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Abstract

In this thesis an agent based model was constructed in order to recre-
ate the social interaction network of a beehive based on data from an
empirical data set of registered communications between honeybees. The
data set was analyzed to find traits that the agent based model would
have to recreate. An initial model based on random walks was used as a
null hypothesis to compare to empirical data. After comparing the initial
model with the empirical data, an enhanced model was made. The en-
hanced model to more accurately describe patterns and dynamics found
in the empirical data set. Data from the empirical data sets as well as
data generated using synthetic models were analyzed using basic network
analysis. The enhanced models were found to more accurately capture
the communication dynamics of the bee social network than the initial
random walker model.

Sammendrag

I denne avhandlingen ble det laget en agentbasert modell som skulle
gjenskape det sosiale interaksjonsnettverket i en bikube basert pa et empi-
risk datasett med registrerte kommunikasjonstilfeller mellom honningbier.
Datasettet ble analysert for a finne egenskaper og dynamikker som model-
leringen hadde som hensikt a gjenskape. Modelleringen startet ved a anta
at biene kunne representeres som tilfeldig vandrende objekter i en matri-
se. Denne antakelsen ble sa sammenlignet med de empiriske dataene, slik
at en ny modell kunne programmeres med malsetningen om & gjenskape
egenskapene observert i de empiriske dataene mer ngyaktig. Dataene fra
det empiriske datasettet og dataene generert i modelleringen ble analysert
ved hjelp av nettverksanalyse. Den reviderte modellen viste seg a gjen-
skape de empiriske kommunikasjonsmgnstrene langt bedre enn antakelsen
om tilfeldige vandrere gjorde.
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1 Introduction

Humans have domesticated a wide variety of animals across history, but perhaps
the most important one is the honeybee, Apis Mellifera. Bees are so valuable
that the human race has introduced them to all corners of the world.[1] Bees are
general pollinators and are vitally important in agriculture, as they ensure the
propagation of our food crops.[2] [3] This also gives the honeybees a distinct eco-
nomic value [1], and as everyone knows, money is very important.[4] In modern
times, however, the bees are under a lot of pressure from new threats. Climate
change brings perturbations in the bee’s environment, and may also give rise to
new diseases that threaten the bees, or the spreading of parasites that endan-
ger commercially used bees.[5] [2] Human actions might also be a more direct
threat to bees, such as the use of pesticides. [6] Pesticides used to protect plant
crops from pests have been found to have detrimental effects on wild honeybee
populations, bees that are crucial to the pollination of many of the crops we’re
trying to protect from pests. Such concerns make it very important to study
the bees and how they are affected by such factors. By studying the bees, we
can better develop strategies to protect them against threats.

Bees are known to be social insects, and the honeybee society is one of
the most advanced social structures in nature. A honeybee society will display
traits that humans might recognize from our own social structures of monar-
chies, dictatorships, but also democracies.[3] As such, much research has gone
into studying the honeybee’s social structures, their interactions, and their be-
haviours within the hive.

Tim Gernat has studied honeybees extensively, and recently made a study
where the trophallaxis interactions of honeybees were monitored.[7] He found
that honeybee social network exhibited traits similar to that of human social
networks, in specific the burstiness of the networks was alike. The honeybees
displayed bursty interaction patterns, meaning that the bees have periods of
frequent pairwise interactions separated by longer periods where the bees won’t
interact. This is common in human social networks too, as much time passes
between our interactions, but our interactions are often in high number within
short time spans. This phenomenon has been thought to slow down flow of in-
formation in human networks[8], but in the honeybees this did not seem to apply.

Bees have several ways of communicating, but Gernat’s experiment specif-
ically charted the trophallactic communication interactions between bees.[7]
Trophallaxis involves the exchange of regurgitated liquid food between bees.
This allows for oral transfer of bacteria, viruses or ingested pesticides between
members of a hive. Mapping the trophallactic interactions of bees allows us to
get a better understanding of the bursty interaction patterns that Gernat un-
covered. In turn, this will allow us to understand spreading dynamics in beehive
communities in greater detail. If we know beforehand how diseases spread in
bee communities, we might have better chances at combatting them.



With advanced technology, we're able to create digital models of virtually
anything we could imagine. [9] The great thing about computer modelling is the
ability to recreate patterns and dynamics seen in both society and nature. We
can use these models to make predictions before we make decisions or changes
to real life systems. For example, we might be interested in editing a bacterial
strain to produce more of a specific compound. Lab work is tedious and time
consuming, and bacteria have a lot of moving parts, so we would need to test
a whole lot of different edited strains. But, what if we could make a predic-
tion on how the bacteria would behave before editing them? If we model the
metabolism of the cell and find what enzymes are needed for different processes
in the cell, we can see how the metabolic flux changes when we knock out cer-
tain genes. When the bacteria is lacking a specific enzyme, the bacteria might
produce more of our desired compound. If we can know beforehand what genes
we should edit before moving to the lab, we save a lot of time. Even if we spend
a lot of time making the model.

Another aspect of modelling is the ability to scale data to our needs. Ger-
nat’s experiment used 1200 bees[7], but a real beehive might contain upwards
of 30000 bees, a quite sizeable gap. Provided that the communication dynamics
of the bee social networks stay the same regardless of the size of the hive, a
computer model will allow us to predict spreading dynamics in a larger hive
based on the data from Gernat’s experiment.

The aim of this thesis was to model the social interactions of a social bee
network through the use of an agent based modelling approach. this was done
by using an empirical data set where trophallactic interactions between honey-
bees in a colony were observed and registered.[7] The empirical data sets as well
as synthetic data generated from the computer models were analyzed through
network analysis, and the defining traits of the bee social behaviour were investi-
gated. This was done to compare empirical and synthetic data, as to determine
to what extent the model was able to capture social bee behaviour. When the
differences and similarities between empirical data and model were determined,
the findings from the analyses were used to make tweaks and adjustments to
the computer modelling. This way, a base model was changed in order to more
accurately capture and describe the empirical data.



2 Background and theory

There are three main topics of importance for this thesis. Bee biology and their
behaviour, network science and its application, and finally computer modelling
and its usefulness. First, the basic biology of honeybees and some observed
behaviours that might be of relevance to later modelling will be described.
Next, network science and how one may glean useful information from networks
through network analysis will be explained. Some specific network attributes
that will be relevant for network analysis done later in this thesis will also be
elaborated. At last, some information of the capabilities of computer modelling
will be provided, and some relevant variants of computer models that will be
described.

2.1 Bee biology and behaviour

In both their larval state and their adult lives, bees eat primarily nectar and
pollen. They gather these as resources for the hive to feed their young after
processing the nectar into honey.[1] Honeybees process nectar into honey by
regurgitating gathered nectar stored in their abdomen.[3] The bees use their
proboscis, the long tongue-like appendage near the bee’s mouth, to suspend re-
gurgitated droplets of nectar. They then stretch their proboscis to elongate the
drops into a thin film such that the water in the nectar droplet will evaporate
at a higher pace. [3] Repeating this behaviour, the bees can reduce the water
content of the nectar, turning it into honey. This technique is also employed by
the bees in cases where they need to regulate the internal temperature of their
hive, substituting nectar with pure water.[3] The evaporating water helps cool
the hive.

As they gather nectar and pollen, bees pollinate flowering plants by trans-
ferring pollen from one plant to another. When a bee visits a blooming flower to
gather nectar and pollen, some pollen catches onto its body, and rubs off when
visiting another flower. This germinates the flower, which is very important in
fruit bearing plants, as the pollination is vital for fruit development. [2] Nat-
urally, not all plants alike, as some flowers have evolved in very specific ways
to ensure pollination. [10] An example being long spurred flowers, requiring
either a long proboscis to reach its nectar or for the pollinating bee to crawl
further into the flower. If the bee crawls into the flower, it is more likely to pick
up pollen, which ensures pollination of the plant. Many such coevolutionary
patterns can be found in various flowers. The honeybee, Apis Mellifera, is a
generalist pollinator, and will pollinate a variety of flowers. Other bee species
might act as specialist pollinators, pollinating only a specific flower or a subset
of flowers. In some cases this might require evolutionary specializations, such
as the aforementioned elongated proboscis.[2] [10]



2.1.1 Queen, workers and drones

In a beehive, there are three kinds of bees, the queen bee, worker bees and
drones. The different bees serve different purposes in the hive.

The Queen is at the center of the colony, and she has given birth to all the
workers in her hive.[11] The queen asserts her self as the dominant ruler over
the working bees by emitting pheromones that suppresses their reproductive
abilities.[12] The queen does not, however, micro manage the worker bees. Hive
needs are identified and communicated among worker bees, and in some cases
decicions are made in a democratic manner by them.[3] In such cases, the queen
is simply obligated to follow along with her subject’s desires. A queen bee larva
is initially no different from a worker larva, the differentiation between the two
comes from the nursing of the larva.[13] Worker bee larvae are fed with honey
and royal jelly.[3] Queen bee larvae, however, are fed solely on royal jelly.[13]
This changes the gene expression in the larvae, making them mature into an-
other queen. Royal jelly is a special secrete produced from the hypopharyngeal
glands, or feeding glands, in young worker bees. [13] [3]

Queens are able to decide what eggs she lays are fertilized and what eggs are
not.[11] Fertilized eggs can become workers or queens, while unfertilized eggs
become drones. Different cells are constructed for each kind of bee. A Queen
is only given sperm once on her mating flight. In some cases, a queen will be
unable to fertilize more eggs as she has run out of sperm, and may only produce
more drones. Worker bees may in some cases also lay eggs, but these eggs will
always result in drones, as they are never given sperm.[14]

Worker bees are the labour force of the hive.[3] They are responsible for the
upkeep of the hive, nursing larvae, foraging for food and defending the hive from
attackers. The worker bees are all female, but due to the queen’s pheromones,
their reproductive abilities are suppressed.[12] Should a worker bee end up laying
eggs, none of the eggs will be fertilized, giving birth to haploid male drones.[14]
A worker bee typically lives between a couple weeks to a few months, depending
on local conditions.

The tasks a worker bee performs depend on worker age, but also on hive
needs.[3] This is called age polyethism.[15] Younger worker bees will keep mostly
inside the hive, performing tasks such as cleaning the hive, constructing cells,
and feeding younger brood. Older worker bees are tasked with foraging and
exploring outside the hive. However, as there is only a limited amount of tasks
available at any time, bees might change tasks independent of age. An unoccu-
pied bee will in some cases go on a search for more tasks by patrolling the hive.
If it finds work, it will proceed to perform the found task. The age polyethism of
bees is related to feeding glands in the head and wax glands on their abdomen.
As the bees age, the glands develop, making them more suited for specific tasks.
In most cases, Only the oldest bees will forage, as their feeding glands and their



wax glands are diminished. However, in some cases, such as when establishing
a new hive after swarming, there will only be older bees in the hive. In these
cases the older worker bees are fed such that they regain some of their feeding
and wax glands, such that they can spend their rejuvenated youth tending new
brood.

Drones do not contribute to the hive upkeep, are all males, and their sole
purpose is reproduction.[16] [3] When mating season comes around, drones will
leave the hive and search for a queen on her mating flight. Drones are haploid, as
they are birthed from unfertilized eggs. Only fertilized eggs will become worker
bees or queen bees. Since the drones are haploid, they provide a full copy of
their genome when giving sperm to a queen. As a result, sperm cells are never
recombined, only egg cells from the queen are recombined. The inheritance of
bees is called haplodiploidy, as males are all haploid, while females are diploid.
Males will never give their sperm directly to male offspring.

2.1.2 Bee Communication

Bees are social insects.[3] In a similar manner as other social insects such as
ants, termites and some wasps, Bees tend to make large colonies where several
thousand bees live together. The bees contribute to the hive upkeep by cleaning
the hive, constructing more cells for the brood, foraging for food and making
honey out of foraged nectar, and so on. To manage all of the tasks the bees have
developed severeal means of communication to more effectively delegate tasks
and to communicate important information about the hive status and about
the outside.

Bees communicate in several different manners. The different communica-
tion vectors allow the bees to send a variety of messages through the hive. In
the beehive, communication happens through trophallaxis, dance, and through
pheromones.[7] [3] [12]

Trophallaxis is the process of exchanging regurgitated food between a pair
of bees, usually combined with touching antennae.[17] [3] In trophallaxis one
can observe begging behaviour and offering behaviour, bees might ask for food
or offer food. One bee might urge another bee to share its food with it. If the
other bee has food to share, it will regurgitate some liquid and allow the first
bee to partake in it. This behaviour is seen in a variety of social insects, and
provides information about hive needs throughout the bee society. Different
factors might impact what messages are sent, for example, rejecting an offering
bee might send the message that the hive is ”"sated”, or that the quality of the
offered food is poor. As an example, bees will regulate the temperature in the
hive. If the hive gets too warm, the bees need water to cool it down. The bees
will reject foragers bringing nectar, only accepting water, communicating the
need for water.



Dance is perhaps the most widely recognized way of bee communication.[3]
[18] [19] The waggle dance is used to convey a number of different messages, but
they usually relate something concerning the environment outside of the hive.
Forager bees communicate the location of good food sources using the waggle
dance. The dancing bee will angle itself in relation to the sun, such that the
angle corresponds to the food source location relative to the hive opening. The
bee then performs a series of moves that describe the distance from the hive
to the food source and the quality of the food source. A more energetic dance
signifies a more plentiful food source. The dance will, if successful, recruit more
bees to investigate the food source. Those bees might then perform the same
dance, confirming the quality of the food source.[18] In some cases, a hive might
become overpopulated, necessitating that some bees move out of the hive along
with the queen.[3] Where the bees move, however, is done democratically by
the workers. Some bees will scout different possible locations, forgoing foraging.
When the scouts find a suitable location, they will attempt to convince the
other scouts with the same waggle dance as if scouting for food sources. Once
the scouts have decided on a location for a new hive, half the population of the
hive including the queen leave, swarming to the new location and building a
new home. The remaining workers tend to the old hive, as new queen bees are
birthed. The new queens fight to the death over control of the old hive.[20]

2.2 Networks

In 1990, John Guare wrote the award winning play Siz Degrees of Separation.[21]
Towards the end of the play, one of the main characters, Ouisa, delivers a pow-
erful monologue describing how ”everybody on this planet is separated by only
six other people”. Ouisa elaborates on how this amazes her, but also troubles
her. The idea of six degrees of separation, was originally proposed by Frigyes
Karinthy, a hungarian author.[22] He proposed that Through your friends and
acquaintances, you should find someone with a friend or an acquiantance, with
a friend or an acquaintance and so on, until the sixth acquaintance, which is
a certain predetermined person. Be it the norwegian Prime minister, a famous
fashion designer, or someone living in the australian outback. The idea here is
that some of your acquaintances have different friends than you and your other
friends. Mapping all of these out would make a vast network connecting all
people on earth. This social network could, in theory, be so densely connected
that between any two given people, at most five people separate them.

In the social network spanning human society, the people are nodes, and the
social bonds that ties us together are the edges.[23] Networks, however, can be
constructed using a great variety of things using a variety of connecting factor.
Transportation networks are easy and very tangible networks, as it is easy to vi-
sualize how roads connect cities, it would look akin to a map. But even with this
simple network, the nodes could be connected in different ways. For example,
we could connect cities using railways. Railways won’t go to the same places



as roads, and in some cases vice versa. A road map and a railway map would
look somewhat similar, but still different. One would for example imagine the
railway network to leave some nodes unconnected to the larger network, and
the network would likely be less dense.

More complicated and less tangible networks can also be made, such as pro-
tein and gene interaction networks. In this kind of network, genes and proteins
are the nodes, connected together by what genes code for what proteins, but
also by which proteins that impact expression of genes, what proteins interact,
and what genes interact.[24] Such networks can be used to see the impact of
illnesses, or assist in gene editing of bacteria. Network models make it possible
to for example see the impact of a gene knock out before doing such an experi-
ment in real life.

2.2.1 Network attributes

Networks can be described according to a variety of properties. These proper-
ties might help in the understanding, explanation or prediction of behaviour in
a given network. Categorizing the defining traits of a network may also allow
for the recreation of the network.

Degree of connectivity, or simply connectivity or degree, is a node specific
measurement that describes how many other nodes a given node is connected
t0.[23] This number is equal to the number of edges connected to the specific
node. Some nodes might have a higher degree of connectivity compared to other
nodes in the network, these nodes are called hubs. Average degree is a network
wide measurement, that describes the average number of edges connected to

each node.
2Xe

N
Average degree, k is calculated using equation 1, where e is the number of edges

and n is the number of nodes in the network. The number of edges is multiplied
by 2 because each edge connects to two nodes.

=k (1)

Degrees may also be made into a degree distribution, by plotting degree
against the fraction of total nodes or number of nodes with that degree.[23] [24]
The degree distribution can give some insight into whether or not the network
is scale free or not. In a scale free network, the degree distribution will follow a
power law. This is an important attribute, as scale free networks are often small
world networks. Small world networks are, as their name would imply, defined
by short distances between nodes, high clustering, and the prescence of highly
connected hubs. Moving between any two nodes in such a network requires very
few steps.



The clustering of a node describes what fraction of a node’s neighbours are
interconnected compared to the theoretical maximum of connections between
those nodes.[23] Clustering as a measurement provides insight into how densely

connected a network is.
2Xe

k(k—1) @)

The clustering coefficient of a node N, C, is calculated using equation 2, where
e represents edges among node N’s neighbouring nodes, and k is the degree of
node N. It is also possible to find the average clustering over a whole network,
simply by finding the average of all node specific clustering coefficients. Cluster-
ing coefficients found in biological networks have a tendency to be higher than
those found in random network models. [24]

Cn =

2.2.2 Temporal networks

In some networks, it might be useful to investigate how network topology
changes over time in order to glean more information from them.[25] When
making graphs from networks, it’s intuitive to simply make edges between nodes
given that the interaction or connection between any given nodes exist. How-
ever, not all networks are accurately described by this method. As an example,
you could make a network based on social media. Most social media such as
Instagram, Twitter and Facebook let users follow other accounts. Since follow-
ing is not always reciprocated, we could regard them as directed networks. We
could make graphs based on this, accounts represented by nodes with directed
edges representing their following patterns. Such a network could for example
describe the interests of some users, or define groupings within the network.
Users with similar content are more likely to follow each other and other ac-
counts with similar content. This network will, however, not accurately describe
the interactions between accounts. Users are usually logged onto their accounts
at different times, and will therefore interact with each other at different times.
We could imagine a network where nodes would turn on and off depending on
when users are logged onto their accounts, or edges between nodes only existing
in the time where users are interacting, such as through likes or direct messages.
The topology of such a network would change with time as users log on and off,
thus resulting in a temporal network, a network that changes over time.

Regular network attributes will change over time in temporal networks, but
temporal networks will also have inherent attributes of interest.[25] Attributes
such as degree of connectivity will obviously change if nodes and edges flicker in
and out of existence. This can be used to map activity within the network, as
times of higher connectivity would equate to more online accounts. An attribute
of particular interest found in temporal networks is burstiness.[26] Burstiness
describes a particular pattern in the frequency in interactions between nodes.
Bursty interaction patterns are defined by short periods where interactions are



frequent, separated by longer periods of infrequent or no interactions. Human
social networks can be categorized as bursty interaction networks.

2.3 Computer modelling

The purpose of computer modelling is to capture some phenomenon in the form
of computations and algorithms to better understand that phenomenon.[9] Com-
puters, as their name implies, are used to greatly increase the speed of complex
computations of both simple and advanced math. The deeper we delve into
natural phenomena, the more complex they become, thus demanding the com-
puting power of computers. The aim of computer modelling is to create a replica
of patterns or phenomena found in nature. By condensing observed data from
natural patterns into algorithms, instructions for a computer, the computer is
effectively able to simulate previous observations. A replicated model can be
used to great effect in either predicting outcomes of experiments, or to discover
new factors that might not match previous expectations.

Several models have been made from bacterial genomes and their metabolic
pathways.[9] Such models can be used to predict how the bacteria will react if
one or more of their genes were knocked out.[24] Such metabolic models can
also allow us to preemptively suggest what genes should be knocked out when
we desire a certain result. If maximized cell growth in a bacteria is desired, a
computer model may be used use to see what genes can be knocked out to in-
crease cell growth while still having a sustainable bacteria. Accurate prediction
through the use of a computer model might save several hours of tedious lab
work.

When making a computer model, assumptions must inevitably be made
based on the gathered data. The assumptions might not match reality, how-
ever. Humans, are exceptionally good at recognizing patterns, even in places
where there are none. [27] [28] Replicating observations digitally, however, might
not always be easy. Even if data are easily available, precisely why things are
the way they are might be unknown. Therefore, assumptions and simplifica-
tions must be made. This might result in a model not accurately reflecting
the observations. In this case, it’s easy to argue that the simplifications were
too broad too or that the assumptions were wrong. Or, from a more positive
point of view, this might lead to the discovery of a previously unknown factor.
Such unknown factors might have greater impacts on the observed data than
previously thought. Merely the construction of a computer model could propel
a scientific discovery.

2.3.1 Cellular systems

In a cellular automaton, a matrix of cells represent individual nondescript life
forms.[9] The matrix is coloured in as to represent alive and dead individuals.
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Coloured cells are alive, and uncoloured cells are dead or empty. In the cellular
automaton, the cells behave in a particular fashion guided by a specific set
of rules. The next ”generation” or iteration of the automaton will might be
determined solely by the state of the current generation or in a more stochastic
manner. In the famous cellular automaton Conway’s game of life, the cells die
or live based on the state of nearby cells.[29] In Conway’s game of life, a "live”
cell will die when adjacent to fewer than two or more than three other live cells,
as to mimic over population and under population. live cells next to two or
three live cells will continue to live. A dead cell next to three live cells will
become a live cell, mimicking reproduction. The simple rules in Conway’s game
of life makes it possible to make schemes of cells that will continuously repeat
patterns, or even generate new units that will move independently across the
matrix.

2.3.2 Agent-based models

Agent-based models might resemble the cellular automaton, but adds another
layer of complexity. In cellular automatons, the cells are binary, but in an
agent-based model different entities might occupy the cells.[9] [24] Agent-based
modelling can be used to simulate interaction between entities of the same kind,
or different kinds. In the model, the entities, or agents, will adhere to a certain
set of rules. The rules may dictate how agents move, or how they interact. The
rules will usually have a stochastic element, ensuring that any two simulations
are never the same.

The agents may represent a variety of different entities, such as cells, molecules
or animals.[9] The agents may have several defining characteristics that may be
altered during the simulations. Their characteristics could affect how they in-
teract with other agents in the model. As an example, agents in a model could
represent a population of people who are susceptible to some disease. If some
of the agents are sick and some are healthy, an interaction between these might
change a healthy agent into a sick agent. Or perhaps healthy agents could sense
the sick agents and avoid them.

3 Method

3.1 Software/materials
3.1.1 Python

The model was implemented in python. Python was chosen for its ease of use,
as well as the wide variety of available libraries and packages tailored for specific
applications. Pycharm was used as the integrated development environment.

11



3.1.2 NetworkX

NetworkX is a python package that enables both the construction of network
graphs, and the analysis of them. NetworkX was used due to its impressive
amount of algorithms covering a wide variety of needs. Data were analysed
using python, and in the case of network analysis, NetworkX was instrumental.
The following alorithms were used:

e graph() - This function creates an empty network to which nodes or edges
can be added. The Graph-function will not add duplicate edges.

e MultiGraph() - This function creates an empty network. Nodes and edges
may be added to this network, but unlike graph(), a MultiGraph-network
will contain duplicate edges.

e add_edge() - This function adds an edge to a network connecting two
nodes. If the nodes are not present, the function will add the missing
nodes to the network.

e number_of nodes() - This function returns the number of nodes in a net-
work.

e number_of_edges() - This function returns the number of edges in a net-
work.

e average_clustering() - This function returns the average clustering coeffi-
cient across a network.

e degree_histogram() - This function returns the degree distribution of a
network as a histogram.

3.2 Basic model functionality

The construction of the model was heavily inspired by random walkers and cel-
lular automatons. The goal was to make a simplified representation of worker
bees moving about in a hive and registering their interactions, and as such
digitally recreating Gernat’s experiment. The hive would be represented as a
matrix, and the bees would be represented as agents in the matrix. First, a
simple framework model was constructed, and then the model was tweaked and
customised in an attempt to better capture observed features from the empirical
data.

The basic hive model was coded with three basic functions in mind; Defining
and placing bee agents, moving the bee agents, and recording communication
between agents. The design of the different parts of the code was kept as simple
as possible to allow for customisation later.

Bee agents were defined as objects with certain attributes. The bees would
need names for two reasons. The first is to provide a key that connects its marker
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in the matrix to its object attributes. The other is to make it possible to differ-
entiate what pairs make up interactions. The bees placement in the hive matrix
was also defined as attributes, with each bee having an x and y coordinate in
the matrix. The initial placement of the bees were randomly assigned. Any
overlapping was dispersed by simply moving the bees for a number of iterations
without recording any interactions. The final of the basic attributes provided
was a communication cooldown factor. A sort of counter that would increase
in value with each iteration. This was implemented to prevent bees from inter-
acting with the same bee too quickly. Interactions would only be recorded if
the counter was high enough, resetting the counter after a successful interaction.

Movement of the bees was modelled after random walkers, but initially, two
different variants were tested. In the first variant, a bee would make an attempt
at moving to a space in its moore neighbourhood[9]. If the targeted cell was
empty, the bee would move, and stay in its previous cell if the new cell was
occupied. In the second variant, a bee would register all vacant cells in its
moore neighbourhood, including its own cell, then choose one of these cells and
move into it. After movement, the bee’s cooldown counter was increased by
one. The bees were all moved sequentially, but their order was shuffled with
each iteration. The movement algorithm would also prevent bees from moving
outside the hive matrix boundaries, as well as prohibiting them from moving
into the same cell.

Interactions were recorded between neighbouring bees, provided both bees
were ”available”. Bees could only be part of one interaction in a given itera-
tion. As mentioned, this was done by only allowing bees with a high enough
cooldown counter to interact, and then resetting the counter after registering
the interaction. To interact, bees would register all other bees in their moore
neighbourhood, and randomly choose one of these bees. If both of these bees
were ready for interaction, as in their cooldown counter was high enough, their
interaction was registered into a text file. After their interaction, both their
cooldown counters were reset to zero. Bees would look for interactions sequen-
tially in the same order as they were moved in any given iteration.

4 Results and analysis

This section contains discussions on various decisions made when the model was
programmed, as well as results from analyses of both empirical data and models.
Results are presented in the order of their relevance to the development of the
model, and they are discussed briefly after. The aim of the analyses was to find
similarities and differences between the empirical data and data generated by
the model. The results of the analyses was then used to enhance the model.
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Figure 1: An illustration of a moore neighbourhood. The yellow square repre-
sents a bee agent, and the lilac squares represent the agent’s Moore neighbour-
hood.
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4.1 Moving the bee agents

The model itself was based on a random walker model. In a random walker, an
object or agent moves randomly either in an infinite area or volume, or within
boundaries. A random walker may exist in several different dimensions, but for
this model a two dimensional matrix was used. This was done to mimic the
single layer beehive from Gernat’s experiment.[7] A hexagonal grid could have
been used for thematic purposes, but a square grid was chosen for simplicity.

The bee agents were set to move as though random walkers in the hive ma-
trix. it was undesirable for bees to move into the same spot in the hive matrix,
as the communication function was programmed to function based on adjacency
between bees agents. The solution to this required that bee agents were unable
to move into the same cell. Since the hive also had boundaries, this would mean
the movement of bees would be gated by two factors: The bees could not move
outside of the matrix, and the bees could not move into cells already occupied
by another bee.

Bees could be moved in two ways. Agents could either attempt to move
into a random space, or they could identify vacant spaces before moving. For
the first method, the bees could check a random cell in their immediate Moore
neighbourhood and move into that cell if it was vacant, standing still if that cell
was already occupied. If the chosen space was vacant, the bee would move into
that space. If the space was already occupied by another bee, the bee would
stay in its current space. Thus, a bee agent with no neighbours had an equal
% chance of moving into any neighbouring cell or stay put, while a bee with
more neighbours would have a higher chance of staying put. Alternatively, the
bees could check every cell in its neighbourhood to see what cells were vacant,
and then move into one of those. This was done by creating a temporary list
of empty cells in an agent’s Moore neighbourhood every time it was going to
move, including its current space, and then choosing one of those options at
random. Using this method, an agent would always have the same possibility
of standing still as moving into a nearby vacant cell.

The main difference in these two ways of moving the bees is in how movement
of bee agents is affected by other bee agents in their neighbourhood. In the first
method, a bee with several occupied neighbouring cells will have a higher chance
of not moving. The bee can’t move if it checks an occupied cell, and if several
cells are occupied, the chances of it checking one increases. This means that
at some point, a bee could have a higher chance of not moving compared to
the chance of it moving to a given square. Applying this logic to the example
provided in figure 2 would mean the yellow agent has a % chance of not moving.
Three of the possible cells are occupied, and it also has an innate chance of
staying put. The other method will always have an equal chance of moving to a
given square and standing still, meaning there is a greater chance for surrounded
bees to move. In the example provided in figure 2 the yellow agent has an equal
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Figure 2: An illustration of a bee agent surrounded with three neighbouring bee
agents. The yellow square represents the surrounded bee agent, while the grey
squares represent neighbouring agents. The lilac squares represent the yellow
agent’s possible movement options.
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% chance of moving into any one of the vacant lilac squares or standing still.
The impact of the different movement options is discussed in a later section.
Both movement styles were made into separate models for analysis.

4.2 Parameter testing

The initial models needed to generate a number of interactions that would be
comparative to the number of interactions in the empirical data set. The tri-
als contained in the empirical data sets contained between 190000 and 330000
interactions, on average about 258000 interactions. The models would have to
generate a similar number of interactions in order to compare empirical and
synthetic data. At the same time, the model would have to go on for a satisfy-
ing amount of iterations. The iterations would be the equivalent of time stamps

An initial concern was striking a balance between the number of interactions
and the number of iterations. Getting a high number of interactions was rather
simple, but spreading them across a sufficient number of iterations was more
complicated. 15000 iterations were chosen as a sufficient basis, then the number
of interactions were adjusted to this. Initially the models would generate too
many interactions, so several tweaks were made to the models in an attempt to
reduce the number of interactions.

In the models, the generating of interactions depended heavily on the close-
ness of the bee agents. This because the interactions are recorded between
neighbouring bees. To reduce So a way of reducing the amount of interactions
would be to make more space between bees. This translates to increasing the
size of the hive. initially, the hive was 50 by 50 cells, but this would mean just
over half the cells were vacant with 1200 bees in the hive. This was changed
into a matrix of 100 by 100 cells, quadrupling the available space. The total
number of interactions was not significantly impacted by this change, but the
change was kept nonetheless. While not analyzed directly, the increased spacing
between bees might have had an effect on the frequency of pairwise interactions.

Another way of reducing the number of interactions was done in the form of
increasing the threshold for the ”communication factor” in the communication
function in the models. Initially, the bee agents could communicate after three
iterations of no interaction, but this was increased to allow communication only
after ten iterations of no interaction. This, as with changing the size of the hive,
did not significantly reduce the number of interactions. The change was still
kept, as it could be argued that this change, along with the change in matrix
size might facilitate bees choosing different partners between interactions.

The most impactful change in the models in regards to reducing interac-
tion numbers was implementing a probability function to determine whether or
not interactions would occur. Before communications were registered, a check
would be implemented such that only a certain percentage of interactions would
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proceed to the actual registration of interaction. This would not prevent bees
from communicating in subsequent iterations. If a bee agent was in the proper
state to interact, but did not pass the stochastic check, it would still be ready
to interact in the next iteration. Choosing 10% as the probability of interaction
brought the number of interactions down to the desired range. After reaching
the desirable amount of interactions, this probability function was changed fur-
ther, such that it would vary over time. This was done to mimic the circadian
rhythm of the bees seen in the preliminary work leading up to this thesis. [30]
The circadian rhythm was approximated though the use of a sine function. The
implementation would also make it possible to define a number of days the it-
erations would represent. For the purposes of this thesis, Ten days were set as
a baseline. This would imply that a single iteration represented about a minute
of real time with the 15000 iteration base.

4.3 Heatmaps of pairwise interactions

After making the initial models, the data they produced were compared to the
empirical data by means of heatmaps. First, heatmaps were made for all the
empirical data. The heatmaps were made such that the intensity of the heat
correlated to how many interactions a given pair of bees made during a trial. The
interactions in the empirical data were treated as undirected interactions, and
as such the heatmaps were only filled in the top half.

Figures 3 through 7 show the heatmaps made from the empirical data, show-
ing the amount amount of pairwise interactions as heat. It is evident from the
heatmaps that no particular pattern seems to form, and no single bee stand out
as particularly communicative. If this were the case, one could imagine having
brighter lines the heatmaps, but these are not present. The heatmaps show
some pairs being especially communicative compared to the rest of the pairs.
These communicative pairs reach upwards of 20 interactions, while the more
general bee pairs stay under 5 interactions.

Figures 8 and 9 show the heatmaps for the two variants of the initial model.
Compared to the heatmaps from the empirical data, these initially seem way
busier. They seemingly show a lot more heat, but the scale is different between
the heatmaps. The empirical heatmaps have some pairs that communicate a
great deal more than the rest of the pairs, but this does not seem to occur in the
heatmaps for the models. To better understand the patterns of the heatmaps,
the pairwise interactions were plotted as distributions.

Figure 10 shows the distribution of pairwise interactions of both the em-
pirical data sets and the initial models. From this its easier to see where the
models and the empirical data stray from each other. For the lower interaction
numbers, the models and the empirical data match up rather well. And, seeing
as the distribution is on a semilog plot, the majority of the pairs have lower
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Figure 3: Heatmap for the first set of empirical data. The heatmap was not
mirrored, such that the lower half is empty.
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Figure 4: Heatmap for the second set of empirical data. The heatmap was not
mirrored, such that the lower half is empty.
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Figure 5: Heatmap for the third set of empirical data. The heatmap was not
mirrored, such that the lower half is empty.
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Figure 6: Heatmap for the fourth set of empirical data. The heatmap was not
mirrored, such that the lower half is empty.

22



46

92
138
184
230
276
322
368
414
460
506
552

644
690
736
782
828
874
920
966
1012
1058
1104
1150

756
798
840
882
924
966

Nt wWEONTOOO NGO O NS
FToNEgoAInNOm~NOOoOS GMM~—
A oo

1008
1050
1092
1134

Figure 7: Heatmap for the fifth set of empirical data. The heatmap was not
mirrored, such that the lower half is empty.
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Figure 8: Heatmap for the initial model with the first movement option. The
heatmap is mirrored on the diagonal going from the upper left corner down to
the lower right corner.
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Figure 9: Heatmap for the initial model with the second movement option. The
heatmap is mirrored on the diagonal going from the upper left corner down to
the lower right corner.
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Figure 10: Displays the distribution of pairwise interactions between bees plot-
ted as a semilog plot. The yellow, blue, grey, orange and light blue dots represent
the pairwise interactions from the empirical data, while the darkest blue and red
dots represent the pairwise interactions from the models. Red dots represent
the first movement option, while the blue dots represent the second movement
option.
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amounts of interactions. From this, the models arguably capture most of the
pairwise interaction. However, the long tail seen in the empirical data is absent
in the models. From this, it was evident that a further delve into what caused
the long tails to appear would be necessary.

4.4 Initial models as a null hypothesis

The goal of the modelling was simplifying the behaviour in the hive, while stay-
ing true to the conditions of the experiments. Since all bees registered in the
empirical data sets were worker bees, all agents in the model would behave in
the same manner with no distinction. This also assumes that worker bees com-
municate in roughly the same manner regardless of current task, be it nursing,
foraging, and so on.

When making the initial models, it was assumed that patterns in the social
interactions of the bees could be attributed to random walks. This assumption
is only partly correct. Analysis on both the empirical data sets and the synthetic
data generated from the models showed that there was a clear discrepancy in the
distribution of pairwise interactions. The null hypothesis model captured a big
part of the bee behaviour fairly well, but there was clearly some behaviour that
could not be explained by a random walker model alone, as seen in figure 10.
In particular, the long tail seen in the pairwise interaction distribution showed
that some bees in the empirical trial would form more ”extreme” pairs. These
relatively few pairs communicated with each other many times more than the
average bee. These extreme pairs would be investigated further to see if they
behaved in a particular manner. If the extreme pairs had some defining traits,
those traits could then potentially be implemented into the modelling.

Since the null hypothesis of random walkers was unable to capture all the
dynamics of the empirical data, further analyses were carried out with the aim
of finding specific traits in the empirical data missing from the models. The end
goal was finding traits that could easily be implemented into the base models
to better match the empirical data.

4.5 Analysis of extreme bees

The random walker model seemed to capture most of the behaviour seen in the
pairwise interactions of the bees, but did not capture the behaviour of some
extreme pairs. The extreme pairs made several more pairwise interactions com-
pared to the average bee population. To better understand how this could be
implemented into the hive model, further analysis of the extreme pairs were
done. This was done in hopes of uncovering some defining traits of the bees in
these particular pairs.

An initial thought was to see what amount of interactions the bees in the
extreme pairs were part of. The logic behind this was that if the extreme bee
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pairs made many pairwise interactions, they might be defined by having many
interactions overall. This was done by using the degree distribution of the net-
works generated from the empirical data sets. The total amount of connections
to other nodes in the network would be equal to the total number of interac-
tions any given bee made during the experiment. These degree distributions
were then made into histograms that would represent the distribution of the
total number of interactions for each bee. As the initial degree distributions
for the whole networks were rather thinly spread, the numbers were gathered
into larger bins to better give an image of how the number of interactions were
distributed. After generating these distributions, the individual bees from the
extreme pairs were identified, and their total number of interactions were found.
These numbers could then be identified in the histograms.

Table 1: Pairwise interactions and total individual interactions for the extreme
bee pairs that were investigated in the empirical data sets. The names of the
bees is their assigned number identifier.

Trial | Pair 1 2 3 4 5
Names 501 1148 | 1284 1633 | 1591 1945 | 539 1270 1923
1 Pairwise 20 20 19 18 18
interactions
Individual = 716 873 | 340 549 | 606 636 | 552 525 | 810 783
total interactions
Names 812 1757 | 682 1183 | 1423 1812
2 Pairwise 20 16 16
interactions
Individual 462 456 | 333 430 | 305 363
total interactions
Names 779 1906 | 239 1673 | 1830 1796 | 80
3 Pairwise 22 21 21 20
interactions
Individual
) . 493 276 | 424 787 | 517 824 | 534 403
total interactions
Names 633 1749 | 213 1596 | 323 374 | 874 865
4 Pairwise 28 27 24 24
interactions
Individual
) . 386 624 | 776 475 | 831 486 | 958 426
total interactions
Names 800 1164 | 717 1014 | 1019 1659 | 1385 1715 1913
o Pairwise 29 2% 25 25 25
interactions
Individual 633 541 | 1062 693 | 973 506 | 673 505 | 525 695

total interactions

Figures 11 through 15 show the degree distribution of the empirical data.
The degree distributions were compressed into larger bins to show clearer trends.
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Figure 11: Degree distribution of the first empirical data set compressed into
bins with size 50. The black bars signify a bin containing one or more of the
bees in the extreme pairs.
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Figure 12: Degree distribution of the second empirical data set compressed into
bins with size 50. The black bars signify a bin containing one or more of the
bees in the extreme pairs.
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Figure 13: Degree distribution of the third empirical data set compressed into
bins with size 50. The black bars signify a bin containing one or more of the
bees in the extreme pairs.
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Figure 14: Degree distribution of the fourth empirical data set compressed into
bins with size 50. The black bars signify a bin containing one or more of the
bees in the extreme pairs.
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Figure 15: Degree distribution of the fifth empirical data set compressed into
bins with size 50. The black bars signify a bin containing one or more of the
bees in the extreme pairs.

Bins containing bees that were part of the investigated pairs with notably high
pairwise interactions were marked by colouring them black. From the his-
tograms, it was clear that the extreme bee pairs didn’t share any specific traits in
regards to the total number of interactions. The bees were haphazardly spread
about the histogram with no clear pattern, and in particular, they did not seem
to gather to any of the extreme ends of the histograms. As such, one could
argue that the behaviour of the extreme bee pairs were not defined by the total
number of the individual bee’s interactions.

Another way of defining the behaviour of the extreme bees was investigated
in the frequency of their interactions. The bursty interaction patterns of the bee
social network is discussed in Gernat’s article.[7] Networks with bursty inter-
action patterns are defined by their unique temporal spreading of interactions.
Interactions between pairs are very frequent within short windows of time, but
these interactive phases are separated by long periods of no or little interactions.
The article also makes a distinction between long waiting times and short wait-
ing time, with the threshold being 168 seconds. By investigating the waiting
times between pairwise interactions in the extreme pairs, the pattern might be
further defined. The waiting time was determined by identifying the starting
time of interactions in the empirical data, and then finding the difference in
starting times for subsequent interactions. This approach does not accurately
capture waiting times between interactions, but for the purpose of identifying

31



Extreme pair
[=3
(=]

(=YW RTINS . T T =]
]
L

Time of interaction

Figure 16: Interactions in extreme pairs of bees plotted at the time of the
interaction after experiment start. The green dots represent pairs from the first
trial, light blue represent pairs from the second trial, yellow represents pairs
from the third trial, orange represents pairs from the fourth trial, and dark blue
represents pairs from the fifth trial.

bursts in the extreme pairs, the difference is negligible. In the analysis of these
patterns, only the specific extreme bees were investigated.

Figure 16 show that the bursty interaction patterns is apparent from the
pairwise interactions in the extreme bee pairs. In several of the pairs, most of,
if not all, the interactions are gathered into one burst of sequential interactions.
In fact, the interactions are so tightly gathered, they’re hard to tell apart when
plotting them. Some of these interactions are separated by as little as seconds.

Figure 17 shows a more enhanced visualization of the bursty interaction be-
tween the two bees 1591 and 1945 in the first empirical data set. The longest
gap between two start times in this figure is a mere 84 seconds. This pattern is
common for all the bursts seen in figure 16

In the supplementary information of Gernat’s article, it is explained that
trophallactic interactions can last for periods of time as long as minutes.|[7]
Therefore, interactions that were separated by very small amounts of time were
combined into larger interactions. Gernat et al. made sure to account for factors
that might have separated interactions, such as bees blocking the vision of b-
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Figure 17: A zoomed in view of interaction start times in the extreme pair 1591
and 1945.

codes. Since these factors were accounted for, the separated interactions must
imply that the honeybees make several unique trophallactic interactions with
a partner. As in, they are indeed separate interactions, and not a continuous
interaction. Now, what separates these interactions could be one of two factors
that might have an implication on how a model should behave. The interactions
could be separated by silence, meaning that interactions simply come to a stop
before starting a new interaction with the same partner. Or, the interactions
might be separated because of a change in communication partner. Therefore,
this must be investigated. To do so, a further investigation of the five extreme
pairs from the first empirical trial was done. The extreme pairs that were
investigated further did not swap partners in their bursty phases, implying,
but not confirming, that the bees do not swap communication partners during
bursty phases. It was assumed from this that bees in bursty phases did not
swap partners when the models were enhanced further.

4.6 Network analysis of synthetic data

A great deal of information can be found in seeing how network topology changes
in time. The empirical data sets had previously been analysed to find how some
basic attributes of the honeybee social network developed as the experimental
trials progressed.[30]

An attribute of particular interest is clustering in the network. Clustering
describes the tendency of a given node’s neighbouring nodes to be connected.[23]
Real networks are usually found to have a higher clustering than randomized
networks, so comparing the clustering in the empirical networks to the clustering
in the synthetic data might give a pointer on how close or far off the model
currently is. Clustering also has a tendency to decrease with increasing size
in networks. Clustering in the empirical data had previously been analyzed.
This was done by using the empirical data as a basis for temporal networks.
All interactions within one hour time intervals were made into networks and
then analyzed, finding network attributes such as number of nodes present,
connectivity and clustering. The same was done with the synthetic data from
the model, focusing on the clustering. A number of iterations equivalent to one
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Figure 18: Clustering of networks generated from the initial model using second
variant of movement where bee agents registered vacant spots.

hour worth of data were made into networks and analysed, repeating over the
data set, creating a temporal network analysis.

From figure 18, it is evident that the clustering of the empirical data and the
synthetic model is rather similar. The wave pattern in the figure stems from
the day/night cycle that was implemented into the model, but the clustering
seems to hover around 0.015. This was strikingly similar to the clustering found
in the analyses of the empirical data.[30] This implies that the null hypothesis
model captures multiple aspects of the empirical network, even if it consists of
only random walkers.

4.7 Burstiness analysis

Burstiness seemed to be a prominent aspect of the bee communication be-
haviour. Therefore, further analyses of the dynamics of the burstiness in the bee
network were performed to get a better understanding of the burstiness with the
aim of using the gathered information to improve the accuracy of the hive model.

As described in part 4.5 and 4.6, it was found that the null hypothesis model
captured some aspects of the communication dynamics, such as the clustering
being similar, and most of the pairwise interactions were similar. The main dif-
ference between the model and the empirical data was the long tail seen in the
pairwise interactions seen in figure 10. As an experiment, the bursty interac-
tions were removed from the empirical data sets and then these new ”censored”
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Figure 19: Displays the distribution of pairwise interactions between bees on a
semilog plot after removing bursty interactions from the empirical data. The
yellow, blue, grey, orange and light blue dots represent pairwise interactions from
the empirical data, while the darkest blue and red dots represent the pairwise
interactions from the two random walker models.

data were analyzed. The bursty interactions in the empirical data sets were
defined by using the threshold of ”short” waiting times that was determined
in Gernat’s article. The article defines short waiting times as waiting times
between interactions shorter than 168 seconds. Using this, a new data set was
made by omitting any data of duplicate interactions between pairs where less
than 168 seconds passed from the end time of a given "first” interaction to the
start time of the next interaction. This data set was then sent through the same
analysis that was used to find the numbers of duplicate interactions.

Figure 19 when compared to figure 10 makes it evidently clear that the
bursty interactions is the main contributing factor to the long tail in the pair-
wise interactions seen in figure 10. With no burstiness present, the empirical
data match up rather well with the null hypothesis model of only random walk-
ers. The random walker models have slightly higher numbers than the empirical
data, but the data seem to follow roughly the same linear trend. A possible ex-
planation to why the model data are higher than the empirical data, is that any
"natural” bursts that would occur in the random walker models haven’t been
removed. Regardless, what separates the empirical data from the model data
is the lack of bursty interactions in the model. To make the models match the
empirical data better, some sort of bursty interaction should be implemented
into the models.

Since burstiness was so characteristic for the empirical data, the burstiness
dynamics were investigated to find some trends that could be implemented into
the model. Two main concerns were investigated. Since not all interactions
in the bee network could be bursty, something must determine whether or not
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interactions end up being bursty. It was decided that the frequency at which
bursty interactions occur should be determined. The bursts themselves are not
equal, some having more interactions that others. A way of investigating this
would be making a distribution of the burst lengths to determine how often
certain lengths of burst would occur.

While what specifically makes an interaction bursty is not within the scope
of this thesis, an argument could be made that there is a chance of any given
interaction between bees ending up in a bursty phase. Two concerns need to be
cleared up before determining this chance. Are bees in bursty phases only com-
municating with one specific partner bee, or do they possibly change partners?
Also, what is the probability of an interaction being bursty?

First, when the bursty interactions from the empirical data were removed,
bees changing partners between interactions were not accounted for. As ex-
plained in the supplemental information to Gernat’s article, separate trophal-
lactic interactions were registered as one interaction, provided that they were
close enough temporally.[7] However, this must mean that all interactions in
bursts are truly separate interactions, leaving open the possibility of bees chang-
ing partners in the short time frame between repeat interactions. An argument
could be made that this is merely a question of how bursty interactions are de-
fined, but it might still be valuable to take a look into this. When the extreme
bee pairs were found earlier, the pairs from the first parallel in the empirical
data were investigated in detail for the time intervals where these specific pairs
displayed bursty behaviour. In these five pairs, the bees did not change partners
at any point in their bursty phases, implying, but not conclusively demonstrat-
ing, that bees in bursty interactions do not change partners before their bursty
phase is over. Thus, It was assumed that this would hold true for all other
bursty interactions in the bee network.

Next, What is the probability of any interaction resulting in a burst? To
figure this out, some basic calculations of probabilities were necessary. This
was done by determining the number of interactions resulting in a burst and
dividing this by the number of total interactions without bursts present. For
the purposes of this calculation, the number of interactions resulting in bursts
would be equal to the number of bursts present.
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Table 2: Shows the number of bursts registered for each of the empirical trials,
the number of interactions in the trials with no bursts, and the chance of an

interaction resulting in a bursty phase.
Trial 1 2 3 4 5

Number of 925900 20184 18707 23452 28655
bursts

Number of 9255458 169119 155101 216159 278364
Interactions

Chance of burst | 0.1014 0.1193 0.1206  0.1085  0.1029

From table 2 the probability of two bees entering a bursty phase is found,
and it varies between empirical trial. An average of these probabilities, and its
deviation, can be found.

0.1014 + 0.1193 + 0.1206 + 0.1085 + 0.1029
5

= 0.1106 (3)

/(0.1106 — 0.1014)2 + (0.1106 — 0.1193)2 + .
5

v0.0036 = 0.06 (5)

Equations 3 through 5 show the calculation of the average chance of an inter-
action being bursty and the variance and standard error of this number. From
this, the chance of an interaction being bursty is about 11%. Incorporating this
into the model would require a simple check, but no substantial changes, which
was desirable.

" = 0.0036 (4)

When the bees enter a bursty phase, they interact a number of times that
varies with every burst. In order to implement this into a model, the tendency
of interactions to last for fewer or more interactions must be defined. When
a pair of bees enter a bursty phase, that phase lasts for a certain time, and
results in a certain amount of interactions between the two bees. This can be
visualized using a histogram showing the number of bursts resulting in every
possible number of interactions. This was done using the empirical data sets.

Figures 20 through 24 show the the number of interactions in bursty inter-
actions between pairs of bees as histograms. The histograms display a clear
geometric trend where lower numbers are more likely, while larger numbers are
comparatively less likely.

4.8 Model enhancement

Analysing the empirical data suggested that burstiness was the missing factor
in the initial models. The aim of the investigation of patterns in the burstiness
was to find defining traits that could be implemented into a model in order to
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Figure 20: Shows the distribution of number of interactions in bursts found in
the first empirical trial as a histogram.
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Figure 21: Shows the distribution of number of interactions in bursts found in
the second empirical trial as a histogram.
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Figure 22: Shows the distribution of number of interactions in bursts found in
the third empirical trial as a histogram.
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Figure 23: Shows the distribution of number of interactions in bursts found in
the fourth empirical trial as a histogram.
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Figure 24: Shows the distribution of number of interactions in bursts found in
the fifth empirical trial as a histogram.

enhance it. Ideally, the enhanced model would more accurately describe the
interaction patterns in real life beehives.

The model was enhanced to capture the bursty interaction patterns seen in
the empirical data by replicating the rates at which bursty interactions would
occur, and the length of the bursts. This was accomplished by giving every
interaction a chance of ”locking” a bee agent to its communication partner for
a certain amount of interactions. The chance of a pair locking together was set
to the average probability found in table 2. After locking, the bee agents were
assigned a number of interactions to reach. This number was found by pulling
a random number from the combined numbers of interactions seen in figures 20
through 24.

For as long as bee agents were locked to a partner, they would cease move-
ment in the hive matrix. Bursty phases in the empirical network were defined
by the waiting times between interactions being less than 168 seconds. In the
model, every iteration would equate to approximately a minute when using a
basis of 15000 iteration over 10 days. Thus, communications in ”bursting” pairs
would have to occur at least every three iterations. Since the waiting time could
be shorter, paired bee agents were set to have a 1/3 chance of interaction on
the next iteration after entering a burst, then a 1/2 chance on the second, and
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Figure 25: Displays the distribution of pairwise interactions between bees on
a semilog plot. The yellow, blue, grey, orange and light blue dots represent
pairwise interactions from the empirical data, while the darkest blue and red
dots represent the pairwise interactions from the two random walker models.
The enhanced models are shown as dark green and purple dots. The purple
dots represent the first movement option, while the green dots represent the
second movement option.

a guaranteed interaction on the third iteration. Every interaction after pair-
ing was counted in a separate variable assigned to the bee agents. When the
bee pairs had made a number of interaction in their bursty phase equal to the
predetermined number pulled from the distribution, they would exit the bursty
phase. After exiting the bursty phase, the bee agents would behave as regular
non-bursting bee agents and resume random walks across the hive matrix. The
movement function and communication function of the non-bursting bee agents
were kept largely unchanged. The only change to this version of the model
was implementing the ”locking”-behaviour to make the model generate a more
bursty interaction pattern. The data output was also kept in the same format
as before.

4.9 Analysing the enhanced model

The data output from the enhanced model was analysed in the same manner
as with the empirical data and the null hypothesis model. This was done to
compare the models and determine the accuracy of the enhanced model. First,
the pairwise interaction for each pair was gathered and plotted in a similar way
to that seen in figure 10.

As seen in figure 25, the enhanced models match up with the empirical data
a great deal better than the initial models. As previously stated, the null hy-
pothesis models are lacking the long tail of the empirical data. The enhanced
models, however, seem to capture the long tail rather accurately. If anything,
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the enhanced models seem to generate numbers in the upper range of what was
seen in the empirical data, but nothing conclusive can be gathered from this
without a more statistical approach.

Next, the clustering of the enhanced models were calculated and plotted.
The data generated from the enhanced models were made into networks that
could be subjected to network analysis. In the same manner as before, 63 it-
erations at a time were made into networks, which were then analyzed. The
average clustering coefficient from each network was then plotted sequentially
with each corresponding iteration.
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Figure 26: Clustering from the data generated by the enhanced model using the
first movement option.
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Figure 27: Clustering from the data generated by the enhanced model using the
second movement option.

Comparing figures 27 and 26 to figure 18 its evident that the clustering is
rather similar. This result is more or less expected, as increased burstiness will
add more duplicated edges in a network. Increased clustering would require an
increase in edges between different multiple unique pairs. The fluctuations in
the data from the models are intentionally made to mimic the day and night
cycle of the empirical data, but the clustering coefficients still tend to fluctuate
around 0.015 — 0.02. This is not far from what was previously seen in the
empirical data.[30]

4.10 Discussion of enhanced models

The enhanced models captured a great deal more of the patterns seen in the
empirical data. This is especially notable in the distribution of pairwise inter-
actions, where the enhanced models were able to rather accurately capture the
long-tailed behaviour seen in the empirical data. The clustering patterns in the
networks matched up rather well with the empirical data in both the initial
models and the enhanced versions. As mentioned before, it is expected for the
clustering to remain mostly unchanged after the implementation of the bursty
interaction pattern, as the burstiness alone will only add duplicate edged of
already established edges. Thus, the clustering remains largely unchanged. An
interesting observation here is that the random walker models alone were able
to accurately match the clustering previously observed in the empirical data
sets.[30]

Several assumptions and simplifications were made when constructing the

models. The use of random walkers to represent bees in a hive seems to have
worked out rather nicely in the end, but this still remains an approximation of
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actual bee movement. Bees in a real hive will not be constantly on the move,
such as when they are sleeping or if they have no task to tend to. [3] Also,
in the models the bees were assumed to behave in the same manner because
they were all worker bees. However, due to age polyethism, worker bees have
different occupations at different times.[15] It is easy to imagine that the age
polyethism might cause different movement patterns in worker bees depending
on their current task. As an example, foraging bees are not always present in
the hive, meaning they have less time to perform trophallaxis with other bees
compared to a nursing bee. Such nuance between subclasses of workers is not
implemented in the model, which might lower the accuracy of the model.

The movement of the bee agents in the models seem to have little effect on
the overall results. In the end, the first movement option where agents check a
random nearby cell for vacancy seems to generate slightly higher numbers than
the second movement option where agents locate all vacant nearby cells before
moving into one of them. This is observed in both the initial models and the
enhanced models. Whether any of the two movement options is better than the
other is rather ambiguous. The main difference in the results being the first
movement variant giving slightly higher numbers. However, the difference is so
small that it is unclear whether higher numbers are undesirable or not. How-
ever, in terms of how the models function, the second movement variant might
edge out the first variant in terms of customizability. The first variant is rather
rigid in its functionality, but the second variant can be tweaked changing the
probabilities of moving to certain cells or standing still.

It should be noted that at this point, the enhanced models are still operating
with the same base parameters that were set previously. That is, the same
number of iterations, the same matrix size, the same number of bee agents and
so on. Some of these parameters depend on each other in the performance
of the model. For example, the hive matrix needs to accommodate for the
number of bee agents. And, as previously discussed, the number of interactions
generated per iteration depend on several factors such as the probability check
for interactions, hive matrix dimensions, etc. The models work with the current
setup, but if the models were to be scaled up, several of these parameters would
need to change. This parameter testing is outside the scope of this thesis,but is
a definitive concern for any future use and development of the models.

5 Conclusion and outlook

Through the use of agent based modelling, the metrics from the honeybee so-
cial network in focus in this project were successfully reproduced in synthetic
models. The factors most heavily supporting the notion of the modelling being
successful was both the clustering and the distributions of pairwise interactions
matching between models and empirical data. Most effort when creating the
models was put into having the models recreate the bursty interaction patterns
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seen in the empirical data sets. As such, the bursty interaction patterns were
analyzed in order to create a basis for the models. The distribution of bursty
interaction lengths was found from the empirical data set, and it was determined
that every interaction has an approximate 11% chance of being followed by a
bursty phase. When these factors were implemented into the hive model, the
model would match nicely with the empirical data.

The initial modelling was heavily based on the assumption that the bees
could be modelled as random walkers on a matrix. While this did not suffi-
ciently capture the long tail in the empirical data as seen in figure 10, it did
compare nicely to the empirical data once any bursts in the pairwise interactions
were removed as seen in 19. This indicated that a random walker was a good
initial step in capturing the interaction dynamics of the honeybees. Tweaking
the models such that they would generate bursty interactions of their own made
a significant impact. The pairwise distributions for the enhanced models seen in
figure 25 match the empirical data a great deal better than the initial random
walker models.

The enhanced models do have room for improvement, however. Multiple
assumptions were made about the bee behaviour, such as the worker bees all
behaving the same and no bees changing partners in bursty phases. These
assumptions could be accepted due to the apparent accuracy of the models.
Another area of the model that could require more work is the relationship
between parameters in the model. A goal of the modelling that was less empha-
sized in this thesis is the ability to scale the model. The basis for the model was
1200 bees to specifically replicate the empirical data, but scaling this up would
require a delve into how the hive matrix should be sized up, and similarly for
other parameters in the model.

Bees are important, and there has been reported a worrying trend of bees
struggling.[31] Worry alone won’t save the bees, and as such we must take action.
A wider aim of this project was to get a better understanding of communication
patterns between bees, as knowledge is of vital importance when aiding the bees
in their struggle. In the end, even if the modelling was successful in capturing
the desired metrics, it is also evident that more research is needed to fully
capture all aspects of a social bee network. Of notable interest would be the
movement and position of bees in the hive. More work would also be needed to
make scaling of the model functional.
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