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Samandrag 

Klimaendringane er venta å auke snittemperaturen, men også variasjon og føreseielegheit 

i temperatur. Nøyaktige predikasjonar av framtidig førekomst og foredling av artar må 

difor ta omsyn også til desse faktorane. Fordi ektoterme dyr har kroppstemperatur i 

likevekt med omgivnadane, treng dei strategiar for å takle variasjon og føreseielegheit i 

erfarte temperaturar. Varmeregulering gjennom åtferd gjer det mogleg å halde ei tett 

fordeling av kroppstemperatur rundt ein føretrekt temperatur.  Føretrukne temperaturar 

er ofte predikert ut frå den termisk yteevna til ein eigenskap, og ofte er dette skildra 

gjennom asymmetriske kurver (thermal performance curves). Grunna Jensen si ulikheit vil 

variasjon i kroppstemperatur resultere i føretrekt temperatur ulik optimal temperatur, Topt, 

som gir maksimum yting.  

I dette prosjektet undersøker eg åtferdsstrategiar i eit tilstandsbundne rammeverk ved 

ulike nivå av føreseielegheit i temperatur, og effektar av auka temperaturvarians på 

fitness. Eg visar at føretrekt temperatur å søke etter føde i, minkar med føreseielegheita, 

men at dei òg avheng av kroppskondisjon. Vidare ser eg at det ikkje alltid er mogleg å 

predikere føretrekt temperatur ut i frå den samansette eigenskap forventa netto vinst. I 

tillegg blir fitness redusert, gjennom auka daudelegheit og lågare kroppskondisjon for alle 

scenario av føreseielegheit i temperatur. Det er nokre fordelar eit bytte til optimale 

åtferdsstrategiar i høgare variasjon, som er realisert gjennom lågare daudelegheit og 

høgare kroppskondisjon.  

Føretrekke temperatur er i samsvar med Jensen si ulikheit og teori som omhandlar risiko 

sensitivt fødesøk, og er ulik den optimale temperaturen som gir høgast yteevne. Negative 

effektar på fitness  har to moglege forklaringar. Hovudårsaka er at varmereguleringa er 

mindre nøyaktig med låg føreselegheit i temperatur. Dette gir større variasjon i opplevd 

temperatur, og fitness minkar då yteevna er lågare for alle ikkje-optimale temperaturar. 

Den lågare føretrekke temperaturen i desse scenarioa reduserer på same måte fitness 

snittet, samanlikna med dei optimale strategiane i høg føreseielegheit.  
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Abstract 

Climate change is predicted to not only increase mean temperatures, but also to change 

patterns of variation and predictability of temperatures. This necessitates incorporating 

variation and unpredictability into modelling approaches to predict future species 

persistence and distributions. Ectotherm animals with body temperatures in equilibrium 

with their surroundings, need strategies to deal with variation and predictability in 

experienced temperatures. One such strategy is behavioural thermoregulation, which 

enables animals to stay closer to their preferred temperatures. Preferred temperatures 

are often predicted from thermal performance curves (TPC), which describes temperature 

dependence of trait performance. Following Jensen’s inequality, it is generally predicted 

that variation in body temperatures leads to shifts in the preferred body temperatures 

away from optimal temperatures yielding maximum performance.  

In this project I investigate optimal behavioural strategies in a state-dependent 

framework at different levels of temperature predictability, and effects of increased 

temperature variability on fitness. Here I show that preferred temperatures of foraging 

decrease in temperature scenarios with lower predictability, but that preferred 

temperatures also depend on body condition. Predictions based on the compound trait 

expected net benefit is not always suitable to explain behavioural strategies. All decreases 

in temperature predictability increased mortality and decreased body condition of animals. 

Some advantage of allowing for behavioural optimization to lower temperature 

predictability is evident through lower mortality and higher body condition than for non-

optimal behaviours. 

Preferred temperatures follow predictions from risk-sensitive foraging theory, with 

shifts away from the optimal temperature depending on both temperature predictability 

and body condition. Detrimental effects on fitness with decreased temperature 

predictability has two possible explanations in my model. The main explanation for the 

decrease in fitness with lower temperature predictability is reduced thermoregulatory 

accuracy. This results in higher variation in experienced temperatures, and thus lower 

mean fitness because of performance loss in most non-preferred temperatures. The lower 

preferred temperature in low predictability scenarios also has reduced mean fitness, 

compared to optimization in high predictability scenarios.  
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Figures 

Figure 1. Thermal performance curve with performance dependent on body temperature. 

Performance increases slowly from a critical minimum (CTmin) to an optimum, before it 

falls quickly towards a critical maximum (CTmax). Preferred temperatures generally fall to 

the left of the optimal temperature, Topt, due to Jensen’s inequality. ________________ 2 

Figure 2. Specialist TPC, expected net benefits dependent on body temperature. 

Computed from the feeding efficiency E, metabolic costs M and constant benefit B. TprefA 

is the preferred temperature for temperature variation scenario A0.86 and the high, 

positive deviations Dt-1 in scenario A0.37. TprefB is the preferred temperature for 

temperature variation scenario A0 and the low, negative deviations Dt-1. Note, TprefA 

coincides with the optimal temperature choice, Topt. ____________________________ 12 

Figure 3. Proportion of individuals at body conditions C=20, 19, 18 and summed 1-17, of 

forward simulations with the specialist TPC, and temperature variation scenario indicated 

by autocorrelation on axis. Optimization temperature variation scenarios are given by 

colours, legend at the right. ______________________________________________ 13 

Figure 4. Mortality, the proportion of individuals at body condition C=0, of forward 

simulations with the specialist TPC, and temperature variation scenario indicated by 

autocorrelation on axis. Optimization temperature variation scenarios are given by 

colours, legend at the right. ______________________________________________ 13 

Figure 5. Generalist TPC, expected net benefits dependent on body temperature. 

Computed from the feeding efficiency E, metabolic costs M and constant benefit B. TprefC 

is the preferred temperature for temperature variation scenario A0.86, while A0.37 and 

A0 has a division between TprefD and TprefE by previous temperature deviation Dt-1 or body 

condition C, respectively. Note, TprefD coincides with the optimal temperature choice. __ 14 

Figure 6. Proportion of individuals at body conditions C=20, 19, 18 and summed 1-17, of 

forward simulations with the generalist TPC, and temperature variation scenario indicated 

by autocorrelation on axis. Optimization temperature variation scenarios are given by 

colours, legend at the right. ______________________________________________ 15 

Figure 7. Mortality, the proportion of individuals at body condition C=0, of forward 

simulations with the generalist TPC, and temperature variation scenario indicated by 

autocorrelation on axis. Optimization temperature variation scenarios are given by 

colours, legend at the right _______________________________________________ 15 

Figure 8. Distributions of experienced temperatures in forward simulations of specialist 

behavioural strategy optimized in A0.86. Distributions have sample sizes, NA0.86 = 

21029847, NA0.55 = 19079952, NA0.37 = 20525619, NA0 = 16102137, where animals that 

die no longer contribute to experienced temperatures. _________________________ 17 

Figure 9. Distributions of experienced temperatures in forward simulations of generalist 

behavioural strategy optimized in A0.86. Distributions have sample sizes NA0.86 = 

25327197, NA0.55 = 24563637, NA0.37 = 25326468, NA0 = 22953826, where animals that 

die no longer contribute to experienced temperatures. _________________________ 19 
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Tables 

Table 1. Parameter choices for the specialist and the generalist using dynamic state 

variable modelling to find an optimal behavioural strategy of foraging temperatures in the 

trade-off between increased foraging efficiency and metabolism with temperature. The 

only difference in the two models is the shift in inflection point (τ) for feeding efficiency 

from temperature 5 in the generalist to temperature 6 in the specialist. Temperature 

variation scenario A0.55 is only used in forward simulation.        9 

Table 2. Overview of optimal behavioural strategies and forward simulations. Six 

behavioural strategies are made, optimized for each combination of a TPC and 

temperature variation scenarios outlined below. Forward simulations with Monte Carlo 

method for each behavioural strategy is done in temperature variation scenarios 

according to the last column. Full transition matrices for each temperature variation 

scenario is given in Tables A1-A5.           10 
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Living organisms display a variety of strategies to deal with variation and 

unpredictability in environment. With the predicted increase in variation and 

unpredictability following climate change, major questions relate to consequences of a 

more variable and less predictable future, and to the opportunities of rescue from 

population decline and extinction by for example behavioural adjustment, acclimatization, 

phenotypic plasticity, range expansion and evolution (Vasseur et al., 2014; Urban et al., 

2016). Ectotherms are organisms in thermal equilibrium with its surroundings, and as 

environmental temperature influence body temperature and in turn performance, virtually 

every aspect of an ectotherms life and fitness is influenced by environmental temperature 

and its variation (Angilletta Jr., 2009). Because of this tight link between performance, 

body temperature and environmental temperature in ectotherms, changing patterns of 

thermal variation and temperature predictability represents an interesting and important 

area of study in ectotherms. Performance and fitness consequences during rapid change 

of thermal regimes and predictability, with accompanying opportunities for rescue through 

behavioural or physiological adjustment, are important aspects of short-time persistence 

of ectotherms.  

Temperature dependent performance of ectotherms is often represented through thermal 

performance curves, TPCs (Huey and Stevenson, 1979; Angilletta, Niewiarowski and 

Navas, 2002; Sinclair et al., 2016). The performance traits are fitness or fitness proxies 

when these are possible to measure (Huey and Berrigan, 2001; Corkrey et al., 2012), or 

lower level animal traits thought to be important for survival and reproduction, for example 

is digestion rates (Angilletta, 2001) or lizard sprint speed commonly measured (Hertz, 

Huey and Stevenson, 1993). TPCs for ectotherms are usually modelled through an 

asymmetric and unimodal curve (Figure 1) (Huey and Berrigan, 2001; Angilletta Jr., 2009; 

Dell, Pawar and Savage, 2011). Tolerance range describes the temperatures of animal 

function, between CTmin and CTmax, while performance breadth or range refers to the 

temperature range of a certain function, often 50% or 20 % performance loss compared 

to the optimal temperature (Angilletta, Niewiarowski and Navas, 2002; Sinclair et al., 

2016). Differences in performance breadth are often used to describe species that display 

different patterns of response to temperature. Specialists have TPC with narrow 

performance breadth but high maximal performance at optimal temperatures. Generalists 

are characterised by wider performance breadths, usually at the expense of lower maximal 

performance (Huey and Slatkin, 1976; Gilchrist, 1995).  

In the case of no variation in experienced body temperatures, fitness is maximized when 

body temperature is equal to the optimal temperature, Topt. However, this scenario is rarely 

observed in nature. As a result of the mathematical relationship known as Jensen’s 

inequality, fitness is maximized for preferred temperatures lower than the optimal 

temperature at maximum performance (Martin and Huey, 2008; Vercken et al., 2012). 

Intuitively, this can be explained through observing that loss of fitness is higher at 

temperatures above the Topt than below it (Figure 1) (Vercken et al., 2012), and the mean 

fitness across the temperature distribution is not the same as the fitness at the mean 

temperatures.  
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Preference for sub-optimal temperature is an insurance strategy, where a non-optimal 

mean temperature is chosen to alleviate effects of environmental variation (Haaland et al., 

2019). In contrast, considerations of risk-sensitive foraging strategies are done with 

scenarios where all options have the same mean change in animal state, but with different 

levels of variation in the pay-off (Stephens, 1981; Real and Caraco, 1986; McNamara, 

Merad and Houston, 1991). Concave fitness functions promote risk-aversion and choice of 

low variance options, while convex fitness relationships support risk-prone strategies of 

high variance options. This framework is relevant when survival is dependent on an energy 

state of the animal, (Stephens, 1981; Real and Caraco, 1986; Higginson et al., 2012), but 

can also be extended to reproduction (McNamara, Merad and Houston, 1991; Bednekoff, 

1996). Optimal change between risk-averse and prone strategies is thus determined by 

fitness, which is dependent on the energetic state of the animal and remaining time to 

forage, or time to reproduction. The asset protection principle was proposed to predict risk 

sensitive strategies in state dependent frameworks (Clark, 1994). When animals have high 

asset values (i.e. body condition or similar), they employ risk averse behaviours to 

minimize losses and protect current assets, implying a convex fitness function. On the 

other hand, animals with insufficient assets are predicted to display risk prone behaviour 

to gain the higher possible rewards, implying concave fitness functions.  

Faced with variation in environmental temperatures, being either predictable, for example 

seasonal changes, or unpredictable and unanticipated variations, many ectotherms can 

behaviourally thermoregulate to obtain a preferred body temperature. Exploiting different 

microhabitats where temperature vary depending on factors such as radiation, convection 

Figure 1. Thermal performance curve with performance dependent on body 

temperature. Performance increases slowly from a critical minimum (CTmin) to an 

optimum, before it falls quickly towards a critical maximum (CTmax). Preferred 

temperatures generally fall to the left of the optimal temperature, Topt, due to 

Jensen’s inequality. 
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and humidity, in both time and space, allows animals to keep body temperatures within a 

narrow preference range (Spotila, O’Connor and Bakken, 1992; Angilletta Jr., 2009). 

If and when ectotherms should thermoregulate can be modelled as a trade-off between 

the cost and benefits of maintaining a tight distribution of body temperatures (Huey and 

Slatkin, 1976). Costs are either energetic, for example metabolism (Huey et al., 1989), 

movement between suitable habitats (Sears et al., 2016), or associated with morphological 

changes, as shifting between different colour morphs (Nielsen, 2017), or loss of 

opportunities for other activities, such as foraging, predator avoidance and reproduction 

(Clark and Levy, 1988; Downes and Shine, 1998; Levy et al., 2017). Benefits are usually 

linked to a TPC, where more accurate thermoregulators have body temperatures nearer 

the preferred temperature and higher performance. Inherent in calculations of the costs 

and benefits of thermoregulation, is the range of temperatures animals experience. Lower 

accuracy of thermoregulation can result in higher variation in experienced body 

temperatures which in turn reduces net benefit.  

The ability to adjust behavioural strategies may halt deleterious effects of novel 

temperature scenarios, for example by shifts in the time of activity to previously 

unavailable timeslots or habitats (Fey et al., 2019, Sears, Raskin and Angilletta, 2011; 

Levy et al., 2017). But loss of opportunity connected to increased time spent in hiding can 

lead to fitness loss and extinction (Sinervo et al., 2010), and ultimately, behavioural rescue 

might lead to limited adaptation to novel environments and abrupt decreases in fitness 

with further increases in mean temperature (Huey et al., 2012; Buckley, Ehrenberger and 

Angilletta, 2015). Decreased environmental predictability and higher variation might be 

conquered in a similar manner, with adjustment of preferred temperatures following 

Jensen’s inequality to maximize performance in the new, more variable, environment. 

However, the scope for behaviour to rescue populations threatened by changes in variation 

and predictability is even less explored. 

A combination of TPCs and thermoregulatory behaviour can be used to investigate 

organismal vulnerability to changing patterns of temperature variation during climate 

change. Inclusion of variance in experienced temperature is needed to accurately predict 

effects of temperatures on animal fitness. For example, comparing performance from 

yearly, monthly and daily mean temperatures, give different patterns and magnitude of 

fitness change (Vasseur et al., 2014) (Clusella-Trullas, Blackburn and Chown, 2011; 

Sheldon and Dillon, 2016). Time-series of experienced temperatures are important, as not 

only the total number of warmer days impact fitness but also their sequence, think for 

example of heat waves (Sinervo et al., 2010; Dillon and Woods, 2016; Williams et al., 

2016). Lower predictability in temperatures might reduce thermoregulatory effectiveness. 

The ability of organisms to anticipate future temperatures and find suitable microhabitats 

might decline, or temperatures within the performance range become less available.  

Changes in temperature variation are expected to affect generalist and specialist organisms 

differently because they have likely evolved under different levels of variation resulting in 

unequal performance breadth (Gilchrist, 1995; Amarasekare and Johnson, 2017). 

Considerable attention has been given to their prospects in future climates, with tropical 

versus temperate species often being used as examples. When TPCs are being used to 

infer fitness, specialist species are believed to suffer the greatest loss of fitness. Generalists 

are expected to incur smaller losses of fitness because they have broader thermal 

performance ranges. In addition, particularly temperate generalists are believed to live 

below their temperature optima, such that predictive models including a rising mean 
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temperature initially show increased fitness (Deutsch et al., 2008; Tewksbury, Huey and 

Deutsch, 2008; Huey et al., 2012; Sheldon and Dillon, 2016; Johansson, 2019).  

My project aims to investigate optimal behavioural strategies when animals encounter 

different levels of temperature predictability, and how they affect fitness both in the 

environment that they are adapted to and in novel environments. The approach is twofold. 

Firstly, optimal behavioural strategies of the expected temperatures animals encounter are 

determined for different temperature variation scenarios and performance breaths of a 

TPC. The preferred temperatures from the optimal behavioural strategies are predicted to 

follow Jensen’s inequality, where lower temperatures result from decreased predictability 

and increased variation of environmental temperatures. Secondly, I explore fitness 

outcomes of following the optimal behavioural strategies. By forward simulations I gain 

insight into fitness at both the temperature variation scenarios they are optimized for, and 

in novel scenarios of lower predictability.  I expect decreases in fitness to follow greater 

variation in experienced temperature. Optimized models should do better in their 

environments than models optimized for a different temperature variation scenario, 

indicating possibilities of behavioural rescue from shifts in preferred temperatures 

according to Jensen’s inequality. 
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Methods 

This project aims to incorporate temperature unpredictability to optimal foraging behaviour 

dependent on energetic condition. The result is thermoregulatory strategies of preferred 

temperatures during foraging. To find the optimal thermal preference in different thermal 

scenarios I built a state-dependent model where an animal can choose from a range of 

expected temperatures. These expected temperatures can be interpreted as, for example, 

the mean temperatures in different patches of habitat, and will therefore be referred to as 

expected patch temperatures. Experienced temperatures depend on the predictability of 

the environment, where a less predictable environment is associated with higher variation 

in temperatures.  

A key assumption of my model is that there should be a trade-off between temperature 

dependent foraging efficiency and metabolic costs. The metabolic cost, M, increases 

exponentially with temperature (Gillooly et al., 2001; Dell, Pawar and Savage, 2011; Huey 

and Kingsolver, 2011), 

𝑀 =  𝑒−𝛼∗𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (1) 

where α is a scaling parameter for the increase in metabolic cost with temperature. 

Foraging efficiency, E, is a compound of traits that are temperature dependent, for example 

mobility, speed, prey capture rates and accuracy, (Dreisig, 1981; Avery, Bedford and 

Newcombe, 1982; Damme, Bauwens and Verheyen, 1991; Greenwald, 2017), modelled 

through a logistic function 

𝐸 =  
1

1 + 𝑒−𝛽(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒−𝜏)
 (2) 

Where β is the scaling parameter for the increase in efficiency with temperature and τ is 

the temperature at the inflection point. Higher temperature gives higher probability of 

gaining a benefit, and E is a probabilistic variable in the range [0,1].  

For simplicity I assume maximum energy intake is limited by ingestion, and not food 

abundance, and therefore keep maximum benefit available constant across all 

temperatures. Metabolic cost, feeding efficiency and benefit combines to a thermal 

performance curve with net expected benefit as the performance trait (see Results under 

Preferred temperatures, Figures 2 and 3) (Huey and Stevenson, 1979; Sinclair et al., 

2016). When there is little to no uncertainty in the experienced temperatures, the preferred 

temperature is expected to match the optimal temperature that yields maximal expected 

net benefit. When there is variation in the experienced temperatures, the preferred 

temperatures are expected to be lower than  the optimal temperature, Topt (Martin and 

Huey, 2008).  

Optimal behavioural strategies 

Optimal behavioural strategies are determined through a method called dynamic state 

variable modelling (Houston and McNamara, 1999; Clark and Mangel, 2000), or stochastic 

dynamic modelling. This framework embeds the context of the individual animal, 

represented through intrinsic and extrinsic states, and time, into calculations of optimal 

behaviour. Expected future fitness for a pre-set range of possible choices is calculated for 

each combination of states and time. The optimal behavioural choice is the one maximizing 

expected fitness, and the resulting behavioural strategy consists of the combination of 

these optimal choices.  
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The model presented in this project considers two state variables. Temperature 

information, which describes the abiotic environment, and animal body condition, both are 

explained in further detail below. Time represents a season where the animals can feed in 

the attempt to increase body condition towards a reproductive event at the terminal time 

step, i.e. the end of the season (for discussion on subject Bonnet, Bradshaw and Shine, 

1998). The resulting behavioural strategy of which expected patch temperature to forage 

in consists of optimal behavioural choices for each combination of time, body condition and 

temperature information.  

The state variable describing temperature information, Dt-1, is the deviation from the 

expected patch temperature as experienced in the previous time step. This variable is 

introduced to model uncertainty in the temperature the animal experiences. The 

experienced temperature in the current time step is not known to the animal. Decisions of 

which expected patch temperature to forage at are made based on knowledge of the 

expected patch temperature j, the temperature deviation from the mean in the previous 

time-step, Dt-1, and the correlation of temperature deviations in the environment. The 

probability of temperature k = j + D at time t, is given by a pre-set matrix with entries  

P(temperature k = j + D | Dt−1) = P(D | Dt−1) (3) 

with ∑ P(D | Dt−1) = 1
D=Dmax
D=Dmin

 

where j is the expected patch temperature and D the deviation from expectation, with 

temperature deviation Dt-1 at time t-1. No uncertainty in expected temperature is 

experienced when the condition that, for all Dt-1 there is a D in [Dmin, Dmax] with  P(D | 𝐷𝑡−1) =

 1 is fulfilled. Predictability of temperatures can be divided into two components. The first 

is the probability of experiencing a Dt different from Dt-1, or the autocorrelation in the 

environment. The second is the predictability in the new levels of Dt different from Dt-1 

(Tables A1-A4). For ease of understanding, different temperature variation scenarios are 

labelled with their overall autocorrelation in D (Table 1), calculated as rank autocorrelation 

of first order (Basawa, 1972). 

While temperature variation scenario A0.54 has higher autocorrelation than scenario A0.37 

(Equation 3), the latter is more predictable for some temperature deviation conditions, D. 

This is because, even though the overall autocorrelation is low in A0.37, there is high 

probability of the transitions D=±2 to D=±1 giving high predictability of which temperature 

deviation is encountered. Outside these two transition probabilities and autocorrelations 

for D equal to 1,0,-1, A0.37 has great spread of probabilities to other deviations. In 

contrast, A0.54 has a flat distribution, with P=0.3 for the three deviations Dt = Dt-1 and 

Dt=Dt-1±1. This gives low predictability in which of these three temperature deviations will 

be experienced in the next time step, but high probability (P=0.9) that it will be one of 

these three.  

Optimal behavioural choice might also depend on the intrinsic state variable representing 

energetic state, the body condition, C. Higher body condition is presumed to be associated 

with greater fitness, e.g. through higher survival probability and reproductive output 

(Jakob, Marshall and Uetz, 1996; Pangle et al., 2004; Baron et al., 2013; Jaumann and 

Snell-Rood, 2019). Body condition state dynamics are determined by the costs and benefits 

at the experienced temperatures. The metabolic cost, M, is a non-linear increase with 

temperature given (Equation 1). Influences of size on metabolism is not included as body 

condition is easily reversible and will thus not include growth and increased size. The 

probability of obtaining food is determined by the feeding efficiency, E (Equation 2). Two 



7 
 

possible changes in body conditions C, at time t with experienced temperature k is possible 

depending on whether the individual finds food or not: 

𝐶𝑓𝑜𝑜𝑑 =  𝐶𝑡 + 𝐵 − 𝑀(𝑘) (4)

𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑃(𝛥𝐶 =  𝐵 − 𝑀(𝑘)) = 𝐸(𝑘)
 

𝐶 𝑛𝑜 𝑓𝑜𝑜𝑑 = 𝐶𝑡 −  𝑀(𝑘) (5)

𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑃(𝛥𝐶 = 𝑀(𝑘)) = 1 − 𝐸(𝑘)
  

with limits of Ct+1 at Cmin and Cmax. If C < Cmin the animal is dead and has zero expected 

future fitness. The change in body condition is thus dependent on temperature in two ways, 

firstly through an increasing absolute cost and secondly through an increase in the 

probability of finding food. The spread of net benefits possible at each temperature, making 

up the expected net benefit, is thus very variable with temperature, as is the degree to 

which the expected net benefit is determined by metabolic cost or foraging efficiency.   

A backwards iteration from the terminal time step, Tterminal, is used to find the optimal 

behavioural strategy. Only the terminal fitness, F(C, Tterminal) needs to be predefined, as 

the backwards calculations of fitness from the terminal step gives the next state dependent 

fitness, F(C, t). Terminal fitness F(C, T) is modelled as a linear function of body condition, 

𝐹( 𝐶, 𝑇𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) =  
2

𝐶𝑚𝑎𝑥

(𝐶 − 𝐶𝑚𝑖𝑛). (6) 

Expected future fitness in time step t is calculated for expected temperature j, previous 

deviation Dt-1, body condition C and the expected future fitness F(C, Dt-1, t+1)  

𝐹(𝐶𝑡 , 𝑗, 𝐷𝑡−1, 𝑡) =  ∑ 𝑃(𝑘 | 𝐷𝑡−1) ∗ (𝐸(𝑘) ∗ 𝐹(𝐶 𝑓𝑜𝑜𝑑 , 𝑡 + 1) + (1 − 𝐸(𝑘) ∗ 𝐹(𝐶𝑛𝑜 𝑓𝑜𝑜𝑑 , 𝑡 + 1)))

𝑘=𝑗+𝐷

(7) 

where k = j + D refers to all temperatures k possible from the expected patch temperature 

j, P(k) is found by bl combination of body condition C and previous deviation Dt-1, is the 

expected patch temperature j that maximizes expected fitness in equation 7. 

Two parameter sets for equations 1 and 2 are used, giving two distinct thermal 

performance curves (Table 1 and Figures 2 and 5), and can generously be interpreted as 

a generalist and a specialist. Caution should be applied to comparisons, a generalist-

specialist trade-off is not employed between these two parameters sets, and net expected 

benefits and expected future fitness is higher in the generalist. For both the generalist and 

specialist TPC, behavioural strategies and expected fitness are found with three 

temperature variation scenarios, A0, A0.37 and A0.86. A total of six different behavioural 

strategies are thereby computed (Table 2 for overview of combinations for optimization). 

These are optimal behavioural strategies of a TPC and a temperature variation scenario. 

Preferred temperatures within a behavioural strategy will depend on both the state 

variables, temperature information Dt-1 and body condition C, and time. For comparisons 

with expectations relating to the preferred temperature predicted by Jensen’s inequality, I 

use the preferred temperatures that have the highest probability for each Dt-1 (Equation 

3), occurring for the highest number of combinations of C and time.  
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Table 1. Parameter choices for the specialist and the generalist using dynamic state 

variable modelling to find an optimal behavioural strategy of foraging temperatures in the 

trade-off between increased foraging efficiency and metabolism with temperature. The only 

difference in the two models is the shift in inflection point (τ) for feeding efficiency from 

temperature 5 in the generalist to temperature 6 in the specialist. Temperature variation 

scenario A0.55 is only used in forward simulation.  

 

  

Parameter Functions Range 

Expected patch 

temperatures, j 
Integer steps [2,11] 

Temperature deviation, D Integer steps [-2,-1,0,1,2] 

Possible temperatures, k k = j + D [0,13] 

Time Integer steps [1,30] 

Benefit, B Integers, all expected temperatures 8 

Body condition, C 

Integer steps 

Dynamics determined by equations 4 

and 5 

[1,20] 

Terminal fitness Linear increase with state C, equation 6 [0,1.9] 

Metabolic cost, M 

Equation 1, zero decimal places 

α = 0.22 

[1,17] 

Feeding efficiency, E 

Equation 2, three decimal places 

β = 0.75 

Specialist: τ = 6  

Generalist: τ = 5  

[0,1] 

Temperature variation 

scenarios 

6 matrices with entries DxD of 

probabilities, equation 3. 

Full matrices in Tables A1-A4 

Autocorrelations 

0.86, 0.37, 

0.55, 0 
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Forward simulation by Monte Carlo method 

Insight into distributions of experienced temperatures, body conditions, and fitness, is 

gained through forward simulations of animals following a behavioural strategy through a 

season. The Monte Carlo method is suitable because of the probabilistic effects of 

unpredictable temperatures and feeding efficiency.  

At each time step through the season the expected temperature choice is determined by 

the behavioural strategy for a given body condition, experienced deviations in temperature 

and time. The experienced temperature k for the given behavioural choice, is then 

determined by the probability distributions of the temperature deviations (Equation 3) for 

all deviations Dt-1. The change in body condition is found by equations 4 and 5. The new 

body condition will determine the next behavioural decision together with the deviation in 

temperature k. 

Forward simulations are done according to Table 2. This explores both performance in 

historic environment the animals are adapted to and performance in novel environments. 

For each TPC, distributions of body conditions, including mortality at C0, are evaluated 

with chi-square test of significance level 0.05. There is no comparison between the two 

different TPCs. Three effects are investigated. 1) The difference between the three optimal 

behavioural strategies simulated in their respective temperature variation scenarios, 

A0.86, A0.37 and A0, in other words performance of behavioural strategies in the 

temperature variation scenarios they are optimized for. 2) The difference between 

temperature variation scenarios simulated with the optimal behavioural strategy from 

temperature variation scenario A0.86, giving performance of the behavioural strategy of 

scenario A0.86 in novel temperature variation scenarios of lower predictability. 3) The 

difference in performance of strategies within a temperature variation scenario, which 

highlights the fitness consequence of optimizing behaviour, i.e. performance within 

scenarios A0.37 and A0 of their respective optimal strategies and the strategy from A0.86. 

Body condition levels 1 to 10 were always combined due to low occurrence of individuals 

in these conditions. 

Starting values of body condition are drawn from a uniform probability distribution and 

experienced temperature deviation from the probability distribution [0.1, 0.25, 0.3, 0.25, 

0.1]. I use 1000 replicates of simulations with 1000 individuals. Animals reaching body 

conditions C < Cmin have terminated seasons with assigned C=0 and F=0, and the total 

number of individuals in this category is used as an estimate of mortality.  
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Table 2. Overview of optimal behavioural strategies and forward simulations. Six 

behavioural strategies are made, optimized for each combination of a TPC and temperature 

variation scenarios outlined below. Forward simulations with Monte Carlo method for each 

behavioural strategy is done in temperature variation scenarios according to the last 

column. Full transition matrices for each temperature variation scenario is given in Tables 

A1-A5. 

  

Optimal behavioural strategies Temperature variation 

scenarios used in forward 

simulations TPC 
Temperature 

variation scenarios 

SPECIALIST TPC, 

Figure 2 

A0.86 

A0.86 

A0.59 

A0.55 

A0.37 

A0 

A0.37 A0.37 

A0 A0 

GENERALIST TPC, 

Figure 3 

A0.86 

A0.86 

A0.59 

A0.55 

A0.37 

A0 

A0.37 A0.37 

A0 A0 
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Results 

The resulting behavioural strategies depend on the temperature deviations Dt-1, body 

condition C and time, to a lesser or greater degree under different environmental conditions 

(Figures A1-A6). The optimal behavioural strategy ensures that the most probable 

experienced temperature k is kept at the same preferred temperature for all deviations Dt-

1. To achieve this, lower expected patch temperatures are the optimal choice for positive 

temperature deviations, and vice versa. For the two extreme Ds, Dt-1=±2, the most 

probable next deviation is Dt=±1. The behavioural strategies at these deviations thus 

resemble those for Dt-1=±1. Temperature variation scenario A0 is the exception, as there 

is no predictability in temperature deviations, and they all have the same strategy.  

A risk-averse strategy for high values of body condition is also universal (Figure A1-A6). 

Low expected temperatures are preferred, with small costs but also near to no benefit. 

Seemingly risk-prone behaviour in low body conditions is common, where higher expected 

temperatures are preferred. There is no easily recognizable general pattern of time-

dependence of behavioural strategy, but the generalist TPC does seem to prefer a lower 

temperature near the terminal time step (Figures A1-A6).  

Optimal behavioural strategies with A0.86 has overall high expected future fitness. 

Scenarios A0.37 and A0 produce subsequently lower expected future fitness. Both have a 

temporal pattern. Expected future fitness increasing towards the terminal time step, and 

differences between expected future fitness for different body conditions increase as well.   

Differences between the optimal behavioural strategies made with the specialist and the 

generalist TPCs indicates that behavioural dependence on body condition decreases and 

disappears when the expected net benefits are low (Figures A1-A6). The specialist TPC has 

less possible temperatures with expected net benefit above zero, and thus generally fewer 

suitable choices. 

Preferred temperatures and performance of behavioural strategies in 

temperature variation scenarios of optimization 

The specialist thermal performance curve 

Preferred temperatures from the behavioural strategies at the three temperature variation 

scenarios for the specialist, is shown in Figure 2. At high predictability (scenario A0.86), 

the preferred temperature coincides with the optimal temperature that yields maximum 

expected net benefit, TprefA. At an intermediate level of predictability (scenario A0.37) the 

behavioural strategy is divided to avoid temperatures with expected net benefit below zero. 

Temperature deviations Dt-1 > 0 result in preferred temperature at TprefA, as the highest 

temperature possible then becomes TprefA +1, while Dt-1 < 0 result in preferred temperature 

at TprefB, and minimum possible temperature is TprefB -1. When there is no predictability in 

temperature deviations, scenario A0, TprefB is the preferred temperature.  

Forward simulations of behavioural strategies in their respective temperature variation 

scenarios show that distributions of body conditions, including mortality at C=0, is related 

to predictability of the temperature variation scenario (χ2=197.81, df=22, p < 2.2·10-16) 
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(Figures 3 and 4). Higher predictability has both less mortality and a higher proportion of 

individuals in the maximum obtainable body condition.  

  

Figure 2. Specialist TPC, expected net benefits dependent on body temperature. 

Computed from the feeding efficiency E, metabolic costs M and constant benefit B. TprefA 

is the preferred temperature for temperature variation scenario A0.86 and the high, 

positive deviations Dt-1 in scenario A0.37. TprefB is the preferred temperature for 

temperature variation scenario A0 and the low, negative deviations Dt-1. Note, TprefA 

coincides with the optimal temperature choice, Topt. 



13 
 

 

Figure 3. Proportion of individuals at body conditions C=20, 19, 18 and summed 1-17, of 

forward simulations with the specialist TPC, and temperature variation scenario indicated 

by autocorrelation on axis. Optimization temperature variation scenarios are given by 

colours, legend at the right. 

 

Figure 4. Mortality, the proportion of individuals at body condition C=0, of forward 

simulations with the specialist TPC, and temperature variation scenario indicated by 

autocorrelation on axis. Optimization temperature variation scenarios are given by 

colours, legend at the right. 
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The generalist thermal performance curve 

Preferred temperatures from behavioural strategies in the three temperature variation 

scenarios for the generalist is shown in Figure 5. In scenario A0.86, the preferred 

temperature, TprefC, falls to the right of the optimal temperature with maximum expected 

net benefit. Scenarios of lower predictability have preferred temperatures at TprefD and 

TprefE. Scenario A0.37 has the same shift in preferred temperature with the experienced 

temperature deviations Dt-1 as in the specialist. TprefD is common for negative temperature 

deviations Dt-1 and TprefE for positive temperature deviations Dt-1. When there is no 

predictability in experienced temperatures, scenario A0, TprefD is common for low body 

conditions and TprefE for high body conditions.  

Like the specialist, forward simulation shows that distributions of generalist body 

conditions, including mortality at C=0, is related to temperature predictability (χ2=168.65, 

df=22, p < 2.2·10-16) (Figures 6 and 7). Higher predictability is associated with less 

mortality and a higher proportion of animals in the maximum obtainable body condition. 

 

Figure 5. Generalist TPC, expected net benefits dependent on body temperature. Computed 

from the feeding efficiency E, metabolic costs M and constant benefit B. TprefC is the 

preferred temperature for temperature variation scenario A0.86, while A0.37 and A0 has 

a division between TprefD and TprefE by previous temperature deviation Dt-1 or body condition 

C, respectively. Note, TprefD coincides with the optimal temperature choice. 
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Figure 6. Proportion of individuals at body conditions C=20, 19, 18 and summed 1-17, of 

forward simulations with the generalist TPC, and temperature variation scenario indicated by 

autocorrelation on axis. Optimization temperature variation scenarios are given by colours, 

legend at the right. 

 

Figure 7. Mortality, the proportion of individuals at body condition C=0, of forward 

simulations with the generalist TPC, and temperature variation scenario indicated 

by autocorrelation on axis. Optimization temperature variation scenarios are given 

by colours, legend at the right 
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Performance of behavioural strategies from A0.86 in novel 

temperature variation scenarios 

The specialist thermal performance curve 

Thermoregulatory accuracy decreases, as distributions of experienced temperatures in 

forward simulations have higher variation in lower predictability scenarios (Figure 8). This 

leads to fitness declines, evident in the lower body condition and higher mortality of these 

scenarios (Figures 3 and 4). Distributions of body conditions from scenario’s A0, A0.36 and 

A0.55 differ from the expected proportions calculated from scenario A0.86, A0 (χ2 = 503, 

df = 11, p < 2.2·10-16), A0.54 (χ2 = 134.35, df = 11, p < 2.2·10-16), and A 0.37 (χ2 = 

204.19, df = 11, p < 2.2·10-16).  

Two main effects contribute to the difference. There is a decrease in the number of 

individuals in the highest obtainable body conditions (Figure 3). Shifts towards the lower 

ten to fifteen states is not evident. In addition, mortality (C=0) increases when 

temperature predictability decreases (Figure 4) 

The behavioural strategy optimized in A0.86 have poorer performance in scenario A0 than 

the behavioural strategy optimized for A0 (χ2 = 171.16, df = 11, p < 2.2·10-16) (Figure 3 

and 4). In scenario 0.37 there is no difference in strategy optimized for A=0.86 and A0.37 

(χ2 = 17.14, df = 11, p=0.10).  
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Figure 8. Distributions of experienced temperatures in forward simulations of specialist 

behavioural strategy optimized in A0.86. Distributions have sample sizes, NA0.86 = 

21029847, NA0.55 = 19079952, NA0.37 = 20525619, NA0 = 16102137, where animals 

that die no longer contribute to experienced temperatures. 
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The generalist thermal performance curve 

Temperature distributions from forward simulations of behavioural strategy optimized in 

A0.86 have higher variation in low predictability scenarios (Figure 9). This lower accuracy 

of the thermoregulatory strategy leads to fitness declines, evident in higher mortality and 

lower body conditions. The distributions of body conditions with strategy optimized in 

A0.86, in scenario’s A0, A0.37 and A0.55 differ from the expected proportions calculated 

from scenario A0.86, A0 (χ2 = 960.03, df = 11, p < 2.2·10-16), A0.55 (χ2 = 257,35, df = 

11, p < 2.2·10-16) and A0.37 (χ2 = 390.81, df = 11, p < 2.2·10-16).  

Forward simulations concur with the high expected fitness in this model, and for scenario 

A0.86 there is very high occurrence of the highest body condition. The most important 

factor influencing the differences in distribution of body condition is a downward shift of 

high values of body conditions in more variable temperature scenarios (Figure 6). Mortality 

also increases in less predictable temperature variation scenarios (Figure 7). 

The behavioural strategy optimized for A0.86 has poorer performance in both scenario 

A0.37 and A0 than their respective optimal behavioural strategies, A0.37 (χ2 =45.29, df = 

11, p < 4.32·10-6) and A0 (χ2 =241.84, df = 11, p < 2.2·10-16). Behavioural optimization 

reduces mortality and results in better body conditions (Figures 6 and 7). 
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Figure 9. Distributions of experienced temperatures in forward simulations of generalist 

behavioural strategy optimized in A0.86. Distributions have sample sizes NA0.86 = 

25327197, NA0.55 = 24563637, NA0.37 = 25326468, NA0 = 22953826, where animals that 

die no longer contribute to experienced temperatures. 
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Discussion 

Optimal behavioural strategies show some agreement with predictions from Jensen’s 

inequality, with lower preferred temperatures in high temperature variation scenarios. 

Based on the optimal behavioural strategies, expected net benefit alone is not the 

appropriate performance trait to base expectations off. Specialist performance breadth is 

too narrow to allow a great shift in preferred temperature, and the generalist is particularly 

affected by the probabilistic properties of feeding efficiency. 

Thermoregulatory accuracy determines the experienced body temperatures of an 

ectotherm. Spatial configuration and variation in temperature might both decrease and 

increase accuracy, the latter resulting in opportunities of behavioural rescue (Huey and 

Slatkin, 1976; Sears, Raskin and Angilletta, 2011; Sears and Angilletta, 2015). When 

animals use information about expected temperature and previous temperature deviations 

to inform behavioural strategies, an argument can be made that temporal unpredictability, 

decreases the accuracy of the thermoregulatory strategy. Experienced temperature 

distributions have higher variation in less predictable environments (Figures 8 and 9). 

Decreased performance and thus fitness are evident (Figures 3, 4, ,6 and 7). However, 

substantial changes to predictability are needed before severe fitness loss sets in. For 

A0.55, there is only a minor increase in mortality. Decrease in body conditions are confined 

to the upper three values. Still, this does translate into reduced reproduction. 

Optimization to low predictability scenarios have decreased fitness compared to 

optimization to high predictability scenarios. These effects are likely a combination of the 

lower mean expected net benefit of lower preferred temperatures and higher variation in 

experienced temperatures.  

Preferred temperatures and risk management 

Preferred temperatures are often predicted to be lower than optimal temperatures at high 

to moderate variation in temperature distributions due to effects of Jensen’s inequality on 

asymmetrical thermal performance curves (Martin and Huey, 2008; Vercken et al., 2012). 

Both the specialist and the generalist follow this pattern in my model, but in addition, the 

preferred temperature also depends on the previous temperature deviation Dt-1. Dt-1 

determines the upper and lower limits of possible new temperatures. Shifts in preferred 

temperatures thus avoid temperatures with expected net benefits below zero. There is no 

evidence for a shift that is greater for the specialist than the generalist (Figure 2 and 5) as 

is often predicted (Martin and Huey, 2008). 

Part of the explanation for the small shifts in preferred temperature, is that stochastic 

dynamic modelling requires integers, while nature is continuous (Clark and Mangel, 2000). 

This necessitated incorporation of high costs and benefits, as I wanted a wide range of 

temperatures. Still, only a few temperatures are beneficial for each TPC, resulting in only 

a few, minor shifts in preferred temperatures. Particularly the specialist is limited in its 

temperatures with expected net benefit above zero. High fluctuations in body conditions 

and the low occurrence of lower body states is likely also a result of this, as animals either 

recover to higher body conditions or die. A partial resolution is including more state levels 

and potential temperatures.  

The preferred temperature of the specialist in high predictability, fall at the optimal 

temperature of maximum expected net benefit. In contrast, at high predictability, the 

generalist has a higher preferred temperature than the optimal temperature (Figure 5). 

Foraging efficiency, rather than expected net benefit may explain this aberration. 
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Calculation of expected net benefit attempt to combine two possible outcomes at each 

time-step, finding food and not finding food, based on their probabilities. But expected 

temperature choices seem to be determined by the balance of the probability of obtaining 

a benefit, net benefits and the costs associated with not feeding. Because optimal risk 

sensitive behaviours depend on body condition and patterns of expected future fitness, this 

balance of influencing factors on behavioural choice is body condition and time dependent 

(Stephens, 1981; Clark, 1994; Bednekoff, 1996). For each expected temperature there is 

a wide range of possible net benefits. They arise from the combined effect of the 

probabilistic effect of temperature deviations, giving a range of experienced temperatures, 

and of feeding efficiency at each temperature. In the generalist, high preferred 

temperature is a low risk foraging strategy (Stephens, 1981; McNamara, Merad and 

Houston, 1991; Bednekoff, 1996). The probability of success is very high for these 

temperatures and have little variation as the upper part of the logistic curve is reached but 

comes with higher metabolic costs. 

Fitness consequences of novel temperature variation scenarios 

Behavioural strategies optimized for the most predictable scenario, A0.86, have increased 

mortality and loss of body condition when confronted with a novel environment of lower 

temperature predictability (Figures 3, 4, 6 and 7). Thermoregulatory accuracy is 

decreased, and variance of experience temperatures are increased (Figures 8 and 9). 

For both the specialist and the generalist, experiencing scenario A0.37 is more detrimental 

to body condition than A0.55. Explanations lie in the two components of unpredictability, 

and the specific matrices used to make the different temperature variation scenarios 

(Tables A1, A2 and A3). A0.55 has a higher autocorrelation than A0.37 because of high 

probability of staying in the two most extreme deviations when they are experienced. In 

comparison, A0.86 and A0.37 have high predictability in which new state D is experienced 

but low probability of staying in the two extreme Ds. In addition, A0.55 has a tighter 

probability distribution around the Dt-1 than A0.37. Experienced temperatures in A0.37 are 

very rarely outside the expected temperatures of A0.86, which the strategy is optimized 

for.  

Optimization of the behavioural framework with A0.86 give animals higher vulnerability to 

temperatures that fall outside those previously possible from Dt-1, than to variation within 

the temperatures it could previously expect to experience. This does not mean 

temperatures outside its range of previously experienced temperatures, just which were 

previously predicted from each Dt-1. This highlights the need to know what effects of higher 

temperature variance is important in order to create accurate predictive models of 

ectotherm persistence (Buckley, 2008; Buckley, Cannistra and John, 2018). Optimal 

behaviours and population persistence through heat waves would be an interesting addition 

to the model, where temperatures are in the upper thermal limits for prolonged times 

(Williams et al., 2016).  

Comparison of specialist and generalist vulnerability to temperature 

predictability 

Combined, it seems that ectotherms are vulnerable to substantial changes to predictability 

in temperature when it affects their ability to thermoregulate accurately (Sinervo et al., 

2010; Huey et al., 2012; Vasseur et al., 2014; Buckley, Ehrenberger and Angilletta, 2015; 

Sheldon and Dillon, 2016). An initial increase in generalist fitness from an increase in mean 
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temperature is hypothesises in literature (Deutsch et al., 2008; Sheldon and Dillon, 2016). 

My model does not incorporate an increase in mean temperature, and together with the 

generalist optimal behavioural strategy with a preferred temperature to the right of their 

optimal temperature, no increases of fitness are witnessed. 

Despite the caution applied to comparing the specialist and the generalist, the generalist 

tend to cope better with moderately high changes in temperature predictability (Deutsch 

et al., 2008; Huey et al., 2012).The main difference is the very steep increase in mortality 

in the specialist, but less of a reduction in proportion in high body conditions in the 

generalist also contributes. The high specialist mortality in scenario A0.86 implies that the 

specialist is more vulnerable to decreases in survival. 

Vulnerability to reduced predictability in the environment will also be determined by 

plasticity and acclimatization. These abilities are a result of evolution and likely to depend 

on the previous level of variability encountered by the organism (Siepielski, Dibattista and 

Carlson, 2009; Markle and Kozak, 2018). Thus, previous levels of variability might 

determine animal robustness to future changes. Higher temperature variability is usually 

assumed as prerequisite for the evolution of generalists, rendering these animals more 

robust in the face of climate change (Gilchrist, 1995). 

Opportunities for behavioural rescue 

Behavioural rescue is adjustment of behaviour to avoid extreme temperatures and high 

fitness-losses. Within my project, performance of optimal behavioural strategies from 

A0.87 in scenarios A0.37 and A0 is compared to performance of optimized behavioural 

strategies from these scenarios, A0.37 and A0, respectively. Differences in mortality and 

body condition distributions indicates whether it is beneficial to adjust behavioural 

strategies after predictions of Jensen’s inequality. Some decrease in performance is 

expected due to the lower mean performance of the lower preferred temperatures.  

The larger downward shift in preferred temperature hypothesized for the specialist is not 

evident in my model, discussed earlier, and similar arguments can be made when assessing 

the effects of behavioural optimization, i.e. optimization to the new temperature variation 

scenario. Exploitation of this possibility is limited owing to the small ranges of temperatures 

that are beneficial, for example with expected net benefits above zero (Figures 2 and 5), 

or even temperatures with moderate probability of net benefit above zero. The specialist 

cannot employ insurance strategies to a substantially greater degree, and no matter the 

preferred temperature, detrimental high or low temperatures are always encountered. In 

contrast, the generalist has more opportunity of avoiding very detrimental temperatures. 

It could be argued that both the TPCs described in this article are specialist, and that a 

generalist needs a much wider performance breadth.  

Even with opportunities for behavioural adjustment to lower preferred temperatures, 

mortality and proportions in higher body conditions is are far from levels in A0.86. 

Particularly the specialist is limited by the availability of favourable temperatures, with only 

minor, non-significant increases in fitness with behavioural optimization to A0.37. The 

effect is more pronounced in A0, where mortality decreases by more than 10 percent 

(Figures 3 and 4). The generalist benefits from behavioural optimization in both A0.37 and 

A0 (Figures 6 and 7), with almost a 10% decrease in mortality in A0, despite the much 

lower overall mortality in the generalist. 
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Risk sensitivity in body condition- and time-dependent behavioural 

choices 

In addition to effects of temperature predictabilities, all behavioural strategies depend to 

some degree on animal body condition and time (Figures A1-A6). These results are best 

explained by risk sensitive foraging and the asset protection principle (Stephens, 1981; 

Clark, 1994; Bednekoff, 1996) and are commonly found in optimal foraging theory 

(Stephens, 1981; Clark and Levy, 1988; McNamara and Houston, 1990). 

Individuals in high body conditions should have risk-averse choices, while low body 

condition results in risk-prone strategies. In the current model risk averse strategies can 

be realised as a preference for low expected temperatures, which minimizes loss of body 

condition. This is evident for animals in high body conditions, where only loss of body 

condition and reductions in expected fitness are possible. The situation is opposite at low 

body conditions, where loss of condition mostly leads to death. These animals attempt to 

increase their probability of finding food by employing risk-prone strategies. These animals 

prefer high expected temperatures, with high efficiencies but also lower net benefits 

(Figures A1-A6). 

These same arguments can be extended to body conditions equal to the cost associated 

with the optimal behavioural choice, and the lower body conditions. In the first case, 

animals are risk-averse, and potential costs dominate. In the latter case, increased 

efficiency dominates, and animals employ a risk-prone strategy of high expected patch 

temperatures (Figures A1-A6). 

The asset protection principle can explain both these body-condition dependent risk 

sensitive strategies, but also the shift in strategy at later time stages (Clark, 1994; 

Bednekoff, 1996). The specialist is relatively unchanged, with some more pronounced risk 

-averse or prone strategies following body condition as described above. This is also 

present in the generalist, but in addition there is a preference of a lower temperature at 

mid-body conditions (Figure A4-A6). The preferred temperature at early to mid-times is 

higher than Topt, and the decrease brings preferred temperatures in scenario A0.86 to TpredD 

and in scenario A0.37 to coincide with TpredD and TpredE, for respectively negative and null, 

and positive deviations Dt-1. The probable explanation is a risk-prone strategy to obtain the 

highest possible body conditions. At early to mid-times, there is ample opportunity for body 

condition to fluctuate, and the optimal is a risk-averse strategy favouring high feeding 

efficiency. At the later time stages, the opportunity for increase in body condition to the 

highest values are smaller, and high feeding efficiency is sacrificed for the higher net 

benefits available at Tpre = Topt, which is a risk-prone strategy. There are indications in 

reptiles that gravid females thermoregulate more accurately and at slightly different 

temperatures than non-gravid individuals, and if you expect this effect to arise from energy 

optimization, it might be comparable to the strategy shifts seen at later time stages in 

these models (Blouin-Demers and Weatherhead, 2001; Herczeg et al., 2006).  

Further work and conclusion 

Implementing TPCs to understand effects of temperature on animal performance is a 

popular tool in several modelling frameworks (Buckley, 2008; Vasseur et al., 2014; 

Sheldon and Dillon, 2016; Fey et al., 2019). But, as ever with simplified tools, TPCs should 

be used with a measure of caution (Huey et al., 2012; Sinclair et al., 2016; Buckley, 

Cannistra and John, 2018). A major problem is which traits are used and establishing links 

to measures of fitness. If these are in place, a second drawback is that TPCS are rarely 
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constant, and can vary with individuals and populations, through time and temporal 

experience and with life-stages (Asbury and Angilletta Jr., 2010; Huey et al., 2012; Sinclair 

et al., 2016; Williams et al., 2016). Interesting physiological or behavioural adjustment 

could be modelled by incorporating changing TPCs as a way of modelling plasticity and 

acclimatization. A cost of acclimatization of the TPC coupled with an increase in 

temperature could be used to assess the possibilities of shifting the optimal temperature 

within a season or lifetime (Gvoždík, 2012). Selection on and evolution of TPCs are 

possibilities, but not relevant at the short timescale proposed here. It should also be 

mentioned that dynamic state variable models are single individual models, and do not 

incorporate any interactions with other living organisms beyond those specified in state 

variables. Competition may play an important role in population responses to climate 

change, for example through availability of suitable temperatures and thus accuracy of 

thermoregulation. It might therefore be necessary to include the current results in a density 

dependent framework to understand the full response.  

Evolution of thermal performance curves are not only concerned with the optimal 

temperatures, but also performance breadths and critical thermal maxima. Selection does 

not only depend on experienced variation in temperature, but could also be influenced by 

mean temperatures, high temperatures or heat waves or rainfall and similar abiotic factors 

(Izem and Kingsolver, 2005; Clusella-Trullas, Blackburn and Chown, 2011; Huey et al., 

2012; Johansson and Laurila, 2017). Performance responses to extreme temperatures 

might even not be determined by the TPC alone, but be modelled by previous experience 

and the time-series of temperatures (Kingsolver and Woods, 2016; Sinclair et al., 2016). 

Generally, critical thermal maximum of a species is assumed to be similar for all traits, as 

they are adapted to the same thermal environment. However, this is not true for animals 

experiencing great temperature variation. Decoupling of behavioural and physiological trait 

TPCS are documented, where temperature ranges of behavioural traits are constrained to 

a small area of the physiological tolerance range (Monaco, McQuaid and Marshall, 2017). 

Here also lies potential explanations of observed preferred temperatures below optimal 

temperatures of performance, where measurements are done in laboratory settings with 

only weak links to fitness established, and possible decoupling of measured traits. This 

raises the possibility that the measured temperature variance is not the correct for the 

trait being studied, and prediction from Jensen’s inequality combining these will be 

incorrect. Because of this, traits and accompanying distributions of body temperatures 

must be carefully considered before implementation into any modelling approach.  

Most research into behavioural thermoregulation and rescue have been done on reptiles, 

mainly small lizards. The generality of thermoregulatory strategies and behavioural rescue 

is therefore not well established. For a wide range of, particularly reptilian, taxa, there is 

a balance between thermoregulatory behaviours, like basking and retreat site selection, 

and foraging, predation-avoidance or reproduction (Avery, Bedford and Newcombe, 1982; 

Hertz, Huey and Stevenson, 1993; Downes and Shine, 1998; Sinervo et al., 2010; 

Nordberg and Schwarzkopf, 2019). In a similar vein, behavioural thermoregulation is 

usually thought to impose extra costs in addition to the increase in metabolism with 

temperature (Huey and Slatkin, 1976; Herczeg et al., 2006), for example cost of 

movement between habitats (Sears, Raskin and Angilletta, 2011; Sears and Angilletta, 

2015; Sears et al., 2016), or a loss of opportunity. To tackle further questions about 

behavioural rescue and loss of opportunity, dynamic state variable models could be made 

with these different behaviours and costs in mind. Being able to reduce costs of incorrect 

thermoregulation or even reduce the variation in experienced temperatures, might 

increase the efficiency of adjusting behaviour to novel environments.  
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Feeding efficiency could be exchanged with a related trait that measures proportional 

exploitation of a resource. Digestion may have a similar temperature response and is 

suitable for consideration of behavioural choice of preferred temperatures (Huey et al., 

1989; Levy et al., 2017),. Some effort has been made to understand the interplay of water 

and temperature on ectotherm fitness and the evolution of performance curves (Kearney, 

Shine and Porter, 2009; Clusella-Trullas, Blackburn and Chown, 2011; Buckley, Cannistra 

and John, 2018). An exchange of energetic state with hydration status in a similar 

behavioural model could give some insight into water balance in ectotherms.  

Ectotherm animals unable adjust behaviour to mitigate effects of increased variation and 

unpredictability in their environment, will suffer fitness loss and elevated mortality. 

Implications of this project is that animals are more vulnerable to temperatures outside 

those they are behaviourally adapted to, than a general decrease in predictability and 

increased variation.   
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Appendix 

Appendix 1. 

Temperature deviation transition matrices (Tables A1-A4).  

Optimal behavioural strategies for generalist and specialist TPCs in 

temperature variation scenarios A0.86, A0.37 and A0. (Figures A1-A5) 

 

 



 

Appendix 1 

Temperature variation scenarios 

All temperature variation scenarios are shown in table A2 1 to 5 with experienced 

temperature deviations, Dt-1, in rows (column 1) and probability of transition to state D in 

columns. Different temperature variation scenarios are labelled with their autocorrelation 

calculated as rank autocorrelation of first order (Basawa, 1972) 

A1. Temperature variation scenario matrix of A0.86, with autocorrelation 0.85929.  

D -2 -1 0 1 2 

-2 0.4 0.4 0.1 0 0 

-1 0.1 0.8 0.1 0 0 

0 0 0.1 0.8 0.1 0 

1 0 0 0.1 0.8 0.1 

2 0 0 0.1 0.4 0.4 

 

Table 23. Temperature variation scenario matrix A0.37 with autocorrelation 0.36667.  

D -2 -1 0 1 2 

-2 0.2 0.4 0.2 0.2 0 

-1 0.2 0.4 0.2 0.1 0.1 

0 0.1 0.2 0.4 0.2 0.1 

1 0.1 0.1 0.2 0.4 0.2 

2 0 0.2 0.2 0.4 0.2 

 

Table A3. Temperature variation scenario matrix A0.54, with autocorrelation 0.54377.  

D -2 -1 0 1 2 

-2 0.3 0.3 0.3 0.1 0 

-1 0.3 0.3 0.3 0.1 0 

0 0 0.3 0.4 0.3 0 

1 0 0.1 0.3 0.3 0.3 

2 0 0.1 0.3 0.3 0.3 

 



 

Table A4. Temperature variation scenario matrix A0, with autocorrelation 0.  

D -2 -1 0 1 2 

-2 0.2 0.2 0.2 0.2 0.2 

-1 0.2 0.2 0.2 0.2 0.2 

0 0.2 0.2 0.2 0.2 0.2 

1 0.2 0.2 0.2 0.2 0.2 

2 0.2 0.2 0.2 0.2 0.2 

 

  



 

Optimal behavioural strategies 

Optimal behavioural strategies obtained from stochastic dynamic programming shows 

optimal expected patch temperatures to forage at depending on previous experienced 

temperature deviation, Dt-1, body condition C and time for each temperature variation 

scenario A0.86, A0.37 and A0. For A0 choice of temperature is not dependent on 

previous experienced deviation, as all deviations are equally probable in the new time-

step. The expected patch temperatures j are before modulation by the temperature 

deviations.  

Optimal foraging strategies for parameter choices 1, the special ist.  

Figure A1: Optimal behavioural strategy of specialist TPC in A0.86 giving expected patch 

foraging temperatures.  

 



 

 

Figure A2: Optimal behavioural strategy of the specialist TPC at A0.37 giving 

expected patch temperatures to forage at. 



 

  

Figure A3: Optimal behavioural strategy for the specialist TPC at A0 giving 

expected patch temperature to forage at.  

  



 

 

Optimal foraging strategies for parameter choices 2, the generalist.  

 

Figure A4: Optimal behavioural strategy for the generalist TPC at A0.86 giving 

expected patch temperature to forage at.  

 

 



 

 

Figure A5: Optimal behavioural strategy for the generalist at A0.37 giving 

expected patch temperature to forage at.  

 

 

 

 



 

 

Figure A6: Optimal behavioural strategy for the generalist in A0 giving expected 

temperature to forage at.  
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