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Chapter 1

Introduction

This thesis consists of three papers, as well as a short appendix. They all
concern the theoretical properties of persistence modules, which are impor-
tant objects in topological data analysis (TDA). In this chapter, we give a
brief presentation of the key notions and results in TDA this thesis is about,
before outlining the contributions of the papers.

1.1 Persistence modules
Let vec be the category of vector spaces over a fixed field k.

Definition 1. Let P be the poset category associated to a poset P . A P -
persistence module is a functor P! vec.

The associated category of a poset P is a poset which has an object for
each element in P , a single morphism from a to b if a  b, and no morphism
otherwise. In this thesis, ‘module’ means ‘persistence module’.

To make the definition a little more explicit, a P -module M contains the
following data: For each p 2 P , there is a vector space Mp, and for each
p  q, there is a morphism Mp!q : Mp !Mq of vector spaces. This respects
composition, so Mq!r �Mp!q = Mp!r.

In the classical setting, the poset is R, Z or a subset of R with the
standard poset structure. We will call such modules single-parameter, as
opposed to multi-parameter modules, for which the underlying poset is Rn or
Zn for some n � 2. In this case the poset structure is given by (a1, . . . , an) 
(b1, . . . , bn) if ai  bi for all i.

1



2 Stability and Complexity in Multi-Parameter Persistence

Figure 1.1: Top row, left to right: B0(P ) = P , B0.34(P ) and B1(P ). Bottom
row, left to right: B0(Q) = Q, B0.34(Q) and B0.56(Q).

1.2 Motivation from data sets

We will show a couple of examples to illustrate how persistence modules
may arise from data sets, and why we sometimes need to consider multi-
parameter modules.

Persistence modules can be seen as representing a data set by estimating
its topological properties; the following simple example shows how this might
happen in practice.

In the top left of Fig. 1.1, we have a set P ⇢ R2 of points that looks like
it is sampled from a circle. One way to express this is to say that it should
somehow have a generator of the first homology group H1 (which we will take
to be a vector space over some field, usually finite, throughout the thesis).
Computing homology directly is useless, as it does not tell us anything more
than the number of points. We solve this problem by computing H1 of the
union of balls centered at each point in P . In fact, we get a vector space



Stability and Complexity in Multi-Parameter Persistence 3

Mr = H1(Br(P )) for each radius r � 0, where

Br(P ) = {x 2 R2
| d(x, P )  r},

d(x, P ) being the euclidean distance from x to the closest point in P . In
addition there are morphisms Mr ! Ms for r  s induced by the inclusion
Br(P ) ,! Bs(P ). As we see, this is a single-parameter persistence module.

In the example above, we get a generator that is born when the balls
enclose the hole in the middle at r = 0.34 and dies when the hole is filled
in at r = 1. That is, we have a generator that persists over the interval
[0.34, 1). A common idea in TDA is that generators persisting over a long
interval are significant, while short-lived generators are more likely to be the
result of noise.

Now imagine that we add some outliers. For instance, let Q be as P , but
with a single added point in the middle, as shown in the lower left corner of
Fig. 1.1. Suddenly, our generator will persist for only a third of the time,
and it will not be clear from the resulting persistence module that we have
a circle with radius 1.

A way of fixing this is to introduce a second parameter (the first being
the radius of the balls) that filters out points in regions with low density. For
instance, at (r, t) 2 R2, we might include only points in the plane with at
least �t points within a distance of r (the multicover bifiltration, see [11]).
This way, we get a generator that survives inside a large region of R2, and
again we are clearly detecting the circle. This simple example demonstrates
how multi-parameter persistence can sometimes give us information single-
parameter persistence cannot.

1.3 Stability and decomposition
A neat feature of single-parameter persistence is that all modules decompose
nicely into interval modules.

Definition 2. Let J ⇢ R be an interval. The interval module IJ is defined by
IJ

a
= k for k 2 J and IJ

a
= 0, otherwise, and IJ

a!b
the identity for a  b 2 J .

Theorem 3. Any single-parameter persistence module M decomposes uniquely
into a direct sum of interval modules, up to permutation and isomorphisms.
That is, we can write M =

L
I2B(M) IJ for a unique multiset B(M).

That modules decompose into interval modules is showed in [10], and that
the decomposition is unique follows from Theorem 1 in [1]. We call B(M)
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the barcode of M . We see that the decomposition theorem lets us pick a
“persistent basis” of the vector spaces, so that we can think of the persis-
tence module as consisting of independent generators surviving over certain
intervals. In the example above where we constructed a persistence module
from a point cloud P , the barcode would have a single interval [0.34, 1),
which fits with our intuition of H1 having a single generator surviving over
that interval.

Now we have described the whole single-parameter persistence pipeline:
From the input, we construct a parametrized topological space, get a persis-
tence module by computing homology and decompose it to obtain a barcode,
which we consider the output.

As the input is usually assumed to carry some noise, we would like this
process to be stable, meaning that a small change in the input does not
lead to a large change in the output. To formalize this, one defines the
interleaving distance dI between persistence modules and the bottleneck
distance dB between barcodes. We refer to any of the papers in the thesis
for the definition of dI , and to either Paper I or Paper II for the definition
of dB.

In some cases, small changes in data sets lead to small changes in dI .
For instance, a function f : Rn

! R induces a one-parameter persis-
tence module by taking homology of sublevel sets, Fa = Hi(f�1(�1, a]),
and letting the morphisms Fa ! Fb be the ones induced by inclusions
f

�1(�1, a] ,! f
�1(�1, b] for a  b. Now it follows immediately from

the definitions that dI(F, G)  ||f�g||1, where F is the module induced by
f and G the one induced by g. Looking at sublevel sets of functions might
seem arbitrary, but this is exactly what happens in the example above, where
Br(P ) is the sublevel set of the function x 7! d(x, P ) at r.

In other words, if one moves the points in P a limited distance, there
will only be a limited change in the induced module, as measured by the
interleaving distance. Together with the following theorem, this shows
dB(B(F ), B(G))  ||f � g||1, which is a statement of stability of single-
parameter persistence.

Theorem 4 ([8],[9]). Let M and N be R-modules. Then dI(M, N) =
dB(B(M), B(N)).

This is called the algebraic stability theorem (AST), and is one of the
fundamental results in TDA. We sometimes abuse notation and write for
instance dI = dB meaning that dI(M, N) = dB(B(M), B(N)) holds for all
M and N .
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Some of this discussion carries over to the multi-parameter setting. We
can decompose multi-parameter modules uniquely into indecomposables,
and we can define the interleaving distance, which under sufficient condi-
tions will be stable with respect to the input. In some cases, like in the
example with the noisy circle, it will even fix some of the stability issues we
have in the one-parameter setting, as it is less sensitive to outliers.

There is, however, the major problem that the path algebra of even a
relatively small grid in Z2 is of wild representation type. This means that
there is no nice way of describing all indecomposable multi-parameter mod-
ules. Because of this, the concept of barcodes and the bottleneck distance
is not so useful anymore.

On the topic of stability, we should mention that in the world of appli-
cations, it can be far from obvious when data sets or persistence modules
coming from data sets should be considered ‘close’. We already gave one
example showing this, where just one outlier changed the module drasti-
cally according to the interleaving distance. On the other hand, there might
be applications where short intervals in a barcode can carry significant in-
formation about a data set, even though they are hardly noticed by the
interleaving distance. Thus, the meaning of stability and the relevance of
different metrics is not constant, and should be re-evaluated for each type of
application. As the focus of the thesis is mainly on theoretical questions in
TDA, we will not go into a long discussion about what happens when theory
meets the messy world of applications, though this is of course a crucial part
of a field called ‘topological data analysis ’.

1.4 Reeb graphs and zigzag modules
To explain some of the results in Paper I, we need to define Reeb graphs and
zigzag modules.

Definition 5. Let X be a finitely triangulable topological space, g : X ! R a
continuous function, and ⇠g the equivalence relation with equivalence classes
g

�1({x}). The Reeb graph of g is X/ ⇠g together with the map to R induced
by g.

This is the definition used in [2], though different restrictions on X and
g appear in the literature. The idea is that given a space with a function
to R, the Reeb graph stores information about how level sets are connected,
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Figure 1.2: A space with a function to R given by the y-coordinate. Its Reeb
graph is shown on the right.

hoping to simplify computation by ignoring higher dimensional structure.
An illustration is given in Fig. 1.2.

Definition 6. Let ZZ be the poset with Z as its underlying set, and with
a < b if a is even and b = a+1 or b = a�1. A zigzag module is a ZZ-module.

A zigzag module looks like an infinite string of vector spaces with mor-
phisms in alternating directions:

· · · M�2 !M�1  M0 !M1  M2 ! . . .

Given a Reeb graph (G, g), one can associate a vector space to any in-
terval [a, b] by taking the zeroth homology of g

�1([a, b]). We can define a 2-
parameter module M by letting M(�a,b) = H0(g�1([a, b])) and M(�a,b)!(�c,d)

be the map induced by the inclusion g
�1([a, b]) ⇢ g

�1([c, d]). Strictly speak-
ing, this gives us sets instead of vector spaces, but we simply take the sets to
be bases of vector spaces, and let the linear maps be given by the functions
on basis elements.

There is a similar construction for zigzag modules, but this time taking
the colimit of the restriction of the module to the interval [a, b], again giving
a vector space for each interval. We get maps induced by the universal
property of colimits. See [6] for the details.

In both cases, the 2-parameter modules we get decompose into modules
of a very specific form called block modules. This allows us to talk about
stability similarly to the single-parameter setting, and ask if dB = dI . In [6],
dB 

5
2dI was shown, which was an improvement on results in [3]. In Paper

I, we show dB = dI . This carries over to stability results for Reeb graphs
and zigzag modules, and as a consequence of Paper I, these results cannot
be improved.
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1.5 Computation
For applications of TDA it is a fundamental question to which extent invari-
ants like the barcode and distances like dI are computable.

In single-parameter persistence, computing the interleaving distance can
be done efficiently by decomposing the modules into interval modules and
computing the bottleneck distance. In the multi-parameter case, this is not
a possibility, and for years it was suspected that computing dI is NP-hard,
though no proof was known. The issue of wild representation type is of-
ten brought up when discussing invariants and distances in multi-parameter
persistence, but it is not entirely clear why this should be a problem for com-
puting dI , especially since checking isomorphism can be done in polynomial
time [7].

The question was finally settled in Paper III, where we show that not
only is computing dI NP-hard, but so is approximating it to a constant
less than 3. Perhaps surprisingly, the modules appearing in the proof all
decompose into indecomposables analogous to interval modules, allowing
dB to be computed efficiently, though this is of little help here, as dI 6= dB.

The upshot is that in practice, one needs other distances than dI if one
wants to compare persistence modules. Defining invariants and distances in
multi-parameter persistence and finding algorithms for computing these is
an active area of research in TDA.





Chapter 2

Overview of the Thesis

2.1 Paper I
The starting point for the first paper is the algebraic stability theorem. We
know that dI(M, N) = dB(B(M), B(N)) for single-parameter modules, but
what happens if we work with multi-parameter modules? We already made
the point that general modules over Rn do not decompose nicely, so we
have to make some strong assumptions on the modules we work with to be
able to talk about stability. Still, it turns out that there are some useful
consequences of this discussion, not least because some of the ideas turn out
to be essential for the work in Paper II and III.

The main contribution of the paper is a proof technique to show stability.
We first apply it to what we call rectangle decomposable modules, for which
we show dB(B(M), B(N))  (2n � 1)dI(M, N). For n = 1, this is AST.
We also give an example to show that the bound cannot be improved for
n = 2. This disproves a conjecture in an earlier version of [6], suggesting
a generalization of AST to multi-parameter modules. This provides some
more insight into the role that having just one parameter plays in AST. Not
only is this what allows us to decompose modules nicely and define dB, it is
actually also needed to keep the geometry simple enough to prohibit cases
where dB > dI .

We go on to use the proof technique to show a stability result for block
decomposable modules, which by earlier work implies stability results for
Reeb graphs and zigzag modules. This is an improvement on earlier results
with weaker constants, and the constants we obtain are optimal, settling
these problems. While rectangle decomposable modules do not appear nat-
urally in the study of real data, Reeb graphs and zigzag modules do. Thus,

9
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despite the strong assumptions we need to put on the modules in order to
formulate stability, it ends up being applicable to real data.

2.2 Paper II
The second paper discusses complexity bounds for deciding whether persis-
tence modules of various types are �-interleaved for a given � > 0, and also
for deciding whether they are isomorphic, i.e. if they are 0-interleaved. The
main contributions are an example of a family of persistence modules for
which dI is NP-hard to compute, and a polytime reduction from something
we call CI problems to deciding whether a pair of two-parameter modules
are 1-interleaved.

The example is admittedly a little artificial, as the modules are parametrized
over a poset that is very different from Rn, so the construction does not carry
over to single- or multi-parameter persistence. Still, it was a first example
of how to encode an NP-hard problem as an interleaving decision problem.

The latter result is effectively an application of ideas from Paper I to the
problem of complexity. A CI problem is a compact description of potential
interleavings between modules that decompose nicely. Instead of working
directly with the modules, which can be messy, the relevant information is
stored in a pair of matrices. This matrix description first appeared in Paper
I, where it was applied both in the proof technique and in the mentioned
counterexample to rectangle decomposable modules. In Paper II, we show
that any CI problem can be encoded as a pair of modules in such a way that
the CI problem is solvable if and only if the modules are 1-interleaved. This
gives us a polytime reduction from the problem of deciding if CI problems
are solvable to deciding if persistence modules are 1-interleaved. Thus, if one
can show that CI problems are NP-hard, it follows that deciding existence of
interleavings is NP-hard. We were, however, not able to show NP-hardness
of CI problems.

A version of this paper without the appendices was published in the pro-
ceedings of The 34th International Symposium on Computational Geometry
(SoCG 2018) [5].

2.3 Paper III
The main contribution of Paper III is a proof that deciding solvability of CI
problems is NP-hard, which by the results in Paper II implies NP-hardness of
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deciding whether two multi-parameter persistence modules are �-interleaved
for some fixed �.

In addition, we amend the encoding of CI problems as pairs of persistence
modules so that any algorithm c-approximating the interleaving distance for
a fixed c < 3 gives a polytime algorithm deciding solvability of CI problems,
which is impossible unless P = NP . Thus, c-approximating the interleav-
ing distance is NP-hard for c < 3. (1-approximation is the same as exact
computation. The construction from Paper II would have given a constant
of 2 instead of 3.)

We apply our proof strategy to show NP-hardness of some related prob-
lems in the latter parts of the paper. We state a theorem on one-sided
stability where our technique is strong enough to settle all the cases not
already known (up to the question of P = NP ), except one. This case is
deciding whether there is an injective morphism from a given module to
another. We show that also this is NP-hard using a different proof, though
still exploiting the idea of describing morphisms as matrices.

This paper was published in Foundations of Computational Mathematics
(2019) [4].

2.4 Appendix
While the idea of representing interleavings as matrices play a prominent role
in all the papers, there are some ideas that are lurking in the background
but never made explicit. This is partly because they relate to problems we
could not solve, and partly because the most elegant description of these
ideas appear when we strip away the language of persistence modules and
work directly on the level of graphs and matrices, which makes the useful-
ness to TDA less obvious. In the appendix, we formulate a conjecture that
ties together stability and complexity even though the most natural way of
phrasing it is not in terms of persistence modules.
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Stability of Interval Decomposable Persistence Modules

Håvard Bakke Bjerkevik

Abstract

The algebraic stability theorem for R-persistence modules is a fundamental result in topological
data analysis. We present a stability theorem for n-dimensional rectangle decomposable persistence
modules up to a constant (2n � 1) that is a generalization of the algebraic stability theorem, and also
has connections to the complexity of calculating the interleaving distance. The proof given reduces to a
new proof of the algebraic stability theorem with n = 1. We give an example to show that the bound
cannot be improved for n = 2. We apply the same technique to prove stability results for zigzag modules
and Reeb graphs, reducing the previously known bounds to a constant that cannot be improved, settling
these questions.

1 Introduction

Persistent homology is a tool in topological data analysis used to determine the structure or shape of data
sets. For example, given a point cloud X ⇢ Rn sampled from a subspace S of Rn, we want to guess at
the homology of S, which tells us something about how many “holes” S has in various dimensions. We can
do this by defining B(✏) to be the union of the (open or closed) balls of radius ✏ centered at each point
in X. Calculating homology, we get a group or vector space Hn(B(✏)) for each ✏ � 0, and the inclusions
B(✏) ,! B(✏0) induce morphisms Hn(B(✏)) ! Hn(B(✏0)) for ✏  ✏

0. Such a collection of vector spaces
and morphisms is called a persistence module, or R-module, as the vector spaces are parametrized over R.
Under certain assumptions, we can decompose an R-module into interval modules [15], which gives us a set
of intervals uniquely determining the persistence module up to isomorphism. This set of intervals is the
barcode of the persistence module. The intervals in the barcode are interpreted as corresponding to possible
features of the space S, where one might interpret long intervals as more likely to describe actual features
of S and short intervals as more likely to be the result of noise in the input data. In other words, we have
an algorithm with a data set as input and a barcode as output. As data sets always carry a certain amount
of noise, we would like this algorithm to be stable in the sense that a little change in the input data, or in
the persistence modules, should not result in a big change in the barcode.

We measure the difference between persistence modules with the interleaving distance dI , and the differ-
ence between barcodes with the bottleneck distance dB . Proving stability then becomes a question of proving
that the bottleneck distance is bounded by the interleaving distance, i.e. dB  CdI for some constant C.
Stability has been proved for persistence modules over R in [14, 12, 13, 5] in what is called the algebraic
stability theorem, which implies the isometry theorem dI = dB .

Persistence modules can also be parametrized over other posets. A pair of filtrations f, g : S ! R of a
topological space S gives rise to an R2-module which has a vector space Vp for each point in p 2 R2 and
linear maps V(a,b) ! V(c,d) whenever a  c and b  d, for instance by letting V(a,b) be Hn(f�1(�1, a) \

g
�1(�1, b)). Again, inclusions induce the linear maps on homology. With n filtrations instead of 2, we

get an Rn-module. Another example is zigzag modules, which are popular objects of study in topological
data analysis [10, 20, 19]. These can arise from a sequence of subspaces Si ⇢ S, where we also consider the
intersections Si \ Si+1 (or unions). In this case, we have

· · · ✓ Si�1 ◆ Si�1 \ Si ✓ Si ◆ Si \ Si+1 ✓ . . . ,

which again gives rise to linear maps on homology. Defining interleavings and thus the interleaving distance is
trickier than for R-modules, but in fact one can do this by associating R2-modules called block decomposable
modules to the zigzag modules. One can also associate block decomposable modules to Reeb graphs, which

1



are of interest because of their ability to present geometrical information despite being relatively simple
objects. See Section 3.

All these examples serve as motivation for why one would like to talk about stability for multi-parameter
modules (that is, persistence modules parametrized over Rn for n � 2). Unfortunately, no isometry theorem
is possible even for general R2-modules, because there is no nice decomposition theorem like in the one-
parameter cases, meaning that dB is not defined. The block decomposable modules, however, decompose
nicely, and dB 

5
2dI has been shown for these [3]. This carries over to stability results for zigzag modules

and Reeb graphs.
Our main contribution is a new method of proving stability for interval decomposable modules. We

demonstrate several applications of this method. The first is Theorem 4.2:
Theorem. Let M =

L
I2B(M) II and N =

L
J2B(N) IJ be rectangle decomposable Rn-modules. If M and

N are �-interleaved, there exists a (2n � 1)�-matching between B(M) and B(N).
This is a generalization of the algebraic stability theorem for R-modules, which is the case n = 1.

For n � 2, the result is new. There already exist several proofs of the algebraic stability theorem, but
our approach is different from the ones taken before, which allows this more general theorem, as well
as the results below. Our method is combinatorial, which in our opinion reflects the true nature of the
problem once some of the algebraic technicalities are stripped away. Also, our proof is fairly short in the
case n = 1 compared to earlier proofs of the algebraic stability theorem. In Example 5.2, we construct
rectangle decomposable modules M and N over R2 for which dI(M,N) = 1 and dB(M,N) = 3, disproving
a conjecture made in an earlier version of [3] claiming that dB(M,N) = dI(M,N) holds for all n-dimensional
interval decomposable modules M and N whose barcodes only contain convex intervals. The example also
shows that the bound in the theorem cannot be improved for n = 2. It is an open question if the bound
can be improved for n � 3.

We do not know of any examples of rectangle decomposable modules arising naturally from real-world
data sets. But as we discuss in Section 6, there is a strong link between the stability of these modules and the
recent proof that calculating the interleaving distance between multi-parameter modules is NP-hard [9]. In
particular, our way of viewing interleavings as pairs of matrices and our observation in Example 5.2 that the
interleaving and bottleneck distances differ for rectangle decomposable modules served as inspiration for the
approach used in [9]. The question of whether the hardness results can be strengthened is closely related to
the question of whether Theorem 4.2 can be improved. Thus, even if rectangle decomposable modules never
arise directly from data sets, the type of questions we consider can have an impact on practical applications.

Another reason why we give the proof in detail for rectangle decomposable modules instead of, say, block
decomposable modules, is that this case demonstrates very well exactly when our method works and when
it fails. The lesson to take home is that the method gives a bound dB  cdI with a c that increases with the
freedom we have in defining the intervals we consider. You need 2n coordinates to define an n-dimensional
(hyper)rectangle, which gives a constant 2n � 1 in the theorem.

Another application of our proof method gives Theorem 4.11:
Theorem. Let M and N be �-interleaved triangle decomposable modules. Then there is a �-matching
between B(M) and B(N).

This is more immediately connected to practical applications. Theorem 4.11 implies dB  dI for block
decomposable modules, which is an improvement on the previous best known bound, dB 

5
2dI . Since the

opposite inequality dI  dB holds trivially, our bound is the best possible. We discuss how stability results
for zigzag modules and Reeb graphs follow in Section 3. The fact that our bound is optimal means that
these stability problems are now settled.

We finish off Section 4 by showing stability for free modules.
We assume that all modules are pointwise finite dimensional (p.f.d.). In a previous version of this paper

[8], we strengthened the theorems by removing this assumption.

2 Persistence modules, interleavings, and matchings

In this section we introduce some basic notation and definitions that we will use throughout the paper. Let
k be a field that stays fixed throughout the text, and let vec be the category of finite dimensional vector
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spaces over k. We identify a poset with its poset category, which has the elements of the poset as objects,
a single morphism p ! q if p  q and no morphism if p ⇥ q.

Definition 2.1. Let P be a poset category. A P -persistence module is a functor P ! vec.

If the choice of poset is obvious from the context, we usually write ‘persistence module’ or just ‘module’
instead of ‘P -persistence module’.

For a persistence module M and p  q 2 P , M(p) is denoted by Mp and M(p ! q) by �M (p, q).
We refer to the morphisms �M (p, q) as the internal morphisms of M . M being a functor implies that
�M (p, p) = idMp , and that �M (q, r) � �M (p, q) = �M (p, r). Because the persistence modules are defined as
functors, they automatically assemble into a category where the morphisms are natural transformations.
This category is denoted by P -mod. Let f : M ! N be a morphism between persistence modules. Such
an f consists of a morphism associated to each p 2 P , and these morphisms are denoted by fp. Because f

is a natural transformation, we have �N (p, q) � fp = fq � �M (p, q) for all p  q.

Definition 2.2. An interval is a subset ? 6= I ✓ P that satisfies the following:

• If p, q 2 I and p  r  q, then r 2 I.

• If p, q 2 I, then there exist p1, p2, . . . , p2m 2 I for some m 2 N such that p  p1 � p2  · · · � p2m  q.

We refer to the last point as the connectivity axiom for intervals.

Definition 2.3. An interval persistence module or interval module is a persistence module M that
satisfies the following: for some interval I, Mp = k for p 2 I and Mp = 0 otherwise, and �M (p, q) = Idk
for points p  q in I. We use the notation IJ for the interval module with J as its underlying interval.

The definitions up to this point have been valid for all posets P , but we need some additional structure
on P to get a notion of distance between persistence modules, which is essential to prove stability results.
Since we will mostly be working with Rn-persistence modules, we restrict ourselves to this case from now
on. We define the poset structure on Rn by letting (a1, a2, . . . , an)  (b1, b2, . . . , bn) if and only if ai  bi

for 1  i  n. For ✏ 2 R, we often abuse notation and write ✏ when we mean (✏, ✏, . . . , ✏) 2 Rn. We call an
interval I ⇢ Rn bounded if it is bounded as a subset of Rn in the usual sense. That is, it is contained in a
ball with finite radius.

Definition 2.4. For ✏ 2 [0,1), we define the shift functor (·)(✏) : Rn-mod ! Rn-mod by letting M(✏) be
the persistence module with M(✏)p = Mp+✏ and �M(✏)(p, q) = �M (p+ ✏, q+ ✏). For morphisms f : M ! N ,
we define f(✏) : M(✏) ! N(✏) by f(✏)p = fp+✏.

We also define shift on intervals I by letting I(✏) be the interval for which II(✏) = II(✏).
Define the morphism �M,✏ : M ! M(✏) by (�M,✏)p = �M (p, p+ ✏).

Definition 2.5. An ✏-interleaving between Rn-modules M and N is a pair of morphisms f : M !

N(✏), g : N ! M(✏) such that g(✏) � f = �M,2✏ and f(✏) � g = �N,2✏.

If there exists an ✏-interleaving between M and N , then M and N are said to be ✏-interleaved. An
interleaving can be viewed as an ‘approximate isomorphism’, and a 0-interleaving is in fact an isomorphism.
We call a module M ✏-significant if �M (p, p + ✏) 6= 0 for some p, and ✏-trivial otherwise. M is 2✏-trivial if
and only if it is ✏-interleaved with the zero module. We call an interval I ✏-significant if II is ✏-significant,
and ✏-trivial otherwise.

Definition 2.6. We define the interleaving distance dI on persistence modules M and N by

dI(M,N) = inf{✏ | M and N are ✏-interleaved}. (1)

The interleaving distance intuitively measures how close the modules are to being isomorphic. The
interleaving distance between two modules might be infinite, and the interleaving distance between two
different, even non-isomorphic modules, might be zero. Apart from this, dI satisfies the axioms for a metric,
so dI is an extended pseudometric.
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Definition 2.7. Suppose M ⇠=
L

I2B II for a multiset1 B of intervals. Then we call B the barcode of M ,
and write B = B(M). We say that M is interval decomposable.

Since the endomorphism ring of any interval module is isomorphic to k, it follows from Theorem 1 in [2]
that if a persistence module M is interval decomposable, the decomposition is unique up to isomorphism.
Thus the barcode is well-defined, even if we let M be a P -module for an arbitrary poset P . If M is a
p.f.d. R-module, it is interval decomposable [15], but this is not true for R-modules or p.f.d. Rn-modules
in general. [21] gives an example showing the former, and the following is an example of a P -module for a
poset P with four points that is not interval decomposable.

k k
2

k

k

�
1 0

�
✓
1
1

◆

�
0 1

� (2)

A corresponding R2-module that is not interval decomposable and is at most two-dimensional at each point
can be constructed.

For multisets A,B, we define a partial bijection as a bijection � : A0
! B

0 for some subsets A
0
⇢ A and

B
0
⇢ B, and we write � : A 9 B. We write coim � = A

0 and im � = B
0.

Definition 2.8. Let A and B be multisets of intervals. An ✏-matching between A and B is a partial
bijection � : A 9 B such that

• all I 2 A \ coim � are 2✏-trivial

• all I 2 B \ im � are 2✏-trivial

• for all I 2 coim �, II and I�(I) are ✏-interleaved.

If there is an ✏-matching between B(M) and B(N) for persistence modules M and N , we say that M

and N are ✏-matched.
We have adopted this definition of ✏-matching from [3], which differs from e.g. the one in [13], which

allows two intervals I and J to be matched if dI(II , IJ)  ✏ (or rather, this is equivalent to their definition).
Conveniently, with the definition we have chosen, an ✏-interleaving is easily constructed given an ✏-matching.
We feel that this is the more natural definition for this paper, as several of our results are phrased as
statements about matchings and interleavings, and the interleaving distance might not come into the picture
at all. The other definition is perhaps more natural in the context of ‘persistence diagrams’, where intervals
are identified with points in a diagram, and the interleaving distance between the corresponding modules is
simply the distance between the points. This is irrelevant to us, however, as we never consider persistence
diagrams.

We can also define ✏-matchings in the context of graph theory. A matching in a graph is a set of edges
in the graph without common vertices, and a matching is said to cover a set S of vertices if all elements in
S are adjacent to an edge in the matching. Let G✏ be the bipartite graph on A t B with an edge between
I 2 A and J 2 B if II and IJ are ✏-interleaved. Then an ✏-matching between A and B is a matching in G✏

such that the set of 2✏-significant intervals in A t B is covered.

Definition 2.9. The bottleneck distance dB is defined by

dB(M,N) = inf{✏ | M and N are ✏-matched} (3)

for any interval decomposable M and N .

We might abuse notation and talk about dB(C,D), where C and D are barcodes.
1
We will not be rigorous in our treatment of multisets. A multiset may contain multiple copies of one element, but we will

assume that we have some way of separating the copies, so that we can treat the multiset as a set. If e.g. I and J are intervals

in a multiset and we say that I 6= J , we mean that they are “different” elements of the multiset, not that they are different

intervals.
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(a, a)

(b, b)

(a, a)

(b, b)

(a, a)

(b, b)

(a, a)

(b, b)

Figure 1: The intervals [a, b]BL, [a, b)BL, (a, b]BL and (a, b)BL.

3 Zigzag modules and Reeb graphs

In this section we will give some intuition for how block decomposable modules relate to Reeb graphs and
zigzag modules. We refer to [3] for a more detailed and rigorous treatment.

When explaining the connection to Reeb graphs and zigzag modules, it is more convenient to flip one
of the axes in R2, so that we work with Rop

⇥ R instead. This way, (a, b)  (c, d) iff c  a and b  d, or,
equivalently, if (a, b) ✓ (c, d) as intervals, assuming a < b. Let U = {(a, b) 2 Rop

⇥ R | a  b}.

Definition 3.1. An interval decomposable Rop
⇥ R-module is called block decomposable if its barcode

only contains intervals of the following types:

• [a, b]BL = {(c, d) 2 U | c  b, d � a}

• [a, b)BL = {(c, d) 2 U | a  d < b}

• (a, b]BL = {(c, d) 2 U | a < c  b}

• (a, b)BL = {(c, d) 2 U | c > a, d < b}

We call these intervals blocks. Each interval intersects the diagonal in an R-interval that is open, closed
or half-open one way or the other depending on the type of the block.

3.1 Reeb graphs

There have been proposed several distances on Reeb graphs; see [4] for a summary, as well as references to
various applications. The interleaving distance we consider was introduced in [16].

A Reeb graph is a topological graph G together with a continuous function � : G ! R such that
the level sets of � are discrete. Let S(�) = Rop

⇥ R ! Set be the functor sending (a, b) to the set of
connected components of ��1(a, b) and S((a, b) ! (c, d)) be induced by the inclusion �

�1(a, b) ✓ �
�1(c, d)

for c  a  b  d. In Figure 2, � is projection to a horizontal axis. Above the graph, the functor S(�) is
shown, the shade of grey at (a, b) determined by the size of S(�)(a,b).

Given two Reeb graphs (G1, �1) and (G2, �2), we get two functors S(�1) and S(�2), and we can talk about
interleavings and interleaving distance by adjusting the definitions in the previous section. It turns out that
this interleaving distance is at least as big as the one we get by replacing S(�1) and S(�2) by corresponding
block decomposable modules M�1 and M�2 . In Figure 2, the blocks comprising this block decomposable
module are exactly what you would guess by looking at the figure. In [3], dB(M,N) 

5
2dI(M,N) is proved

for such modules; with Theorem 4.14, we have dB(M,N) = dI(M,N).
There is also a barcode L0(�) of R-intervals (the level set persistence diagram [11]) associated to a Reeb

graph (G, �), which we can think of as arising from the intersection of S(�) with the diagonal x = y. This
barcode is the same as B(M�), except that (a, b]BL is replaced by (a, b], and so on. It is not too hard to see
that dB(L0(�1), L0(�2))  2dB(M�1 ,M�2).2 Altogether, this gives

dB(L0(�1), L0(�2))  2dB(M�1 ,M�2)

= 2dI(M�1 ,M�2)

 2dI(S(�1), S(�2)).

In other words:
2
The reason for the constant 2 is that (a, b)BL is (b � a)/4-trivial, while (a, b) is not ✏-trivial for ✏ < (b � a)/2.
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x = y

•

Figure 2: A Reeb graph (G, �) with S(�) above. Evaulating S(�) at the point shown, we get the intersection
of G with the red strip, which has two connected components.

Theorem 3.2. For Reeb graphs �1, �2, the inequality dB(L0(�1), L0(�2))  2dI(S(�1), S(�2)) holds.

Thus an easily computed bottleneck distance gives a lower bound for the interleaving distance between
Reeb graphs. This improves the result in [3], which was again an improvement on [6], by lowering the
constant in the inequality from 5 to 2, and this cannot be improved.

3.2 Zigzag modules

A zigzag module is a module over ZZ = {(a, b) 2 Z2
| a = b _ a = b+ 1} taken as a sub-poset of Rop

⇥ R.
Let ZZ|(a,b) be the sub-poset of ZZ containing the elements {(c, d) 2 ZZ | a  c, d  b}. A zigzag module
M gives rise to a block decomposable module MBL defined by letting MBL(a, b) be the colimit of the
restriction of M to ZZ|(a,b). MBL((a, b) ! (c, d)) is defined to be the induced morphism we get by the
universal property of colimits for (a, b)  (c, d). (This definition is given in [3], but something very similar is
described in the discussions of pyramids in [11] and [7].) This way, we can define interleaving and bottleneck
distance between zigzag modules by letting dI(M,N) = dI(MBL, NBL) and dB(M,N) = dB(MBL, NBL).
Thus Theorem 4.14 holds if we replace ‘block decomposable modules’ by ‘zigzag modules’:

Theorem 3.3. Let M and N be zigzag modules. If M and N are �-interleaved, there exists a �-matching
between B(M) and B(N).

This implies an isometry theorem for zigzag modules: dI(M,N) = dB(M,N).

4 Higher-dimensional stability

The algebraic stability theorem for R-modules states that an ✏-interleaving between R-modules M and N

induces an ✏-matching between B(M) and B(N), implying dI(M,N) = dB(M,N), the isometry theorem.
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Figure 3: Three rectangles, where the left and middle rectangles are of the same type (unbounded down-
wards), while the last is of a different type (unbounded upwards and to the right). Assuming that it contains
its boundary, the rightmost rectangle is also an example of a free interval, which we will define in a later
section.

The main purpose of this paper is to find out when similar results for Rn-modules hold. Our first result,
Theorem 4.2, is a generalization of the algebraic stability theorem for R-modules. Variations of the algebraic
stability theorem have been proved several times already [14, 12, 13, 5], but this is a new proof with ideas
that are applicable to more than just R-modules.

4.1 Rectangle decomposable modules

For any interval I ⇢ Rn, we let its projection on the i’th coordinate be denoted by Ii.

Definition 4.1. A rectangle is an interval of the form R = R1 ⇥ R2 ⇥ · · · ⇥ Rn.

Two rectangles R and S are of the same type if Ri \ Si and Si \ Ri are bounded for every i. For n = 1,
we have four types of rectangles:

• intervals of finite length

• intervals of the form (a,1) or [a,1)

• intervals of the form (�1, a) or (�1, a]

• (�1,1),

for some a 2 R. We see that for n � 1, rectangles R and S are of the same type if Ri and Si are of the
same type for all 1  i  n. Examples of 2-dimensional rectangles are given in Figure 3.

In [13], decorated numbers were introduced. These are endpoints of intervals ‘decorated’ with a plus or
minus sign depending on whether the endpoints are included in the interval or not. Let R = R [ {�1,1}.
A decorated number is of the form a

+ or a
�, where a 2 R.3 The notation is as follows for a, b 2 R:

• I = (a+, b+) if I = (a, b]

• I = (a+, b�) if I = (a, b)

• I = (a�, b+) if I = [a, b]

• I = (a�, b�) if I = [a, b).

We define decorated points in n dimensions for n � 1 as tuples a = (a1, a2, . . . , an), where all the ai’s are dec-
orated numbers. For an n-dimensional rectangle R and decorated points (a1, a2, . . . , an) and (b1, b2, . . . , bn),
we write R = ((a1, a2, . . . , an), (b1, b2, . . . , bn)) if Ri = (ai, bi) for all i. We define minR and maxR as
the decorated points for which R = (minR,maxR). We write a

⇤ for decorated numbers with unknown
‘decoration’, so a

⇤ is either a
+ or a

�.
3
The decorated numbers �1�

and 1+
are never used, as no interval contains points at infinity, but it does not matter

whether we include these two points in the definition.
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There is a total order on the decorated numbers given by a
⇤
< b

⇤ for a < b, and a
�
< a

+ for all a, b 2 R.
This induces a poset structure on decorated n-dimensional points given by (a1, a2, . . . , an)  (b1, b2, . . . , bn)
if ai  bi for all i. We can also add decorated numbers and real numbers by letting a

+ + x = (a+ x)+ and
a
� + x = (a+ x)� for a 2 R, x 2 R. We add n-dimensional decorated points and n-tuples of real numbers

coordinatewise.
If M is an interval decomposable Rn-module and all I 2 B(M) are rectangles, M is rectangle decompos-

able.
Our goal is to prove the following theorem:

Theorem 4.2. Let M =
L

I2B(M) II and N =
L

J2B(N) IJ be rectangle decomposable Rn-modules. If M
and N are �-interleaved, there exists a (2n � 1)�-matching between B(M) and B(N).

The inequality dB(M,N)  (2n�1)dI(M,N) for rectangle decomposable modules M and N immediately
follows.

Fix 0  � 2 R. Assume that M and N are �-interleaved, with interleaving morphisms f : M ! N(�)
and g : N ! M(�). Recall that this means that g(�) � f = �M,2� and f(�) � g = �N,2�. For any I 2 B(M),
we have a canonical injection II ◆I

�! M and projection M
⇡I
�! II , and likewise, we have canonical morphisms

IJ ◆J
�! N and N

⇡J
��! IJ for J 2 B(N). We define

fI,J = ⇡J(�) � f � ◆I : II ! IJ(�)
gJ,I = ⇡I(�) � g � ◆J : IJ ! II(�).

(4)

We prove the theorem by a mix of combinatorial and geometric arguments. First we show that it is
enough to prove the theorem under the assumption that all the rectangles in B(M) and B(N) are of the
same type. Then we define a real-valued function ↵ on the set of rectangles which in a sense measures, in
the case n = 2, how far ‘up and to the right’ a rectangle is. There is a preorder ↵ associated to ↵. The
idea behind ↵ is that if there is a nonzero morphism � : II ! IJ(✏) and I ↵ J , then I and J have to be
close to each other. Finding pairs of intervals in B(M) and B(N) that are close is exactly what we need to
construct a (2n � 1)�-matching. Lemmas 4.6 and 4.7 say that such morphisms behave nicely in a precise
sense that we will exploit when we prove Lemma 4.8. If we remove the conditions mentioning ↵, Lemmas
4.6 and 4.7 are not even close to being true, so one of the main points in the proof of Lemma 4.8 is that we
must exclude the cases that are not covered by Lemmas 4.6 and 4.7. We do this by proving that a certain
matrix is upper triangular, where the ‘bad cases’ correspond to the elements above the diagonal and the
‘good cases’ correspond to elements on and below the diagonal.

Lemma 4.8 is what ties together the geometric and combinatorial parts of the proof of Theorem 4.2.
While we prove Lemma 4.8 by geometric arguments, by Hall’s marriage theorem the lemma is equivalent to
a statement about matchings between B(M) and B(N). We have to do some combinatorics to get exactly
the statement we need, namely that there is a (2n � 1)�-matching between B(M) and B(N), and we do
this after stating Lemma 4.8.

We begin by describing morphisms between rectangle modules.

Lemma 4.3. Let � : II ! IJ be a morphism between interval modules. Suppose A = I \ J is an interval.
Then, for all a, b 2 A, �a = �b as k-endomorphisms.

Proof. Suppose a  b and a, b 2 A. Then �b��II (a, b) = �IJ (a, b)��a. Since the �-morphisms are identities,
we get �a = �b as k-endomorphisms. By the connectivity axiom for intervals, the equality extends to all
elements in A.

Since the intersection of two rectangles is either empty or a rectangle, we can describe a morphism
between two rectangle modules uniquely as a k-endomorphism if their underlying rectangles intersect. A
k-endomorphism, in turn, is simply multiplication by a constant. Note that we could have relaxed the
assumptions in the proof above and assumed that a is in I instead of in A, and still have gotten �a = �b.
In particular, this means that if 0 6= � : II ! IJ , and I and J are rectangles, then minJi  minIi for all i,
which gives minJ  minI . Similarly, maxJ  maxI , and one can also see that minI < maxJ must hold, or
else I \ J = ?. We summarize these observations as a corollary of Lemma 4.3:
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Corollary 4.4. Let R and S be rectangles, and let � : IR ! IS be a nonzero morphism. Then minS  minR

and maxS  maxR.

This will come in handy when we prove Lemmas 4.5, 4.6, and 4.7.
We define a function w : (B(M) ⇥ B(N)) t (B(N) ⇥ B(M)) ! k by letting w(I, J) = x if fI,J is given

by multiplication by x, and w(I, J) = 0 if fI,J is the zero morphism. w(J, I) is given by gJ,I in the same
way.

With the definition of w, it is starting to become clear how combinatorics comes into the picture. We
can now construct a bipartite weighted directed graph on B(M)tB(N) by letting w(I, J) be the weight of
the edge from I to J . The reader is invited to keep this picture in mind, as a lot of what we do in the rest
of the proof can be interpreted as statements about the structure of this graph.

The following lemma allows us to break up the problem and focus on the components of M and N with
the same types separately.

Lemma 4.5. Let R and T be rectangles of the same type, and S be a rectangle of a different type. Then
 � = 0 for any pair � : IR ! IS,  : IS ! IT of morphisms.

Proof. Suppose  ,� 6= 0. By Corollary 4.4, minR � minS � minT and maxR � maxS � maxT . We get
minRi � minSi � minTi and maxRi � maxSi � maxTi for all i, and it follows that if R and T are of the
same type, then S is of the same type as R and T .

Let f
0 : M ! N(�) be defined by f

0
I,J = fI,J for I 2 B(M) and J 2 B(N) if I and J are of the same

type, and f
0
I,J = 0 if they are not, and let g

0 : N ! M(�) be defined analogously. Here f
0 and g

0 are
assembled from f

0
I,J and g

0
J,I the same way f and g are from fI,J and gJ,I . Suppose I, I

0
2 B(M). Then

we have
X

J2B(N)

gJ,I0(�)fI,J =
X

J2B(N)

g
0
J,I0(�)f 0

I,J . (5)

When I and I
0 are of different types, the left side is zero because f and g are �-interleaving morphisms, and

all the summands on the right side are zero by definition of f 0 and g
0. When I and I

0 are of the same type,
the equality follows from Lemma 4.5. This means that g0(�)f 0 = g(�)f . We also have f

0(�)g0 = f(�)g, so f
0

and g
0 are �-interleaving morphisms. In particular, f 0 and g

0 are �-interleaving morphisms when restricted
to the components of M and N of a fixed type. If we can show that f

0 and g
0 induce a (2n� 1)�-matching

on each of the mentioned components, we will have proved Theorem 4.2. In other words, we have reduced
the problem to the case where all the intervals in B(M) and B(N) are of the same type.

For a decorated number a
⇤, let u(a⇤) = a if a 6= ±1 and u(a⇤) = 0 otherwise. Let a = (a1, a2, . . . , an)

be a decorated point. We define P (a) to be the number of the decorated numbers ai decorated with +,
and we also define ↵(a) =

P
1in u(ai). What we really want to look at are rectangles and not decorated

points by themselves, so we define P (R) = P (minR) + P (maxR) and ↵(R) = ↵(minR) + ↵(maxR) for any
rectangle R. Define an order ↵ on decorated points given by a ↵ b if either

• ↵(a) < ↵(b), or

• ↵(a) = ↵(b) and P (a)  P (b)

This defines a preorder. In other words, it is transitive (R ↵ S ↵ T implies R ↵ T ) and reflexive
(R ↵ R for all R). We write R <↵ S if R ↵ S and not R �↵ S.

The order ↵ is one of the most important ingredients in the proof. The point is that if there is a
nonzero morphism from IR to IS(✏) and R ↵ S, then R and S have to be close to each other. If ✏ = 0, R
and S actually have to be equal. This ‘closeness property’ is expressed in Lemma 4.6, and is also exploited
in Lemma 4.7. Finally, in the proof of Lemma 4.8, we make sure that we only have to deal with morphisms
gJ,I0(�) � fI,J for I ↵ I

0 and not I >↵ I
0, so that our lemmas can be applied.

In Figure 4 we see two rectangles R = (0, 4) ⇥ (0, 4) and S = (2, 5) ⇥ (2, 5). There is no nonzero
morphism from IR to IS or IS(1), because minR < minS(✏) for all ✏ < 2. This is connected to the fact that
↵(R) = 8 < 14 = ↵(S), which can be interpreted to mean that R is ‘further down and to the left’ than S.
The point of including P (↵) in the definition of ↵ is that e.g. (a, b] is a tiny bit ‘further to the right’ than
[a, b), and this is a subtlety that P recognizes, and that matters in the proofs of Lemmas 4.6 and 4.7.
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Figure 4: Rectangles R = (0, 4) ⇥ (0, 4) (purple), S = (2, 5) ⇥ (2, 5) (pink), S(1) = (1, 4) ⇥ (1, 4) (dotted
border), and S(2) = (0, 3) ⇥ (0, 3) (dotted border).

Lemma 4.6. Let R, S, and T be rectangles of the same type with R ↵ T . Suppose there are nonzero
morphisms � : IR ! IS(✏) and  : IS ! IT (✏). Then IS is (2n � 1)✏-interleaved with either IR or IT .

Proof. Since � 6= 0, we have

• minS  minR + ✏

• maxS  maxR + ✏.

This follows from Corollary 4.4.
Suppose IR and IS are not (2n � 1)✏-interleaved. Then either minS + (2n � 1)✏ ⇤ minR or maxS +

(2n � 1)✏ ⇤ maxR; let us assume the latter. (The former is similar.) In this case, there is an m such that
maxSm < maxRm � (2n � 1)✏. For i 6= m, we have maxSi  maxRi + ✏ by the second bullet point. We get

X

1in

u(maxSi) 

0

@
X

1in

u(maxRi)

1

A � (2n � 1)✏+ (n � 1)✏

=

0

@
X

1in

u(maxRi)

1

A � n✏.

(6)

The first bullet point gives us

X

1in

u(minSi) 

0

@
X

1in

u(minRi)

1

A+ n✏, (7)

so we get ↵(S)  ↵(R). If the inequality is strict, we have S <↵ R. If not, we have

• u(minSi) = u(minRi) + ✏ for all i

• u(maxSi) = u(maxRi) + ✏ for i 6= m

• u(maxSm) = u(maxRm) � (2n � 1)✏.
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Because of the inequalities minS  minR + ✏ and maxS  maxR + ✏ (recall that these are inequalities of
decorated points with the poset structure we defined earlier), we have P (minSi)  P (minRi) for all i and
P (maxSi)  P (maxRi) for i 6= m. But since maxSm < maxRm �(2n�1)✏, we have P (maxSm) < P (maxRm),
so S <↵ R. Similarly, we can prove T <↵ S if IS and IT are not (2n � 1)✏-interleaved, so we have T <↵ R,
which is a contradiction.

Lemma 4.7. Let R, S, and T be rectangles of the same type with R and T (4n � 2)✏-significant and
↵(R)  ↵(T ). Suppose there are nonzero morphisms � : IR ! IS(✏) and  : IS ! IT (✏). Then  (✏) �� 6= 0.

The constant (4n � 2) can be improved on for n > 1, but since the constant (2n � 1) in Lemma 4.6 is
optimal, strengthening Lemma 4.7 will not help us get a better constant in Theorem 4.2.

Proof. Suppose that � and  are nonzero, but  (✏) � � = 0. We have

• minR + 2✏ � minT

• minRm + 2✏ � maxTm for some m

• maxR + 2✏ � maxT

• maxRm � maxTm + (4n � 4)✏.

The first and third statements hold because �, 6= 0. (See Corollary 4.4.) The second is equivalent to
minR ⌅ maxT (2✏). If this did not hold, R and T (2✏) would intersect, and  (✏) � � would be nonzero in this
intersection, which is a contradiction. The fourth statement follows from the second and the fact that R is
(4n � 2)✏-significant.

Since T is (4n � 2)✏-significant, minT + (4n � 2)✏ < maxT . Thus the second bullet point implies that
minRm + 2✏ > minTm + (4n� 2)✏. The first point gives minRi � minTi � 2✏ for i 6= m. In a similar fashion,
we get from the last two points that maxRm � maxT + (4n� 4)✏ and maxRi � maxTi � 2✏ for i 6= m. From
all this, we get

↵(R) =
X

1in

u(minRi) + u(maxRi)

� u(minTm) + u(maxTm) + 2(4n � 4)✏+
X

i 6=m

(u(minTi) + u(maxTi) � 4✏)

= ↵(T ) + (4n � 4)✏

� ↵(T ).

(8)

Equality only holds if u(minTm)+(4n�2)✏ = u(maxTm), u(minRm)+(4n�2)✏ = u(maxRm), and n = 1. This
means that R = R1 = T = T1 = [u(minR), u(minR) + 2✏]. As we see, R \ T (2✏) = [u(minR), u(minR)] 6= ?,
so  (✏) � � 6= 0.

We define a function µ by

µ(I) = {J 2 B(N) | I and J are (2n � 1)�-interleaved} (9)

for I in B(M). In other words, µ(I) contains all the intervals that can be matched with I in a (2n � 1)�-
matching. Let I 2 B(M) be (4n � 2)�-significant, and pick p 2 Rn such that p, p + (4n � 2)� 2 I.
Then, p+ (2n � 1)� 2 J for every J 2 µ(I). Since M and N are p.f.d., this means that µ(I) is a finite set.
For A ⇢ B(M), we write µ(A) =

S
I2A µ(I).

Lemma 4.8. Let A be a finite subset of B(M) containing no (4n�2)�-trivial elements. Then |A|  |µ(A)|.

Before we prove Lemma 4.8, we show that it implies that there is a (2n � 1)�-matching between B(M)
and B(N) and thus completes the proof of Theorem 4.2.

Let Gµ be the undirected bipartite graph on B(M) t B(N) with an edge between I and J if J 2 µ(I).
Observe that Gµ is the same as the graph G(2n�1)� we defined when we gave the graph theoretical definition
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of an ✏-matching (in this case, (2n � 1)�-matching) in section 2. Following that definition, a (2n � 1)�-
matching is a matching in Gµ that covers the set of all (4n � 2)�-significant elements in B(M) and B(N).

For a subset S of a graph G, let AG(S) be the neighbourhood of S in G, that is, the set of vertices in
G that are adjacent to at least one vertex in S. We now apply Hall’s marriage theorem [18] to bridge the
gap between Lemma 4.8 and the statement we want to prove about matchings.

Theorem 4.9 (Hall’s theorem). Let G be a bipartite graph on bipartite sets X and Y such that AG({x})
is finite for all x 2 X. Then the following are equivalent:

• for all X 0
⇢ X, |X

0
|  |AG(X 0)|

• there exists a matching in G covering X.

One of the two implications is easy, since if |X
0
| > |AG(X 0)| for some X

0
⇢ X, then there is no matching

in G covering X
0. It is the other implication we will use, namely that the first statement is sufficient for a

matching in G covering X to exist.
Letting X be the set of (4n � 2)�-significant intervals in B(M) and Y be B(N), Hall’s theorem and

Lemma 4.8 give us a matching � in the graph Gµ covering all the (4n� 2)�-significant elements in B(M).4
By symmetry, we also have a matching ⌧ in Gµ covering all the (4n � 2)�-significant elements in B(N).
Neither of these is necessarily a (2n � 1)�-matching, however, as each of them only guarantees that all
the (4n � 2)-significant intervals in one of the barcodes are matched. We will use � and ⌧ to construct a
(2n� 1)�-matching. This construction is similar to one used to prove the Cantor-Bernstein theorem [1, pp.
110-111].

Let H be the undirected bipartite graph on B(M)tB(N) for which the set of edges is the union of the
edges in the matchings � and ⌧ . Let C be a connected component of H. Suppose the submatching of � in C

does not cover all the (4n�2)�-significant elements of C. Then there is a (4n�2)�-significant J 2 C\B(N)
that is not matched by �. If we view � and ⌧ as partial bijections � : B(M) 9 B(N) and ⌧ : B(N) 9 B(M),
we can write the connected component of J , which is C, as {J, ⌧(J),�(⌧(J)), ⌧(�(⌧(J))), . . . }. Either this
sequence is infinite, or it is finite, in which case the last element is (4n � 2)�-trivial. In either case, we get
that the submatching of ⌧ in C covers all (4n � 2)�-significant elements in C.

By this argument, there is a (2n� 1)�-matching in each connected component of H. We can piece these
together to get a (2n � 1)�-matching in B(M) t B(N), so Lemma 4.8 completes the proof of Theorem 4.2.

Proof of Lemma 4.8. Because ↵ is a preorder, we can order A = {I1, I2, . . . , Ir} so that Ii ↵ Ii0 for all
i  i

0. Write µ(A) = {J1, J2, . . . , Js}. For I 2 B(M), we have

�II ,2� = ⇡I(2�)g(�)f |I

= ⇡I(2�)

0

@
X

J2B(N)

g|J⇡J

1

A (�)f |I

=
X

J2B(N)

⇡I(2�)g|J(�)⇡J(�)f |I

=
X

J2B(N)

gJ,I(�)fI,J .

(10)

Also,
P

J2B(N) gJ,I0(�)fI,J = 0 for I 6= I
0
2 B(M), since �M,2� is zero between different components of M .

Lemma 4.6 says that if gJ,I0(�)fI,J 6= 0 and I ↵ I
0, then J is (2n � 1)�-interleaved with either I or J

0.
This means that if i < i

0, then

0 =
X

J2B(N)

gJ,Ii0 (�)fIi,J

=
X

J2µ(A)

gJ,Ii0 (�)fIi,J ,
(11)

4
Strictly speaking, Lemma 4.8 says nothing about infinite A, but the case with A countably infinite follows from the finite

cases. Each interval in A contains a rational point, so since M is p.f.d., the cardinality of A is at most finite times countably

infinite, which is countable. Thus we have covered all the possible cases.
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as gJ,Ii0 (�)fIi,J = 0 for all J that are not (2n � 1)�-interleaved with either Ii or Ii0 . Similarly,

�IIi ,2� =
X

J2B(N)

gJ,Ii(�)fIi,J

=
X

J2µ(A)

gJ,Ii(�)fIi,J .
(12)

Writing this in matrix form, we get

2

4
gJ1,I1 (�) ... gJs,I1 (�)

...
. . .

...
gJ1,Ir (�) ... gJs,Ir (�)

3

5
" fI1,J1 ... fIr,J1

...
. . .

...
fI1,Js ... fIr,Js

#
=

2

664

�MII1 ,2�
? ... ?

0 �MII2 ,2�
... ?

...
...

. . .
...

0 0 ... �MIIr ,2�

3

775 .

That is, on the right-hand side we have the internal morphisms of the Ii on the diagonal, and 0 below the
diagonal.

Recall that a morphism between rectangle modules can be identified with a k-endomorphism, and that in
our notation, fI,J and gJ,I are given by multiplication by w(I, J) and w(J, I), respectively. For an arbitrary
morphism  between rectangle modules, we introduce the notation w( ) = c if  is given by multiplica-
tion by c, and 0 otherwise. A consequence of Lemma 4.7 is that w(gJ,Ii0 (�)fIi,J) = w(gJ,Ii0 )w(fIi,J) =
w(J, Ii)w(Ii0 , J) whenever Ii ↵ Ii0 , in particular if i  i

0. We get

1 = w
�
�II ,2�

�

= w

0

@
X

J2µ(A)

gJ,Ii(�)fIi,J

1

A

=
X

J2µ(A)

w(gJ,Ii(�)fIi,J)

=
X

J2µ(A)

w(J, Ii)w(Ii, J),

(13)

and similarly 0 =
P

J2µ(A) w(J, Ii0)w(Ii, J) for i  i
0. Again we can interpret this as a matrix equation:

2

64
w(J1, I1) . . . w(Js, I1)

...
. . .

...
w(J1, Ir) . . . w(Js, Ir)

3

75

2

64
w(I1, J1) . . . w(Ir, J1)

...
. . .

...
w(I1, Js) . . . w(Ir, Js)

3

75 =

2

6664

1 ? . . . ?
0 1 . . . ?
...

...
. . .

...
0 0 . . . 1

3

7775
.

That is, the right-hand side is an r ⇥ r upper triangular matrix with 1’s on the diagonal. The right-hand
side has rank |A| and the left-hand side has rank at most |µ(A)|, so the lemma follows immediately from
this equation.

4.2 Block decomposable modules

Next, we prove stability for block decomposable modules, which, as explained in Section 3, implies stability
for zigzag modules and Reeb graphs. Let R2

+ = {(x, y) 2 R2
| x+ y � 0}.

Definition 4.10. A triangle is a nonempty set T of the form {(x, y) 2 R2
| x < a, y < b} \ R2

+ for some
(a, b) 2 (R [ {1})2 with a+ b > 0.

It follows that triangles are intervals. For a triangle T = {(x, y) 2 R2
| x < a, y < b} \ R2

+, we write
maxT = (a, b) 2 (R[{1})2. If T is bounded, maxT is the maximal element in the closure of T , as illustrated
in Figure 5. A triangle decomposable module is an interval decomposable R2-module whose barcode only
contains triangles. Observe that triangles correspond exactly to blocks of the form (a, b)BL under the poset
isomorphism between Rop

⇥ R and R2 flipping the x-axis.
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Figure 5: A bounded triangle T .

Theorem 4.11. Let M and N be �-interleaved triangle decomposable modules. Then there is a �-matching
between B(M) and B(N).

To prove this, we can split the triangles into sets of different ‘types’, as we did with the rectangles. We
get four different types of triangles T , depending on whether maxT is of the form (a, b), (1, b), (a,1),
or (1,1) for a, b 2 R. Now a result analogous to Lemma 4.5 holds, implying that it is enough to show
Theorem 4.11 under the assumption that the barcodes only contain intervals of a single type. The case in
which the triangles are bounded is the hardest one, and the only one we will prove. So from now on, we
assume all triangles to be bounded.

Again, we reuse parts of the proof of Theorem 4.2. For I 2 B(M), we define ⌫(I) = {J 2 B(N) |

I and J are �-interleaved}. The discussion about Hall’s theorem is still valid, so we only need to prove the
analogue of Lemma 4.8 for ⌫. Define ↵(T ) = m1 +m2, where maxT = (m1,m2). The only things we need
to complete the proof of the analogue of Lemma 4.8 for triangle decomposable modules are the following
analogues of Lemmas 4.6 and 4.7:

Lemma 4.12. Let R, S, and T be triangles with ↵(R)  ↵(T ). Suppose there are morphisms f : IR ! IS(✏)
and g : IS ! IT (✏) such that g(✏) � f 6= 0. Then IS is ✏-interleaved with either IR or IT .

Lemma 4.13. Let R, S, and T be triangles with T 2✏-significant and ↵(R)  ↵(T ). Suppose there are
nonzero morphisms f : IR ! IS(✏) and g : IS ! IT (✏). Then g(✏) � f 6= 0.

Proof of Lemma 4.12. Suppose IR and IS are not ✏-interleaved. Then maxS ⇤ maxR � ✏. But at the same
time, maxR � maxS � ✏, which gives ↵(R) > ↵(S). Assuming that IS and IT are not ✏-interleaved, either,
we also get ↵(S) > ↵(T ). Thus ↵(R) > ↵(T ), a contradiction.

Proof of Lemma 4.13. For all triangles I, we treat minI and maxI as undecorated points. We have maxT �

✏  maxS and maxS � ✏  maxR, so maxT � 2✏  maxR. Because T is 2✏-significant, maxT � 2✏� ✏
0
2 R2

+

for some ✏0 > 0. Combining these facts, we get maxT � 2✏� ✏
0
2 R, so (g(✏) � f)maxT�2✏�✏0 6= 0.

Theorem 4.11 implies dB(M,N) = dI(M,N) for block decomposable M and N such that B(M) and
B(N) only have blocks of the form (a, b)BL (so no closed or half-closed blocks). Our proof technique extends
easily to prove the same equality for all block decomposable M and N . In fact, dB(M,N)  dI(M,N) in
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the case where all the intervals in the barcodes are of the form [a, b]BL follows from Theorem 4.16 below
with n = 2 by the correspondence [a, b]BL $ h(�a, b)i, while the two cases with half-open blocks are both
essentially the algebraic stability theorem. In the end we could stitch the cases together by something
similar to Lemma 4.5 and the discussion following it. We omit the details, and anyway the closed and
half-open cases are taken care of in [3]. Thus, either by appealing to previous work for the other cases or
using our own methods, we get

Theorem 4.14. Let M and N be block decomposable modules. If M and N are �-interleaved, there exists
a �-matching between B(M) and B(N).

4.3 Free modules

Definition 4.15. We define a free interval as an interval of the form hpi := {q | q � p} ⇢ Rn.

For a free interval R, we define minR by R = hminRi.5 We define a free Rn-module as an interval
decomposable module whose barcode only contains free intervals. It is easy to see that free intervals are
rectangles, so it follows from Theorem 4.2 that dB(M,N)  (2n� 1)dI(M,N) for free modules M , N . But
because of the geometry of free modules, this result can be strengthened.

Theorem 4.16. Let M and N be free �-interleaved Rn-modules with n � 2. Then there is a (n � 1)�-
matching between B(M) and B(N).

We already did most of the work while proving Theorem 4.2, and there are some obvious simplifications.
Firstly, free intervals are ✏-significant for all ✏ � 0. Secondly, for all nonzero f : IR ! IS and g : IS ! IT with
R, S, T free, gf is nonzero. For I 2 B(M), define ⌫(I) = {J 2 B(N) | I and J are (n � 1)�-interleaved}.
By the arguments in the proof of Theorem 4.2, we only need to prove Lemma 4.8 with µ replaced by ⌫.
Lemmas 4.6 and 4.7 still hold for free modules, but we need to sharpen Lemma 4.6.

Lemma 4.17. Let R, S, and T be free intervals with R ↵ T . Suppose there are morphisms 0 6= f : IR !

IS(✏) and 0 6= g : IS ! IT (✏). Then IS is (n � 1)✏-interleaved with either IR or IT .

Proof. In this proof, we treat minI and maxI as undecorated points for all free intervals I, so that we
can add them. We have minS  minR + ✏. Suppose IR and IS are not (n � 1)✏-interleaved. Then
minS + (n � 1)✏ ⇤ minR, so for some m, we must have minSm < minRm � (n � 1)✏. We get

↵(S) =
X

1in

minSi

< minRm � (n � 1)✏+
X

i 6=m

(minRi + ✏)

=
X

1in

minRi

= ↵(R).

(14)

We can also prove that ↵(T ) < ↵(S) if IS and IT are not (n � 1)✏-interleaved, so we have ↵(T ) < ↵(R), a
contradiction.

5 Counterexamples to a general algebraic stability theorem

Theorem 4.2 gives an upper bound of (2n� 1) on dB/dI for rectangle decomposable modules that increases
with the dimension. An obvious question is whether it is possible to improve this constant, or if for
each C < 2(n � 1) there exist pairs M,N of modules for which dB(M,N) > CdI(M,N), in which case
the bound is optimal. We know that dB(M,N) � dI(M,N) for any M and N whenever the bottleneck

5
This makes minR an undecorated point, while we have previously defined min� as decorated points, but this does not

matter, as we will not need decorated points in this subsection.
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Figure 6: M and N . I1 and I2 are the light purple squares, I3 is deep purple, and J is pink.

distance is defined, so for n = 1, the constant is optimal. For n > 1, however, it turns out that the equality
dB(M,N) = dI(M,N) does not always hold, and the geometry becomes more confusing when n increases. In
dimension 2, we give an example of rectangle decomposable modules M and N with dB(M,N) = 3dI(M,N)
in Example 5.2, which means that the bound is optimal for n = 2, as well. This is a counterexample to a
conjecture made in a previous version of [3] which claims that interval decomposable Rn-modules M and
N such that B(M) and B(N) only contain convex intervals are ✏-matched if they are ✏-interleaved.

Example 5.1. Let B(M) = {I1, I2, I3}
6 and B(N) = {J}, where

• I1 = (�3, 1) ⇥ (�1, 3)

• I2 = (�1, 3) ⇥ (�3, 1)

• I3 = (�1, 1) ⇥ (�1, 1)

• J = (�2, 2) ⇥ (�2, 2).

See Figure 6. We can define 1-interleaving morphisms f : M ! N(1) and g : N ! M(1) by letting
w(I1, J) = w(I2, J) = w(I3, J) = w(J, I1) = w(J, I2) = 1 and w(J, I3) = �1, where w is defined as in the
proof of Theorem 4.2. On the other hand, in any matching between B(M) and B(N) we have to leave either
I1 or I2 unmatched, and they are ✏-significant for all ✏ < 4. In fact, any possible matching between B(M)
and B(N) is a 2-matching. Thus dI(M,N) = 1 and dB(M,N) = 2.

A crucial point is that even though w(I1, J), w(J, I2), w(I2, J), and w(J, I1) are all nonzero, both
gJ,I2 � fI1,J and gJ,I1 � fI2,J are zero. To do the same with one-dimensional intervals, we would have to
shrink I1 and I2 so much that they no longer would be 2-significant (see Lemma 4.7), and then they would
not need to be matched in a 1-matching. This shows how the geometry of higher dimensions can allow us
to construct examples that would not work in lower dimensions.

Next, we give an example of rectangle decomposable R2-modules M and N such that dB(M,N) =
3dI(M,N), proving that our upper bound of 2(n � 1) is the best possible for n = 2.

Example 5.2. Let B(M) = {I1, I2, I3} and B(N) = {J1, J2, J3}, where

• I1 = (0, 10) ⇥ (1, 11)

• I2 = (0, 12) ⇥ (�1, 11)

• I3 = (2, 10) ⇥ (1, 9)

• J1 = (1, 11) ⇥ (0, 10)

• J2 = (1, 9) ⇥ (0, 12)

• J3 = (�1, 11) ⇥ (2, 10).
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Figure 7: I1, I2, and I3 are the filled pink rectangles, and J1, J2, and J3 are the black rectangles without
fill.

The rectangles in B(M) and B(N) are shown in Figure 7.
We give an example of 1-interleaving morphisms f and g that we write on matrix form. In the first

matrix, w(Ii, Jj) is in row i, column j. In the second, w(Jj , Ii) is in row j, column i.

f :

2

4
1 1 1
1 1 0
1 0 1

3

5 , g :

2

4
�1 1 1
1 0 �1
1 �1 0

3

5 . (15)

This means that M and N are 1-interleaved, but they are not ✏-interleaved for any ✏ < 1, so dI(M,N) =
1.

Let ✏ < 3. We see that the difference between maxI2 = (12, 11) and maxJ2 = (9, 12) is 3 in the first
coordinate, so I2 and J2 are not ✏-interleaved, and thus they cannot be matched in an ✏-matching. In fact,
Ii and Jj cannot be matched in an ✏-matching for any i, j 2 {2, 3} by similar arguments. Since I2 and
I3 cannot both be matched with J1, one of them has to be left unmatched, but since both I2 and I3 are
6-significant, this means that there is no ✏-matching between B(M) and B(N). On the other hand, any
bijection between B(M) and B(N) is a 3-matching, so dB(M,N) = 3.

There is a strong connection between n-dimensional rectangle decomposable modules and 2n-dimensional
free modules. This is related to the fact that we need 2n coordinates to determine an n-dimensional rectangle,
and also 2n coordinates to determine a 2n-dimensional free interval. The following example illustrates this
connection, as we simply rearrange the coordinates of minR, maxR for all rectangles R involved in Example
5.2 to get 4-dimensional free modules with similar properties as in Example 5.2.

Example 5.3. Let B(M) = {I1, I2, I3} and B(N) = {J1, J2, J3}, where

• I1 = h(0, 1, 10, 11)i

• I2 = h(0,�1, 12, 11)i

• I3 = h(2, 1, 10, 9)i

6
Here we use subscripts to index different intervals, not to indicate projections, as we did earlier.
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• J1 = h(1, 0, 11, 10)i

• J2 = h(1, 0, 9, 12)i

• J3 = h(�1, 2, 11, 10)i.

(Compare with the intervals Ii and Jj in Example 5.2.) We have 1-interleaving morphisms defined the same
way as in Example 5.2. Just as in that example, we can deduce that there is nothing better than a 3-matching
between B(M) and B(N), so dB(M,N) = 3 and dI(M,N) = 1.

As a consequence of this example, we get that our upper bound of dB/dI  n� 1 for free n-dimensional
modules cannot be improved on for n = 4.

6 Relation to the complexity of calculating interleaving distance

The interleaving distance between arbitrary persistence modules is on the surface not easy to find, as naively
trying to construct interleaving morphisms can quickly lead you to consider a complicated set of equations
for which it is not clear that one can decide if there is a solution in polynomial time. For R-modules, however,
the interval decomposition theorem plus the algebraic stability theorem gives us a polynomial time algorithm
to compute dI : decompose the modules into intervals and find the bottleneck distance. Since dI = dB , this
gives us the interleaving distance. When it exists, one can compute the bottleneck distance in polynomial
time also in two dimensions [17], but the approach fails for general Rn-modules already at the first step, as
we do not have a nice decomposition theorem. But in the recent proof that calculating interleaving distance
is NP-hard [9], it is the failure of the second step that is exploited. Specifically, a set of modules that
decompose nicely into interval modules (staircase modules, to be precise) is constructed, but for these, dI
and dB are different. It turns out that calculating dI for these corresponds to deciding whether CI problems
are solvable, which is shown to be NP-hard.

Though rectangle modules are not considered in the NP-hardness proof, they have similar properties
to staircase modules,7 and Example 5.2 is essentially a CI problem with a corresponding pair of modules.
Importantly, it shows that dI = dB does not hold in general for modules corresponding to CI problems.
This crucial observation, which appeared first in a preprint of this paper [8], opened the door to proving
NP-hardness of calculating dI by the approach used in [9].

In [9], it is also shown that c-approximating dI is NP-hard for c < 3, where an algorithm is said to
c-approximate dI if it returns a number in the interval [dI(M,N), cdI(M,N)] for any input pair M , N of
modules. Whether the approach by CI problems can be used to prove hardness of c-approximation for c � 3
is closely related to Theorem 4.2. It can be shown that if dB(M,N)  cdI(M,N) for any pair M , N of
rectangle decomposable modules, the same holds for staircase modules, and therefore there is a polynomial
time algorithm c-approximating dI for these, meaning that the strategy of going through CI problems will
not give a proof that c-approximation of dI is NP-hard. On the other hand, if one can find an example of
rectangle decomposable modules M and N such that dB(M,N) = cdI(M,N) for c > 3, one might be able
to use that to increase the constant 3 in the approximation hardness result. Thus there is a strong link
between stability of rectangle decomposable modules and the only successful method so far known to the
author of determining the complexity of computing or approximating multiparameter interleaving distance.
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The only significant difference in this setting is that in a fixed dimension, rectangle modules are defined by a limited

number of coordinates, or “degrees of freedom”, while there is no such restriction on staircase modules even in dimension 2.
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Computational Complexity of the Interleaving Distance⇤

Håvard Bakke Bjerkevik† Magnus Bakke Botnan‡

Abstract

The interleaving distance is arguably the most prominent distance measure in topological
data analysis. In this paper, we provide bounds on the computational complexity of deter-
mining the interleaving distance in several settings. We show that the interleaving distance
is NP-hard to compute for persistence modules valued in the category of vector spaces. In
the specific setting of multidimensional persistent homology we show that the problem is at
least as hard as a matrix invertibility problem. Furthermore, this allows us to conclude that the
interleaving distance of interval decomposable modules depends on the characteristic of the
field. Persistence modules valued in the category of sets are also studied. As a corollary, we
obtain that the isomorphism problem for Reeb graphs is graph isomorphism complete.

1 Introduction
For a category C and a poset P we define a P-indexed (persistence) module valued in C to a be a
functor M : P ! C. We will denote the associated functor category by C

P. If M,N 2 C
P then M

and N are of the same type. Such functors appear naturally in applications, and most commonly
when P = Rn, n-tuples of real numbers under the normal product order, and C = VecK, the
category of vector spaces over the field K, or C = Set, the category of sets. The field K is assumed
to be finite. We suppress notation and simply write Vec when K is an arbitrary finite field. The
notation p 2 P denotes that p is an object of P.

Remark 1.1. Throughout the paper we make use of basic concepts from category theory. The
reader unfamiliar to such ideas will find the necessary background material in the first few pages
of [11].

Assume that h : X ! R is a continuous function of “Morse type”, a generalization of a Morse
function on a compact manifold. Roughly, a real-valued function is of Morse type if the homo-
topy type of the fibers changes at finite set of values; see [16] for a precise definition. We shall
now briefly review four different scenarios in which functors of the aforementioned form can be
associated to h.

Let Hp : Top ! VecK denote the p-th singular homology functor with coefficients in K, and
let ⇡0 : Top ! Set denote the functor giving the set of path-components. We also associate the

⇤M. B. Botnan has been supported by the DFG Collaborative Research Center SFB/TR 109 “Discretization in Geom-
etry and Dynamics”. This work was partially carried out while the authors were visitors to the Hausdorff Center for
Mathematics, Bonn, during the special Hausdorff program on applied and computational topology.

†Norwegian University of Science and Technology, Trondheim, Norway; havard.bjerkevik@ntnu.no
‡TU München, Munich, Germany; botnan@ma.tum.de
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two following functors to h whose actions on morphisms are given by inclusions:

S
"(h) : R ! Top S(h) : R2

! Top

S
"(h)(t) = {x 2 X | h(x)  t} S(h)(�s, t) = {x 2 X | s  h(x)  t}

• Persistent Homology studies the evolution of the homology of the sublevel sets of h and is
perhaps the most prominent tool in topological data analysis [16]. Specifically, the p-th sub-

level set persistence module associated to h is the functor HpS
"(h) : R ! Vec. Importantly, such

a module is completely determined by a collection of intervals B(HpS
"(h)) called the barcode

of HpS
"(h). This collection of intervals is then in turn used to extract topological information

from the data at hand. In Fig. 1 we show the associated barcode for p = 0 and p = 1 for a
function of Morse type.

• Upon replacing Hp by ⇡0 in the above construction we get a merge tree. That is, the merge tree

associated to h is the functor ⌧h : ⇡0S
"(h) : R ! Set. A merge tree captures the evolution of

the path components of the sublevel sets of h and can be, as the name indicates, be visualized
as (a disjoint union of) rooted trees. See Fig. 1 for an example.

• The two aforementioned examples used sublevel sets. A richer invariant is obtained by
considering interlevel sets: define the p-th interlevel set persistence of h to be the functor
HpS(h) : R2

! Vec. Analogously to above, such a module is completely determined by
a collection B(HpS(h)) of simple regions in R2. However, it is often the collection of inter-
vals Lp(h) obtained by the intersection of these regions with the anti-diagonal y = �x which
are used in data analysis. We refer the reader to [9] for an in-depth treatment. In Fig. 1
we show an example of the 0-th interlevel set barcode. Observe how the endpoints of the
intervals correspond to different types of features of the Reeb graph.

• Just as interlevel set persistence is a richer invariant than sublevel set persistence, the Reeb

graph is richer in structure than the merge tree. Specifically, we define the functor Reebh :=
⇡0S(h) : R2

! Set. Just as for Merge trees, Reebh admits a visualization of a graph; see
Fig. 1. In particular, this appealing representation has made Reeb graphs a popular objects
of study in computational geometry and topology, and they have found many applications
in data visualization and exploratory data analysis.

These are all examples of topological invariants arising from a single real-valued function.
There are many settings for which it is more fruitful to combine a collection of real-valued func-
tions into a single function g : X ! Rn [15]. By combining them into a single function we not
only learn how the data looks from the point of view of each function (i.e. a type of measurement)
but how the different functions (measurements) interact. One obvious way to assign a (algebraic)
topological invariant to g is to filter it by sublevel sets. That is, define S

"(g) : Rn
! Top by

S
"(g)(t) = {x 2 X | g(x)  t}. The associated functor HpS

"(g) : Rn
! Vec is an example of

an n-dimensional persistence module. We saw above that for n = 1 this functor is completely de-
scribed by a collection of intervals. This is far from true for n � 2: there exists no way to describe
such functors by interval-like regions in higher-dimensional Euclidean space. Even the task of
parameterizing such (indecomposable) modules is known to be a hopeless problem (so-called wild

representation type) [4].
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Reebh
⌧

h B(H0S
"(h)) B(H1S

"(h)) L0(h)

Figure 1: The height function of the solid shape is of Morse type. The associated
Reeb graph, merge tree, sublevel set barcodes, and interlevel set barcode are shown
to the right.

1.1 The Interleaving Distance
Different types of distances have been proposed on various types of persistence modules with val-
ues in Vec [6, 12, 17, 25, 27]. Of all these, the interleaving distance is arguably the most prominent
for the following reasons: the theory of interleavings lies at the core of the theoretical foundations
of 1-dimensional persistence, notably through the Isometry Theorem (Theorem 2.6). Furthermore,
it was shown by Lesnick that when K is a prime field, the interleaving distance is the most dis-

criminative of all stable metrics on such modules. We refer to [25] for the precise statement. As we
shall see, it is also an immediate consequence of Theorem 2.6 that the interleaving distance for
1-dimensional persistence modules can be computed in polynomial time.

Lesnick’s result generalizes to n-dimensional persistence modules, but the computational com-
plexity of computing the interleaving distance of such modules remains unknown. An efficient
algorithm to compute the interleaving distance could carry a profound impact on topological data
analysis: the standard pipeline for 1-dimensional persistent homology is to first compute the bar-
code and then perform analysis on the collection of intervals. However, for multi-dimensional
persistence there is no way of defining the barcode. With an efficient algorithm for computing
the interleaving distance at hand it would still not be clear how to analyze the persistence mod-
ules individually, but we would have a theoretical optimal way of comparing them. This in turn
could be used in clustering, kernel methods, and other kinds of data analysis widely applied in
the 1-dimensional setting.

Complexity
The purpose of this paper is to determine the computational complexity of computing the inter-
leaving distance. To make this precise, we need to associate a notion of size to the persistence
modules.

Definition 1.2. Let P denote a poset category and M : P ! C.

• For C = Vec, define the total dimension of M to be dimM =
P

p2P dimMp.

• For M : Z ! Set, define the total cardinality of M to be |M | =
P

p2P |Mp|.

The input size will be the total dimension or the total cardinality and for the the remaining of
the paper we shall always assume that those quantities are finite. The following shows that there
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exists an algorithm, polynomial in the input size, which determines whether or not two P-indexed
modules valued in Vec are isomorphic.

Theorem 1.3 ([10]). Let P be a finite poset and M,M
0 : P ! Vec. There exists a deterministic algorithm

which decides if M ⇠= M
0

in O
�
(dimM + dimM

0)6
�
.

This result will be important to us in what ensues because the strongest of interleavings, the
0-interleaving, is by definition a pair of inverse isomorphisms. Furthermore, by choosing an ap-
propriate basis for each vector space, an isomorphism between M and M

0 is nothing more than
a collection of matrices with entries in a finite field. Likewise a �-interleaving will be nothing
more than a collection of matrices over a finite field satisfying certain constraints. When C = Set
the morphisms are specified by collections of functions between finite sets. Hence, the decision
problems considered in this paper are trivially in NP.

Furthermore, it is an immediate property of the Morse type of h, that the modules considered
above are discrete. Intuitively, we say that an Rn-indexed persistence module M is discrete if there
exists a Zn-indexed persistence module containing all the information of M ; see Appendix B. In
practice, persistence modules arising from data will be discrete. Hence, when it comes to algo-
rithmic questions we shall restrict ourselves to the setting in which P = Zn or a slight general-
ization thereof. Importantly, the modules considered in this paper can be �-interleaved only for
� 2 {0, 1, 2, . . .}.

Contributions
The contributions of this paper are summarized in Table 1. Concretely, a cell in Table 1 gives a
complexity bound on the decision problem of deciding if two modules of the given type are �-
interleaved. It is an easy consequence of the definition of the interleaving distance that this is
at least as hard as determining the distance itself. The cells with a shaded background indicate
that novel contributions to that complexity bound is provided in this paper. Recall that we have
defined the input size to be n = dimM + dimM

0 when the modules are valued in Vec, and
n = |M | + |M

0
| when the modules are valued in Set. Observe that any non-trivial functor M :

Zm
! Set must have |M | = 1. Hence, when we talk about interleavings of such functors, we

shall assume that they are completely determined by a restriction to a finite sub-grid. The input
size is then the total cardinalities of the restrictions. We will now give a brief summary of the cells
of Table 1.

• Z ! Vec. [� � 0] This bound is achieved by first determining the barcodes of the persistence
modules and then using Theorem 2.6 to obtain the interleaving distance. The complexity
of this is O(FindBarcode + Match) = O(n! + n

1.5 log n) = O(n!) where ! is the matrix
multiplication exponent[23]. The details can be found in Appendix C. In [26], the complexity
is shown to be O(n!+n

2 log2
n) for essentially the same problem, but with a slightly different

input size n.

• Z ! Set. [� = 0] Essentially isomorphism of rooted trees; see Appendix E. [� � 1] This
follows from arguments in [1].

• Z2
! Vec. [� = 0] This is Theorem 1.3 for P = Z2. [� � 1] A constrained invertibility (CI)

problem is a triple (P,Q, n) where P and Q are subsets of {1, 2, . . . , n}
2. We say that a CI-

problem (P,Q, n) is solvable if there exists an invertible n ⇥ n matrix M such that Mi,j = 0
for all (i, j) 2 P and M

�1
i0,j0 = 0 for all (i0, j0) 2 Q. We call (M,M

�1) a solution of (P,Q, n).
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type/� Z ! Vec Z ! Set Z2
! Vec Z2

! Set ZL,C
! VecZ/2Z

� = 0 O(n!) O(n) O(n6) GI-complete O(n6)
� � 1 O(n!) NP-complete CI-hard NP-complete NP-complete

Table 1: The complexity of checking for �-interleavings between modules M and
M

0. If the target category is Vec then n = dimM+dimM
0, and if the target category

is Set then n = |M | + |M
0
|. Here ! is the matrix multiplication exponent.

In Section 4 we show that a CI-problem is solvable if and only if an associated pair of Z2-
indexed modules is 1-interleaved. Thus, the interleaving problem is constrained invertibility-

hard (CI-hard).

• Z2
! Set. [� = 0] Reeb graphs are a particular type of functors Z2

! Set and deciding if
two Reeb graphs are isomorphic is graph isomorphism-hard (GI-hard) [20]. In Appendix D
we strengthen this result by showing that the isomorphism problem for Z2

! Set is in fact
GI-complete. This also implies that Reeb graph isomorphism is GI-complete. [� � 1] This
follows from Z ! Set.

• ZL,C
! VecZ/2Z. For two sets L and C, define ZL!C to be the poset generated by the

following disjoint union of posets ZL!C :=
F

l2L,c2C
Z with the added relation (l, t) < (c, t)

for every l 2 L, c 2 C and t � 3. This poset is a mild generalization of a disjoint union of
Z’s. [� = 0] Immediate from Theorem 1.3. [� � 1] Follows from a reduction from 3-SAT;
see Section 3. This shows that computing the generalized interleaving distance of [12] for
Vec-valued persistence modules is NP-complete in general.

2 Preliminaries
For P a poset and C an arbitrary category, M : P ! C a functor, and a, b 2 P, let Ma = M(a), and
let 'M (a, b) : Ma ! Mb denote the morphism M(a  b).

2.1 Interleavings
In this section we review the theory of interleavings for Zn-indexed modules. For a treatment of
the Rn-indexed setting see [25]. For a discussion on interleavings over arbitrary posets see [12].

For u 2 Zn, define the u-shift functor (�)(u) : C
Zn

! C
Zn on objects by M(u)a = Mu+a, together

with the obvious internal morphisms, and on morphisms f : M ! N by f(u)a = f(u + a) :
M(u)a ! N(u)a. For u 2 {0, 1, . . .}n, let 'u

M
: M ! M(u) be the morphism whose restriction

to each Ma is the linear map 'M (a, a + u). For � 2 {0, 1, 2 . . .} we will abuse notation slightly by
letting (�)(�) denote the �(1, . . . , 1)-shift functor, and letting '�

M
denote '�(1,...,1)

M
.

Definition 2.1. Given � 2 {0, 1, . . .}, a �-interleaving between M,N : Zn
! C is a pair of mor-

phisms f : M ! N(�) and g : N ! M(�) such that g(�) � f = '
2�

M
and f(�) � g = '

2�

N
.

We call f and g �-interleaving morphisms. If there exists a �-interleaving between M and N , we
say M and N are �-interleaved. The interleaving distance dI : Ob(CZn

)⇥Ob(CZn
) ! [0,1] is given

by dI(M,N) = min{� 2 {0, 1, . . .} | M and N are �-interleaved}. Here we set dI(M,N) = 1 if
there does not exist a �-interleaving for any �.
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(a) An interval. (b) Not an interval.

· · · Mi Mi+1 Mi+2 · · ·

· · · Ni Ni+1 Ni+2 · · ·

(c) A 1-interleaving.

Figure 2: (a) is an interval in Z2 whereas (b) is not. (c) The persistence modules M
and N are 1-interleaved if and only if there exist diagonal morphisms such that the
diagram in (c) commutes.

2.2 Interval Modules and the Isometry Theorem
Let C = Vec. An interval of a poset P is a subset J ⇢ P such that

1. J is non-empty.

2. If a, c 2 J and a  b  c, then b 2 J .

3. [connectivity] For any a, c 2 J , there is a sequence a = b0, b1, . . . , bl = c of elements of J

with bi and bi+1 comparable for 0  i  l � 1.

We refer to a collection of intervals in P as a barcode (over P).

Definition 2.2. For J an interval in P, the interval module I
J is the P-indexed module such that

I
J
a =

(
K if a 2 J ,

0 otherwise.
'IJ (a, b) =

(
idK if a  b 2 I,

0 otherwise.

We say a persistence module M is decomposable if it can be written as M ⇠= V �W for non-trivial
persistence modules V and W ; otherwise, we say that M is indecomposable.

A P-indexed module M is interval decomposable if there exists a collection B(M) of intervals
in P such that M ⇠=

L
J 2B(M) I

J
. We call B(M) the barcode of M . This is well-defined by the

Azumaya–Krull–Remak–Schmidt theorem [3].

Theorem 2.3 (Structure of 1-D Modules [19, 28]). Suppose M : P ! Vec for P 2 {R,Z} and

dimMp < 1 for all p 2 P. Then M is interval decomposable.

Remark 2.4. Such a decomposition theorem exists only for very special choices of P. Two other
scenarios appearing in applications are zigzags [8, 14] and exact bimodules [18]. The latter is a
specific type of R2-indexed persistence modules.

Corollary 2.5. Let P =
F

i2⇤ Z be the poset given as a disjoint union of Z’s (i.e. elements in different

components are incomparable). If M : P ! Vec satisfies dimMp < 1 for all p 2 P, then M is interval

decomposable.

Proof. Apply Theorem 2.3 to each of the components of P independently. This gives B(M) =F
i2⇤ B(M |(i,Z)).
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At the very core of topological data analysis are the isometry theorems. They say that for certain
choices of interval decomposable modules, the interleaving distance coincides with a completely
combinatorial distance on their associated barcodes. This combinatorial distance dB is called the
bottleneck distance and is defined in Appendix A. Importantly, for any two barcodes, if the inter-
leaving distance between each pair of interval modules in the barcodes is known, the associated
bottleneck distance can be computed by solving a bipartite matching problem. This, in turn, im-
plies that the interleaving distance can be efficiently computed whenever an isometry theorem
holds. See Appendix C for an example.

Theorem 2.6 (Isometry Theorem [5, 7, 17, 25]). Suppose M,N : Z ! Vec satisfy dimMi < 1 and

dimNi < 1 for all i 2 Z. Then dI(M,N) = dB(B(M),B(N)).

Remark 2.7. Continuing on the remark to Theorem 2.3. An isometry theorem also holds for
zigzags and exact bimodules [7, 9]. Although there might be other classes of interval decom-
posable modules for which an isometry theorem holds, the result is not true in general. See
Appendix F for an example of interval decomposable modules in Z2 for which 2dI(M,N) =
dB(B(M),B(N)), and see [9] for a general conjecture. This shows that a matching of the barcodes
will not determine the interleaving distance even in the case of very well-behaved modules.

3 NP-completeness
In this section we shall prove that it is NP-hard to decide if two modules M,N 2 VecZ

L!C
are 1-

interleaved. Recall that for two sets L and C, we define ZL!C to be the disjoint union
F

l2L,c2C
Z

with the added relations (l, t) < (c, t) for all l 2 L, c 2 C, and t � 3. Define the u-shift functor

(�)(u) : C
ZL!C

! C
ZL!C on objects by M(u)(p,t) = M(p,t+u), together with the obvious internal

morphisms, and on morphisms f : M ! N by f(u)(p,t) = f(p,t+u) : M(u)(p,t) ! N(u)(p,t). That
is, the shift functor simply acts on each of the components independently. With the shift-functor
defined, we define a �-interleaving of ZL!C-indexed modules precisely as in Section 2.1. Thus,
we see that a �-interleaving is simply a collection of �-interleavings over each disjoint component
of Z which satisfy the added relations. Indeed, a 1-interleaving is equivalent to the existence of
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dashed morphisms in the following diagram for all l 2 L and c 2 C:

...
...

...
...

M(l,5) N(l,5) M(c,5) N(c,5)

M(l,4) N(l,4) M(c,4) N(c,4)

M(l,3) N(l,3) M(c,3) N(c,3)

M(l,2) N(l,2) M(c,2) N(c,2)

...
...

...
...

We saw in Corollary 2.5 that M : ZL!;
! Vec is interval decomposable. By applying Theorem 2.6

to each disjoint component independently, the following is easy to show. Here the bottleneck
distance is generalized in the obvious way, i.e. matching each component independently.

Corollary 3.1 (Isometry Theorem for Disjoint Unions). Let L be any set, and M,N : ZL!;
! Vec

such that dimMp < 1 and dimNp < 1 for all p 2 ZL!;
. Then dI(M,N) = dB(B(M),B(N)).

In particular, the interleaving distance between M and N can be effectively computed through
a bipartite matching. As we shall see, this is not true for C 6= ;. The remainder of this section is
devoted to proving the following theorem:

Theorem 3.2. Unless P=NP, there exists no algorithm, polynomial in n = dimM+dimN , which decides

if M,N : ZL!C
! VecZ/2Z are 1-interleaved.

3.1 The Proof
We shall prove Theorem 3.2 by a reduction from 3-SAT. Let  be a boolean formula in 3-CNF
defined on literals L = {x1, x2, . . . , xnl} and clauses C = {c1, c2, . . . , cnc}. We shall assume that
the literals of each clause are distinct and ordered. That is, the clause ci is specified by the three
distinct literals {xi1 , xi2 , xi3} wherein i1 < i2 < i3. Determining if  is satisfiable is well-known to
be NP-complete. For the entirety of the proof K = Z/2Z.

Step 1: Defining the representations. Associate to  two functors M,N : ZL!C
! VecZ/2Z in

the following way: For all literals xj 2 L define

M(xj ,1) M(xj ,2) M(xj ,3) M(xj ,4) = K K K K

N(xj ,1) N(xj ,2) N(xj ,3) N(xj ,4) = K K K2 0

1 1 1

1 (1;1)
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and for every clause ci in  define

M(ci,1) M(ci,2) M(ci,3) M(ci,4) = 0 K K K

N(ci,1) N(ci,2) N(ci,3) N(ci,4) = 0 K3 K3 0

1 1

1

For any other p 2 ZL!C , Mp = Np = 0. Next we specify the remaining non-trivial morphisms:
let ci = zi1 _ zi2 _ zi3 be a clause in  , where zjl = xjl or zjl = ¬xjl , and for which i1 < i2 < i3.
For s = 1, 2, 3 define Hs : K2

! K3 by e1 ! u · es and e2 ! (1 � u) · es, where u = 1 if zis = xis

and u = 0 if zis = ¬xis . Here ed is the d-th standard basis vector of K3. Given this we define the
following for s = 1, 2, 3:

M(xis ,4) M(ci,4) = K K

M(xis ,3) M(ci,3) = K K

1

1

1 1

and
N(xis ,3) N(ci,3) = K2 K3

.
Hs

Clearly dimM + dimN = O(nc + nl). Thus, the total dimension is polynomial in the input size of
3-SAT.

Step 2: Showing the reduction. Observe that M and N are 1-interleaved if and only if there
exist dashed morphisms such that the below diagram is commutative for every literal xis and for
every clause ci containing xis :

M(xis ,5) = 0 0 = N(xis ,5) M(ci,5) = 0 0 = N(ci,5)

M(xis ,4) = K 0 = N(xis ,4) M(ci,4) = K 0 = N(ci,4)

M(xis ,3) = K K2 = N(xis ,3) M(ci,3) = K K3 = N(ci,3)

M(xis ,2) = K K = N(xis ,2) M(ci,2) = K K3 = N(ci,2)

M(xis ,1) = K K = N(xis ,1) M(ci,1) = 0 0 = N(ci,1)

Hs

(1;1) I3

(1)

We shall see there are few degrees of freedom in the choice of interleaving morphisms. Indeed,
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consider the left part of the above diagram:

M 0 K K K K 0

N 0 K K K2 0 0

1 1 1 1

1 (1;1)

We leave it to the reader to verify that if M and N are 1-interleaved, then all the solid diag-
onal morphisms in the above diagram are completely determined by commutativity. For the
dashed morphism ('xis

,'¬xis
) : K2

! K there are two choices: by commutativity it must sat-
isfy ('xis

,'¬xis
) · (1; 1) = 1 and thus 'xis

+ '¬xis
= 1. As K = Z/2Z, this implies that precisely

one of 'xis
and '¬xis

is multiplication by 1. This corresponds to a choice of truth value for xis :
'xis

= 1 () xis = True and '¬xis
= 1 () xis = False. Next, consider the right part of 1:

M 0 K K K 0

N 0 K3 K3 0 0

1 1

1

There are three non-trivial morphisms, out of which two are equal by commutativity. Let Zi

1 :
K ! K3 and Z

i

2 : K3
! K denote the two unspecified morphisms. Returning to (1), we see that Zi

2

must satisfy the following for s 2 {1, 2, 3}:

K K

K2 K3

1

('xis
,'¬xis

)
Hs

Z
i
2

Thus, Zi

2 restricted to its s-th component equals either 'xis
or '¬xis

, depending on whether xis or
its negation ¬xis appears in the clause ci. This implies that Zi

2 is given by

Z
i

2 =
⇥
'zi1

'zi2
'zi3

⇤

Hence, if M and N are to be 1-interleaved, then there are no degrees of freedom in choosing Z
i

2

after the 'xis
are specified. However, Zi

1 only needs to satisfy Z
i

2 � Z
i

1 = 1. As this is the sole
restriction imposed on Z

i

1, we see that this can be satisfied if and only if Zi

2 6= 0, which is true if
and only if zis = True for at least one s 2 {1, 2, 3}.

Theorem 3.3. Let  be a boolean formula as above. Then  is satisfiable if and only if the associated

persistence modules M,N : ZL!C
! vec are 1-interleaved.

Proof. Summarizing the above: we have that M and N are 1-interleaved if and only if we can
choose morphisms ('xis

,'¬xis
) such that Zi

2 6= 0 for all clauses ci. This means precisely that we
can choose truth values for each xis such that every clause ci = zi1 _zi2 _zi3 evaluates to true. This
shows that a 1-interleaving implies that  is satisfiable. Conversely, if  is satisfiable, then we see
that the morphisms defined by 'xis

= 1 () xis = True and '¬xis
= 1 () xi = False satisfy

Z
i

2 6= 0 for every clause ci. Thus, M and N are 1-interleaved.
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Remark 3.4. Let i : P ,! Q be an inclusion of posets and M : P ! Vec. There are multiple
functorial ways of extending M to a representation E(M) : Q ! Vec, e.g. by means of left or
right Kan extensions. This is a key ingredient in one of the more recent proofs of Theorem 2.6; see
[13] for details. However, if we impose the condition that E(M) � i ⇠= M then such an extension
need not exist. Indeed, Theorem 3.3 implies that the associated decision problem is NP-complete.

4 Interleavings of Multidimensional Persistence Modules
Recall that a constrained invertibility (CI) problem is a triple (P,Q, n) where P and Q are subsets
of {1, 2, . . . , n}

2, and that a CI-problem is solvable if there exists an invertible n ⇥ n matrix M

such that M(i,j) = 0 for all (i, j) 2 P and M
�1
(i0,j0) = 0 for all (i0, j0) 2 Q. We shall show that

a CI-problem is solvable if and only if a pair of associated persistence modules Z2
! Vec is

1-interleaved. Hence, if deciding solvability is NP-hard, then so is computing the interleaving
distance for multidimensional persistence modules.

Example 4.1. Let P = {(2, 2), (3, 3)}, Q = {(2, 3), (3, 2)} ⇢ {1, 2, 3}2. Then (P,Q, 3) is solvable by

M =

2

4
1 1 1
1 0 1
1 1 0

3

5 , M
�1 =

2

4
�1 1 1
1 �1 0
1 0 �1

3

5 .

Example 4.2. Let P = {(1, 1), (1, 3)}, Q = {(2, 1)} ⇢ {1, 2, 3}2. Then (P,Q, 3) is not solvable, as
(MN)(1,1) = 0 for all 3 ⇥ 3-matrices M,N with M(1,1) = M(1,3) = N(2,1) = 0. Note that it matters
that we view P and Q as subsets of {1, 2, 3}2 and not of {1, . . . , n}

2 for some n > 3, in which case
(P,Q) would be solvable.

Example 4.3. Observe that a CI-problem (P, ;, n) reduces to a bipartite matching problem. Build
a graph G on 2n vertices {v1, . . . , vn, u1, . . . , un} with an edge from vi to uj if (i, j) /2 P . Then the
CI-problem is solvable if and only if there exists a perfect matching of G.

A CI-problem can be seen as a problem of choosing weights for the edges in a directed simple
graph: Given (P,Q, n), let G be the bipartite directed simple graph with vertices {u1, . . . , un, v1, . . . , vn},
an edge from ui to vj if (i, j) /2 P , and an edge from vj to ui if (j, i) /2 Q. Solving (P,Q, n) is then
equivalent to weighting the edges in G with elements from K so that

nX

j=1

w(ui, vj)w(vj , ui) = 1

for all i, and
nX

j=1

w(ui, vj)w(vj , ui0) = 0

for all i 6= i
0, where w(u, v) is the weight of the edge from u to v if there is one, and 0 if not. If the

weights are elements of Z/2Z, this is equivalent to picking a subset of the edges such that there is
an odd number of paths of length two from any vertex to itself and an even number of paths of
length two from any vertex to any other vertex.

Fix a CI-problem (P,Q, n) and let m = |P | + |Q|. We will construct Z2-indexed modules M

and N that are 1-interleaved if and only if (P,Q, n) is solvable, and that are zero outside a grid of

11



size (2m+ 3) ⇥ (2m+ 3) in Z2. The dimension of each vector space M(a,b) or N(a,b) is bounded by
n, so the total dimensions of M and N are polynomial in n.

For p 2 Z2, let hpi = {q 2 Z2
| p  q  (2m + 2, 2m + 2)}. Let W be the interval

S
m

k=0h(2m �

2k, 2k)i, and for i 2 {1, 2, . . . ,m}, let xi = (2m � 2i+ 1, 2i � 1); see Fig. 3.
Write P = {(p1, q1), . . . , (pr, qr)} and Q = {(pr+1, qr+1), . . . , (pm, qm)}. We define M =

L
n

i=1 I
Ii

and N =
L

n

i=1 I
Ji , where Ii and Ji are constructed as follows: let I

0
i
= J

0
i

= W for all i. For
k = 1, 2, . . . , r, let

I
k

i =

(
I

k�1
i

[ hxk � (1, 1)i, if i = pk

I
k�1
i

[ hxki, if i 6= pk

,
J

k

i =

(
J

k�1
i

, if i = qk

J
k�1
i

[ hxki, if i 6= qk

and for k = r + 1, . . . ,m, let

I
k

i =

(
I

k�1
i

, if i = qk

I
k�1
i

[ hxki, if i 6= qk

,
J

k

i =

(
J

k�1
i

[ hxk � (1, 1)i, if i = pk

J
k�1
i

[ hxki, if i 6= pk

x1

x2

0
0

1

1

2

2

3

3

4

4

5

5

6

6

Figure 3: The interval W for m = 2
along with x1 = (3, 1) and x2 =
(1, 3).

and let Ii = I
m

i
and Ji = J

m

i
. This way, we ensure that there

is no nonzero morphism from I
Ii to I

Jj (1) when (i, j) 2 P ,
and no nonzero morphism from I

Jj to I
Ii(1) when (j, i) 2 Q.

In all other cases, there exist nonzero morphisms.

Lemma 4.4. Suppose (i, j) /2 P . Then there is an isomor-

phism Hom(IIi , I
Jj (1)) ⇠= K. In particular, any morphism f 2

Hom(IIi , I
Jj (1)) is completely determined by f(2m+1,2m+1): if fp

is nonzero, then fp = f(2m+1,2m+1).

The same holds if (j, i) /2 Q instead of (i, j) /2 P , and Ii

and Jj are interchanged. As fp is a K-endomorphism, this
implies that any f can be identified with an element of K.

Proof. Let f : I
Ii ! I

Jj (1) be nonzero. If p /2 Ii or p ⇥
(2m + 1, 2m + 1), fp = 0. For (2m + 1, 2m + 1) � p 2 Ii, we have p + (1, 1) 2 Ji by construction
and the fact that (i, j) /2 P , so '

I
Jj (p+ (1, 1), (2m+ 2, 2m+ 2)) is nonzero and hence the identity.

We get

fp = '
I

Jj (1)
(p, (2m+ 1, 2m+ 1)) � fp

= f(2m+1,2m+1) � '
I

Ii (p, (2m+ 1, 2m+ 1)) = f(2m+1,2m+1).

Describing a morphism from M =
L

n

i=1 I
Ii to N(1) =

L
n

j=1 I
Jj (1) is the same as describing

morphisms from I
Ii to I

Jj (1) for all i and j
1. We have just proved that these can be identified

with elements of K, so we conclude that any f : M ! N(1) is uniquely defined by an n⇥n-matrix
Af where the entry (i, j) is the element in K corresponding to the morphism I

Ii ! I
Jj (1) given

by f . Note that we get the same result by writing f(2m,2m) = f(2m+1,2m+1) : Kn
! Kn as a matrix,

1
Hom(�iMi,�jNj)

⇠= �i �j Hom(Mi, Nj).
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where each copy of K in the domain and codomain comes from one of the interval modules IIi or
I

Jj (1), respectively.
If we also have a morphism g : N ! M(1), we can define a matrix Ag symmetrically, and

similarly Ag is g(2m,2m) = g(2m+1,2m+1) : Kn
! Kn in matrix form.

Theorem 4.5. With f and g as above, (f, g) is a 1-interleaving if and only if Af and Ag are inverse

matrices.

Proof. Suppose (f, g) is a 1-interleaving. The internal morphism 'M ((2m, 2m), (2m + 2, 2m + 2))
is the identity on Kn, and is by definition of interleaving the same as

g(1)(2m,2m) � f(2m,2m) = g(2m+1,2m+1) � f(2m,2m) = AgAf .

Thus AgAf is the identity matrix, and so Af and Ag are inverses of each other, as both are n ⇥ n-
matrices.

Suppose Af and Ag are inverse matrices. We must check that at every point p 2 Z2, 'M (p, p+
(2, 2)) = g(1)p�fp. If p ⇥ (2m, 2m) or M(p) = 0, both sides are zero. If p  (2m, 2m) and M(p) 6= 0,

g(1)p � fp = 'M (p+ (2, 2), (2m+ 2, 2m+ 2)) � g(1)p � fp,

since 'M (p+ (2, 2), (2m+ 2, 2m+ 2)) must be the identity by construction of M and the fact that
M(p) 6= 0. This is equal to

'M (p+ (2, 2), (2m+ 2, 2m+ 2)) � gp+(1,1) � fp

= g(2m+1,2m+1) � 'N (p+ (1, 1), (2m+ 1, 2m+ 1)) � fp

= g(2m+1,2m+1) � f(2m,2m) � 'M (p, (2m, 2m))

= AgAf � 'M (p, (2m, 2m)) = 'M (p, (2m, 2m)) = 'M (p, p+ (2, 2)).

We have proved that defining morphisms f : M ! N(1) and g : N ! M(1) is the same as
choosing n ⇥ n-matrices Af and Ag such that the entries corresponding to the elements of P and
Q are zero, and that (f, g) is a 1-interleaving if and only if Af and Ag are inverse matrices. Thus
M and N are 1-interleaved if and only if the CI-problem (P,Q, n) is solvable.

We constructed M and N by setting all the interval modules comprising M and N equal to I
W ,

then modifying them in m steps each, where the complexity of each step is clearly polynomial in n.
Thus the complexity of constructing M and N is polynomial in n, and so are the total dimensions
of M and N . Taking n

2 as the input complexity of solving a CI-problem (P,Q, n), we have proved
a reduction implying the following theorem:

Theorem 4.6. Determining the interleaving distance for modules Z2
! Vec is CI-hard.

Remark 4.7. We give an example in Appendix F of a CI-problem whose associated matrices M

and N satisfy dI(M,N) = 1 and dB(B(M),B(N)) = 2. This shows that it is not enough to find
the bottleneck distance of the barcodes of M and N to decide whether M and N are 1-interleaved
and thus whether the CI-problem is solvable. In fact, recent work shows that dB can be efficiently
computed [21].
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We end this paper with the somewhat surprising observation that the interleaving distance of
the above interval decomposable modules depends the characteristic char(K) of the underlying
field K. That is, let M,N : Z2

! VecK, M 0
, N

0 : Z2
! VecK0 , K 6= K0, and for which B(M) =

B(M 0) and B(N) = B(N 0). Clearly, any matching distance d would satisfy d(B(M),B(N)) =
d(B(M 0),B(N 0)), but it is not always true that dI(M,N) = dI(M 0

, N
0).

For a fixed n � 2, let Q = {(2, 2), . . . , (n + 2, n + 2)} and P = {(1, 1)} [ {2, . . . , n + 2}2
\ Q.

Then the CI-problem (P,Q, n + 2) is solvable if and only if the characteristic of K divides n. We
will only prove this for n = 2 for clarity, but the argument easily generalizes to all n.

Assume that (M,M
�1) is a solution to (P,Q, 4):

M =

2

664

0 ? ? ?
a ? 0 0
b 0 ? 0
c 0 0 ?

3

775 , M
�1 =

2

664

? d e f

? 0 ? ?
? ? 0 ?
? ? ? 0

3

775

Here we have put the entries corresponding to the elements of P and Q equal to 0, and left the
rest as unknown. The entries we will use in the calculations that follow are labeled a, b, c, d, e, f .
We see that (MM

�1)(2,2) = ad, (MM
�1)(3,3) = be, (MM

�1)(4,4) = cf , that is, ad = be = cf = 1. At
the same time, (M�1

M)(1,1) = ad + be + cf , so we get 1 = 1 + 1 + 1, or 2 = 0. Thus char(K) = 2,
and in this case we can put all the unknowns in M and M

�1 above equal to 1 to obtain a solution.
(For n > 2, we put the nonzero elements on the diagonal of M equal to �1.)

Our motivation for introducing CI-problems was working towards determining the compu-
tational complexity of calculating the interleaving distance. While the last examples say little
about complexity, they illustrate the underlying philosophy of our approach: By considering CI-
problems, we can avoid the confusing geometric aspects of persistence modules and interleavings.
E.g., in the case above, working with persistence modules over a 23 ⇥ 23 size grid is reduced to
looking at a pair of 4 ⇥ 4-matrices.

5 Discussion
The problem of determining the computational complexity of computing the interleaving distance
for multidimensional persistence modules (valued in Vec) was first brought up in Lesnick’s thesis
[24]. Although it has been an important open question for several years, a non-trivial lower bound
on the complexity class has not yet been given. In light of Theorem 1.3, one might hope that tools
from computational algebra can be efficiently extended to the setting of interleavings. Theorem 3.2
is an argument against this, as it shows that the problem of computing the interleaving distance
is NP-hard in general. This leads us to conjecture that the problem of computing the interleaving
distance for multidimensional persistence modules is also NP-hard. Unfortunately, writing down
the conditions for an interleaving becomes intractable already for small grids. To make the deci-
sion problem more accessible to researchers in other fields of mathematics and computer science,
we have shown that the problem is at least as hard as an easy to state matrix invertibility problem.
We speculate that this problem is also NP-hard. If that is not the case, then an algorithm would
provide valuable insight into the interleaving problem for interval decomposable modules.

A Bottleneck Distance
A matching � between multisets S and T (written as � : S 9 T ) is a bijection � : S ◆ S

0
! T

0
⇢ T .

Formally, we regard � as a relation � ⇢ S ⇥ T where (s, t) 2 � if and only if s 2 S
0 and �(s) = t.
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We call S0 and T
0 the coimage and image of �, respectively, and denote them by coim� and im�. If

w 2 coim� [ im�, we say that � matches w.

We say intervals J ,K ⇢ Zn are �-interleaved if IJ and I
K are �-interleaved. Similarly, we say

J is 2�-trivial if IJ is �-interleaved with the 0-module, i.e. the module I
;. For C a barcode over

Zn and � � 0, define C� ⇢ C to be the multiset of intervals in C that are not �-trivial.
Define a �-matching between barcodes C and D to be a matching � : C 9 D satisfying the

following properties:

1. C2� ⇢ coim� and D2� ⇢ im�.

2. If �(J ) = K, then J and K are �-interleaved.

For barcodes C and D, we define the bottleneck distance dB by

dB(C,D) = min {� 2 {0, 1, 2, . . .} | 9 a �-matching between C and D}.

It is not hard to check that dB is an extended pseudometric. In particular, it satisfies the triangle
inequality.

B Discrete Modules
We define an (injective) n-D grid to be a function G : Zn

! Rn given by

G(z1, . . . , zn) = (G1(z1), . . . ,Gn(zn))

for strictly increasing functions Gi : Z ! R with limi!�1 = �1 and limi!1 = 1.
Define flG : Rn

! im(G) by flG(t) = max{s 2 im(G) | s  t}.

For G an n-D grid, we let EG : C
Zn

! C
Rn :

1. For M a Zn-indexed persistence module and a, b 2 Rn,

EG(M)a = My, 'EG(M)(a, b) = 'M (y, z),

where y, z 2 Z2 are given by G(y) = flG(a) and G(z) = flG(b).

2. The action of EG on morphisms is the obvious one.

Let
(�)|G : C

Rn
! C

Zn

denote the restriction along G.
We say that M : Rn

! C is discrete if there exists an n-grid G such that M ⇠= EG(M |G). Clearly,
if M and N are discrete then we may choose a grid G such that M ⇠= EG(M |G) and N ⇠= EG(N |G).

C Interleavings of Functors Z ! Vec
It is well-known [15] and easy to see that a persistence module M : Z ! Vec is completely
determined by its associated rank invariant rkM ,

rkM (a, b) = rank('M (a, b)), a  b 2 Z.

The rank of an m1 ⇥m2-matrix can be calculated in O(m1m
!�1
2 ) [22], where ! is the matrix multi-

plication exponent. Let di = dimMi and d = dimM =
P

i
di, and assume that we are given a list
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of all i such that Mi is nonzero. The cost of calculating rkM (i, j) for all pairs i < j in the list is at
most

X

i<j

Cdid
!�1
j

 C

 
X

i

di

! 
X

i

d
!�1
i

!
 C

 
X

i

di

! 
X

i

di

!
!�1

 C

 
X

i

di

!
!

= Cd
!

for a sufficiently large constant C. This shows that the complexity of computing rkM is O(d!).
Note that the number of intervals [a, b] in the barcode B(M) is rkM (a, b)�rkM (a�1, b)�rkM (a, b+
1) + rkM (a � 1, b + 1). Thus, once we got the rank invariant, we can extract B(M) in O(d2)
operations. In conclusion, we have provided an algorithm which computes B(M) from M in
O(d! + d

2) = O(d!) operations.
Observe that |B(M)|  dimM . Now, assume that we are given barcodes B(M) and B(N), with

n = dimM + dimN , and we want to decide if M and N are �-interleaved. By Theorem 2.6, this
is equivalent to deciding if there is a �-matching between B(M) and B(N), which can be done in
O(b1.5 log b), where b = |B(M)| + |B(N)|  n [23]. Thus, we can decide if M,N : Z ! Vec are
�-interleaved in O(n!).

D The Isomorphism Problem for Z2
! Set

The isomorphism problem for Reeb graphs can be rephrased as an isomorphism problem of Z2-
indexed persistence modules. Indeed, following [9], one sees that Reeb graphs can be viewed
as functors R2

! Set, and by [20] it follows that these functors are discrete in the sense of Ap-
pendix B. As the isomorphism problem for Reeb graphs is graph isomorphism hard [20], it follows
immediately that the same is true for modules Z2

! Set. We shall show that these problems are
in fact graph isomorphism complete. Since we have chosen the total cardinality as the input size,
and every functor Z2

! Set, except the one sending everything to the empty set, has infinite total
cardinality, we consider functors [n]2 ! Set instead. Here [n]2 is {1, 2, . . . , n}

2 considered as a full
subcategory of Z2.

Let M,N : [n]2 ! Set. We shall associate a pair of multigraphs to M and N in a way that
ensures that M and N are isomorphic if and only if the associated multigraphs are isomorphic.
The isomorphism problem for multigraphs is GI-complete [29].

An isomorphism between M,N : [n]2 ! Set is a natural isomorphism, i.e. a natural trans-
formation with a two-sided inverse. Concretely, such an isomorphism f consists of bijections
fp : Mp ! Np for all p 2 [n]2 that commute with the internal morphisms of M and N , meaning that
fp+(0,1)�'M (p, p+(0, 1)) = 'N (p, p+(0, 1))�fp and fp+(1,0)�'M (p, p+(1, 0)) = 'N (p, p+(1, 0))�fp

hold whenever everything is defined. It is not hard to check that f�1 defined by
�
f

�1
�
p
= (fp)

�1

is an inverse of f .
Given modules M,N : [n]2 ! Set, we may assume that their pointwise cardinalities are the

same, since if not, we can immediately conclude that they are not isomorphic. Let c = |M | = |N |.
We also assume that Mp and Np are nonempty on p = (1, 1), and for at least one p 2 {1} ⇥ [n] [
[n] ⇥ {1}. This implies c � n. We define the graph G(M) = (V,E) as follows.

• V =
S

p2[n]2 Mp [ {T}.

• There is a single edge between x 2 Mp and y 2 Mq if 'M (p, q)(x) = y and either q = p+(0, 1)
or q = p+ (1, 0).
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• For x 2 M(a,b), there are n(a � 1) + b edges between x and T .

Except from the ones described, there are no edges in G(M). We can visualize G(M) as the graph
we get by putting |Mp| vertices at each point in [n]2 and short horizontal and vertical edges given
by the internal morphisms of M , and in addition one vertex T which is incident to a certain num-
ber of edges from each other vertex. We have |V | = c+ 1 and |E|  2c2 + cn

2
 (2 + c)c2, since at

most 2c2 edges come from the internal morphisms of M and cn
2 is an upper bound on the num-

ber of edges incident to T . In other words |V | + |E| is polynomial in c. Defining G(N) = (V 0
, E

0)
analogously with T

0 in place for T , we get the same for |V
0
| + |E

0
|.

Now we consider what an isomorphism f : V ! V
0 from G(M) to G(N) must look like. Except

for cases with c  2, both graphs have exactly one vertex that is adjacent to all other vertices, so T

must be sent to T
0
2 V

0. Since there are n(a � 1) + b edges between x 2 M(a,b) and T , there must
be n(a � 1) + b edges between f(x) and f(T ) = T

0, implying f(x) 2 N(a,b). Thus the restriction of
f to Mp is a bijection Mp ! Np for each p 2 [n]2.

It is easy to see that f is functorial. That is, there is an edge between x 2 Mp and y 2 Mq if and
only if there is an edge between f(x) 2 Np and f(y) 2 Nq. Hence, we conclude that f defines an
isomorphism between M and N in the obvious way.

Remark D.1. With small adjustments, the reduction from isomorphism of functors [n]2 ! Set to
isomorphism of multigraphs would work just as well for any poset category P in place of [n]2.
This shows that determining isomorphism between Set-valued functors is at most as hard as GI
regardless of the poset category.

E The Isomorphism Problem for Z ! Set

We consider functors [n] ! Set, where [n] = {1, 2, . . . , n} is a subcategory of Z, as in Appendix D.
A rooted tree is a tree with one vertex chosen as the root, and an isomorphism between two
rooted trees is a graph isomorphism that sends the root of one tree to the root of the other. We will
show that deciding whether functors [n] ! Set are isomorphic is linear in the total cardinality
by reducing it to checking isomorphism between rooted trees, which is known to be linear in the
number of vertices [2, p. 85].

Given M : [n] ! Set, let T (M) be the rooted tree with vertex set
S

n

k=1 Mk t {r}, where we
choose r as the root and there is an edge between x 2 Mk and y 2 Mk+1 if 'M (k, k+1)(x) = y. For
persistence modules M and N , an isomorphism between T (M) and T (N) is a function that sends
the root of T (M) to the root of T (N) and restricts to a bijection from Mk to Nk for each k. Moreover,
f preserves parent-child relations, which means that for x 2 Mk, k < n, 'N (k, k + 1)(f(x)) =
f('M (k, k + 1)(x)). This is exactly what it takes for f restricted to

S
n

k=1 Mk to define a natural
transformation from M to N . Thus, T (M) and T (N) are isomorphic as rooted trees if and only if
M and N are isomorphic as functors.

The number of vertices of T (M) is one more than the total cardinality of M . Assuming that
for each k we are given a list of tuples (x,'M (k, k + 1)(x)), where x runs through the elements of
Mk, we have exactly the information needed to run the algorithm in [2, p. 84] for checking isomor-
phism of T (M) and T (N) in linear time. Thus, deciding whether merge trees are isomorphic can
be done in time linear in |M | + |N |.
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J1 J2 J3

I1 I2 I3

Figure 4: Graph illustrating possible nonzero morphisms between interval mod-
ules; see Appendix F.

F Example dI 6= dB

Consider the CI-problem (P,Q, 3), where P = {(2, 3), (3, 2)} and Q = {(2, 2), (3, 3)}. Applying the
algorithm in Section 4, we get modules M = I

I1 � I
I2 � I

I3 and N = I
J1 � I

J2 � I
J3 , where

I1 = W [ hx1i [ hx2i [ hx3i [ hx4i,

I2 = W [ hx1 � (1, 1)i [ hx2i [ hx4i,

I3 = W [ hx1i [ hx2 � (1, 1)i [ hx3i,

J1 = W [ hx1i [ hx2i [ hx3i [ hx4i,

J2 = W [ hx1i [ hx3 � (1, 1)i [ hx4i,

J3 = W [ hx2i [ hx3i [ hx4 � (1, 1)i.

By Example 4.1, (P,Q, 3) is solvable, which means that M and N are 1-interleaved. Since they are
not isomorphic, dI(M,N) = 1.

The graph in Figure 4 has an edge from A to B if A and B are in different barcodes and there is
a nonzero morphism from I

A to I
B(1). (A double-headed arrow means an edge in each direction.)

In a 1-matching between B(M) and B(N), if there is one, we need to match each Ii with a Jj , and
each corresponding pair of interval modules needs to be 1-interleaved. Specifically, there needs to
be a nonzero morphism both from I

Ii to I
Jj (1) and from I

Jj to I
Ii(1), that is, there must be edges

in both directions between Ii and Jj in the graph. We see that both I2 and I3 can only be matched
with J1, and J1 can only be matched with one of them. Thus there is no 1-matching between B(M)
and B(N). On the other hand, all the intervals are 2-interleaved, so any bijection between B(M)
and B(N) gives a 2-matching. In other words, dB(B(M),B(N)) = 2.
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Furthermore, we show that checking for injections (resp. surjections) between per-
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1 Introduction

1.1 Motivation and Problem Statement

A persistence module M over Rd is a collection of vector spaces {Mp}p∈Rd and linear
maps Mp→q : Mp → Mq whenever p ≤ q, with the property that Mp→p is the
identity map and the linear maps are composable in the obvious way. For d = 1, we
will talk about single-parameter persistence, and for d ≥ 2, we will use the term
multi-parameter persistence.

Persistence, particularly in its single-parameter version, has recently gained a lot
of attention in applied fields, because one of its instantiations is persistent homology,
which studies the evolution of homology groups when varying a real scale parameter.
The observation that topological features in real data sets carry important information
to analyze and reason about the contained data has given rise to the term topological
data analysis (TDA) for this research field, with various connections to application
areas, e.g., [2,9,16–18].

A recurring task in TDA is the comparison of two persistence modules. The natural
notion in terms of algebra is by interleavings of two persistence modules: given two
persistence modules M and N as above and some ε > 0, an ε-interleaving is the
assignment of maps φp : Mp → Np+ε and ψp : Np → Mp+ε which commute with
each other and the internal maps of M and N . The interleaving distance is then just
the infimum over all ε for which an interleaving exists.

A desirable property for any distance on persistence modules is stability, meaning
informally that a small change in the input data set should only lead to a small distor-
tion of the distance. At the same time, we aim for a sensitivemeasure, meaning that the
distance between modules should be generally as large as possible without violating
stability. As an extreme example, the distance measure that assigns 0 to all pairs of
modules is maximally stable, but also maximally insensitive. Lesnick [14] proved that
among all stable distances for single- or multi-parameter persistence, the interleaving
distance is the most sensitive one over prime fields. This makes the interleaving dis-
tance an interesting measure to be used in applications and raises the question of how
costly it is to compute the distance [14, Sec. 1.3 and 7]. Of course, for the sake of
computation, a suitable finiteness condition must be imposed on the modules to ensure
that they can be represented in finite form; we postpone the discussion to Sect. 3, and
simply call such modules of finite type.

The complexity of computing the interleaving distance is well understood for the
single-parameter case. The isometry theorem [8,14] states the equivalence of the
interleaving distance and the bottleneck distance, which is defined in terms of the per-
sistence diagrams of the persistence modules and can be reduced to the computation
of a min cost bottleneck matching in a complete bipartite graph [11]. That matching,
in turn, can be computed in O(n1.5 log n) time, and efficient implementations have
been developed recently [13].

The described strategy, however, fails in the multi-parameter case, simply because
the twodistances donotmatch formore thanoneparameter: even if themulti-parameter
persistence module admits a decomposition into intervals (which are “nice” indecom-
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posable elements, see Sect. 3), it has been proved that the interleaving distance and the
multi-parameter extension of the bottleneck distance are arbitrarily far from each other
[5, Example 9.1]. Another example where the interleaving and bottleneck distances
differ is given in [3, Example 4.2]; moreover, in this example the pair of persistence
modules has the property that potential interleavings can be written on a particular
matrix form, later formalized by the introduction ofCI problems in [4]. A consequence
is that the strategy of computing interleaving distance by computing the bottleneck
distance fails also in this special case.

1.2 Our Contributions

We show that, for d = 2, the computation of the interleaving distance of two per-
sistence modules of finite type is NP-hard, even if the modules are assumed to be
decomposable into intervals. In [4], it is proved that the problem is CI-hard, where CI
is a combinatorial problem related to the invertibility of a matrix with a prescribed set
of zero elements. This is done by associating a pair of modules to each CI problem
such that the modules are 1-interleaved if and only if the CI problem has a solution.
We “finish” this proof by showing that CI is NP-complete, hence proving the main
result. The hardness result on CI is independent of all topological concepts required
for the rest of the paper and potentially of independent interest in other algorithmic
areas.

Moreover, we slightly improve the reduction from [4] that asserts the CI-hardness
of the interleaving distance, showing that also obtaining a (3 − ε)-approximation
of the interleaving distance is NP-hard to obtain for every ε > 0. This result fol-
lows from the fact that our improved construction takes an instance of a CI problem
and returns a pair of persistence modules which are 1-interleaved if the instance
has a solution and are 3-interleaved if no solution exists. We mention that for
rectangle decomposable modules in d = 2, a subclass of interval decomposable
modules, it is known that the bottleneck distance 3-approximates the interleaving dis-
tance [3, Theorem 3.2], and can be computed in polynomial time. While this result
does not directly extend to all interval decomposable modules, it gives reason to
hope that a 3-approximation of the interleaving distance exists for a larger class of
modules.

We also extend our hardness result to related problems: we show that it is NP-
complete to compute the interleaving distance of two indecomposable persistence
modules (for d = 2). We obtain this result by “stitching” together the interval decom-
posables from our main result into two indecomposable modules without affecting
their interleaving distance. We remark that the restriction of computing the interleav-
ing distance of indecomposable interval modules has recently been shown to be in P
[10].

Bauer and Lesnick [1] showed that the existence of an interleaving pair, for modules
indexed over R, is equivalent to the existence of a single morphism with kernel and
cokernel of a corresponding “size”.While the equivalence does not hold in general, the
two concepts are still closely related for d > 1. Using this, we obtain as a corollary to
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the aforementioned results that it is in general NP-complete to decide if there exists a
morphismwhose kernel and cokernel have size bounded by a given parameter.We also
show that it is NP-complete to decide if there exists a surjection (dually, an injection)
from one persistence module to another. Together with the result of [6], this gives a
complete characterization of the computational complexity of “one-sided stability”.
Furthermore, we remark that this gives an alternative proof of the fact that checking for
injections (resp. surjections) between modules over a finite-dimensional algebra (over
a finite field) is NP-hard. This was first shown in [12, Theorem 1.2] (for arbitrary
fields). The paper concludes with a result showing that it is in general NP-hard to
approximate distances induced by noise systems (as introduced by Scolamiero et al.
[19]) within a factor of 2.

1.3 Outline

We begin with the hardness proof for CI in Sect. 2. In Sect. 3, we discuss the
representation-theoretic concepts needed in the paper. In Sect. 4, we describe our
improved reduction scheme from interleaving distance to CI. In Sect. 5, we prove
the hardness for indecomposable modules. In Sect. 6, we prove our hardness result
for one-sided stability. A result closely related to one-sided stability can be found in
Sect. 7 where we discuss a particular distance induced by a noise system.We conclude
in Sect. 8.

2 The CI Problem

Throughout the paper,we setF to be anyfinite fieldwith a constant number of elements.
We write Fn×n for the set of n × n-matrices over F, and Pi j ∈ F for the entry of P
at the position at row i and column j . We write In for the n × n-unit matrix. The
constrained invertibility problem asks for a solution of the equation AB = In , when
certain entries of A and of B are constrained to be zero. Formally, using the notation
[n] := {1, . . . , n}, we define the language

CI := {(n, P, Q) | P ⊆ [n] × [n] ∧ Q ⊆ [n] × [n] ∧ ∃A, B ∈ Fn×n :
(
∀(i, j) ∈ P : Ai, j = 0 ∧ ∀(i, j) ∈ Q : Bi, j = 0 ∧ AB = In

)
}.

We can write CI-instances in a more visual form, for instance writing




∗ ∗ ∗
∗ 0 ∗
∗ ∗ 0








∗ ∗ ∗
∗ ∗ 0
∗ 0 ∗



 = I3

instead of (3, {(2, 2), (3, 3)}, {(2, 3), (3, 2)}). Indeed, the CI problem asks whether in
the above matrices, we can fill the ∗-entries with field elements to satisfy the equation.
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In the above example, this is indeed possible, for instance by choosing

A =




1 1 1
1 0 1
1 1 0



 B =




−1 1 1
1 −1 0
1 0 −1



 .

We sometimes also call A and B a satisfying assignment. In contrast, the instance




0 ∗ 0
∗ ∗ ∗
∗ ∗ ∗








∗ ∗ ∗
0 ∗ ∗
∗ ∗ ∗



 = I3

has no solution, because the (1, 1) entry of the product on the left is always 0, no
matter what values are chosen. Note that the existence of a solution also depends on
the characteristic of the base field. For an example, see Chapter 4, page 13 in [4].

The CI problem is of interest to us, because we will see in Sect. 4 that CI reduces
to the problem of computing the interleaving distance, that is, a polynomial time
algorithm for computing the interleaving distance will allow us to decide whether a
triple (n, P, Q) is in C I , also in polynomial time. Although the definition of CI is
rather elementary and appears to be useful in different contexts, we are not aware of
any previous work studying this problem (apart from [4]).

It is clear that C I is in NP because a valid choice of the matrices A and B can be
checked in polynomial time. We want to show that C I is NP-hard as well. It will be
convenient to do so in two steps. First, we define a slightly more general problem,
called generalized constrained invertibility (GCI), and show that GCI reduces to CI.
Then, we proceed by showing that 3SAT reduces to GCI, proving the NP-hardness of
CI.

2.1 Generalized Constrained Invertibility

We generalize from the above problem in two ways: first, instead of square matrices,
we allow that A ∈ Fn×m and B ∈ Fm×n (where m is an additional input). Second,
instead of forcing AB = In , we only require that AB coincides with In in a fixed
subset of entries over [n] × [n]. Formally, we define

GC I := {(n,m, P, Q, R) | P ⊆ [n] × [m] ∧ Q ⊆ [m] × [n] ∧ R ⊆ [n]
× [n] ∧ ∃A ∈ Fn×m, B ∈ Fm×n :
(
∀(i, j) ∈ P : Ai, j = 0 ∧ ∀(i, j) ∈ Q : Bi, j

= 0 ∧ ∀(i, j) ∈ R : (AB)i, j = (In)i, j
)
}.

Again, we use the following notation

(∗ ∗ ∗
0 0 0

) 


∗ 0
0 ∗
0 0



 =
(
1 0
∗ ∗

)
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for theGCI-instance (2, 3, {(2, 1), (2, 2), (2, 3)}, {(1, 2), (2, 1), (3, 1), (3, 2)}, {(1, 1),
(1, 2)}). This instance is indeed in GCI, as for instance,

(
1 0 0
0 0 0

)


1 0
0 1
0 0



 =
(
1 0
0 0

)
.

GCI is indeed generalizing CI, as we can encode any CI-instance by setting m = n
and R = [n] × [n]. Hence, CI trivially reduces to GCI. We show, however, that also
the converse is true, meaning that the problems are computationally equivalent. We
will need the following lemma which follows from linear algebra:

Lemma 1 Let M ∈ Fn×m, N ∈ Fm×n with m > n such that MN = In. Then there
exist matrices M ′ ∈ F(m−n)×m, N ′ ∈ Fm×(m−n) such that

[
M
M ′

] [
N N ′ ] = Im .

Proof Pick M ′′ ∈ F(m−n)×m so that
[
M
M ′′

]
has full rank. This is possible, as the

row vectors of M are linearly independent, so we can pick the rows in M ′′ iteratively
such that they are linearly independent of each other and those in M . Let M ′ =
M ′′ − M ′′NM , which gives

M ′N = (M ′′ − M ′′NM)N = M ′′N − M ′′N In = 0(m−n)×n .

Since
[
M
M ′′

]
=

[
In 0n×(m−n)

M ′′N Im−n

] [
M
M ′

]
,

[
M
M ′

]
also has full rank, which means that it has an inverse. Let N ′ be the last m − n

columns of this inverse matrix. We get

[
M
M ′

] [
N N ′ ] =

[
In 0n×(m−n)

0(m−n)×n Im−n

]
= Im .

-.

Lemma 2 GCI is polynomial time reducible to CI.

Proof Fix a GCI-instance (n,m, P, Q, R). We have to define a polynomial time algo-
rithm to compute a CI-instance (n′, P ′, Q′) such that

(n,m, P, Q, R) ∈ GC I ⇔ (n′, P ′, Q′) ∈ C I .
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Write the GCI-instance as AB = C , where A and B are matrices with 0 and ∗
entries (of dimensions n ×m and m × n, respectively), and C is an n × n-matrix with
1 or ∗ entries on the diagonal, and 0 or ∗ entries away from the diagonal (as in the
example above).

Define the matrix I ∗
n as the matrix with 0 away from the diagonal and ∗ on the

diagonal. Moreover, let C̄ denote the matrixC with all 1-entries replaced by 0-entries.
Now, consider the GCI-instance

[
A I ∗

n
] [

B
C̄

]
= In (1)

which can be formallywritten as (n, n+m, P ′, Q′, [n]×[n]) for some choices P ′ ⊇ P ,
Q′ ⊇ Q.

We claim that the original instance is in GCI if and only if the extended instance
is in GCI. First, assume that AB = C has a solution (that is, an assignment of field
elements to ∗ entries that satisfies the equation). Then, we pick all diagonal entries in
I ∗
n as 1, so that the matrix becomes In . Also, we pick C̄ to be In − AB; this is indeed
possible, as an entry in C̄ is fixed only if the corresponding positions of In and AB
coincide. With these choices, we have that

[
A I ∗

n
] [

B
C̄

]
= AB + In(In − AB) = In,

as required.
Conversely, if there is a solution for the extended instance, write X for the assign-

ment of I ∗
n and Y for the assignment of C̄ . Then AB + XY = In . Now fix any

index (i, j) ∈ R and consider the equation in that entry. By construction Yi, j = 0,
and multiplication by the diagonal matrix X does not change this property. It follows
that (AB)(i, j) = (In)i, j , which means that AB = C has a solution. Hence, the two
instances are indeed equivalent.

To finish the proof, we observe that (1) is in GCI if and only if

[
A I ∗

n
∗m×m ∗m×n

] [
B ∗m×m
C̄ ∗n×m

]
= In+m (2)

is in GCI, where ∗a×b is simply the a × b matrix only containing ∗ entries. Formally
written, this instance corresponds to (n + m, n + m, P ′, Q′, [n + m] × [n + m]). To
see the equivalence, if (1) is in GCI, Lemma 1 asserts that there are indeed choices for
the ∗-matrices to solve (2) as well. In the opposite direction, a satisfying assignment
of the involved matrices in (2) also yields a valid solution for (1) when restricted to
the upper n rows and left n columns, respectively.

Combining everything, we see that (n,m, P, Q, R) is in GCI if and only if (n +
m, n+m, P ′, Q′, [n+m]×[n+m]) is in GCI. The latter, however, is equivalent to the
CI-instance (n +m, P ′, Q′). The conversion can clearly be performed in polynomial
time, and the statement follows. -.
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2.2 Hardness of GCI

We describe now how an algorithm for how deciding GCI can be used to decide
satisfiability of 3SAT formulas. Let φ be a 3CNF formula with n variables and m
clauses. We construct a GCI-instance that is satisfiable if and only if φ is satisfiable.

In what follows, we will often label some ∗ entries in matrices with variables when
we want to talk about the possible assignments of the corresponding entries.

The first step is to build a “gadget” that allows us to encode the truth value of a
variable in the matrix. Consider the instance

(∗ 0 ∗
0 ∗ ∗

) 


x 0
0 y
∗ ∗



 = I2.

In any solution to this equation, not both x and y can be zero because otherwise, the
right matrix would have rank at most 1. Furthermore, when extending the instance by
one row/column




a b 0
∗ 0 ∗
0 ∗ ∗








0 x 0
0 0 y
0 ∗ ∗



 =




∗ 0 0
0 1 0
0 0 1



 ,

we see that both ax = 0 and by = 0 must hold, which is then only possible if at least
one entry a or b is equal to 0. In fact, there is a solution with a 1= 0, and a solution
with b 1= 0, for instance




1 0 0
0 0 1
0 1 0








0 0 0
0 0 1
0 1 0



 =




0 0 0
0 1 0
0 0 1



 ,




0 1 0
1 0 0
0 0 1








0 1 0
0 0 0
0 0 1



 =




0 0 0
0 1 0
0 0 1



 .

The intuition is that for a variable xi appearing in φ, we interpret xi to be true if
a 1= 0, and to be false if b 1= 0. We build such a gadget for each variable. A crucial
observation is that we can do so with all variable entries placed in the same row. This
works essentially by concatenating the variable gadgets, in a block-like fashion. We
show the construction for three variables as an example.





a0 b0 0 a1 b1 0 a2 b2 0 ∗
∗ 0 ∗ 0 0 0 0 0 0 0
0 ∗ ∗ 0 0 0 0 0 0 0
0 0 0 ∗ 0 ∗ 0 0 0 0
0 0 0 0 ∗ ∗ 0 0 0 0
0 0 0 0 0 0 ∗ 0 ∗ 0
0 0 0 0 0 0 0 ∗ ∗ 0









0 ∗ 0 0 0 0 0
0 0 ∗ 0 0 0 0
0 ∗ ∗ 0 0 0 0
0 0 0 ∗ 0 0 0
0 0 0 0 ∗ 0 0
0 0 0 ∗ ∗ 0 0
0 0 0 0 0 ∗ 0
0 0 0 0 0 0 ∗
0 0 0 0 0 ∗ ∗
∗ 0 0 0 0 0 0





= I7
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wherewe introduced an additional column at the end of the leftmatrix and an additional
row at the end of the second matrix. Firstly, this allows us to satisfy the entire I7 on
the right-hand side; moreover, it will be useful when extending the construction to
clauses. It is straightforward to generalize this construction to an arbitrary number of
variables. We arrive at the following intermediate result.

Lemma 3 For any n ≥ 1, there exists a GCI-instance A′B ′ = I2n+1 with A′ having
3n + 1 columns, such that in each solution for the problem, A′

1,3n+1 is not zero, and
for each k = 0, . . . , n − 1, the entries A′

1,3k+1 and A′
1,3k+2 are not both non-zero.

Moreover, for any choice of v1, . . . , vn ∈ {1, 2}, there exists a solution of the instance
in which A′

1,3k+vi
1= 0 for all k = 0, . . . , n − 1.

Next, we extend the instance from Lemma 3 with respect to the clauses. We refer
to the clauses as c1, . . . , cm . For each clause, we append one further row to A′, each
of them identical of the form

(
0 . . . 0 ∗ )T

.

We also append one column to B ′ for each clause, each of length 3n + 1. For each
clause, the entry at row 3n + 1 is set to ∗. If a clause contains a literal of the form xi
(in positive form), we set the entry at row 3i + 1 to ∗. If it contains a literal ¬xi , we
set the entry at row 3i + 2 to ∗. In this way, at most 4 entries in the column are fixed
to ∗, and we fix all other entries to be 0. Continuing the above example, for the clause
x0 ∨ ¬x1 ∨ x2, we obtain a column of the form

(∗ 0 0 0 ∗ 0 ∗ 0 0 ∗ )

Let A and B denote the matrices extended from A′ and B ′ with the above procedure.
We next define C as a square matrix of dimension 2n + 1+ m as follows: The upper
left (2n + 1)× (2n + 1) submatrix is set to I2n+1. The rest of the first row is set to 0,
and the rest of the diagonal is set to 1. All other entries are set to ∗. This concludes
the description of a GCI-instance AB = C out of a 3CNF formula φ. We exemplify
the construction for the formula (x0 ∨ x1 ∨ ¬x2) ∧ (¬x0 ∨ x1 ∨ x2), where the lines
mark the boundary of A′ and B ′, respectively.





a0 b0 0 a1 b1 0 a2 b2 0 ∗
∗ 0 ∗ 0 0 0 0 0 0 0
0 ∗ ∗ 0 0 0 0 0 0 0
0 0 0 ∗ 0 ∗ 0 0 0 0
0 0 0 0 ∗ ∗ 0 0 0 0
0 0 0 0 0 0 ∗ 0 ∗ 0
0 0 0 0 0 0 0 ∗ ∗ 0
0 0 0 0 0 0 0 0 0 ∗
0 0 0 0 0 0 0 0 0 ∗









0 ∗ 0 0 0 0 0 ∗ 0
0 0 ∗ 0 0 0 0 0 ∗
0 ∗ ∗ 0 0 0 0 0 0
0 0 0 ∗ 0 0 0 ∗ ∗
0 0 0 0 ∗ 0 0 0 0
0 0 0 ∗ ∗ 0 0 0 0
0 0 0 0 0 ∗ 0 0 ∗
0 0 0 0 0 0 ∗ ∗ 0
0 0 0 0 0 ∗ ∗ 0 0
∗ 0 0 0 0 0 0 ∗ ∗
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=





1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 ∗ ∗
0 0 1 0 0 0 0 ∗ ∗
0 0 0 1 0 0 0 ∗ ∗
0 0 0 0 1 0 0 ∗ ∗
0 0 0 0 0 1 0 ∗ ∗
0 0 0 0 0 0 1 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1





Lemma 4 AB = C admits a solution if and only if φ is satisfiable.

Proof “⇒”: Let us assume that AB = C has a solution, which also implies a solution
A′B ′ = I2n+1 being a subproblem encoded in the instance. Fixing a solution, we
assign an assignment of the variables of φ as follows: If the entry A1,3i+1 is non-zero,
we set xi to true. If the entry A1,3i+2 is non-zero, we set xi to false. If neither is
non-zero, we set xi to false as well (the choice is irrelevant). Note that by Lemma 3,
not both A1,3i+1 and A1,3i+2 can be non-zero, so the assignment is well-defined.

First of all, let γ be the rightmost entry of the first row of A. Because the (1, 1)-entry
of C is set to 1, it follows that γ δ = 1, where δ is the lowest entry of the first column
of B. Hence, in the assumed solution, γ 1= 0.

Now fix a clause c in φ and let v denote the column of B assigned to this clause,
with column index i . Recall that v consists of (up to) three ∗ entries chosen according
to the literals of c, and a ∗ entry at the lowest position. Let λ denote the value of that
lowest entry in the assumed solution of AB = C . We see that λ 1= 0, with a similar
argument as for γ above, using the (i, i)-entry of C .

Now, the (1, i) entry of C is set to 0 by construction which yields a constraint of
the form

µ1v1 + µ2v2 + µ3v3 + γ λ︸︷︷︸
1=0

= 0

where v1, v2, v3 are entries of v at the ∗ positions, and µ1, µ2, µ3 the corresponding
entries of the first row of A. We observe that at least one term µ jv j must be non-zero,
hence both entries are non-zero.

This implies that the chosen assignment satisfies the clause: if v j is at index 3k+ 1
for some k, the clause contains the literal xk by construction and since µ j 1= 0, our
assignment sets xk to true. The same argument applies to v j of the form 3k + 2. It
follows that the assignment satisfies all clauses and hence, φ is satisfiable.

“⇐”: We pick a satisfying assignment for φ and fill the first row of A as follows:
if xi is true, we set (A1,3i+1, A1,3i+2) to (1, 0) if xi is false, we set it as (0, 1). By
Lemma 3, there exists a solution for A′B ′ = I2n+1 with this initial values and we
choose such a solution, filling the upper (2n + 1) rows of A and the left (2n + 1)
columns of B. Note that similar as above, the value γ at A1,3n+1 must be non-zero
in such a solution. In the remaining m rows of A, by construction, we only need to
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pick the rightmost entry, and we set it to γ in each of these rows. That determines all
entries of A.

To complete B ′ to B, we need to fix values in the columns of B associated to clauses.
In each such column, we pick the lowest entry to be 1

γ , satisfying the constraints of C
along the diagonal. Fixing a column i of B, the (1, i)-constraint of C reads as

µ1v1 + µ2v2 + µ3v3 + γ
1
γ︸︷︷︸

=1

= 0,

where v1, v2, v3 are the remaining non-zero entries in i-th column. Because we
encoded a satisfying assignment of φ in the first row of A, at least one µ j entry
is 1. We set the corresponding entry v j to −1, and the remaining vk’s to 0. In this way,
all constraints are satisfied, and the GCI-instance has a solution. -.

Clearly, the GCI-instance of the preceding proof can be computed from φ in poly-
nomial time. It follows:

Theorem 1 CI is NP-complete.

Proof Lemma4 shows the reductionof 3SAT toGCI, proving thatGCI isNP-complete.
As shown in Lemma 2, GCI reduces to CI, proving the claim. -.

3 Modules and Interleavings

In what follows, all vector spaces are understood to be F-vector spaces for the fixed
base field F. Also, for points p = (px , py), q = (qx , qy) in R2, we write p ≤ q if
px ≤ qx and py ≤ qy .

3.1 PersistenceModules

A (two-parameter) persistence module M is a collection of F-vector spaces Vp,
indexed over p ∈ R2 together with linear maps Mp→q whenever p ≤ q. These maps
must have the property that Mp→p is the identity map on Mp and Mq→r ◦ Mp→q =
Mp→r for p ≤ q ≤ r . Much more succinctly, a persistence module is a functor from
the poset category R2 to the category of vector spaces. A morphism between M and
N is a collection of linear maps { f p : Mp → Np} such that Np→q ◦ f p = fq ◦Mp→q .
We say that f is an isomorphism if f p is an isomorphism for all p, and denote this by
M ∼= N . If we view persistence modules as functors, a morphism is simply a natural
transformation between the functors.

The simplest example is the 0-module where Mp is the trivial vector space for all
p ∈ R2. For a more interesting example, define an interval in the poset (R2,≤) to be
a non-empty subset S ⊂ R2 such that whenever a, c ∈ S and a ≤ b ≤ c, then b ∈ S,
and moreover, if a, c ∈ S, there exists a sequence of elements a = b1, . . . , b' = c of
elements in S such that bi ≤ bi+1 or bi+1 ≤ bi . We associate an interval module I S
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Fig. 1 A staircase of size 3
(shaded area)

a1

a2

a3

to S as follows: for p ∈ S, we set I Sp := F, and I Sp := 0 otherwise. As map I Sp→q with
p ≤ q, we attach the identity map if p, q ∈ S, and the 0-map otherwise.

For a ∈ R2, let 〈a〉 := {x ∈ R2 | a ≤ x} be the infinite rectangle with a as
lower-left corner. Given k elements a1, . . . , ak ∈ R2, the set

S :=
⋃

i=1,...,k

〈ai 〉

is called the staircase with elements a1, . . . , ak . We call k the size of the staircase.
See Fig. 1 for an illustration. It is easy to verify that S is an interval for k ≥ 1. Clearly,
if ai ≤ a j , we can remove a j without changing the staircase, so we assume that the
elements forming the staircase are pairwise incomparable. The staircase module is the
interval module associated to the staircase.

Given two persistence modules M and N , the direct sum M ⊕ N is the persistence
module where (M ⊕ N )p := Mp ⊕ Np, and the linear maps are defined compo-
nentwise in the obvious way. We call a persistence module M indecomposable, if
in any decomposition M = M1 ⊕ M2, M1 or M2 is the 0-module. For example, it
is not difficult to see that interval modules are indecomposable. We call M interval
decomposable if M admits a decomposition M ∼= M1 ⊕ . . .⊕ M' into (finitely many)
interval modules. The decomposition of any persistence module into interval modules
is unique up to rearrangement and isomorphism of the summands; see [5, Section
2.1] and the references therein. This implies that there is a well-defined multiset of
intervals B(M) given by the decomposition of M into interval modules. The multiset
B(M) is called the barcode of M . Not every module is interval decomposable; we
remark that already rather simple geometric constructions can give rise to complicated
indecomposable elements [7].

3.2 Interleavings

Let ε ∈ R. For a persistence module M , the ε-shift of M is the module Mε defined
by Mε

p = Mp+ε (where p + ε = (px + ε, py + ε)) and Mε
p→q = Mp+ε→q+ε . Note

that (Mε)δ = Mε+δ . As an example, staircase modules are closed under shift: the
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ε-shift of the staircase module associated to
⋃〈ai 〉 is the staircase module associated

to
⋃〈ai −ε〉. We can also define shift on morphisms: for f : M → N , f ε : Mε → N ε

is given by f ε
p = f p+ε . For ε ≥ 0, there is an obvious morphism ShM (ε) : M → Mε

given by the internal morphisms of M , that is, we have ShM (ε)p = Mp→p+ε . In
practicewewill often suppress notation and simplywriteM → Mε for thismorphism.

With this in mind, we define an ε-interleaving between M and N for ε ≥ 0 as a pair
( f , g) of morphisms f : M → N ε and g : N → Mε such that gε ◦ f = ShM (2ε) and
f ε ◦ g = ShN (2ε). Concretely, an ε-interleaving between two persistence modules
M and N is a collection of maps

f p : Mp → Np+ε (3)

gp : Np → Mp+ε (4)

such that all diagrams that can be composed out of themaps f∗, g∗, and the linear maps
of M and N commute. Note that a 0-interleaving simply means that the persistence
modules are isomorphic. Also, an ε-interleaving induces a δ-interleaving for ε < δ

directly by a suitable composition with the linear maps of the modules.
We say that two modules are ε-interleaved if there exists an ε-interleaving between

them. We define the interleaving distance of two modules M and N as

dI (M, N ) := inf{ε ≥ 0 | M and N are ε-interleaved}.

Note that dI defines an extended pseudometric on the space of persistence modules.
The distance between two modules might be infinite, and there are non-isomorphic
modules with distance 0. The triangle inequality follows from the simple observation
that an ε-interleaving between M1 and M2 and a δ-interleaving between M2 and M3
can be composed to an (ε + δ)-interleaving between M1 and M3.

3.3 Representation of PersistenceModules

For studying the computational complexity of the interleaving distance, we need to
specify a finite representation of persistence modules that allows us to pass such
modules as an input to an algorithm.

A graded matrix representation of a module M is a 3-tuple (G, R, A), where
G = {g1, . . . , gn} is a list of n points in R2, R = {r1, . . . , rm} is a list of m points
in R2, (with repetitions allowed), and A is an (m × n)-matrix over the base field
F. Equivalently, we can simply think of a matrix A where each row and column is
annotated with a grading in R2.

The algebraic explanation for this representation is as follows: it is known that a
persistence module M over R2 can be equivalently described as a graded R-module
over a suitably chosen ringR. Assuming that M is finitely presented, we can consider
the free resolution of M

R
m ∂T→ R

n → M → 0.
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A graded matrix representation is simply a way to encode the map ∂ in this resolution.
Let us describe for concreteness how a representation (G, R, A) gives rise to a

persistence module. First, let F1, . . . ,Fn be copies of F, and let ei be the 1-element
of Fi . For p ∈ R2, we define Genp as the direct sum of all Fi such that gi ≤ p.
Moreover, every row of A gives rise to a linear combination of the entries e1, . . . , en .
Let ci denote the linear combination in row i . We define Relp to be the span of all
linear combinations ci for which ri ≤ p. Then, we set

Mp := Genp

Relp

which is a F-vector space. For p ≤ q, writing [x]p for an element of Mp with
x ∈ Genp, we define

Mp→q([x]p) := [x]q .

It is easy to check that that [x]q is well-defined (since Genp ⊆ Genq ) and independent
of the chosen representative in Genp (since Relp ⊆ Relq ). Moreover, it is straightfor-
ward to verify that these maps satisfy the properties of a persistence module.

In short, every persistencemodule that can be expressed by finitelymany generators
and relations can be brought into gradedmatrix representation. For instance, a staircase
module for a1, . . . , an of size n where the ai are ordered by increasing first coordinate
can be represented by a matrix with n columns graded by a1, . . . , an , and n − 1
rows, where every row corresponds to a pair (i, i + 1) with 1 ≤ i ≤ n − 1. In this
row, we encode the relation ei = ei+1 and grade it by pi j , which is the (unique)
minimal element q in R2 such that ai ≤ q and ai+1 ≤ q. Hence, the graded matrix
representation of a staircase of size n has a size that is polynomial in n.

We also remark that a graded matrix representation is equivalent to free implicit
representations [15, Sec 5.1] for the special case of m0 = 0.

4 Hardness of Interleaving Distance

We consider the following computational problems:

1-Interleaving: Given two persistence modules M , N in graded matrix repre-
sentation, decide whether they are 1-interleaved.

c- Approx- Interleaving- Distance: Given two persistence modules M , N
in graded matrix representation, return a real number r such that

dI (M, N ) ≤ r ≤ c · dI (M, N )

Obviously, the problem of computing dI (M, N ) exactly is equivalent to the above
definition with c = 1.

The main result of this section is the following theorem:
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Theorem 2 Given a CI-instance (n, P, Q), we can compute in polynomial time in n
a pair of persistence modules (M, N ) in graded matrix representation such that

dI (M, N ) =
{
1 if (n, P, Q) ∈ C I
3 if (n, P, Q) /∈ C I

.

Moreover, both M and N are direct sums of staircase modules and hence interval
decomposable.

We will postpone the proof of Theorem 2 to the end of the section and first discuss
its consequences.

Theorem 3 1-Interleaving is NP-complete.

Proof We first argue that 1-Interleaving is in NP. First, note that to specify a 1-
interleaving, it suffices to specify the maps at the points in S, where S is a finite
set whose size is polynomial in the size of the graded matrix representation. More
precisely, S contains the critical grades of the twomodules (that is, the grades specified
by G and R), as well as the least common successors of such elements. That ensures
that every vector space (in both modules) can be isomorphically pulled back to one
of the elements of S, and the interleaving map can be defined using this pull-back. It
is enough to consider the points in S to check whether this set of pointwise maps is a
valid morphism.

We can furthermore argue that verifying that a pair of such maps yields a 1-
interleaving can be checked in a polynomial number of steps. Again, this involves
mostly the maps specified above, as well as the corresponding maps shifted by (1, 1),
in order to check the compatibility of the two interleaving maps. We omit further
details of this step.

Finally, 1-Interleaving is NP-hard: Assuming a polynomial time algorithm A to
decide the problem, we can design a polynomial time algorithm for CI just by trans-
forming (n, P, Q) into a pair of modules (M, N ) using the algorithm fromTheorem 2.
If A applied on (M, N ) returns true, we return that (n, P, Q) is in CI. Otherwise,
we return that (n, P, Q) is not in CI. Correctness follows from Theorem 2, and the
algorithm runs in polynomial time, establishing a polynomial time reduction. By The-
orem 1, CI is NP-hard, hence, so is 1-Interleaving. -.
Theorem 4 c-Approx- Interleaving- Distance is NP-hard for every c < 3 (i.e., a
polynomial time algorithm for the problem implies P=NP).

Proof Fixing c < 3, assuming a polynomial time algorithm A for c-Approx-
Interleaving- Distance yields a polynomial time algorithm for CI: Given the input
(n, P, Q), we transform it into (M, N )with Theorem 2. Then, we apply A on (M, N ).
If the result is less than 3, we return that (n, P, Q) is in CI. Otherwise, we return that
(n, P, Q) is not in CI. Correctness follows from Theorem 2, noting that if (n, P, Q) is
in CI, algorithm A must return a number in the interval [1, c] and c < 3 is assumed. If
(n, P, Q) is not in CI, it returns a number≥ 3. Also, the algorithm runs in polynomial
time in n. Therefore, the existence of A yields a polynomial time algorithm for CI,
implying P=NP with Theorem 1. -.
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Since the modules in Theorem 2 are direct sums of staircases, both Theorem 3 and
Theorem 4 hold already for the restricted case that the modules are interval decom-
posable.

4.1 Interleavings of Staircases

The persistence modules constructed for the proof of Theorem 2 will be direct sums
of staircases. Before defining them, we establish some properties of the interleaving
map between staircases and their direct sums which reveal the connection to the CI
problems.

Recall from Sect. 3 that a morphism M → N can be described more concretely as
a collection of maps Mp → Np that are compatible with the linear maps in M and N ,
that Mε is defined by Mε

p = Mp+ε , and that an ε-interleaving is a pair of morphisms
φ : M → N ε , ψ : N → Mε satisfying certain conditions. For staircase modules, the
set of morphisms is quite limited.

For M and N staircase modules and λ ∈ F, we denote by 1 ;→ λ the collection of
linear maps φp such that φp(1) = λ for all p such that Mp = F.

Lemma 5 Let M and N be staircase modules. Every morphism from M to N is of the
form 1 ;→ λ for some λ ∈ F.

Proof Assume first that p ≤ q and Mp = F. Write λ := φp(1). Then, also Mq = F,
and φq(1) = λ as well, since the linear maps from p to q for M and N are injective
maps.

For incomparable p and q ∈ R2, we consider the least common successor r of p
and q. Using the above property twice, we see at once that φp(1) = φr (1) = φq(1). -.

We examine next which values of λ are possible for a concrete pair of staircases.
For a staircase S, let Sε denote the staircase where each point is shifted by (ε, ε). This
way, if M is the module associated to S, Mε is the module associated to Sε . As we
noted before, the shift of a staircase module is also a staircase module. Define the
directed shift distance from the staircase S to the staircase T as

ds(S, T ) := min{ε ≥ 0 | S ⊆ T ε}.

One can show that the set on the right-hand side has a minimum value by using the
fact that a staircase is generated by a finite set of elements, so ds is in fact well-defined.
Clearly, ds(S, T ) 1= ds(T , S) in general. The following simple observation is crucial
for our arguments. Let M , N denote the staircase modules induced by S and T .

Lemma 6 If ε < ds(S, T ), the onlymorphism from M to N ε is 1 ;→ 0. If ε ≥ ds(S, T ),
every choice of λ ∈ F yields a morphism 1 ;→ λ from M to N ε .

Proof In the first case, by construction, there exists some p such that Mp = F, but
Np+ε = 0. Hence, 0 is the only choice for λ.

In the second case, Mp = F implies Np+ε = F as well. It is easy to check that any
choice of λ yields a compatible collection of maps, hence a morphism. -.
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In particular, there are morphisms M → N given by arbitrary elements of F if and
only if S ⊆ T . As a consequence, we can characterize morphisms of direct sums of
staircase modules.

Lemma 7 Let M = ⊕n
i=1Mi and N = ⊕n

j=1N j be direct sums of staircase modules.
Then a collection of maps φp : Mp → Np is a morphism if and only if the restriction
to Mi and N j is a morphism for any i, j ∈ {1, . . . , n}. Therefore, a morphism φ is
determined by an (n × n)-matrix with entries in F.

Proof Let p ≤ q, and consider the following diagram:

Mp Mq

Np Nq

φp

Mp→q

φq

Np→q

We have Mp = ⊕n
i=1(Mi )p and Nq = ⊕n

j=1(N j )q . Thus the diagram above com-
mutes if and only if for all i and j , the restrictions of the two compositions to (Mi )p
and (N j )q are the same, since a linear transformation is determined by what happens
on basis elements. This is again equivalent to the following diagram commuting for
all i and j , where (φ j

i )p is the restriction of φp to Mi and N j :

(Mi )p (Mi )q

(N j )p (N j )q

(φ
j
i )p

(Mi )p→q

(φ
j
i )q

(N j )p→q

But the collection of φp forms a morphism if and only if the first diagram commutes
for all p ≤ q, and the restriction of φp to Mi and N j forms a morphism if and only
if the second diagram commutes for all p ≤ q. Thus we have proved the desired
equivalence. -.
Observe that the matrix described in Lemma 6 is simply φp : ⊕n

i=1 (Mi )p →
⊕n

j=1(N j )p written as a matrix in the natural way for any p contained in the sup-
port of Mi for all i .

Lemma 8 Let M, N be direct sums of staircase modules as above and φ : M → N ε

and ψ : N → Mε be morphisms. Then φ and ψ form an ε-interleaving if and only if
their associated (n × n)-matrices are inverse to each other.

Proof The composition ψε ◦ φ : M → M2ε is represented by the matrix BA, as
one can see by restricting to a single point contained in all relevant staircases as in the
observation above. The morphism ShM (2ε) : M → M2ε is represented by the identity
matrix. By definition, (φ,ψ) is an interleaving if and only if these are equal and the
corresponding statement holds for φε ◦ ψ , so the statement follows. -.

As a consequence, we obtain the following intermediate result.
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Theorem 5 Let (n, P, Q) be a C I -instance and let S1, . . . , Sn, T1, . . . , Tn be stair-
cases such that

dS(Si , Tj ) =
{
3 if (i, j) ∈ P
1 if (i, j) /∈ P

dS(Tj , Si ) =
{
3 if ( j, i) ∈ Q
1 if ( j, i) /∈ Q

Write Mi , N j for the modules associated to Si , Tj , respectively, and M := ⊕Mi
and N := ⊕N j . Then

dI (M, N ) =
{
1 if (n, P, Q) ∈ C I
3 if (n, P, Q) /∈ C I

Proof Assume first that (n, P, Q) ∈ C I . Let A, B be a solution. We show that A
and B define morphisms from M to N 1 and from N to M1. We restrict to the map
from M to N 1, as the other case is symmetric. By Lemma 7, it suffices to show
that the map from Mi to N 1

j is a morphism. This map is represented by the entry
Ai j . If (i, j) ∈ P , Ai j = 0 by assumption, and the 0-map is always a morphism. If
(i, j) /∈ P , dS(Si , Tj ) = 1 by construction. Hence, by Lemma 6 any field element
yields a morphism. This shows that A and B define a pair of valid morphisms, and
by Lemma 8 this pair is an 1-interleaving, as AB = In . Also with Lemma 6, it can
easily be proved that the only morphism M → N ε with ε < 1 is the 0-map. Hence,
dI (M, N ) = 1 in this case.

Now assume that (n, P, Q) /∈ C I . It is clear that M and N as constructed are
3-interleaved: the matrix In yields a valid morphism from M to N 3 and from N to
M3 with Lemma 6. Assume for a contradiction that there exists an ε-interleaving
between M and N represented by matrices A, B, with ε < 3. For (i, j) ∈ P , since
ds(Mi , N j ) = 3 > ε, Lemma 6 implies that the entry Ai, j must be equal to 0.
Likewise, Bj,i = 0 whenever ( j, i) ∈ Q. By Lemma 8, AB = In , and it follows that
A and B constitute a solution to the CI-instance (n, P, Q), a contradiction. -.

4.2 Construction of the Staircases

To prove Theorem 2, it suffices to construct staircases S1, . . . , Sn , T1, . . . , Tn with the
properties from Theorem 5, in polynomial time.

To describe our construction, we consider to two “base staircases” which we depict
in Fig. 2. In what follows, a shift of a point a by (1, 1) means replacing a with
the point a − (1, 1). The base staircase S is formed by the points (−t, t) for t =
−4n2,−4n2 + 2, . . . , 4n2, but with the right side (i.e., the points with negative t)
shifted by (1, 1). Likewise, the base staircase T consists of the same points, but with
the left side shifted by (1, 1). We observe immediately that the staircase distance of
the two base staircases is equal to 1 in either direction. We call the points defining the
staircases corners from now on.

Now we associate to every entry in P a corner in the left side of S (that is, some
(−t, t) with t > 0). We also associate with the entry a corner in T , namely the shifted
point (−t − 1, t − 1). We do this in a way that between two associated corners of
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(0, 0)

(−4n2, 4n2)

(−4n2
− 1, 4n2

− 1)

(4n2
− 1,−4n2

− 1)

(4n2,−4n2)

ST

Fig. 2 The base staircases S and T

S, there is at least one corner of the staircase that is not associated. Note that this
is always possible because |P| ≤ n2 and we have 2n2 corners on the left side. We
associate corners to entries of Q in the symmetric way, using the right side of the base
staircases.

We construct the staircases Si and Tj out of the base staircases S and T , only
shifting associated corners by (2, 2) or (−2,−2) according to P and Q. Specifically,
for the staircase Si , we start with S and for any entry (i, j) in P , we shift the associated
corner of S by (2, 2). For every entry ( j, i) in Q, we shift the associated corner by
(−2,−2). The resulting (partially) shifted version of S defines Si .

Tj is defined symmetrically: for every (i, j) ∈ P , we shift the associated corner by
(−2,−2). For every ( j, i) ∈ Q, we shift the associated corner by (2, 2).

We next analyze the staircase distance of Si and Tj . We observe that, because there
is an unassociated corner in-between any two associated corners, the ±(2, 2) shifts
of distinct corners do not interfere with each other. Hence, it suffices to consider the
distance of one associated corner of Si to Tj . Fix the corner cS of S associated to some
entry (k, !) ∈ P . Let cT denote the associated corner of T , that is, cT = cS − (1, 1).
See Fig. 3 (left) for an illustration. If k $= i and ! $= j , neither cS nor cT gets shifted,
and since cT ≤ cS , the shift required from cT to reach cS is 0. If k = i and ! $= j ,
then cS gets shifted by (2, 2), and the required shift is 1 (see second picture of Fig. 3).
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S

T T

S S

T T

S

Fig. 3 Left: the associated corners cS (on staircase S) and cT (on staircase T ) are marked by black circles.
The two neighboring corners on both staircases (marked with x) are not associated and hence not shifted in
the construction. Second and third picture: the cases (i, !) with ! $= j and (k, j) with k $= i . In both cases,
the directed staircase distance is 1, as illustrated by the dashed line. Right: the case (i, j). In that case, a
shift of 3 is necessary to move the corner of T to S

If k $= i and ! = j , cT gets shifted by (−2,−2), the required shift is also 1 (see 3rd
picture of Fig. 3). If k = i and ! = j , both cS and cT get shifted, and the distance
of the shifted cT to reach cS increases to 3 (see 4th picture of Fig. 3). This argument
implies that the (directed) staircase distance from Si to Tj is 3 if (i, j) ∈ P , and
1 otherwise. A completely symmetric argument works for dS(Tj , Si ), inspecting the
corners associated to Q.

Finally, it is clear that the size and construction time of each Si and each Tj is
polynomial in n. As remarked at the end of Sect. 3, the staircase module can be
brought in graded matrix representation in polynomial time in n, and the same holds
for the direct sum of these modules. This finishes the proof of Theorem 2.

With the construction of M and N fromTheorem 2 fresh inmind, we can explain the
obstacles to obtaining a constant bigger than 3. Exchanging 3 with another constant
in Theorem 5 is not a problem; the proof would be exactly the same. The trouble
is to construct Si and Tj satisfying the conditions in Theorem 5 if 3 is replaced by
some ε > 3. In that case, one would have to force dS(Si , Tj ) ≥ ε for (i, j) ∈ P

and dS(Tj , Si ) ≥ ε for ( j, i) ∈ Q, while still keeping dS(Si , Tj ) ≤ 1 for (i, j) /∈ P

and dS(Tj , Si ) ≤ 1 for ( j, i) /∈ Q. As we have shown, letting dS(Si , Tj ) = 3 when
(i, j) ∈ P can be done. However, even if (i, j) ∈ P , there might be i ′, j ′ such that
(i, j ′), (i ′, j) /∈ P and ( j ′, i ′) /∈ Q, implying

dS(Si , Tj ′) ≤ 1,

dS(Tj ′, Si ′) ≤ 1,

dS(Si ′ , Tj ) ≤ 1.

which gives dS(Si , Tj ) ≤ 3 < ε by the triangle inequality. This proves that one cannot
simply increase the constant in Theorem 5, change the construction of Si and Tj , and
get a better result. That is not to say that using CI problems to improve Theorem 4 is
necessarily hopeless, but it would not come as a surprise if a radically new approach
is needed, if the theorem can be improved at all.

This is related to questions of stability, more precisely of whether dB(B(M), B(N ))

≤ 3dI (M, N ) is true for staircase decomposable modules, where dB is the bottle-
neck distance. We have associated pairs of modules to CI problems in a way such
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that interleavings correspond to solutions of the CI problems. Matchings between
the barcodes of the modules (which is what gives rise to the bottleneck distance)
correspond to solutions to the CI problems of a particular simple form, namely
with a single non-zero entry in each column and row of each matrix. Claiming that
dB(B(M), B(N )) ≤ 3dI (M, N ) is then related to claiming that if a CI problem has a
solution, then a “weakening” of the CI problem has a solution of this simple form. We
will not go into details about this, other than to say that there are questions that can be
formulated purely in terms of CI problems whose answers could have very interesting
consequences for the study of interleavings, also beyond the work done in this paper.

5 Indecomposable Modules

Fix aCI problem (n, P, Q) as in the previous section and letM and N be the associated
persistencemodules.We shall nowconstruct two indecomposable persistencemodules
M̂ and N̂ such that M̂ and N̂ are ε-interleaved if and only ifM and N are ε-interleaved.
In what follows we construct M̂ ; the construction of N̂ is completely analogous.

Recall that a staircase module can be described by a set of generators, or corners.
Let u = (x, x) be a point larger than all the corners defining the staircases making up
M and N . Observe the following: dim Mu = n, Mu→p is the identity morphism for
any p ≥ u.

Let si = x + 7+ i/(n + 1),1 for 0 ≤ i ≤ n + 1. Define M̂ at p ∈ R2 as follows

M̂p =






0 if p ≥ (si , sn+1−i ) for some 0 ≤ i ≤ n + 1,
F if p ∈ [si , si+1) × [sn−i , sn−i+1) for some 0 ≤ i ≤ n,
Mp otherwise.

Trivially, M̂p→q is the 0 morphism if M̂p = 0 or M̂q = 0. For p ≤ q such that Mp =
M̂p and Mq = M̂q , let M̂p→q = Mp→q , and for p, q ∈ [si , si+1) × [sn−i , sn−i+1)

let M̂p→q = 1F. It remains to consider the case that Mp = M̂p and q ∈ [si , si+1) ×
[sn−i , sn−i+1) for some i . Observe that all the internal morphisms are fully specified
once we define M̂u→q . Indeed, if p ≥ u, then M̂u→p is the identity, which forces
M̂p→q = M̂u→q . For any other p we can always choose an r ≥ p such that r ≥ u
and Mr = M̂r . The morphism M̂p→q is then given by M̂p→q = M̂r→q ◦ M̂p→r =
M̂u→q ◦ M̂p→r . We conclude by specifying the following morphism

M̂u→q =
{

πi (projection onto coordinate i) if 1 ≤ i ≤ n
π1 + π2 + . . .+ πn if i = 0.

Observe that we have a morphism πM : M → M̂ given by

πM
p =

{
id if Mp = M̂p

M̂u→p otherwise

1 7 can be replaced with any δ > 6.
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Lemma 9 The persistence module M̂ is indecomposable.

Proof We recall the following useful trick: if M is not indecomposable, say M ∼=
M ′ ⊕ M ′′, then the projections M → M ′ and M → M ′′ define morphisms which
are not given by multiplication with a scalar. Hence, it suffices to show that any
endomorphism φ : M̂ → M̂ is multiplication by a scalar. Furthermore, observe that
any endomorphism φ of M̂ is completely determined by φu . Let ei ∈ Fn denote the
vector (0, . . . , 0, 1, 0, . . . , 0) where the non-zero entry appears at the i-th index. For
0 ≤ i ≤ n, φ must be such that the following diagram commutes

M̂u = Fn F = M̂(si ,sn−i )

M̂u = Fn F = M̂(si ,sn−i )

φu φ(si ,sn−i )=λi

For 1 ≤ i ≤ n this yields that

πi (φu(e j )) =
{

λi ∈ F if i = j
0 if i 1= j .

.

In particular, we see that φu(ei ) = λi ei . For i = 0 we get

λ0ei = λ0 · (π1 + . . .+ πn)(ei ) = (π1 + . . .+ πn)(λi ei ) = λi ei .

We conclude that λi = λ0 and that φu = λ0 · id. -.

Lemma 10 Fix 1 ≤ ε ≤ 3. M̂ and N̂ are ε-interleaved if and only if M and N are
ε-interleaved.

Proof Assume thatφ : M → N ε andψ : N → Mε form an ε-interleaving pair. Define
φ̂ : M̂ → N̂ ε and ψ̂ : N̂ → M̂ε by

φ̂p =
{

πN
p+ε ◦ φp if Mp = M̂p

0 otherwise.
, ψ̂p =

{
πM
p+ε ◦ ψp if Np = N̂p

0 otherwise.

We will show that these two morphisms constitute an ε-interleaving pair. Let p ∈ R2

and consider the following two cases:

1. Assume that Np+ε = N̂p+ε . Under this assumption, we have that πN
p+ε = id, and

thus φp = φ̂p. Using that ψ and φ form an ε-interleaving pair, and that πM
p = id,

we get:

ψ̂p+ε ◦ φ̂p=πM
p+2ε ◦ ψp+ε ◦ φp=πM

p+2ε ◦ Mp→p+2ε=M̂p→p+2ε ◦ πM
p =M̂p→p+2ε .
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Fig. 4 Left: M̂ coincides with M on the restriction to the shaded subset of R2. Right: this shows the
modification done to M in order to obtain an indecomposable persistence module M̂ in the case n = 4

2. Assume that Np+ε 1= N̂p+ε . Since ε ≥ 1, it follows by construction that M̂p+2ε =
0. Hence, the interleaving condition is trivially satisfied.

Symmetrically we get that φ̂p+ε ◦ φ̂p = N̂p→p+2ε . Hence, M̂ and N̂ are ε-interleaved.
Conversely, assume that φ̂ and ψ̂ define an interleaving pair between M̂ and N̂ .

Define φ : M → N ε and ψ : N → Mε by

φp =
{

φ̂u if p ≥ u
φ̂p otherwise

, ψp =
{

ψ̂u if p ≥ u
ψ̂p otherwise

.

By construction, M̂p = Mp and N̂p = Np for all p < u + (7, 7). This implies that
φ̂p = φ̂u and ψ̂p = ψ̂u for all p < u + (7− ε, 7− ε). Hence, for any p ≤ u we must
have that

ψp+ε ◦ φp = ψ̂p+ε ◦ φ̂p = M̂p→p+2ε = Mp→p+2ε .

Similarly we get that φp+ε ◦ ψp = Np→p+2ε for all such p. In particular, by consid-
ering the case p = u, we see that φu and ψu are mutually inverse matrices. It follows
readily that the interleaving condition is satisfied for all p ⇥ u. -.

With the two previous results at hand, we can state the following corollary of
Theorem 4.

Corollary 1 1- interleaving isNP-complete and c-Approx- Interleaving- Distance
is NP-hard for c < 3, even if the input modules are restricted to indecomposable mod-
ules.
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Proof We only prove hardness of 1- interleaving, the remaining statements follow
with the same methods. Given a CI-instance (n, P, Q), we use the construction from
Sect. 4 to construct two persistence modules M and N . Then we transform them
into the indecomposable modules M̂ and N̂ as above. Note that this transformation
can be performed in polynomial time in n by introducing up to n relations at the
lower-left corners of the (n+ 1) rectangles in Fig. 4. Hence, an algorithm to decide 1-
interleaving for the case of indecomposable modules would solve CI in polynomial
time. -.

6 One-Sided Stability

The results of the previous sections also apply in the setting of one-sided stability.
Here we give a brief introduction to the topic; see [1] for a thorough introduction.

Let f : M → N be a morphism. The linear map Mp→q induces a linear map
ker( f p) → ker( fq) by restriction, and Np→q induces a linear map coker( f p) →
coker( fq) by taking a quotient, as one can readily verify. We say that f has ε-trivial
kernel if the map ker( f p) → ker( f p+ε) is the 0-map for all p ∈ R2. Likewise, we say
that f has ε-trivial cokernel if coker( f p) → coker( f p+ε) is the 0-map for all p ∈ R2.
If f has 0-trivial kernel (cokernel), then we say that f is injective (surjective). The
following lemma follows readily from the definition of an ε-interleaving.

Lemma 11 If f : M → N ε is an ε-interleaving morphism (i.e., it forms an ε-
interleaving with some g : N → Mε), then f has 2ε-trivial kernel and cokernel.

In fact, Bauer and Lesnick [1] show that in the case of persistence modules over
R, M and N are ε-interleaved if and only if there exists a morphism f : M → N ε

with 2ε-trivial kernel and cokernel. They also observe that this equivalence does not
generalize to two parameters. However, it is true (and the proof is very similar to the
one given below) that if there exists a morphism f : M → N ε with ε-trivial kernel and
cokernel, then M and N are ε-interleaved. Hence, there is a close connection between
interleavings and morphisms with kernels and cokernels of bounded size also in the
multi-parameter landscape.

Lemma 12 For any injective f : M → N ε with 2ε-trivial cokernel, there exists a
morphism g : N → Mε such that f and g constitute an ε-interleaving pair.

Proof We have the following commutative square for all p ∈ R2:

Mp Mp+2ε

Np+ε Np+3ε

f p

Mp→p+2ε

f p+2ε

Np+ε→p+3ε

Let n ∈ Np+ε . Since f has 2ε-trivial cokernel and f is injective, there exists a unique
m ∈ Mp+2ε such that f p+2ε(m) = Np+ε→p+3ε(n). Define gp : Np+ε → Mp+2ε by
gp(n) = m. Doing this for all p ∈ R2 defines a morphism g : N ε → M2ε and we
leave it to the reader to verify that f and g−ε define an ε-interleaving pair. -.
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For fixed parameters s, t ∈ [0,∞], we consider the following computational prob-
lem:

s-t-trivial- morphism: Given two persistence modules M , N in graded matrix
representation, decide whether there exists a morphism f : M → N with s-
trivial kernel and t-trivial cokernel.

Choosing s = t = 0 simply asks whether the modules are isomorphic, which can
be decided in polynomial time [6]. On the other extreme, s = t = ∞ imposes no
conditions on the morphism, which turns the decision problem to be trivially true,
using the 0-morphism. We show

Theorem 6 s-t-trivial- morphism isNP-complete for every (s, t)/∈{(0, 0), (∞,∞)}.

The case (s, t) is computationally equivalent to the case (cs, ct) with c > 0, since
we can scale all grades occurring in M and N by a factor of c. So, it suffices to
prove hardness of 2-t-trivial- morphism, s-2-trivial- morphism (we will see that
the choice of 2 will be convenient in the argument), ∞-0-trivial- morphism and
0-∞-trivial- morphism.

Note that for any choice of s and t , s-t-trivial- morphism is in NP. The argument
is similar to the first part of the proof of Theorem 3: a morphism can be specified
in polynomial size with respect to the module sizes, and we can check the triviality
conditions of the kernel and cokernel by considering ranks of matrices.

For the hardness, we first focus on the case (s, 2); hence, we want to decide the
existence of a morphism with s-trivial kernel and 2-trivial cokernel. The following
simple observation is the key insight of the proof.

Lemma 13 Let M, N be as in Theorem 2. Any morphism f : M → N 1 with 2-trivial
cokernel is injective.

Proof Recall that both M and N are direct sums of n staircase modules. Let p be any
point such that dim Mp = dim Np = n, and observe that Mp→q = idF, Np→q = idF
and f p = fq for all q ≥ p. In particular, if q = p + (2, 2), the induced map
coker( f p) → coker( fq) is the identity, and since f has a 2-trivial cokernel by assump-
tion, the map is also the 0-map. Hence coker( f p) is trivial, implying that the map f p
is surjective, and hence also injective, and the same holds for fq with q ≥ p.

Now consider fr for an arbitrary r ∈ R2. Let q ≥ r be a point satisfying q ≥ p.
Since the internal morphisms of M are all injective and f p is injective, so is fr . -.

In other words, for M and N 1 as above, the answer to s-2-trivial- morphism is
independent of s. Moreover, it follows:

Corollary 2 With M, N as above, there exists a morphism f : M → N 1 with 2-trivial
cokernel and s-trivial kernel if and only if M and N are 1-interleaved.

Proof If such a morphism exists, Lemma 13 guarantees that the morphism is in fact
injective with 2-trivial cokernel. Lemma 12 with ε = 1 guarantees that the modules
are 1-interleaved.
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Vice versa, ifM and N are 1-interleaved, there is amorphism f with 2-trivial kernel
and cokernel by Lemma 11. Again using Lemma 13 guarantees that f is injective,
hence has a 0-trivial kernel. -.

Corollary 3 s-2-trivial- morphism is NP-hard for all s ∈ [0,∞].

Proof Given a CI-instance, we transform it into modules M and N as in Sect. 4.
Assuming a polynomial time algorithm for s-2-trivial- morphism, we apply it on
(M, N 1). If the algorithm returns that a morphism exists, we know by Corollary 2
that M and N are 1-interleaved and therefore, the CI-instance has a solution. If no
morphism exists, M and N are not 1-interleaved and therefore, the CI-instance has no
solution. We can thus solve the CI problem in polynomial time. -.

6.1 Dual Staircases

We will prove that 2-t-trivial- morphism is NP-hard by a reduction from s-2-
trivial- morphism. First we need some notation. For a staircase S, let S◦ denote
the interior of S, and for a staircase module Ml supported on a staircase S, we let M◦

l
denote the interval module supported on S◦. Observe that there is a canonical injection
M◦

l ↪→ M (given by m ;→ m). It is also easy to see that ds(S, T ) = ds(S◦, T ◦). Here
ds for interiors of staircases is defined in the obvious way. The reason why we look
at interiors is technical: We eventually end up with a dual module (M◦)∗, and taking
interiors makes sure the changes in this dual module happen at given points instead
of “immediately after” the points, which is needed for a graded matrix representation
of the module.

Lemma 14 Let M and N be staircase decomposablemodules. There exists an injection
f : M → N with ε-trivial cokernel if and only if there exists an injection f ◦ : M◦ →
N ◦ with ε-trivial cokernel.

Proof Let M = ⊕i Mi and N = ⊕ j N j . Observe that S ⊆ T if and only if S◦ ⊆ T ◦.
Therefore, any morphism M◦

i → N ◦
j extends to a morphism Mj → N j in the obvious

way. Conversely, any morphism M → N restricts to a morphism M◦ → N ◦. It is not
hard to see that extension and restriction are inverse functions. In particular, there is a
one-to-one correspondence between morphisms f : M → N and f ◦ : M◦ → N ◦.

Suppose f ◦ is injective. For any point p, there exists a δ > 0 such that Mp→p+δ

and Np→p+δ are isomorphisms, which also gives f ◦
p+δ = f p+δ . Since f ◦ is injective,

f ◦
p+δ = f p+δ is, and by using the isomorphisms, we get that f p is injective, too. Since

p was arbitrary, we conclude that f is injective. The converse can be proved by using
the dual fact that for any p, there exists a γ such that M◦

p−γ→p and N ◦
p−γ→p are

isomorphisms.
Suppose that coker f is not ε-trivial, so there is a p and an m ∈ Np such that

Np→p+ε(m) is not in the image of f p+ε . Similarly to how we picked δ above, we can
pick δ and γ with δ ≤ γ in a way that makes the following diagram commute, with
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equalities and isomorphisms as shown.

M◦
p+δ M◦

p+ε+γ

Mp Mp+δ Mp+ε Mp+ε+γ

Np Np+δ Np+ε Np+ε+γ

N ◦
p+δ N ◦

p+ε+γ

= =

f p

∼=

f p+δ= f ◦
p+δ f p+ε

∼=

f p+ε+γ = f ◦
p+ε+γ

∼=

=

∼=

=

All the horizontal maps are internal morphisms. We know that Np→p+ε(m) ∈ Np+ε

is not in the image of f p+ε . Let m′ ∈ N ◦
p+ε+γ be the image of m along the maps in

the above diagram. Then m′ is in the image of N ◦
p+δ→p+ε+γ , but not in the image of

f ◦
p+ε+γ . Since (ε+γ )−δ ≥ ε, this shows that f ◦ is not ε-trivial. Again, the argument

can be dualized to show the converse. -.
For an interval I ⊆ R2, define the dual interval I ∗ as follows: (x, y) ∈ I ∗ if and

only if (−x,−y) ∈ I . And for an interval module Ml supported on I , let M∗
l denote

be the interval module supported on I ∗. If M = ⊕i Mi is a sum of interval modules
Mi , then M∗ = ⊕i (Mi )

∗. This is equivalent to considering M as a module indexed
by R2 with the partial order reversed.

Let M◦ = ⊕i M◦
i and N ◦ = ⊕ j N ◦

j , where M◦
i and N ◦

j are interval modules sup-
ported on interiors of staircases, and let f ◦ : M◦ → N ◦. Observe that we can represent
f ◦ by a collection of matrices {Ap}p∈R2 , where Ap is the matrix representation of f ◦

p
with respect to the bases given by the non-trivial elements of {(M◦

i )p}i and {(N ◦
j )p} j .

Similarly, for any p ≤ q, we can represent the linear maps M◦
p→q and N ◦

p→q by
matrices with respect to the obvious bases.

Importantly, representing f ◦
p by matrices Ap as above, we get a dual morphism

( f ◦)∗ : N∗ → M∗ given by the matrices {(A−p)
T }p∈R2 . This induces a bijection

between the set of morphisms from M◦ to N ◦ and the set of morphisms from (N ◦)∗

to (M◦)∗.

Lemma 15 f ◦ is an injection with ε-trivial cokernel if and only if ( f ◦)∗ is a surjection
with ε-trivial kernel.

Proof The first part is straightforward: the matrix Ap represents a surjective linear
map if and only if AT

p represents an injective linear map. Since ( f ◦)∗p = f ◦
−p, the

result follows readily.
For the second part, let p be any point in R2, and let X be the matrix represen-

tation of the morphism N ◦
p→p+ε with respect to the basis given by the N ◦

j ’s. Then,
by construction, XT is a matrix representation for (N ◦)∗−p−ε→−p (with respect to
the dual bases). Using the elementary fact that col(X) ⊆ col(Ap+ε) if and only if
ker(AT

p+ε) ⊆ ker(XT ), where col(X) denotes the column space of X , we conclude
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g1

g2

g3

r1

r2

I

y = �x

r
⇤
1 = �g1

r
⇤
2 = �g2

r
⇤
3 = �g3

r
⇤
4 = �r1

r
⇤
5 = �r2

g
⇤
1 = (�1, �1)

r
⇤
6 = (�1, (�g1)2)

r
⇤
7 = ((�g3)1, �1)

(I�)⇤

Fig. 5 The staircase module kI supported on the interval I admits a graded matrix representation with G =
{g1, g2, g3} and R = {r1, r2}. The module (kI◦ )∗ = k(I◦)∗ admits a (generalized) graded matrix represen-
tation with G∗ = {(−∞,−∞)} and R∗ = {−g1,−g2,−g3,−r1,−r2, (−∞, (−g1)2), ((−g3)1,−∞)}.
In the proof of Corollary 4, we may replace ∞ with z = 0 to obtain a proper graded matrix representation

that im(N ◦
p→p+ε) ⊆ im( f ◦

p+ε) if and only if ker(( f ◦)∗−p−ε) ⊆ ker((N ◦)∗−p−ε→p).
As p was arbitrary, this concludes the proof. -.

Corollary 4 2-t-trivial- morphism is NP-hard for all t ∈ [0,∞].

Proof This follows from the previous two lemmas and Corollary 3. There is however a
technical obstacle arising from the fact that (M◦)∗ and (N ◦)∗ have their generators at
grade (−∞,−∞). This problem is easy to solve, either by altering the graded matrix
representation to allow such a generator, or by placing all generators at a sufficiently
small value p ∈ R2 that is smaller than all corners of the staircase, see Fig. 5 for an
illustration. Introducing such a minimal grade does not invalidate any of the given
arguments—we omit the technical details. -.

6.2 Surjective Morphisms

After Corollaries 3 and 4, all we have left to prove Theorem 6 is the cases ∞-0-
trivial- morphism and 0-∞-trivial- morphism. Recall that these correspond to
asking for a surjection in the first case and an injection in the second.

Lemma 16 ∞-0-trivial- morphism and 0-∞-trivial- morphism are both NP-
hard.
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Proof Wewill only prove the first case; the second follows by dualizing the arguments
in an appropriate way, for instance by using dual staircases as above.

Recall that we have assumed F to be finite. Let q denote the number of elements
in F, and assume that φ is a 3CNF formula with n variables {x1, . . . , xn} and m
clauses {c1, . . . , cm}. We shall construct modules M = A⊕ B⊕ (⊕n

i=1⊕q
r=1 M

r
i ) and

N = N1 ⊕ N2, where Mr
i , A, B, N1 and N2 are staircase modules, in such a way that

there exists a surjection M → N if and only if φ is satisfiable. Importantly, we know
from Lemma 7 that any morphism between staircase decomposable modules can be
represented by a matrix with entries in F. We only stated the result in the case where
eachmodule is built from the same number of staircases, but the same argument shows
that a morphism M → N in this case is described by a 2 × (nq + 2)-matrix, which
we shall assume is ordered in the following way

A B M1
1 M2

1 · · · M1
2 · · · Mq

n( )∗ ∗ ∗ ∗ · · · ∗ · · · ∗ N1
∗ ∗ ∗ ∗ · · · ∗ · · · ∗ N2

Furthermore, recall that any staircase module is defined by a set of generators, i.e.,
a set of incomparable points defining the “corners” of the staircase. It is not hard to
see that a morphism M → N is surjective if and only if it is surjective at the all the
corners points of N1 and N2.

Let

D = {A, B, N1, N2}
⋃

i,r

{Mr
i }

and let S ⊆ R2 be a set of pairwise incomparable points. Any functionG : S → P(D),
where P(D) is the power set of D, specifies the modules in the decomposition of M
and N by enforcing that X ∈ D has a corner point at s ∈ S if and only if X ∈ G(s). In
what follows we shall define such a function G in four steps, and define the staircase
modules in D accordingly.

Let S = {a, b, gri , g
r ,s
i , hy,z,w

j } be a set of distinct incomparable points in R2,
where i, j, r , s, y, z, w run through indices which will be defined as we define G. In
the initial step, we define G(a) = {A, N1} and G(b) = {B, N2}. The addition of these
corners enforce that the matrix (in the ordering given above) must be of the form

(
1 0 ∗ . . . ∗
0 1 ∗ . . . ∗

)
.

This can be seen as follows: since a and b are incomparable, and a ∈ A while a /∈ N2,
we must have that N2 � A. Lemma 6 allows us to conclude that the only morphism
from A → N2 is the trivial one. Similarly we see that the morphism B → N1 must be
the trivial one. Furthermore, since Ma = Aa and Na = (N2)a , surjectivity at a implies
that A → N1 must be non-zero, which gives the non-zero entry in the first column.
We can multiply any column in the matrix with a non-zero element without changing
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the validity or surjectivity of the morphism, so we can assume that this element is 1.
Similarly we get a 1 in the second row of the second column.

We proceed our inductive step by defining G(gri ) = {A,Mr
i , N1, N2} for all 1 ≤

i ≤ n and 1 ≤ r ≤ q. Restricting the matrix to the columns corresponding to A and
Mr

i we get

(
1 ∗
0 ∗

)
.

For the morphism to be surjective at the point gri , this matrix must be of full rank.
Therefore, we can write it as

(
1 dri
0 1

)
,

where we again have used the fact that we can scale columns by non-zero constants.
In other words, any surjection M → N must be of the form

(
1 0 d11 . . . dq1 d12 . . . dq2 . . . d1n . . . dqn
0 1 1 . . . 1 1 . . . 1 . . . 1 . . . 1

)
.

Continuing, let G(gr ,si ) = {Mr
i ,M

s
i , N1, N2}, for all 1 ≤ i ≤ n and 1 ≤ r < s ≤ q.

Restricting the matrix to the columns corresponding to Mr
i and Ms

i yields the matrix

(
dri dsi
1 1

)
.

For thematrix to be surjective at gr ,si , also thismatrixmust be of full rank. In particular,
it must be the case that dri 1= dsi , and therefore exactly one of d

1
i , . . . , d

q
i equals 0. We

will interpret d1i = 0 as choosing xi to be false, and d1i 1= 0 as choosing xi to be true.
What remains is to encode the clauses of φ. For a clause c j , let xα j,1 , xα j,2 , xα j,3

be the variables such that either the variable itself or its negation occurs in c j , with
α j,1 < α j,2 < α j,3. For 1 ≤ i ≤ 3, let Xi

j = {1} if xα j,i occurs in c j ; if instead
its negation occurs, let Xi

j = {2, . . . , q}. For example, if c j = x1 ∨ ¬x2 ∨ ¬x4,
then α j,1 = 1, α j,2 = 2 and α j,3 = 4, and X1

j = {1}, X2
j = {2, . . . , q} and X3

j =
{2, . . . , q}. Define G(hy,z,w

j ) = {B,Mr
α j,1

,Ms
α j,2

,Mt
α j,3

, N1, N2}, for all 1 ≤ j ≤ m

and y ∈ X1
j , z ∈ X2

j , w ∈ X3
j .

This time, the following submatrix must have rank 2 for all hy,z,w
j with j, y, z, w

as above.
(
0 dy

α j,1 dzα j,2
dwα j,3

1 1 1 1

)
(5)

At this stage, we have concluded the construction of the modules and no further
restrictions will be imposed on the matrix. In particular, the above shows that there
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exists a surjection M → N if and only if there is an assignment dri ∈ F such that the
following is satisfied:

– F = {d1i , . . . , d
q
i } for all 1 ≤ i ≤ n.

– The matrix of (5) has full rank for every hy,z,w
j .

We show that this is equivalent to φ being satisfiable.
“⇒”: Assume that φ is satisfiable and pick a satisfying assignment. If xi is set to

false, then define d1i = 0. If xi is set to true, then define d2i = 0. In both cases, we
assign the remaining variables values such that F = {d1i , . . . , d

q
i } for all 1 ≤ i ≤ n.

Consider the clause c j as above, and assume that xα j,l is assigned a truth value such
that the literal associated to xα j,l in c j evaluates to true. Then d

y
α j,l 1= 0 for all y ∈ Xl

j ,
implying that the matrix of (5) has rank 2 for all hy,z,w

j .
“⇐”: Assume an assignment of the variables dri satisfying the two bullet points

above, and set xi to be false if d1i = 0, and true otherwise. Consider the clause
c j as above, and observe that there exists an index y ∈ Xl

j such that dy
α j,l = 0 if

and only if the literal in c j associated to xα j,l evaluates to false. In particular, c j
evaluates to true if and only if at least one of dy

α j,1 , d
z
α j,2

and dwα j,3
is non-zero for every

(x, y, z) ∈ X1
j × X2

j × X3
j . This is equivalent to the matrix of (5) having full rank for

every hy,z,w
j .

In the end, we have a reduction from 3SAT to ∞-0-trivial- morphism. To com-
plete the proof, we must show that the instance of ∞-0-trivial- morphism can be
constructed in polynomial time in the input size of the instance of 3SAT. As we have
assumed q to be fixed and finite, it suffices to observe that M is defined by nq + 2
staircase modules, while N is a sum of 2 staircase modules, and that each of these
are generated by at most 2+ nq + n

(q
2

)
+ m(q − 1)3 generators. We remark that the

generators can be chosen along the antidiagonal x = −y in R2. -.

An interesting point is that the number of generators of the staircases in the proof
increases with the size of F. Hence, the proof strategy only applies in the setting of a
finite field (with a constant number of elements).

We conclude this section by remarking that 0-∞-trivial- morphism is equivalent
to the problem of deciding if a module M ′ is a submodule of another persistence
module M . Interestingly, it can be checked in polynomial time if M ′ is a summand of
M [6, Theorem 3.5].

7 A Distance Induced by a Noise System

As a last application of our methods, we show that a particular distance induced by a
noise system is NP-hard to approximate within a factor of 2.

A noise system, as introduced by Scolamiero et al. [19], induces a pseudometric
on (tame) persistence modules. In this section, we shall briefly consider one particular
noise system and we refer the reader to [19] for an in-depth treatment of the more
general theory.
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We say that f : M → N is aµ-equivalence if f hasµ1-trivial kernel andµ2-trivial
cokernel, andµ1+µ2 ≤ µ. From this definition, we can define the following distance
between two persistence modules M and N

dnoise(M, N )

= inf{µ | ∃M f←− X
g−→ N , f an ε-equivalence, g a δ-equivalence and ε + δ ≤ µ}

The reader may verify that this distance coincides with the distance induced by the
noise system {Sε}where Sε consists of all persistencemodulesM with the property that
Mp→p+(ε,ε) is trivial for all p. In particular, dnoise is indeed an extended pseudometric
[19, Proposition 8.7].

Like for the interleaving distance, we can define the computational problem of
c-approximating d for a constant c ≥ 1.

c-Approx-dnoise: Given two persistence modules M , N in graded matrix repre-
sentation, return a real number r such that

dnoise(M, N ) ≤ r ≤ c · dnoise(M, N )

Theorem 7 c-Approx-d is NP-hard for c < 2.

Proof Let (n, P, Q) be a CI-instance and construct M and N as in Theorem 2. We
will show the following implications:

dI (M, N ) = 1 ⇒ dnoise(M, N 1) ≤ 2

dI (M, N ) = 3 ⇒ dnoise(M, N 1) ≥ 4.

This allows us to conclude that an algorithm c-approximating dnoise(M, N ) for c < 2
will return a number < 4 if dI (M, N ) = 1 and a number ≥ 4 if dI (M, N ) = 3. This
constitutes a polynomial time reduction from CI to 2-Approx-dnoise and the result
follows from Theorem 1.

First assume that dI (M, N ) = 1. Let X = M with f : X → M the identity
morphism. Lemma 11 shows that the interleavingmorphism g : M → N 1 has 2-trivial
cokernel, and from Lemma 13 we know that it is injective. Hence g is a 2-equivalence
and thus dnoise(M, N 1) ≤ 2.

Now assume that dnoise(M, N 1) < 4. By definition this gives a diagram M
f←−

X
g−→ N 1 where f is an ε-equivalence, g is a δ-equivalence, and ε + δ < 4. We may

assume that both f and g are injective. To see this, consider x ∈ ker( f p). Because f
is an ε-equivalence, ker( f ) is ε-trivial, so X p→p+(ε,ε)(x) = 0. This gives

0 = gp+(ε,ε) ◦ X p→p+(ε,ε)(x) = N 1
p→p+(ε,ε) ◦ gp(x).

Since N 1
p→p+(ε,ε) is injective, we conclude that gp(x) = 0. This shows that ker( f ) ⊆

ker(g), and by symmetry, that ker( f ) = ker(g). Replacing X with X̃ = X/ ker( f )
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induces injective morphisms M
f̃←− X̃

g̃−→ N 1 with the properties that f̃ is an ε-
equivalence and that g̃ is a δ-equivalence. Hence f and g may be assumed to be
injective.Under this assumption,we get the following two inequalities fromLemma12

dI (M, X ε/2) ≤ ε/2

dI (N 1, X δ/2) ≤ δ/2.

Observe that dI (N 1, X δ/2) = dI (N 1−δ/2, X) = dI (N 1+(ε−δ)/2, X ε/2). Together with
the first inequality, this gives dI (M, N 1+(ε−δ)/2) ≤ (ε + δ)/2, and thus

dI (M, N ) ≤ dI (M, N 1+(ε−δ)/2)+ dI (N 1+(ε−δ)/2, N )

≤ (ε + δ)/2+ (1+ (ε − δ)/2) = 1+ ε.

To conclude the proof, wewill show that δ ≥ 2, as this implies 1+ε < 1+4−δ ≤ 3.
Assuming that n ≥ 1, let p be such that dim Np > 0 and dim Mp+(r ,r) = 0 for all
r < 1. Such a point exists for the following reason: let Mi be any indecomposable
summand of M and let N j be any indecomposable summand of N . Then Mi is a
staircase module for which the underlying staircase is obtained by moving certain
corners of the staircase S in Fig. 2. Likewise, the staircase supporting N j is obtained
by moving certain corners of T . However, by construction, and as shown in Fig. 3, a
number of corners are left unmoved. Hence, we may simply choose p to be any corner
point of T with negative 1st coordinate which is left unmoved in the construction of
N j .

Let q = p − (1, 1). Then dim N 1
q > 0 and dim Mq+(r ,r) = 0 for all r < 2. But

since f is an injection, the space Xq+(r ,r) must also be trivial for any r < 2. It follows
that δ ≥ 2. -.

8 Conclusion

Using the link between persistence modules indexed over R2 and CI problems intro-
duced in [4], we settle the computational complexity of a series of problems. Most
notably, we show that computing the interleaving distance is NP-hard, as is approx-
imating it to any constant factor < 3. Moreover, we investigated the problem of
deciding one-sided stability. Except for checking isomorphism, which is known to be
polynomial, we show that all non-trivial cases are NP-hard. This includes checking
whether a module is a submodule of another. Our assumption that we are working
over a finite field stays in the background for most of the paper, but we rely heavily on
this assumption for proving the submodule problem. Lastly, we showed that approx-
imating a distance d arising from a noise system up to a constant less than 2 is also
NP-hard.

Throughout, we use persistence modules decomposing into very simple modules
called staircase modules. These have the big advantage that the morphisms between
them have very simple descriptions in terms of matrices. While this simplification
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might appear to throw the complexity out with the bathwater, our results clearly show
that this is not the case.

The question of whether c-Approx- Interleaving- Distance is NP-hard for
c ≥ 3 is still open, and it is not clear whether one can prove this with CI prob-
lems or not. Even if this should not be possible, we believe that a better understanding
of CI problems would lead to a better understanding of persistence modules and inter-
leavings.
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A conjecture

The idea of representing interleavings as pairs of matrices is a theme running through all the papers. In
the first, it is applied in the setting of stability, and in the other two, the setting is complexity. In Section 6
of Paper I and in the end of Section 4 of Paper III, we allude to a connection between stability of staircase
decomposable modules and the complexity of approximating dI . The purpose of this note is to elaborate
on this connection.

The connection takes the form of a conjecture. It ties the papers in the thesis neatly together, as a
corollary of the conjecture is a statement of stability that would strengthen the main theorem in Paper I to
the point where it cannot be improved, while it also puts the finger on the problem of improving the constant
in the main theorem in Paper III. Still, I must admit that perhaps my main motivation for including this
note is simply that I think it is a really neat problem regardless of applications. Like many good problems,
it is easy to state, but, at least in my experience, surprisingly hard to solve.

1 The conjecture and its connection to interleavings

Let P = (n, P,Q) be a CI problem and GP the directed graph on {a1, . . . , an, b1, . . . , bn} with an edge from
ai to bj if Pi,j 6= 0 and an edge from bi to aj if Qi,j 6= 0. Let G be the undirected graph on the same set of
vertices with an edge between ai and bj if they are contained in the same directed cycle of length at most 4.

Conjecture 1. If (n, P,Q) has a solution, then G has a matching.

The following lemma and corollary explains the link to interleavings. We assume that M and N are
staircase decomposable modules.

Lemma 1. If (n, P,Q) is associated to the pair (M,N) and G has a matching, then there is a 3✏-matching
between B(M) and B(N).

Proof. Suppose G has a matching, and ai is matched with bj . Then there is an edge ai ! bj and a path
bj ! ai0 ! bj0 ! ai, or a path ai ! bj0 ! ai0 ! bj and an edge bj ! ai in GP . In the first case,
there is a nonzero morphism Mi ! Nj(✏) and nonzero morphisms Nj ! Mi0(✏) ! Nj0(2✏) ! Mi(3✏)
whose composition is also nonzero. Thus, the matching in G describes a 3✏-matching between B(M) and
B(N).

The following is a corollary of the conjecture and lemma above.

Corollary 2. If M and N are ✏-interleaved, there is a 3✏-matching between B(M) and B(N).

This is a statement about stability: It says that for staircase decomposable modules M,N ,

dB(B(M), B(N))  3dI(M,N)

holds. Presumably, this implies the same inequality for rectangle decomposable modules, though the pres-
ence of small rectangles makes this case slightly di↵erent.

Corollary 3. The interleaving distance between staircase decomposable modules can be 3-approximated in
polynomial time.

Proof. One can compute dB(B(M), B(N)) in polynomial time, and Corollary 2 shows that this is a 3-
approximation of the interleaving distance, as dB(B(M), B(N)) 2 [dI(M,N), 3dI(M,N)].
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The next natural question would then be what the situation looks like for general multi-parameter

modules. Could it be possible to 3-approximate the interleaving distance between them in polynomial

time? If, on the other hand, one can find counterexamples to the conjecture, that could open the door to

strengthening the results in Paper III.

2 Discussion

One way of viewing the conjecture is the following. Assume you have a bipartite directed graph on n + n
nodes. On one hand, you can view the two sets of nodes as close if they allow a bijection pairing up nodes

that are contained in the same short cycle. On the other hand, you can view them as close if there is an

invertible n⇥n matrix A such that A and A�1
are nonzero only in the places given by the graph. Are these

notions of closeness roughly the same?

Now, matchings and invertable matrices are simple enough concepts, but here combinatorics and algebra

interact in a way that seems to cause both purely combinatorial and purely algebraic arguments to fail.

Whether or not this problem is relevant for TDA, I find this phenomenon very interesting on a purely

mathematical basis. If the conjecture is true, it would in my opinion be a fascinating theorem.

The parallel to persistence is of course that the first notion of closeness corresponds to matchings and

dB , while the second corresponds to interleavings through CI problems. The counterexample in Paper I

where dB > dI shows that the equality in the algebraic stability theorem is an accident of the geometry of

R rather than a universal statement about the relation between dB and dI . The conjecture asks if a weaker

relation still exists when we remove all geometric restrictions, and the only assumption is that the modules

decompose into summands such that the morphisms between them are nice enough.

In Paper II, we observed that solvability of CI problems sometimes depend on the characteristic of the

field we are working with. Thus, it is not clear whether the truth of the conjecture depends on the field or

not.
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