say
something about how certain one is about those conclusions - which is what confidence
intervals do. A confidence interval has three key bits of information, first and second, it
defines a starting point and an endpoint of its interval, lastly a value between zero and one
which is a measure of how confident the interval is about the first two values. Consider the
following example.

There is an election coming up, and there are two candidates, A and B, there are five
million voters, and we are tasked with conducting a poll what proportion of them is going
to vote for candidate A, let us call that proportion p. Conducting a poll such as this is
common, and happens every year before all big elections. We can not ask all five million
voters, that is simply not feasible, so what can be done instead? We do something which
is ordinary in statistics, namely use a sample as a representation for the entire set.

Let us say we choose one thousand voters as our sample; then we ask them whom
they would vote for. It is found that 58% of them would vote for candidate A, let us call
this sampling proportion p̂. If we were to choose another set of one thousand voters as
our sample, we could find that p̂ was not 0.58, let us say it was 0.52 in this second set.
The critical thing to notice here is that the sampling proportion will vary between samples.
However, if we were to draw enough samples, we would eventually find that our sampling
proportion is roughly normally distributed. There are a few prerequisites for this to be true,
however, for instance, each voter has to have an independent opinion to all others, and the
actual proportion,p, can not be too close to zero or one [21].

In our case, we will assume these prerequisites are met9, in that case, it is known that
the mean of this sampling distribution is equal to the real proportion p [21]. The formula

for standard deviation is given by σp̂ =
√

p(1−p)
n where n is the sample size, in this case

one thousand. The value found for p̂ could lie anywhere within the sample distribution, it
is not known where the distribution is because we do not know where the mean, p, of that
distribution is, that is what we are trying to find out. Something else is known; however,
it is known that the probability that our value p̂ is within 2σp̂ of p is approximately 95%
because the sampling distribution is normally distributed. In other words, if one were to
draw such a sample 100 times, the value one would get for p̂ would be within two standard
deviations of the true value of p 95 times. Now that tells us a lot about the real value of p,
now if it was only possible to work out the value for the standard deviation. Well, it is if p̂
is used as a substitute for p in the formula for standard deviation. Why this is possible is
not discussed here, but it can be shown that p̂ is what is called an unbiased estimator for
p[21], and when that is the case it can be used as an estimator for p.

If those values are then plugged in we get that σp̂ =
√

0.58×0.42
1000 = 0.016. Now

the standard deviation is known, and there is just one last thing that needs to be realised.
Consider what was said earlier about the probability that our value p̂ is within 2σp̂ of
p is approximately 95%, and we tweak that ever so slightly it can be said instead that
”with 95% confidence between 0.548 and 0.612 of voters support candidate A”, now that

9This is not unrealistic given the large size of our original set, the relatively small sample and how unlikely it
is that almost all voters would vote for either A or B.

19

is almost exactly what we set out to find. Granted, the exact value of p is not found, but
an interval in which we are 95% confident that p will reside is found, and that is equally
useful. By altering how confident one is about the interval that will change its size, for
instance, would a 68% confidence interval for p be between 0.564 to 0.596 which is quite
a bit tighter than that of the 95% confidence interval.

Hopefully, this short example has shown what a confidence interval is, how to use it,
and why they are so useful when trying to determine fundamental statistical values. In this
project, they will be used in plots to show how confident we are about the real mean of
query execution times for given queries, datasets and level of histogram accuracy.

2.7 Time-series databases

If one wants a system that monitors events and faults, every data point that the system
collects has a connection to a particular point in time. As events and faults occur and
data about them are stored, a log of what has been happening is being created. Later on,
when technicians want to determine the cause of or results of, those events, they will query
the system for information about what happened around the time the event occurred. To
answer that question one will have to filter the log based on a time range, i.e. one might
need to find all events that occurred before or after a given date or the events that happened
between two points. This can be accomplished by any RDBMS that supports storing
timestamps in a column. However, when it is needed to answer the query quickly and be
capable of having a large write throughput, a regular RDBMS’ may begin to struggle.

Time-series databases are designed to handle this type of load. They can record vast
amounts of events every day while also answering queries in a timely fashion. These types
of databases often form the foundation of many systems in operations environments where
one is attempting to monitor the ”health” of one or more other systems. A pioneering
monitoring system in this field was Gorilla developed by Facebook. It was designed to
monitor and record the status of a large set of servers and systems reporting on any faults
that were occurring in real-time. While also storing information needed to diagnose and
solve problems when the time was right to do so. One of the design goals of Gorilla
required it to handle over 700 million insertions per minute, and store over two billion
unique time series identifiable via a string key, which they managed to achieve [22].

Many systems are specifically designed to handle time-series data today. They do not
all share the same architecture, but they do have common traits none the less. For instance,
it is common for these types of systems to be highly optimised for range queries, which
are very common when querying time-series. They are also generally implemented as
append-only databases, meaning that once something has been inserted into the database
it can not be altered. Simplifying the data structure of the databases and allowing for higher
insert throughput. They are also often implemented as in-memory databases to increase
performance.

20

2.8 Summary
In this chapter, we have presented the theory needed for the following chapters of this re-
port. We have seen that determining good query plans is not a trivial task, indeed avoiding
choosing poor query plans is not easy either. The speed of the plan is dependent on many
variables; the join algorithm used, the retrieval strategy used, available statistics, statistical
accuracy, statistic type, the ordering of operations, database hardware and the relationship
between all these variables. Trying to approximate the execution time of queries while
all these variables are influencing accuracy in unpredictable ways, and only have a second
to do it, is what the query-optimiser of any RDBMS is doing for all queries. It has also
been showed that there are several ways to measure how efficiently the query-optimiser
is completing this task. Moreover, we saw that some benchmarks commonly used were
not accurate measures of how the optimiser performed in real-world cases. We also gave
a short introduction to statistical distributions and some of their most useful attributes,
along with the powerful tool that is the confidence interval. In the next chapter, we will
be looking at how a selection of database systems handle, utilise and manage some of the
elements discussed throughout this chapter.

21

22

Chapter 3
State-of-the-Art

In this chapter, we start by exploring how the state-of-the-art is, with regards to histograms
in DBMS’ by examining how MySQL and three other systems handle their creation and
maintenance. Nextly we discuss join cardinality estimation and its usage in these systems.
The three other systems reviewed in this chapter should all be considered industry leaders.
On the corporate side, both Microsoft SQL Server and Oracle database have hundreds of
thousands of business customers and between them service most of the enterprise market.
Spearheading the opensource DBMS market is PostgreSQL, who in later years have shown
excellent performance, and in many cases rival that of the enterprise solutions. These
systems provide an excellent basis for what can be considered state-of-the-art with regards
to most things DBMS related. We wish to point out that, the features listed for each system
in this chapter is not an exhaustive list, it is a short description of what we believe to be
the most important for this project. This description of the state-of-the-art in terms of
histogram invalidation and cardinality estimation, is originally from our previous work on
the subject in [3]; it is included in this project with minor changes to reflect the change of
scope.

3.1 Creating histograms

Deciding which columns warrant the creation and upkeep costs associated with histograms
is a topic of debate, and the different systems considered here have different approaches
to this problem. However, there are some ground rules which are followed by all of the
systems. They all support creating and updating histograms on columns with numerical
values, and they all have some form of the equi-depth histogram available as a statistic.

MySQL has no automatic creation of histograms but allows database administrators,
DBA’s, to create them using the ANALYZE TABLE statement with the UPDATE HIS
TOGRAM clause and then provide some columns on which to create the histograms[23].
The DBA can either use the default 100 buckets or specify a specific number of buckets to

23

use in the histogram. MySQL implements two histogram types, the frequency and equi-
depth histograms. Consistent with the definition of the frequency histogram in section 2.2,
the frequency type is preferred when NDV is less than the number of buckets. Otherwise
an equi-depth histogram is created [19].

Microsoft SQL Server is by default configured to handle histogram and statistics collec-
tion automatically by the AUTO CREATE STATISTICS parameter. This parameter gives
the DBA the option of turning off automatic creation and perform it themselves, or the
DBA can combine both. By allowing MSSQL to create its standard histograms and statis-
tics while the DBA creates specific single- or multi-dimensional histograms on columns
[11]. MSSQL implements its automatic creation by creating histograms for columns that
do not already have histograms as the optimiser encounters them during query execution.

This automatic process will not attempt to restrict the number of histograms stored for
each table in any way. MSSQL will automatically create multi-dimensional histograms if
there exists an index on a set of columns. For these types of sets, MSSQL computes cross-
column correlation statistics, which they call densities. A DBA can also create densities
for column sets which are not part of any index, MSSQL will not do this automatically.
MSSQL uses a form of the hybrid histogram, very similar to the one discussed in subsec-
tion 2.2.3. It also has the capability of creating histograms either based on the entire table
or a sample[11].

Oracle database uses a procedure to gather statistics for the database. By default, the
scheduler runs the GATHER STATS JOB every day between 22:00 and 06:00 and all
day during weekends [24]. The job will execute a procedure in DBMS STAT which will
create and update histograms, and other statistics, for all columns that have an entry in
SYS.COL USAGE$. This way, Oracle database will not maintain or create histograms
for columns that are not used by queries [10]. When creating histograms, the ESTI
MATE PERCENT parameter determines if the histogram is created using sampling, and
what percentage of sampling to use. This parameter can be any value the DBA wishes or
left to its default of AUTO SAMPLE SIZE. If the DBA wishes he can create new statistics
for a table or column at any time using the DBMS STAT.GATHER TABLE STATS pro-
cedure [24], and inserting a new row into theSYS.COL USAGE$ table. The DBMS STAT
package also gives a DBA the capability of creating extended statistics objects. These
extended statistics objects inform the optimiser of the real-world relationships that exist
between data, which causes it to use multi-dimensional histograms for its cardinality and
selectivity estimation 1.

If the query-optimiser encounters a query with complex predicates and extended statis-
tics are not available, the optimiser can use dynamic statistics. Dynamic statistics, orig-
inally termed Dynamic sampling, will when employed on complex queries execute the
query on a sample data set and extrapolate its values as estimates for cardinalities [26],
[27]. Whether or not dynamic statistics are used depends on the OPTIMIZER DYNAMIC SAMPLING
parameter, which has to be set correctly2.

1The procedures used for creating and maintaining histograms will also handle multi-dimensional histograms
[25].

2Correclty, in this case, would require the parameter to be set to a value between two and 11 [24].

24

When Oracle database creates a histogram, it chooses between four types; the equi-
depth, frequency, top-n frequency and hybrid -histograms, based on a set of parameters.
If left to its default configuration, it will create a frequency histogram if the number of
distinct values is less than the number of buckets. If the percentage of rows occupied by
the top n frequent rows exceed a threshold p, it will create a top-n frequency histogram.
Else a hybrid histogram is created [10]. A more in-depth discussion of how the different
types of histograms work were given in section 2.2.

PostgreSQL uses the ANALYZE and VACUUM ANALYZE commands to create histograms
on the columns of a table manually. For large tables the ANALYZE command will take a
random sample of the table contents rather than examining every row, to achieve speedy
collection even on large tables. The size of the sampled data is dependent on the number
of buckets defined for the histogram, defaulting to 100. If left to its standard configuration
PostgreSQL will have its autovacuum daemon enabled, and histograms will be created
for new tables as they are loaded with data [28]. PostgreSQL creates the same types of
histogram as MySQL namely the equi-depth [29]. PostgreSQL also has the capability of
creating multi-dimensional histograms, although in PostgreSQL they are called multivari-
ate statistics. Similarly to Oracle database and MSSQL, these types of histograms are not
created by default. A DBA can specify a particular relation of interest, and PostgreSQL
will create and maintain histograms for these as it does with other columns and tables [30].

3.2 Updating and maintaining histograms
Keeping statistics the DBMS has collected up-to-date and valid should be vital for approx-
imation accuracy as shown in subsection 2.2.5. The usefullness of histograms is dependent
on more than which histograms are available. It is also important when the histogram was
last updated. The state-of-the-art systems examined in this report use different heuristics
to determine when the histogram has gone stale. MySQL has no automatic updating of
histograms as apparent from the introduction to this report. Meaning that any updating
of histograms must be done explicitly by DBA’s and that the only time histograms are
guaranteed to be accurate is when they are first created [19].

MSSQL updates and maintains statistics on an as necessary basis, which means that
when the query-optimiser receives a query, it checks whether the statistics for that table
are stale or not. If the flag AUTO UPDATE STATISTICS ASYNC is FALSE, which it is
by default, the DBMS’ will recompute the statistics there and then. Else the query will
run, and statistics are computed in the background. There is an advantage here that if the
flag is FALSE, a query plan will never be based on stale statistics [11]. However, if the
computation of statistics is slow, the query might time-out, and the user might be forced to
wait for longer than it would have taken the query to complete even with stale statistics.

Statistics are considered stale in MSSQL after
√
1000 ·R, whereR denotes the number

of rows for the table in question, updates or inserts to the table have been made since the
last update. This rule means that larger tables will require more rows to change than
smaller tables before the statistics are considered stale [11].

25

Oracle database uses the same job to update statistics as it used to create them, namely
the GATHER STATS JOB. In the case of updating statistics, the job will recompute the
statistics for all objects that are deemed stale. In Oracle database, statistics are considered
stale when the underlying object has been updated significantly, meaning more than 10%
of the objects rows have been altered [24]. Since the maintenance window is only open
during the night by default, a highly volatile table could have stale statistics for most of the
day. For these types of tables, Oracle database offers two solutions; Either the statistics
for the table can be removed and the table-statistics locked, preventing them from being
created again, in that case, the table will be treated as in section 3.3. Alternatively, the
statistics for the table can be set to values that represent the steady state of the table and
then locked.

PostgreSQL in its default configuration uses its autovacuum daemon to update the statis-
tics of tables as they change during regular operation [28], [31]. This update is not trig-
gered by query execution as in MSSQL but is rather a worker thread started by the persis-
tent autovacuum launcher process. The update worker will be started every one minute by
default if there are not too many workers running, defaulting to three [32]. Also, statistics
can be gathered manually at any time by running the ANALYZE and VACUUM ANALYZE
commands.

The workers started by the autovacuum daemon examine tables in the database se-
quentially and check whether the table statistics are stale or not. It considers statistics to
be stale after B+S ·n rows have been updated, inserted or deleted since the table last had
its statistics updated. In this case, B is a lower threshold, S is a scaling factor both defined
by parameters in postgresql.conf defaulting to 50 rows and 10% respectively, and
finally, n is the table cardinality.

3.3 Missing histograms
When a query-optimiser encounters a column or table for which it has no histograms or
other statistics, it has two options. Continue without any statistics and employ default
values, called heuristics, or create new statistics. In the case of MSSQL creating new
statistics is the standard operating procedure as it will compute histograms for each query
if none exist or if they are marked as stale. For PostgreSQL, if a table has no histogram, it
means there is no data in the table, and a histogram is not needed. In MySQL, if there is no
histogram on the column, it will merely continue without one and use heuristics. However,
in the Oracle database, something quite interesting happens.

Oracle database uses the job discussed in section 3.1 to create statistics for objects
that do not have it. This job will only run during the maintenance window, however,
and so if a new object is created and used before the window opens, there will not be
statistics for the object. In this case, the optimiser will use dynamic statistics to avoid
having to use heuristics. Dynamic statistics was introduced to help the query-optimiser
avoid choosing substandard query plans. The statistics gathered by this job are not as
accurate nor complete as the ones provided by the standard DBMS STATS package. It

26

does, however, give much more accurate estimates than the heuristics can. It is most
effective when used on queries that query tables which do not have any stored statistics at
all, or if histograms and statistics are very stale for the table in question [26], [27].

3.4 Cardinality estimation
During the literature search performed for this project, it was not discovered how Oracle
database or MSSQL database’s query-optimisers calculate join cardinalities. This is likely
intentional since it is advantageous for a DBMS to approximate the join cardinality accu-
rately. As discussed in section 2.3 and as shown by Leis et al. in [5]. E.g. if MSSQL
is better at approximating join cardinality than Oracle database, then MSSQL should be
better at choosing query plans on queries with many joins. Which, in turn, means that
MSSQL is faster at answering queries which can cause customers to migrate to MSSQL.

Leis et al. describe in [5] how PostgreSQL estimates cardinality for joins, they show
the cost-function the PostgreSQL query-optimiser uses but more importantly, they high-
light the assumptions PostgreSQL makes in their query-optimiser.

- uniformity: it is assumed that all values, except the most-frequent, have the same
number of tuples.

- independence: the assumption of attribute value independence is used to simplify
the cardinality/selectivity estimation.

- inclusion: the domain of the largest key overlaps that of the smaller such that keys
in the smaller are contained in the larger.

PostgreSQL makes these assumptions to ease the task of cardinality estimation. The
independence assumption is especially useful for the optimiser since it means that com-
plex predicates can be evaluated by merely multiplying the individual selectivity of each
predicate. As discussed in subsection 2.2.4, these types of assumptions often lead to errors
in estimates. In literature, these assumptions have been deemed too optimistic for a long
time, and Leis et al. show how significant errors this assumption can cause.

Benchmarking cardinality estimation Leis et al. develop a benchmark which they
argue more accurately represents real-world conditions when compared to the standard
TPC-H benchmark. In their paper, they show the large discrepancy in cardinality estimate
accuracy between the TPC-H and JOB benchmarks, depicted in figure 3.1. In the TPC-H
benchmark attributes are independent, as such the assumption of attribute value indepen-
dence PostgreSQL does is valid. However, this assumption is not valid when applied to
the JOB benchmark, whose dataset is the IMDB database.

When Leis et al. run their benchmark on all the systems and gather the cardinality
estimates, they discover that they all systematically underestimate the cardinality, which
can be seen in figure 3.2. They conclude that all the systems assume attribute value in-
dependence and that assuming AVI is detrimental to the approximation accuracy. Their
opinion of AVI is not theirs alone. It has been the opinion of research for a long time that
AVI assumption is not doing estimation accuracy any favours. Both Poosala and Ioannidis

27

Figure 3.1: PostgreSQL cardinality estimate errors for JOB and TPC-H queries. Figure from [5].

in [16] and Swami and Schiefe in [33] conclude that assuming AVI should no longer be
acceptable when estimating cardinality.

The effect of poor cardinality estimates is clearly shown in figure 3.3, where Leis et
al. compare PostgreSQL’s estimate of different plans execution times with their real exe-
cution time. One can see that the query-optimiser often believes plans will cost less than
what they do and that many plans will cost the same. In the three rows, Leis et al. show
the estimate created by three different cost models, in the left column, those cost models
use estimates for cardinality, and in the right, they use real cardinality. One can also see
that the difference in cost estimation accuracy is far more significant when switching from
cardinality estimates to real cardinality compared to when switching from a crude cost
model to a complex one. Cardinality estimates are often wrong, and when estimating car-
dinality for queries containing multiple join predicates, the error increases exponentially
[5]. Leis et al. show that even with a straightforward cost model, the last row in figure 3.3,
it is possible to create accurate cost estimates as long as the cardinality estimates used are
accurate. They finish off their report by stating that ”cardinality estimation is much more
crucial than the cost model”, based on what can be seen in figure 3.3 it would be hard to
argue with them.

28

Figure 3.2: Error level of join cardinality estimation for each system. Each boxplot is a summary of
all queries in the JOB benchamrk. Figure from [5].

3.5 Summary

It would seem like the significant modern DBMS’ all agree that keeping histograms up to
date is worth the overhead of computing them periodically, although they all use differing
definitions for staleness without any explanation of their choice. For instance, Oracle
database’s definition of staleness as 10% of rows modified seems arbitrary; in their online
documentation, they do not refer to why they chose 10%. We will, however, assume they
have done some testing with different values and based on this testing, determined 10% to
be a useful heuristic.

As discussed in subsection 2.2.5, we could not find any theory defining when a his-
togram is stale, and it was decided that the heuristics used by state-of-the-art systems can
be considered good choices of heuristics, or at least to be a good starting point. We did;
however, find that while Gibbons et al. do not define a value for staleness, they do find,
through experimentation, that setting their γ variable to 0.5 is a ”reasonable value for
limiting the number of computations as well as for decreasing errors”. It is not attempted
to speculate on how this can be translated into the heuristics that the above systems can
use. During the tests Gibbons et al. performed, they were only attempting to achieve an
optimal time for when to re-calculate their histograms. That time does not translate di-
rectly into the above systems; also a value that works well for Oracle database does not
necessarily work well for MSSQL or PostgreSQL due to differences in internal structure
and optimisation. Indeed, as we will show later a value that works well for one Oracle
database might be a very poor choice for another Oracle database.

Leis et al. showed us how essential cardinality estimates are for the query-optimiser.
We saw examples of simple query-optimisers outperforming more complicated ones by
merely having access to accurate cardinality estimates. We also saw that if given accurate
cardinality estimates, the current query-optimiser in PostgreSQL performed admirably.
Improving the accuracy of cardinality estimates is then a source of a performance increase
for almost all databases, which supports the idea of maintaining the accuracy of histograms

29

Figure 3.3: Estimate of query plan cost vs. runtime for different costmodels and cardinality esti-
mates. Figure from [5].

30

such that they provide accurate selectivity approximations.

31

32

Chapter 4
Design

The goal of this report is to define; which attributes determine if a database will be affected
by histogram accuracy, how that accuracy affects query-optimisation and use that to define
guidelines for when and why histograms should be updated. To help us define these items,
we will create a use-case and a histogram updater. The updater will handle updating of
histograms, and the use-case defines the data model, queries and dataset in which the
updater is tested. The updater will update histograms when they are determined stale by
rules we create. In this chapter, we describe the design of; our use-case, the updater and
the rules we have developed.

It was necessary to split our development efforts into two parts; first, we tried to dis-
cover in which scenarios histograms would affect execution times, and then in the second
part, design and test updating rules for our histograms. In the first part, we test how the
use-case, its data model, dataset and queries, will react to differences in histogram accu-
racy. The results from these tests are then used to draft the design requirements, which
allows us to develop a use-case that would behave as required. The second part of devel-
opment covers the development and testing of; the updater, the updating rules and the final
tests.

4.1 Use-case

Development and testing has been centred around a use case to maintain a common thread
to tie the testing, results and updating rules together, and link them to real-world cases.
We want to determine how stale histograms affect databases in an actual real database.
The use-case should, therefore, be designed in such a way that the accuracy of histograms
will affect query execution times, while also remaining realistic. We do not want to design
a use-case which feels contrived and is hard to justify. Achieving these requirements
required some compromises, which will be covered later in this section along with different
design decisions and requirements regarding the data model, dataset and queries.

33

4.1.1 Design requirements
The design requirements listed here are regarded to be more than just the design require-
ments for the use-case. They also list the requirements that must be met for systems,
scenarios and queries if they are to be affected by histogram accuracy. Below, the re-
quirements that have been discovered through evaluating the use-case of this project are
presented. The list presented here serves as a summary only, and each point will be dis-
cussed further throughout this chapter.

• Histograms that are created but not maintained need to go stale at some point. We
want to show how the accuracy of histograms affects the query execution time, that
requires the accuracy of histograms to change when the underlying data is changed.
The change in data must also cause the actual distribution of data to move away
from the one approximated by the histogram, thus altering the accuracy.

• If we are to see any significant differences in query execution times due to histogram
accuracy then the MySQL optimiser has to create different query plans based on
the histogram. To do that the optimiser has to be able to utilise histograms in the
optimisation. We discussed in section 2.3 that the MySQL optimiser can only use
histograms when columns are compared to constant values. Meaning that if the
optimiser is to use a specific histogram during optimisation, we need our WHERE
predicates to use constant value comparisons against histogram columns.

• There has to exist multiple query plans for the query in question if the optimiser is
going to have a choice of plan. More plans are preferred since more plans mean
more potential for substantial differences in execution times. As discussed in sec-
tion 2.3 having many different plans with different execution times is a characteristic
of queries that contain several joins. Which means that if our queries have several
join predicates that will be advantageous compared to having a single predicate.

• While the set of possible query plans to choose from clearly influence the choice the
query optimiser will make, the size relationship between tables in those plans also
influence the choice of plan. We uncovered that inter table size constraints had to
be enforced if the optimiser was to choose different plans depending on query selec-
tivity. This is caused by the heuristics the optimiser uses for different operators in
WHERE predicates. Since there is a definite lower and upper limit to these heuristics,
there are upper and lower bounds in table size difference required if we want every
query plan to considered by the optimiser.

• We found that the optimiser was not able to use a histogram to determine the se-
lectivity of the where predicate if it was also possible to use an index in the where
predicate. This means that the design of our queries can not include; comparisons
with values against columns that have indexes, in the where predicate.

• It was also discovered that simply having several query plans to choose from was
insufficient; we needed to obtain query plans that resulted in large differences in
execution times. Results showed that when the table with a histogram could be
placed at either end of the join order that enabled plans with larger differences in
execution times.

34

4.1.2 Use-case design
This section starts by designing a data model which will meet the design requirements laid
out above, while trying to meet those requirements it is important to keep the model as
realistic as possible. During use-case development, we tried a few different data models
before we found one that would work. As stated in the design requirements, we found,
among other things, that we had to carefully consider the join orders that the data model
would support. The tests showed that if we organised the data model as a star schema
that would produce plans with smaller differences in execution times when compared to a
linear foreign key data model. Consider the following examples.

We create four tables, A,B, C and D, which have foreign key(s) from A to B, A to C and
A to D. We then create a query that joins all tables together, the following join orders are
then possible1. In the list(s) below a ./ symbol means that we join the left operand with
the right.

• (((A ./ B) ./ C) ./ D)

• (((A ./ B) ./ D) ./ C)

• (((B ./ A) ./ C) ./ D)

• (((B ./ A) ./ D) ./ C)

• (((A ./ C) ./ B) ./ D)

• (((A ./ C) ./ D) ./ B)

• (((C ./ A) ./ B) ./ D)

• (((C ./ A) ./ D) ./ B)

• (((A ./ D) ./ B) ./ C)

• (((A ./ D) ./ C) ./ B)

• (((D ./ A) ./ B) ./ C)

• (((D ./ A) ./ C) ./ B)

If we on the other hand create four tables, A,B, C and D, where the foreign key(s) are
from A to B, B to C and C to D. And we then create a query which joins all tables together
we will have the following possible join orders to choose from when optimising.

• (((A ./ B) ./ C) ./ D)

• (((B ./ A) ./ C) ./ D)

• (((B ./ C) ./ A) ./ D)

• (((B ./ C) ./ D) ./ A)

• (((C ./ B) ./ A) ./ D)

• (((C ./ B) ./ D) ./ A)

1Note that foreign key(s) are two way relationships, a key from A to B allows us to join A to B but also join B
to A

35

Figure 4.1: Star schema data model used in example

• (((C ./ D) ./ B) ./ A)

• (((D ./ C) ./ B) ./ A)

If we consider A as our ”central” table, i.e. the one that contains our time-series link
and the column we wish to have a histogram on, we can see how these two examples are
quite different. In the first one, A is either the first or the second table in all the possible
join orders. There are no other options for when to join A; this would be the same if we
had n tables. In the second example, A is the first in some orders, the second in others,
the third and fourth in yet others again. Example one creates more plans than example
two, but example two creates plans with the most substantial difference in join orders.
Maximising the chances of having query plans with significant differences in execution
times because, as we know from section 2.4, the order in which tables are joined together,
is essential because it determines the size of intermediate results. The size of intermediate
results in-turn determine the execution time of the join, and to some extent, the size of the
following intermediate result, which determines the execution time of the next join and so
on. It is therefore important that the choice of the first two tables is a good one, and even
more important that we are able to make a good choice.

A linear foreign key data model allows the optimiser to start the join order with other
tables than the A table and place it anywhere in the join order as long as the B table has
already been included. ER-diagrams of the data models used in these two examples are
shown in figure 4.1 and figure 4.2 respectively. When the models shown in these figures is
reviewed, it is apparent that the star schema requires A to be in the first join, and that the
linear foreign key model allows A to be in any of the joins executed so long as B is also
present.

Our data model will be of the form shown in figure 4.2 where all foreign key(s) between
tables are linear because this creates the largest difference in query execution time, which
was part of the design requirements. We would like to point out that while it is possible
to perform a join between two tables that do not have a foreign key relationship, we do
not account for that behaviour in this project. Also when the term ”join” is used we are
referring to inner-join, other variations of joins such as left-outer join and right-outer join

36

Figure 4.2: Linear foreign key data model used in example

are not considered in this project.

The queries in our use-case also need to meet the requirements presented in the pre-
ceding section. Primarily they need to be of a form which enables there to be several
different query plans, and also the optimiser needs to be able to use histograms during
query optimisation. Consider the following example.

We create four different queries which we will use to query data from the data model
we chose above, these queries are;

1 SELECT * FROM A JOIN B ON A_B_ID = B_ID WHERE A_VALUE > SYSDATE;

2 SELECT * FROM A JOIN B ON A_B_ID = B_ID WHERE A_VALUE > X;

3 SELECT * FROM A JOIN B ON A_B_ID = B_ID JOIN C ON B_C_ID=C_ID JOIN D

ON C_D_ID = D_ID WHERE A_VALUE > SYSDATE;↪→

4 SELECT * FROM A JOIN B ON A_B_ID = B_ID JOIN C ON B_C_ID=C_ID JOIN D

ON C_D_ID = D_ID WHERE A_VALUE > X;↪→

The first and second queries join A with B, having only two tables there are only two
possible join orders. Increasing the number of joins, such as in queries three and four, will
increase the number of possible query plans and should increase the difference in execution
time between the best and the worst plan. Queries one and three have a problem with their
WHERE predicate; they are comparing our histogram column against a non-constant value,
which means that the MySQL optimiser will not be able to use a histogram during the
optimisation. Query four is the only one which meets all our design requirements, joining
four tables together with the given data model gives eight possible join orderings during
optimisation. Moreover, the value column is compared against a constant value X, which
enables the use of a histogram during optimisation.

37

In the example above none of the queries included a column in the WHERE predicate
that had an index, if any had done that would be in contradiction to the design requirements
and would not be an acceptable query for us. We need to create queries that have several
join predicates and at least one where predicate comparing a single column to a constant
value and not have any columns in the predicate which have an index. Leaving us with
having to create queries of the form of query four shown above.

Designing the dataset that will populate the use-case data model requires us to meet
the design requirements outlined above, beyond those we also have to consider how the
distribution of data should change over time. The inter table size relationship will, in some
cases, impose restrictions on which query plans will be chosen. Consider the following
example.

Let us fill the tables from the data model example above with an equal amount of rows,
for instance, 10000 and let us set the value of A VALUE to be 51 for all rows. If we then
try to optimise, with and without histograms, the query shown below, the following will
happen.

SELECT * FROM A JOIN B ON A_B_ID = B_ID JOIN C ON B_C_ID=C_ID JOIN D ON

C_D_ID = D_ID WHERE A_VALUE > 50;↪→

• When there is no histogram the optimiser will rely on heuristics to approximate the
selectivity caused by the where predicate in our query. The heuristic that the MySQL
optimiser will use for the > operator is 1/3, i.e. it assumes that the predicate will
reduce the result set to be only 33% of the original data. Since all our tables are of
the same size, this means that A becomes the smallest table and as such, it should be
in the first join executed.

• If we perform the same optimisation again, but this time we have just created a his-
togram on the A VALUE column we would hopefully choose another join order. The
optimiser will use the histogram instead of its heuristic to estimate the selectivity of
the predicate. Since all the rows in A have 51 in the A VALUE column, the his-
togram is indicating that the cardinality of the result set will reduce by nothing, the
filter leaves behind 100% of the original rows. Now all the tables are the same size
after the predicate has been applied, and it becomes a bit difficult to predict which
table the optimiser would choose as the innermost table in the first join. However,
we know that if as little as one row had a value below 51, the histogram would in-
dicate that some filtering would occur due to the predicate. In that case, A would be
the smallest table, and it would be placed in the first join operation.

In this example, the optimiser chose the same two query plans, even when the his-
togram showed that the heuristic used in the first optimisation was off by a lot. This choice
of query plan was because no matter what the selectivity of the WHERE predicate was, A
was still the smallest table. To account for this sort of behaviour, we will have to take

38

special care to create our dataset such that A can be both much larger and much smaller
than the rest of the tables, based solely on the selectivity of the WHERE predicate. If we
use the > or < operator in our queries that would then mean that our A table has to be
smaller than the B table after we apply a filter of 1/3 to A, or A has to be larger then B
when a filter of 1/3 is applied. Either way what we need is that the selectivity estimate of
the histogram can cause a significant enough change in table size such that A goes from
being the smallest to the larges, or vice versa.

There is one caveat to this we want to mention; however, it is not such that the query
plan chosen by the optimiser based on the heuristic is always going to be the same as the
one it would choose based on a histogram. That depends on the query being optimised
just as much as it depends on the inter table size relationship. Nevertheless, in our case,
we are only going to have a predetermined set of queries, which we will create and have
full control over. As such, we need the optimiser to choose different query plans for that
set as the filtering caused by the predicate changes. Therefore we need to carefully choose
the size of tables such that we end up choosing different plans for the same query when
we have, and when we do not have, access to histograms.

Further, we require the distribution of our histogram column to change over time, while
also resembling a real-world scenario. To achieve the changing distribution we could, for
instance, partition our data such that each subsequent partition has a slightly more skewed
distribution than the previous. Allowing us to create our dataset such that the values in the
WHERE predicate of our queries would match all rows at one point and then later match
none of them. This would enable us to show how the accuracy of the histogram would
affect the query plan chosen. A real-world scenario where the data is divided into such
partitions is a time-series database. In a time-series database, queries are often concerned
with only a subsection of the data; for instance, the data from the last ten hours, or last
week. In that way, the entire dataset can be divided into partitions of ten hours or one
week, and then queried on a per partition basis.

What we have outlined then is a dataset which adheres to the inter table size require-
ments we have laid out above, and also has a value in the histogram column which will
change over time which gives the dataset a continuously variable distribution. When cre-
ated in a computer program, we have fine-grained control over that distribution and its
attributes, which will enable us to test how changing the distribution in different ways
affects updating rules and histogram accuracy.

Closing remarks

This concludes the design phase of our use-case. In chapter 5 the actual implementation
of the use-case is presented, we show how our data model ended up looking, what sort
of queries we are going to use and what our dataset looks like. The actual values and
attributes we have chosen for this were discovered in an iterative process, which we also
present in that same chapter.

39

4.2 Different histogram updater architecture approaches
This report and the work presented in it is a continuation of [3], in which the histogram
updater and accompanying theory were first presented. Since the updater used in this
report is a continuation of the one developed in [3] the arguments for, and the decisions to,
develop the desired functionality as it was, is the same as they were for the previous project.
The discussion on this topic in [3] is included in this report as well for completeness sake.
With necessary modifications made to reflect the change from a report centred around
proving if automatic histogram updating in MySQL was required and indeed possible, to
one primarily concerned with defining guidelines for histogram updating.

When trying to add features or functionality to vast and evolving software, several
factors should be taken into account before we write any code. How challenging the
implementation will be is, in many cases, influenced by how one attempts to implement
the desired functionality into the system. We discovered four different ways in which we
can implement automatic updating. We can either; create the desired functionality in SQL
procedures, build the feature into the existing code, create a new program that works as an
extension to the original, or create a plugin. Below, these four different possibilities are
explored, and their pros and cons discussed.

4.2.1 Scheduled Job
Updating histograms in MySQL is done by a SQL statement. Since MySQL supports
scheduled jobs, it would be possible to create the histogram updater as a SQL procedure
stored on the server. This has the benefit of being a SQL procedure, which means that
any MySQL database could ”install” this new feature. The most significant drawback is
the lack of access to statement metadata for the procedure. It would for instance not be
possible to measure how many rows have received updates since the last histogram was
created 2. Nor can we measure the number of statements since the last update. Limiting the
implementation to use a simple rule for staleness, such as a timer. I.e. could the procedure
run every one hour and update all histograms, or maybe once every day and update all
histograms. The lack of statement metadata makes it difficult to try out different rules for
when to update histograms. Developing the histogram updater with that type of restriction
intrinsic in the architecture is not a good idea.

4.2.2 Built-in
Developing the histogram updater as a built-in set of functions and procedures gives ac-
cess to any function available in the MySQL internals. This level of access means that
the updater, and by extension, the updating rules, can be as complicated as desired. It
does, however, presuppose comprehensive familiarity with the already existing internals
of MySQL. We will, for instance, have to choose where in the life cycle of a statement
we execute the histogram updater statements and determine which histograms to update.
This type of approach changes how MySQL parses and executes statements, an essential

2At least not without introducing significant overhead in the form of additional monitoring of the database,
through temporary tables and the like.

40

Figure 4.3: The general architecture of statement execution. In the middle we see how statements
enter, are parsed and then optimised before they are executed on the database. Figure from [4].

part of an RDBMS, that we do not wish to disrupt or alter unnecessarily. In figure 4.3, the
general architecture of a statement and its path through the database system is depicted.
In our case, we would have to alter the query compiler and query-optimiser objects in this
figure. The level of knowledge required to implement the updater in this fashion, without
introducing errors or bugs, necessitates considerable training which is not possible in the
short time available.

4.2.3 Extension
As an extension the updater is a completely standalone service running in conjunction
with the standard MySQL server application. Developing in this fashion gives the devel-
oper a choice of programming languages; the developer could use any software they are
comfortable with. The drawback is that the extension is not capable of accessing any-
thing happening inside MySQL. The extension would only have access to data available
through the MySQL API and through SQL commands on the server itself. However, if we

41

Figure 4.4: Visual representation of three of the different architectures discussed.

develop the extension as middleware and we let users connect with the extension rather
than MySQL, that would enable the recording of statement metadata within the extension.
For instance, the number of queries and active users on the database could be monitored
and stored. This type of extension would require several features that exist in MySQL to
also be present in the extension, such as session handling and user validation. Develop-
ing all these features again would require extensive work, and forcing all users to connect
through a middleware can be unpopular and difficult to enforce. Meaning that a middle-
ware type of extension can be difficult to achieve successfully. If it is not implemented as
middleware, the extension alternative ends up sharing several problems with the scheduled
job strategy with regards to statement metadata and information access.

4.2.4 Plugin

As a plugin, the histogram updater has access to functions and procedures within MySQL
during execution. Meaning that we can use selected MySQL functions and procedures
without having to know how the rest of MySQL works. As a plugin, the histogram up-
dater acts as a service installed from inside the database by initialising the plugin using a
procedure. MySQL invokes all installed plugins at different times during statement exe-
cution. The hooks in MySQL activate the histogram updater plugin so that it can execute
before MySQL continues execution. There are hooks both before and after a statement is
parsed, besides, we can add new hooks at almost any point during statement execution.
Giving the option of choosing when during the execution of the statement, we wish the
plugin to start.

42

4.3 Plugin workflow
In the end, we chose to develop the histogram updater as a plugin due to our need to create
flexible rules for staleness and the limited time available for design and implementation.
Also, recommendations and discussions with the supervisor and other groups of students at
Oracle in Trondheim resulted in the plugin architecture winning out. For another relevant
discussion of the different system types, the reader is referred to [34] by Hole and Eggen, a
team of students at Oracle’s office in Trondheim, that also developed a plugin for MySQL
around the time we did.

The histogram updater plugin is intended to update histograms for columns when they
are marked as stale by the plugin itself. Below we describe the proposed design for the
plugin and its workflow.

The plugin is installed with its set of rules built-in, but can only use one at a time.
We want to be able to choose which rule to use during runtime; we achieve that through
the use of a global variable. During execution, the plugin determines which updating rule
should be enforced based on that variable. One particular value is designed such that the
plugin does nothing; it allows us to install the plugin and use the database as usual without
the plugin enforcing any rules.

When a statement executes on the database, hooks in MySQL should activate the plu-
gin after the statement has is parsed. When the plugin activates, it will determine the type
of statement and the columns and tables effected by the statement the user sent. Different
types cause different actions within the plugin. Statements that result in modification of
data; inserts, updates and deletes, also known as DML statements, can be handled in two
ways. Either the plugin checks the active rule before the statement has executed or after
the statement has executed. In the first approach, the effects of the statement are not yet
known and must be approximated by the plugin. If on the other hand, the plugin checks af-
ter the statement has executed the effects of the query can be known. For both alternatives,
the columns the rule marks as stale should have their histograms updated by the plugin,
and their status reset.

The second of these two approaches requires there to be a hook in the plugin API
which will execute plugins after statements have completed, and provide the plugin with
meta-data about the effects of the statement. At the time of writing this report, such a hook
does not exist, and we have chosen not to implement it either because the functionality that
it provides can be emulated. I.e. we know what the effects of inserts, updates and deletes
will be before they execute. As such, we can emulate the behaviour of analysing the effects
of DML statements by knowing the effects before they execute and then use that as if we
had analysed the effects.

When the plugin receives a query and not a DML statement no action should be per-
formed, and the plugin should return control to MySQL, there is however another way in
which queries can be processed. If we let DML statements work as described above but
with one small change, they should only mark histograms as stale, but not update them.
That would allow us to use queries as triggers for when to perform the actual update for
histograms marked as stale. This would save on computation since it would be possible
to mark a histogram as stale multiple times and only compute a new histogram when it is
needed. Marking a histogram as stale is in this case considered to be a very cheap opera-
tion, in most cases rules will only contain a few IF checks and some updating of counters.

43

We chose not to design the plugin in this way, because our tests will perform many inserts
after another and then a bulk set of queries followed by another set of inserts followed by
a set of queries. This goes on until we have no more data to insert; the test is then finished.
In such a case, this alternative design would effectively remove the negative sides of sev-
eral rules we plan to test. The goal of this report is not to create an effective plugin nor
is it to create effective rules; it is to explore the attributes, both good and bad, and effects
of different updating rules in general situations. As such, we do not want to remove the
adverse effects of rules in our dataset, which might not be removed in the general situation.

4.4 Updating rules
Below we list the set of updating rules we have designed. With each rule, we present
how it is intended to work, why we believe the rule is a good candidate for testing and
implementation in the plugin, and its pros and cons. In this section, when we use the term
histograms, we only mean those who would have been affected by a given operation. I.e.
an update on a table, or column, with no histograms will not invalidate any histograms
no matter the rule. Neither will a DML statement which can not cause a histogram to be
invalidated. I.e. an update on columns T1 and T2 in table A will not affect the validity of
a histogram on column T3 in table A.

The ultimate goal of any of the updating rules is to maintain a sufficiently accurate his-
togram without invoking significant computational overhead in the process. It is trivial that
the most strict rule would be to update histograms after every statement. There is, how-
ever, a significant overhead associated with this approach, so much in fact that it quickly
becomes infeasible to enforce this rule. Any other rule than the trivial one must sacrifice
the guarantee of accuracy in favour of reducing overhead; a good rule should avoid the
histogram becoming or staying stale for long periods while also achieving substantial re-
ductions in computational overhead. What this means then is that the rules presented below
are actually varying definitions of histogram staleness. If one tried to create a theoretical
definition of histogram staleness, it would be natural to state that, once the distribution of
the data has changed the histogram is stale. While that definition works in theory, it does
little good in practice. The ”strict rule” presented just above is, in fact, an approximation
of this definition, ”once the data has changed the histogram is updated”. For our case,
we can not use this definition; it defines histograms as stale too often, resulting in too
many resources spent on computing histogram. Instead, we present a series of rules which
define staleness as when the histogram is causing the query-optimiser not to choose the
optimal join order. They approximate the point when the plan should have changed due to
a significant change in distribution and define the histogram to be stale at that point.

Rule one, after each DML statement
Updating histograms after every DML statement is the trivial rule. As briefly mentioned
above, it will keep a histogram perfectly accurate at all times, but with that accuracy, there
is also a large computational overhead penalty. Not all DML statements lead to a row
being updated, for instance, UPDATE A SET A VALUE = 0 WHERE 0 = 1; will
not update any rows of A, but it would still invalidate the rule and cause the histogram to

44

be updated. The computational overhead associated with this rule is so large that enforcing
such a rule is not possible. If such a rule could have been used, it would already have been
implemented in MySQL. This rule is useful in another manner; however, since it ensures
that all queries are optimised with accurate histograms, we can use the query execution
times that this rule provides as the ”best case” times for queries. If we can manage to
implement a which gurantees that all queries are optimised with perfect histograms, then
that rule can be used as a baseline to compare performance against for all other rules.

Pros Cons

Perfect histogram accuracy Unnecessary resource consumption
Easy to implement Large impact on DML performance
— Large impact on database performance in

general
— Counting DML statements is an

inaccurate measure of data change

Table 4.1: The pros and cons of rule one

Rule two, after n DML statements
A variation of rule one where instead of updating after every single DML statement we let
n statements execute before we update the histogram. Reducing the overhead by a factor
inversely proportionate to n, but also reduces the time in which the histogram is perfectly
accurate by the same amount. As with rule one, this rule also suffers from the fact that a
DML statement does not necessarily cause any data to change. Furthermore, perhaps even
worse, a single DML statement can change all the rows of a table. Thus DML statements
can change anything from zero rows to all the rows of the table.

Pros Cons

Easy to implement Difficult to choose the optimal value of n
Easy to tune updating performance by
changing n

Possible large impact on DML
performance, depending on choice of n

— Counting DML statements is an
inaccurate measure of data change

Table 4.2: The pros and cons of rule two

Rule three, after n DML statements also considering statement type
There are three different types of DML statements, insert, delete and update. One fact
that is of particular interest to us is that both the insert and delete statements change the
distribution of values in another way than the update statement does. Also, these two
statement types alter the total amount of rows in the table; this might affect distribution
in ways we might not consider originally. For instance, if a delete, or insert, statement

45

affects the same amount of rows in each of the different buckets in the histogram, then the
distribution is the same as it was before, but the number of elements has changed. This
does not affect the accuracy of the histogram; however, as it computes percentages and
does not return the actual number of rows. However deleting the same amount of rows
in each bucket is quite unlikely, and we do not expect this to happen often. Since the
statements are different and they affect the distribution in different ways there should be
some difference in accuracy between a rule which accounts for this and one that does not.
Rule three is meant to give different weights to different statement types and through that
account for the differences between them.

Pros Cons

Easy to implement Difficult to choose the optimal value of n
Easy to tune updating performance by
changing n

Possible large impact on DML
performance, depending on choice of n

Increased tuneability as result of also
considering DML type

Counting DML statements is an
inaccurate measure of data change

— Difficult to choose weighting values
— More parameters to choose from increase

possible number of combinations,
making testing all combinations more
time consuming

Table 4.3: The pros and cons of rule three

Rule four, after n DML statements, triggered by queries

Another relatively small change to rule two creates our fourth rule. We still count DML
statements, but we do not update the histogram until the database receives a query which
uses the histogram. We covered this sort of behaviour as a possible workflow design
during our description of the plugin design above. Choosing to only mark histograms as
stale and postpone the actual updating until a query needs the histograms removes the
problems associated with bulk DML statements, it is also very similar to the MSSQL
udpating scheme. However, it also means that the first query will have to be optimised with
a stale histogram since we do not want to halt query execution to compute the histogram.
Since this would mean that a user would be kept waiting for the amount of time it takes to
compute the histogram before the user’s query even begins execution.

46

Pros Cons

Easy to implement Difficult to choose the optimal value of n
Easy to tune updating performance by
changing n

Counting DML statements is an
inaccurate measure of data change

Negligable impact on DML performance
since a query is required to cause
histogram updating

—

Choosing a small value for n is no longer
as bad as it used to be

—

Table 4.4: The pros and cons of rule four

Rule five, after n rows are updated

If instead of measuring the number of DML statements, we measure the effects of DML
statements, we remove the problems we have had with not knowing if rows change and
how many were changed. This way, we are more accurate in our measurement and hope-
fully will not spend resources on updating histograms when no rows have changed. There
are, however, still some issues; if we update two rows in such a way that they swap values,
effectively making each row equal to the old version of the other one. That still counts
towards the number of updated rows even though the distribution has not changed. While
this presumably will not happen very often and should not be considered a big problem, it
is a source of inaccuracy and is therefore mentioned here. The outlined approach for this
rule also requires an analysis of the effects of DML statements, meaning that meta-data
about statements needs to be available. Another problem is that the histogram will updated
after n altered rows no matter how many rows there are in the table, meaning that updates
may be performed when only a fraction of the table has changed.

Pros Cons

Easy to tune updating performance by
changing n

Difficult to choose a ”good” value of n

Direct link to rows changing Possible large impact on DML
performance, depending on choice of n

— Requires meta-data about the effects of
DML statements

— Rows can be updated without changing
the accuracy of the histogram but the
rows will still count

— The ratio of changed rows to table size is
not considered

Table 4.5: The pros and cons of rule five

47

Rule six, after a ratio r between table size and updated rows is reached

The sensitivity of a histograms accuracy is very dependent on the number of entries in
the underlying variable. If for instance, a column contained ten values and five of those
were deleted 50% of the dataset the histogram is based on was just removed. That probably
means that the histogram is no longer accurate. If however, the column contained 1000000
rows deleting five of these will only change 0.000005% of the dataset, now that is probably
not enough to alter the accuracy of the histogram significantly. Rule six tries to account for
this by weighting the number of updates against the size of the table. In other words, rule
six checks the percentage of changed rows and triggers an update based on that exceeding
a certain ratio of change r.

Pros Cons

Easy to tune updating performance by
changing r

Difficult to choose the optimal value of r

Direct link to rows changing Possible large impact on DML
performance, depending on choice of r

The ratio between changed rows and
dataset size is considered

Requires meta-data about the effects of
DML statements

The parameter r is self explanatory and
easy to understand

Rows can be updated without changing
the accuracy of the histogram but the
rows will still count

Table 4.6: The pros and cons of rule six

Rule seven, after n rows are updated, comparing the change against
histogram boundaries

The accuracy of a histogram is not equally sensitive to all changes to the base dataset. One
could argue that a change to the dataset, which is outside the measurement range of the
histograms affects the histogram relatively more than one which is inside the range. I.e.
a change which causes a value to end up outside the range of the histogram is worse than
one which only changes it to another value inside the histogram range. This is because the
possible values of the underlying data increases and the histogram is not changing to reflect
that. While a variable which is altered inside the histogram might move in such a way
that it actually increase accuracy. If the rule tracks the boundary values of the histogram,
changes to data compared against those boundaries can be made. If the change falls outside
the range, the change should count as being more important. In this way, changes to the
range of possible values becomes more important than changes to the proportion of values
inside the range.

48

Pros Cons

Easy to tune updating performance by
changing n

Difficult to choose the optimal value of n

Direct link to rows changing Possible large impact on DML
performance, depending on choice of n

Some changes are considered more
important than others

Difficult to choose a ”good” weighting
value

— Rows can be updated without changing
the accuracy of the histogram but the
rows will still count

— The ratio of changed rows to table size is
not considered

Table 4.7: The pros and cons of rule seven

Rule eight, comparing updates against a sample table

It is difficult to know which changes a given statement will result in and how those changes,
in turn, alter the distribution of the dataset. Until this point, the rules have made some sim-
plifications which enable them to approximate that distribution change. A more accurate
way to determine the change is by having a copy of the table and applying the incoming
statement to that copy and then check if the distribution changed as a result. This is un-
fortunately not feasible as the associated overhead would be far too great; one would be in
essence be doing every operation twice, once on the base table and once on the copy. How-
ever, it is possible to apply the statement to a sample of the table. On could then accurately
measure what the effect of the statement(s) was on the sample table and extrapolate those
effects out to the base table. Then determine whether or not the histogram requires updat-
ing by comparing the table distribution of the copy with that of the histogram. Gibbons
et al. perform a similar sampling and updating technique to the one we described here in
their Fast incremental maintenance of approximate histograms paper, [18]. They main-
tain what they call a backing sample by sampling the base table once, and then applying
incoming statements to that sample. In their case, they are not only using the backing sam-
ple to determine when to update the histogram, but the backing sample also serves as the
dataset from which the new histogram is computed, this significantly reduces histogram
computation time.

Pros Cons

Accurate rendition of changes made to
the distribution

Complicated to implement

In theory histograms are only updated
once they actually deviate enough from
the real distribution

Can be difficult to define what ”enough”
is

49

Table 4.8: The pros and cons of rule eight

Rule nine, after the estimated cost of an inaccurate histogram exceeds
the limit I

We have seen how there can be several factors that should be taken into account when
trying to determine if a histogram requires updating. Rule two showed how different DML
statements could be weighted differently and rule six exemplified that table size should be a
strong contender for determining the importance of a single DML statement or a single row
changing value. It might be that a rule should account for these things together. Rule nine
is meant to provide a function where each update or general data change is divided into
several components where each has an associated weight parameter. These parameters can
then be tuned to optimise the rule for different scenarios. We intend to include components
such as; table size, statement type wi,u,d, histogram boundaries woh, and the importance
of accuracy I .

r × (a× wi + b× wu + c× wd + d× woh) > I (4.1)

An example of the rule’s formula is shown in Equation 4.1, the values, a,b,c and d
correspond to the number of statements of a given type that have been recorded since the
last histogram update. Where a is the number of insert statements, b is the number of
update statements, c is the number of delete statements, and d is the number of rows that
have values outside the current histogram range. The weighting given to these different
counters is then; wi, wu and wd to the three different types of DML statements, INSERT,
UPDATE and DELETE, and woh signifies the importance of a data change happening out-
side the histogram boundaries, and it is the weighting given to d. r is the ratio between
altered rows and table size, and finally, I is the importance of accuracy. As data is changed
the sum of values on the left of the > operator accumulate until it exceeds I . At which
point the histogram will be invalidated, and the counters will reset to zero. A low value for
I would then cause the histogram to be invalidated more frequently, in other words, I is
the inverse sensitivity to change, the more insensitive we wish the rule to be the higher the
value we have to choose for I . The weighting values and the inverse sensitivity to change
are meant to be tuned to each specific scenario to maximise the efficiency and accuracy of
the rule.

This rule retains some of the problems the previous rules had with regards to choosing
values for its parameters. While gaining new ones because now we have to define values
for much more than just one parameter, and we are not sure how these parameters affect
each other or the performance in general. However, it combines what we believe to be
advantages from some of the simpler rules into a single rule.

50

Pros Cons

Can account for many different
components which influence the
importance of a data change

Time consuming to choose values for
weights

Adjustable to different scenarios Could be very difficult to choose optimal
values for weights

Easy to implement Difficult to predict how the values given
to different parameters will influence
each other

Table 4.9: The pros and cons of rule nine

4.5 Summary
In this chapter, we presented and discussed the design of; our use-case, our plugin and a
set of rules. We showed that the design of our use-case is a data model with linear foreign
key relations between tables, queries with varying numbers of JOIN predicates, simple
WHERE predicates carefully constructed around critical values in the dataset. Moreover, it
has a dataset with; strict inter table size constraints and a column with a varying value that
changes as ”time” progress and spans the values in our queries WHERE predicates. We also
showcased and exemplified a set of design requirements that have to be met if the accuracy
of histograms is to have a profound effect on query execution time. Finally, we presented
the designed workflow of the plugin we will implement before we discussed and showed
a set of rules which can be used to maintain histograms.

In chapter 5 we present the implementation and evaluation of our use-case. We con-
tinue in chapter 6 with the implementation of the plugin and its associated rules

51

52

Chapter 5
Use-case implementation and
evaluation

During the beginning of our development efforts, we evaluated and implemented a few
different use-cases. In the first part of this chapter, we present the process of implementing,
testing and evaluating those use-cases. In the second part, we summarise how those efforts
lead to the final use-case and what that final use-case is.

5.1 Background and the first development efforts
When deciding on how to test the plugin and the different rules, what metrics we should
measure, and how we should define our dataset and queries. We found that we needed
a real-world use-case where we could try to improve performance rather than creating
a case in which our solutions would improve performance. In section 4.1 we presented
the design of this use-case, during the presentation we referred to results from use-case
implementation leading us to reevaluate design choices. Those tests, their actual results,
how those results influenced decisions regarding the use-case, and a general description of
our testing suite is presented in this section.

5.1.1 Implementing different use-cases

Starting with tests as early as possible was important to us from the beginning, it would
give us the ability to check early what would work and what would not. It proved to be
critical to our development efforts, as these tests revealed several flaws in our initial use-
case designs and enabled us to make the necessary changes. The design of our dataset,
queries and data model was an iterative process, where the results derived from measuring
the execution times of one set of queries caused us to change the design of one or more
of our use-case’s sub-components. These results and their corresponding tests and devel-
opment efforts are grouped into this first implementation and evaluation chapter, and they

53

are presented in the paragraphs below.

Creating the data model of our use-case involved experimenting with different table,
column and foreign key structures. We knew from our discussion in section 2.3 that we
would need to be able to join tables together to create as extensive a set as possible of
different query plans to choose from. All the data models we experimented with had
several tables with foreign key relationships between them. That would allow us to create
numerous queries with several join predicates, they did not, however, result in the same
number of interesting join orderings which would prove to be vital.

Initially, we created two different data models; the first was designed to model a pay-
ment system, where payments would arrive at different points in time moving money from
one account to another in exchange for a product or service. And then a system which
would measure and log temperatures across geographic regions and countries. Tempera-
ture measurements would arrive at different points in time, and they would be linked to
different measuring stations in different locations. We did not see any significant differ-
ences in the results between the two models. We, therefore, went back and studied the
join orderings the models allowed for. When we did that we uncovered that while it was
possible to join the tables in different ways, it always involved joining the ”central” mea-
surement table to the others in different orderings. Because our data structure was set up
with the measurement table in the middle with one or more foreign key(s) to all the other
tables1. There were no join orders which allowed us to place that table anywhere else
than as either number one or two in the join order. Changing the join order of our central
table from the first to the second place is not a massive change. As we had discovered, we
were having trouble seeing any significant differences in execution time as a result of this
plan change. What we needed was for the optimiser to be able to swap the ordering of the
measurement table from the first to the last position - making as substantial a difference as
possible. To achieve this flexibility in join order, we needed to have a model in which any
of the selected tables could theoretically be the first one in the join order for that query.
We found that a successive set of foreign keys gave us the best possibility for creating
comprehensive sets of possible join orderings with regards to a ”main” table.

We found that even though a linear foreign key relationship provided fewer join orders
than a star schema of equal size, it still provided us with more significant differences in
execution times. That is because it is more critical where the ”central” table can be placed
in the order than how many orders there are in general. The reader is referred to the
example showcasing this behaviour in subsection 4.1.2 for a more thorough description of
how those join orderings are generated and how they influence execution time.

Developing a dataset which would suit our needs turned out to take up a significant
amount of our development efforts at the start. We first had to set up an environment
in which we could create a dataset with any attributes we desired. We wanted to use
Python[35] to do this since it is a language with which we were familiar, and there is
a large number of extensions to it which provide the language with added functionality
which we found very helpful. The NumPy[36] extension enabled us to create datasets
of arbitrary size efficiently, and with distributions and attributes, we desired. Pandas[37]

1This is commonly referred to as a star schema.

54

provided us with data manipulation and ways to handle our data in frames, similar to
how tables work in RDBMS’. It is also well integrated with the Seaborn[38] visualisation
library, enabling us to present our results in lucid and informative plots. After we managed
to create datasets of arbitrary size using Python, we had to figure out what attributes the
dataset needed to have. We knew that we needed to be able to control the distribution of
data at any point so that we could make histograms stale when we wanted to. However,
there were yet some attributes that we did not know we needed.

To start with the dataset was intended to be loaded into the database and then swapped
out as time progressed and we required the distribution of our histogram column to change.
However, we realised that this was not very realistic and would not fit any use-case we tried
to create. We, therefore, decided that the changing distribution should be caused by values
that change over time. For instance, let us say we measured air temperature. During the
day temperatures would rise and at a point reach maximum, probably in the evening once
the sun has been warming all day. Then as the sun sets the temperature will decrease
until the sun rises again in the morning. If we then partition the day into 24 periods of
one hour each, we would see quite clearly that the distribution within those 24 different
partitions is different. The example just described can be implemented as a time-series
database, it would be a simple one but a time-series database none the less. If we then
create our dataset such that the values change as time progresses just like in the example
and then partition it up into bite-sized chunks of equal size, we could imitate the behaviour
of the above example. We, therefore, created a sequential import of data where the dataset
was created with a changing distribution as one progressed over the rows. In figure 5.1,
we see a plot of how the values in the final dataset are meant to shift as we go from one
measurement to the next. In the example shown below, 100 measurements are taken every
second, and a total of 500 minutes pass from the time the first measurement is made to the
last.

In figure 5.1 we can see that the recorded temperatures increase and decreases as ”time”
passes and load on the servers change. We predict that this property will cause histograms
created on a previous set of data to be inaccurate and cause the optimiser to choose a poor
plan.

We experimented with different ways of loading the different partitions into the database.
We tried using the built-in LOAD DATA IN FILE MySQL function by outputting the
partition in our dataset as separate CSV, comma-separated-values, files. This made load-
ing data quick and easy, but also not very realistic in our scenario. Also, this sort of ”bulk
insert” would limit our possibilities when it came time to implement the updating rules.
We, therefore, decided to create separate files for each partition, such that we could load
one partition into the database at a time. Instead, of making them CSV files, we created
insert statements in Python and exported that as .txt files. Using regular insert statements
gives us more control and options for the implementation of updating rules. It is also more
closely resembles how data in many systems is modified, added or deleted.

Next, we discovered that sometimes the optimiser was not changing query-plans when
a histogram was available, but instead choosing the same query-plan no matter how we
skewed the distribution. In figure 5.2 we can see that even though the values in the column
are heavily skewed to one side, which should result in different query plans when the
optimiser has access to histograms, we saw no significant difference in execution time

55

Figure 5.1: An example of how we shifted the temperature as ”time” progressed for some of the
tests performed during use-case implementation.

when using this dataset. Our query-plan data also corroborated this, the plans were the
same for the different runs2. It turned out this was caused by the sizes of the tables in our
dataset, or to be more precise; the difference in size caused it. Because the SERVER table
had as many rows, 10 000, as the MEASUREMENT table, that caused the MEASUREMENT
table to be the smallest table when the predicate was applied, both when the optimiser
could use a histogram and when it had to resort to heuristics.

The problem of table size ratios is one that can impact our queries and their execution
plans in several ways and has caused us to implement rules regarding inter table size ratio.
These rules make it ”possible” for the optimiser to choose different plans when a histogram
is available. For instance, if the MEASUREMENT table is more than three times as large
as the SERVER table, the optimiser will choose to join the MEASUREMENT table last
when the query contains a < or > sign in the where clause. If the histogram then shows
that the actual returned result from the measurement table is much larger than 1/3, the
optimiser will also place it last. Thus the histogram made no difference to the query-plan
for this example query. In subsection 4.1.2 a general example showcasing this behaviour
is explained.

It became clear that we had to restrict the size of the MEASUREMENT table as we were
inserting more rows; otherwise, it would increase in size as our tests executed. The exe-

2The query used here was the same as the one showed in listing 1 but the plans are not the same as listing 2
or listing 3, however, they did look very similar.

56

Figure 5.2: The distribution of values in the MSM VALUES column used for some of the tests per-
formed during use-case implementation.

cution time of our queries would then be influenced by other factors than the histogram3.
To achieve this, we delete the oldest row in the MEASUREMENT table as we insert a new
one once we have reached the table size we want. We omit the delete statement from the
first partition of our data, of course, or our table would be empty. This means that the size
of the MEASUREMENT table will stay constant at the size of our partitions. It might not
seem like a very realistic scenario to delete the oldest data upon inserting new data, but
consider the following situation; a time-series data warehouse has a database which stores
all of the rows. What happens when the system has been running for a long time and con-
tinuously kept on receiving information? They can not possibly store everything forever;
at some point, the data warehouse will have to start deleting old rows to make space for
new ones. This is a common situation for many time-series data warehouses. In our case,
we only start deleting old rows earlier. We choose to keep the number of rows constant to
mitigate the number of unknown factors influencing query execution time. Therefore we
only delete a row when we have inserted a new one to ”take its place”.

We tried skewing the distribution of the MSM VALUE to various degrees to see how
extreme the skew had to be for there to be a large discrepancy in execution time. We found,
to no surprise, that when the selectivity provided by the histogram was large enough, or
small enough, to change the size of the MEASUREMENT table noticeably. Namely such that
when compared to the other tables in the query it is either smaller or larger than the others
then the query plan would change to reflect that. Below is part of the results we found

3Reducing the number of unknown variables that could influence query execution times would turn out to be
something we were considering continually throughout development efforts.

57

during the development of our use-case. When listing 1 was executed the MEASUREMENT
table had 100000 rows while the two second largest tables had 33000.

select * from test.measurement join test.server on

test.measurement.msm_serv_id = test.server.serv_id join test.rack on

test.rack.rack_id = test.server.serv_rack_id join test.center on

test.center.cent_id = test.rack.rack_cent_id join test.city on

test.city.city_id = test.center.cent_city_id where

test.measurement.msm_value >80;

↪→

↪→

↪→

↪→

↪→

Listing 1: An example of the queries we use in our tests. This query has four join predicates and a
where predicate requiring msm value to be greater than 80. Later in the report, we use a shorthand
notation for our queries, we would format this to query with four joins and WHERE MSM VALUE
> 80.

1 -> Nested loop inner join

2 -> Nested loop inner join

3 -> Nested loop inner join

4 -> Nested loop inner join

5 -> Filter: (measurement.msm_value > 80.0000)

6 -> Table scan on measurement

7 -> Single-row index lookup on server using serv_id

(serv_id=measurement.msm_serv_id)↪→

8 -> Single-row index lookup on rack using rack_id

(rack_id=`server`.serv_rack_id)↪→

9 -> Filter: (center.cent_city_id is not null)

10 -> Single-row index lookup on center using cent_id

(cent_id=rack.rack_cent_id)↪→

11 -> Single-row index lookup on city using city_id

(city_id=center.cent_city_id)↪→

Listing 2: Result of using EXPLAIN on listing 1 when there is no histogram on MSM VALUE.

We can see in listing 2 that the optimiser has chosen to join the MEASUREMENT table
with the SERVER table first. That is because the optimiser assumes the WHERE predicate
will cause only 33% of the rows to be selected. That is not correct; however, as what
returns is closer to 99.8% of the rows. The predicate removes only 0.2% of rows, and the
MEASUREMENT table should have been joined as late as possible. If we review the plan
shown in listing 3 we see that now the MEASUREMENT table is being joined last because
the optimiser made use of the histogram and since the histogram shows that nearly 100%
of the rows will remain after the predicate is applied it joins that table as late as possible.

58

1 -> Nested loop inner join

2 -> Nested loop inner join

3 -> Nested loop inner join

4 -> Nested loop inner join

5 -> Filter: (`server`.serv_id is not null)

6 -> Table scan on server

7 -> Single-row index lookup on rack using rack_id

(rack_id=`server`.serv_rack_id)↪→

8 -> Filter: (center.cent_city_id is not null)

9 -> Single-row index lookup on center using cent_id

(cent_id=rack.rack_cent_id)↪→

10 -> Single-row index lookup on city using city_id

(city_id=center.cent_city_id)↪→

11 -> Filter: (measurement.msm_value > 80.0000)

12 -> Index lookup on measurement using msm_serv_id

(msm_serv_id=`server`.serv_id)↪→

Listing 3: Result of using EXPLAIN listing 1 when a histogram has just been created on the
MSM VALUE column

When experimenting with different queries we found that in addition to the optimiser
constraints regarding usage of histograms that we already knew about, and which we
discussed in section 2.3, indexes could affect the histogram usage of the optimiser. In
MySQL, the optimiser first checks if there exists an index on any of the columns in a
WHERE predicate, next it checks for a histogram on the same columns. If an index is found
on any of the columns, the index is used instead of histograms. E.g. if the query was
of the form SELECT * FROM ... WHERE MSM DATETIME > SYSDATE-1 AND
MSM VALUE < 80 it did not matter if there existed a histogram on the MSM VALUE col-
umn as long as MSM DATETIME had an index. This is a limitation with MySQL which
we had to work around, which involved changing the design of our queries such that they
no longer include columns with indexes in WHERE predicates.

We originally wanted queries of the form shown above because in time-series appli-
cations queries are often only concerned with data within a given period. For instance,
the last hour or last day of data, not the entire set of measurements ever made. It had the
advantage that as long as the measurements were being inserted at a steady rate, i.e. a
given number of inserts every minute or similar, the dataset cardinality would not change
much after the time had been considered. This would have been helpful since it would
reduce the number of unknown variables that could be affecting query execution times 4.
However, as we could not have both indexes and histograms in the WHERE predicate, and
since removing the index on the MSM DATETIME column is unrealistic, and would cause
significant slowdowns we were forced to remove it from the predicate altogether. Thus

4As it turned out we were able to perform that constraint in size by using the partitioning described in the
dataset paragraph above.

59

our queries would have to be of the form SELECT * FROM {JOIN PREDICATES}
WHERE MSM VALUE {OPERATOR} {VALUE}.

Our tests confirmed that the queries with the most join predicates and join orderings5

were consistently the ones which produced the most considerable differences in execution
times. We created a few variances for each of our queries, they retained the same WHERE
predicate form with different constant values, and the number of join predicates would
increase from one to as many as possible. Together with the query shown in listing 1 the
one in listing 4 are examples of some of our most promising and useful queries. They both
contain as many join predicates as the model allows.

select * from test.measurement join test.server on

test.measurement.msm_serv_id = test.server.serv_id join test.rack on

test.rack.rack_id = test.server.serv_rack_id join test.center on

test.center.cent_id = test.rack.rack_cent_id join test.city on

test.city.city_id = test.center.cent_city_id where

test.measurement.msm_value between 80 and 100;

↪→

↪→

↪→

↪→

↪→

Listing 4: This query utilises all the possible join predicates our data model allows for. Together
with the BETWEEN 80 AND 100 predicate this has given us some quite interesting results

5.1.2 Test scenario
We wish to have a set of queries that we can run using different updating strategies, and
which will give us reproducible and reliable results. Because of this, we will be using
the built-in test framework in MySQL, namely mtr to set up and conduct our tests. This
testing framework also handles server setup and teardown before and after each test run,
mtr also allows us to run the entire server in-memory. We mentioned the advantages and
emergence of in-memory systems briefly in section 2.2, in our case running the server
in-memory gives a significant increase in insert speed which allows us to perform more
tests during implementation and evaluation. The results we present will be with the server
running in-memory. We ha verified by running our tests using the more conventional disk
storage option that the results are similar between the two approaches, and that running
in-memory does not affect the applicability of our results negatively. Mtr allows us to
automate our testing procedures and makes the testing more robust. It also allows us to
start testing early on in the development process, which will give us time to reevaluate
our designs during implementation. As far as our test scenario design is concerned, based
on what we have learned until this point, we will only be running our tests on inserted
data and not modified data. From a database point of view, deleting old data and inserting
new is equivalent to modifying data. Furthermore, since we are only concerned with the
impact histogram accuracy has on query execution times whether we insert and then delete

5Join ordering is determined by the data model and the query in conjunction, both the set of join predicates
involved and the join orderings the data model allow for, determine which orderings are possible. How join
orderings affect query execution time is described previously in this section and subsection 4.1.2.

60

or modify is irrelevant. In light of that and with our goals in mind, we wish to benchmark
these different cases:

• No histogram
• Histogram refreshed after every inserted partition
• Histogram created after the first insert and not updated again
• Histogram updated based on different updating rules

It is not necessary to perform an extensive set of tests to conclude that always updat-
ing relevant histogram(s) before query execution should provide the best query execution
times. The only problem with this approach is the computational cost associated with cre-
ating or updating a histogram; if this cost is less than what we gain by having a histogram,
then the decision is easy, always update histograms. However, this is not realistic; the over-
head associated with computing histograms for every single query sent to the database will
quickly become so large that all the database is doing is computing histograms. Thus we
need to find a middle ground between not having histograms and updating histograms all
the time.

The four different cases listed above will hopefully show; what should be the worst-
case scenario, not knowing the distribution of values. Next, the best-case scenario, having
perfect histograms before any query is executed. Then the worst-case scenario for his-
tograms, a histogram that becomes progressively less accurate as the distribution of values
in the dataset moves away from the original. Lastly, an updating scheme that will, hope-
fully, contain at least one rule which will be a middle ground between the best and the
worst. A good compromise which sacrifices some histogram accuracy in favour of less
updating overhead and an overall better performing database.

Deciding on how to gather and present results of our tests was something we paid par-
ticular attention to. We needed a reliable way of measuring the execution time of our
different queries after the individual runs. Additionally, we also needed a way to record
the overhead related to the different updating rules. The best way we discovered to do this
was to let MySQL time the queries and statements for us. Fortunately, it stores a substantial
amount of meta-data about queries and statements in the EVENTS STATEMENTS HISTORY LONG
table in the PERFORMANCE SCHEMA schema. Using that we were able to retrieve the ex-
ecution time of every query and statement we ran. We then processed that in Python and
with Pandas dataframes, we were able to aggregate those result together into a more usable
form, which we could then present using the Seaborn library.

We have chosen to run every query 10 times, then remove the first one, which is often
much slower than the rest since different buffers and caches have to be filled during the first
execution of a query. We then load the results into data frames and present those results
with accompanying error bounds in our plots. The choice of 10 runs of each query at
all partitions is an attempt to reduce the uncertainty and error bounds associated with each
query. The error bounds of our measurements are presented in our line-plots as transparent
areas coloured the same as the line itself. The area within the error bounds represents a
99.5% confidence interval for the observation6.

6The reader is referred to section 2.2 for short introduction to confidence intervals.

61

With the line-plots, we can monitor how the different queries are affected by the his-
togram accuracy in our use-case; however, we do not have any way to know how much
overhead is associated with each rule. That overhead consists of the amount of time spent
checking and enforcing each rule. We consider the time spent checking each rule to be
negligible since it consists of mostly evaluating and advancing counters in C++, which
is several orders of magnitude quicker than actually calculating the histogram. To quan-
tify this overhead, we will use the same table as we use to measure the execution time of
queries. After each partition has been imported and the queries have been run, we col-
lect the time spent enforcing the rule, namely calculating histograms, that time is then
recorded, and our Python code collates that information together into something we can
present.

Having a measure for rule effectiveness is something that will be useful to help evaluate
how well different rules perform for a given dataset. If we assume that the best execution
time we can get is when we time our queries with perfectly accurate histograms, we could
define a measure as such. If the total execution time of all queries and the total time spent
computing histograms after all partitions have been run for each rule is tr. And the total
execution time of all queries and histogram updates after all partitions have been run for
the perfect histogram rule is p. We can then define a ratio from which each rule differs
from the optimal by a ratio of q as qr = tr

p , we term this ratio the Q-ratio, and we will be
using it in chapter 7 to measure how well a rule compares to the ”optimal” rule.

5.2 Implementation results
Below we sum up our findings from the evaluation and development of the use-case. Dur-
ing the first part of our development efforts, we had to reevaluate the implementation of
our use-case continuously. In reality, we were experimenting with different use-cases,
changing different parts of them to see which ones would be affected by histogram accu-
racy and to what degree. How we chose to change the use-cases was not random; it was
more like educated guesses as to how we should alter parts of the use-case to make it more
susceptible to histogram inaccuracy. This was an iterative process, where each change, or
set of changes, was tested and reviewed against previous results. In the previous section,
we described this process in detail, and the following is a summary of those iterations.

In the first few iterations, our data model was designed as a star schema. As we
discovered during our tests, and as we showed in subsection 4.1.2, such a model is not
optimal when trying to create query plans with significant differences in execution times.
We discovered this after a few iterations, changed the model to reflect that, and it was
the first part of our use-case that we finished developing. We tried to think of real-world
systems which would be organised in the linear foreign key relationship we described as
that would enable many different join orderings for the primary table. We landed on a
system which monitors the temperature of servers in data centres. Each measurement is
performed at a specific time with a reading of the measurement. Each measurement is
taken from a particular server in a given rack within a specific datacenter in a determined
city. An ER-diagram of this data model is shown in figure 5.3, we see the linear foreign
key relationship which allows the MEASUREMENT table to placed anywhere in the join

62

Figure 5.3: The data model in our use-case displayed in an ER-diagram.

order. This data model also supports the requirements of a time-series object, which we
needed for the moving mean of our dataset.

After we finished developing the data model, we were able to finalise our set of queries
together with the dataset. Our queries have two essential factors that, in no small degree,
determine their design. First, the number of join predicates in a query significantly affects
the variances we see in query execution times; this means that we would expect to see
more significant differences when there are more join predicates and less when there is
not. We want to be able to check this behaviour, to do that we wanted queries with varying
numbers of join predicates in our set. We created five different ”levels” of queries, and
each level has a set number of join predicates ranging from zero, when querying only the
MEASUREMENT table, to four when all tables are joined together. Second, we know that
values in the WHERE predicate determine the selectivity of the query. We require that the
values used here would allow a range of filtering values from close to zero up to almost one.
This would, in turn, mean that the result from the MEASUREMENT table could be huge at
one point and be significantly smaller at another only due to filtering. Which is necessary
to show off the effects of an inaccurate histogram as we showed in subsection 4.1.2. This
requirement placed on WHERE predicates means that there is a close relationship between,
the values used in the where predicate and the range of values we have to choose from
when creating the continuously varying value in the dataset. This ties the attributes of our
dataset together with the values used in where predicates in our queries. After testing, we
settled on a range of values shown in figure 5.1 for the rest of our tests. We chose not to
span a massive range so that the transition from matching many values in the predicate to
very few would not be too abrupt.

5.2.1 Checking the use-case and the results interpreter

At the end of use-case development, we ran some bigger tests on our Linux machine to ver-
ify that our use-case behaved as intended. We created 3 million measurements, split those

63

into 30 partitions and tested three different histogram updating rules. ”No histogram”,
”Perfect histogram” and ”Stale histogram”. We ran small scale tests continuously through-
out the development of the use-case, it was as we have stated earlier an iterative process
of development and testing. The results of these tests are not included, nor discussed here,
that is left for chapter 7. However, as we stopped developing the use-case further after
these tests, they did show us that this use-case was influenced by histogram accuracy to a
satisfactory degree, and we were confident with continuing.

During the development of the use-case, we also developed a result interpreter. It
parses the file created by our mtr test suite and collects the resulting timing data. The
results interpreter uses the timing data to create the graphs we use to represent the results of
our tests. Thanks to the interpreter we can display results that span hundreds of thousands
of lines in a text file into graphs that are concise, easy to understand and enable us to
conclude about different attributes regarding the use-case and the various rules. The source
code for the results interpreter is included in the appendix of this report under the file name
Results.py.

5.3 Summary
In this chapter, we have presented the testing and development efforts performed to create
and verify our use-case. We also described what the use-case ended up looking like after
the development finished. With a firm grasp of the plugin design and both the design and
implementation of the use-case, we are ready to present the implementation of the plugin
histogram updating rules. In chapter 6 we will do that before we continue to chapter 7
where we will evaluate everything we have implemented in this project.

64

Chapter 6
Implementing updating rules

During chapter 4 we discussed and reviewed several different designs of our use-case and
plugin, and in chapter 5 we showcased the implementation of our use-case. In this chapter,
we show how we implemented our plugin and the updating rules which it enforces. We
split our development efforts in this part of the project into smaller iterations. This ensures
progression throughout the project by achieving small increments continuously. Each it-
eration is meant to have a clear and attainable goal so that while we achieve little in each
iteration, it takes us one step closer to a finished plugin and rule-set. As a rule of thumb,
each iteration is concerned with implementing one rule. In this chapter, we describe these
different iterations, and in the next chapter, we will be performing a thorough evaluation
of the different rules and the effects of inaccurate histograms.

6.1 Rule overview

In section 4.4, the designs of different updating rules were described, not all of these rules
have been implemented into the plugin. This was done as a scope restriction both to save
time and due to their usability in the use-case. All parameters that the rules use will be
implemented the same way as the rule parameter the plugin itself uses, meaning that it
will be possible to alter the value of those parameters through a system variable. Below
we describe each rule briefly and present a short discussion of whether or not it has been
implemented.

• Rule one is the trivial rule, to update histograms after every data change. It was
implemented, but due to the large overhead associated with this rule, it is not tested
as the tests for this rule alone would take over a week.

• Rule two is to update histograms after n data changes. It is also implemented;
however, this rule is also tested, as are all other implemented rules unless otherwise
specified.

65

• Rule three was designed to update after n statements, but also consider which state-
ment type executed. This rule is also implemented, however it is not tested, the
reasoning for that decision is found in section 7.2.

• Rule four is not implemented because of how it would perform in our tests. The
tests are laid out such that inserts and deletes, associated with the current partition
are performed first. Then after all the DML statements are complete all queries
are run, their execution times collected, and the number of, and total time spent
on updating histograms collected. Before finally emptying the table containing the
timing data and starting all over again with the next partition. This means that there
are no queries that run during the insert/delete stage of tests, this would, in turn,
mean that a rule which uses queries to trigger a histogram update and use the DML
statements to only mark the histogram as stale would perform optimally. That is
exactly how rule four is designed to work, ”after n DML statements, triggered by
queries”. Its results would be the same as our benchmark rule ”Perfect histograms”,
and is as such dropped.

• Rule five is also not implemented as it was designed to update the histogram ”af-
ter n rows are updated”. Now it might seem weird at first to omit that rule, but
we control the load the database experiences, and therefore it is known that every
DML statement the database executes effects exactly one row. Therefore as far as
our testing is concerned, there is no difference between monitoring the number of
statements or the number of rows those statements have affected. This means that
rule five will be ”implemented” when rule two is implemented, its results would be
the same as that of rule two. There is; however, a distinction between the two based
on what results the rule would achieve in all possible cases. Which means that while
in this particular case rule two and five can be considered the same, in most cases
they would not. This will affect how the results from our tests of rule two will apply
in the general case. In most systems one would probably rather have rule five than
rule two implemented.

• Rule six was designed to consider the table size when deciding on how many rows
could be updated before a histogram update was needed. In its definition, it is meant
to use rows updated as the measure, statements executed will be used instead for our
implementation of this rule. This is based on the same arguments that were given
for omitting rule five, namely that in our use-case, there is no difference between the
number of statements and the number of rows updated.

• Rule seven is meant to give more importance to statements that affect values that are
outside the range of the histogram. This rule is also implemented and use the same
simplification that rule six uses regarding counting statements instead of rows.

• Rule eight keeps a sample of the table in memory and applies any incoming updates
to that sample as they are applied to the main table. The sample table is then used
to determine how the distribution of values has changed, and if a histogram update
is required. This rule is not implemented in this project due to time constraints.

• Rule nine was intended to emulate a cost function, much like the one the optimiser
uses, to determine if the cost of inaccuracy associated with the current histogram

66

warrants updating to a new one. This rule is implemented and use the same simpli-
fication that rule six and seven use regarding how to count updates.

6.2 Implementing rules
In the following section, the different iterations the plugin has gone through are described,
problems encountered, and solutions implemented during these iterations are discussed
continuously. How problems were solved and why they were solved in a particular way
is also briefly discussed. The first iteration is meant to change the workflow of the plugin
created in [3] to match the workflow designed for the new plugin in section 4.3.

6.2.1 Getting the plugin ready for the new rule architecture
Development of the plugin for this project has been a continuation of the work started
we started in [3] the reader is referred to our previous work for mew information about
the initial structure and development of the plugin. The plugin developed in [3] required
some changes to adapt to the new data model used in this report as well as changes to the
workflow.

In the architecture described for the plugin in [3], which parts of were repeated in
chapter 4, the plugin was intended to vary which tables and columns would have their
histograms updated. However, the data model developed for the use use-case used in this
project only has a single column which uses a histogram. The update string the plugin
uses to update histograms was therefore changed so that it only updates the MSM VALUE
column. The development goals of this project is a plugin capable of updating histograms
for a given column in a given table based on a chosen active rule. Since the data model
is designed only to use histograms on a single column, as discussed in both chapter 4
and chapter 5, we do not want to spend unnecessary time on developing a feature that is
not needed. This plugin is designed to; test the effectiveness of different updating rules,
experimenting with varying measurements of staleness, and when an update is required, it
does not warrant a general plugin capable of operating within different data models.

Before the plugin can be used, it must first be installed and initialised on the server.
Upon initialisation, it reserves its memory location, declares internal variables and ini-
tialises a variable determining the currently active rule to a default value. Before the
plugin will do anything this ”rule variable” must be changed, in its default state the plugin
does nothing regardless of incoming statements. Meant to be a non-intrusive default ver-
sion of the plugin so that it can be initialised without influencing any other tests, and be
deactivated at any time without having to uninstall it. The internal rule variable is linked
to a global system variable, histogram updater rule, this makes it easy to change,
which rule the plugin is enforcing using SQL. Changing the value of the global variable to
the corresponding rule number used to number rules in section 4.4 enables that rule.

After the plugin is initialised, it will be called by MySQL after a statement has been
parsed. The first thing the plugin does is then to check what type of statement has been
parsed. If the statement is either an insert, update or delete statement, then the plugin
will check which rule is active. Then based on which rule is active, a different set of
requirements are checked, if they are met, then a histogram update is performed on a

67

separate MySQL connection. Currently, the execution of that separate connection is done
within a single thread; this means that any DML statement that invalidates a rule will be
halted until the separate connection has finished updating the histogram. If the plugin was
to go into production, this is not how it would have been implemented since forcing the
users to wait for the histogram update before their statement can execute probably is not
acceptable for users. However, for this project users are of little importance, and the main
point of interest is the effect on query execution time. Thus after the separate connection
finishes updating the histogram, the plugin is finished executing and returns control to
MySQL.

6.2.2 Rule one and two, after each DML statement and after n DML
statements respectively

The goal of the second iteration was to get the plugin to work properly with rules enabled
and to implement rules one and two from section 4.4. It was chosen to include both rule
one and two in this iteration since they are very similar and one rule can easily be converted
to the other with only small changes in code. In listing 5 and listing 6 we present the
pseudocode for these two rules, it is easy to see how similar these two rules are.

Getting rules working with the plugin was quick and painless, once we discovered
how to set and manipulate the value of global variables from within mtr it was time to
implement the two new rules. To start with, we created variables to contain counters for
the number of received statements. Then the rules themselves were implemented. Rule one
simply checks if the incoming statement is either an insert, update or delete and executes
a histogram update if it is. Rule two stores the count of incoming insert, update and delete
statements, divides that count by a number n, to begin with, 1000 was chosen as a value
for n, and checks if the remainder is zero. If it is, a histogram update is executed.

1 IF (update_rule == 1 AND (statement_type == INSERT OR statement_type ==

UPDATE OR statement_type == DELETE)){↪→

2 update_histogram();

3 }

Listing 5: Pseudocode explaining the logic implemented for rule one.

We then attempted to test these rules, and we quickly discovered a problem with rule
one. It never finished, it took such a long time to insert the data because of the constant
histogram updating that the test had to be aborted. This result shows what we already
expected, namely that updating the histogram after every DML statement is too costly and
is not a feasible solution. This rule is therefore left out from all subsequent tests.

When rule two was implemented, a somewhat arbitrary choice of 1000 was chosen
as a value for n. As mentioned in section 4.4 selecting a ”good” value for n can be
difficult, yet it is essential since the choice of n will influence the efficiency of the rule.
Consider the following example; if the partition size were 100000 rows, and the value
chosen was 100000 then the queries would have perfect histograms, in our use-case, with

68

1 IF (update_rule == 2 AND (statement_type == INSERT OR statement_type ==

UPDATE OR statement_type == DELETE)){↪→

2 increment rule_2_counter;

3 IF (rule_2_counter modulo rule_2_no_between_updates == 0){

4 update_histogram();

5 }

6 }

Listing 6: Pseudocode explaining the logic implemented for rule two

only a single histogram update, which would be equivalent to the performance of the
”Perfect histogram” rule. While with the above choice, the histogram would be computed
100 times. Which alternative of n is a ”good” one is dependent on the type of load the
server sees, which means that which value is the right choice for nwill differ from database
to database. This project will not try to define a global best choice of n because we believe
there is none; however, trying to determine a suitable choice for n for this use-case will
be done. And while doing so, it will be investigated how sensitive rule two is to changes
in this value. To quickly test the sensitivity of the rule, the value of n is linked to a global
variable which can be changed using SQL such that testing different values is easy.

6.2.3 Rule three, after n DML statements also considering statement
type

The third iteration was intended to implement rule three into the plugin. The idea is that
some statements affect the distribution of the value more than other types and that this can
be accounted for by weighting the statement types differently. In the implementation sys-
tem variables were used to weight the different statement types. E.g if the plugin receives a
INSERT statement that will increment the rule 3 counter by 1× inserttypeweight.
Using system variables allows us to change the behaviour of the rule easily. Using sys-
tem variables, one can define rule three to update the histogram three times as often if
INSERT statements are the only type received when compared to receiving only UPDATE
statements. Or one can choose other values for the system variables and weight deletes as
more important. In listing 7 pseudocode for the implementation of rule three in the plugin
is presented.

6.2.4 Rule six, after a ratio r between table size and updated rows is
reached

Rule six is implemented through a single counter and a helper function which fetches the
number of rows in the MEASUREMENT table. The counter is divided by the number of rows
in the table and the ratio is checked, if it exceeds a value r the counter is reset and a boolean
TRUE is returned indicating that a histogram update is called for. Pseudocode for this rule

69

1 IF (update_rule == 3 AND (statement_type == INSERT OR statement_type ==

UPDATE OR statement_type == DELETE)){↪→

2 IF (statement_type == INSERT){

3 increment rule_3_counter by 1*insert_type_weight;

4 }

5 IF (statement_type == DELETE){

6 increment rule_3_counter by 1*delete_type_weight;

7 }

8 ELSE {

9 increment rule_3_counter by 1;

10 }

11 IF (rule_3_counter modulo rule_3_no_between_updates <

max(insert_type_weight,delete_type_weight)){↪→

12 rule_3_counter = 0;

13 update_histogram();

14 }

15 }

Listing 7: Pseudocode explaining the logic implemented for rule three

is included in listing 8; however, no code for the helper function get table size() is
included.

6.2.5 Rule seven, after n rows are updated, comparing the change
against histogram boundaries

The next rule to implement was rule seven; it is designed to account for changes that
would affect the range of the histogram. Meaning that when a change happens, that is not
captured by the histogram, updating or inserting a row outside the range, those changes
will be weighted more than something that is happening inside the range.

To implement this, one needs to be able to determine what the range of the current his-
togram is, and then check if the update falls outside that range. The rule starts by checking
the values for lower and upper bound are invalid; if they are these values must be fetched.
To do that the database is queried for information about the histogram, using JSON op-
erations both the upper and lower bounds of the histogram are found, and corresponding
variables are updated. Each time the MySQL engine calls the plugin, it checks if the value
to be inserted into the table falls within these histogram boundaries. If it does not, the
insert is weighted more and counts more towards considering the histogram as stale. If
it falls within, then the update is given an average weight, that weight is the same that
given to DELETE statements. When the value of rule seven’s counter becomes too high,
signifying that the histogram is no longer accurate enough, the histogram is updated, and
the boundary values that have been used are invalidated.

70

1 IF (update_rule == 6 AND (statement_type == INSERT OR statement_type ==

UPDATE OR statement_type == DELETE)){↪→

2 IF (tables_size needs to be updated){

3 table_size = get_table_size();

4 }

5 increment rule_6_counter by 1;

6 ratio = rule_6_counter/table_size;

7 IF (ratio > r){

8 rule_6_counter = 0;

9 invalidate table_size;

10 update_histogram();

11 }

12 }

Listing 8: Pseudocode explaining the logic implemented for rule six

6.2.6 Rule nine, after the estimated cost of an inaccurate histogram
exceeds the limit I

The last rule to implement was rule nine. This rule is designed to be able to adapt to
different database loads. To achieve that several weights were used, these can be altered to
change the behaviour of the rule. In the implementation, this is achieved by using system
variables as we did for the rest of the rules. A counter signifies the ”amount” of change
that has happened to the table, this amount of change is calculated using different weights
on the different operations that have happened since the last update, and is outputted as a
single number. The ”amount of change” is multiplied with the ratio between the number
of changed rows and table size, and compared with an update threshold. In listing 10 it
can be seen how this functions in pseudocode, notice that the rule starts by gathering the
values used to determine if updates are happening outside the histogram range, just like
rule seven. Then the table size is fetched using the same function that was created for
rule six. Next, the ”number of updates” counter is incremented by one times the given
weight depending on what the DML statement is. Finally, the rule checks if the histogram
should be updated using a simple function at the end. In many ways this rule acts as a cost
function, attempting to weigh the cost of updating the histogram against the cost of using
an ”outdated” histogram.

6.3 Summary
In this chapter, we have presented; which rules we implemented, why we implemented
them, how we implemented them and the pseudocode related to each. We also showed
how the different rules could be tuned using the system variables. In the next chapter, we
will use these system variables to show how sensitive the rules are to changes in those
values; furthermore, the results of testing these rules will be presented.

71

1 IF (update_rule == 7 AND (statement_type == INSERT OR statement_type ==

UPDATE OR statement_type == DELETE)){↪→

2 extract value to be inserted or updated;

3 IF (lower_bound and upper_bound need to be updated){

4 fetch_histogram_boundaries();

5 }

6 IF (statement_type == INSERT && value to be inserted or updated is

outside histogram boundaries){↪→

7 increment rule_7_counter by 1*insert_outside_range_weight;

8 } ELSE {

9 increment rule_7_counter by 1;

10 }

11 IF (rule_7_counter modulo rule_7_number_between_updates <

insert_outside_range_weight){↪→

12 rule_7_counter = 0;

13 invalidate lower and upper bound;

14 update_histogram();

15 }

16 }

Listing 9: Pseudocode explaining the logic implemented for rule seven

72

1 IF (update_rule == 9 AND (statement_type == INSERT OR statement_type ==

UPDATE OR statement_type == DELETE)){↪→

2 increment altered_rows by 1;

3 extract value to be inserted or updated;

4 IF (table_size needs to be updated){

5 table_size = get_table_size();

6 }

7 IF (lower_bound and upper_bound need to be updated){

8 fetch_histogram_boundaries();

9 }

10 IF (statement_type == INSERT && value to be inserted or updated is

outside histogram boundaries){↪→

11 increment rule_9_counter by 1*insert_outside_range_weight;

12 } ELSE IF(statement_type == INSERT){

13 increment rule_9_counter by 1*insert_type_weight;

14 } ELSE IF (statement_type == DELETE){

15 increment rule_9_counter by 1*delete_type_weight;

16 } ELSE {

17 increment rule_9_counter by 1;

18 }

19 ratio = altered_rows/table_size;

20 IF (rule_9_counter*ratio > rule_9_update_threshold){

21 rule_9_counter = 0;

22 altered_rows = 0;

23 invalidate table_size;

24 invalidate lower and upper bound;

25 update_histogram();

26 }

27 }

Listing 10: Pseudocode explaining the logic implemented for rule nine

73

74

Chapter 7
Evaluation

In this chapter, we will be presenting the results of testing our implemented rules for
automatic histogram updating. We start the chapter by presenting our metrics, why we
designed them as we did, and why we are testing as we are. We then continue by presenting
and discussing the results of each of our rules before we compare their performance. We
then discuss possible errors and flaws in our use-case and testing design before we round
off the chapter with a summary.

7.1 What, how and why
To evaluate the updating rules, we will investigate; how histogram accuracy affects query
execution time, how the rules we have implemented will affect histogram accuracy and
how those rules perform in our use-case and in general. We have chosen several metrics
we will be monitoring through the tests we performed on both our Linux machine and
an Oracle test server. These machines had 16GB of RAM and an Intel(R) Core(TM) i7-
8700 CPU @ 3.20GHz, and 512GB of RAM and two Intel(R) Xeon(R) Platinum 8160
CPU @ 2.10GHz respectively. To evaluate these elements we will be presenting a few
different metrics, and these are; the q-ratio, the histogram updating overhead, the effect
on the query execution time for different data partitions and rules, and the sensitivity to
parameter values. In this section, we will discuss why we have chosen these metrics, what
they are, how we use them, and how to interpret the graphs used to display them.

Measuring query execution time under different updating rules
We have chosen to use the execution times of queries as a measure of how well the his-
togram is performing because we believe that accurate histograms will improve the choice
of query plan that the query-optimiser makes. If we did not think this was the case, we
should not use histograms during query optimisation at all. If the choice of query-plan is
better, that in turn means that queries will execute faster. Other metrics could be used to
define if a query plan is good or not, however, for this project the measure of how good

75

Figure 7.1: Results of timing a query with four joins and where MSM VALUE > 90 for the three
base classes

plans are is the execution time of queries1. Thus measuring the execution time of queries
with different levels of histogram accuracy will reflect how well the current histogram is
performing at the given accuracy level. If the histogram is providing useful data to the op-
timiser, then the change in plan due to the histogram will be positive, if that is not the case,
then the histogram is performing poorly. Once a measurement of execution times for one
set of data is obtained, the data is altered and the execution times for queries is measured
again. We can then see how the change in data has affected the query execution time by
affecting the accuracy of the histogram and in turn causing the chosen plan to be either
better or worse than it used to be. The results of this type of timing for each histogram rule
we have implemented will be presented using graphs like those shown in figure 7.1

Figure 7.1 contains two graphs - the upper graph shows the size ratio of the query
result compared to the table size, higher values indicate more returned rows and 1 indicates
all rows were returned. The lower graph shows the average execution time of the query
in question, one with ”four joins and a where predicate requiring MSM VALUE > 90”,
measured at each inserted partition where the different coloured and marked lines represent
a different updating rule. At each bar in the top plot and each marker in the bottom plot
one partition of data has been inserted into the MEASUREMENT table, our set of queries
has been run and the timing of queries collected. In other words, these two graphs share
a common x-axis. If we first look at the upper plot, we see that around the middle of
the graph, the ratio is equal to, or at least very close to one. Meaning that at that point
the cardinality of the result is the same, or close to the same, as the cardinality of the
MEASUREMENT table. This part of the figure is used to show how the size of the result
affects the execution time of the query.

1Better plans will have lower execution times than poor plans when querying the same data under similar
server load.

76

If we then turn our attention to the lower plot, we see that along the y-axis the execution
time in seconds is plotted, and along the x-axis the ”Number of updates” is plotted. The
number of updates tells us something about how the distribution of data has changed since
the first row was inserted. While the ”Number of updates” is plotted along the x-axis,
updates are not performed. Instead, inserts followed by deletes are performed. In theory,
this can be regarded as the same thing, however, since by removing one row and replacing
it with another that holds a different value one has essentially updated the row that used
to exist. From a logical standpoint there is no difference between the two methods, they
both result in the row containing the updated data. We showed an example of how the
distribution of values could change as one progressed through the dataset in figure 5.1 in
section 5.1, the actual distribution of data used for the tests conducted here is discussed in
section 7.2. In that section, we present a figure which shows that until row three million is
reached the mean of values in the distribution is strictly increasing. After that, the values
are strictly decreasing back down to the starting point. Thus, at the middle point of the
graph, the distribution of values in the MSM VALUE column has been altered from the
original distribution the most. We see that this is reflected in the top graph of figure 7.1,
where, as we approach the middle of the graph more and more rows are returned, and in
the middle, the largest amount of returned rows is reached, with a ratio of practically one.
When the top plot and bottom plot shown in this figure are viewed together, they can then
be used to determine how the updating rule performs. By measuring query execution time,
as the distribution of data changes also taking into consideration how the size of the result
set changes as one progresses.

In figure 7.1, the execution time for one query tested under three different updating
rules is plotted. All queries are run ten times for each partition, and the first of the ten runs
is excluded from the result. This is because, during the first execution of a query, MySQL
fills different buffers with data that is used to complete the query. When the query runs
for a second time these buffers help answer the query quicker, as such the nine runs that
happen after the first have a much more consistent, and lower, execution time than the first.
The average of these nine remaining query execution times is then calculated and plotted.

Around each line there is also a transparent area coloured the same as the respective
line, this area signifies the range of a 99% confidence interval for the real average execution
time for the query. We discussed the theory of, and how to interpret, confidence intervals
in section 2.6. The reader is referred to that section for an explanation of how confidence
intervals work. We have chosen to use a 99% interval instead of the more typical 95%
interval because of the stability of measurements we have seen during development and
testing. Increasing the percentage of our confidence interval results in a larger interval that
we can be more confident contains the real value of the query’s average execution time
at each partition. Also, even with as a high a degree of confidence as 99% the interval
is barely visible in most cases, meaning that the inter run query execution time is very
stable when no other factors are influencing the database. If any factors are influencing the
database such as; no more available RAM or processing power, the query times begin to
fluctuate drastically. This fluctuation would then be visible in figure 7.1 as large confidence
intervals surrounding each line. This was a problem during our testing. However, through
careful management of computer resources and running our test several times we were
able to achieve results that do not contain this uncertainty to any significant degree

77

Through our testing, we have uncovered that even with confidence intervals, there can
be fluctuations in execution times that will not be transparent in our plots. This is only
a problem for the sensitivity plots we present in section 7.1, where large fluctuations can
occur without the plot showing the corresponding large confidence intervals which should
surround each line. We believe this is caused by how the available processing power can
be reduced for long periods in combination with how the sensitivity plots work. Namely,
since the time shown in the sensitivity plots is an aggregate of the time spent computing
all queries if all queries are computing slowly due to the machine being overloaded, there
will be little variance between the slow results. While there can be significant differences
between the slow results recorded at one parameter value and much faster results recorded
at another parameter value when the machine is not overloaded. Thus it will look as though
some rules perform much worse due to a change in parameter value when the reason they
are performing worse is that the machine is overloaded. This behaviour has caused us to
run our tests several times to gather results without this misleading discrepancy. There is
one data point in figure 7.2 which shows this discrepancy in play. Around the middle of
the graph, one point of ”Plugin rule X”, jumps to the level of ”Stale histogram” before
jumping back down to the level of ”No histogram”. If everything was working perfectly,
and there were no sources of noise or variance while testing, the blue line in this plot would
follow the green line perfectly. However, we see that at one point during testing, the rule
was slowed down for some reason. We argue that this does not affect the reliability of
the tests we have performed since while this did happen for one point, the trend is clear
and if we were to rerun the test with only that point we are highly likely not to see the
discrepancy.

Histogram updating overhead

We showed in chapter 4 that the trivial way to obtain accurate histograms at any time is to
update them whenever a data change happens on the column(s) the histogram is modelling.
We also showed that the problem with such an approach is the overhead associated with
computing a histogram that often. As an example we have seen during our tests on the
Linux machine describe above, that computing a histogram for the MSM VALUE column
takes approximately 0.16 seconds when the table contains 200, 000 rows, while most of
our queries take somewhere between 0.1 and 1 second to complete. It is clear that spending
so many resources on continuously updating histograms is not viable for any MySQL
database2. The goal of the rules we have created during this project is to reduce this
overhead while still improving query execution time.

We categorise rules into ”good” and ”bad” rules based on how they impact the database,
and in particular if they have a net-positive effect on available resources or a net-negative
effect. I.e. if the time spent on ”enforcing” a rule is less than the time the rule saves through
reducing query execution times, the rule has a net positive effect on available resources and
would be categorised as a good rule by us. On the other hand, if we spend more time en-
forcing a rule than what we save through the reduced execution time of queries, that rule
has a net negative effect on available resources and is categorised as a bad rule. It is es-

2Indeed as we have discussed earlier we do not have enough time even to record the results of such a rule
since it would take approximately 100 days to do so with our dataset and queries.

78

sential to realise that the load the database sees, both through DML statements/change in
data and query throughput, will influence which category a rule is placed in. E.g. a rule
which updates histograms after every DML statement will be categorised as a bad rule in a
database which has a large amount of DML statements and relatively few queries. On the
other hand, if the database sees very few DML statements but a large number of queries,
the same rule might be regarded as a good one. We discussed in the previous section how
we would measure the query execution time, i.e. how much resources the database spends
on executing a query under a given updating rule. Now we need to determine how much
resources the database spends on enforcing that given rule, i.e. the overhead associated
with a rule.

For each rule we will record the time spent computing histograms, the sum of all those
updates is then considered to be the overhead associated with that rule. This means that no
other operations are taken into consideration when determining the overhead, even though
those operations might have an impact on the total overhead of the rule. While all rules
have some degree of overhead in the form of checks performed in the plugin, we consider
that to be negligible. Some of the rules; however, like six, seven and nine, query the
database for information about table size and histogram boundaries at various points3. The
impact of these queries is not visible in the measure of overhead used; however, we have
measured the time spent computing these queries outside of the plugin and have found that
the time spent is negligible, less than 0.01 second on average, when compared to the time
spent computing the histogram.

We will present the overhead associated with a rule as we reach that rule in the evalua-
tion section. There is a summarising table towards the end of our evaluation, which shows
the overhead associated with the different rules together with their overall performance4.

Sensitivity to parameter values

The rules we have defined and implemented in this project all have one or more parameters
associated with them, be that the number of statements between updates, n, for rules two
and three, or the required ratio of change,r, for rule six. The values given to these pa-
rameters will influence when the rule triggers a histogram update, and by so doing, those
different choices of values will influence the efficiency and performance of the rule. In
addition to that, different database loads will have different values that would be consid-
ered optimal for these parameters. We will not attempt to determine which value is the
optimal choice for n or the ratio r or any other of the available parameters for all use-cases
and database loads, that is simply not possible. Exactly as in the case of when rules are
considered ”good” and ”bad” from the previous section, the load on the database can
cause any choice of parameter value to be the worst, or among the worst possible. If we,
for instance, consider the situation from above, there are two different databases, one has
a large number of updates to data with little queries, and the other is the exact inverse with
little updates and large amounts of queries. Let us say that we use the ratio of changed
rows, r, as the trigger for when to update histograms, i.e. we are using rule six to keep

3The reader is referred back to the pseudo-code given for rules six, seven and nine in section 6.2 for informa-
tion on when those rules will query the database for data.

4An example of such a table with just the base classes is shown in table 7.1.

79

Figure 7.2: An example plot of how rule X responds to changes in its parameter. The base classes
are plotted along side to serves as comparisons

histograms up to date. A low value for r can be considered advantageous for the sec-
ond database since there are very few changes in data compared to the number of queries
which will benefit from a good query plan. A low value for r is dire for the first database;
however, since there are many updates which will cause vast amounts of resources to be
spent om computing histograms compared to executing queries. As we can see, the only
option available is to try to choose a value for these parameters that suits each particular
use-case, and use that value when comparing the performance of the different rules. To
provide some insight into the importance of this choice, we will try to determine how sen-
sitive each of the different rules are to changes in their parameter(s), and how choosing a
value which is not the optimal influences each rule.

To do that we will be running the entire test set over and over with different values for
these parameters. We will then record the total time spent computing histograms, and the
time it takes to execute all queries once for each of the different rules and plot that in a
graph for each choice of parameter values. An example of the graph that will be used to
present this data for each rule is shown in figure 7.2. For all the sensitivity plots that follow,
the base classes will always have same coloured lines, namely green for ”No histogram”,
red for ”Perfect histogram” and purple for ”Stale histogram”. The rule that is investigated
in any given sensitivity plot will always be the blue line, and whole drawn lines always
indicate the total duration. I.e. the time it takes to answer all queries once and the time
spent on updating histograms, while dashed lines indicate the duration of just executing all
queries once. The legends for all sensitivity plots is, therefore, the same as the one shown
in figure 7.2 and are omitted from the other graphs.

We have chosen to invest time in determining the sensitivity of each rule because we
believe that determining the sensitivity of a rule is some of the most useful information
we can give about the rules. As an example, let us say that we have found through testing
that n = 1000000 results in an optimal query execution time for rule two in our use-case.
That does not give much useful information about how rule two will perform in any other
use-cases with that value of n. If, however, we could say that values of n between 100000

80

and 10000000 have roughly the same query execution duration as 1000000, that is useful.
Because that means that even if we choose a value of n that is ten times larger or smaller
the optimal value, we still achieve a near-perfect query execution time in our use-case.
While the query execution duration of a rule will fluctuate between different use-cases due
to the differences in workload, datasets and data structure, it indicates how quickly the
efficiency of the rule changes as we either increase or decrease the value of n away from
the optimal. There is still one thing more to consider; however, the query execution time
alone does not tell the whole story.

From our discussion in the previous section regarding histogram updating overhead,
we can conclude that, knowing the time spent computing histograms is of vital importance
when evaluating any updating rule. Thus we must also consider how the time spent on
computing histograms differs with different parameter values for the rules we are testing.
In figure 7.2, we show this difference by drawing the total time used for the base case
rules and then drawing both the query execution time and total execution time for the rule.
The overhead associated with each rule is then the distance between the dashed and whole
drawn lines of the same colour.

We have chosen to omit the lines showing the query execution time for the base classes
from the plot to increase readability, as the base class rules spend a negligible amount of
time on computing histograms those lines would almost entirely overlap. Thus we will
be able to see in the sensitivity plot how a rule changes behaviour as we apply different
parameter values, and compare that to the behaviour of the base classes. It is important
to realise, however, that the base classes do not use parameters and should, therefore, see
no change in total duration based on the different parameters used. I.e. they should be
relatively straight lines in the sensitivity plot with only minor variations in total duration
caused by variances between the different timing runs.

Performance compared to the ”optimal”
Discussing the performance of the updating rules we have implemented makes no sense
if we do not have something to compare that performance to. For that, we have chosen
what we believe to the best and worst-case scenarios regarding histogram accuracy and
query execution times. The three cases we have chosen can be seen in figure 7.1, namely;
”No histogram”, ”Stale histogram” and what we have called ”Perfect histogram”. The
first case is straight forward. There are no histograms for the query-optimiser to use when
attempting to approximate predicate selectivity it must use heuristics; therefore, it should
result in sub-optimal query plans. For the ”Stale histogram” case a histogram is created
when the first partition of data is loaded, that histogram is then never updated and will, as
time progresses and new partitions of data are processed, become stale. After the middle
partition is imported, the histogram will start to become more and more accurate. Until it is
almost entirely accurate again when we reach the last partition, this is not necessarily how
the stale histogram will behave in all scenarios of course. This means that as the underlying
data changes and the query starts to either return more or fewer rows, depending on the
predicate, the query plan that is being used will remain the same - because the histogram
is the same. For the third case, a histogram is created right before the queries are timed.
Meaning that the selectivity estimate the histogram provides is as accurate as it can be for
every single query that we time. It also uses the least possible amount of histogram updates

81

to achieve the optimal accuracy, namely one for each partition. This should then result in
the most ”optimal” query-plans, and by extent the fastest query execution times, while
computing the histogram as few times as possible, leading to the lowest total duration
time. The advantage of the ”optimal” rule is then that the query-optimiser will be able to
change the plan being used as the underlying data changes. This can be seen in figure 7.1
where, as the distribution of data in the MSM VALUE column changes, the query plan is
being altered to reflect that.

It is important to remember that in the MySQL query-optimiser, the only thing his-
tograms will influence with regards to query plans is the join order. The selectivity estimate
that histograms provide is used by the query-optimiser to determine how the cardinality of
relevant tables will change as parts of the WHERE predicate is applied. This means that the
only difference between sub-optimal and ”optimal” query plans is the order in which the
tables are joined together.

The three base classes are used as something to which we can compare each rule
we review. We have already used these base classes to show and explain the figures we
will be using when evaluating each of the rules. The two first classes, ”No histogram”
and ”Stale histogram” are used only as comparisons, both as baselines to compare the
updating rules against, but also so that we can compare how these match up against the
”Perfect histogram” rule.

In addition to being used as the ”golden standard” in our plots, the third case, ”Perfect
histograms”, will also be used to compute the Q-ratio5. The Q-ratio is a single number
which indicates how well a rule has performed against the optimal. This is done by com-
paring the total time spent executing queries and updating histograms for each rule over all
partitions of data to the time the ”Perfect histogram” rule used to do the same. Since we
will be performing our entire test case over and over with different parameter values for
the different updating rules, each rule will have several Q-ratio’s, one for each parameter
we used. We will also have several runs of the base classes, these are not influenced by the
changes in parameters, and we will, therefore, compute the mean of the different runs for
the base classes. This is done to increase the reliability of the values the base classes have
in the Q-ratio.

In table 7.1, we showcase how the Q-ratio and accompanying data will be presented in
the final evaluation using only the base classes. When studying this table, it might become
apparent that the values in the ”Total duration” column do not match up to the values we
have presented for the total duration of the same rules in the sensitivity plot in figure 7.2.
In the plot, the total execution times lie somewhere between 80 and 120 seconds for all the
base cases, while in the table, they lie between 800 and 1000. This difference is intentional,
and it is caused by us computing the ”Total duration” in table 7.1 as the aggregate of; all
the times we ran all queries and all the histogram updates performed for each parameter
value. While in the plot the ”Duration” is only the sum of running all queries once with a
given parameter value and the time spent updating histograms. The other eight times each
query has been run is used to create the confidence interval, because to create a confidence
interval, we need to have several recorded values. I.e. if the same aggregation that is used
in the Q-ratio table were also used for the sensitivity plot we would not be able to plot the
confidence interval, and the duration values would be identical between the two.

5We first described the usefulness, and presented a formula, for the Q-ratio in section 5.1.2.

82

Test type Total
duration

Q-ratio Query
duration

Histogram
duration

Number
of his-
togram
updates

Parameter
values

Perfect
his-
togram

823.9 1 819.9 4.0 30 Not ap-
plicable

No his-
togram

915.2 1.111 915.2 0 0 Not ap-
plicable

Stale his-
togram

984.8 1.195 984.7.0 0.1 1 Not ap-
plicable

Table 7.1: Example of how the Q-ratio will be presented in a table

Using the Q-ratio, we can see that the total execution time of all queries for the ”No
histogram” rule is about 11% more than that of the optimal case. We also see that the
execution time of the ”Stale histogram” rule is about 19% more than the optimal and by
extent 8% more than not having a histogram. This shows that the ”Perfect histogram”
outperforms ”No histograms” by about 11%, in our use-case. This also means that if the
query-optimiser has access to accurate histograms, it will enable the query-optimiser to
do a better job at choosing queries. Perhaps even more surprising is the fact that having a
histogram that is accurate to begin with, that then becomes increasingly inaccurate before
it starts to become accurate again, has a net negative effect on the available resources in
the database. Based on the categories laid out above, we would categorise the ”Perfect
histogram” rule as a good rule, and the ”Stale histogram” rule as a bad rule. The ”Stale
histogram” rule is regarded as a worse rule than the ”No histogram” rule!

7.2 Results of rule testing

For the results presented in this section, a dataset consisting of six million rows for the
MEASUREMENT table was created and divided into thirty partitions. The size of the tables
was then 200000for the MEASUREMENT table, 70000 for the SERVER table, 70000 for the
RACK table, 35000 for the CENTER and finally 35000 for the CITY table at each partition.
The choice of table sizes for the other tables than MEASUREMENT was not arbitrary; we
discussed how the inter table size relationship was important for the possible choices of
query-plans in section 5.1. It is based on that discussion and our results from the first part
of development efforts that we chose the sizes we did.

In figure 7.3 we have plotted the distribution of values for the MSM VALUE column.
We see that as we progress through the rows, split into thirty different partitions, the value
for the MSM VALUE column changes. It transitions from a mean of 60 at the first partition
to a mean of 105 at the fifteenth partition, before moving back to the original mean of 60.

For the following test results, the dataset just described has been used. For each of the
rules, we will discuss our choice of parameters and its effect on query execution times.
Please note that as we stated in subsection 6.2.2 and earlier in this chapter, we are not at-

83

Figure 7.3: How the distribution of values changed for the MSM VALUE column during our tests

tempting to define the optimal values for parameters in all possible cases. We will attempt
to choose good values for our use-case, beyond that we will discuss how the sensitivity to
parameter values for each rule will affect how important it is to choose correct parameter
values for different use-cases. We will also present the results of the rule in both of the
graph types shown in the previous section, and a summary regarding the Q-ratio and other
important values. We will vary which query we present the results of for the different rules,
so we can show the differences in how WHERE and JOIN predicates affect the execution
times and graph shape. The choice of the query will not affect the sensitivity plot or the
Q-ratio since those use aggregate values of all queries; the difference will only be visible
in the line plot we showed in figure 7.1.

We will only be presenting results from the rules we have implemented in our plugin.
Meaning that rules; one, four, five and eight are not presented below as we cannot test
them. The reasons for why some rules have not been implemented differs and has been
discussed in chapter 6. As the implemented rules are presented, we will also present the
ranges chosen for parameter values. We believe the most important thing to consider
when defining this range is to be relatively confident that the ”optimal” choice of the
parameter in question lies within that range. With that in mind, one should consider what
the different values of the different parameters result in. This will be covered for the
different parameters as they are encountered.

It was stated earlier that tests would be conducted on two different machines, a desktop
Linux machine and a test server. The results presented will be from the Linux machine
exclusively, since it was quicker to run the tests on that machine due to the higher CPU
clock speed. The tests that were developed for this project is not a multithreaded workload.
As a result, there is a performance decrease when downgrading to the lower CPU clock
speed on the test server. While the speed of the tests differed between the two machines,

84

Figure 7.4: The sensitivity to change of parameter values for rule two with a logarithmic x-axis

the results were similar. Meaning that rules behaved similarly across the two machines,
and we expect them to behave similarly on any other machine. It was therefore decided to
continue testing on the fastest machine and present the results from that machine alone.

Rule two, after n DML statements
The first tests that do not involve a base class rule are those performed for rule two. This
rule has only a single parameter that we can vary, namely the number of statements n
between each histogram update. It is obvious that the lower the value of n, the more
frequently the histogram will be updated. As stated earlier, we will be importing a total
of six million rows each time we test one of the rules. Meaning that if we choose a value
of say 10000 for n that would cause the histogram to be updated 1180 times for our test
since in total the test will execute 11800000 DML statements, 6000000 insert statements
and 5800000 delete statements. While we would want to test this rule with very different
values of n, say for instance from n = 100 to n = 1000000 that is not feasible for us with
the given time constraints. A value of 100 for n would cause 100 times more updates than
the example value we presented above. We know that on the test machine computing the
histogram for one partition of 200000 rows took approximately 0.16 seconds. It would
take roughly 5 hours to compute the histograms alone if that value was tested for rule two.
Moreover, we would still have to test the rest of the parameters for this rule, as well as all
other rules. That is simply not feasible for us. Therefore the range of values we will test
for this rule is from 10000 up to 40000000. We will start with the most sensitive parameter
values and then progress up becoming more and more insensitive to change with the final
parameter value being 4000 times less sensitive than the first value.

We were confident even before we saw the results in figure 7.4 that the optimal choice
of n would be 400000 in our use-case. This is due to the way our test is structured;
performing all our data manipulation, then a set of queries then a new set of manipulations
and a new set of queries, continuing until all partitions have been used. We have previously
stated that the ”Perfect histogram” rule is optimal in our use-case because it gives perfect
histograms for all queries with the least amount of histogram updates. If n is exactly equal
to the partition size then rule two is equivalent to the ”Perfect histogram” rule, in other
words, it is at its optimal when n is equal to the partition size.

85

Figure 7.5: Results of timing a query with four joins and where MSM VALUE is between 80 and
100 for rule two using n = 400000 as parameter value

In figure 7.4 we can see that our predictions about optimal values for n were correct.
When n has a value of 400000 then the total duration, shown as dashed lines, for rule two,
the blue line, comes very close to the red line of the ”Perfect histogram” rule, and no other
values seem to be quite as close. Thus we have confirmed that n = 400000 is optimal
in our use-case, we will use this information to reduce the space we have to search when
trying to find optimal values for rules that have several parameters. If we also inspect the
Q-ratio of rule two we find that the run of rule two with the lowest Q-ratio is the one with
n = 400000 and a Q-ratio of 0.986, which confirms the results we see in the sensitivity
plot nicely. Perhaps more interesting than finding the optimal value in our use-case, is
what happens to the efficiency of rule two when we start to move away from that value.

As we decrease the value of n away from the optimal, we see that the total duration
increases while the query duration closely follows that of the ”Perfect histogram” rule.
In other words, as we decrease n, the database spends an increasing amount of time on
enforcing the rule without saving any additional time on query execution. If we instead
increase the value of n above the optimal we see the query duration, indicated by a whole
drawn line, start to increase while the total duration also increases as an effect but with a
shallower angle. This shows that the database is spending less time computing histograms
but more time executing queries and that the time saved on computing fewer histograms
is less than the time penalty incurred in the form of increased query duration. We also see
that when n becomes way too large, the rule ends up never updating the histogram and
we achieve a total duration that is equal to that of the stale histogram - which makes sense
since the histogram is not updated.

In figure 7.5 we have plotted the execution time at each of the thirty partitions with
n = 400000 as the parameter value. From the graphs in that figure, we see that as the query
starts to return more rows the execution time increases for all the rules which we would
expect. However, there are four distinct points where the execution time of the ”Stale

86

histogram” and ”No histogram” is considerably higher than that of the ”Perfect histogram”
and rule two. Indicating that as the selectivity of the WHERE predicate in the query changes
the two updating rules can ”keep up” with this change and cause the query plan to change
to account for the increase/decrease in return cardinality of the MEASUREMENT table. This
is corroborated by the query plans which are different between the two sets of lines. In the
graph, this behaviour happens twice since the predicate is a range predicate, once when
the value in the column rises, and once on its way back down.

The conclusion we can draw from these two figures is then, too low values of n will
cause slowdowns on DML statements but not affect query duration to any significant de-
gree. Furthermore too large values will increase query duration beyond that which was
achieved when no histograms were available but not beyond that of stale histograms.
Which means; it is better to choose a value of n that is too high rather than one that is
too low since there is an upper bound on total duration when n becomes very large. We
see that in the graph, the duration of rule two does not exceed that of the ”Stale histogram”
rule. However, too low values appear to have a very high upper bound, i.e. that of com-
puting histograms for every data change. Also, when suitable values of n are chosen, the
rule manages to keep up with the ”Perfect histogram” rule by maintaining a similar total
duration.

Rule three, after n DML statements also considering statement type
Rule three has three different parameters that we can tune to affect its behaviour under
different conditions. These three are; the number of DML statements between updates, n,
the weighting given to insert statements, wi and finally the weighting given to delete state-
ments, wd. We do not have to determine which weight we will give to update statements
since that is implicit in the weighting given to inserts and updates.

We are not well equipped to test rule three in our use-case because of how changes to
the data are implemented. As has been discussed earlier, the dataset used in this project
is split into partitions. Each of those is then inserted into the database and queries are
run querying data from each partition. Once the queries are done, the next partition is
inserted while the old one is removed. This gives the MEASUREMENT table a constant
cardinality throughout the tests and enables the distribution of values in the MSM VALUE
column to change as the test progresses. These were attributes that were required of our
use-case if we were to be able to measure how stale histograms influence the execution
time of queries. However, these attributes are problematic when attempting to measure the
effectiveness of rule three.

The problem with these attributes regarding rule three is two-fold, first, only inserts and
deletes are performed; there are no updates in the load the database sees. Meaning that it
is not possible to test the rule thoroughly since we can not see how the different weight
of inserts and deletes influence the inferred weight of updates. Second, at all partitions,
except the first one since there is no previous partition to remove, the same number of
inserts and deletes are performed. This conflicts with one of the critical assumptions of
rule three, namely that different types of statements have different degrees of importance to
the histogram accuracy. Now since there are precisely as many deletes as there are inserts,
and since each of them modifies precisely one row, it is not visible to the rule if they have
different levels of importance. If we can not determine which is the most important, then

87

that means that we should regard them as equally important, and wi should be equal to
wd. Also, since there are no update statements that means that every statement this rule
encounters is given the same weight. When we do that there is no longer any difference
between rule three and rule two. They both use n to determine how many statements there
should be between updates, and they use the same weighting for all types of statements.
The only difference is that for rule three, it is possible to change the weighting given to
statements, while for rule two that weighting is always one. However, that behaviour can
be replicated in rule two by changing n to increase/decrease the weighting given to each
statement implicitly.

There would then have to be made changes in the use-case used throughout this project
if rule three was to be adequately tested. One of the first things that would have to be done
would be to include update statements so that all three types of statements are included.
Then, during the data update portion of each partition, the number of each statement type
would have to be varied, so that there is not 1/3 updates, 1/3 deletes and 1/3 inserts. While
the number of statements is varied the cardinality of the MEASUREMENT table would have
to be consistent, or at least close to consistent between the different partitions. This is
required to reduce the number of variables influencing query execution time to a minimum.
Due to the time constraints of this project, we have not attempted to achieve this in our
use-case. Because this has not been done rule three will have the same results as rule two
in our use-case. As such, we will not present any results from testing rule three.

Rule six, after a ratio r between table size and updated rows is reached
Rule six disconnects itself from updating the histogram based on only the number of
changed rows. Instead, it uses the ratio of updated rows to table size when determin-
ing when a histogram becomes stale. In subsection 6.2.4 we presented how this rule was
implemented, namely by comparing the current ratio of changed rows, rc, to the ratio re-
quired for update, r, by requiring that when rc > r the histogram must be updated, if not,
it is not updated. The question that arises from this is then, which values of r should be
tested, and which value will be optimal for this use-case?

In chapter 3 how state of the art systems handled histogram invalidation and updating
was reviewed, and it was discovered that both Oracle and PostgreSQL update histograms
after 10% of rows are changed6. In the summary of chapter 3, we stated that since these
are the values used by systems we consider to be industry-leading that those values should
be regarded as good heuristics, at least until proven otherwise. For our tests then, we most
definitely want to make sure that a ratio r of 0.1 is included. Ideally we want to start a
bit lower than that, and we also want to try higher values. We, therefore, chose to test at
different intervals from r = 0.05 up to and including r = 100 and focusing on values
below and around 1. In figure 7.6 we show how rule six performs with different values for
its parameter

We can see from the sensitivity graph that lower values of r result in a more noticeable
difference between the query execution time and the total execution time. This is because
the lower the value of r is, the quicker the histogram will be invalidated and a new one
computed. Thus the rule spends more time on computing the histograms. As we increase

6PostgreSQL also required that a minimum of 50 rows were updated.

88

Figure 7.6: The sensitivity to change of parameter values for rule six

the value of r we see that the total duration starts to decrease, and as r exceeds a value of
0.5 we can see that the performance is improved compared to the stale histograms. As we
continue to increase r and by extent, the time between updates, the query duration starts
to increase as well. In the end, we obtain the same total duration for rule six as we do for
stale histograms, indicating that the histogram is never updated.

To determine which parameter value is the most optimal for our use-case, we examine
the Q-ratio for rule six with the different parameters. We then find that the lowest Q-ratio
is 1.024 with a parameter value of 0.95. If we examine figure 7.6 at that point we see that
it supports the results form the Q-ratio nicely, i.e. it seems like the rule is performing very
well at that point, being as close to the red line as it gets. We plot the results of one of our
queries using rule six as the histogram updating rule using that same parameter value in
figure 7.7. Several things are interesting about the lower graph in this figure. First, we see
that all three histogram types are outperforming the ”No histogram” rule in the beginning.
Second is that ”Plugin rule 6” or rule six, is keeping up with the ”Perfect histogram” rule.
That is not very surprising, since with a r value of 0.95 the histogram will on average
be updated more than twice7 during each partition. Thus the query-optimiser always has
access to accurate histograms. Third, we see one of the reasons why the ”Stale histogram”
rule was performing worse than the ”No histogram” rule during our presentation of ta-
ble 7.1 previously in this chapter. As the result size of the query decreases, the query-plan
that the stale histogram is causing the optimiser to choose, is becoming increasingly poor
compared to the other plans. The advantage gained during the first roughly one million
updates by creating a stale histogram is lost when the distribution changes. We see from
the graph that the advantage gained by the stale histogram over no histogram in the begin-
ning, is significantly less than the penalty incurred when the histogram goes stale between
the first million and five million updates. It is clear how the accurate histograms are out-
performing the stale, the optimiser can choose good plans for every query, and change to
other plans as the distribution of values in the MSM VALUE column warrants it.

For rule six we will then conclude that; too low values of r are detrimental to database

7Remember that each partition performs 200000 insert operations and 200000 delete operations, meaning
that with r = 0.95 and a table size of 200000 the histogram will be marked as stale a little more than twice for
each partition.

89

Figure 7.7: Results of timing a query with four joins and where MSM VALUE < 80 for rule six
using r = 0.95 as the parameter value

performance since there is little restriction on how long time the rule can spend updating
histograms. As a result, it is better to choose too high values of r since the worst perfor-
mance that is achieved then is that of the ”Stale histogram”. Further, there is a broad range
for r where the rule can improve on performance compared to ”Stale histogram” and a
good choice of r allows rule six to keep up with the ”Perfect histogram” rule throughout
the testing suite. An additional benefit of rule six is that it normalises the amount of change
by always comparing the change performed to the size of the table. Making the rule more
generally applicable since it will handle tables of differing size more gracefully than for
instance rule two will.

Rule seven, after n rows are updated, comparing the change against
histogram boundaries

Rule seven is designed to weight changes to data that result in values outside the range
of the histogram more than changes which result in values inside the histogram range. To
do that it uses two parameters, n, the number of statements between updates and woh, the
weight given to a statement which results in a value outside the histogram. As a statement
arrives, it is checked to see if it will change data such that the final value is inside or outside
the histogram, if outside then the statement counts as woh statements instead of just one.

When deciding which range of values to use for n and woh, we will, in essence, be
creating a two-dimensional grid of values we will have to experiment with using as pa-
rameters. Ideally, we would like to test as many values as we can, and also with as signifi-
cant differences as we can. However, that is not possible given the time constraints of this
project. If we wish to test for more values in one dimension of the grid, we have to reduce
the number of values on the other axis. If we consider for a moment the two different

90

Figure 7.8: The sensitivity to change of parameter values for rule seven

parameters used by this rule it can be argued that the most interesting parameter to test for
in this use-case is woh. That is because we have already determined that for rule two the
optimal choice of n was 400000, now since rule seven uses that parameter in the same way
as rule two does it makes sense that rule sevens optimal choice of n might be the same as
rule two’s.

With that in mind, we tested rule seven with different values of woh ranging from 1
to 200, while locking n to 400000 for all the tests. We are thus reducing the number of
dimensions to test and allowing more testing of the interesting parameter of rule seven.
Of course, with a constant value of n for all tests, there might be properties of rule seven
that will not be discovered through this testing. This is something we choose to accept;
however, as a trade-off which allowed us to test better the parameter of rule seven which
we believe is the most interesting. In figure 7.8 the results of testing rule seven with our
selection of different parameter values for woh are shown. Note that this graph also has
a single data point that conflicts with the others. At point three on the x-axis, the query
duration suddenly jumps up to that of the ”No histogram” rule, before coming back down
again to where we expect it to be at the ”Perfect histogram”. Point three is an outlier since
it makes no sense for the query duration to increase as we update the histogram more often.
Moreover, the point does not affect the trend we can see clearly in the graph. It has been
challenging to achieve ”perfect” results for every data point in all our rules. Our tests take
more than 48 hours to complete, and all it takes to create one or two of the inconsistent
data points is a small error of a few seconds during a few partitions for a rule. The data
point discussed here is, unfortunately, an example of such an event happening. However,
we strongly believe that this has no effect on the validity and reliability of the results of
this project, and argue that with more time for testing it would be no problem to achieve
results that do not contain these outliers.

In figure 7.8 we can see that the optimal value for woh seems to be one. Now that is
not as surprising as it might seem at first, remember that we chose to use n = 400000
as the other parameter for all the rule seven tests since it was optimal for rule two. Now
if rule seven weights statements that change data outside the histogram the same as it
weights statements inside, then it is, in essence, a glorified version of rule two. And we
already knew that rule two was at it best when n = 400000, and the weight of statements

91

Figure 7.9: Results of timing a query with three joins and where MSM VALUE > 80 for the base
classes and rule seven. Using woh = 1 as parameter value.

was one, that was why we chose that n. Which is what happens with rule seven when
woh = 1, but if we look at what happens when woh = 10, the results become a bit more
interesting. If the weight of all statements were multiplied by ten then that would result
in ten times as many histogram updates, but it has not, there has only been performed 15
additional updates. Furthermore, even when we double that to woh = 20, there is only a
slight increase again of 18 more updates. It is not before we start to turn up the weight that
the execution times begin to increase drastically. Indicating that most data change happens
within the histogram, and not outside it.

In figure 7.9 the execution time of one query with a parameter value ofwoh = 1 is plot-
ted. As our sensitivity plot indicated when the correct parameter value is used rule seven
performs as well as the ”Perfect histogram” rule. Following it closely as the distribution
of values changes throughout the test. In the plot shown here, the parameter value used
resulted in a Q-ratio of 1.020 for rule seven, showing yet again that with correct choices
of parameter values our rules are performing well.

Regarding rule seven, we conclude that choosing a value for woh that is too high is
worse than choosing one that is too low. The reasoning for this is the same as it was
for both rule two and six, there are little restrictions on the possible amount of time that
can be spent computing histograms if the rule is too sensitive. On the other hand, if it is
too insensitive, at least the situation is not any worse than what it was when no updating
was performed. We also see that when n is kept constant and woh is the only varied
parameter, weighting updates outside the histogram significantly more than updates inside
the histogram has little impact on the performance of the rule. This could, in some cases,
lead to a potential increase in accuracy without much extra overhead.

92

Rule nine, after estimated cost of inaccurate histogram exceeds a limit
I

Rule nine bases the decision of updating the histogram or not on a function which calcu-
lates the ”cost” of using the current histogram by using different weights which can be
tuned using parameters and comparing that to an inverse sensitivity of change parameter.
There are four parameters in total used for the function implemented for rule nine, the
insert weight wi, the delete weight wd, the weight of statements updating rows outside the
histogram woh and finally the inverse sensitivity of change I .

Attempting to find the optimum combination of these values for the use-case presented
in this project would involve searching in a four-dimensional space for a single optimum
value. If we attempted to test only five values for each of these four parameters that would
mean we would have to test 625 different combinations. As with rule seven, this is not
feasible with the given time constraints. To achieve a satisfactory level of testing for rule
nine, the number of dimensions has to be reduced to something more manageable, in our
case one.

For rule nine, the thinking behind the two statement type weights, wi and wd is to give
different statement types different levels of importance. The reasoning behind that is the
same as it is for rule three, however, when evaluating rule three above we decided that
having different weights for these two types of statements did not make sense in our use-
case. The same arguments can be applied to rule nine, and these two weights should be the
same for this rule as well. Also, we argued for rule three that experimenting with different
values of these weights made little sense as well, since the n parameter could emulate the
change to updating schedule that would be caused by that. To a certain degree that change
can be emulated by the I parameter in this rule. Thus we will not be testing different values
forwi orwd and will be using a weight of one as a default value. Next,woh is the weighting
given to statements that affect data outside the histogram boundaries, just as it does in rule
seven. In an attempt to further reduce the number of dimensions that require testing, we
wish to avoid testing this parameter as well. In rule seven, we saw that even with relatively
significant changes in woh, it resulted in few histogram updates, which indicates that in
our use-case updates do not happen outside the histogram exceptionally frequently. We,
therefore, argue that in this use-case changing this value will have relatively little effect on
the number of updates caused by rule nine. Therefore this value is also set to a default value
of one for the testing conducted. We then only have one remaining parameter, namely I ,
which we need to test different values for. In our implementation of rule nine, the cost
function is as such:

r × rule 9 counter > I (7.1)

Where r is computed as the ratio between the number of altered rows and table size
since the last histogram update. And rule 9 counter applies the weights wi,wd and woh

to each statement and computes the sum. As an example, if the plugin receives an insert
statement that is within the histogram that would increase rule 9 counter by wi. Which
values we choose for the weights wi, wd and woh is, as we have discussed previously, not
visible in our case, what is interesting is the choice of value for I . However, since the
value of I is not something which can be related to the number statements as easily and
directly as n and r can choosing its range is more difficult. Its range is therefore decided

93

Figure 7.10: The sensitivity to change of parameter values for rule nine

upon through experimentation, meaning that we continued to increase the range of values
in both directions until it performed worse than the base class rules or we reached a steady
state where it did not change anymore. This resulted in a range of values from 5000 to
100000000, which can be seen in the x-axis of figure 7.10.

When studying figure 7.10 it is clear that it behaves similarly to rule two and six. Too
low values of I , i.e. a high sensitivity to change, cause updates of histograms to occur
too often, resulting in long total execution time and a low query execution time. As the
sensitivity to change is decreased, by increasing the value of I , fewer and fewer updates
are performed, until so few are performed that queries are often optimised with a stale
histogram, causing the execution time to increase. In figure 7.10 we see this has started
to happen around I = 5000000. By studying the graph, it can be seen that the best value
for I we found in our use-case is 1000000, upon also investigating the Q-ratio we find
that a parameter value of 1000000 gives the lowest Q-ratio, which supports the results
from the figure nicely. However, upon closer inspection of the Q-ratio table, we find that
the rule only executed 28 histogram updates. Which means that it is, in fact, a bit too
insensitive with that choice of I since it needs to perform 30 updates to always run with
perfect histograms. Which means that we could have increased the performance of this
rule slightly if we had managed to find the optimal value of I . However, we did not have
time to experiment further with more values for I , and the possible performance increase
is not substantial. In figure 7.11 we have plotted how this rule behaves for a given query
with the chosen value of I .

We see in figure 7.11, that when correct parameter values are used the histogram ac-
curacy is maintained to a sufficient level such that the query-optimiser can choose the
”optimal” query plans for the queries in the test set. Thus the execution time of the query
shown here using rule nine as an updating scheme closely follows the time achieved with
the ”Perfect histogram” scheme, which is precisely how the other rules also performed
when sufficiently good values of the parameters were chosen. We stated in the previous
paragraph that the optimal value we have found for I is a bit too insensitive, we can see
that around update number 2.5 million in figure 7.11. The rule updates the histogram one
partition after the ”Perfect histogram” rule updated the histogram. As a consequence, the
database was using a stale histogram for and extra partition before it was updated and the

94

Figure 7.11: Results of timing a query with four joins and where MSM VALUE < 90 for rule nine
using I = 1000000 as parameter value

query plan changed.

7.3 Discussion
In this section, we start by reviewing some choices we made during our evaluation, and the
influence they might have on the validity of our results. We also highlight the reasoning
behind some of our choices. We then compare the rules we have implemented to discover
advantages with each rule and determine if any performed significantly better in our use-
case.

In chapter 4 we used a set of design requirements to define critical attributes of our use-
case such that it would be susceptible to changes in the accuracy of histograms. We also
explained that if the use-case did not meet these requirements, it was not possible to see
how the change in histogram accuracy was having an effect execution time of queries. The
use-case that forms the basis on which these tests are conducted is then of vital importance
when attempting to decide to which degree the results seen here can be applied to other
databases. In other words, is the use-case presented during this project so quirky that the
results we have seen here can not be applied generally? We would argue both yes and no.
No, because it is clear that no matter the data structure or dataset used in any database if the
selectivity estimate that the histogram provides is wrong, then the query plan chosen may
be sub-optimal. And sub-optimal query plans result in a decrease in database performance.
However, there is no way to guarantee that databases with different data structures, datasets
and workloads will experience the same results when histograms go stale as we have shown
here. They will not necessarily see that no histograms are outperforming stale histograms,
or that a r value of 0.95 is optimal for rule six. So yes, some results presented from
this use-case can not be applied generally, and therefore it can be considered too quirky

95

in those aspects. However, we argue that those aspects are not very important. What is
important is that; we have shown that maintaining histogram accuracy has its merits, that
it does not have to be exceedingly difficult and that whatever one chooses as a parameter
value for any of the rules we have implemented can be made into a poor choice. To do
that, all that is needed is to change the workload in a particular manner. We will get back
to the implications of parameter choice sensitivity in our conclusion.

During the evaluation presented, it was necessary to reduce the number of unknown
factors influencing different rules. In particular, this pertains to rule three, seven and nine
where we removed some or all of the parameters in the rule to allow us to find ”optimum”
values for the remaining parameter. While we believe our reasoning for the choices of
parameter values to avoid testing is sound and that the effects of doing so are relatively
small in our use-case, this can not be guaranteed. There may be elements we have not
sufficiently taken into consideration or which we do not fully understand the impact of. We
do, however, still believe the results of testing the implemented rules and the conclusions
drawn about the different rules and how they are affected by a given parameter to be
reliable and accurate. Having to reduce the number of parameters used for testing does
highlight one key issue with rules using parameters, and especially those with several
parameters. Namely that having many parameters to tune makes it difficult know how a
change in value will influence when the histogram is updated, and in turn make it more
challenging to choose good parameter values and test a broad range of those values. The
fewer parameters a rule has, the easier it is to relate a change in value to a change in when
the histogram is updated, which hopefully should result in better choices of values.

During the evaluation of the different rules we have presented the partition plots, the
first graphs we explained and showed in figure 7.1, we have been presenting them with dif-
ferent queries. This was intentional as we wished to showcase how the different amount of
join predicates affected the overall time, and how the different WHERE predicates affected
the shape of the graph. We see that in figure 7.7, we start with ”No histograms” being
the slowest by a little margin, but that the ”Stale histogram” becomes much slower than
all the other rules as the distribution changes drastically towards the middle of the graph
and no rows are being returned. In figure 7.1 however, all rules start off being equally fast
and the ”Stale histogram” never performs worse than ”No histogram”, it is only ”Perfect
histogram” which performs better than the two when the distribution changes drastically
towards the middle. This shows how the predicate influences the execution time as the dis-
tribution changes and that in some queries stale and no histograms perform equally well,
while in others no histograms are substantially better.

7.3.1 Comparing tested rules

In table 7.2, we have listed the best performing versions of each rule as categorised by
the Q-ratio. Higher values indicate less efficient rules and lower values indicate more
efficient rules. The table also contains a row for rule zero, this rule uses no histograms,
and the plugin performs no other action than checking whether or not it should update
the histogram, which it never does for rule zero. It serves to validate that there is little
to no penalty in overall performance by having the plugin active, which it does nicely
since there is very little difference between the total duration of it and the ”No histogram”

96

rule8. In this table, we see that there are two rules which are performing better than the
”Perfect histogram” rule, which should not be possible if that rule is optimal. However,
it is important to note that the two rules only perform better because they have a lower
query duration, which is caused by fluctuations during our testing. We stated earlier that
the query duration given for the base classes is the mean of several runs since each run is
not affected by the different parameters supplied. This means that we are very confident
that the values we see for ”Perfect histogram”, ”No histogram” and ”Stale histogram” are
representative. While for the rules, there is some fluctuation in the query duration since
we do not perform several runs of each rule with the same parameter values. It is clear,
however, that only a handful of seconds are separating the ”Perfect histogram” rule from
the other two, indicating that the variance between runs is low enough to be disregarded.
Also, these tests have been performed several times during the project, and the results
from the different runs have not been contradicting. Further indicating that the results we
present here are reliable.

Test type Total du-
ration(s)

Q-ratio Query
dura-
tion(s)

Histogram
dura-
tion(s)

Number
of
updates

Supplied
parame-
ters

Rule 6 809.7 0.983 801.6 8.2 62 0.95
Rule 2 812.5 0.986 808.6 4.0 30 400000
Perfect
his-
togram

823.9 1.000 819.9 4.0 30 Not ap-
plicable

Rule 7 840.5 1.020 836.4 4.1 30 1.0
Rule 9 843.8 1.024 840.3 3.5 26 1000000
No his-
togram

915.2 1.111 915.2 0.0 0 Not ap-
plicable

Rule 0 921.4 1.118 921.4 0.0 0 Not ap-
plicable

Stale his-
togram

984.8 1.195 984.7 0.1 1 Not ap-
plicable

Table 7.2: Table with Q-ratio and parameter data for the slowest and fastest version of each rule

We see that rules two and six, and nine seven have very similar Q-ratios, indicating that
with optimal choices of parameter values, all four rules are very close to equally efficient.
While several factors constitute what makes an optimal choice of parameter values for
all the tested rules, both rule two and seven have the table size as a factor. Since they
only compare the number of updated rows, or equivalently in this use-case the number of
statements, to a fixed number, a table with many rows will have its histogram updated just
as frequently as a table with very few rows9. This is not a desired attribute since the ratio

8Rule zero was also the rule used to plot the blue line in figure 7.2, which was used to present that graph type
and the legend.

9Assuming that the same number of rows are changed in both tables.

97

of change is of critical importance when attempting to decide whether or not a histogram
has gone stale.

In other words, rule six and nine are more tolerant of changes in the database than
what rule two and seven are without sacrificing any performance when optimal values are
chosen. Beyond that we have seen in the sensitivity plot for rule nine shown in figure 7.10
that even though the values for the I parameter span an extensive range from 5000 up
to a value more than five orders of magnitude larger, the total duration for rule nine is
quite stable. If we compare this with the range of values used when testing rule six,
we see that range is quite a bit smaller - from 0.05 to a value only roughly three orders
of magnitude larger. This indicates that while all rules perform equally well with good
parameter values, rule nine is the most forgiving in terms of the range of ”good” values, as
well as the extremes that have to be approached to obtain inferior total duration times.

We, therefore, conclude that while our rules perform equally well with optimal param-
eters, we would recommend either rule nine or six as the ones to implement. With rule
six having the advantage of being a more simple rule to both implement and understand,
which makes it easier to tune the parameter to a good value. The advantage of rule nine,
on the other hand, is an increased range of acceptable values resulting in the importance
of choosing a value close to the optimal not being as significant.

7.4 Summary
In this chapter, the results of testing the implemented rules have been presented, and we
would like first to point out that our testing shows without a doubt that in our use-case a
stale histogram performs significantly worse than not having a histogram at all. It has also
been shown that while the choice of parameter value is important for the different rules,
there is often av large interval of values which will improve performance compared to stale
histograms at a particular database with a particular workload. We have also discussed
how different data structures, datasets and workloads influence which choice of parameter
values are good and which are poor. Also, we have seen that at one end of a parameter
value the influence on database performance is bound by an upper limit, while on the
other end there is virtually no limit to how negative the impact of the different rules can
be. We also saw that rule six and nine have the largest range of values in which updating
histograms improve database performance. In the next chapter we will be using what we
learned from this chapter to apply some of the results of our tests to more general cases,
and present our recommendations for how to deal with histogram accuracy and what we
believe warrants research in the future.

98

Chapter 8
Conclusions and future work

In this project, we have been aiming to define attributes that must be met for database
performance to be affected by histogram accuracy, and define rules for when to update said
histogram. As the final chapter in this report, the following pages will be used to present
the following three items. The required attributes of a database if it is to be affected by
histogram accuracy, the conclusions we have come to on the histogram updating rules we
have tested, and some of our thoughts and insights regarding histogram updating. The
chapter concludes with proposing subjects we believe warrant further study.

8.1 Effects of histograms on query execution times
Based on the results presented from our testing in the previous chapter and the design re-
quirements discovered in chapter 5, our conclusions on the effects of histograms on query
execution times are two-fold. First, we present our list of requirements for a database to
be affected by histogram accuracy, then we present how histograms affect query execution
times and what we believe should be done to handle those effects.

When are query plans effected by histogram accuracy

In chapter 5 we presented how we discovered, and in chapter 4 we listed and adhered
to, what we labelled as design requirements for databases if they are to be affected by
histogram accuracy. We found that there are requirements both to the data which populates
the database, the workload and the data model. These requirements are listed below.

• The distribution of values within a column which has a histogram approximating
its distribution must change in such a way that the approximate distribution the his-
togram provides will become incorrect if the histogram is not maintained. In other
words, the distribution of underlying values for all histograms must change and must
change such that each particular histogram becomes stale at some point. How the

99

distribution(s) change also affects query execution times. We saw during develop-
ment and testing of the use-case that as distributions became very skewed and started
moving towards other skewed distributions the difference in execution times could
become quite high as the stale histogram predicted the selectivity of the predicate
poorly. When we instead started with a uniform distribution and moved towards
a skewed one, or the other way around, the differences were not as large. This is
caused by the histogram predicting the distribution more accurately than it did with
very skewed distributions. This behaviour is not that surprising and indicates that
it is the degree of error in the selectivity approximation that determines, to a large
degree, how significant the influence of the histogram is.

• The queries that the database receives must be such that the optimiser can utilise
histograms when creating the query plans. In the case of MySQL, this means that the
WHERE predicate must contain one, or more, evaluations between a single column
and a constant and that there are no indexes on any columns used in the predicate.
For other RDBMS’ other requirements may apply.

• There has to exist query plans with different join orderings for queries being opti-
mised such that as the cardinality of tables changes, their position in the join order
may change as well. This also requires that the differences in table sizes are such that
differences in selectivity can cause different join orderings of tables. The change
of order is caused by the histogram providing selectivity estimates for predicates,
which are in turn used to determine how the predicate influences the cardinality of
a table. Another important realisation regarding join orderings is that while hav-
ing different join orderings that can be chosen based on selectivity determines if, a
histogram will influence query execution time. It is how far the histogram causes
tables to move in the join order which determines to what extent the histogram will
influence execution time. The data model of the database in question determines
the possible join orderings. Through our testing, we have found that the linear join
model, while enabling fewer possible join orders, enables orders where the move-
ment is more varied and larger than that of a star schema model.

Using these requirements, we were able to create a use-case in which the accuracy of
histograms affected query execution times to a noticeable degree.

How will histogram accuracy affect query execution times
We wish to begin by pointing out that, in specific use-cases, like the one we have presented
in this report, we have shown that histograms will affect query execution times. The extent
of this effect and whether it can be regarded as positive or negative will depend on the
accuracy of the histogram and database attributes. We saw from the graphs in the previous
chapter and the data in table 7.2 that; having a histogram is not always better. We have
managed to create a use-case in which stale histograms perform significantly worse than
accurate histograms and even no histograms! It might be surprising to some that we saw
the total execution time of all our queries increased by 19.5% when using a stale histogram
and only 11.1% with no histograms compared to perfect histograms. Meaning that in our
use-case it is better not to have them than to have them and not maintain them. We have

100

also shown this behaviour in action in several of our graphs, e.g. figure 7.7 where we can
see that the stale histogram is causing the query-optimiser not to change the join order
of tables even though the distribution has changed significantly - resulting in a longer
execution time for the query when compared to both the ”Perfect histogram” and ”No
histogram” rules.

We have been using the word stale as a description of histogram state throughout this
chapter and the project, but what does it mean to be a stale histogram? In subsection 2.2.5
we stated that we had not been able to find a general definition for histogram staleness
during our literature search. However, in section 4.4 we said that a possible definition of
staleness was once the distribution of the data has changed the histogram is stale and that
this definition does not do us much good since it defines histograms as stale too frequently.
We then continued with saying that our rules define staleness as when the histogram is
causing the query-optimiser not to choose the optimal join order, and as we have seen
during our testing, the rules need to be able to adapt to different databases. This reinforces
our reasoning from subsection 2.2.5 of why a perfect general definition of staleness does
not exist, namely that no one definition is optimal in all cases. Our rules are definitions of
staleness, each of them is different, and each of them can be altered, and must be altered
to adapt to different databases, by changing the supplied parameter.

Stating something as general as ”in all cases, a stale histogram will be detrimental to
database performance compared to not having a histogram” is not possible. There are too
many variables that influence how different join orders affect the execution time of the
query to do so. However, we can state that there does exist a situation in which a stale
histogram is worse than not having one, and in which maintaining histograms is beneficial
to overall database performance. We conclude, therefore that it is not a question of whether
or not histograms should be updated, but rather when they should be updated.

What should be done about histogram accuracy?
One of the primary objectives of this project has been to investigate how we can or should
handle histogram accuracy. In chapter 4, we presented different rules for how we can
go about maintaining histogram accuracy. Moreover, in the previous chapter, we stud-
ied how those rules, and a set of base rules, termed base cases, performed in our tests.
Based on those tests, it became clear that histogram accuracy is not something we can
dismiss and choose to not handle. Our tests showed as we stated in the previous section,
that a neglected histogram with reduced accuracy, i.e. that is feeding the query optimiser
false information about predicate selectivity, can cause the query-optimiser to choose sub-
optimal join orderings when compared to accurate histograms and even when compared
to heuristic values.

Our tests also showed that the rules implemented in our plugin work! When correct
parameter values are used all rules improve the accuracy of the histogram to such a de-
gree that the query plan chosen is the same as that which is chosen when the ”Perfect
histogram” rule is active. We also showed that if poor values are chosen, the rules will
impact overall database performance negatively, causing large amounts of resources to be
spent on updating histograms when it is not necessary. As a result, the choice of the pa-
rameter value is vital for all rules we have presented, and choosing the optimal value is
difficult. However, it is not required that the optimal parameter value be chosen, the range

101

of possible values in which our implemented rules improve database performance is, in
many cases, significant. We showed this with our sensitivity plots, in figure 7.6 values of r
ranging from 0.25 up to 100 all perform as well or better than the ”Stale histogram” rule.

Moreover, for rule two we were able to reason that the optimal parameter would be
400000 in our use-case, but as we saw in figure 7.4 values of n from 100000 up to 1000000
improved upon the performance of stale histograms. While it is not possible to predict
what the optimal value of n or r should be for all cases, it is not needed. Just choosing
a value which is in the ballpark of the optimal will result in a performance gain. Even
better, as long as the value that is chosen is not causing the rule to be too sensitive, the
worst possible performance achievable by these rules is the same as what is achieved by
not having the rules - namely that of the stale histogram. I.e. it is better to choose a value
that causes the rule to be too insensitive than one which causes the opposite since there is
a limit to how bad the rule can be when it is too insensitive, while for too sensitive rules
there is almost no limit to how significant the performance impact can be1.

We would also to like to point out that when MySQL creates a histogram, it uses a
sample of the table to compute that histogram if the table size is too large. However, the
sampling used is not actual sampling, since it is currently not possible for the underlying
storage database of MySQL, InnoDB, to return samples of data. The entire table must
be fetched from disk and MySQL then uses only a portion of the returned data. This
means that updating histograms likely is slower than what it can be in MySQL if proper
sampling from disk was performed, in other words, it might be possible to increase the
range of acceptable values for parameters further if the sampling in MySQL is improved.
In turn, this means that for database systems which can compute histograms faster than
what MySQL has been capable of in this project, the range of acceptable parameter values
is also increased.

We conclude that if histograms are used, then they should be updated at some point.
We have shown that with quite simple measures, the performance of databases can be
increased by a significant amount, the updating rule used need not be a complicated one.
Using a rule as simple as updating after a percentage of rows has been changed, which
is what Oracle and PostgreSQL use as their updating rule, with a reasonable parameter
value yielded significant performance increases in our use-case. We can also see from
figure 7.6 that the value Oracle and PostgreSQL use is too sensitive in our use-case, letting
r = 10% results in a net performance loss for us. Which was quite surprising, how
can it be that the standard values used by what can only be regarded as world-leading
state-of-the-art systems perform so poorly in our use-case? This is caused by our use-case
having too many DML statements when compared to queries, which results in too sensitive
parameters performing exceedingly poorly. The workload used in our use-case is meant
to exaggerate the cost of choosing poor values for rules, and as such, it shows that the
choice of r = 0.1 is a poor one which results in relatively large net performance losses.
Exemplifying how different data models, datasets and workloads respond very differently
to different parameter values2, we have also argued that any choice of parameter can be

1The limit being when every data change triggers a histogram update. However, at that point, the cost of
maintaining the histogram is so tremendous that using the database becomes difficult.

2We are quite confident that both Oracle and PostgreSQL performed some sort of evaluation before deciding
on their default value of r, which indicates that the differences between their database and ours is significant
enough to cause a large difference in what can be considered good values for r.

102

made optimal by changing datasets, data models or workloads correctly. This enables
us to make an important conclusion and outline some of our recommendations regarding
updating rules. Rules must either be configurable by users or adaptive, meaning that the
rule must either be such that it can be tuned by a user changing a parameter or it must tune
itself by adapting to the database and its workload automatically. If rules with parameters
are used, then they should have as few and as simple parameters as possible, allowing
users to make an informed decision on their choice of parameter. We experienced first
hand how difficult it can be to determine correct combinations of parameters when there
are too many to test. An excellent choice of a simple rule in our opinion is number six,
which only uses the proportion of changed rules and gives users an intuitive parameter
to adjust. Alternatively, we would recommend a more complicated rule which hides the
complexity from the user and allows them to adjust only one parameter. Our rule nine
can be regarded as such a rule, where we have already chosen values for several weights
based on our expertise, and allow the users to change a single parameter which determines
how sensitive the rule is to change, the I parameter in the case of rule nine - combining
the added flexibility of multi-parameter rules with the ease of tuning that single-parameter
rules display. In the next section, we present one more variation of a rule with parameters
and suggestions for three adaptive rules that can be used.

8.2 Future work
During the development of this project we have been creating and adding rules to our set as
we have been progressing, we have however come up with four additional rules during the
closing phases of this project which we believe warrant further research. These four rules
are presented below, along with what we believe will be their strengths and weaknesses.
We also outline possible avenues of research regarding use-cases and when histograms
influence query execution time.

Rule ten, comparing query execution times. The goal of histograms in the context of
this project is to increase the accuracy of the selectivity estimate used during query optimi-
sation; this is based on the idea that if the query-optimiser has access to more information
about a query, it can make a better choice of a query plan. This plan will in-turn result
in reduced execution time for the query in question. The rules outlined in this project
so far have tried to approximate how events that have occurred since the last histogram
update have affected the accuracy of the histogram, and how the change in accuracy is
affecting the current execution time of queries. Rule ten is designed to circumvent this
approximation by executing a query with the current histogram and register the time the
query took. Then by using an optimiser directive, or something similar, rerun the query
but this time without the query-optimiser using histograms. The time difference between
the two runs of the same query querying the same data can then be compared and used as
a basis on which to decide if the histogram should be updated or not. While this approach
ensures that histograms are only updated when there is a benefit to doing so, the advantage
the histogram provides is compared to not having a histogram, not to a perfect histogram.
Meaning that there could be situations in which there would be an advantage to updating
the histogram, but it is not done because the current stale histogram is performing as well

103

as no histograms. In such a situation, there could still be that a perfect histogram would
result in a better query plan than that of no histogram; however, this rule does not achieve
that type of performance increase.

Rule eleven, after a ratio r between table size and updated rows is reached also consid-
ering the proportion of updated rows versus the number of queries. In the previous
chapter, we argued that one of the significant problems with deciding upon a parameter
value for rules is that as the load on the database changes so does the impact of choosing
too high or too low values. This is also true for rule two and six, who are in many ways
very similar. The key difference being that rule six abstracts away the actual number of up-
dated rows to be more general and perform more uniformly in a variety of use-cases with
the same parameter value. The problem remains for rule six however that as the propor-
tion of updated rows becomes very large choosing low values for r becomes increasingly
worse, with the inverse also being true. With rule eleven, this behaviour is considered, as
the proportion of updated rows increase, the value used for r also increases, and as the
proportion decreases, so does the value of r. It would not be an insurmountable task to
test how quickly r would have to change with the proportion of updated rows to be able to
adapt efficiently to such shifting proportions.

Rule twelve, comparing histogram selectivity estimate with actual selectivity. We
know that the query-optimiser uses histograms to provide an estimate for the selectivity
of predicates and that this selectivity is used to determine what the cardinality of tables
will be after the rows that do not satisfy the predicate are removed. Since any query being
optimised will also be executed, the actual selectivity of the predicate can be determined.
It would then be possible to compare the actual selectivity of the predicate with the ap-
proximation given by the histogram, and based on the difference between those two values
determine if the histogram requires updating. Such a rule would require changes to both
the query-optimiser and the query-executor of MySQL. This would not be natural to im-
plement using a plugin but instead may require implementing into the base of MySQL
itself. Nevertheless, it would enable histograms to be checked frequently with little cost,
and it also enables us to check the accuracy of complex predicates. It would even be pos-
sible to use this rule not only update already existing histograms but create new ones. One
could use the difference between the selectivity provided by the heuristic values when no
histograms exist and the actual selectivity to determine if a histogram should be created
for a particular column. This tactic can be applied to any predicate which has an accom-
panying selectivity estimate and would allow us to evaluate arbitrarily complex predicates
and create multi-dimensional histograms where they are needed.

A potential improvement of rule nine was discovered at the end of the project by
changing the ”cost function” used. It was the realisation that actions happening outside
the histogram boundaries need not always result in a less accurate histogram. Deleting a
row that is outside the histogram will improve the accuracy of the histogram. Changing
the ”cost function” to account for this behaviour is achieved by splitting the actions that
happen on data into more pieces and adding weight parameters to each of them. A possible
new function is presented below.

104

∑(
iih
c
× wi ih +

ioh
c
× wi oh +

uih−>ih

c
× wu ih +

uih−>oh

c
× wu oh+

uoh−>oh

c
× 0 +

uoh−>ih

c
×−wu oh +

dih
c
× wd ih +

doh
c
×−wd oh

)
> I (8.1)

In the equation above the variable iih indicates the number of inserted rows inside the
histogram, while ioh indicates the number outside the histogram. Equivalently dih is the
number of deleted rows inside the histogram and doh is the number of deleted rows outside
the histogram. Furthermore, uih−>ih is the number of updated rows in which the value
monitored by the histogram was initially within the histogram and after the update is still
within the histogram. Also uih−>oh is the number of updated rows which initially had a
value withing the histogram but were updated to have a value outside the histogram, the
converse is true for uoh−>ih and uoh−>hh. Additionally, c is the cardinality of the table
on which the histogram in question exists; all the variables are divided by this number to
normalise the number of changed rows. The w variables are the weights given to each data
modification, while I is still the inverse sensitivity to change. There are several interesting
aspects about how data change affects the histogram accuracy, which we are trying to
capture in Equation 8.1, we list them below.

• Inserting rows with values both inside the histogram range and outside will affect
the histogram accuracy negatively.

• Updating a row with a value that was inside the histogram to a new value that is
still inside the histogram is negative because it can cause the number of elements in
buckets to be wrong. Alternatively, if the histogram is sparse3 the new values might
be outside buckets but inside the total range of the histogram.

• Moving the value of a row from inside the histogram to outside harms accuracy, and
we consider the effect to be larger than that of updating to a value inside. This is
because it is guaranteed that the value outside the histogram is not represented in the
histogram. However, if the value is updated to another value inside the histogram,
that value might already be represented in a bucket, resulting in only the number of
instances of that value being wrong. Which one can argue is not as wrong as not
representing the value at all.

• Updating a row with a new value outside the histogram range which already had a
value outside the range has essentially no effect on the accuracy.

• Moving a value from outside the histogram to inside has a positive effect on accu-
racy, and it is as large of an effect as the action of moving a value out.

• Deleting a row with a value that is within the histogram boundaries affects the ac-
curacy negatively.

• Deleting a row with a value outside the histogram has a positive effect on histogram
accuracy.

3A sparse histogram is a histogram which allows there to be ranges of values not covered by buckets, meaning
that there can be a range of values between two neighbouring buckets which is not in any of the two buckets.

105

In the presented equation, both uoh−>ih and doh are multiplied by negative weights, that is
because they increase the accuracy of the histogram. Therefore they reduce the inaccuracy
”cost” of the current histogram. For the equation presented all weights used are meant to
be positive numbers. This extended version of the original rule nine has the advantage that
it should more accurately model the change of the histograms accuracy since last it was
updated. However, it uses six weights to do, which means that finding good parameter
values for this rule can be difficult.

The first three rules above and rule eight, which we presented along with our other
rules, have a distinct advantage over the ones we have implemented and the potential
improvement we suggested for rule nine. Namely that they do not need parameter values
to be changed to adapt to different databases, the ability to adapt is built into the rule.
By creating rules with the ability to dynamically determine when histograms are stale
under different databases, and indeed in the same database but under different workloads,
we believe we can create more general and robust rules. Which we think is the most
significant advantage of these rules.

Exploring different use-cases. We know now that the data model, dataset and workload
determine when a histogram is stale, and in-turn determines which choice of parameter
value is right for each of the different updating rules presented. The use-case developed
and implemented in this project has proven this; however, there are weaknesses and faults
with our use-case, which limited which rules it made sense to test. We believe further
experimentation with developing and implementing use-cases is warranted to answer what
we believe to be important questions, such as. Supposing that the data model allows his-
tograms to influence performance, is the workload the defining factor of which definitions
of staleness are good and not? And, is it possible to alter the use-case presented in this
report such that the requirements for databases to be effected by histogram accuracy can
be relaxed?

What would happen for instance, in a use-case which had the same data model and
dataset as the one used in this report but different workloads? We have shown that if the
relationship between resources spent on queries and number of updated rows changes from
what they are in our use-case the results of our tests would be different, but how different
would they be? How important is that ratio? Alternatively, what if the ratio was kept the
same, but instead of changing the distribution by only using inserts and deletes, we instead
used updates? And what if the ratio between the different DML statements varied as we
suggested for testing rule three. These variations and many more will influence the rules
we have presented, that we are sure of, what we are unsure of is how much.

We believe that experimenting with differing use-cases can help create a more robust
and well-defined set of requirements that better define in which situations the histogram
accuracy affects database performance, and may also enable us to create more efficient
and accurate rules for when to update them.

106

Bibliography

[1] Amazon, Overview of Amazon Web Services Databases. [Online]. Available: https:
//docs.aws.amazon.com/whitepapers/latest/aws-overview/
database.html.

[2] InfluxData, InfluxDB 1.7 documentation — InfluxData Documentation. [Online].
Available: https://docs.influxdata.com/influxdb/v1.7/.

[3] S. Vestrheim, “Exploring statistical accuracy in relational database systems”, Nor-
wegian University of Science and Technology, Tech. Rep., 2019, p. 49.

[4] R. Elmasri and S. B. Navathe, Database Systems SEVENTH EDITION. Pearson,
2016, p. 1242, ISBN: 978-0-13-397077-7. [Online]. Available: http://noahc.
me/FundamentalsofDatabaseSystems%287thedition%29.pdf.

[5] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann, “How
good are query optimizers, really?”, Proceedings of the VLDB Endowment, vol. 9,
no. 3, pp. 204–215, Nov. 2015, ISSN: 21508097. DOI: 10.14778/2850583.
2850594. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2850583.2850594.

[6] Y. Ioannidis, “The History of Histograms (abridged)”, in Proceedings 2003 VLDB
Conference, 2003, pp. 19–30. [Online]. Available: http://www.madgik.di.
uoa.gr/sites/default/files/vldb03_pp19-30.pdf.

[7] ——, “Approximations in Database Systems”, in Lecture Notes in Computer Sci-
ence, Springer, Berlin, Heidelberg, 2003, pp. 16–30. DOI: 10.1007/3-540-
36285-1{_}2. [Online]. Available: http://link.springer.com/10.
1007/3-540-36285-1_2.

[8] S. Christodoulakis and Y. E. Ioannidis, “Optimal Histograms for Limiting Worst-
Case Error Propagation in the Size of Join Results”, Article in ACM Transactions on
Database Systems, 1993. DOI: 10.1145/169725.169708. [Online]. Available:
https://www.researchgate.net/publication/220225465.

107

https://docs.aws.amazon.com/whitepapers/latest/aws-overview/database.html
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/database.html
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/database.html
https://docs.influxdata.com/influxdb/v1.7/
http://noahc.me/Fundamentals of Database Systems %287th edition%29.pdf
http://noahc.me/Fundamentals of Database Systems %287th edition%29.pdf
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/2850583.2850594
http://dl.acm.org/citation.cfm?doid=2850583.2850594
http://dl.acm.org/citation.cfm?doid=2850583.2850594
http://www.madgik.di.uoa.gr/sites/default/files/vldb03_pp19-30.pdf
http://www.madgik.di.uoa.gr/sites/default/files/vldb03_pp19-30.pdf
https://doi.org/10.1007/3-540-36285-1{_}2
https://doi.org/10.1007/3-540-36285-1{_}2
http://link.springer.com/10.1007/3-540-36285-1_2
http://link.springer.com/10.1007/3-540-36285-1_2
https://doi.org/10.1145/169725.169708
https://www.researchgate.net/publication/220225465

[9] S. Chaudhuri, R. Motwani, V. Narasayya, S. Chaudhuri, R. Motwani, and V. Narasayya,
“Random sampling for histogram construction”, ACM SIGMOD Record, vol. 27,
no. 2, pp. 436–447, Jun. 1998, ISSN: 01635808. DOI: 10 . 1145 / 276305 .
276343. [Online]. Available: http://portal.acm.org/citation.cfm?
doid=276305.276343.

[10] Oracle, Histograms, 2019. [Online]. Available: https://docs.oracle.com/
en/database/oracle/oracle-database/19/tgsql/histograms.
html#GUID-BE10EBFC-FEFC-4530-90DF-1443D9AD9B64.

[11] Microsoft Team, Statistics - SQL Server — Microsoft Docs, 2017. [Online]. Avail-
able: https://docs.microsoft.com/en-us/sql/relational-
databases/statistics/statistics?view=sql-server-2017.

[12] Aerospike, Aerospike Database Documentation. [Online]. Available: https://
www.aerospike.com/docs/.

[13] Redis, Redis Database Documentation. [Online]. Available: https://redis.
io/documentation.

[14] Oracle, Oracle TimesTen In-Memory Database Documentation. [Online]. Avail-
able: https://docs.oracle.com/database/timesten-18.1/.

[15] P. G. Selinger, Astrahan Morton M., D. D. Chamberlin, R. A. Lorie, and T. G. Price,
Access Path Selection in a Relational Database Management System, 1979. [On-
line]. Available: https://pages.cs.wisc.edu/˜zuyu/summaries/
cs764/queryOpt.

[16] V. Poosala and Y. E. Ioannidis, “Selectivity Estimation Without the Attribute Value
Independence Assumption”, in Pvldb, Athens, 1997, pp. 486–495, ISBN: 1-55860-
470-7. [Online]. Available: http://dl.acm.org/citation.cfm?id=
645923.673638.

[17] N. T. Mit, P. I. Mit, S. Guha, and N. Koudas, “Dynamic Multidimensional His-
tograms”, in Proceedings of the 2002 ACM SIGMOD international conference on
Management of data, 2002, pp. 428–439. [Online]. Available: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.92.1201&rep=
rep1&type=pdf.

[18] P. B. Gibbons, Y. Matias, and V. Poosala, “Fast incremental maintenance of approx-
imate histograms”, ACM Transactions on Database Systems, vol. 27, no. 3, pp. 261–
298, Sep. 2002, ISSN: 03625915. DOI: 10.1145/581751.581753. [Online].
Available: http://portal.acm.org/citation.cfm?doid=581751.
581753.

[19] MySQL team, MySQL :: MySQL 8.0 Reference Manual :: 8.9.6 Optimizer Statis-
tics, 2019. [Online]. Available: https://dev.mysql.com/doc/refman/
8.0/en/optimizer-statistics.html.

[20] TPC, TPC - Benchmarks. [Online]. Available: http://www.tpc.org/information/
benchmarks.asp.

108

https://doi.org/10.1145/276305.276343
https://doi.org/10.1145/276305.276343
http://portal.acm.org/citation.cfm?doid=276305.276343
http://portal.acm.org/citation.cfm?doid=276305.276343
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/histograms.html#GUID-BE10EBFC-FEFC-4530-90DF-1443D9AD9B64
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/histograms.html#GUID-BE10EBFC-FEFC-4530-90DF-1443D9AD9B64
https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/histograms.html#GUID-BE10EBFC-FEFC-4530-90DF-1443D9AD9B64
https://docs.microsoft.com/en-us/sql/relational-databases/statistics/statistics?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/statistics/statistics?view=sql-server-2017
https://www.aerospike.com/docs/
https://www.aerospike.com/docs/
https://redis.io/documentation
https://redis.io/documentation
https://docs.oracle.com/database/timesten-18.1/
https://pages.cs.wisc.edu/~zuyu/summaries/cs764/queryOpt
https://pages.cs.wisc.edu/~zuyu/summaries/cs764/queryOpt
http://dl.acm.org/citation.cfm?id=645923.673638
http://dl.acm.org/citation.cfm?id=645923.673638
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.1201&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.1201&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.1201&rep=rep1&type=pdf
https://doi.org/10.1145/581751.581753
http://portal.acm.org/citation.cfm?doid=581751.581753
http://portal.acm.org/citation.cfm?doid=581751.581753
https://dev.mysql.com/doc/refman/8.0/en/optimizer-statistics.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-statistics.html
http://www.tpc.org/information/benchmarks.asp
http://www.tpc.org/information/benchmarks.asp

[21] R. Walpole, R. Myers, S. Myers, and K. Ye, Probability and Statistics for engi-
neers, 9th Editio. Pearson, 2016, p. 816, ISBN: 9781292161365. [Online]. Avail-
able: https://www.amazon.com/Probability-Statistics-Engineers-
Scientists-Global/dp/1292161361.

[22] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza, and K. Veer-
araghavan, “Gorilla: A fast, scalable, in-memory time series database”, in Proceed-
ings of the VLDB Endowment, Kohala Coast, Hawaii: Association for Computing
Machinery, 2015, pp. 1816–1827. DOI: 10.14778/2824032.2824078.

[23] MySQL team, MySQL :: MySQL 8.0 Reference Manual :: 13.7.3.1 ANALYZE TA-
BLE Syntax, 2019. [Online]. Available: https://dev.mysql.com/doc/
refman/8.0/en/analyze-table.html.

[24] Oracle, Database Performance Tuning Guide — Managing Optimizer Statistics,
2008. [Online]. Available: https://docs.oracle.com/cd/B19306_
01/server.102/b14211/stats.htm#g49431.

[25] M. Colgan, Extended Statistics — Oracle Optimizer Blog, 2011. [Online]. Avail-
able: https://blogs.oracle.com/optimizer/extended-statistics.

[26] T. Kyte, On Dynamic Sampling — Oracle Magazine, 2009. [Online]. Available:
https://blogs.oracle.com/oraclemagazine/on- dynamic-
sampling.

[27] N. Bayliss, Dynamic sampling and its impact on the Optimizer — Oracle Opti-
mizer Blog, 2010. [Online]. Available: https : / / blogs . oracle . com /
optimizer/dynamic-sampling-and-its-impact-on-the-optimizer.

[28] Postgre Team, PostgreSQL: Documentation: 11: ANALYZE, 2017. [Online]. Avail-
able: https://www.postgresql.org/docs/current/sql-analyze.
html.

[29] ——, PostgreSQL: Documentation: 11: Row Estimation Examples, 2017. [Online].
Available: https://www.postgresql.org/docs/current/row-
estimation-examples.html.

[30] ——, PostgreSQL: Documentation: 11: How the Planner Uses Statistics, 2017.
[Online]. Available: https://www.postgresql.org/docs/current/
planner-stats-details.html.

[31] ——, PostgreSQL: Documentation: 11: 19.10. Automatic Vacuuming, 2017. [On-
line]. Available: https://www.postgresql.org/docs/current/
runtime-config-autovacuum.html#GUC-AUTOVACUUM-NAPTIME.

[32] ——, PostgreSQL: Documentation: 11: 24.1. Routine Vacuuming, 2017. [Online].
Available: https://www.postgresql.org/docs/current/routine-
vacuuming.html#AUTOVACUUM.

[33] A. Swami and K. B. Schiefer, “On the estimation of join result sizes”, in Advances
in Database Technology EDBT ’94. EDBT 1994, Springer, Berlin, Heidelberg,
1994, pp. 287–300. DOI: 10.1007/3-540-57818-8{_}58. [Online]. Avail-
able: http://link.springer.com/10.1007/3-540-57818-8_58.

109

https://www.amazon.com/Probability-Statistics-Engineers-Scientists-Global/dp/1292161361
https://www.amazon.com/Probability-Statistics-Engineers-Scientists-Global/dp/1292161361
https://doi.org/10.14778/2824032.2824078
https://dev.mysql.com/doc/refman/8.0/en/analyze-table.html
https://dev.mysql.com/doc/refman/8.0/en/analyze-table.html
https://docs.oracle.com/cd/B19306_01/server.102/b14211/stats.htm#g49431
https://docs.oracle.com/cd/B19306_01/server.102/b14211/stats.htm#g49431
https://blogs.oracle.com/optimizer/extended-statistics
https://blogs.oracle.com/oraclemagazine/on-dynamic-sampling
https://blogs.oracle.com/oraclemagazine/on-dynamic-sampling
https://blogs.oracle.com/optimizer/dynamic-sampling-and-its-impact-on-the-optimizer
https://blogs.oracle.com/optimizer/dynamic-sampling-and-its-impact-on-the-optimizer
https://www.postgresql.org/docs/current/sql-analyze.html
https://www.postgresql.org/docs/current/sql-analyze.html
https://www.postgresql.org/docs/current/row-estimation-examples.html
https://www.postgresql.org/docs/current/row-estimation-examples.html
https://www.postgresql.org/docs/current/planner-stats-details.html
https://www.postgresql.org/docs/current/planner-stats-details.html
https://www.postgresql.org/docs/current/runtime-config-autovacuum.html#GUC-AUTOVACUUM-NAPTIME
https://www.postgresql.org/docs/current/runtime-config-autovacuum.html#GUC-AUTOVACUUM-NAPTIME
https://www.postgresql.org/docs/current/routine-vacuuming.html#AUTOVACUUM
https://www.postgresql.org/docs/current/routine-vacuuming.html#AUTOVACUUM
https://doi.org/10.1007/3-540-57818-8{_}58
http://link.springer.com/10.1007/3-540-57818-8_58

[34] K. A. Hole and H. O. Eggen, “Cross-shard querying in MySQL”, Norwegian Uni-
versity of Science and Technology, Tech. Rep., 2019, p. 46.

[35] Python, 3.8.0 Documentation. [Online]. Available: https://docs.python.
org/3/.

[36] NumPy, Overview NumPy v1.18.dev Manual. [Online]. Available: https://
numpy.org/devdocs/.

[37] Pandas, pandas: powerful Python data analysis toolkit pandas 0.25.3 documen-
tation. [Online]. Available: https://pandas.pydata.org/pandas-
docs/stable/.

[38] Seaborn, Statistical data visualization Seaborn 0.9.0 documentation. [Online]. Avail-
able: https://seaborn.pydata.org/.

110

https://docs.python.org/3/
https://docs.python.org/3/
https://numpy.org/devdocs/
https://numpy.org/devdocs/
https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/
https://seaborn.pydata.org/

Appendix

The appendix included below contains the files created during this project which we con-
sider to be most interesting, this includes the source code to the plugin and rules them-
selves, the mtr code used to perform our tests, and the python code that generates the data
used and which interprets the result file generated by mtr and creates our graphs. These
files and all other files created during this project are also available on github4.

histogram updater.cc

1 /* File for the histogram updater plugin containing the system variables
and corresponding update functions

2 * Also containts the plugin defition and calling functions, as well as
the actual histogram updating query */

3

4 /* Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights
reserved.

5

6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License, version 2.0,
8 as published by the Free Software Foundation.
9

10 This program is also distributed with certain software (including
11 but not limited to OpenSSL) that is licensed under separate terms,
12 as designated in a particular file or component or in included license
13 documentation. The authors of MySQL hereby grant you an additional
14 permission to link the program and your derivative works with the
15 separately licensed software that they have included with MySQL.
16

17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License, version 2.0, for more details.
21

22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301

USA */
25

26 #include <ctype.h>
27 #include <mysql/components/services/log_builtins.h>
28 #include <mysql/plugin.h>
29 #include <mysql/plugin_audit.h>
30 #include <mysql/psi/mysql_memory.h>
31 #include <mysql/service_mysql_alloc.h>
32 #include <string.h>
33 #include <thread>

4https://github.com/Vestrheim/mysql-server/tree/testcases

111

https://github.com/Vestrheim/mysql-server/tree/testcases
https://github.com/Vestrheim/mysql-server/tree/testcases

34

35

36 #include "my_inttypes.h"
37 #include "my_psi_config.h"
38 #include "my_thread.h" // my_thread_handle needed by mysql_memory.h
39

40 #include <iostream>
41

42 #include "plugin/histogram_updater/distributed_query_rewriter.h"
43 #include "plugin/histogram_updater/distributed_query.h"
44 #include "plugin/histogram_updater/query_acceptance.h"
45 #include "plugin/histogram_updater/internal_query/internal_query_session.h

"
46 #include "plugin/histogram_updater/internal_query/sql_resultset.h"
47 #include "plugin/histogram_updater/helpers.h"
48 #include "plugin/histogram_updater/histogram_updater.h"
49

50 #define PLUGIN_NAME "Histrogram Updater"
51

52 //Declare internal variables
53

54

55 /// Updater function for the status variable ..._rule.
56 static void update_rule(MYSQL_THD, SYS_VAR *, void *, const void *save) {
57 sys_var_update_rule = *static_cast<const int *>(save);
58 }
59

60 /// Updater function for the status variable ...statements_between_updates
.

61 static void update_statements_between_updates(MYSQL_THD, SYS_VAR *, void
*, const void *save) {

62 sys_var_statements_between_updates = *static_cast<const int *>(save);
63 }
64

65 /// Updater function for the status variable ...insert_weight.
66 static void update_insert_weight(MYSQL_THD, SYS_VAR *, void *, const void

*save) {
67 sys_var_insert_weight = *static_cast<const double *>(save);
68 }
69

70 /// Updater function for the status variable ...delete_weight.
71 static void update_delete_weight(MYSQL_THD, SYS_VAR *, void *, const void

*save) {
72 sys_var_delete_weight = *static_cast<const double *>(save);
73 }
74

75 /// Updater function for the status variable ...ratio_for_update.
76 static void update_ratio_for_updates(MYSQL_THD, SYS_VAR *, void *, const

void *save) {
77 sys_var_ratio_for_update = *static_cast<const double *>(save);
78 }
79

80 /// Updater function for the status variable ...outside_boundary_weight.
81 static void update_outside_boundary_weight(MYSQL_THD, SYS_VAR *, void *,

const void *save) {
82 sys_var_outside_boundary_weight = *static_cast<const double *>(save);
83 }

112

84

85 /// Updater function for the status variable ...
inverse_sensitivity_to_change.

86 static void update_inverse_sensitivity_to_change(MYSQL_THD, SYS_VAR *,
void *, const void *save) {

87 sys_var_inverse_sensitivity_to_change = *static_cast<const int *>(save
);

88 }
89

90

91 static MYSQL_SYSVAR_INT(rule, // Name.
92 sys_var_update_rule, // Variable.
93 PLUGIN_VAR_NOCMDARG, // Not a command-line

argument.
94 "Tells " PLUGIN_NAME " what updating rule should

be followed",
95 NULL, // Check function.
96 update_rule, // Update function.
97 0, // Default value.
98 0, // Min value.
99 10, // Max value.

100 1 // Block size.
101);
102

103 static MYSQL_SYSVAR_INT(statements_between_updates, // Name.
104 sys_var_statements_between_updates, //

Variable.
105 PLUGIN_VAR_NOCMDARG, // Not a command-line

argument.
106 "Tells " PLUGIN_NAME " how many statements there

should be between updates in rule 2, 3 and 7",
107 NULL, // Check function.
108 update_statements_between_updates, // Update

function.
109 10000, // Default value.
110 0, // Min value.
111 INT_MAX, // Max value.
112 1 // Block size.
113);
114

115 static MYSQL_SYSVAR_DOUBLE(insert_weight, // Name.
116 sys_var_insert_weight, // Variable.
117 PLUGIN_VAR_NOCMDARG, // Not a command-line

argument.
118 "Tells " PLUGIN_NAME " how important we think

insert statements are",
119 NULL, // Check function.
120 update_insert_weight, // Update function.
121 5, // Default value.
122 0, // Min value.
123 INT_MAX, // Max value.
124 1 // Block size.
125);
126

127 static MYSQL_SYSVAR_DOUBLE(delete_weight, // Name.
128 sys_var_delete_weight, // Variable.
129 PLUGIN_VAR_NOCMDARG, // Not a command-line

113

argument.
130 "Tells " PLUGIN_NAME " how important we think

delete statements are",
131 NULL, // Check function.
132 update_delete_weight, // Update function.
133 5, // Default value.
134 0, // Min value.
135 INT_MAX, // Max value.
136 1 // Block size.
137);
138

139 static MYSQL_SYSVAR_DOUBLE(ratio_for_update, // Name.
140 sys_var_ratio_for_update, // Variable.
141 PLUGIN_VAR_NOCMDARG, // Not a command-line

argument.
142 "Tells " PLUGIN_NAME " what the ratio of updated

rows in a table must be to force an update",
143 NULL, // Check function.
144 update_ratio_for_updates, // Update function.
145 0.05, // Default value.
146 0.00001, // Min value.
147 10000, // Max value.
148 1 // Block size.
149);
150

151 static MYSQL_SYSVAR_DOUBLE(outside_boundary_weight, // Name.
152 sys_var_outside_boundary_weight, // Variable.
153 PLUGIN_VAR_NOCMDARG, // Not a command-line

argument.
154 "Tells " PLUGIN_NAME " how important updates that

are outside the boundary of a histogram are regarded",
155 NULL, // Check function.
156 update_outside_boundary_weight, // Update

function.
157 5, // Default value.
158 0, // Min value.
159 INT_MAX, // Max value.
160 1 // Block size.
161);
162

163 static MYSQL_SYSVAR_INT(inverse_sensitivity_to_change, //
Name.

164 sys_var_inverse_sensitivity_to_change, //
Variable.

165 PLUGIN_VAR_NOCMDARG, // Not a command-line
argument.

166 "Tells " PLUGIN_NAME " how important updates that
are outside the boundary of a histogram are regarded",

167 NULL, // Check function.
168 update_inverse_sensitivity_to_change, // Update

function.
169 5000, // Default value.
170 0, // Min value.
171 INT_MAX, // Max value.
172 1 // Block size.
173);
174

114

175 SYS_VAR *histogram_rewriter_plugin_sys_vars[] = {MYSQL_SYSVAR(rule),
176 MYSQL_SYSVAR(

statements_between_updates),
177 MYSQL_SYSVAR(

insert_weight),
178 MYSQL_SYSVAR(

delete_weight),
179 MYSQL_SYSVAR(

ratio_for_update),
180 MYSQL_SYSVAR(

outside_boundary_weight),
181 MYSQL_SYSVAR(

inverse_sensitivity_to_change),NULL};
182

183

184 static int histogram_updater_notify(MYSQL_THD thd, mysql_event_class_t
event_class,

185 const void *event);
186

187 /* instrument the memory allocation */
188 #ifdef HAVE_PSI_INTERFACE
189 static PSI_memory_key key_memory_lundgren;
190

191 static PSI_memory_info all_rewrite_memory[] = {
192 {&key_memory_lundgren, "histogram_updater", 0, 0, PSI_DOCUMENT_ME}};
193

194 static int plugin_init(MYSQL_PLUGIN) {
195 const char *category = "sql";
196 int count;
197 table_size = -1;
198 current_bounds.lower_bound = -1;
199 current_bounds.upper_bound = -1;
200 count = static_cast<int>(array_elements(all_rewrite_memory));
201 rule_2_counter = 0; //Init counters to 0
202 rule_3_counter = 0;
203

204 sys_var_update_rule = 0; // Intialise with the rule set to don't
update histograms.

205

206 /*
207 MYSQL_THD thd;
208 mysql_memory_register(category, all_rewrite_memory, count);
209 std::string create_table = "CREATE TABLE IF NOT EXISTS tester (\n"
210 " test_id INT AUTO_INCREMENT,\n"
211 " text VARCHAR(255) NOT NULL,\n";
212 char *init_query;
213 strncpy(init_query, create_table.c_str(), sizeof(create_table));
214 MYSQL_LEX_STRING new_query = {init_query, sizeof(init_query)};
215 mysql_parser_parse(thd, new_query, false, NULL, NULL);
216

217 */
218 return 0; /* success */
219 }
220 #else
221 #define plugin_init NULL
222 #define key_memory_lundgren PSI_NOT_INSTRUMENTED
223 #endif /* HAVE_PSI_INTERFACE */

115

224

225

226

227 /* Audit plugin descriptor */
228 static struct st_mysql_audit lundgren_descriptor = {
229 MYSQL_AUDIT_INTERFACE_VERSION, /* interface version */
230 NULL, /* release_thd() */
231 histogram_updater_notify, /* event_notify() */
232 {
233 0,
234 0,
235 (unsigned long)MYSQL_AUDIT_PARSE_ALL,
236 } /* class mask */
237 };
238

239 /* Plugin descriptor */
240 mysql_declare_plugin(audit_log){
241 MYSQL_AUDIT_PLUGIN, /* plugin type */
242 &lundgren_descriptor, /* type specific descriptor */
243 "histogram_updater", /* plugin name */
244 "Sevre Vestrheim", /* author */
245 "Histogram updater plugin", /* description */
246 PLUGIN_LICENSE_GPL, /* license */
247 plugin_init, /* plugin initializer */
248 NULL, /* plugin check uninstall */
249 NULL, /* plugin deinitializer */
250 0x0001, /* version */
251 NULL, /* status variables */
252 histogram_rewriter_plugin_sys_vars, /* system variables

*/
253 NULL, /* reserverd */
254 0 /* flags */
255 } mysql_declare_plugin_end;
256

257

258 void connect_and_run(const char* table)
259 {
260 Internal_query_session *session = new Internal_query_session();
261 int fail =session->execute_resultless_query("USE test");
262 char query[200];
263 strcpy(query,"Analyze table ");
264 strcat(query,table);
265 strcat(query," Update histogram on msm_value");
266 // std::string builder = "Analyze table ";
267 // builder += table;
268 // builder += " Update histograms on text";
269 // const char* query = builder.c_str();
270 Sql_resultset *resultset = session->execute_query(query); //Analyze

table measurement Update histograms on msm_value
271 delete session;
272

273 }
274

275 /**
276 Entry point to the plugin. The server calls this function after each

parsed
277 query when the plugin is active.

116

278 */
279

280 static int histogram_updater_notify(MYSQL_THD thd, mysql_event_class_t
event_class,

281 const void *event) {
282 if (event_class == MYSQL_AUDIT_PARSE_CLASS) {
283 const struct mysql_event_parse *event_parse =
284 static_cast<const struct mysql_event_parse *>(event);
285 if (event_parse->event_subclass != MYSQL_AUDIT_PARSE_POSTPARSE ||

sys_var_update_rule == 0) {
286 return 0; //if we don't match our event class or the update

rule is 0 then don't do anything.
287 }
288

289 if (!update_histograms(thd, event_parse->query.str)) {
290 return 0;
291 }
292 // connect_and_run(table_name); we used to do this, but we only want

to update historams on one table, so let's simplify this for ourselves
293 connect_and_run("measurement");
294

295 }
296

297 return 0;
298 }

histogram updater.h

1 /* Header file with the needed variables for internal counters and system
variables */

2

3 #ifndef MYSQL_HISTOGRAM_UPDATER_H
4 #define MYSQL_HISTOGRAM_UPDATER_H
5

6 //Struct
7 struct histogram_bounds{
8 double lower_bound;
9 double upper_bound;

10 };
11

12 //System variables
13 int sys_var_update_rule; //Rule variable
14 int sys_var_statements_between_updates; //rule 2,3 between updates
15 double sys_var_insert_weight;
16 double sys_var_delete_weight;
17 double sys_var_ratio_for_update; //Ratio for updates to use for rule six

and nine
18 double sys_var_outside_boundary_weight;
19 int sys_var_inverse_sensitivity_to_change;
20

21 //Rule 2 variables
22 int rule_2_counter;
23

24 //Rule 3 variables
25 double rule_3_counter;
26

27

117

28 //Rule 6 variables
29 int rule_6_counter;
30 double rule_6_ratio;
31

32 //static int rule_6_base_no_between_updates = 200000;
33 int table_size;
34

35

36 //Rule 7 variables
37 double rule_7_counter;
38 double insert_value;
39 histogram_bounds current_bounds;
40

41

42 //Rule 9 variables
43 double no_of_statements = 0;
44 double rule_9_counter;
45 double rule_9_ratio;
46 #endif //MYSQL_HISTOGRAM_UPDATER_H

query acceptance.h

1 /* File containing the updating rules themselves and supporting functions
to query database for information about

2 * histograms and table size */
3

4 #include <string.h>
5 #include <mysql/service_parser.h>
6 #include "plugin/histogram_updater/constants.h"
7 #include "plugin/histogram_updater/histogram_updater.h"
8 #include "plugin/histogram_updater/internal_query/internal_query_session.h

"
9 #include "plugin/histogram_updater/internal_query/sql_resultset.h"

10 #include "plugin/histogram_updater/internal_query/sql_service_context.h"
11 #include "my_inttypes.h"
12 #include <regex>
13 #include <tuple>
14

15

16 #ifndef LUNDGREN_QUERY_ACCEPTANCE
17 #define LUNDGREN_QUERY_ACCEPTANCE
18

19 int fetch_measurement_table_size()
20 {
21 Internal_query_session *session = new Internal_query_session();
22 int fail =session->execute_resultless_query("USE test");
23 char query[200];
24 strcpy(query,"select concat('',count(*)) from measurement;");
25 Sql_resultset *resultset = session->execute_query(query); //Analyze

table measurement Update histograms on msm_value
26 if (resultset->get_rows()>0){
27 resultset->first();
28 int number_of_rows = atoi(resultset->getString(0));
29 delete session;
30 return number_of_rows;
31 }
32 else {

118

33 delete session;
34 return -1;
35 }
36 }
37

38

39 histogram_bounds fetch_histogram_boundaries() {
40 histogram_bounds new_histogram_bounds;
41 Internal_query_session *session = new Internal_query_session();
42 int fail = session->execute_resultless_query("USE test");
43 char query[2000];
44 strcpy(query, "SELECT TABLE_NAME,COLUMN_NAME,CAST(JSON_EXTRACT(

HISTOGRAM,'$.buckets[0][0]')AS CHAR) AS LOWER_BOUND, CAST(JSON_EXTRACT
(HISTOGRAM,CONCAT(\"$.buckets[\",JSON_LENGTH(`HISTOGRAM` ->> '$.
buckets')-1,\"][1]\"))AS CHAR) AS UPPER_BOUND FROM INFORMATION_SCHEMA.
COLUMN_STATISTICS WHERE SCHEMA_NAME = \"test\";");

45 Sql_resultset *resultset = session->execute_query(query); //Analyze
table measurement Update histograms on msm_value

46 if (resultset->get_rows()>0) {
47 resultset->first();
48 new_histogram_bounds.lower_bound = atof(resultset->getString(2));
49 new_histogram_bounds.upper_bound = atof(resultset->getString(3));
50 }
51 else{
52 new_histogram_bounds.lower_bound = 0;
53 new_histogram_bounds.upper_bound = 0;
54 }
55 delete session;
56 return new_histogram_bounds;
57 }
58

59

60 static bool update_histograms(MYSQL_THD thd, const char *query) {
61

62 int type = mysql_parser_get_statement_type(thd);
63

64 //RULE 1
65 if (sys_var_update_rule == 1 && type == STATEMENT_TYPE_INSERT) {

//Rule 1 means update for every insert.
66 return true;
67 }
68

69 //RULE 2
70 else if (sys_var_update_rule == 2 && (type == STATEMENT_TYPE_INSERT ||

type == STATEMENT_TYPE_DELETE || type == STATEMENT_TYPE_UPDATE)){
//Rule 2 has a set number of runs between each update, defined in

histogram_updater.h
71 rule_2_counter++;
72 if (std::fmod(rule_2_counter,sys_var_statements_between_updates) <

1){
73 return true;
74 }
75 else {
76 return false;
77 }
78 }
79

119

80 //RULE 3
81 else if (sys_var_update_rule == 3 && (type == STATEMENT_TYPE_INSERT ||

type == STATEMENT_TYPE_DELETE || type == STATEMENT_TYPE_UPDATE)){
82 if (type == STATEMENT_TYPE_INSERT){
83 rule_3_counter += 1*sys_var_insert_weight;
84 }
85 if (type == STATEMENT_TYPE_DELETE){
86 rule_3_counter += 1*sys_var_delete_weight;
87 }
88 if (type == STATEMENT_TYPE_UPDATE){
89 rule_3_counter += 1*1;
90 }
91 if (std::fmod(rule_3_counter,sys_var_statements_between_updates) <

std::min(sys_var_delete_weight,sys_var_insert_weight)){
92 //printf("HEIHEI %d\n", rule_3_counter);
93 rule_3_counter = 0;
94 return true;
95 }
96 else {
97 return false;
98 }
99 }

100

101 //RULE 6
102 else if (sys_var_update_rule == 6 && (type == STATEMENT_TYPE_INSERT ||

type == STATEMENT_TYPE_DELETE || type == STATEMENT_TYPE_UPDATE)){
103 if (table_size == -1 || table_size == 0){
104 table_size = fetch_measurement_table_size();
105 }
106 rule_6_counter++;
107 rule_6_ratio = (table_size!=0&&table_size!=-1)? (double)

rule_6_counter/double(table_size) : 0;
108 if (rule_6_ratio > sys_var_ratio_for_update){
109 rule_6_counter = 0;
110 table_size =-1;
111 return true;
112 }
113 else{
114 return false;
115 }
116 }
117

118 //RULE 7
119 else if (sys_var_update_rule == 7 && (type == STATEMENT_TYPE_INSERT ||

type == STATEMENT_TYPE_DELETE || type == STATEMENT_TYPE_UPDATE)){
120

121 if (type == STATEMENT_TYPE_INSERT){//Get the inserted value
122 std::string result;
123 std::regex re("(\\d{2}\\.\\d{3,4})");
124 std::cmatch match;
125 if (std::regex_search(query, match, re) && match.size() > 1) {
126 result = match.str(1);
127 } else {
128 result = std::string("");
129 insert_value = -1;
130 }
131 if (result.length()>0){

120

132 insert_value = atof(result.c_str());
133 }
134 }
135 if (current_bounds.lower_bound==-1 && current_bounds.upper_bound

== -1){ //Intialize/ fetch new data if required
136 current_bounds = fetch_histogram_boundaries();
137 }
138 if (type == STATEMENT_TYPE_INSERT && (current_bounds.upper_bound <

insert_value || insert_value < current_bounds.lower_bound)){ //
statement outside range

139 rule_7_counter += 1*sys_var_outside_boundary_weight;
140 }
141 else {//Statment inside range or delete statement
142 rule_7_counter++;
143 }
144 if ((sys_var_statements_between_updates-rule_7_counter) <

sys_var_outside_boundary_weight){//Do we need to udpate?
145 rule_7_counter = 0;
146 current_bounds.lower_bound = -1;
147 current_bounds.upper_bound = -1;
148 return true;
149 }
150 else{
151 return false;
152 }
153 }
154

155 //RULE 9
156 else if (sys_var_update_rule == 9 && (type == STATEMENT_TYPE_INSERT ||

type == STATEMENT_TYPE_DELETE || type == STATEMENT_TYPE_UPDATE)){
157 no_of_statements += 1;
158 if (table_size == -1 || table_size == 0){
159 table_size = fetch_measurement_table_size();
160 }
161 if (type == STATEMENT_TYPE_INSERT){//Get the inserted value
162 std::string result;
163 std::regex re("(\\d{2}\\.\\d{3,4})");
164 std::cmatch match;
165 if (std::regex_search(query, match, re) && match.size() > 1) {
166 result = match.str(1);
167 } else {
168 result = std::string("");
169 insert_value = -1;
170 }
171 if (result.length()>0){
172 insert_value = atof(result.c_str());
173 }
174 }
175 if (current_bounds.lower_bound==-1 && current_bounds.upper_bound

== -1){ //Intialize/ fetch new data if required
176 current_bounds = fetch_histogram_boundaries();
177 }
178 if (type == STATEMENT_TYPE_INSERT && (current_bounds.upper_bound <

insert_value || insert_value < current_bounds.lower_bound)){ //
statement outside range

179 rule_9_counter += 1*sys_var_outside_boundary_weight;
180 } else if (type == STATEMENT_TYPE_INSERT){

121

181 rule_9_counter += 1*sys_var_insert_weight;
182 } else if (type == STATEMENT_TYPE_DELETE){
183 rule_9_counter += 1*sys_var_delete_weight;
184 } else {
185 rule_9_counter ++;
186 }
187

188 rule_9_ratio = (table_size!=0&&table_size!=-1)? double(
no_of_statements)/double(table_size) : 1;

189

190 if (rule_9_counter*rule_9_ratio >
sys_var_inverse_sensitivity_to_change){

191 rule_9_counter = 0;
192 no_of_statements = 0;
193 table_size = -1;
194 current_bounds.lower_bound = -1;
195 current_bounds.upper_bound = -1;
196 return true;
197 }
198 else {
199 return false;
200 }
201 }
202

203

204 else { //Rule is not handled, don't update
205 return false;
206 }
207

208 }
209

210

211 #endif

execute timing.test

1 #The master file for executing our tests. This file configures the
paramters and calls the handlers for different rules to execute and
test, it also reports the testing progress using the append_file
function to write to a specified file.

2

3 --echo #
4 --echo #Master test for timing:
5 --echo #
6

7 --let $param_run_no = 1
8 --let $no_of_measurements = 30
9 --let $histogram_plugin_initialized = 0

10

11 --disable_query_log
12 --disable_result_log
13

14 #Run a full set of tests against all rules.
15

16 #initialise all weight params first to default values
17 --let $weight_param_1 = 10000
18 --let $weight_param_2 = 0.05

122

19 --let $weight_param_3 = 5
20 --let $weight_param_4 = 5000
21 --let $weight_param_5 = 5
22 --let $weight_param_6 = 5
23

24

25 --write_file suite/histogram_plugin/$reporting_while_running_location
26 Starting test
27 Starting single param rules
28 EOF
29

30 #Test the single param rules first !!!
31 --let $weight_param_1 = 10000
32 --let $weight_param_2 = 0.05
33 --source suite/histogram_plugin/include/Single_param_result_set.include
34 append_file suite/histogram_plugin/$reporting_while_running_location;
35 First set of single params - Complete
36 EOF
37

38 #Test the single param rules first !!!
39 --let $weight_param_1 = 20000
40 --let $weight_param_2 = 0.1
41 --source suite/histogram_plugin/include/Single_param_result_set.include
42 append_file suite/histogram_plugin/$reporting_while_running_location;
43 Second set of single params - Complete
44 EOF
45

46 --let $weight_param_1 = 50000
47 --let $weight_param_2 = 0.25
48 --source suite/histogram_plugin/include/Single_param_result_set.include
49 append_file suite/histogram_plugin/$reporting_while_running_location;
50 Third set of single params - Complete
51 EOF
52

53 --let $weight_param_1 = 70000
54 --let $weight_param_2 = 0.5
55 --source suite/histogram_plugin/include/Single_param_result_set.include
56 append_file suite/histogram_plugin/$reporting_while_running_location;
57 Fourth set of single params - Complete
58 EOF
59

60 --let $weight_param_1 = 100000
61 --let $weight_param_2 = 0.75
62 --source suite/histogram_plugin/include/Single_param_result_set.include
63 append_file suite/histogram_plugin/$reporting_while_running_location;
64 Fifth set of single params - Complete
65 EOF
66

67 --let $weight_param_1 = 200000
68 --let $weight_param_2 = 0.9
69 --source suite/histogram_plugin/include/Single_param_result_set.include
70 append_file suite/histogram_plugin/$reporting_while_running_location;
71 Sixth set of single params - Complete
72 EOF
73

74 --let $weight_param_1 = 400000
75 --let $weight_param_2 = 0.95

123

76 --source suite/histogram_plugin/include/Single_param_result_set.include
77 append_file suite/histogram_plugin/$reporting_while_running_location;
78 Seventh set of single params - Complete
79 EOF
80

81 --let $weight_param_1 = 500000
82 --let $weight_param_2 = 1.00
83 --source suite/histogram_plugin/include/Single_param_result_set.include
84 append_file suite/histogram_plugin/$reporting_while_running_location;
85 Eight set of single params - Complete
86 EOF
87

88 --let $weight_param_1 = 700000
89 --let $weight_param_2 = 1.05
90 --source suite/histogram_plugin/include/Single_param_result_set.include
91 append_file suite/histogram_plugin/$reporting_while_running_location;
92 Ninth set of single params - Complete
93 EOF
94

95 --let $weight_param_1 = 1000000
96 --let $weight_param_2 = 1.50
97 --source suite/histogram_plugin/include/Single_param_result_set.include
98 append_file suite/histogram_plugin/$reporting_while_running_location;
99 Tenth set of single params - Complete

100 EOF
101

102 --let $weight_param_1 = 5000000
103 --let $weight_param_2 = 3
104 --source suite/histogram_plugin/include/Single_param_result_set.include
105 append_file suite/histogram_plugin/$reporting_while_running_location;
106 Tenth set of single params - Complete
107 EOF
108

109 --let $weight_param_1 = 10000000
110 --let $weight_param_2 = 10
111 --source suite/histogram_plugin/include/Single_param_result_set.include
112 append_file suite/histogram_plugin/$reporting_while_running_location;
113 Elleventh set of single params - Complete
114 EOF
115

116 --let $weight_param_1 = 20000000
117 --let $weight_param_2 = 50
118 --source suite/histogram_plugin/include/Single_param_result_set.include
119 append_file suite/histogram_plugin/$reporting_while_running_location;
120 Twelveth set of single params - Complete
121 EOF
122

123 --let $weight_param_1 = 40000000
124 --let $weight_param_2 = 100
125 --source suite/histogram_plugin/include/Single_param_result_set.include
126 append_file suite/histogram_plugin/$reporting_while_running_location;
127 Thirteenth set of single params - Complete
128 EOF
129

130 append_file suite/histogram_plugin/$reporting_while_running_location;
131 Single param rules completed
132

124

133 Starting multiparam with rule 7
134 EOF
135

136 ###WE DO NOT TEST RULE THREE ANYMORE SINCE OUR USE-CASE DOES NOT PROPERLY
SUPPORT IT

137 ##Now we move on to testing the multi param rules
138 #Reset param run counter
139 #--let $param_run_no = 1
140 ##Starting with rule 3
141 #--let $weight_param_1 = 400000
142 #--let $weight_param_5 = 10
143 #--let $weight_param_6 = 1
144 #--source suite/histogram_plugin/include/testing_rule_3.include
145

146 #--let $weight_param_1 = 400000
147 #--let $weight_param_5 = 10
148 #--let $weight_param_6 = 2
149 #--source suite/histogram_plugin/include/testing_rule_3.include
150

151 #--let $weight_param_1 = 400000
152 #--let $weight_param_5 = 10
153 #--let $weight_param_6 = 4
154 #--source suite/histogram_plugin/include/testing_rule_3.include
155

156 #--let $weight_param_1 = 400000
157 #--let $weight_param_5 = 10
158 #--let $weight_param_6 = 8
159 #--source suite/histogram_plugin/include/testing_rule_3.include
160

161 #--let $weight_param_1 = 400000
162 #--let $weight_param_5 = 1
163 #--let $weight_param_6 = 10
164 #--source suite/histogram_plugin/include/testing_rule_3.include
165

166 #--let $weight_param_1 = 400000
167 #--let $weight_param_5 = 2
168 #--let $weight_param_6 = 10
169 #--source suite/histogram_plugin/include/testing_rule_3.include
170

171 #--let $weight_param_1 = 400000
172 #--let $weight_param_5 = 4
173 #--let $weight_param_6 = 10
174 #--source suite/histogram_plugin/include/testing_rule_3.include
175

176 #--let $weight_param_1 = 400000
177 #--let $weight_param_5 = 8
178 #--let $weight_param_6 = 10
179 #--source suite/histogram_plugin/include/testing_rule_3.include
180

181 #--let $weight_param_1 = 400000
182 #--let $weight_param_5 = 5
183 #--let $weight_param_6 = 10
184 #--source suite/histogram_plugin/include/testing_rule_3.include
185

186 #--let $weight_param_1 = 400000
187 #--let $weight_param_5 = 10
188 #--let $weight_param_6 = 5

125

189 #--source suite/histogram_plugin/include/testing_rule_3.include
190

191 #--let $weight_param_1 = 400000
192 #--let $weight_param_5 = 5
193 #--let $weight_param_6 = 5
194 #--source suite/histogram_plugin/include/testing_rule_3.include
195 #append_file suite/histogram_plugin/$reporting_while_running_location;
196 #Rule 3 - Completed
197 #Starting multiparam with rule 7
198 #EOF
199

200

201 #Moving on to rule 7
202 #Reset param run counter
203 --let $param_run_no = 1
204 #Then set first run of params
205 --let $weight_param_1 = 400000
206 --let $weight_param_3 = 1
207 --source suite/histogram_plugin/include/testing_rule_7.include
208

209

210 --let $weight_param_3 = 10
211 --source suite/histogram_plugin/include/testing_rule_7.include
212

213

214 --let $weight_param_3 = 20
215 --source suite/histogram_plugin/include/testing_rule_7.include
216

217

218 --let $weight_param_3 = 100
219 --source suite/histogram_plugin/include/testing_rule_7.include
220

221

222 --let $weight_param_3 = 200
223 --source suite/histogram_plugin/include/testing_rule_7.include
224 append_file suite/histogram_plugin/$reporting_while_running_location;
225 Rule 7 - Completed
226

227 Starting multiparam with rule 9
228 EOF
229

230

231

232 #Moving on to rule 9
233 #Reset param run counter
234 --let $param_run_no = 1
235 #Then set first run of params
236 --let $weight_param_3 = 1
237 --let $weight_param_4 = 10000
238 --let $weight_param_5 = 1
239 --let $weight_param_6 = 1
240 --source suite/histogram_plugin/include/testing_rule_9.include
241

242 --let $weight_param_4 = 20000
243 --source suite/histogram_plugin/include/testing_rule_9.include
244

245 --let $weight_param_4 = 100000

126

246 --source suite/histogram_plugin/include/testing_rule_9.include
247

248 --let $weight_param_4 = 200000
249 --source suite/histogram_plugin/include/testing_rule_9.include
250

251 --let $weight_param_4 = 1000000
252 --source suite/histogram_plugin/include/testing_rule_9.include
253

254 --let $weight_param_4 = 5000000
255 --source suite/histogram_plugin/include/testing_rule_9.include
256

257 --let $weight_param_4 = 10000000
258 --source suite/histogram_plugin/include/testing_rule_9.include
259

260 --let $weight_param_4 = 100000000
261 --source suite/histogram_plugin/include/testing_rule_9.include
262 append_file suite/histogram_plugin/$reporting_while_running_location;
263 Rule 9 - Completed
264

265 Test Complete - All rules complete
266 EOF
267

268 #Cleanup
269 --source suite/histogram_plugin/include/restart_server.include

queries.test

1 #MTR file which handles running all queries for one partition and
gathering the timing and histogram results

2

3 --echo #
4 --echo #running queries:
5 --echo #
6

7 --let $i = $no_of_runs
8 --disable_query_log
9 --disable_result_log

10

11 use test;
12

13 while ($i)
14 {
15

16 # select * from test.measurement join test.server on test.measurement.
msm_serv_id = test.server.serv_id where test.measurement.msm_value
>80;

17 # select * from test.measurement join test.server on test.measurement.
msm_serv_id = test.server.serv_id where test.measurement.msm_value
<80;

18 # select * from test.measurement join test.server on test.measurement.
msm_serv_id = test.server.serv_id join test.rack on test.rack.rack_id
= test.server.serv_rack_id where test.measurement.msm_value >80;

19 # select * from test.measurement join test.server on test.measurement.
msm_serv_id = test.server.serv_id join test.rack on test.rack.rack_id
= test.server.serv_rack_id where test.measurement.msm_value <80;

20 # select * from test.measurement join test.server on test.measurement.
msm_serv_id = test.server.serv_id join test.rack on test.rack.rack_id

127

= test.server.serv_rack_id where test.measurement.msm_value between 80
and 100;

21 select * from test.measurement join test.server on test.measurement.
msm_serv_id = test.server.serv_id join test.rack on test.rack.rack_id
= test.server.serv_rack_id join test.center on test.center.cent_id =
test.rack.rack_cent_id where test.measurement.msm_value >80;

22 select * from test.measurement join test.server on test.measurement.
msm_serv_id = test.server.serv_id join test.rack on test.rack.rack_id
= test.server.serv_rack_id join test.center on test.center.cent_id =
test.rack.rack_cent_id where test.measurement.msm_value <80;

23 select * from test.measurement join test.server on test.measurement.
msm_serv_id = test.server.serv_id join test.rack on test.rack.rack_id
= test.server.serv_rack_id join test.center on test.center.cent_id =
test.rack.rack_cent_id where test.measurement.msm_value >90;

24 select * from test.measurement join test.server on test.measurement.
msm_serv_id = test.server.serv_id join test.rack on test.rack.rack_id
= test.server.serv_rack_id join test.center on test.center.cent_id =
test.rack.rack_cent_id where test.measurement.msm_value <90;

25 select * from test.measurement join test.server on test.measurement.
msm_serv_id = test.server.serv_id join test.rack on test.rack.rack_id
= test.server.serv_rack_id join test.center on test.center.cent_id =
test.rack.rack_cent_id where test.measurement.msm_value between 80 and
100;

26 select * from test.measurement join test.server on test.measurement.
msm_serv_id = test.server.serv_id join test.rack on test.rack.rack_id
= test.server.serv_rack_id join test.center on test.center.cent_id =
test.rack.rack_cent_id where test.measurement.msm_value between 90 and
100;

27 select * from test.measurement join test.server on test.measurement.
msm_serv_id = test.server.serv_id join test.rack on test.rack.rack_id
= test.server.serv_rack_id join test.center on test.center.cent_id =
test.rack.rack_cent_id join test.city on test.city.city_id = test.
center.cent_city_id where test.measurement.msm_value >80;

28 select * from test.measurement join test.server on test.measurement.
msm_serv_id = test.server.serv_id join test.rack on test.rack.rack_id
= test.server.serv_rack_id join test.center on test.center.cent_id =
test.rack.rack_cent_id join test.city on test.city.city_id = test.
center.cent_city_id where test.measurement.msm_value <80;

29 select * from test.measurement join test.server on test.measurement.
msm_serv_id = test.server.serv_id join test.rack on test.rack.rack_id
= test.server.serv_rack_id join test.center on test.center.cent_id =
test.rack.rack_cent_id join test.city on test.city.city_id = test.
center.cent_city_id where test.measurement.msm_value <90;

30 select * from test.measurement join test.server on test.measurement.
msm_serv_id = test.server.serv_id join test.rack on test.rack.rack_id
= test.server.serv_rack_id join test.center on test.center.cent_id =
test.rack.rack_cent_id join test.city on test.city.city_id = test.
center.cent_city_id where test.measurement.msm_value >90;

31 select * from test.measurement join test.server on test.measurement.
msm_serv_id = test.server.serv_id join test.rack on test.rack.rack_id
= test.server.serv_rack_id join test.center on test.center.cent_id =
test.rack.rack_cent_id join test.city on test.city.city_id = test.
center.cent_city_id where test.measurement.msm_value between 80 and
100;

32 select * from test.measurement join test.server on test.measurement.
msm_serv_id = test.server.serv_id join test.rack on test.rack.rack_id
= test.server.serv_rack_id join test.center on test.center.cent_id =

128

test.rack.rack_cent_id join test.city on test.city.city_id = test.
center.cent_city_id where test.measurement.msm_value between 90 and
100;

33 dec $i;
34 }
35

36

37 --enable_result_log
38 #COLLECTING QUERY RUN TIMES
39 --eval select sql_text Query,truncate(((timer_end-timer_start)

/1000000000000),6) Duration,rows_sent "Returned rows",concat($param_1,
'') "Test type",concat('$weight_params','') "Supplied parameters",
concat('$param_run_no','') "Parameter run no", (select max(msm_id)
from measurement) "Number of Inserts" from performance_schema.
events_statements_history_long where sql_text like 'select * from test
.%' and event_id not in (

select ev.event_id from(select base.
sql_text,max(base.duration) duration from (select event_id,sql_text,
timer_end-timer_start duration from performance_schema.
events_statements_history_long where sql_text like 'select * from test
.%')as base group by base.sql_text) as max_values join (select
event_id,sql_text,timer_end-timer_start duration from
performance_schema.events_statements_history_long where sql_text like
'select * from test.%')as ev on ev.sql_text=max_values.sql_text and ev
.duration=max_values.duration

) order by sql_text;
40

41 #COLLECTING HISTOGRAM UPDATING TIMES
42 --eval select sql_text "Analyse statement",truncate(((sum(timer_end-

timer_start))/1000000000000),6) Duration,count(*) No_of_executes,
concat($param_1,'') "Test type", concat('$weight_params','') "Supplied
parameters", concat('$param_run_no','') "Parameter run no", (select

max(msm_id) from measurement) "Number of Inserts" from
performance_schema.events_statements_history_long where lower(sql_text
) like 'analyze table measurement update histogram on msm_value%'
group by sql_text;

43

44

45 #SHOWING THE CURRENT PLANS FOR QUERIES, SOME PLANS ARE DISABLED
46 --enable_query_log
47 #--eval explain format = tree select * /*$param_1 $param_2*/ from test.

measurement join test.server on test.measurement.msm_serv_id = test.
server.serv_id where test.measurement.msm_value >80;

48 #--eval explain format = tree select * /*$param_1 $param_2*/ from test.
measurement join test.server on test.measurement.msm_serv_id = test.
server.serv_id where test.measurement.msm_value <80;

49 #--eval explain format = tree select * /*$param_1 $param_2*/ from test.
measurement join test.server on test.measurement.msm_serv_id = test.
server.serv_id join test.rack on test.rack.rack_id = test.server.
serv_rack_id where test.measurement.msm_value >80;

50 #--eval explain format = tree select * /*$param_1 $param_2*/ from test.
measurement join test.server on test.measurement.msm_serv_id = test.
server.serv_id join test.rack on test.rack.rack_id = test.server.
serv_rack_id where test.measurement.msm_value <80;

51 #--eval explain format = tree select * /*$param_1 $param_2*/ from test.
measurement join test.server on test.measurement.msm_serv_id = test.
server.serv_id join test.rack on test.rack.rack_id = test.server.

129

serv_rack_id where test.measurement.msm_value between 80 and 100;
52 #--eval explain format = tree select * /*$param_1 $param_2*/ from test.

measurement join test.server on test.measurement.msm_serv_id = test.
server.serv_id join test.rack on test.rack.rack_id = test.server.
serv_rack_id join test.center on test.center.cent_id = test.rack.
rack_cent_id where test.measurement.msm_value >80;

53 #--eval explain format = tree select * /*$param_1 $param_2*/ from test.
measurement join test.server on test.measurement.msm_serv_id = test.
server.serv_id join test.rack on test.rack.rack_id = test.server.
serv_rack_id join test.center on test.center.cent_id = test.rack.
rack_cent_id where test.measurement.msm_value <80;

54 #--eval explain format = tree select * /*$param_1 $param_2*/ from test.
measurement join test.server on test.measurement.msm_serv_id = test.
server.serv_id join test.rack on test.rack.rack_id = test.server.
serv_rack_id join test.center on test.center.cent_id = test.rack.
rack_cent_id where test.measurement.msm_value between 80 and 100;

55 --eval explain select * /*$param_1 $param_2*/ from test.measurement join
test.server on test.measurement.msm_serv_id = test.server.serv_id join
test.rack on test.rack.rack_id = test.server.serv_rack_id join test.

center on test.center.cent_id = test.rack.rack_cent_id join test.city
on test.city.city_id = test.center.cent_city_id where test.measurement
.msm_value >80;

56 #--eval explain select * /*$param_1 $param_2*/ from test.measurement join
test.server on test.measurement.msm_serv_id = test.server.serv_id join
test.rack on test.rack.rack_id = test.server.serv_rack_id join test.

center on test.center.cent_id = test.rack.rack_cent_id join test.city
on test.city.city_id = test.center.cent_city_id where test.measurement
.msm_value >80;

57 --eval explain select * /*$param_1 $param_2*/ from test.measurement join
test.server on test.measurement.msm_serv_id = test.server.serv_id join
test.rack on test.rack.rack_id = test.server.serv_rack_id join test.

center on test.center.cent_id = test.rack.rack_cent_id join test.city
on test.city.city_id = test.center.cent_city_id where test.measurement
.msm_value <80;

58 #--eval explain select * /*$param_1 $param_2*/ from test.measurement join
test.server on test.measurement.msm_serv_id = test.server.serv_id join
test.rack on test.rack.rack_id = test.server.serv_rack_id join test.

center on test.center.cent_id = test.rack.rack_cent_id join test.city
on test.city.city_id = test.center.cent_city_id where test.measurement
.msm_value <80;

59 --eval explain select * /*$param_1 $param_2*/ from test.measurement join
test.server on test.measurement.msm_serv_id = test.server.serv_id join
test.rack on test.rack.rack_id = test.server.serv_rack_id join test.

center on test.center.cent_id = test.rack.rack_cent_id join test.city
on test.city.city_id = test.center.cent_city_id where test.measurement
.msm_value <90;

60 #--eval explain select * /*$param_1 $param_2*/ from test.measurement join
test.server on test.measurement.msm_serv_id = test.server.serv_id join
test.rack on test.rack.rack_id = test.server.serv_rack_id join test.

center on test.center.cent_id = test.rack.rack_cent_id join test.city
on test.city.city_id = test.center.cent_city_id where test.measurement
.msm_value <90;

61 --eval explain select * /*$param_1 $param_2*/ from test.measurement join
test.server on test.measurement.msm_serv_id = test.server.serv_id join
test.rack on test.rack.rack_id = test.server.serv_rack_id join test.

center on test.center.cent_id = test.rack.rack_cent_id join test.city
on test.city.city_id = test.center.cent_city_id where test.measurement

130

.msm_value >90;
62 #--eval explain select * /*$param_1 $param_2*/ from test.measurement join

test.server on test.measurement.msm_serv_id = test.server.serv_id join
test.rack on test.rack.rack_id = test.server.serv_rack_id join test.

center on test.center.cent_id = test.rack.rack_cent_id join test.city
on test.city.city_id = test.center.cent_city_id where test.measurement
.msm_value >90;

63 --eval explain select * /*$param_1 $param_2*/ from test.measurement join
test.server on test.measurement.msm_serv_id = test.server.serv_id join
test.rack on test.rack.rack_id = test.server.serv_rack_id join test.

center on test.center.cent_id = test.rack.rack_cent_id join test.city
on test.city.city_id = test.center.cent_city_id where test.measurement
.msm_value between 80 and 100;

64 #--eval explain select * /*$param_1 $param_2*/ from test.measurement join
test.server on test.measurement.msm_serv_id = test.server.serv_id join
test.rack on test.rack.rack_id = test.server.serv_rack_id join test.

center on test.center.cent_id = test.rack.rack_cent_id join test.city
on test.city.city_id = test.center.cent_city_id where test.measurement
.msm_value between 80 and 100;

65 --eval explain select * /*$param_1 $param_2*/ from test.measurement join
test.server on test.measurement.msm_serv_id = test.server.serv_id join
test.rack on test.rack.rack_id = test.server.serv_rack_id join test.

center on test.center.cent_id = test.rack.rack_cent_id join test.city
on test.city.city_id = test.center.cent_city_id where test.measurement
.msm_value between 90 and 100;

66

67 --disable_query_log
68 --disable_result_log
69

70 --echo #Truncating the performance schema so that it's ready for the next
run.

71 truncate table performance_schema.events_statements_history_long;

Dataset notebook.py

1 #!/usr/bin/env python
2 # coding: utf-8
3

4 # In[1]:
5

6

7 #The file which creates the datasets and statements used for our tests.
8 get_ipython().run_line_magic('matplotlib', 'inline')
9 import numpy as np

10 import pandas as pa
11 import seaborn as sns
12 import matplotlib.pyplot as plt
13 import matplotlib.style as style
14 import csv
15 import glob, os
16 import re
17 from scipy.stats import uniform
18 import math
19 plt.style.use('seaborn')
20

21

22 # In[2]:

131

23

24

25 no_of_measurements = 6000000
26 no_of_partitions = 30
27

28 temp = no_of_measurements//no_of_partitions*0.33
29

30 no_of_servers = int(math.ceil(temp/5000)*5000)
31 no_of_racks = no_of_servers
32 no_of_centers = no_of_racks//2
33 no_of_city = no_of_centers
34 no_of_components = 4
35

36 multi = 1
37

38 print(temp)
39 print (no_of_servers)
40 print (no_of_racks)
41 print(no_of_centers)
42 print(no_of_city)
43

44

45 #Data used for the preliminary dataset
46 #no_of_measurements = 200000
47 #no_of_partitions = 20
48 #no_of_racks = 10000
49 #no_of_racks = no_of_servers
50 #no_of_centers = no_of_racks//2
51 #no_of_city = no_of_centers
52 #no_of_components = 4
53

54

55 # In[4]:
56

57

58 #Functions to create the datasets
59 float_formatter = lambda x: "%.4f" % x
60

61 def move_distribution(total,no_of_partitions):
62 i=0
63 strides_up = np.geomspace(60,105,no_of_partitions/2)
64 strides_down = np.flip(strides_up-1)
65 strides= np.append(strides_up,strides_down)
66 partitions = np.ones((no_of_partitions,total//no_of_partitions))
67 for partition in partitions:
68 partition*=np.random.normal(strides[i],3,len(partition))
69 i +=1
70 return partitions.flatten()#Output 1d array.
71

72 def create_measurement (multiplier):
73 msm_id = np.arange(no_of_measurements*multiplier)+1 #Shifting to first

id beeing 1
74 msm_datetime = np.round(np.linspace(start=1546300800,stop=1546300800+(

no_of_measurements*multiplier/100),num=no_of_measurements*multiplier)
,1)

75 msm_value = np.round(move_distribution(no_of_measurements,
no_of_partitions),4)#(np.random.normal(30,5,no_of_measurements*

132

multiplier),4)
76 msm_component_id = np.random.randint(1,no_of_components+1,

no_of_measurements)
77 msm_serv_id = np.random.randint(1,no_of_servers+1,no_of_measurements)
78

79 df = pa.DataFrame({
80 'msm_id':msm_id,
81 'msm_datetime':msm_datetime,
82 'msm_value':msm_value,
83 'msm_component_id':msm_component_id,
84 'msm_serv_id':msm_serv_id
85 })
86 df = df.astype({'msm_id':int,'msm_datetime':float,'msm_value':float,'

msm_component_id':int,'msm_serv_id':int})
87 return df
88

89

90 def create_server(multiplier):
91 serv_id = np.arange(no_of_servers*multiplier)+1
92 serv_rack_id = np.random.randint(1,no_of_racks+1,no_of_servers)
93 df = pa.DataFrame({
94 'serv_id':serv_id,
95 'serv_rack_id':serv_rack_id
96 })
97 df = df.astype({'serv_id':int,'serv_rack_id':int})
98 return df
99

100

101 def create_rack(multiplier):
102 rack_id = np.arange(no_of_racks*multiplier)+1
103 rack_cent_id = np.random.randint(1,no_of_centers+1,no_of_racks)
104 df = pa.DataFrame({
105 'rack_id':rack_id,
106 'rack_cent_id':rack_cent_id
107 })
108 df = df.astype({'rack_id':int,'rack_cent_id':int})
109

110 return df
111

112 def create_center(multiplier):
113 cent_id = np.arange(no_of_centers*multiplier)+1
114 cent_city_id = np.random.randint(1,no_of_city+1,no_of_centers)
115 df = pa.DataFrame({
116 'cent_id':cent_id,
117 'cent_city_id':cent_city_id
118 })
119 df = df.astype({'cent_id':int,'cent_city_id':int})
120

121 return df
122

123 def create_city(multiplier):
124 city_id = np.arange(no_of_city*multiplier)+1
125 city_name = np.random.randint(1,4,no_of_city*multiplier)
126 df = pa.DataFrame({
127 'city_id':city_id,
128 'city_name':city_name
129 })

133

130 df = df.astype({'city_id':int,'city_name':int})
131 return df
132

133 def create_component(multiplier):
134 component_id = np.arange(no_of_components*multiplier)+1
135 component_name = np.flip(component_id)
136 df = pa.DataFrame({
137 'component_id':component_id,
138 'component_name':component_name
139 })
140 df = df.astype({'component_id':int,'component_name':int})
141 return df
142

143 #Wrapping function for creation of the dataset
144 def create_dataset(multi=1):
145 msm_df = create_measurement(multi)
146 server_df = create_server(multi)
147 rack_df = create_rack(multi)
148 center_df = create_center(multi)
149 city_df = create_city(multi)
150 component_df = create_component(multi)
151 return msm_df,server_df,rack_df,center_df,city_df,component_df
152

153

154

155

156 # In[5]:
157

158

159 ##Creating the data used for testing
160

161 ### Clean dataset directory first
162 dataset_paths = 'datasets/*'
163 files = glob.glob(dataset_paths)
164 for file in files:
165 os.remove(file)
166

167 #Create dataset files
168 msm_df,server_df,rack_df,center_df,city_df,component_df = create_dataset

(1)
169

170 # Creating the inserting sql for measurements dataset.
171 msm_df['insert_string']='insert into measurement (msm_datetime,msm_value,

msm_component_id,msm_serv_id) values(from_unixtime('+msm_df['
msm_datetime'].map(str)+'), '+msm_df['msm_value'].map(str)+','+msm_df[
'msm_component_id'].map(str)+','+msm_df['msm_serv_id'].map(str)+');'

172 msm_df['insert_delete_string']= 'insert into measurement (msm_datetime,
msm_value,msm_component_id,msm_serv_id) values(from_unixtime('+msm_df[
'msm_datetime'].map(str)+'), '+msm_df['msm_value'].map(str)+','+msm_df
['msm_component_id'].map(str)+','+msm_df['msm_serv_id'].map(str)+');
DELETE FROM measurement LIMIT 1;'

173

174 #Dividing the measurement datasets into several files.
175 partition_length = len(msm_df.index)//no_of_partitions
176 msm_df['insert_string'][:partition_length].to_csv('datasets/

unformatted_measurement_0.sql',index=False,header=False)
177 for i in range(1,no_of_partitions+1):

134

178 file_name = 'unformatted_measurement_{}.sql'.format(i)
179 msm_df['insert_delete_string'][(i)*partition_length:partition_length*(

i+1)].to_csv('datasets/'+file_name,index=False,header=False)
180

181

182 #Formatting the measurement.sql files to ready them for import.
183 unformatted_measurement_files = sorted(glob.glob(dataset_paths))
184 for file in unformatted_measurement_files:
185 output_file_name=re.sub('ˆdatasets/unformatted_','datasets/',file)
186 with open(file, 'r') as f, open(output_file_name, 'w+') as fo:
187 # # fo.write("set autocommit = 0;")
188 for line in f:
189 fo.write(line.replace('"', '').replace("'", ""))
190 # # fo.write("COMMIT;")
191 os.remove(file)
192

193 #Adding in the rest of the dataset as csv files.
194 server_df.to_csv('datasets/server.csv',index=False)
195 rack_df.to_csv('datasets/rack.csv',index=False)
196 center_df.to_csv('datasets/center.csv',index=False)
197 city_df.to_csv('datasets/city.csv',index=False)
198 component_df.to_csv('datasets/component.csv',index=False)
199

200 #Creating a copy of the data in the required file location to load into
mysql.

201 #We dont do this anymore, we use a symlink to the dataset location now !
cp datasets/* /home/svestrhe/Documents/Forprosjekt/code/mysql-server/
mysql-test/std_data/

202 #!scp -rp datasets svestrhe@loki12:/export/home/tmp/bygging/mysql-test/var
/std_data

203

204

205 # In[]:
206

207

208 #Show graph of the distribution of values we have created.
209 fig = plt.figure(figsize=(9,6))
210 ax=sns.lineplot(x="msm_id", y="msm_value",data=msm_df)
211 xlabels = ['{:,.0f}'.format(x) + 'K' for x in ax.get_xticks()/1000]
212 ax.set_xticklabels(xlabels)
213 plt.title("")
214 ax.set_xlabel("Row number")
215 ax.set_ylabel("Measurement value")
216 #plt.axvline(x=0)
217 #plt.axvline(x=-2,ymax=0.25)
218 #plt.axvline(x=2,ymax=0.25)
219 msm_dist_plt = plt.gcf()
220 msm_dist_plt.savefig("/export/home/tmp/Dropbox/Apper/ShareLaTeX/Master/

eval_plots/msm_distribution_plt.png",dpi=360,bbox_inches='tight')
221 plt.show()

Results.py

1 #!/usr/bin/env python
2 # coding: utf-8
3

4 # In[1]:

135

5

6

7 #This file ingests, interprets and then presents the results generated by
our tests.

8

9 get_ipython().run_line_magic('matplotlib', 'inline')
10 import numpy as np
11 import pandas as pa
12 import seaborn as sns
13 import matplotlib.pyplot as plt
14 import matplotlib.gridspec as gridspec
15 import glob, os
16 import matplotlib.style as style
17 #style.available
18 plt.style.use('seaborn')
19 #style.use('seaborn-poster') #sets the size of the charts
20 import pprint
21 from IPython.display import HTML
22

23 import warnings
24 warnings.simplefilter(action='ignore', category=FutureWarning)
25 pa.options.display.max_rows = 50
26

27

28 # In[2]:
29

30

31 #Clean up result directory first
32 results_path = 'timing_results/*'
33 r = glob.glob(results_path)
34 for i in r:
35 os.remove(i)
36

37 #Then clean the plan directory
38 plans_path = 'query_plans/*'
39 r = glob.glob(plans_path)
40 for i in r:
41 os.remove(i)
42

43 #Then clean the timing_results directory
44 timing_histogram_path = 'hist_timing_results/*'
45 r = glob.glob(timing_histogram_path)
46 for i in r:
47 os.remove(i)
48

49 #Setup variables
50 result_list = []
51 histogram_timing_results_list = []
52 query_plan_list = []
53 i = -1
54

55

56 # # Format the .result files from our mtr run so that we can import them
using pandas csv importer

57

58 # In[3]:
59

136

60

61 #with open("/home/svestrhe/Documents/Forprosjekt/code/mysql-server/mysql-
test/suite/histogram_plugin/r/execute_timing_loki12.result") as
openfileobject:

62 with open("/home/svestrhe/Documents/Forprosjekt/code/mysql-server/mysql-
test/suite/histogram_plugin/r/execute_timing_local.result") as
openfileobject:

63 for line in openfileobject:
64 if not "#" in line[:5]:
65 if "Query" in line:
66 i+=1
67 result_list.append([line])
68 query_plan_list.append([])
69 if "Analyse statement" in line[:17]:
70 histogram_timing_results_list.append([line])
71 if "select" in line[:8]:
72 result_list[i].append(line)
73 if "EXPLAIN" in line[:7] or "->" in line or "id" in line[:4]

or "1" in line[:2]:
74 query_plan_list[i].append(line)
75 if "explain" in line[:7]:
76 query_plan_list[i].append("\n")
77 query_plan_list[i].append(line)
78 if "analyze table measurement" in line.lower():
79 histogram_timing_results_list[i].append(line)
80 i = -1 #Cleanup
81

82

83 # In[4]:
84

85

86 #Export the timing results for queries
87 array_result = np.array(result_list)
88 result_list=[] #Cleanup so that we can run the cells again and again

without having to restart our kernel.
89 counter = 0
90 for result in array_result:
91 string="timing_results/{}.csv".format(counter)
92 f = open(string,"w+")
93 for line in result:
94 f.write(line)
95 f.close()
96 counter+=1
97

98

99 #Export the timing results for histograms
100 array_hist_result = np.array(histogram_timing_results_list)
101 histogram_timing_results_list = []
102 counter = 0
103 for hist_result in array_hist_result:
104 string="hist_timing_results/{}.csv".format(counter)
105 f = open(string,"w+")
106 for line in hist_result:
107 f.write(line)
108 f.close()
109 counter+=1
110

137

111

112 # # Now let's import the csv files into a dataframe.
113

114 # In[5]:
115

116

117 result_files = sorted(glob.glob(results_path),key=lambda x: int(x.split('.
')[0][15:]))

118 frames = []
119 helper = []
120 counter = 0
121 for file in result_files:
122 temp_df = pa.read_csv(str(file),'\t')
123 helper.append([temp_df.iloc[0]['Test type'],counter])
124 frames.append(temp_df)
125 counter+=1
126

127 result_df = pa.concat(frames,sort=False)
128

129

130

131 hist_result_files = sorted(glob.glob(timing_histogram_path),key=lambda x:
int(x.split('.')[0][20:]))

132 frames = []
133 counter = 0
134 for file in hist_result_files:
135 temp_df = pa.read_csv(str(file),'\t')
136 # helper.append([temp_df.iloc[0]['Test type'],counter])
137 frames.append(temp_df)
138 counter+=1
139

140 hist_result_df = pa.concat(frames,sort=False)
141 hist_result_df=hist_result_df.astype({'No_of_executes': 'int32'})
142

143

144 #CREATE new SENS ds
145 sens_with_err = result_df.reset_index().drop(columns=['index'])
146 for index, row in sens_with_err.iterrows():
147 sens_with_err.loc[index,'Internal run no'] = index%9
148 sens_with_err = sens_with_err.astype({'Internal run no': 'int'})
149

150 temp_sens = sens_with_err.groupby(['Test type','Parameter run no','
Internal run no','Supplied parameters']).sum().reset_index().rename(
columns={"Duration": "Query execution duration"})

151 temp_hist_sens = hist_result_df.groupby(['Test type','Parameter run no','
Supplied parameters']).sum().reset_index().rename(columns={"Duration":
"Histogram execution duration"})

152

153 another_temp_sens = pa.merge(temp_sens,temp_hist_sens,how='outer',on=['
Test type','Parameter run no']).fillna(0)

154 another_temp_sens['Query and histogram execution duration'] =
another_temp_sens['Query execution duration'] + another_temp_sens['
Histogram execution duration']

155 another_temp_sens = another_temp_sens.drop(columns = ['Histogram execution
duration','Number of Inserts','Returned rows','No_of_executes','

Supplied parameters_y']).set_index(['Test type','Parameter run no','
Internal run no','Supplied parameters_x'])

138

156

157 almost_done_df = pa.DataFrame(another_temp_sens,index = another_temp_sens.
index).stack().to_frame().reset_index()

158 almost_done_df.columns = ['Test type','Parameter run no','Internal run no'
,'Supplied parameters','Duration type','Duration']

159 almost_done_df.head(500)
160

161 temp_3 = almost_done_df
162 temp_3 = temp_3.loc[temp_3['Test type'].isin(['No histogram ','Perfect

histogram ','Stale histogram ']) & temp_3['Duration type'].isin(['
Query execution duration'])]

163 temp_4 = pa.merge(almost_done_df,temp_3, indicator=True, how='outer').
query('_merge=="left_only"').drop('_merge', axis=1)

164 condensed_sens_with_err = temp_4
165 condensed_sens_with_err.drop_duplicates(keep = 'first', inplace = True)
166

167

168 # In[6]:
169

170

171

172 #Export the query_plans
173 array_query_plan = np.array(query_plan_list)
174 query_plan_list=[]
175 counter = 0
176 for plan_set in array_query_plan:
177 string="query_plans/plan_{}_{}.txt".format(counter,helper[counter][0].

strip())
178 f = open(string,"w+")
179 for plan in plan_set:
180 f.write(plan)
181 f.close()
182 counter+=1
183

184

185 # In[7]:
186

187

188 #Create the sensitivity DF
189 sensitivity_df = result_df.groupby(['Test type','Supplied parameters','

Parameter run no']).sum().reset_index()
190 sensitivity_df = sensitivity_df[['Test type','Supplied parameters','

Parameter run no','Duration']]
191 sensitivity_df = sensitivity_df.rename(columns={"Duration": "Query

execution duration"})
192 sensitivity_df_hist_data = hist_result_df.groupby(['Test type','Supplied

parameters','Parameter run no']).sum().reset_index().rename(columns={"
Duration": "Histogram execution duration"})

193 temp = pa.merge(sensitivity_df,sensitivity_df_hist_data,how='outer',on=['
Test type','Supplied parameters','Parameter run no'])

194 temp = temp.fillna(0)
195 temp['Query and histogram execution duration'] = temp['Query execution

duration'] + temp['Histogram execution duration']
196 df_5 = temp
197 temp = temp.drop(columns = ['Histogram execution duration'])
198 temp = temp.set_index(['Test type','Supplied parameters','Parameter run no

'])

139

199 sensitivity_df = pa.DataFrame(temp,index = temp.index).stack()
200 #new_df = new_df.columns(['Test type'])
201 sensitivity_df = sensitivity_df.to_frame()
202 sensitivity_df =sensitivity_df.reset_index()
203 sensitivity_df.columns = ['Test type','Supplied parameters','Parameter run

no','Duration type','Duration']
204

205 #Splitting the params for the base classes test types
206 temp_data_df = sensitivity_df.loc[sensitivity_df['Test type'].isin(['No

histogram ','Perfect histogram ','Stale histogram '])]
207 temp_data_df = temp_data_df[˜temp_data_df['Duration type'].isin(['

No_of_executes'])]
208 base_classes_data = temp_data_df[temp_data_df['Duration type'].isin(['

Query and histogram execution duration'])].groupby(['Test type']).mean
().reset_index()

209 base_classes_data['Duration type'] = 'Query and histogram execution
duration'

210 base_classes_data['Supplied parameters']= 'Not applicable'
211 base_classes_data['Parameter run no']= 'Not applicable'
212 temp_data_df = temp_data_df.set_index(['Test type','Duration type','

Duration','Parameter run no'])
213 temp_data_df = pa.DataFrame(temp_data_df['Supplied parameters'].str.split(

' ').tolist(),index = temp_data_df.index).stack()
214 temp_data_df = temp_data_df.to_frame()
215 temp_data_df = temp_data_df.reset_index()
216 temp_data_df = temp_data_df.drop(columns='level_4')
217 temp_data_df.columns=['Test type','Duration type','Duration','Parameter

run no','Supplied parameters']
218 sensitivity_df = sensitivity_df.loc[˜sensitivity_df['Test type'].isin(['No

histogram ','Perfect histogram ','Stale histogram '])]
219 sensitivity_df = sensitivity_df.append(temp_data_df, ignore_index=True,

sort=False)
220 sensitivity_df = sensitivity_df.append(base_classes_data, ignore_index=

True,sort=False)
221

222 #Before we remove some rows, let's save this to another df
223 full_sensitivity_df = sensitivity_df
224

225 #Removing the query and histogram execution duration for the base classes
since we don't want that to show up in our plots.

226 temp_3 = sensitivity_df
227 temp_3 = temp_3.loc[temp_3['Test type'].isin(['No histogram ','Perfect

histogram ','Stale histogram ']) & temp_3['Duration type'].isin(['
Query execution duration'])]

228 temp_4 = pa.merge(sensitivity_df,temp_3, indicator=True, how='outer').
query('_merge=="left_only"').drop('_merge', axis=1)

229 sensitivity_df = temp_4
230 sensitivity_df.drop_duplicates(keep = 'first', inplace = True)
231

232

233 # # Format the queries to be q1 q2 etc. add a result_ratio column and a
formatted query column

234

235 # In[8]:
236

237

238 i=1

140

239 replace_dictionary = {}
240 unique_queries = result_df.Query.unique().tolist()
241 for query in unique_queries:
242 name = 'q{}'.format(i)
243 replace_dictionary[query]=name
244 i+=1
245

246 result_df['Short_Query']=result_df['Query'].replace(replace_dictionary)
247

248 partition_size = min(result_df["Number of Inserts"].unique().tolist())
249 result_df['Result_ratio']=result_df['Returned rows']/partition_size
250

251 queries = result_df['Query'].tolist()
252 short_query_format=[]
253 for query in queries:
254 no_of_joins = query.count('join')
255 where_predicate_value = query.split("test.measurement.msm_value",1)[1]
256 short_query_format.append('Query with '+str(no_of_joins)+' joins and

WHERE MSM_VALUE' +where_predicate_value)
257 result_df['Short_query_format']=short_query_format
258

259

260

261 # In[9]:
262

263

264 unformatted_plan_files = glob.glob(plans_path)
265 for file in unformatted_plan_files:
266 output_file_name=file+".tmp"
267 with open(file, 'r') as f, open(output_file_name, 'w+') as fo:
268 for line in f:
269 formatted_line = line.replace('explain format = tree ', '').

replace(";","")
270 # print(formatted_line)
271 for query,key in replace_dictionary.items():
272 if query==formatted_line:
273 fo.write(key)
274 break
275 fo.write(line)
276 os.remove(file)
277

278

279 # ## Standard results
280

281 # In[]:
282

283

284 base_rules = ['No histogram ','Perfect histogram ','Stale histogram ']
285 for rule in result_df['Test type'].unique().tolist():
286 if rule not in base_rules:
287 base_rules.append(rule)
288 temp = result_df.set_index('Test type')
289 temp = temp.loc[base_rules]
290 temp = temp.reset_index()
291 for params in temp['Parameter run no'].unique().tolist():
292 for query in temp.Short_Query.unique().tolist():
293 fig = plt.figure(figsize=(13,9))

141

294 gs = gridspec.GridSpec(nrows=4,
295 ncols=1,
296 figure=fig,
297 height_ratios=[1, 1, 1, 1],
298 wspace=0.3,
299 hspace=0.3)
300

301 ax1 = fig.add_subplot(gs[1:3,0])
302 sns.lineplot(x="Number of Inserts", y="Duration",
303 hue="Test type", style="Test type",markers =

True,dashes = True,
304 data=temp[temp.Short_Query.isin([query])&temp

['Parameter run no'].isin([params])],ax=ax1)
305 xlabels = ['{:,.0f}'.format(x) + 'K' for x in ax1.

get_xticks()/1000]
306 ax1.set_xticklabels(xlabels)
307 ax1.set_xlabel("Number of updates")
308 ax1.set_ylabel("Duration (s)")
309 # ax1.set_title(str(result_df['Short_query_format'][

result_df.Short_Query.isin([query])].iloc[0]))
310

311 ax2 = fig.add_subplot(gs[0, 0])
312

313 all_hist = result_df[result_df["Test type"].str.contains('
Perfect histogram')]

314 index_position = all_hist[all_hist.Short_Query.isin([query
])].index[0]

315 final = all_hist[all_hist.Short_Query.isin([query])].loc[
index_position]

316 sns.barplot(x="Number of Inserts", y="Result_ratio",data=
final ,ax=ax2, color=sns.xkcd_rgb["denim blue"])

317

318

319 ax2.spines['right'].set_visible(False)
320 ax2.spines['top'].set_visible(False)
321 #ax2.xaxis.set_major_locator(ax1.xaxis.get_major_locator()

)
322 #ax2.set_xticklabels(ax1.get_xticklabels())
323 ax2.set_xticklabels("")
324 ax2.margins(x=ax1.margins()[0]-0.01)
325 ax2.set_xlabel("")
326 ax2.set_ylabel("Result size ratio")
327 # ax2.set_title(str(result_df['Short_query_format'][

result_df.Short_Query.isin([query])].iloc[0]))
328

329 #fig.suptitle(str(result_df['Short_query_format'][
result_df.Short_Query.isin([query])].iloc[0]),y=0.9)

330

331 line_plot = plt.gcf()
332 path = "/export/home/tmp/Dropbox/Apper/ShareLaTeX/Master/

eval_plots/line_plots/all_q_plots/"
333 name = str(temp['Short_query_format'][temp.Short_Query.

isin([query])].iloc[0])+str(base_rules)+str(params)+".png"
334 line_plot.savefig(path+name,dpi=360,bbox_inches='tight')
335 plt.close()
336 base_rules.pop()
337 if rule == 'No histogram ':

142

338 temp = result_df.set_index('Test type')
339 temp = temp.loc[base_rules]
340 temp = temp.reset_index()
341 for params in temp['Parameter run no'].unique().tolist():
342 for query in temp.Short_Query.unique().tolist():
343 fig = plt.figure(figsize=(13,9))
344 gs = gridspec.GridSpec(nrows=4,
345 ncols=1,
346 figure=fig,
347 height_ratios=[1, 1, 1, 1],
348 wspace=0.3,
349 hspace=0.3)
350

351 ax1 = fig.add_subplot(gs[1:3,0])
352 sns.lineplot(x="Number of Inserts", y="Duration",
353 hue="Test type", style="Test type",markers =

True,dashes = True,
354 data=temp[temp.Short_Query.isin([query])&temp

['Parameter run no'].isin([params])],ax=ax1)
355 xlabels = ['{:,.0f}'.format(x) + 'K' for x in ax1.

get_xticks()/1000]
356 ax1.set_xticklabels(xlabels)
357 ax1.set_xlabel("Number of updates")
358 ax1.set_ylabel("Duration (s)")
359 # ax1.set_title(str(result_df['Short_query_format'][

result_df.Short_Query.isin([query])].iloc[0]))
360

361 ax2 = fig.add_subplot(gs[0, 0])
362

363 all_hist = result_df[result_df["Test type"].str.contains('
Perfect histogram')]

364 index_position = all_hist[all_hist.Short_Query.isin([query
])].index[0]

365 final = all_hist[all_hist.Short_Query.isin([query])].loc[
index_position]

366 sns.barplot(x="Number of Inserts", y="Result_ratio",data=
final ,ax=ax2, color=sns.xkcd_rgb["denim blue"])

367

368

369 ax2.spines['right'].set_visible(False)
370 ax2.spines['top'].set_visible(False)
371 #ax2.xaxis.set_major_locator(ax1.xaxis.get_major_locator()

)
372 #ax2.set_xticklabels(ax1.get_xticklabels())
373 ax2.set_xticklabels("")
374 ax2.margins(x=ax1.margins()[0]-0.01)
375 ax2.set_xlabel("")
376 ax2.set_ylabel("Result size ratio")
377 # ax2.set_title(str(result_df['Short_query_format'][

result_df.Short_Query.isin([query])].iloc[0]))
378

379 #fig.suptitle(str(result_df['Short_query_format'][
result_df.Short_Query.isin([query])].iloc[0]),y=0.9)

380

381 line_plot = plt.gcf()
382 path = "/export/home/tmp/Dropbox/Apper/ShareLaTeX/Master/

eval_plots/line_plots/all_q_plots/"

143

383 name = str(temp['Short_query_format'][temp.Short_Query.
isin([query])].iloc[0])+str(base_rules)+str(params)+".png"

384 line_plot.savefig(path+name,dpi=360,bbox_inches='tight')
385 plt.close()
386

387 fig = plt.figure(figsize=(9,6))
388 ax3=sns.barplot(x="Test type", y="Duration",hue="Test type", data=

hist_result_df, estimator=sum,ci=None,dodge = False,palette = sns.
color_palette("Paired", 9))

389 ax3.set_xticklabels("")
390 ax3.set_xlabel("")
391 ax3.set_ylabel("Duration (s)")
392 hist_timing_plt = plt.gcf()
393 hist_timing_plt.savefig("/export/home/tmp/Dropbox/Apper/ShareLaTeX/Master/

eval_plots/histogram_timing.png",dpi=360,bbox_inches='tight')
394

395

396 # # One off plots#
397

398 # In[]:
399

400

401 rules = ['No histogram ','Perfect histogram ','Stale histogram ']
402 rule_to_visit = 'Plugin rule 9'
403 rules.append(rule_to_visit)
404 params = '6'
405 temp = result_df.set_index('Test type')
406 temp = temp.loc[rules]
407 temp = temp.reset_index()
408 blah = temp
409 for query in temp.Short_Query.unique().tolist():
410 fig = plt.figure(figsize=(13,9))
411 gs = gridspec.GridSpec(nrows=4,
412 ncols=1,
413 figure=fig,
414 height_ratios=[1, 1, 1, 1],
415 wspace=0.3,
416 hspace=0.3)
417

418 ax1 = fig.add_subplot(gs[1:3,0])
419 sns.lineplot(x="Number of Inserts", y="Duration",
420 hue="Test type", style="Test type",markers = True,dashes

= True,
421 data=temp[temp.Short_Query.isin([query])&temp['Parameter

run no'].isin([params])],ax=ax1)
422 xlabels = ['{:,.0f}'.format(x) + 'K' for x in ax1.get_xticks()/1000]
423 ax1.set_xticklabels(xlabels)
424 ax1.set_xlabel("Number of updates")
425 ax1.set_ylabel("Duration (s)")
426 # ax1.set_title(str(result_df['Short_query_format'][result_df.

Short_Query.isin([query])].iloc[0]))
427

428 ax2 = fig.add_subplot(gs[0, 0])
429

430 all_hist = result_df[result_df["Test type"].str.contains('Perfect
histogram')]

431 index_position = all_hist[all_hist.Short_Query.isin([query])].index[0]

144

432 final = all_hist[all_hist.Short_Query.isin([query])].loc[
index_position]

433 sns.barplot(x="Number of Inserts", y="Result_ratio",data=final ,ax=ax2
, color=sns.xkcd_rgb["denim blue"])

434

435

436 ax2.spines['right'].set_visible(False)
437 ax2.spines['top'].set_visible(False)
438 #ax2.xaxis.set_major_locator(ax1.xaxis.get_major_locator())
439 #ax2.set_xticklabels(ax1.get_xticklabels())
440 ax2.set_xticklabels("")
441 ax2.margins(x=ax1.margins()[0]-0.01)
442 ax2.set_xlabel("")
443 ax2.set_ylabel("Result size ratio")
444 # ax2.set_title(str(result_df['Short_query_format'][result_df.

Short_Query.isin([query])].iloc[0]))
445

446 #fig.suptitle(str(result_df['Short_query_format'][result_df.
Short_Query.isin([query])].iloc[0]),y=0.9)

447

448

449 line_plot = plt.gcf()
450

451 path = "/export/home/tmp/Dropbox/Apper/ShareLaTeX/Master/eval_plots/
line_plots/"+str(rule_to_visit)+"/"

452 name = str(temp['Short_query_format'][temp.Short_Query.isin([query])].
iloc[0])+str(rules)+str(params)+".png"#+str(temp['Supplied parameters
'][temp.Short_Query.isin([query]) & temp['Test type'].isin([
rule_to_visit])& temp['Parameter run no'].isin([params])].iloc[0])+".
png"

453 line_plot.savefig(path+name,dpi=360,bbox_inches='tight')
454 plt.close()
455

456

457 # # Generate Q-ratio data#
458

459 # In[13]:
460

461

462 q_ratio_df=df_5.loc[df_5['Test type'].isin(['No histogram ','Perfect
histogram ','Stale histogram ','Plugin rule 0'])].groupby(['Test type'
]).mean().reset_index()

463 q_ratio_df['Supplied parameters'] = 'Not applicable'
464 q_ratio_df = q_ratio_df.append(df_5.loc[˜df_5['Test type'].isin(['No

histogram ','Perfect histogram ','Stale histogram ','Plugin rule 0'])
],ignore_index=True,sort=False)

465 q_ratio_df = q_ratio_df[['Test type','Query and histogram execution
duration','Query execution duration','Histogram execution duration','
No_of_executes','Supplied parameters']]

466 q_ratio_df=q_ratio_df.rename(columns={"Query and histogram execution
duration": "Total duration", "No_of_executes": "Number of updates","
Histogram execution duration":"Histogram duration","Query execution
duration":"Query duration"})

467 q_ratio_df['Q-ratio']=q_ratio_df['Total duration'].apply(lambda x: x/
q_ratio_df['Total duration'].loc[q_ratio_df['Test type']=='Perfect
histogram '], 0)

468 q_ratio_df = q_ratio_df.sort_values('Q-ratio').set_index('Test type').

145

astype({'Number of updates': 'int'}).reset_index()
469 q_ratio_df = q_ratio_df[['Test type','Total duration','Q-ratio','Query

duration','Histogram duration','Number of updates','Supplied
parameters']]

470 #Formatting
471 q_ratio_df['Test type'] = q_ratio_df['Test type'].replace("Plugin rule 0",

"Rule 0")
472 q_ratio_df['Test type'] = q_ratio_df['Test type'].replace("Plugin rule 2",

"Rule 2")
473 q_ratio_df['Test type'] = q_ratio_df['Test type'].replace("Plugin rule 3",

"Rule 3")
474 q_ratio_df['Test type'] = q_ratio_df['Test type'].replace("Plugin rule 6",

"Rule 6")
475 q_ratio_df['Test type'] = q_ratio_df['Test type'].replace("Plugin rule 7",

"Rule 7")
476 q_ratio_df['Test type'] = q_ratio_df['Test type'].replace("Plugin rule 9",

"Rule 9")
477

478

479

480 #Generate table file
481 q_ratio_df = q_ratio_df.reset_index()
482

483 temp = q_ratio_df.loc[q_ratio_df.groupby('Test type')['Q-ratio'].idxmin()]
484 #temp_max = q_ratio_df.loc[q_ratio_df.groupby('Test type')['Q-ratio'].

idxmax()]
485 #temp = temp.append(temp_max).drop_duplicates(keep = 'first', inplace =

False)
486

487 summarised_q_ratio = temp.sort_values('Q-ratio')
488 summarised_q_ratio = summarised_q_ratio[['Test type','Total duration','Q-

ratio','Query duration','Histogram duration','Number of updates','
Supplied parameters']].set_index('Test type')

489

490 f = open('/export/home/tmp/Dropbox/Apper/ShareLaTeX/Master/eval_plots/q-
ratio_table.tex',"w+")

491 f.write("\\noindent\makebox[\\textwidth]{%\n")
492 f.write("\\begin{tabularx}{\\textwidth}{LLLLLLL}\\toprule\n")
493 f.close()
494 summarised_q_ratio.to_csv('/export/home/tmp/Dropbox/Apper/ShareLaTeX/

Master/eval_plots/q-ratio_table.tex',sep='&',line_terminator = "\\\\\n
",mode='a',float_format='%.3f')

495 f = open('/export/home/tmp/Dropbox/Apper/ShareLaTeX/Master/eval_plots/q-
ratio_table.tex','a')

496 f.write ("\\bottomrule\n")
497 f.write ("\\end{tabularx}\n")
498 f.write("}")
499 f.close()
500

501

502

503

504 #Show data here as well
505 summarised_q_ratio.head(5000)
506

507

508 # In[11]:

146

509

510

511 q_ratio_df.head(100)
512

513

514 # # Generate sensitivity plots for single parameter rules#
515

516 # In[12]:
517

518

519 base_rules = ['No histogram ','Perfect histogram ','Stale histogram ']
520 rules_to_avoid_for_now = []#['Plugin rule 9','Plugin rule 3']
521 for rule in condensed_sens_with_err['Test type'].unique().tolist():
522 if rule not in base_rules and rule not in rules_to_avoid_for_now:
523 current_rules=base_rules.copy()
524 current_rules.append(rule)
525 temp = condensed_sens_with_err.set_index('Test type')
526 temp = temp.loc[current_rules]
527 temp = temp[˜temp['Supplied parameters'].isin(['Not applicable'])]
528 run_no_finder = temp.groupby('Test type')
529 run_no_finder = run_no_finder.apply(lambda x: x['Parameter run no'

].unique())
530 unique_run_no_we_want_to_use = run_no_finder.loc[rule].tolist()
531 param_list_finder = temp.groupby('Test type')
532 param_list_finder = param_list_finder.apply(lambda x: x['Supplied

parameters'].unique())
533 unique_params_we_want_to_use = param_list_finder.loc[rule].tolist

()
534 temp = temp[temp['Parameter run no'].isin(

unique_run_no_we_want_to_use)]
535 rule_df = temp.loc[rule].reset_index()#.set_index(['Parameter run

no'])
536 base_df = temp.loc[base_rules].reset_index().set_index(['Parameter

run no'])
537 base_df['Supplied parameters'] = np.NaN
538 print(rule,unique_run_no_we_want_to_use)
539 for param_run_no in unique_run_no_we_want_to_use:
540 #if not (rule == 'Plugin rule 9' and param_run_no == 12):
541 # print (unique_params_we_want_to_use[param_run_no-1])
542 base_df.loc[param_run_no,'Supplied parameters'] =

unique_params_we_want_to_use[param_run_no-1]
543 data_df = rule_df.append(base_df).astype({'Supplied parameters

': 'float'})
544 fig = plt.figure(figsize=(13,9))
545 gs = gridspec.GridSpec(nrows=4,
546 ncols=1,
547 figure=fig,
548 height_ratios=[1, 1, 1, 1],
549 wspace=0.3,
550 hspace=0.3)
551 ax1 = fig.add_subplot(gs[1:3,0])
552 g=sns.lineplot(x="Supplied parameters", y="Duration",
553 markers=True, hue = 'Test type', style = 'Duration

type',ci=99,
554 data=data_df,ax=ax1)
555 ax1.set_ylabel("Duration (s)")
556 ax1.set_ylim([70,250])

147

557 if rule == 'Plugin rule 0':
558 plt.xscale("log")
559 ax1.set_xticklabels("")
560 ax1.set_xlabel("Paramter values - not applicable")
561 if rule == 'Plugin rule 2':
562 plt.xscale("log")
563 plt.yscale("linear")
564 ax1.set_xlabel("Parameter values for n, \"Number of rows

between updates\"")
565 xlabels = ['{:,.0f}'.format(x) + 'K' for x in ax1.get_xticks()

/1000]
566 ax1.set_xticklabels(xlabels)
567 if rule == 'Plugin rule 6':
568 plt.xscale("log")
569 ax1.set_xlabel("Parameter values for r, \"Ratio of change

before updates\"")
570 if rule == 'Plugin rule 7':
571 plt.xscale("linear")
572 ax1.set_xlabel("Parameter values for w, \"Update outside

histogram range\"")
573 if rule == 'Plugin rule 9':
574 plt.yscale("linear")
575 plt.xscale("log")
576 ax1.set_xlabel("Parameter values for I, \"Inverse sensitivity

to change\"")
577 xlabels = ['{:,.0f}'.format(x) + 'K' for x in ax1.get_xticks()

/1000]
578 ax1.set_xticklabels(xlabels)
579 g.legend_.remove()
580 sensitivity_plot = plt.gcf()
581 path = "/export/home/tmp/Dropbox/Apper/ShareLaTeX/Master/

eval_plots/sensitivity_plots/"
582 name = str(current_rules)+".png"
583 sensitivity_plot.savefig(path+name,dpi=360,bbox_inches='tight')
584 current_rules.pop
585 plt.close()
586

587 if rule == "Plugin rule 0":
588 current_rules=base_rules.copy()
589 current_rules.append(rule)
590 temp = condensed_sens_with_err.set_index('Test type')
591 temp = temp.loc[current_rules]
592 temp = temp[˜temp['Supplied parameters'].isin(['Not applicable

'])]
593 run_no_finder = temp.groupby('Test type')
594 run_no_finder = run_no_finder.apply(lambda x: x['Parameter run

no'].unique())
595 unique_run_no_we_want_to_use = run_no_finder.loc[rule].tolist

()
596 param_list_finder = temp.groupby('Test type')
597 param_list_finder = param_list_finder.apply(lambda x: x['

Supplied parameters'].unique())
598 unique_params_we_want_to_use = param_list_finder.loc[rule].

tolist()
599 temp = temp[temp['Parameter run no'].isin(

unique_run_no_we_want_to_use)]
600 rule_df = temp.loc[rule].reset_index()#.set_index(['Parameter

148

run no'])
601 base_df = temp.loc[base_rules].reset_index().set_index(['

Parameter run no'])
602 base_df['Supplied parameters'] = np.NaN
603 for param_run_no in unique_run_no_we_want_to_use:
604 base_df.loc[param_run_no,'Supplied parameters'] =

unique_params_we_want_to_use[param_run_no-1]
605 data_df = rule_df.append(base_df).astype({'Supplied

parameters': 'float'})
606 data_df.head(200)
607 fig = plt.figure(figsize=(13,9))
608 gs = gridspec.GridSpec(nrows=4,
609 ncols=1,
610 figure=fig,
611 height_ratios=[1, 1, 1, 1],
612 wspace=0.3,
613 hspace=0.3)
614 ax1 = fig.add_subplot(gs[1:3,0])
615 g=sns.lineplot(x="Supplied parameters", y="Duration",
616 markers=True, hue = 'Test type', style = '

Duration type',ci=99,
617 data=data_df,ax=ax1)
618 plt.xscale("log")
619 ax1.set_ylabel("Duration (s)")
620 ax1.set_ylim([100,350])
621 ax1.set_xlabel("Parameter values for a given rule X")
622 ax1.set_xticklabels("")
623 # handles, labels = ax1.get_legend_handles_labels()
624 # ax1._legend.remove()
625 # ax1.fig.legend(handles, labels, ncol=2, loc='upper center',
626 # bbox_to_anchor=(0.5, 1.15), frameon=False)
627 #ax1.legend(frameon=False, loc='right', ncol=2,framealpha=1)
628 handles, _ = g.get_legend_handles_labels()
629 g.legend(handles,["Plugin rule","Plugin rule X","No histogram"

,"Perfect histogram","Stale histogram","Duration type","Total duration
","Query duration"],frameon=True,bbox_to_anchor=(0.35, 1.3),ncol=2,
loc=2, borderaxespad=0.)

630 #plt.legend(frameon=True,bbox_to_anchor=(0.25, 1.3),ncol=2,
loc=2, borderaxespad=0.)

631 sensitivity_plot = plt.gcf()
632 path = "/export/home/tmp/Dropbox/Apper/ShareLaTeX/Master/

eval_plots/sensitivity_plots/"
633 name = "Special_explanation_plot"+".png"
634 sensitivity_plot.savefig(path+name,dpi=360,bbox_inches='tight'

)
635 plt.close()
636 current_rules.pop()

149

Sevre Vestrheim
A

utom
atic updating of histogram

s in M
ySQ

L

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Sevre Vestrheim

Automatic updating of histograms in
MySQL

Master’s thesis in Computer Science
Supervisor: Jon Olav Hauglid

December 2019

	Abstract
	Table of Contents
	List of Figures
	Introduction
	Theory
	Database queries
	Choosing a query plan

	Histograms and other statistics
	Equi-width and equi-depth histograms
	Frequency- and top-n frequency-histogram
	Hybrid histogram
	Multidimensional histograms
	Updating histograms

	Cardinality estimation
	Join algorithms
	Nested loop join
	Sort-Merge join
	Hash join

	Evaluating database systems
	Some statistical terms and theory
	Uniform distribution
	Normal distribution
	Confidence interval

	Time-series databases
	Summary

	State-of-the-Art
	Creating histograms
	Updating and maintaining histograms
	Missing histograms
	Cardinality estimation
	Summary

	Design
	Use-case
	Design requirements
	Use-case design

	Different histogram updater architecture approaches
	Scheduled Job
	Built-in
	Extension
	Plugin

	Plugin workflow
	Updating rules
	Summary

	Use-case implementation and evaluation
	Background and the first development efforts
	Implementing different use-cases
	Test scenario

	Implementation results
	Checking the use-case and the results interpreter

	Summary

	Implementing updating rules
	Rule overview
	Implementing rules
	Getting the plugin ready for the new rule architecture
	Rule one and two, after each DML statement and after n DML statements respectively
	Rule three, after n DML statements also considering statement type
	Rule six, after a ratio r between table size and updated rows is reached
	Rule seven, after n rows are updated, comparing the change against histogram boundaries
	Rule nine, after the estimated cost of an inaccurate histogram exceeds the limit I

	Summary

	Evaluation
	What, how and why
	Results of rule testing
	Discussion
	Comparing tested rules

	Summary

	Conclusions and future work
	Effects of histograms on query execution times
	Future work

	Bibliography
	Appendix

