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Preface

This thesis has been prepared at the Department of Industrial Eco-
nomics and Technology Management at the Norwegian University of
Science and Technology (NTNU) for the defense of the Doktor Ingeniør
degree. The work has been conducted during a four year period from
January 2000 to February 2004. Stein W. Wallace has been the thesis
advisor and Stein-Erik Fleten has been the co-advisor. The project
has been founded by the Norwegian Electricity Industry Association
(EBL) and the Research Council of Norway (NFR).

The main goal of this doctoral project has been to analyze how re-
tailers and network operators would behave in a situation where the
end-users have their electricity consumption metered by the hour. The
focus has been on the Norwegian market, but some of the work may
be useful for analysing similar situations in other countries as well.
During the about four years that I have been working with this thesis,
there have been many late nights at the office, many periods during
which I have been frustrated because I felt I was getting nowhere and
many hours of doubt whether it was a wise choise to commence doc-
toral studies. Fortunately, however, these doubts came after a couple
of years, and then it was too late for second thoughts. Looking back
today, I am really happy that I went through this. Not many people
get the chance to spend four years working with only those problems
that they find interesting. Also, now that my thesis is finished, and I
see the concrete result of those four years of work, the negative things
are almost forgotten and the doubts are gone.

I am very grateful for the excellent supervision from Stein W. Wallace.
As it turned out, we have been based far away from each other most
of the time, and I think this has been an extra challenge for both of
us. I have learned that even modern solutions for communicating over
distances can never fully compensate for the benefits of meeting face
to face. Fortunately, however, I have had the chance to visit him at
his workplace in Molde many times during the last two years. I have
really apprechiated that Stein has given high priority to the supervi-
sion of my work on my every visit in Molde. Stein has always provided
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quick, thorough, and most insightful feedback on my work, as well as
general guidance and good advice, whenever needed. He is a great
supervisor and a very interesting discussion partner. I would also like
to thank him for giving me the opportunity to take a doctoral degree
on a very interesting problem.

I would also like to thank my co-supervisor Stein-Erik Fleten for valu-
able help and many interesting discussions. I have benefited greatly
from Stein-Eriks knowledge on, and experience in working with, elec-
tricity related problems.

In 2001, I visited the Departmend of Engineering Science at the Uni-
versity of Auckland in New Zealand for almost a full year. During
my stay, I had the pleasure of getting aquainted with Professor Andy
Philpott, with whom I have been working closely both during my stay
in Auckland and afterwards. As this was rather early in my doctoral
studies, I had not done much research before I came to Auckland.
Therefore, Andy’s supervision has been very important for my work,
which should be apparent from the fact that he has co-authored three
of the papers that are included in this thesis. In addition, he has
given valuable advice on Paper 1, which is singly authored. I am most
grateful for his profound supervision, as well as his contribution to
making the time in New Zealand enjoyable, both for my wife, Maria,
and myself.

I would also like to thank the rest of the staff at the Department of
Engineering Science for their hospitality. A special thanks to Mike
O’Sullivan (Snr), who provided valuable inputs on thermodynamics
for Paper 1.

I have been a very privileged doctoral student. Due to the generous
funding from EBL and NFR, I have had the opportunity to attend
several academic conferences around the world. Such conferences are
very inspiring, because they provide an opportunity to meet colleauges
from all over the world, and not least to see new places. I am most
grateful for the funding, and I would hereby like to thank NFR and
EBL for funding this project. A special thanks to those of EBL’s
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member firms that have contributed the most. It is really inspiring to
experience that the industry sees some value in funding research. Arne
Utne has been my champion within EBL. He has always provided swift
replies to any question that I may have had, and he has given me the
chance to contribute to industry conferences that EBL has arranged.
I am thankful for the work he has done administrating my project. I
would also like to thank his predecessor, Knut Ola Aamodt.

During my time as a doctoral student, I have had the chance to work
closely with representatives from the electricity industry. Getting some
industry experience has helped me putting my work into context. It
has been very inspiring. I would like to thank Glenn Grøtheim at
Trondheim Energiverk’s (TEV) trading division for providing me with
an office space at TEV, to which I was welcome whenever I wanted
to get some variation from my work at the university. Grøtheim has
also functioned as the head of my project’s steering committee, and
I have really apprechiated his enthusiasm for my project. At TEV
I was working closely together with Bjørn Hjulstad. I thank him for
giving me interesting and challenging tasks. Also, thanks to the rest of
the staff at TEV’s trading division for their hospitality and for always
being willing to answer my many questions.

I would like to thank Arnvid Sylte at TEV’s network operator divi-
sion for always being willing to answer any questions I might have
had about network operation, and for providing feedback on my work.
Three years ago I was working with energy economising for two weeks
together with Jon Olav Hafsmo, also at TEV’s network operator divi-
sion. Thanks to him for making those two weeks interesting.

I was also working for Fjordkraft in Bergen for two weeks in the
autumn of year 2000. I would like to thank Johannes Gjesdal and
Arnstein Flaskerud for inviting me there, and for organizing my stay.
While in Bergen, I got to know Petter Brunvold, with whom I have had
many interesting discussions since then. I have very much apprechi-
ated the insight about electricity markets in general, and electricity
retail business in particular, that he has provided me with during these
discussions.
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Nils Jacob Berland possesses a lot of knowledge about hourly meter-
ing and two-way communication. I would like to thank him for many
valuable and interesting discussions.

I would like to thank all my colleges at the department in Trondheim,
and I would especially like to thank my good friend and office-mate
Bård Karsten Reitan for many fruitful discussions. Also, thanks to our
departmental secretaries, Guri Andresen and Jorid Øyen, for always
being helpful and supportive.

Finally, I would like to thank my wife, Maria, for her support. In
particular, her support during the laborious final weeks of writing has
been very much apprechiated. I have had to leave Trondheim quite
often to go to conferences and to Molde. Being away from my wife so
much has been very difficult sometimes, and I am really thankful for
her understanding. I am also grateful for her taking a year off to go
with me to New Zealand.

Any errors in the thesis are, of course, entirely my responsibility.

Trondheim, February 13, 2004.

Erling Pettersen
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1 Introduction

Over the past couple of decades, electricity markets across the world
have been deregulated. When the electricity systems were being devel-
oped, governments exercised extensive control over the industry to en-
sure reliable services. Today, most of the basic investments have been
carried out, and more and more countries have chosen to let mar-
ket mechanisms regulate the electricity systems. Different countries
have, however, approached the deregulation in different ways. While
production of electricity is subject to competition in all deregulated
markets, there are differences as to how the wholesale markets and
end-user markets are organized. An overview of energy optimization
models dealing with uncertainty in both regulated and deregulated
electricity markets is found in [5].
The primary focus of this thesis is to analyze how participants in the
Norwegian electricity market would behave in a situation where the
consumers are metered and charged by the hour. The thesis includes
five papers, preceded by an introduction. The current part provides a
background for the papers and puts them into a common framework.
Another purpose of the background part is to point out the scientific
contributions of the thesis, which, as we shall see, primarily lie in the
application of known methods to new problems.
In Section 2 of the background part a description of the Norwegian
electricity market is provided. The section starts with a very brief
overview of when and why the market was opened up for competition.
Next, we give a description of the wholesale market, with some em-
phasis on the regulating market (Section 2.1). The end-user market
is the primary subject of this thesis, and an overview of this market
is given in Section 2.2. Today Norwegian end-users are normally not
metered and charged by the hour, as will be apparent from Section 2.2,
but if they were, it is likely that this would induce more short-term
flexibility in the end-user market. In Section 3 we give a brief overview
of how hourly metering, coupled with some sort of two-way communi-
cation, may help achieve this. Also, we discuss some potential effects
of such flexibility for consumers, retailers, network operators, environ-
ment and society (Section 3.2). Finally, in Section 4, we look at two
alternative ways of making the end-users alter their load profiles, and
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discuss pros and cons of the two solutions.
Each paper includes its own introduction, and for an overview of the
contents of the papers, we refer to these.

2 The Norwegian electricity market

Norway was among the first countries to deregulate its electricity mar-
ket. The deregulation was initiated with the passing of the Energy Act
in 1990, and this act was effective as of January 1st 1991. The dereg-
ulation came about for two main reasons. Firstly, the legal frame-
work was spread over a large number of laws, and a simplification of
this legal framework was desired. Secondly, the previous regime had
resulted in overinvestment, and the deregulation was intended to im-
prove efficiency and profitability in the electricity sector. More on the
deregulation of the Norwegian electricity market can be found in [4]
and [15].
In the Norwegian market, production, transmission and retail of elec-
tricity have been split into three different business areas, and each
category of firms has its specific role in the market. We refer to the
introduction of Paper 2 in this thesis for a brief overview.

2.1 The wholesale market

The wholesale market is built up around Nord Pool, which is an elec-
tricity exchange that provides a spot market and a transparent ex-
change for electricity derivatives. Nord Pool was established in 1993
as a pure Norwegian market. Today, however, Nord Pool serves as
a common electricity exchange for Denmark, Finland, Norway and
Sweden, and these countries now form an integrated wholesale market
where any producer in any country may deliver electricity to the entire
region. The Nordic market has a large share of hydro plants1, giving a
mix of production technologies that provides great flexibility in terms
of exchange.

1Norway has 99% hydro power, Sweden 48% and Finland 22%. Denmark has
no hydro power.
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The day-ahead market

All participants in the spot market at Nord Pool, that is all producers
and retailers in the Nordic market, must submit their bids for sale and
purchase of hourly contracts and block contracts covering all 24 hours
of the next day. An hourly bid is a sequence of price/volume pairs for
each specified hour while a block bid is an aggregated bid for several
consecutive hours with a fixed price and volume. The bids must be
submitted by noon on the day before delivery, and the hourly prices
for the next day are published by Nord Pool at 3pm.
After receiving the bids, Nord Pool will develop a supply curve and
a demand curve for each hour by aggregating all bids. The point at
which the supply curve and the demand curve intersect will determine
what is called the system price, as depicted in Figure 1. The system
price is the theoretical price obtained if there were no transmission
bottlenecks within the region.

Figure 1: System price determination. Source: [3].

Sometimes the system price will lead to bottlenecks in the transmission
grid. To handle such a situation the market has been divided into a
pre-determined number of bidding areas. If there are problems with
the transmission capacity between these areas, price mechanisms are
used to relieve the bottlenecks. In areas where the demand cannot be
met at the system price, the price will increase while the price will
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decrease in areas with excess capacity. The spot price in each area is
the system price adjusted for bottlenecks. Finland and Sweden each
form single price areas. If transmission capacity constraints occure
within the countries, the system operators solve the situation by using
counter-trade. In Norway, line congestions are solved by dividing the
country into pre-determined bidding areas, also called zonal pricing.
In Denmark, there are two bidding areas, but they are not directly
connected. Within each of those areas, the Danish system operator
uses counter-trade to handle grid congestions. We refer to [2] for a
discussion about different approaches to handling grid congestions.
The spot prices vary significantly between seasons, and as depicted in
Figure 2, prices are typically higher in winter than in summer. Since
electricity is the main energy source for space heating in Norway, the
demand for electricty is much higher in winter than in summer. Also,
fluctuations in inflow to the hydry reservoirs put the supply under
pressure in the winter season. The increased demand coupled with
the increased strain on supply make prices higher in winter than in
summer. These effects were particularly extreme during the winter
of 2002 and 2003, when low precipitation during the summer and the
autumn preceeded a cold and early winter.

Figure 2: Average monthly spot prices in Oslo region in NOK/MWh.
Source: [3]
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The hourly spot prices may also vary significantly during one day.
At night the demand for electricity is low, and a high share of the
consumption may be generated by the cheapest generation sources.
Normally, this means hydro power, but during periods of low reser-
voir levels, thermal plants may be the least expensive. At daytime,
however, demand increases, and production from the more expensive
plants is needed. The prices tend to peak at the start of the business
hours at 8am and around 6pm when the residential end-users switch
on their TV-sets and do the dishes after dinner. In Figure 3 four daily
spot price patterns from the Oslo region are depicted. We observe
that the intra-day prices may vary significantly some days, while the
price patterns are flatter on other days. The intra-day variations tend
to be more extreme in winter than in summer.
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Figure 3: Four daily spot price patterns in Oslo region.

The regulating market

We have seen that Nord Pool is a day ahead market, and the spot
prices are in reality forward prices that are calculated based on the
expected consumption the next day. It is, however, not possible to
know exactly the consumption one day ahead. Especially in Norway,
where most buildings use electricity for space heating, the electricity
consumption is highly dependent on weather, which is intrinsically
random. Hence, the system operators need some tool to handle real-
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time imbalances between supply and demand. The different countries
have different systems for handling this, but here we will have a brief
look at the regulating market, which is the system used in Norway. In
[12] an econometric analysis is used to model the regulating market
prices. This is one of the few published articles that analyze this
market.
In the regulating market, those who are able to increase or hold back
production if required, submit regulating bids before 7:30pm on the
day before dispatch is to take place. Since the regulating market is
supposed to treat real-time imbalances, the bidders are allowed to
change their bids down to two hours before delivery. The majority of
bidders in this market are producers2. About than 99% of Norwegian
electricity production comes from hydro power, and hydro stations
are able to alter their production level at very short notice. This
is necessary, because participation in the regulating market requires
the bidders to be able to increase or shut down production on fifteen
minutes notice.
The producers submit bids for up-regulating power and for down-
regulating power. As for the bids in the spot market, the regulating
market bids are sequences of price/volume pairs. When submitting
an up-regulation bid, the producer obliges himself to increase produc-
tion by certain amounts at certain prices. Up-regulation power must
be offered at a higher price than the spot price. Submitting down-
regulation bids, means that the producer agrees to decrease produc-
tion by certain amounts at certain prices. A down-regulation bid does,
indeed, mean that a producer is willing to buy back some of the elec-
tricity he has sold into the spot market. Down-regulation power must
be offered at a lower price than the spot price.
If the actual consumption of electricity in a certain hour within a spot
price area3 is higher than the consumption dispatched in the spot
market, the market is regulated upwards. This is called up-regulation.
In the opposite situation, when the actual consumption is lower than
dispatched in the spot market, we get down-regulation. If the actual

2In addition, some large industrial enterprices submit regulating bids, if they
are able to shut down production on short notice. By doing so, they make more
power available in the market.

3The regulating price areas are the same as the spot price areas.
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consumption is equal to, or very close to, the anticipated consumption
we get no regulation.
It is important to notice that during hours of up-regulation the regulat-
ing price is always, and for all participants, higher than the spot price.
If there is down-regulation, the regulating price is always, and for all
participants, lower than the spot price and if there is no regulation the
regulating price is always, and for all participants, equal to the spot
price. In some countries, e.g. Sweden and Denmark, there is quoted
one price for up-regulating power and one price for down-regulating
power, but in Norway only one regulating price is quoted each hour in
each of the price areas. The regulating price is published a couple of
hours after dispatch, when the actual consumption is known.
The retailers are passive participants in the regulating market, because
they are not able to make their consumers change their consumption
on short notice4. If a retailer’s customers during one hour consume
less electricity than the amount ordered by the retailer in the spot
market, then the retailer must sell the surplus into the regulating
market, whether he likes it or not. On the other hand, if his customers
use more than anticipated, he is forced to purchase the deficit in the
regulating market.
As mentioned, it is the consumption observed within one entire area
that determines whether the market is up-regulated or down-regulated.
Hence, the retailers within one area will, in total, lose money if the
market is regulated either way. This happens, because if the total
consumption in the area is higher than the volume dispatched in the
spot market, the regulating price is higher than the spot price, which
means that the retailers must buy electricity at a price that is higher
than they would if they had estimated consumption correctly. On the
contrary, if the total consumption is lower than the spot market dis-
patch, the regulating price is lower than the spot price, meaning that
the retailers must sell power into the market at a price below the spot
price, (at which they bought the power). This also incurs a loss to the
retailers.
It is important to understand that even though the market as a whole

4Experiments are currently being made where retailers submit bids to the reg-
ulating market. To do so, they must be able to cut the supply from some of their
customers on short notice.
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is, say, up-regulated, an individual retailer may still be down-regulated.
This will happen if a retailer has overestimated the consumption of his
consumers while the aggregated consumption estimate of all retailers
in the area is underestimated (and vice versa for down-regulation). If
this happens he must sell the excess consumption into the regulating
market, and since the market is up-regulated, he receives a price that
is higher than the spot price. This, in turn, means that the retailer
makes a profit by selling at a higher price, some electricity that is
bought at the spot price. Hence, an individual retailer may make a
profit in this market, but on average retailers will suffer losses in the
regulating market.
This discussion indicates that there may be opportunities for retailers
to speculate in the regulating market by deliberately ordering more
or less power in the spot market than they expect their customers
to consume. If they believe that they are better than other retailers
at guessing the direction of regulation, they could try to make extra
profits by doing this.
In Paper 4 we study conditions under which it would actually be op-
timal for the retailer to speculate like this. The main scientific con-
tribution of this paper is the modeling of demand-side behaviour in
day-ahead electricity markets and the identification of conditions un-
der which it is optimal for the retailer to speculate. On Nord Pool,
the financial contracts are written on the spot price, and not on the
regulating price. Thus, to maintain an efficient contract market, the
prices and volumes dispatched in the spot market should as far as
possible reflect the true conditions of the power system. Due to this,
the Norwegian system operator, Statnett, prohibits demand-side spec-
ulation in the regulating market, and require that the retailers order
their expected demand in the spot market. At the time of bidding,
the actual consumption is however random, and it may be rather dif-
ficult for Statnett to assess whether or not a retailer has submitted an
inaccurate bid on purpose. If consumers become more price-flexible
in the short run, e.g. due to hourly metering getting more common
(see Section 3), such a judgement may be even more difficult to make.
The findings in Paper 4 suggest that the day-ahead structure of the
wholesale market may be problematic.
Another scientific contribution of Paper 4 is a new application to the
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recently developed concept of a market distribution function (see [1]).
While Paper 4 takes a rather theoretical approach to the problem of
a retailer optimizing his bidding curve in an electricity market with
a day-ahead structure, a more direct approach is taken in Paper 5.
Today, as will be explained Section 3, demand is almost totally inflex-
ible with respect to intra-day price variations. Therefore, the retailers
normally do not bother to submit demand bids to Nord Pool that are
price flexible. Instead, they simply bid a single volume that they agree
to buy at any price (with volume on the horizontal axis, they bid a
vertical curve). If the demand becomes price-flexible in the short run,
this may change. In Paper 5 we develop a model that derives opti-
mal offer stacks for a price-taking retailer whose customers’ demand is
price-flexible in the short run. The scientific contribution of this paper
is the application of optimization methods on a new type of problem.

2.2 The end-user market

As part of the Energy Act of 1990, all end-users were allowed to have
their electricity delivered by any retailer. During the first years af-
ter the deregulation, however, they were charged a fee for changing
retailer, making it economically meaningful only for large consumers.
Also, each retailer had to pay a fee to the local network operator in
each area to which it delivered power, which made it less attractive
for retailers to compete for customers away from their home market.
The fees paid by the consumer and the retailer were to cover the ad-
ministrative costs of the network owner, who had to deal with several
retailers instead of just one like earlier. From 1997, however, new leg-
islation made it possible for all end-users to change retailer at no cost.
The administrative costs were from then on covered by the consumers’
local network owners. This gave a slight increase in the network fees,
but competition between the retailers was enhanced to the benefit of
the end-users.
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Figure 4: The residential customers and their suppliers. Source: [10].

From Figure 4, we clearly see how the liberalization of the end-user
market has enhanced competition in the residential market, as it has
become increasingly common for residential customers to change re-
tailer. The light bars to the left show the number of customers buying
power from a different retailer than the one dominating their area. The
darker bars to the right show the number of residential customers that
changed retailer during the quarter. (We have used the word retailer
instead of supplier throughout the thesis). Before 1997, few residen-
tial customers were served by a different retailer than their local one.
Since the legislation was passed in 1997, the number has increased
every quarter, and the overall increase over the years is substantial.
The increase in this number within each quarter is, however, smaller
than the number of customers changing retailer within the quarter.
In Norway, there is more than two hundred retailers (according to [14]).
Though not all of those retailers serve consumers nationwide, this has
lead to the end-user market being characterized by fierce competition.
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The competition is further enhanced by the invariable focus on elec-
tricity prices by the news media. As a result of this, the retailer’s
profit margins are generally low.

Metering and pricing of end-users

The end-users’ consumption meters are normally read every two or
three months to find the accumulated consumption over the period.
The invoice for this consumption consists of two parts: The first is the
transmission fee to the local network operator, and the second part
of the invoice is the electricity payment, which is paid to the retailer
according to whatever contract the customer has entered into with the
retailer. For residential customers and small businesses, the transmis-
sion fee is normally charged in NOK/kWh, that is they are charged
by energy consumption. Larger customers are sometimes charged both
by peak load and energy consumption. The retailers always charge by
energy consumption.
The end-users may choose from a handful of different contracts. The
most risk averse consumers may prefer a fixed price agreement, under
which the price is fixed for a long period of time, normally one, two
or three years. This removes the risk of price movements for the con-
sumer, but because risk is being priced in the market, the expected
cost of such a contract is higher than for contracts with variable prices.
An example of a variable price agreement is the so-called standard
variable tariff, which is the most common agreement for residential
end-users. Under such an agreement the retailer may change the price
on two weeks notice. Hence, this contract provides some security to-
wards short-term price movements for the end-user. However, this
safety may be somewhat illusionary since two weeks is a relatively
short notice. Consumers who are willing to be fully exposed to the
wholesale market risk may choose a spot price contract, under which
the end-user pays the average spot price over some period, typically
one month, plus a mark-up. The size of the mark-up varies among
the retailers. Since this contract gives the highest risk, it also gives
the lowest expected costs. A special type of spot price contract is the
price-ceiling contract, where the consumer pays the spot price plus a
mark-up, but never more than a pre-determined price.
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When consumers are metered every two or three month, the values
obtained only show the total amount of energy consumed over the
period, but they do not give any idea of the consumers’ load profile
within the period. If the end-user is on a spot price contract, or some
other contract where the price varies within the three months5, then
the retailer would, however, like to know howmuch energy is consumed
between price changes that have occurred during the period. This is
estimated by utilizing the fact that each network node is equipped with
meters capable of measuring the energy sold at that specific node, hour
by hour. Then the assumption is made that all consumers connected
to that node have the exact same load profiles. This means that
if the average consumer in one area has a high consumption peak
between 5pm and 6pm, it is assumed that all consumers in the area
have a consumption peak in that hour. We say that the consumers are
invoiced due to their adjusted load profile (ALP). ALP also determines
the estimated profile on a weekly basis, monthly basis, or whatever
time span that is relevant to the end-user’s contract.
Usually hundreds of consumers are connected to the same node. This
means that the profile of one single consumer has almost no impact
on the total load profile at the node. Hence, with this way of metering
consumption, the consumers have no incentives to shift load from peak
to off-peak periods, even if they are on a pure spot price contract.

3 Short-term flexibility in the end-user
market

Since the end-users are metered only a few times a year, and then
charged based on their accumulated consumption during the period,
the only way for end-users to save money, except from switching re-
tailer, is by reducing their total electricity consumption. Hence, the
incentive structure in the end-user market is directed only towards the
energy consumption.
We have seen though, that the prices in the wholesale market vary

5About 70 − 75% of Norwegian residential consumers have a variable price
contract of some kind.
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by the hour, and this suggests that capacity is a scarce resource that
is being priced in the market. Because of the way consumption is
metered today these short-term price signals in the wholesale market
are not visible to the end users, and the end-users have no incentives
to alter their load profiles according to the intra-day (or even intra-
week or intra-month) price profiles. Rather, they actually do have
such incentives. A somewhat bizarre effect of the ALP concept is that
a well-informed end-user would understand that she should use more
electricity while prices are high, and less while they are low, at least
if she is connected to the same node as a high number of consumers.
The end-user will, as mentioned, have almost no impact on the load
profile at the node, so she will not lose anything by using a lot of
electricity while it is cold, and the market places high value on energy,
and rather save while prices are low. Her adjusted load profile will not
become worse from this, but she may still benefit from higher comfort.
In other words, short-term flexibility has no value for the end-users.

3.1 Hourly metering and two-way communication

To provide the end-users with proper incentives to alter their load
profiles according to the price variations in the wholesale market, one
would need to meter consumption differently. In many countries, me-
tering devices that distinguish between peak and off-peak consumption
are common. With such a system retailers and network operators may
offer two-part tariffs and thereby, at least to some extent, move con-
sumption away from time periods with potential capacity problems.
In Paper 1, we refer to a range of studies on two-part tariffs, and they
generally suggest that consumers are willing to alter their load profiles
if incentivised to do so.
One drawback of the peak/off-peak metering devices is that they too
are read only a few times a year. Hence, retail prices will normally
not change from day to day, and the worst price peaks will still not be
visible to the consumers. A more sofisticated solution than two-part
tariffs would be to offer prices that vary according to the wholesale
market variations. To make the price signals in the wholesale market
visible to the end-users, and thereby provide them with incentives to
react properly to these price signals, one would need to install metering
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devices that measure consumption with the same time resolution as
the trading periods in the wholesale market. In the Nordic market
this would require hourly metering.
Today, consumers with an annual consumption of more than 400, 000kWh
are required to be hourly metered6, while smaller end-users may choose
to be hourly metered. The cost of hourly metering equipment is (cur-
rently) too high in comparison to the potential economic savings, how-
ever, and therefore, rather few small end-users find it worthwhile. The
share of consumers with hourly meters is likely to increase as the nec-
essary equipment gets cheaper.
For hourly metering and pricing to have any purpose, the retailers and
network owners need some medium to inform their customers about
the hourly prices, plus some way of receiveing consumption data from
them. This would require two-way communication between the util-
ities and the end-users. Often, when the term two-way communica-
tion is mentioned, people in the industry think of automated, perhaps
Internet-based, solutions that enable them to submit prices to the
consumers, and receive consumption data from the end-users in real
time. Such a solution would clearly be the most efficient way of util-
ising the possibilities that may arise from hourly metering, because it
would enable the utilities to change prices whenever the state of the
power system suggest that it be necessary. The infrastructure for ex-
change of information between the utilities and end-users in real-time
is currently not in place, however, and the cost of developing such a
system solely to control load profiles would probably by far outweigh
the gains. The utilities may want to wait for sufficient infrastructure
to be built by other service providers, like broadband providers, or
they may build the infrastructure themselves with a view to utilize it
to provide a broader range of services to their customers.
Also, for this system to be efficient the end-users must be able to
quickly respond to updated prices. Only large industrial enterprices
are likely to find it cost efficient to employ personell to monitor price
signals and take action according to them. For residential end-users,
the savings would be too small to justify the cost of manually mon-
itoring prices all along. Some years into the future, it may become

6The limit is about to be decreased to 100, 000kWh.
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common for end-users to have fully automated solutions, so called
smart-houses, installed in their homes to take care of this. Today,
however, this is far from common, although it does exist. Currently
smart-house solutions are far too expensive to justify the potential
savings on the electricity bill, and they will perhaps always be. Smart-
houses could, however, provide a range of services that make life easier
for the owner, in addition to energy usage control, and these services
may be the driving force of a possible evolvement of smarter homes.
The saved energy costs may simply be a nice addition.
Although fully automated solutions for two-way communication to-
gether with smart houses would provide the most efficient infrastruc-
ture to induce short-term flexibility, we have argued that this is too
expensive in the short run. There is, however, a range of less sophisti-
cated possibilities that may give an adequate effect. The perhaps most
rudimentary solution may be that the retailers and network owners in-
form about prices by mail, or through advertisements in newspapers,
just like today, but with the important exception that they offer price
profiles instead of flat prices. Since the daily price-patterns in the
wholesale market are rather predictable, this would be better than
nothing. Another possibility is to send the prices for the next day
by SMS or e-mail every evening. Since the spot prices for the next
day are known by then, this would enable retailers to take them into
account in their price profiles.
When it comes to collecting consumption data, one may also think
of several rather simple solutions. For instance, the consumer could
once a year pick a chip which has stored last year’s consumption data
out of their metering device and mail it to the retailer, or plug it into
their PC (if they have one), and e-mail the data. Since the consumers
probably would like to be invoiced more than once a year, the data on
this chip could form the basis for a yearly balance-settlement. Another
possibility, which is being used in the city of Pasadena in the state of
Texas in the US, is to now and then drive a car that is equipped with
instruments to communicate with the metering devices through the
relevant areas.
There is a range of possibilities for communication between the utilities
and the end-users, and I have only mentioned those that occurred to
my mind at the time of writing. More creative people may find out
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much more efficient ways of communicating that are cost-effective with
today’s technology. But inducing short-term flexibility does require
hourly meters to be installed.
If the costs related to installing hourly meters are shared in a proper
way between end-users, retailers and network owners, a full-scale in-
stallation of hourly meters may be cost-efficient even today. In my
opinion this is perhaps being viewed as too expensive because the
relevant economic agents believe that very sophisticated solutions for
two-way communication and load control must be installed at the same
time. That is wrong. Hourly meters could be installed now, and the
means of communication may evolve over time.
Currently, one of the worlds largest energy utilities, Italian Enel SpA,
is installing equipment for two-way communication and real-time con-
sumption metering at all their twenty-seven million customers. The
installation started in 2002 and is expected to be completed in 2005.
The cost is estimated to about 85USD a customer, and they expect
the investment to be paid back in four years. Enel SpA has not pub-
lished too much information about the project, but a brief overview
may be found in [11]. One of the subcontractors, Echelon Corporation,
provides some information on their web pages (see [12]).
In Norway, a research project on hourly metering and two-way com-
munication is currently being carried out by Sintef Energy Research.
Two network operators, Skagerak Energinett and Buskerud Kraftnett,
have established two-way communication and hourly metering devices
at about ten thousand end-users, of which more than 75% are house-
holds. More information about this project may be found on Sintef
Energy Research’s web pages (see [13]).
Currently, Istad Nett AS, a network operator in Møre and Romsdal
county, is offering hourly metering equipment, together with possibil-
ities for remote reading of the meters, to their residential customers.
They have set the price at 1500NOK each meter, which must be paid
by the consumer. See [16] for more about this7.

7The web page is only available in Norwegian.
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3.2 Potential effects of increased end-user flexi-
bility

In this section an overview of how increased end-user flexibility may
affect market participants and the society.

Consumer

The most important change for the consumers is rather obvious: they
get the chance to save money by altering their daily load profiles.
The consumers’ willingness and ability to utilize this would differ,
though. At one extreme, consumers may show a great deal of concern
about this, and go far in reorganizing their lives, and install advanced
equipments for load control. They may save significant amounts. At
the other extreme, some consumers may be completely unable to alter
their load profiles, and some of those who are able to do so may not
care. These consumers may have to pay more for electricity than
they do today. The consumers would pay according to the burden
they actually impose on the power system. This seems fair compared
to todays situation, as the ALP concept actually benefits those with
“bad” load profiles.
Another important change is that the increased potential for saving
money also would expose the end-users towards more risk. At least
those who choose pure hourly pricing agreements, would be fully ex-
posed to the price-variations in the wholesale market. It is likely,
however, that the retailers would design different contracts that re-
duce this risk for the end-users. For example, the end-user could order
a pre-determined amount at a fixed price. If the actual consumption
during an hour (or a block of hours) exceeds the ordered amount, the
consumer would pay the hourly price (or an average price over a block
of hours) for the excess consumption. Vice versa, if less than the or-
dered amount is being consumed, the consumer would be paid for this.
This would provide the consumers with some security, while they are
still exposed to the hourly prices.
There are several electricity consuming processes that are carried out
in Norwegian homes that may be flexible. In Figure 5 we see that
space heaters take the highest share of residential consumption. Since
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the houses are insulated, and heat is stored in walls and furniture,
it is to some extent possible to heat rooms at low-price hours, and
still have them pleasantly warm when needed. Also, reducing the
inside temperature while at work will become more attractive than
today, since prices are typically high during working hours. Heat will
disappear from the house fast enough to make it unpleasant after a
couple of hours. However, due to the high share of consumption used
for space heating, there may be some money to save, even though
space heating is not as flexible as for example water heating. Water
heating is, as depicted in Figure 5, the second most energy consuming
task in the homes. Water has a high heat capacity compared to the
rooms, and the water boiler may be switched off for several hours
before the water gets too cold. Water heating constitutes the highest
savings potential for residential end-users.
An important part of Paper 1 is the development of a model for a
residential end-user minimizing the costs of space heating and water
heating, when subject to hourly prices. By using some basic relations
from thermodynamics we set up a linear program to minimize the
costs. Though the model is quite simplistic, it does give a decent
picture of the decision problem faced by the consumer. The utilization
of simple optimization tools to model an hourly metered end-user’s
cost minimization is one of the scientific contributions in Paper 1.
The model uses some of the same principles as that in [9], but our
framework was published one year earlier (see [18]).
We have argued that water heating is more flexible than space heating.
It is, however, possible to utilize the flexibility in water heating for
space heating by using water borne heating. The consumers may
install large water boilers, much larger than they have today, and have
hot water sent through pipes to radiators that heat the rooms. This
way, space heating would get the same flexibility as water heating,
and the savings may be substantial. It is rather expensive, though,
to completely change the heating system in a house. But new and
renovated houses may choose such solutions. Hourly pricing, or at
least some other kind of time-of-day tariff, is required to make such
solutions profitable.
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Figure 5: Distribution of residential electricity consumption. Source:
[15].

Some of the other electricity consuming tasks mentioned in Figure
5 may also be flexible to some extent. It is possible to have dinner
earlier, or to postpone it. The same goes for laundry and drying
clothes. Refrigeration could be flexible to some extent if the fridge is
“smart.” The lights, however, must be switched on while people are
in the room, so they carry no flexibility, at least if we look away from
the possibility of leaving the house.
Some consumers may find it difficult to understand what is going on
and why they are offered money - implicitly or directly - to alter
their daily habits. Some insight is needed to really understand how
the electricity market works, and many consumers, (even those who
are rather well educated), do not have this insight. The news media
focus rather invariably on electricity prices and the behaviour of the
actors in the market, and even though the information is not always
correct, the articles both reflect and form the general knowledge and
opinion. If the focus from the news media is negatively minded towards
the market participants, this may make consumers more sceptical to
any action from the firms. Therefore, there is a potential risk that
some consumers start wondering if they are being fooled in some way,
even though they actually find themselves better off than they were
before hourly metering was introduced. This suggests that retailers
and network owners should be careful with respect to how the new
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possibilities are presented to their customers.

Retailer

Even though ALP may give an estimated consumption for each con-
sumer during each hour, most small and medium-sized consumers do
not have contracts where the prices vary from hour to hour. A con-
sumer who is on a spot price contract, for example, is typically charged
the monthly average of the spot prices quoted at Nord Pool. The re-
tailer, however, must purchase the electricity from hour to hour. If a
consumer’s real load profile differs from the estimated one, the retailer
may have to pay more than he should for the electricity delivered to
this customer. This is a risk to the retailer, and this risk is being paid
for, either by the retailer or by the consumer, so hourly metering and
hourly pricing, by reducing this risk, increases overall welfare.
In addition to the advantage the retailer obtains from the reduced risk,
hourly metering would also enable him to incentivise his customers to
use power at cheaper hours. He could offer the customers some money
for moving consumption from peak-price periods to off-peak periods.
This way, the retailer will make a profit from sourcing cheap power,
and the incentive payment means that he shares this profit with his
customers.
In a perfect market, it would not be possible to make a profit by do-
ing this, as all retailers would offer the same prices each hour, and
this would be reflected in the spot prices. Hence, we assume in this
thesis that we are not dealing with a perfectly competitive market.
Such an assumption could be justified in at least two ways. Firstly,
the prices do vary between the retailers today, indicating that the
market is not perfectly competitive now. Coupled with the retailers’
difficulties in making their business profitable, this suggests that com-
petition is fierce, but not perfect. This imperfection is possibly due to
the observation that many electricity consumers do not bother spend-
ing the time it takes to look around for the cheapest offer all the time.
Even though the number of residential consumers not buying electric-
ity from the dominant retailer in their area is increasing, the majority
of Norway’s households still deal with their local utility. We find no
reason to believe that introducing hourly metering would change this.
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Secondly, since hourly metering of small and medium sized consumers
is rather uncommon today, some region would have to be the first to
introduce this. The dominant retailer in that region could now utilize
the fact that his customers’ newly acquired short-term price flexibility
would not be reflected in the wholesale market price (because the re-
tailer will be a small participant in the wholesale market). Then, even
if the end-user market were perfectly competitive before his local cus-
tomers got hourly metered, he could now buy more electricity during
cheap periods and less during expensive periods and share some of the
profit with his consumers. This would mean that the retailer has a
first mover advantage and utilizes a temporary market imperfection.
After the day-ahead spot market is settled, and the hours of deliv-
ery come closer, the retailer will have more updated information on
weather conditions than he had when submitting his spot market bids.
If the weather conditions seem likely to be different from what he be-
lieved back then, he will be likely to face a loss in the regulating
market. If his consumers were hourly metered, and the appropriate
means of communication between the retailer and his consumers were
in place, he may try to reduce this loss by offering his consumers some
money to alter consumption. This, together with the mentioned mar-
ket imperfections, suggests that retailers could find it beneficial to
control their customers’ load profile.
We mentioned that Paper 1 includes a model of an hourly metered
end-user’s cost minimization. In this paper we also model the pricing
decision of a retailer serving such a customer. The retailer decides a
price profile to offer that maximizes his profit, while considering com-
petition from other retailers and the consumer’s cost minimization.
This becomes a Stackelberg game where the retailer is the leader and
the end-user the follower. It is implemented as a mathematical pro-
gram with equilibrium constraints (MPEC), and an important contri-
bution of this paper is the practical application of an MPEC. Also, the
modeling of the pricing decision faced by a retailer serving an hourly
metered and charged end-user is in itself a scientific contribution to
the operations research disipline.
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Network operator

As explained in Paper 2, the network owners’ profit margins are reg-
ulated by the authorities. The framework is formulated by The Nor-
wegian Water Resources and Energy Directorate (NVE). In the same
paper we explain how the regulatory regime provides the network own-
ers with incentives to save future investments.
The network operators are obliged by law to carry any realistic load
needed to the consumers in their region. Therefore, high consump-
tion peaks may require them to expand the grid just to carry the
peaks, which is expensive. Having the consumers curtail their peak
loads would therefore save costs for the network operators. If they,
for example, need to connect a new housing estate to their network,
lower consumption peaks may enable them to connect the new housing
estate to an existing network node instead of building a new and ex-
pensive one. Therefore, the network operators may want to incentivise
consumers to move consumption out of peak load periods.
In Paper 2 and Paper 3 we model the interaction between a network
owner and a retailer who are both interested in having the same con-
sumer shift load out of peak periods. Since both may benefit from
this, they may both be willling to provide the consumer with incen-
tives to do so. This leads to a game between the network operator
and the retailer where both have to consider the other player’s rev-
enue function when deriving their own optimal behaviour. In Paper
2, we analyze this game in a situation with two load periods: a peak
period and an off-peak period. In Paper 3 we extend this model to
three load periods to analyze some issues for which two load periods
are not enough to discuss. The contribution of those papers lie in the
application of methods from game theory to a problem that to our
knowledge has never been studied before.
One issue to discuss regarding the game model is how to measure if the
consumer has actually shifted load. Let us assume that one day the
consumer has switched off her electric water boiler in the peak period
to heat the water in the off-peak period instead. If she, however, had
planned for a party that day, she may have used the kitchen stove
more than she normally does in the peak period. In this case she has
actually shifted load by heating her water in the off-peak period, and
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should therefore receive the incentive payment, but since she has used
more electricity than she usually does for cooking in the peak period,
her load shifting will not be visible on her consumption meter. There
may be many ways of getting around this problem, and we will suggest
one, without suggesting that this is the best one, but rather to show
that it is possible.
Assume that the consumer signs a contract on the maximum load
that is installed on her house. If she uses this amount of power all the
time in one day she will pay a certain amount, P . Then if she one
day uses less than the maximum load, she will receive a discount. This
discount may be different in the peak period and in the off peak period
(we now consider the two-period version), and then she will still have
the incentive to shift load between those periods even though the load
shifting, for whatever reason, may not show up on her consumption
meter that day. To illustrate, let d1 be the per unit discount offered
in the off-peak period and d2 the per unit discount offered in the peak
period. If d1 > d2, the consumer will benefit by moving load from
the peak period to the off-peak period. Furthermore let x1 be her
consumption in the off-peak period and x2 the consumption in the peak
period. Then her electricity bill for one day will equal C−d1x1−d2x2.
The incentive, d, “seen” by the consumer is p = p1 − p2.

Environment

There are some potential environmental benefits related to increased
end-user flexibility. A reduction in peak load would mean that less
power plants are needed to serve the peak hours. The peak load plants
are often polluting thermal plants. The plants do not look very pretty
either, and they absorb some space that could potentially be green
areas. Hence, if increased end-user flexibility removes the need to
build new plants, that would be good for the environment.
We have mentioned that increased end-user flexibility may remove
some of the need for network operators to invest in more transmission
capacity. Increased transmission capacity implies new and ugly lines,
together with construction work out in the wilderness.
Though the most important environmental benefits arise from the re-
duced need for capacity expansion, energy consumption may be re-
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duced as well. For example, hourly pricing would increase the amount
of money saved by turning down the temperature during daytime.
Also, we have mentioned smart houses; advanced technological solu-
tions that automatically manage electricity consumption to minimize
the electricity bill. A smart house (if programmed properly) would
never forget to switch off lights in unoccupied rooms.

Society

In Figure 6 we have depicted how the enhanced short-term flexibility
could even out the intra-day price fluctuations in the wholesale market.
The solid-drawn black curves to the right, D3 and D4, in the figure
show two possible demand curves during daytime, while the dashed
black curves, D1 and D2, to the left show two possible demand curves
during night-time. We have used iso-elastic demand curves. Assume
that for some price P0, the corresponding demand is D0. Then, the
demand at price P is derived by

D = D0

µ
P

P0

¶η

where η ≤ 0 is the elasticity of demand. By Figure 6 we see that D1

and D2 intersect at (D0,night, P0,night), where D0,night may be thought
of as the night-time demand at the current weather conditions and
some reasonable price P0,night. With “reasonable price” we mean a
price that is neither abnormally high nor abnormally low at the given
weather conditions, season and time of day. Also η1 < η2, implying
that D1 is more elastic than D2. In other words, D1 and D2 de-
pict two situations where the physical conditions, that is weather and
time of day, are equal, but D1 shows a situation where the demand-
side is more flexible, possibly because hourly metering has been in-
troduced. During daytime the demand curves, D3 and D4 intersect
at (D0,day, P0,day), where the D0,day may be thought of as the daytime
demand at the current weather conditions and some reasonable price
P0,day. while η3 < η4, thus making D3 more elastic than D4. Hence,
D3 andD4 also show two situations where the need for energy is equal,
but D3 shows a situation where the demand-side is more flexible. The
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fact that D0,day > D0,night reflects that more energy is needed during
daytime than at night.
The grey line, S1, shows a possible supply curve. By studying the
intersections between supply and demand, we observe that enhanced
flexibility could increase prices at night, and decrease prices during
daytime. Hence, the intra-day price fluctuations have been reduced in
this case. For simplicity, we have chosen a linear supply curve, which
is not very realistic, but in this case we may use it without loss of
generality. The analysis may easily be generalized to a case with a
strictly convex supply function.
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Figure 6: More flexibility on the demand-side could even out intra-day
prices.

However, whether or not the intra-day prices even out, would depend
on the shape of the supply curve. In Figure 7 the same demand curves
are depicted, but the supply curves have changed. Both supply curves
in Figure 7 are more elastic than that in Figure 6. The uppermost
supply curve, S2, in Figure 7 depicts a situation with shortage of sup-
ply, while the lower supply curve, S3, depicts a situation where supply
is under less pressure. For example, S3 could reflect the beginning
of a cold period, when the reservoir levels are still high. Then, S2
could reflect the situation at the end of the same cold period: the
demand is the same, but reservoir levels have run lower, increasing
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Figure 7: More flexibility on the demand-side may even out prices in
general.

the value of water. We observe that at the end of the cold period,
the prices have decreased both during day and night as demand has
become more flexible. At the beginning of the cold period, though,
the prices have increased. Hence, in this case, increased flexibility of
demand has not evened out the intra-day prices, but the difference in
prices have become lower between periods.
The situations analysed above indicate that enhanced end-user flexi-
bility would even out the prices in the wholesale market. Today, when
demand is rather inflexible, changes in supply and demand must be
absorbed almost only by changes in price. With more flexible demand,
as we have seen, changes in supply and demand may also be absorbed
by changes in volume. Lower variability in the prices means less risk
to whoever has to manage this risk, and reduced overall risk would
increase social surplus (because risk has a price). Also, price fluctua-
tions reflect that capacity is being priced by the market. Making the
price signals visible to those who are able to act according to them,
that is the end-users, would give more proper valuation of capacity.
Today, flexibility clearly has some value to the generators, but it has
(almost) no value in the end-user market.
In Figure 8 two demand curves, D5 and D6, that are of the same type
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as those in figures 6 and 7, are depicted together with a more realistic
supply curve, S4. This supply curve is strictly convex, with a vertical
asymptote at the volume where all available generation plants produce
at their capacity limits. In this special case we observe that D6, the
least flexible of the demand curves, does not intersect with the supply
function. In this situation we would not get a market cross, and since
the market price is determined by the intersection between supply and
demand, this means that we would get no market price either. There
is not enough generation capacity available to meet demand. If this
happens, the authorities would have to ration power. Then, consumers
with low priority, which means residential areas, will be disconnected
to ensure that there is enough power for important institutions like
industry, hospitals and schools. This has not happened for several
decades, but during the winter of 2002/2003 some were actually wor-
ried that rationing could be needed. Fortunately, the authorities did
not have to take such measures, but there is a risk that rationing may
be needed if we get another long, cold and dry winter preceded by
a summer with low precipitation. In Figure 8 we see that the more
flexible demand-curve, D5, does give a market cross. Hence, increased
end-user flexibility would make rationing less likely.
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Figure 8: More flexible demand would make rationing less likely.

Increased end-user flexibility may be benefitial to society in even more
ways: As explained in previous sections, hourly metering and pricing
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may save costs for both network operators, retailers and consumers.
The saved costs would provide some social surplus. Also, high market
prices reflect that the power system be under more pressure than while
prices are low. This pressure would be relieved if the peak loads are
reduced, which again reduces the chances of power outages. Outages
are expensive to society.
In Norway, there is a net flow of inhabitants from rural areas to urban
areas. Hence, the population in urban areas is increasing, which, ce-
teris paribus, increases the peak loads in the major cities. This is one
of the main reasons why urban network operators find value in reduc-
ing peak load: a reduction in peak load may enable them to serve the
increasing population without expanding the grid capacity.
The fact that the adjustment parameter for new investments is based
inter alia on net immigration to the network area strengthens this
effect. A network owner that serves a rural area will, however, not have
this problem. If today’s grid capacity is sufficient, the capacity will
in general remain sufficient in the foreseeable future, and the network
owner will not see any potential need for grid expansions. If he does
not see any need for expansions, he will not see any value in peak load
reductions. Hence, some rural network owners would not be willing
to offer the consumers anything to make them curtail peak loads. If
we consider the game described in papers 2 and 3 of this thesis, the
retailer would in this situation have to “play” the game (which is no
longer a game) alone.
Due to the concept of ALP, the consumers are today billed due to
an overall average load profile. Therefore, an introduction of hourly
pricing and metering will disbenefit those consumers who use more
electricity than average in the peak periods and less than the average
in the low load periods. Vice versa, consumers with the opposite profile
would benefit from an introduction of hourly pricing. The losers will
be those consumers who, for some reason, are at home during daytime,
when the prices are high, while the winners will be those who work long
days and therefore be able to turn down the room temperature during
peak hours. Some of those who are at home on daytime, are people
who, for whatever reason, do not work and therefore have rather low
incomes. This is a potential problem for the politicians that argue in
favour of hourly metering. Being held responsible by the news media
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for an old rentist couple having to freeze is not a boost for a political
career. We have, however, argued that hourly metering and pricing
may induce some social surplus. A way of dealing with this problem
may therefore be to taxate some of this surplus and use the taxes to
pay welfare energy payments to people who for whatever reason have
to stay at home during peak price hours.

4 How to make the consumer curtail load

As we have seen, both retailers and network owners may find it valu-
able to gain some control over their consumers’ daily load profiles. In
this section we will discuss the pros and cons of two different ways of
controlling load profiles; direct control by physically cutting off load
and indirect control through price mechanisms.

4.1 Direct control by physically cutting off load

Retailers and network owners may achieve direct control of their cus-
tomers’ load profiles by installing devices that enable the utilities to
cut off all, or parts of, their consumers’ load from a remote central
whenever needed. The utilities would then enter into an agreement
that enable them to buy back power from the consumers under certain
conditions. For example, they may pay the consumer an amount up
front to make them willing to let the utilities cut load.
Amajor advantage of cutting off load from a central is that the utilities
will always get the needed load reduction at the exact time when they
need it. However, this alternative would take away the consumers’
control over their own consumption, though it may be possible to
develop systems to ensure that the consumers do not take any notice
of this in a normal situation. For example, some customers would not
care much if their space heaters and water heaters were switched off
for a few hours while they are at work. On the other hand those at
home during the day may find this unappealing. Perhaps they have
visitors one day and therefore have taken a day off to treat them.
Then, a water boiler that is switched off may cause some problems.
Also, some customers may dislike that their consumption is controlled
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by others, perhaps especially by network operators, who by many may
be looked upon as representing the authorities, and therefore regard
this as an intervention into their private lives.
Also, building such a system could be rather expensive, as one would
need to install some equipment both at the consumers and at the con-
trol centre. In addition comes the cost of administrating the system.
Agreements with consumers to carry out load curtailment centrally
will have to be rather rigid with respect to which appliances that may
be cut off and when. A consumer who controls this on her own would
be more flexible.
Another issue that makes this approach questionable is the fact that
the retailer and the network owner may not always want to cut load
at the same time. If, say, the network owner cuts off a substantial
amount of supply, this could impose a huge regulating market loss on
the retailer.
Another disadvantage of such a system is that there would be a pos-
sibility of cheating. Someone could, for instance, move a parallel line
from the space heaters to the electricity network, and this would be
close to impossible for the utilities to control. Engineers may find good
ways of preventing such cheating, but dishonest customers will always
find ways around this.

4.2 Indirect control through price mechanisms

An alternative way of making the consumers shift load, which I think
is better, is to simply offer price profiles that make it beneficial for
them to alter their daily habits. This way, the utilities may control
load profiles indirectly through price mechanisms, but the actual load
curtailment is carried out locally. This approach to inducing load
shifting is what this thesis is about.
The main disadvantage of using price mechanisms is that the utilities
would not know for sure how the consumers react to the offered prices,
and therefore they cannot fully control their load profiles; the challenge
is to estimate how they react. With this approach, the consumers
would not lose control over their own consumption, and by using rather
inexpensive timer devices they may control their own load profiles
without much inconvenience. They may turn the space heaters on and
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off whenever they like - as long as they pay for it. This approach is far
less expensive than central load curtailment, as only hourly metering
equipment is required.
Today, it may seem obvious that load curtailment should be carried
out centrally, because most consumers do not possess the necessary
equipment to do it on their own without much hassle. Obviously, they
have had no reason to invest in equipment enabling them to respond
to short term price signals that are invisible to them.
If hourly metering is introduced, this is likely to change. Some will
adapt to the new situation rather quickly because they find it inter-
esting. Others will adapt more slowly, but in the end, people will
adapt to this because they may save money by doing so. First off,
consumers may acquire simple timer devices. A bit further ahead in
time, more sophisticated solutions, like smart appliances or even fully
integrated smart houses, may become more common. In Figure 3 a
potential evolvement of end-user flexibility is scetched8. This may also
be about introducing good habits at an early stage. If end-users get
used to having a central body taking care of their load curtailment,
they are less likely to actively take part themselves in the future.
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Figure 9: Possible evolvement of flexibility.

8The figure is taken from Bård Karsten Reitan’s test lecture for the defense of
the degree Doctor Ingeniør in March 2003.
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4.3 Which solution is best?

For a network operator, central load curtailment is probably the best
solution as they make most money by having as much energy as pos-
sible flow through the current grid, but preferably without network
expansions. Being in control helps them achieve this. Also, after a
while consumers may start thinking about using alternative energy
sources for heating during peak hours, possibly making them less de-
pendent on electricity. This is not in the interest of the network own-
ers. In addition, both generators and retailers have no interest in a
possible shift towards alternative energy sources. Retailers conduct
marginal business and want as high volumes as possible. Fierce com-
petition means that it is difficult to increase their margins, so they
would dislike any shift towards different energy sources. Generators
too, of course, would like to sell as much electricity as they can.
If hourly metering is introduced a market for flexibility enhancing
equipment in the homes would emerge, together with a market for two-
way communication services. We have mentioned that profit margins
are rather low among retailers, and they may see this as a valuable
new business opportunity. Also, network operators may want to add
to their income from regulated services by selling such equipment.
By taking direct control over the consumers’ load profiles from the
beginning, the energy utilities may get into a position where they be-
come the natural suppliers of such equipment. They may build up
platforms, both technologically and market-wise, that deter entry of
other suppliers of products and services related to end-user flexibility
and two-way communication. This is okay, but currently the authori-
ties are considering to enforce the installation of solutions that enable
the power companies to cut load. Today, there is no market for such
products and services, but such a market would emerge if hourly me-
tering equipment is installed. By making laws that require central
load curtailment solutions to be installed in all homes, the authorities
could actually impose a monopoly situation in an area where market
forces may provide cheaper and better solutions.
In my opinion, the authorities should enforce the installation of hourly
metering equipment, and let the market develop products and services
related to end-user flexibility.
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As we have seen, the physical solution is probably the solution that
would be preferred by the power companies. It may be beneficial to
the industry, but not necessarily to society. I believe that even though
the physical solution would trigger more load shifting in the short run,
putting the trust in price mechanisms would be better in the long run.
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Abstract

This paper presents a Stackelberg game model of strate-
gic interaction between an electricity retailer and an end-
user in an electricity pool market. The retailer offers a
vector of 24 hourly prices to the end user who lives in a
so-called smart house. The smart house minimises the elec-
tricity costs based on the offered prices taking into account
the residents’ habits. The consumption pattern chosen by
the consumer must be purchased by the retailer in a risky
wholesale market. We assume that the risk averse end-user
is unwilling to take the risk in the wholesale market while
the risk neutral retailer seeks to maximise expected profit.
Thus, the price profile offered includes a risk premium. To
model the house’s cost minimization we have chosen to
utilize an energy storage approach focusing on space heat-
ing and water heating, and these processes are carried out
at the lowest possible cost. Our approach results in the
house solving a linear program. This is convenient due to
the highly non-linear and non-convex nature of the math-
ematical program with equilibrium constraints (MPEC),
which constitutes the overall problem.

1 Introduction

Many countries have deregulated, or initiated the process of dereg-
ulating, the market for electricity. The first step often lies in the
deregulation of the wholesale market and most OECD countries have
carried out this process. The structure of the deregulated wholesale
markets are, however, somewhat different from country to country.
After the wholesale markets have been deregulated, a possible next
step is to deregulate the end-user markets. In Norway, for example,
the end-user market was formally deregulated in 1991 and the indi-
vidual consumers were allowed to change retailers. During the first
years, however, the end-users were charged a fee for this, and chang-
ing retailer was economically meaningful only for large consumers.
Some countries still have laws that allow only the largest consumers
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to change retailer. The Norwegian electricity market became fully lib-
eralized in 1997 when all consumers were enabled to change retailer
at no cost.
Today, the incentive structure in the liberalized Norwegian end-user
market is directed only towards the consumer’s total energy consump-
tion. The vast majority of customers have their consumption metered
a few times a year, and they are billed based on their accumulated
consumption since the last metering. Hence, to seize customers from
their competitors, the retailers have focused on offering as low energy
prices as possible. One of the advantages of this system is that it
makes it quite simple for the customers to compare the offers from
different suppliers. This has caused fierce competition among the re-
tailers, which in turn has resulted in decreasing energy prices for the
consumers.
In the wholesale market, the prices vary from hour to hour. This
suggests that power is a scarce resource that is being priced in the
market. With today’s system for metering and billing consumers, how-
ever, these prices are not made visible to the consumers1. The only
way for a consumer to reduce her electricity bill, besides changing
to a cheaper retailer, is to reduce her total consumption of energy. If
the consumers had metering instruments installed that made them ex-
posed to the short-term fluctuations in the wholesale electricity prices,
they would also have incentives to alter their daily consumption habits
in order to save costs. They could, for instance, do the laundry while
prices are low, have electric water boilers switched off in peak hours
and even pre-heat the living room while the prices are low2. This
load shifting could very well make the total energy consumption in-
crease but, unlike today, increased energy consumption could be to
the benefit of the customer. It would also be beneficial to society as
the prices are, at least in theory, computed to maximize social bene-
fit. A potential drawback of this is that the prices could become less
transparent to the consumers, which could make it more difficult for
them to compare offers from different retailers, potentially leading to

1Only very large consumers have their consumption metered by the hour and
therefore have incentives to adjust their consumption according to the short-term
price fluctuations in the market.

2In Norway electricity is the main energy source for space heating.
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market imperfections.
In some countries, the consumers are faced with two-part tariffs. That
is, the day is divided into a peak and an off-peak period between which
the prices are different. This partially makes the price fluctuation im-
posed by the scarcity of power visible to the consumers, and provides
them with incentives to shift load. Some econometric studies have
been carried out to investigate consumer responses to two-part tariffs.
Asano et al [16] measure the effect of incentive payments on residen-
tial time-of-day (TOD) electricity demand in the Kyushu region in
Southern Japan. Results based on an econometric model suggest that
households tend to modestly shift their electricity consumption from
peak to off-peak when offered incentive payments for load shifting.
Filippini [8] considers the household on a micro level and expresses
the household budget shares of peak and off-peak consumption as a
function of electricity prices, real electricity expenditures and house-
hold characteristics. The results indicate that the demand for peak
and off-peak electricity is elastic. There exist many more econometric
analyses, which provide information on customer response to time-
differentiated electricity tariffs, (see Aigner [1] and [2], Aigner and
Ghali [3], Aigner and Hausman [4], Caves et al [5], Ham et al [10],
Henley and Perison [11], Lawrence and Aigner [13], Mountain and
Lawson [16], Tishler and Lipovetsky [20], Train and Mehrez[19]).
In order to make the daily price fluctuations completely visible to the
consumers, the measuring instruments should be able to meter the
consumption with the same time resolution as the trading periods in
the wholesale market. In Norway, this means that consumption should
be metered by the hour. Today, rather few households have installed
instruments capable of metering the consumption in real time, but
the number of real-time metered households is increasing and signals
from network owners, who are the ones responsible for metering the
consumers, indicate that in some years most households will have the
necessary equipment installed. An interesting study on time-of-day
(TOD) tariffs can be found in Hirschberg [12]. This paper presents an
econometric model for estimating TOD substitution. The model em-
ploys the estimated second moment of demand to estimate a matrix of
relative own- and cross-price elasticities, and as one of the examples a
case of an individual household’s electricity demand is presented. The
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model is tested on a household from the control group in an experi-
ment conducted by the Los Angeles Department of Water and Light to
measure the impact of TOD prices on the demand for electricity. (See
Manning et al [15] for a description of this experiment). The study
finds that the matrix of relative elasticities appears to show bands of
elasticities for sets of two-hour intervals and it is suggested that this
regularity may be due to the use of a particular appliance.
Hirst [11] argues that customers that choose dynamic pricing would
pay less for electricity over the long run. He also points out that
if some customers chose dynamic rates, the loads would be reduced
at times of high power prices, which would lower overall prices and
thereby benefit all electricity consumers. Hirst [11] illustrates this
by performing some simulations on data from the California Power
Exchange. Customers that choose dynamic electricity rates will take
more risk than do customers that pay traditional tariffs. The financial
insurance aspects of electricity are new to most consumers. However,
the consumers have plenty of experience with the concept of managing
financial risk. Hirst [11] illustrates this by drawing analogies to other
industries with comparable risk attributes, for example car insurance
and financial markets.
An alternative to using an econometric approach to model the demand
is to employ an engineering approach to the problem. In economet-
ric approaches the emphasis is on using data to estimate parameters,
while an engineering approach would attempt to investigate the physi-
cal properties of the process. In the case of load shifting, one would try
to model how the consumer changes habits to accommodate the price
fluctuations by figuring out what processes are flexible with regard to
load shifting, and to what degree these processes may be moved over
the day without making the value of lost comfort exceed the benefit
from the reduced electricity costs. In this paper we have chosen an
engineering approach to the problem.
The load shifting could be done in different ways. The simplest so-
lution is for the consumer to turn the devices on and off manually.
However, waking up at night to switch the water heater on would in
most cases involve a comfort loss for the consumer that would not
justify the financial savings. A simple, feasible, and much more con-
venient solution would be to connect time switches to electrical appli-
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ances. By adjusting the time switches to switch off some appliances in
peak-hours, the load shifting could be accomplished without too much
trouble for the consumer. To figure out when the appliances should
be switched on and off does, however, require the consumer to know
the price profile and, not least, to understand the physical properties
of the appliances. For example, most consumers do not know for how
long the water heater could be switched off without the water getting
too cold. Many consumers would probably find it laborious having to
look up the market prices each day, especially since the potential cost
savings after all are quite small in the big picture.
At least in Scandinavia, it is becoming increasingly common for con-
sumers to install advanced technological solutions capable of automati-
cally carrying out the cost minimization automatically. Assuming that
two-way communication between the retailer and the consumer is es-
tablished, we may think of a system where the consumer receives a
price vector from the retailer and, based on this vector and the con-
sumer’s consumption preferences, the cost of electricity consumption is
minimized. These solutions are also designed to turn heating devices
on and off, implying that the residents’ inconvenience of regulating
the load levels, and therefore an implicit transaction cost, is removed.
Within this framework, the retailers will be able to provide consumers
with proper price signals, to which the consumers will be able to re-
act in an efficient manner. As it is believed that the market for such
solutions, sometimes referred to as “smart houses,” will increase over
the next years, we choose this advanced approach to load shifting.
An example of a smart-house model of demand-side response is found
in Boertjes et al [5]. They construct a working solution to automatic
comfort management in a large-scale real-time pricing environment.
Scale methods are used to formalize the concept of comfort and develop
a procedure in order to convert this comfort scale into cardinal utility
functions. Their simulation results demonstrate how computational
agents, which are features of a smart house, deliver higher comfort at
lower cost.
Hämäläinen and Mäntysaari [9] develop a model for a residential con-
sumer who optimizes her use of electricity for space heating under
TOD pricing. In their examples, they use a three-part tariff. They
model the decision as a multicriteria problem where the consumer
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maximizes the living comfort while minimizing the heating costs un-
der a given price profile. In addition to the economic cost criterion
they include an environmental criterion by making the consumer min-
imize the total amount of energy consumed. They model the space
heating by viewing the house as an energy storage. We also model
the house as an energy storage, though in a slightly different way.
Our method of modeling the space heating was introduced in Pet-
tersen [18], which was a preliminary version of the current paper, in
which we also model the heating of water. We have not included any
environmental criterion, but focus solely on cost and comfort as we
believe that rather few households would be willing to save energy if
that makes them pay more. In our opinion, the most realistic way of
making households save energy is by increasing energy prices.
While Boertjes et al [5] treat the electricity prices as fixed input and
give a rather detailed description of the demand-side response, we
choose a more rudimentary approach to the processes underlying the
consumer’s demand, but focus on the pricing decision facing a retailer
serving a smart-house consumer.
In this paper, a plausible model of domestic demand-side response is
developed. The bulk of domestic electricity consumption in Norway
is used for water and space heating, and therefore we have focused
on these two processes in our model. Using this smart-house model
of demand-side response, we consider the contracting decision made
by a retailer that sells electricity to such a consumer in a competitive
market environment. The retailer must decide on a price vector to pass
on to the consumer who, in her turn, based on the offered price vector,
minimizes the daily cost of electricity consumption. This interaction
is modelled and implemented as a Stackelberg game model.
In Section 2 our model of domestic demand-side response is built up.
In Section 3 we present a game model of strategic interaction between
a retailer and the consumer modelled in Section 2. In Section 4 we
give a brief conclusion.
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2 A model of domestic demand-side re-
sponse

End-users utilize electricity for many different processes: refrigeration,
space heating, water heating, cooking and laundry to mention a few.
Some of these processes are more flexible than others when it comes
to changing the time the processes are accomplished. For example, we
may think of the laundry as a process that can be moved to a time of
the day when the electricity prices are low while lights are on when
the residents are in the room no matter how high the price is. Other
important examples of flexible processes are space heating and water
heating, and in this paper we focus on these two processes.
When the house is heated up, the space heaters may be switched off
for some time before it again gets uncomfortably cold. This is so
because the walls are insulated and heat will be stored in furniture,
walls and ceilings. Therefore, the consumers may choose to preheat
the house when the electricity is cheap to, as far as possible, avoid
having the space heaters switched on in peak price hours. In most
houses, though, the possibilities for preheating will be quite limited.
If the temperature outside is, say, below the freezing point, it will not
be practically possible to have the space heaters switched off for several
hours. Anyway, there is some potential for utilizing the intra-day price
fluctuations by preheating. Space heating constitutes a major share of
the electricity consumption in Norwegian homes. Even if the potential
for load shifting is not that great when it comes to space heating,
controlling the temperature in the house will be an important feature
of the smart house. By knowing the residents’ habits, the smart house
would ensure that the house is as warm as required when the residents
are at home and awake, and let the house cool down a bit at night and
while the residents are away from home. This way the smart house
could provide the consumer with significant energy savings in addition
to the savings stemming from the load shifting.
To model the flexibility of space heating we think of the house as an
energy storage. When space heaters are switched on, energy flows into
the system and, since it is colder outside than inside (by assumption),
there will be some energy-flow out of the system. The flow out of the
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system is, however, delayed by the fact that the house is insulated
and that heat will be stored in furniture, walls and ceilings. Math-
ematically the energy storage is described by the following ordinary
differential equation:

β
dEa (t)

dt
= xa (t)− α[Ea(t)−Eout(t)] (1)

where
xa is the load over the space heaters
Ea (t) is the energy level at time t
Eout (t) is the outside energy level (a proxy for the outside tempera-
ture). By assumption, Eout (t) < E (t)
α and β are positive parameters.
Discretising the differential equation (1) and rearranging it to get the
variables on the left hand side gives

βEa(t) + (α∆t− β)Ea (t− 1)−∆txa (t) = α∆tEout (t) (2)

where∆t is the length of a time step, measured in hours. The equation
(2) is a constraint in the consumer’s cost minimization problem.
The outside energy level, Eout, varies over the day and has its peak
at around 2pm and its minimum at around 5am. The temperature
profile is shown in Figure 1.
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Figure 1: Outside temperature. Midnight is to the very left and to
the very right in the figure. Noon is in the middle.
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The residents have some comfort requirements that serve as constraints
in our model. The comfort requirements reflect the fact that the con-
sumers want the house to be comfortably warm when they are home
and awake. These constraints are modelled by specifying required en-
ergy levels for each hour of the day, Ea,min. The house must maintain
the energy storage so that this requirement can be met at all times.
The required energy levels in this model are depicted by the bars in
Figure 2. The residents of the house would like the house to be warm
when they get up in the morning, and therefore, the required energy
level is high in one morning hour. When the residents are at school
and/or at work, the house needs just enough energy to keep the pot-
ted plants alive and to ensure that family members could come home
earlier than planned without freezing. In the evening, however, the
house should be warm and pleasant. At night, when the residents are
asleep, the house may be a bit cooler. There is also an upper limit
to how warm it may get before it gets uncomfortable. This limit is
depicted by the straight line in Figure 2.
We assume that the requirements are deterministic and do not change
in the short run. In reality however, the comfort requirements would
be, at least to some extent, stochastic. The residents may come home
from work earlier or later than planned. They may get an opportunity
to sleep late some mornings, or they could go to bed earlier than
usual. This randomness is perhaps not that much of a problem for
the residents or for the smart house. If the residents wanted to lie
in one morning, one may think of several ways for a smart house to
adjust to this without too much trouble for the residents. However,
the retailer, which is supposed to offer a price vector to the consumer
one day in advance, will get additional uncertainty to deal with in the
pricing decision.
Also, the outside temperature is in reality stochastic. If it gets colder
than expected, the consumers will use more electricity for space heat-
ing and the consumption pattern may also change. Again, this would
not be that much of a challenge to the smart house, which presumably
has temperature sensors outside, but the retailer would have to deal
with the temperature uncertainty. On the other hand, the weather un-
certainty will be reflected by the randomness in the wholesale prices.
The idea of this paper is to build a plausible model of the demand-
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side response that can be used to look at the interaction between the
retailer and the end user.
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Figure 2: Comfort constraints. The minimum requirements are shown
by the bars, while the maximum level is shown by the straight line
above the bars.

In this setting, energy level serves as a proxy for temperature. In
Equation (1) the energy level could be replaced with temperature and
instead of specifying required energy levels, minimum temperature
requirements could be used. Such an approach would indeed give a
more accurate picture of the space heating process. Doing this would,
however, require a much more detailed description of the house. We
would need to know how big the house is, how it is furnished, how well
insulated the walls are and so on. The goal here is however to build a
model that gives a general picture of the process of space heating.
To model the flexibility in the heating of water we could have used a
model similar to that used for space heating. Then, we would change
the parameters in Equation 1 and add a term to describe the tapping
of water from the storage. However, the physical properties of water
and air are quite different, and water has a much higher ability to
store heat. This means that water heating is more flexible than space
heating when it comes to load shifting. Also, using a similar model
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would require us to have the heat outflow from the water boiler depend
on the room temperature. Then, the two models would be linked
together, and this could make the model unnecessarily complicated
without really giving much more useful insight. The heat outflow from
the water boiler will probably not be significantly different at a room
temperature of 15 ◦C than 21 ◦C, and besides, the water boilers are
often placed in cool cellars with more or less constant temperatures.
Thus, to model the water heating we have used an approach built on
the same principles as for the space heating, but the model is a bit
more simplistic.
Let Ew (t) be the energy level in the water at the end of time period t.
Ew (t) will depend on the energy level at the end of period t− 1, the
load in period t, the amount of heat that is lost to the surroundings
during period t and the amount of water that has been tapped from
the boiler during period t. Then, the water heater is described by the
following equation

Ew (t)−Ew (t− 1)−∆txw (t) = −houtflow − w (t) (3)

where
xw (t) is the load over the water heater in time period t
houtflow is the rate of heat outflow from the water heater, which is
constant
w (t) is the heat loss due to water being tapped from the water boiler
in period t.
For health reasons, the water may not hold temperatures below a
certain level for several hours, and at this temperature level, we let
Ew (t) = 0. However, right after a lot of hot water has been tapped
from the boiler, the water will often hold temperatures below this
level. This is not hazardous for short time periods. Hence, we have
the constraint Ew (t) ≥ Ew,min (t), where Ew,min (t) = 0 in most time
periods, but for an hour or two after the boiler has been tapped we
allow negative values of Ew (t).
The consumer’s objective is to minimize her cost of electricity con-
sumption. We let p be the vector of prices offered by the retailer. pi is
an element of p expressing the electricity price in time period i. Here,
i = 1, 2, . . . , 24. Then, the optimization problem for the consumer
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becomes a linear program

min

(
∆t
X
i

X
t∈i

pi (xa (t) + xw (t))

)
(4)

subject to

βEa(t) + (α∆t− β)Ea (t− 1)−∆txa (t) = α∆tEout (t) (5a)

Ea (t) ≥ Ea,min (t) (5b)

Ea (t) ≤ Ea,max (5c)

xa (t) ≤ xa,max (5d)

Ew (t)−Ew (t− 1)−∆txw (t) = −houtflow − w (t)(5e)

Ew (t) ≥ Ew,min (t) (5f)

Ew (t) ≤ Ew,max (5g)

xw (t) ≤ xw,max (5h)

Ea (t) , xa (t) , xw (t) ≥ 0 (5i)

where
Constraints (5a) are the heat storage equations for space heating.
Constraints (5b) are the comfort constraints.
Constraints (5c) prevent the rooms from getting to warm. Ea,max

represents the maximum level of heat allowed.
Constraints (5d) ensure that the consumer does not plan to switch on
more load for space heating than physically possible. xa,max represents
the total possible load over the space heaters.
Constraints (5e) are the heat storage equations for water heating.
Constraints (5f) state that the water should not be colder than the
minimum allowed level.
Constraints (5g) state that the water may not get to warm. Ew,max

represents the maximum level of heat allowed in the water at any time.
Constraints (5h) ensure that the consumer does not plan to switch on
more load for water heating than physically possible. xw,max represents
the maximum load over the water boiler.
Constraints (5i) are non-negativity bounds. Note that Ew (t) may be
negative.
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Note that for the first time period of the day, Ea (t− 1) and Ew (t− 1)
will denote the energy levels in air and water, respectively, at the end
of the previous day.

2.1 Example

Figure 3 shows the spot prices in the Nordic wholesale market on a
winter day. To illustrate how the model performs, we first offered
this price profile to the consumer. Next, we offered a flat rate of
23.07, which is the volume weighted average of the prices in Figure 3,
depicted by the straight line in the figure. When offered a flat price,
the cost minimization is equivalent to minimizing the total energy
consumption, and this is what a smart house would do if it were not
hourly metered.
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Figure 3: Spot prices.

Figure 4 shows the load profile for space heating under the two pricing
schemes. The white bars show the space heating-load when the con-
sumer is offered the variable price, while the grey bars show the load
profile when the flat price is offered. In this example we have chosen
∆t = 1

2
hours in Equations (2) and (3). Hence, the consumer decides a

load for space heating for each half hour throughout the day. In hour
number 14, for example, the space heaters are switched on during the
entire hour no matter which price profile that is offered. In hour num-
ber 8 the space heaters are switched on during the entire hour when
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the flat rate is offered, but when the variable rate is offered, the space
heaters are switched on only the last thirty minutes.
We see that when offered the variable price the consumer starts heating
the house a little bit earlier in the morning compared with the case
where the flat price is offered. The variable tariff makes the consumer
use less energy in hour number eight and more in hour number seven,
which makes sense since the price is higher in hour number eight. A
similar effect can be observed in the afternoon when the variable price
gives a small peak in hour number sixteen since the price is lower in
that hour than in the next.

Load profile, space heating
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Figure 4: Load profile, space heating.

Figure 5 shows how the consumer manages her water boiler under
the two pricing schemes. We observe a similar pattern as for space
heating. When offered a flat rate, the water is heated just in time
for it to be consumed without violating any constraints. When the
consumer faces the variable tariff, the water is being heated at the
lowest possible prices. In the morning, for instance, we observe how
the consumer starts heating water for the morning bath earlier when
offered the variable tariff than when the flat rate is offered. The pre-
heating of water starts much earlier than the pre-heating of the air,
because the water has a higher ability to store heat.
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Load profile, water heating
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Figure 5: Load profile, water boiler.

Table 1 shows the consumer’s costs and total energy consumption un-
der different pricing schemes and circumstances. When consumers pay
an average price (as they tend to do without real-time metering) they
seek to minimize total daily consumption. This gives a consumption of
77.35kWh. When charged at the flat price, this costsNOK17.853, but
NOK17.65 when variable prices are charged. This cost can be reduced
if the consumer is able to respond to the variable prices. Cost mini-
mization at the variable price makes the household pay NOK16.57 for
higher total energy consumption. Thus, the household will make some
savings by utilizing the price profile and use energy when the price is
low compared with if it just minimizes the overall consumption.
The integrated Nordic electricity system is a combined hydro-thermal
power market. In normal circumstances hydropower is produced at a
lower marginal cost than thermal power. Thus, if end users were able
to react to price signals as efficiently as described, more hydropower
and less thermal power would be consumed. This represents an im-
provement in overall welfare even though more energy is consumed,
since the prices are (at least in theory) computed to maximize society’s
benefit.
To investigate the value related to electricity cost savings of installing
smart house solutions, we have offered the variable price to a non-
smart (or “dumb”) house. The situation today is that consumers tend

31NOK ≈ 0.14USD. (NOK=Norwegian Kroner.)
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to keep a steady temperature in the house throughout the day, even
if they are asleep or not at home for several hours. Also, the residents
have the water boiler running at a steady load all the time. This gives
a consumption of 87.45kWh, which costs NOK20.08.

Consumed
Cost(NOK) energy (kWh)

Flat price, min. costs 17.85 77.35
Variable price, min. consumption 17.65 77.35
Variable price, min. costs 16.57 78.66
Variable price, “dumb” house 20.08 87.45

Table 1: Cost and energy consumption.

3 Amodel of strategic interaction between
a retailer and an hourly metered con-
sumer

The existence of real-time metered consumers with the ability to re-
spond to price signals as described in the previous section introduces
some new possibilities and challenges for the retailer. The possibilities
may include a variety of new products, which could be designed to
meet the desires and preferences of groups of customers or even indi-
vidual customers. An important challenge would be for the retailer to
anticipate the consumer’s reaction to whatever product she is offered.
The model presented in this section considers a retailer operating in
a competitive environment and one end user purchasing electricity
from the retailer. The purpose of the model is to study the strategic
interaction between the retailer and the end user. First, the retailer
decides a price profile to offer the end user and next the end user makes
a consumption decision. Hence, the presented game is a Stackelberg-
type game with the retailer as leader and the end user as follower.
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3.1 Some assumptions

In this subsection we explain some important assumptions underlying
the study. First we present our assumptions regarding the electricity
prices. Next a few necessary assumptions are made for the players.

Electricity prices

We assume that the retailer operates in a deregulated electricity mar-
ket. A common feature of deregulated electricity markets is that there
will be a forward price and a final price. The forward price will reflect
the expectation of the final price some time in advance while the final
price reflects the marginal cost of delivering electricity to a certain
area. In New Zealand, for example, a contract for differences would
set the forward price. When the consumption at all nodes is known,
the Independent System Operator publishes the final price. In the
integrated Nordic market the system is a bit different. Here, the spot
price, which is published by the electricity exchange Nord Pool one
day in advance, could be thought of as a forward price. The regulat-
ing price, which is published some hours after the dispatch, could be
thought of as the final price. Applying our model to the Nordic market
would require some slight changes to the modelling, though, since the
notions forward price and final price are not completely accurate for
the spot price and regulating price, respectively.
In this study we have assumed that there are eight equally likely sce-
narios for the final price. The forward price is the expectation of these
eight scenarios.

Assumptions on the players

We assume that the demand is derived from disutility minimizing be-
havior by the consumer. Let x (t) = xa (t) + xw (t). The disutility
from electricity expenses is expressed as

D (π,x) = exp

Ã
γ∆t

X
i

X
t∈i

πix (t)

!
where
D is the value of the disutility
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π is the price vector offered by the retailer
x is the consumption vector (the sum of consumption for water heating
and space heating
γ is a positive parameter.
The disutility function is convex, implying that the consumer is risk
averse. When the consumer is offered a deterministic price, minimizing
disutility is equivalent to minimizing costs.
The retailer is assumed to be risk neutral and therefore its goal is to
maximize expected profit. We also assume that the retailer has perfect
knowledge of the parameters in the consumer’s disutility minimization
problem.

3.2 A Stackelberg-type game model

The retailer’s task is to decide a price vector π to offer the consumer.
Based on π, the consumer decides a consumption profile x(t,π). The
retailer must purchase x(t,π) in the wholesale market at a random
price ep (t). Since the retailer is risk neutral, his objective is to maxi-
mize expected profit and hence, the retailer’s objective is to maximize

E (profit) = ∆t
X
i

X
t∈i

πix (t, π (·))−∆t
X
i

X
t∈i

pix (t, π (·))

where
πi is the price offered by the retailer in hour i
pi = E [epi] is the forward price in hour i
To account for competition we assume that the consumer may choose
to take the risk in the wholesale market instead of accepting the price
profile offered by the retailer. Hence, to ensure that the consumer
prefers the retailer’s offer to the wholesale market, the retailer should
offer a price profile, which satisfies the following constraint

D (π,x (·,π)) ≤ E (D (p,x (·,p))) = k (6)

In Equation 6 the left hand side represents the consumer’s disutility
from accepting the price profile offered by the retailer. The right hand
side is a constant expressing the expected disutility from purchasing
power directly from the wholesale market. Hence, Equation 6 says
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that the retailer must offer a bundle that makes the consumer at least
as happy as if she took the risk in the wholesale market herself. It is
perhaps not realistic to think of a small end user acting in the whole-
sale market on her own. However, the rationale behind this way of
modelling competition is that if the retailer does not offer prices that
satisfy the constraint 6, some other retailer will, and therefore the
retailer must keep the prices sufficiently low to avoid losing the cus-
tomer. Besides, we need a constraint to model competition, because
otherwise the retailer would offer infinitely high prices since we have
not included the possibilities for the consumer to change her comfort
requirements or switch to different energy sources.
Furthermore the retailer knows that the consumer, whatever price
profile she is offered, will choose a consumption pattern that minimizes
her costs of electricity consumption. For the solution to be optimal
for the retailer we need a set of constraints to ensure that the solution
be optimal also for the consumer. As we have seen, for the consumer
minimizing disutility is equivalent to minimizing costs. Therefore,
the consumer solves a linear program with the prices offered by the
retailer as input parameters. Hence, to ensure that the solution to the
game model is optimal for the consumer, the primal and dual of the
consumer’s cost minimization problem is written down together with
the complementary slackness conditions. The full model to be solved
is then expressed by the objective function (7) and the constraints (8)
on the next page.
The program (7) - (8) is a Mathematical Program with Equilibrium
Constraints (MPEC). We refer to Luo et al [14] for a comprehensive
treatment of MPEC models.
According to Tin-Loi and Que [19] there are three features of MPEC
models that make them difficult to solve. Firstly, the equilibrium
constraint is modelled by writing down the complementarity slackness
conditions of the LP. However the complementarity constraints are
disjunctive, making the feasible region a union of finitely many closed
sets. Secondly, the feasible region of the MPEC may be non-convex
even if all functions defining it are “nice”. Thirdly, the feasible region
may not be connected. These three difficulties are expected to cause
problems in computing optimal solutions.



64 Article 1, A Stackelberg Game Model of Electricity ...

max

(
∆t
X
i

X
t∈i
(πi − pi)x (t, π (·))

)
(7)

subject to

D (π,x (·,π)) ≤ E (D (p,x (·,p))) (8a)

βEa(t) + (α∆t− β)Ea (t− 1)−∆txa (t) = α∆tEout (t) (8b)

Ea (t) ≥ Ea,min (t) (8c)

Ea (t) ≤ Ea,max (8d)

xa (t) ≤ xa,max (8e)

Ew (t)−Ew (t− 1)−∆txw (t) = −houtflow − w (t) (8f)

Ew (t) ≥ Ew,min (t) (8g)

Ew (t) ≤ Ew,max (8h)

xw (t) ≤ xw,max (8i)

βya (t) + (α∆t− β) ya (t+ 1) + ya,min (t) + ya,max (t) = −λa (t) (8j)

−∆tya (t) + yxa,max (t)−∆tπi = −λxa (t) , t ∈ i (8k)

yw (t)− yw (t+ 1) + yw,min (t) + yw,max (t) = 0 (8l)

−∆tyw (t) + yxw,max (t)−∆tπi = −λxw (t) , t ∈ i (8m)

λa (t)Ea (t) = 0 (8n)

λxa (t)xa (t) = 0 (8o)

λxw (t)xw (t) = 0 (8p)

πi ≥ 0 (8q)

Ea (t) , xa (t) , xw (t) , ya,min (t) , yw,min (t) ≥ 0 (8r)

λa (t) , λxa (t) , λxw (t) ≥ 0 (8s)

ya,max (t) , yxa,max (t) , yw,max (t) , yxwmax (t) ≤ 0 (8t)

where
Constraint (8a) is the competition constraint.
Constraints (8b) - (8i) are the constraints of the consumer’s cost min-
imization problem.
Constraints (8j) are the dual constraints related to Ea (t).
Constraints (8k) are the dual constraints related to xa (t).
Constraints (8l) are the dual constraints related to Ew (t).
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Constraints (8m) are the dual constraints related to xw (t).
Constraints (8n) - (8p) are the complementarity slackness conditions.
Constraints (8q) - (8s) are non-negativity bounds.
Constraints (8t) are negativity bounds.
ya (t) are the shadow prices of the space heating equations.
ya,min (t) are the shadow prices of the comfort constraints.
ya,max (t) are the shadow prices of the upper bound on air energy level.
yxa,max (t) are the shadow prices of the upper bound on the load over
the space heaters.
yw (t) are the shadow prices of the water heating equations.
yw,min (t) are the shadow prices of the constraints stating that the wa-
ter should not be colder than the minimum allowed level.
yw,max (t) are the shadow prices of the bounds stating the maximum
heat level of the water.
yxw,max (t) are the shadow prices of the upper bound on the load over
the water boiler.
λa (t), λxa (t) and λxw (t) are the slack variables of the dual constraints
related to Ea (t), xa (t) and xw (t), respectively.

MPEC models have received some attention in the mathematical pro-
gramming literature. Tin-Loi and Que ([19]) compare some algorithms
for solving such models and find that a smoothing method gives the
best performance. The goal here however, has not been to find sophis-
ticated methods finding globally optimal solutions to MPECs. The
model presented here has been solved by writing down the program in
GAMS. Then the model was solved hundreds of times from different
starting locations using the sequential quadratic programming solver
named snopt.

3.3 An example of a solution to the game model

In our search for an optimal solution we may use the fact that we
already know one local optimum. Since the end user is risk averse, the
retailer can make a positive expected profit by providing insurance
to the end user. A trivial way of doing this would be to offer the
expected wholesale price plus a risk premium in the form of a mark-
up ε1 on the final price. This policy is common in today’s deregulated
electricity markets. Since the retailer has complete information on
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how the end user will respond to any price profile offered, the retailer
may maximize his expected profit by choosing the mark-up ε1 that
exactly makes the end user indifferent between the retailer’s offer and
the risky wholesale market. In this case the optimal mark-up is found
to be ε1 = 35.7øre/kWh4, giving an expected profit of NOK28.033.
Hence, any solution from the game model must give an expected profit
of at least this amount to be a candidate for a global optimum.
We have also solved the model offering the consumer a flat price;
the volume weighted average price over the day plus a mark-up ε2
in all hours. In this case the optimal mark-up is found to be ε2 =
33.1øre/kWh, giving an expected profit of NOK25.579.
We will now give an example of a solution to the model. In this solution
the objective value, that is the retailer’s profit, was NOK28.604. It
has been stated that the model has been solved many times from
different starting points, and NOK28.604 was the best objective value
from all the solution attempts. This value was obtained several times,
but each time the decision variables had different values. Hence, this
amount could be the best obtainable result for the retailer, but there
are several ways of obtaining it.
The profit derived from the game model indicates that it is possible for
the retailer to do only slightly better than when offering the forward
price plus a mark-up. Compared to the profit obtained from offering
the flat price, however, the profits obtained from offering both the
forward price plus ε1 and the price profile from the game model are
significantly higher. This indicates that having the opportunity to
offer hourly differentiated rates, and thereby providing the consumer
with incentives to shift load, makes the retailer better off.
The reason why we have chosen the solution presented here, is that
it is “nice” in the sense that it is not very dissimilar to the forward
price profile, and from a marketing point of view, such a profile could
be easier to sell to the consumer. This is because the forward price
profile (at least in the Nordic market) is quite similar from day to day.
Hence, we find it likely that the consumer would feel more comfortable
knowing that the price profile does not change significantly from one
day to another. Since we have only focused on water heating and space

41øre = 1/100NOK
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heating, this argument does not make much sense in this model. This
is because the smart house sees to that the space and water are heated
at the lowest possible cost no matter how “wild” the price profile is. If
all electricity-consuming processes were taken into account, however,
there would be some things that must be done manually (cooking
for example) and the consumer would perhaps like to carry out such
processes due to daily routines and not due to price profiles that change
every day. In other words, we find that this is a price profile that a
retailer realistically could be considering.
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Figure 6: The columns show the prices from the game model (grey)
compared to the expected price plus a mark-up ε1. The line represents
the volume weighted average price plus a mark-up ε2. The latter is
the price profile that is offered by the retailer if the consumer were not
hourly metered and a flat price would have to be offered.

Figure 6 shows the prices from a solution to the game model together
with the forward prices (plus the constant mark-up ε1). We see that
the prices from the game model in this solution have peaks in about
the same periods as the forward price plus mark-up alternative. An in-
teresting observation is that the game model gives substantially higher
prices in hours 9 − 12. During these hours, the consumers are away
from home, and do not need to have much heat in the rooms. However,
the consumer is forced to have the water boiler switched on during
these hours to have the water re-heated after the morning bath, and
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therefore, the retailer secures much of his income during these hours.
Overall, however, the price profiles are not very different.
Figure 7 shows the load profile over the space heaters at the prices
from Figure 6. The white columns represent the consumer’s load pro-
file at the forward price plus mark-up while the grey columns represent
the profile at the prices from the game model. There are four columns
for each hour, two for each price profile. This means that the con-
sumer makes decisions for each half hour, and ∆t = 1

2
hours. We see

that in the game model the retailer has been able to move nearly all
consumption for space heating out of hour 8 by offering a higher price
in that hour. A similar effect is observed in hour 18. Apart from the
mentioned differences early in the morning and late in the afternoon,
the profiles are quite similar. This was expected due to the similarities
of the price profiles.
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Figure 7: Load profile for space heating at the prices from the game
model compared to the profile at the expected price plus a mark-up ε.

Figure 8 shows the load profile over the water heater. The profiles are
almost identical, which is not surprising due to the similarity of the
price profiles.
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Consumpiton for w ater heating
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Figure 8: Load profile for water heating at the prices from the game
model compared to the profile at the expected price plus a mark-up ε.

4 Conclusion

In this paper we developed a plausible model of domestic demand-
side response to prices that vary over the day. The model shows how
consumers could save money by utilizing the price profile. Real-time
metering also gives the retailer the opportunity to influence the end
users’ load profile through the pricing of power. To study the inter-
action between a retailer and an end user we developed a Stackelberg
game model. The model is a mathematical program with equilibrium
constraints (MPEC) and such models are often difficult to solve. In
this case, however, we have been able to obtain seemingly good solu-
tions by using commercially available software. A trivial pricing policy
for the retailer would be to offer the consumer the forward price plus a
constant mark-up. The solutions indicate, however, that it is possible
for a retailer to earn slightly more by using the opportunity to actively
control the consumer’s load profile.
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Abstract

We consider a simple game-theoretical model in which an
electricity retailer and a network owner offer incentives to
consumers to shift load from a peak period to an off-peak
period. Using a simple example we compare the market
outcomes from collusion with those from the equilibrium
of a non-cooperative game, and examine the behaviour in
this game when it is repeated in a situation in which agents
have imperfect information.

Keywords: electricity distribution, markets, Nash equilib-
rium.

1 Introduction

Over the past couple of decades, most OECD countries have dereg-
ulated, or have started the process of deregulating, their electricity
markets. Different countries have approached this deregulation in dif-
ferent ways (see [6]). Production of electricity is subject to competi-
tion in all deregulated markets, but there are differences as to how the
wholesale markets and the end-user markets are organized.
The deregulation process in Norway started in 1990 and was initiated
due to a desire to improve the efficiency and profitability of the elec-
tricity sector (see [4] and [15]). The formal legislation was effective as
of January 1st, 1991, and from this date on, the wholesale market was
fully liberalized. Also, end users were allowed to have their electric-
ity delivered from any retailer, but the first years they were charged
a fee for this, making it economically meaningful only to large end
users. The end-user market was not fully liberalized until 1997, when
all consumers were allowed to change retailer at no cost. We refer to
[12] for a discussion of the development and effects of the rules and
regulations that liberalized the Norwegian end-user market.
During the second half of the 1990’s the markets in Sweden, Finland
and Denmark were also deregulated and an integrated Nordic market
emerged. These four countries now have a common wholesale market
for electricity where any producer in any of the countries may deliver
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electricity to the entire region. The market is built up around the
electricity exchange Nord Pool, which provides a common spot market
and a transparent exchange place for electricity derivatives.
In the Nordic market, production, transmission and retail of electric-
ity have been split into three independent business areas. Briefly ex-
plained, the roles of these in the market are as follows:

• The producers produce electricity to be sold into the wholesale
market.

• The retailers purchase electricity in the wholesale market, ei-
ther through bilateral agreements with the producers or through
Nord Pool. The purchased electricity is then sold to the end
users. Hence, the retailers function as intermediaries between
the wholesale market and the end users. Because of the large
number of retailers, and partly also because of the invariable fo-
cus on the electricity prices from authorities and the news media,
the competition among the retailers is fierce and most retailers
experience very small profit margins.

• The network operators are responsible for transmitting the elec-
tricity from the production plants to the end users. The sys-
tem operators are responsible for maintaining the main national
grid that transmits electricity between regions. The lines that
transport the electricity to the end users are the responsibility
of local network operators. The local network operators have a
monopoly on the transmission of electricity in their designated
area and they are obliged to maintain a network that is capable
of carrying the power needed at any time to all customers in
their area at the same per kWh price for all customers. (In fact
the network operators are allowed to charge different prices to
different customer segments such as households, vacation homes,
small businesses and large businesses, but the segments are de-
fined by the authorities.) The network operators are financed
through transmission fees paid by the end users, and to prevent
them from enjoying monopoly profits, their profit margins are
regulated by the Norwegian Water Resources and Energy Ad-
ministration (NVE).
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In the wholesale market, the prices of electricity vary from hour to
hour. Usually the variations are more extreme in winter than in sum-
mer because in winter the water level in the hydro reservoirs may be
low, while the cold weather puts transmission and production capacity
under pressure in the peak periods. A high hourly price gives a sig-
nal that production capacity and/or transmission capacity are scarce
resources at that time.
Some large consumers have their consumption metered by the hour
and therefore have incentives to adjust their consumption to react to
short-term price fluctuations in the market. The vast majority of end-
users, however, do not have their consumption metered by the hour.
Instead, they have their consumption metered four times a year, and
they are billed based on their accumulated consumption over the last
three months. This means that the incentive structure in the end-user
market is directed only towards the consumer’s total energy consump-
tion. Hence, to attract customers from their competitors, retailers
have focused on offering low energy prices. Since short term price
fluctuations are not observed by a consumer (at least with current
metering methods), the only way for her to reduce her electricity bill,
besides changing to a cheaper retailer, is to reduce her total consump-
tion of energy.
Since the retailers must purchase electricity at hourly varying prices
in the wholesale market, and sell it to the consumers at flat prices,
the current system of metering and billing introduces considerable
risk to the retailers. This is because the consumers tend to use more
electricity while the wholesale prices are high, but do not pay the
market price for it. Customers with these consumption profiles would
be expensive for a retailer. However, if the retailer were able to meter
his customers’ load by the hour, then he could provide incentives for
them to shift load from peak to off-peak periods, and thereby make a
profit from the ability to source cheaper power for his customers.
A similar opportunity exists for the network owner, even though his
profit margins are regulated by the authorities. The regulatory regime
was revised in 2001, and from 2002 the revenue cap RC for each local
network operator is guided by the following formula:

RC = (OM +D +NL+RIC) (1−EI) +NI. (1)
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Here
OM is operating and maintenance costs. The calculation of this para-
meter is based on the utilities’ financial statements for the years 1996
through 1999.
D is depreciation.
NL denotes the network losses. The value of this parameter depends
on the market price of power at the time the losses occur.
RIC is the expected return on invested capital as measured at the end
of 1999.
EI is a rate denoting the efficiency improvement requirement. EI is
set on an individual basis for each network operator and depends on
how the network operator’s efficiency increases compared to other net-
work operators. This term provides an element of competition among
the network operators.
NI is an adjustment parameter for new investments added to cover
the need for new investments in the network. The calculation of this
parameter is based on the nationwide increase in energy consumption
and the number of new customers in the network operator’s region.

The formula (1) is actually a simplification of the complete calculation
of the revenue cap, which must satisfy other regulatory conditions (see
[17], [18]). For example, the revenue cap is further constrained by a
regulation stating that the arithmetic average of the return over a five
year period must be between 2% and 20%.
For a network operator, a new investment will allow extra revenue
from the terms RIC and D contributing to a relaxation of future
revenue caps. Since this extra revenue is expected to accrue too late to
fully compensate for the capital cost of the investment, an adjustment
parameter NI is included in (1). The parameter NI is to provide the
network operators with funds to undertake necessary grid expansions.
A profound analysis of the adjustment parameter for new investments
is given in [7]. (We also refer the reader to [3], which investigates
possible peculiarities in the network operators’ investment behaviour
under the regulatory regime that applied from 1997 to 2001.)
For our purposes, it is important to note that network companies will
benefit from the adjustment NI, regardless of whether investments
are undertaken or not. The parameter NI is determined based on
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nationwide and local increases in energy consumption. However the
network operators are only obliged by law to carry any realistic load
to the consumers in their region, where the needed network capacity
required is determined by the maximum instantaneous load carried
through the lines and transformers of the network. So consumers who
can curtail their peak loads, or shift their loads from peak to off-
peak periods, are desirable customers for network operators, who can
benefit from NI, while avoiding or deferring the cost of investing in
additional network capacity.
From this discussion we see that both the retailers and the network
operators could benefit by encouraging consumers to shift load from
peak to off-peak periods. One way of doing this may be to install
equipment that allows retailers and/or network operators to physically
cut load when there is danger of an extreme peak. The consumers
should then get some sort of compensation for allowing this to happen.
Another approach is to provide the consumers with economic incen-
tives to cut load in peak periods. For example, this could be done by
offering the customers hourly rates instead of flat rates, which would
require that hourly metering instruments be installed. Customers
would then react to the hourly differentiated rates by shifting load
from peak to off-peak periods without the electricity utilities needing
to physically cut off the supply.
The cost of hourly metering equipment is (currently) high in compari-
son to the potential economic savings. A cheaper approach is to install
instruments that distinguish peak and off-peak consumption. With
these, consumers can be offered two-part tariffs, normally a higher
price in the peak period than in the off-peak period. See e.g. [1],
[2], [5], [8], [10], [11], [13], [14], [16] and [19] for studies on consumer
responsiveness to two-part tariffs.
We have seen that both retailers and network owners have incentives
to offer consumers some sort of payment to make them shift load. The
consumers, however, are only concerned about the total incentive pay-
ment that they receive, and they would not care about who provides
the incentive. Therefore, if the retailer offers an incentive to a con-
sumer, then there is an opportunity for the network operator to free
ride on this. This will affect the incentive to be offered by the network
operator. The question is then how large an incentive each of them
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should offer to maximize their own profit.
In this paper we analyze a model in which a network owner and a
retailer together offer a consumer an incentive to shift load out of a
peak period and into an off-peak period. For simplicity, we analyze a
simple case in which the day is divided into two periods. In Section 2
we give a formal description of the market participants by presenting
our assumptions on the players’ profit functions and the consumer’s
cost function. In Section 3 we compare the solutions to be found by
the network owner and the retailer when offering independently with
the solutions they obtain by colluding. In Section 4 we describe a
Nash equilibrium for a single-period game based on the assumptions
in Section 2, and we discuss the dynamic behaviour of this game if
it is played repeatedly with incomplete information. In Section 5 we
discuss strategic behaviour from the consumer’s viewpoint.

2 Description of the market participants

2.1 Consumer

The first type of participant in our model is the consumer, who is paid
to shift load out of the peak period into the off-peak period. Suppose
the consumer is offered an amount px to shift x units of demand
out of the peak period. In the simplest model, the consumer has a
cost function f(x), for shifting load. We assume that f is a twice
differentiable strictly convex function with f(0) = 0.
Example 1:
As an example, consider the following cost function

f(x) =

½
−β log α−x

α
, x ≥ 0

0 , otherwise
. (2)

plotted below for α = 0.5 and β = 1.
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This cost function has some nice properties. First, f 0 (x) > 0 for
positive x which makes sense since the consumer is likely to be more
unhappy the more load that is shifted. Second, f 00 (x) > 0, indicating
an increasing marginal cost. Third, the function has a vertical asymp-
tote at x = α. This asymptote makes sense because there will always
be a limit to how much load that it is physically possible to shift.
Consider the problem faced by the consumer. To minimize the cost of
shifting load, the consumer seeks to

max
x
{px− f(x)}.

Let the optimal solution to this problem be denoted x̄(p). Since
f 00 (x) > 0, x̄(p) is the unique solution to

f 0(x) = p. (3)

This shows that the incentive p̄(x) required to induce an optimal shift
in load of x is f 0(x). Since p̄0(x) = f 00 (x) > 0, p̄(x) is strictly increasing
in x.
At this point we shall make an additional assumption on the behav-
iour of the consumer. Although the price p̄(x) is increasing in x,
there is a limit to how much load the consumer can shift, and it is
clear that she will demand increasing incentives at the margin as this
limit is approached. We assume therefore that p̄(x) is strictly convex.
(When the third derivative exists, this amounts to the assumption that
f 000 (x) > 0.)



84 Article 2, An Electricity Market Game ...

Differentiating (3) at the optimal solution gives

x̄0(p)f 00(x̄(p)) = 1, (4)

which shows that x̄(p) (the inverse of p(x)) is also a strictly increasing
function of p.
Example 1 (continued)
For the cost function

f(x) = −β log α− x

α

we obtain

f 0(x) =
β

α− x
,

f 00(x) =
β

(α− x)2
,

f 000(x) =
2β

(α− x)3
,

and

x̄(p) =
−β + pα

p
.

Throughout this paper (apart from Section 5) we assume that the
consumer reacts to the incentive offered by the other parties. In this
sense she is a follower in a Stackelberg-type game.

2.2 Retailer

The second type of participant in the market is the retailer. He offers
an incentive to the consumer to shift load. Shifts in load produce
benefits for the retailer that can be modelled as a function A(x) of
the amount of load shifted. In our model we shall assume that A
is (or may be approximated by) a concave increasing function with
A(0) = 0. Suppose the incentive payment per unit of shifted load is
s. Then the retailer seeks to

max
s
{A(x̄(s))− sx̄(s)}.
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This gives a first-order optimality condition of

x̄0(s)A0(x̄(s))− sx̄0(s)− x̄(s) = 0.

Substituting for x̄0(s) using (4) we obtain

f 00(x̄(s))x̄(s) = A0(x̄(s))− s. (5)

As s varies the optimal response x̄(s) varies. Since x̄(s) is strictly
increasing in s we may consider the optimal choice of s satisfying (5)
as an equivalent choice of x satisfying

f 00(x)x = A0(x)− s(x). (6)

Since s(x) is increasing and A(x) is concave, the right-hand side of this
equation is a decreasing function. Since the derivative of the left-hand
side is

(f 00(x)x)0 = xf 000(x) + f 00(x) > 0,

it follows that f 00(x)x is strictly increasing from 0 and so any solution
to (6) will give a unique s, and therefore a unique x̄(s).
For simplicity we shall assume from now on that A(x) = Ax, yielding

f 00(x̄(s))x̄(s) = A− s. (7)

Observe that since (A− s)x̄(s) = 0 at s = 0 and (A− s)x̄(s) ≤ 0 for
s ≥ A, we need only consider s ∈ [0, A] in seeking an optimal value of
s.

2.3 Network owner

Now consider a network owner offering an incentive to the consumer
to shift load. Shifts in load produce benefits for the network owner
that are assumed to be a concave function B(x) of the amount of
load shifted. (Observe that in reality B is likely to be a discontinuous
function with jumps at points at which the network capacity needs to
be expanded to meet load, but we choose to approximate this by a
smooth function.) Suppose the incentive payment per unit of shifted
load is t. Then the supplier seeks to

max
t
{B(x̄(t))− tx̄(t)}.
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The network owner has the same equations as the supplier, but the
incentive offered by the network owner is t. This gives a first-order
optimality condition of

x̄0(t)B0(x̄(t))− tx̄0(t)− x̄(t) = 0.

Substituting for x̄0(t) we obtain

f 00(x̄(t))x̄(t) = B0(x̄(t))− t.

For simplicity we shall assume from now on that B(x) = Bx, yielding

f 00(x̄(t))x̄(t) = B − t. (8)

Using the same argument of the previous section we may show that
(8) has a unique solution t (with unique x̄(t)).

3 Independence and Collusion

In this section we introduce the situation in which the retailer and
network owner operate in isolation and compare this with the benefits
to be obtained by colluding. We assume throughout that given the
incentives offered by either the retailer or network owner, the consumer
acts so as to minimize cost.
The retailer seeks to induce the consumer to shift load from the peak
period. The optimal amount to offer is s satisfying

f 00(x̄(s))x̄(s) = A− s.

Example 1: (continued)
As before let the cost function of the consumer be

f(x) = −β log α− x

α
.

Then at the optimal solution x̄(s), the marginal cost of the consumer
equals the payment so

f 0(x) = − β

−α+ x
= s
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giving

x =
−β + sα

s
.

However if β is large and α and s are small then x will become negative.
The optimal choice is

x̄(s) = max{−β + sα

s
, 0}. (9)

Now we solve
f 00(x̄(s))x̄(s) = A− s,

using

f 00(x) =
β

(−α+ x)2
.

Therefore
β

(−α+ x̄(s))2
x̄(s) = A− s.

Substituting (9) gives (assuming s ≥ β
α
)

β¡
−α+ (−β+sα

s
)
¢2−β + sα

s
= −s+ 1

β
s2α,

so
1

β
s2α = A,

giving

s̄ =

r
Aβ

α
.

Observe that A ≥ β
α
if and only if s̄ ≥ β

α
. If A ≤ β

α
then any incentive

s ∈ [0, A] will satisfy s ≤ β
α
, and so x̄(s) = 0. Therefore we can

assume without loss of generality that A ≥ β
α
. Under this assumption

s̄ ∈ [0, A] and
x̄(s) =

−β + s̄α

s̄
. (10)

A similar analysis can be applied to the network owner. This yields

t̄ =

r
Bβ

α
,
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and assuming that B ≥ β
α
,

x̄(t) =
−β + t̄α

t̄
.

To illustrate these formulae, consider an example where A = 6, B = 7,
α = 0.5 and β = 1. Acting independently, the retailer would offer
s = 3.464 , and the network owner would offer t = 3.742. This gives
respectively

x̄(s) = 0.2113

x̄(t) = 0.2327

and respective profits for the retailer and network owner of 0.5359 and
0.7583.
Consider now the situation where the supplier and the network owner
collude. They seek a joint incentive payment p that solves

max
p
{Ax̄(p) +Bx̄(p)− px̄(p)}.

Thus

p =

r
(A+B)β

α
= 5.0990,

using the choice A = 6, B = 7, α = 0.5 and β = 1. This gives

x̄(p) =
−β + pα

p
= 0.3039,

and total profit equal to

Ax̄(p) +Bx̄(p)− px̄(p) = 2.401.

The joint incentive payment p can be divided by negotiation between
the retailer and the network operator to give higher profits for each
than those in the independent case. For example

s = 2.0495, t = 3.0495,

can be shown to give equal profits of 1.200 for the retailer and the
network owner. The customer incurs a cost of

−β log α− x̄(p)

α
= 0. 936.
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These values of s and t are both lower than what the retailer and
network owner would offer in isolation, and yield higher profits.
Observe, however, that this situation does not represent a Nash equi-
librium in the non-cooperative game played by the network operator
and the retailer, because the network operator could reduce his in-
centive payment to t = 2.2048 and make more than he is currently
making. Assuming that s remains at 2.0495, we get

x̄(s+ t) =
−β + (s+ t)α

(s+ t)
= 0.2649,

so the network operator now makes a profit of 1.2704 > 1.200.

4 Nash equilibrium

The analysis of the previous section leads us to a Nash equilibrium in
the one-shot game in which the retailer and the network operator offer
independently to induce a response from the consumer. The retailer
offers the consumer an amount sx to shift x units of demand out of
this period, and the network offers the consumer an amount tx to shift
x units of demand out of this period. (The consumer will make (s+t)x
from this transaction.) The supplier then seeks to

max
s
{A(x̄(s+ t))− sx̄(s+ t)},

and the network seeks to

max
t
{B(x̄(s+ t))− tx̄(s+ t)}.

The first-order optimality conditions for the supplier (given a fixed
offer of t from the network) are:

Ax̄0(s+ t)− sx̄0(s+ t)− x̄(s+ t) = 0,

yielding
f 00(x̄(s+ t))x̄(s+ t) = A− s.

Similarly, the first-order optimality conditions for the network (given
a fixed offer of s from the supplier) are:

Bx̄0(s+ t)− tx̄0(s+ t)− x̄(s+ t) = 0,
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yielding
f 00(x̄(s+ t))x̄(s+ t) = B − t.

Example 1 (continued):
We continue to use the consumer’s cost function (2). This gives

−(s+ t) +
1

β
(s+ t)2α = A− s,

1

β
(s+ t)2α = A+ t,

s =

r
(A+ t)β

α
− t,

Similarly

t =

r
(B + s)β

α
− s.

Observe that since s ∈ [0, A] and t ∈ [0, B], the optimal solutions will
in fact solve

s = u(t)

t = v(s)

where

u(t) =


0 ,

q
(A+t)β

α
< tq

(A+t)β
α
− t , t ≤

q
(A+t)β

α
≤ A+ t

A ,
q

(A+t)β
α

> A+ t

, (11)

v(s) =


0 ,

q
(B+s)β

α
< sq

(B+s)β
α
− s , s ≤

q
(B+s)β

α
≤ B + s

B ,
q

(B+s)β
α

> B + s

. (12)

Let X = [0, A] × [0, B]. If we consider the mapping F : X → X
defined by

F ((s, t)) = (u(t), v(s))
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then it is clear that F is continuous and X is convex and compact.
Therefore there always exists an equilibrium by Brouwer’s fixed point
theorem.
Suppose A = 6, B = 7, α = 0.5 and β = 1. The players’ response
functions are shown in Figure 1. An equilibrium is given by seq =
1.57, teq = 2.57.
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Figure 1: The players’ response functions for A = 6, B = 7

Now

x̄(seq + teq) =
−β + (seq + teq)α

(seq + teq)
= 0.2585.

The supplier makes a profit of

Ax̄(seq + teq)− seqx̄(seq + teqt) = 1. 1449.

The network makes a profit of

Bx̄(seq + teq)− teqx̄(seq + teq) = 1.1449.

The customer incurs a cost of

−β log α− x̄(seq + teq)

α
= 0.7277,

which is lower than the cost that they incur under collusion. The
profits for the retailer and network owner are less than the profits (i.e.
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1.2) to be made in collusion. A colluding retailer and network owner
therefore find themselves in a Prisoner’s Dilemma situation, in which
it is profitable to renege from the collusion as long as the other player
does not. The equilibrium strategy (when both players renege) has a
poorer payout for both players.
As a second example of an equilibrium for the model we discuss, sup-
pose A = 30, B = 6, α = 8 and β = 1. The players’ response functions
are shown in Figure 2, where the equilibrium is seq = 2, teq = 0.

-2

-1

0

1

2

3

t

-1 1 2 3 4s

Figure 2: The players’ response functions for A = 6, B = 30, α = 8
and β = 1.

Figure 1 and Figure 2 illustrate some appealing features of our model
that are true for all choices of parameters. First observe that u(t) and
v(s) defined by (11) and (12) are both nonincreasing functions. This
makes sense, as the optimal incentive to offer should not increase as
the other agent offers more incentive. To show this, first observe that

u(t) is continuous, and is not constant only where t ≤
q

(A+t)β
α
≤ A+t.

In this range r
(A+ t)β

α
≤ A+ t⇒

s
β

α(A+ t)
≤ 1,

so

u0(t) =

s
β

4α (A+ t)
− 1 < 0. (13)
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A similar argument shows that

v0(s) =

s
β

4α (B + s)
− 1 < 0, (14)

if s ≤
q

(B+s)β
α
≤ B + s.

A second observation is that the players’ response functions can inter-
sect in at most one point. To see this consider the two curves plotted
in each figure. The inverse of u(t) (as plotted as a function of s) has
two vertical sections and a downward sloping section. The slopes of
these are all strictly more negative than the slope of v(s) at the same
s. This is because (11) and (12) imply

−1 < u0(t) < 0, and − 1 < v0(s) < 0,

so ·
du−1

ds

¸
s=u(t)

=
1

u0(t)
< v0(s).

It follows that the curves may intersect at most once.
The arguments above have shown the following proposition. For all
strictly positive choices of A, B, α, and β there exists a unique Nash
equilibrium in the noncooperative game played between the retailer
and the network owner.

4.1 Repeated game

In this section we examine the case where the retailer and the network
operator do not know anything about each other, but have perfect
information about their own profit functions. The players alternate in
offering incentives to the consumer and, at each offer, the offering agent
chooses the incentive that maximizes his own profit given the incentive
currently being offered by his opponent. Both players will continue
offering as long as it is possible to make a decision that increases
profit.
We assume that, at any stage of the game, neither player knows any-
thing about the opponent’s response function, apart from the oppo-
nent’s most recent offer. This means that players do not use previous
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plays of the game to infer their opponent’s response function. They
simply consider the total incentive currently offered to the consumer,
and compute how they can change their contribution to this in order
to maximize profit. They do not really understand that the opponent
will respond by changing his incentive again.
In the Table 1 below we have presented some results from this process.
We have assumed that the network owner offers first and that he
also gains a slightly higher turnover per unit of load shifted. In this
example A = 6, B = 7, α = 0.5 and β = 1.

Period s t Retailer’s profit Network’s profit
1 0.000 3.742 1.396 0.758
2 0.672 3.742 1.457 0.891
3 0.672 3.245 1.304 0.919
4 1.055 3.245 1.322 1.004
5 1.055 2.959 1.240 1.014
6 1.274 2.959 1.246 1.066
...

...
...

...
...

29 1.569 2.571 1.145 1.145
30 1.570 2.571 1.145 1.145

Table 1: Results from alternating incentive offers

In period 1 the network owner makes his incentive decision, t1 = 3.742,
based on s1 = 0. This gives the network owner a profit of 0.758, but
observe that the retailer earns much more. This is so because the re-
tailer gets the advantage of the load shifting, but does not pay anything
for it. Now the game has started and, in period 2 the retailer realizes
that he can make an even better profit by making a contribution to
the incentive payment to the consumer. Therefore the retailer makes
an incentive decision based on t2 = t1 = 3.742, giving s2 = 0.672.
Now, both players are actually better off than in period 1, but the
network owner realizes that, given s2, he would be even better off by
offering t3 = 3.245. This, however, makes the retailer even worse off
than he has been in any earlier stage of the game. Therefore he offers
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s4 = 1.055 to catch up some of the lost profit. The game goes on and
on like this (theoretically forever) until neither of the players can make
a profit by changing his incentive offer.
We can make some interesting observations from the table. The first
is that the results are affected by who offers first. In this example
it is the network owner. If the retailer were to offer first then roles
played by network and retailer in the following observations will be
interchanged.
The second observation to make is that in this example the retailer’s
profit is decreasing towards equilibrium. His profit is, however, not
monotonic decreasing. Each time the retailer plays, he will earn more
in the following period, but when the network owner replies, the re-
tailer will be worse off than he ever was. We see that the retailer, if he
observed recent plays, would not continue play. Under these circum-
stances one might expect the network owner to realize that he would
be better off if both players offered an incentive, and to progressively
reduce his incentive down to a level (such as his equilibrium offer) that
encourages the right response from the retailer.
Finally suppose we were to relax the assumption that neither player
knows anything about the opponent’s optimal response function, and
provide the network operator with this knowledge. Therefore the net-
work owner would prefer to offer t∗1 = teq = 2.57 in the first period.
Under the assumptions of the game, the optimal response for the re-
tailer will be s∗ = seq = 1.57. Suppose now, however, that the retailer
does not know (or is constrained from offering) his own optimal re-
sponse. This would mean that the network owner might be offering
t∗1 alone for some period of time, until the retailer responds. If there
is no response, the network owner will prefer to offer t1. His optimal
offering strategy over time will depend on his model of the (possibly
suboptimal) responses of the retailer.

5 Strategic consumer behaviour

In the discussion above we have assumed that the consumer’s cost
function f(x) is known to the retailer and the network owner. Here
we consider the situation in which this function is deduced by the re-
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tailer and network owner from observing behaviour of the consumer
to the incentives offered by each. This raises the possibility of the con-
sumer misrepresenting her true costs to these parties. For simplicity,
we assume in this section that the retailer is the only agent offering
incentives.
To model this suppose the consumer is represented by a single agent
whose true cost function is

f(x) = −β log α− x

α
,

where α = β = 0.5. Suppose given an incentive s from the retailer,
she were to shift load according to

g(x) = −β log α− x

α
.

where α = 0.5 and β = 1. In other words she behaves as if her costs
were twice as large.
Now we suppose that the retailer has experimented with different in-
centives to the extent that he has an accurate estimate of g, which he
intends to use to compute an optimal incentive. As shown above, the
optimal incentive given a response of g is

s =

r
Aβ

α
= 3.464,

assuming A = 6. The response of the consumer (still deceiving the
retailer) is to shift a load of

x =
−β + sα

s
= 0.2113.

Her true profit from this is

sx− f(x) = 0.457.

We compare this with the case where the consumer behaves according
to her true cost function f(x). Then α = β = 0.5 gives

s =

r
Aβ

α
= 2. 449
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x =
−β + sα

s
= 0.2959.

Her profit from this policy is

sx− f(x) = 0.277,

which is less than the profit she would make by misrepresenting her
costs.
The conclusion here is that it is more profitable for the consumer to
behave as though her costs were twice as high as they really were, since
this induces the retailer to offer more inducement for her to shift load.
So even if she does not optimize her profit (to maintain the deception)
she is better off than if she were to optimize and reveal (over time)
her true costs to the retailer.
As observed above, the retailer under this model will not offer the
consumer any more than s = A, since this is the benefit he gets from
a unit of load shifted. Thus there are bounds on how much profit the
consumer can expect to extract from the retailer by inflating her true
costs. For example suppose she were to choose to misrepresent her
costs as

h(x) = −β log α− x

α
.

where α = 0.5 and β = 3. Then the optimal offer from the retailer is

s = 6,

and the response of the consumer to this offer (while pretending to
incur h) is to shift load of x = 0. The profit from this policy is clearly
0.
It is clear from the above discussion that for this model there is an
optimal choice of β and α that will yield the best outcome for the
consumer if they pretend to have cost function using that α and β. A
more difficult question, that we leave unresolved, is the determination
of an inflated cost function that produces the best response from the
retailer.
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Abstract

To enhance short-term flexibility in the demand side of
the Nordic electricity market, network owners and retail-
ers may provide consumers with incentives to curtail peak
loads. The incentive given by the retailer will affect the op-
timal incentive for the network owner, and vice versa, since
the consumers’ reaction depends on the sum of the incen-
tives. This strategic interaction between the retailer and
the network owner is analyzed using a game-theoretical
framework. The market outcomes from collusion are com-
pared with those from the equilibrium of a non-cooperative
game, and we examine the agents’ behaviour when the
game is repeated in a situation in which they have imper-
fect information. The game model is solved for three load
periods, and the results are compared with those obtained
for two load periods in an earlier paper.

1 Introduction

As part of the Energy Act of 1990, the Norwegian end-user market for
electricity was liberalized, and all end-users were allowed to have their
electricity delivered by any retailer. During the first years after the
deregulation, however, they were charged a fee for changing retailer,
making it economically meaningful only for large consumers. Also,
each retailer had to pay a fee to the local network operator in each area
to which it delivered power, which made it less attractive for retailers
to compete for customers away from their home market. The fees paid
by the consumer and the retailer were to cover the administrative costs
of the network owner, who had to deal with several retailers instead of
just one like earlier. From 1997 new legislation made it possible for all
end-users to change retailer at no cost. The administrative costs were
from then on covered by the consumers’ local network owners. This
gave a slight increase in the network fees, but competition between
the retailers was enhanced to the benefit of the end-users.
Distribution and retail of electricity have (by legislation) been split
into two independent business areas. The end-users purchase energy
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from specialized retailers, while the distribution of electricity to the
end-users is carried out by local network operators.
The retailers purchase electricity in the wholesale market and sell it
to the end-users. Most retailers offer several different contracts to
their customers, who choose the contract that best suits their risk
preferences. Hence, the retailers function as intermediaries between
the wholesale market and the consumers, helping end-users to handle
the risk in the wholesale market, which they often do not have the
competence or inclination to handle themselves.
While the retailers are subject to competition, the network operators
have a monopoly on the distribution of electricity to their designated
areas. The network owners’ revenues stem from the transmission fees
that are paid by the end-users, and regulations have been passed by
the authorities to prevent the network owners from enjoing monopoly
profits. An overview of these regulations is found in [2] and the refer-
ences therein.
The end-users’ consumption meters are normally read every two or
three months to find the accumulated consumption over the period.
The invoice for this consumption consists of two parts: The first is
the transmission fee to the local network operator, and the second
part of the invoice is the electricity payment, which is paid to the
retailer according to whatever contract the customer has entered into
with the retailer. The values obtained only show the total amount
of energy consumed over the period, but they do not give any idea
of the consumers’ load profile within the period. This means that the
incentive structure in the end-user market is directed only towards the
consumers’ total energy consumption.
Both the retailer and the network operator may see some interest in
providing incentives directed towards the consumers’ load profiles as
well. For instance, the network owners may save future investments by
having peak loads curtailed. Since the prices in the wholesale market
vary over the day, the retailer may make extra profits by incentivising
his customers to use more load while wholesale prices are low and less
while they are high. More on this is found in [2]. In Norway, electricity
is the main energy source for all energy consuming tasks carried out
in the homes, including space heating, water heating and cooking.
Hence, there should be a potential to obtain significant savings by
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incentivising consumers to alter their load profiles.
Offering such incentives is not meaningful the way consumption is
metered today, since they would have no way of knowing whether
the consumers have actually reacted to the incentives. To make it
worthwhile, the metering devices must be able to capture the changes
in the end-users’ load profiles over the day. In the Nordic market the
wholesale prices vary by the hour, and hence, hourly meters would
make these price signals visible to consumers. Today, consumers with
an annual consumption of more than 400 000kWh are required to
be hourly metered1, while smaller end-users may choose to be hourly
metered. The cost of hourly metering equipment is (currently) high in
comparison to the potential economic savings, however, and therefore,
rather few small end-users find it worthwhile. The share of consumers
with hourly meters is likely to increase as the necessary equipment
gets cheaper, which may make it increasingly interesting for retailers
and network owners to incentivise the end users to alter their load
profiles.
Let us consider two firms, a retailer and a network operator, offering
the same consumer some price profile that varies over the day. The
consumer makes her consumption decision based on total price, that
is the sum of the prices offered by the retailer and the network owner
in the different periods. If the retailer wants his customers to reduce
their load by a certain amount during a time period, he would increase
the price in that period. However, the network owner may also wish to
increase the price in the same period, and if the retailer does not take
this into account when setting his price, he will find the load in that
period being reduced too much. On the other hand, if the network
owner does not take the retailer’s price increase into account, he will
offer too high an incentive to achieve the result he wants.
This leads to a game between the network operator and the retailer
where they must take the opponent’s profit function into account when
making the pricing decisions. It is worth noting that the players2 do
not have any interest in squeezing the opponent per se. The retailer

1The limit is about to be decreased to 100, 000kWh.
2Throughout this paper, the term "players" is taken to mean the retailer and

the network owner. The consumer does not interact with anyone, and is regarded
as a passive participant in this game.
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does not care about the network owner’s profit since they are not
competitors within the same market. The retailer competes with other
retailers, while the network owner is a regulated monopoly. A player
will squeeze his opponent if he considers it profitable to himself (and
he is allowed to by the autorities), but he will not do this because he
has any incentives to hurt him.
In [2] a game of this type is considered. The day is divided into a peak
period and an off-peak period, and the players decide on incentive
payments to offer a consumer to have her shift load from the peak
period to the off-peak period. The player standing to gain most from
having load shifted will also offer the highest incentive.
If hourly metering is introduced, the day would be divided into 24
pricing periods. The network owner will primarily be interested in
having load moved out of the peak load period. The retailer, however,
would be interested in having load moved out of other periods as well.
He may benefit from having load moved from any period to a period
with a lower price, if such exists. This gives an asymmetry that is not
captured in the two-period version, and one of the main purposes of
this paper is to study this asymmetry.
We have divided the day into three periods, and this is enough to
discuss the assymmetry in principle. The network owner offers an
incentive to have the consumer shift load out of the peak period. The
retailer offers two incentives: one to have load shifted out of the peak
period and one to have consumption moved from the medium load
period to the low load period.
In Section 2 we give a formal description of the market participants
by presenting the players’ profit functions and the consumer’s cost
function. In Section 3 we give a qualitative discussion of our findings,
while the quantitative results are presented in Section 4. Section 5
provides a brief conclusion.

2 Model specification

Assume that we have three periods. Period 1 is the peak load period,
Period 2 is the medium-load period and Period 3 is the low-load period.
The network owner would like to have load shifted out of Period 1,
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but sees no reason to provide any incentive to make the consumer shift
load out of Period 2. The retailer would like to have load shifted out
of both Period 1 and Period 2.

2.1 Consumer

Before the game begins, the consumer has adjusted her consumption
such that she may not shift any load from one period to another with-
out losing some utility. Thus, her marginal utility of electricity con-
sumption in each period are equal. This means that if the players
want her to shift load, they will have to incentivise her to do so.
The consumer could shift load between any of the periods, but the
players will only incentivise downwards shifts, that is, shifts from a
period with high load to a period with lower load. Therefore, without
loss of generality, we may assume that the consumer will have only
three possibilities for shifting load: from Period 1 to Period 2, from
Period 1 to Period 3 and from Period 2 to Period 3.
Shifting load involves a cost for the consumer. This cost comes from
two sources. First, if load is shifted by preheating of rooms or water,
more energy will be used than if this heating is carried out just in time.
(As modelled in e.g. [3]). Then, the consumer must pay for the extra
energy used. Alternatively, she could switch to a different energy
source for heating. Secondly, shifting load by altering daily habits,
such as doing the laundry or cooking meals at different hours than she
normally does, is inconvenient for the consumer. This inconvenience
has economic value to her. She experiences a disutility, and she must
be paid to outweigh this disutility. In this model, we primarily focus
on the load dimension, but the framework could be altered to take
energy into account.
We represent the consumer’s inconvenience by assigning a disutility
function to each possible shift between two load periods. Let xij,
i = 1, 2, j = 2, 3, j > i, be the amount of load shifted from period i
to period j. We then denote the disutility functions fij (xij), i = 1, 2,
j = 2, 3, j > i. The disutility functions are assumed to be separable,
implying that the total daily disutility of load shifting is found by
summing the disutilities from the three possible load shifts, f12 (x12),
f13 (x13) and f23 (x23). This means that we implicitly assume that each
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load shift has a natural pair of periods. In Period 1, for example, the
consumer will have identified one set of processes that may be moved
to Period 2 and one (different) set that may be moved to Period 3.
Within those sets she would have ordered the possible shifts by their
cost, and when offered an incentive to move load out of Period 1, she
will move the cheapest ones first.
Furthermore, she is offered an incentive qi, i = 1, 2 from the players
for moving load out of period i to a period with lower load. Let xi be
the total load shifted out of period i such that

x1 = x12 + x13

x2 = x23 − x12.

Let ΠC denote the consumer’s net profit from her actions. Then the
consumer faces the following problem:

maxΠC =


2X

i=1

3X
j=2
j>i

(qixi − fij (xij))

 .
Written out, this becomes

max
x12,x13,x23

ΠC = {q1 (x12 + x13) + q2 (x23 − x12)

− f12 (x12)− f13 (x13)− f23 (x23)}.

Observe that x2 will be negative if x12 > x23. This means that the con-
sumer could actually be punished in Period 2 if she chooses to have a
net load increase in that period. This happens because the load shifts
are valued differently by the consumer and the players. The players
observe the consumption of a homogeneous product (electricity) being
moved between the periods. For them, it does not matter if the (pos-
sible) change in load in Period 2 stems from load being shifted from
Period 1 to Period 2 or load being shifted from Period 2 to Period 3 or
from both. They only observe that there has been a change. For the
consumer, however, electricity is used for producing several heteroge-
neous services. Her disutility from load shifting does not only depend
on the net change of load in a period, but also which processes are
moved where.
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By differentiating the consumer’s profit function, we get the following
first order conditions for the consumer

∂ΠC

∂x12
= q1 − q2 −

df12
dx12

= 0 (1a)

∂Πc

∂x13
= q1 −

df13
dx13

= 0 (1b)

∂ΠC

∂x23
= q2 −

df23
dx23

= 0. (1c)

Assume that the cost functions are on the following form:

fij (xij) = −βij log
αij − xij

αij

plotted in Figure 1 for αij = 10 and βij = 20.
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Figure 1: The consumer’s disutility plotted for αij = 10 and βij = 20.

This cost function has some nice properties. First, f 0 (x) > 0 for
positive x, reflecting that the consumer be more unhappy the more
load that is shifted. Second, f 00 (x) > 0, indicating an increasing
marginal disutility. Third, the function has a vertical asymptote at
x = α. This asymptote makes sense because there will always be a
limit to how much load that is physically possible to shift.
In addition to serving as a vertical asymptote, αij also influences the
curvature of the disutility function. For convenience we now ignore
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the subscripts ij and let subscripts denote differentiators, i. e. fα (x)
denotes f (x) differentiated wrt. α. Observe the following3:

fα (x) =
βx

α(x−α) < 0 ∀ 0 < x < α,

implying that the higher the value of α, the lower the disutility of
moving a given amount of load x.

fxα (x) =
−β

(α−x)2 < 0 ∀ 0 < x < α,

hence, the consumer’s marginal disutility of moving consumption de-
creases with increasing values of α.
The parameter βij also affects the curvature of the consumer’s disu-
tility function. Again we ignore the subscripts ij and observe the
following:

fβ (x) = − ln α−x
α

> 0 ∀ 0 < x < α.

We see that the disutility of moving a given amount of load x increases
with increasing β.

fxβ (x) =
1

α−x > 0 ∀ 0 < x < α,

thus, the consumer’s marginal disutility of moving consumption in-
creases with increasing values of β.
As we will discuss later, we have not been able to find an analytical
solution to the game model, and all the results presented in Section
?? have been obtained numerically. It could be that choosing a differ-
ent disutility function would enable us to derive closed form solutions.
However, an important goal of this paper is to evaluate the effects of
the assymmetry of this three-period setup as compared to the sym-
metric two-period game in [2]. Therefore, we have chosen a disutility
function similar to that in [2].
This gives us the following disutility functions for each possible load
shift:

f12 (x12) = −β12 log
α12 − x12

α12

f13 (r13) = −β13 log
α13 − x13

α13

f23 (r23) = −β23 log
α23 − x23

α23
3x > 0 by definition and there are no real solutions for x > α.
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Differentiating the disutility functions gives:

dfij
dxij

=
βij

αij − xij
; i = 1, 2; j = 2, 3; j > i (2)

Now, putting (2) into (1) and solving for x12, x13 and x23 gives the
following response functions for the consumer

x∗12 (q1) =
α12 (q1 − q2)− β12

q1 − q2
(3a)

x∗13 (q2) =
q1α13 − β13

q1
(3b)

x∗23 (q3) =
q2α23 − β23

q2
(3c)

The equations (3) represent the consumer’s best response given incen-
tive payments q1 and q2.

2.2 Retailer and network owner

First, we assume that the consumer’s load shifting does not change the
players’ ranking of the periods with respect to which one is the peak
period and which one is the low-peak period. This is an important
assumption to justify that the network owner is providing incentives
in just one period and not in all periods. If this was not the case,
the network owner could be wary about the possibility that Period 2
(or even Period 3) could become the new peak period and therefore
be willing to provide incentives in Period 2 as well. This assumption
makes sense since the players’ idea of peak period depends on the
consumption patterns of all their customers, and not only on a single
household. For the consumer, however, the ranking of the periods may
be altered by the load shifting, but that does not matter.
The retailer offers incentives si, i = 1, 2, to make the consumer shift
load out of period i, while the network owner offers an incentive t to
make the consumer shift load out of period 1. Hence, q1 = s1 + t and
q2 = s2.
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Now, the equations (3) become

x∗12 (q1) = x∗12 (s1, t) =
α12 (s1 + t− s2)− β12

(s1 + t− s2)
(4a)

x∗13 (q2) = x∗13 (s1, t) =
α13 (s1 + t)− β13

(s1 + t)
(4b)

x∗23 (q3) = x∗23 (s2) =
α23s2 − β23

s2
. (4c)

At a later stage, we will need the partial derivatives of the expressions
above. They are

∂x∗12
∂s1

=
∂x∗12
∂t

=
β12

(s1 − s2 + t)2
(5a)

∂x∗12
∂s2

=
−β12

(s1 − s2 + t)2
(5b)

∂x∗13
∂s1

=
∂x∗13
∂t

=
β13

(s1 + t)2
(5c)

dx∗23
ds2

=
β23
s22
. (5d)

We are now ready to present the equations for the retailer and the
network owner.

Retailer

Suppose that each unit of load shifted out of period i, i = 1, 2, saves
Ai for the retailer. Then he seeks to

maxΠs = max
si


X
i=1,2

X
j>i
j≤3

x∗ij (Ai −Aj)− x∗ij (si − sj)

 .
Written out, this becomes

max
s1,s2

{A1 (x∗12 + x∗13) +A2 (x
∗
23 − x∗12)− s1 (x

∗
12 + x∗13)− s2 (x

∗
23 − x∗12)} .
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This gives the following first order conditions for the retailer

∂Πs

∂s1
= (A1 −A2 − s1 + s2)

∂x∗12
∂s1

+ (A1 − s1)
∂x∗13
∂s1
− x∗12 − x∗13 = 0

∂Πs

∂s2
= (A1 −A2 − s1 + s2)

∂x∗12
∂s2

+ (A2 − s2)
dx∗23
ds2
− x∗23 + x∗12 = 0.

Network owner

Suppose now that each unit of load shifted out of period 1 saves B for
the network owner. Then he seeks to

maxΠt = max
t

(
3X

j=2

Bx∗1j − tx∗1j

)
.

Written out, this becomes

max
t
{B (x∗12 + x∗13)− t (x∗12 + x∗13)} ,

which gives the following first order condition for the network owner

∂Πt

∂t
= (B − t)

∂x∗12
∂t

+ (B − t)
∂x∗13
∂t
− x∗12 − x∗13 = 0.

2.3 Finding a market equilibrium

The first order conditions for the retailer and the network owner form
the following system of equations.

(A1 −A2 − s1 + s2)
∂x∗12
∂s1

+ (A1 − s1)
∂x∗13
∂s1
− x∗12 − x∗13 = 0(7a)

(A1 −A2 − s1 + s2)
∂x∗12
∂s2

+ (A2 − s2)
dx∗23
ds2
− x∗23 + x∗12 = 0(7b)

(B − t)
∂x∗12
∂t

+ (B − t)
∂x∗13
∂t
− x∗12 − x∗13 = 0 (7c)

Our task is to find a set of solutions, (s1, s2, t), that forms a Nash
equilibrium. To find an analytical solution to this problem, one could
replace the derivatives in the above system of equations with the equa-
tions (5a)-(5d) and solve the system with respect to s1, s2 and t. When
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the equations are written out, however, we get highly nontrivial fourth
order polynomials, and we have not been able to find an analytical
solution to the problem with the software that we have available. In-
stead, we have analyzed the problem numerically.
The system of equations has been solved using AMPL [1], and the
numerical solutions found indicate that there is only one non-zero
solution to the model.

3 Discussion

In this section we will discuss some interesting qualitative aspects of
the results we have obtained by solving the model. The quantitative
results are presented in the next section.
In this asymmetric game the players’ incentives are seemingly quite
similar. Both players will benefit from load shifted out of the peak
period, and the only difference between them is that the retailer may
achieve some additional revenue from another load shift. Now, if the
players see the same value in having load shifted out of the peak period,
the intuitive result would be that they share the incentive payment
equally in this period. The retailer’s revenue from the load shift out
of Period 2 would simply be a nice addition to him. This is, however,
not the case. Even though the retailer sees no lower benefit than the
network owner from load shifted out of Period 1, the retailer offers a
significantly lower incentive in this period. The retailer knows that
his opponent’s only chance to produce a profit is to have load shifted
out of the peak period. The retailer himself, however, is more flexible.
Since full information is assumed, he knows what the network owner
will do, and he knows that the network owner knows what he will do,
and so on. He may use this knowledge to calculate his own optimal
trade off between his two incentive payments. This is utilized by the
retailer to squeeze the network owner, making the latter carry most
of the burden in the peak period. If the network owner increases his
incentive payment, the retailer reduces his payment with a somewhat
smaller amount, keeps his incentive payment in Period 2 almost as it
is, and still achieves an increased profit.
The retailer’s ability to squeeze the network operator depends on the
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difference in the wholesale price between the two highest peak periods.
If the difference is small, the retailer’s gain from having load shifted
out of Period 2 is close to the gain from having load shifted out of
Period 1. In such a situation, the retailer will concentrate his efforts
on Period 2, forcing the network operator to increase his peak period
incentive payment. When the spot prices in the two periods get very
close, the retailer will even offer a negative incentive payment in the
peak period. A negative incentive would imply that the consumer
actually pays money to the retailer for shifting load. The consumer
may consider this a bit weird. By doing some calculations, however,
she will find that due to the incentive payment offered in the medium
load period, she is still better off than she would have been if the
retailer did not offer anything.
In this situation, the retailer’s motivation for offering a negative in-
centive is not that he wants the consumer to stop shifting load out
of Period 1. Consumption in Period 2 is still preferable to consump-
tion in Period 1 for the retailer, and therefore the negative incentive
payments is a result of the retailer being able to squeeze the network
owner.
If the wholesale price in Period 2 decreases, however, the retailer will
have to rely more and more on load shifted out of Period 1. The result
is that the incentive payments in Period 1 even out. This effect is to
be expected, since as the market price in Period 2 approaches zero, the
game approaches the two period setting. In our main numerical ex-
ample, discussed in the next section, the retailer sees a slightly higher
gain from load reductions in the peak period than the network owner
does. This means that as the game approaches the two period set-
ting, the retailer will, at some point, start to offer a higher incentive
payment than the network owner.
As the network owner’s benefit from load shifts out of the peak period
gets small compared to the retailer’s benefit, the network owner may
be the one to offer a negative incentive. Though this would be profit
maximizing behaviour, it is likely that the autorities would regard this
as an unacceptable exploitation of monopoly power. Negative incen-
tive "payments" imply that the consumer pays the network operator
to shift load, and in this situation, the consumer would clearly be
better off if a zero incentive payment was offered. On the contrary,
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the authorities would probably not interfere if a retailer offers nega-
tive incentives. The retailers, being subject to competition, should be
allowed to price the electricity the way they want, and lose customers
that are unhappy with the offered price profile.
The retailer’s ability to squeeze the network operator also depends
on the consumer’s willingness to shift load from the mid-peak period
to the low peak period. As this willingness gets lower, the retailer
must increase his incentive payment in Period 2 to try and keep up
his advantage. The increased incentive payments combined with lower
load shifts decreases the retailer’s profit from this period. Also, the
increased incentive payment in Period 2 makes load shifts from Period
1 to Period 2 less profitable for the consumer, and this amount will
decline if the incentives in Period 1 are left unchanged. As the profit
from the mid-low shift has declined, for the retailer, he will try to
outweigh this by making more money from shifts out of the peak
period. To achieve this, he increases the incentive payments in Period
1 in an attempt to keep up the load shifts from Period 1 to Period 2,
and to increase the amount of load shifted from Period 1 to Period
3. Hence, the retailer’s incentive payments in both periods increase
substantially, while his profit decreases. The network owner, on his
hand, only cares about the load shifted out of the peak period, and
therefore he is not concerned with the customer being less willing to
shift load out of the mid-peak. He dislikes, of course, that the retailer’s
increased incentive in Period 2 induces less load to be shifted out of
Period 1, but he also sees that the retailer must increase his incentive
in Period 1, which also benefits the network owner. The network
owner’s incentive payment increases only marginally, and his profit
stays rather stable. This discussion shows that if the consumer is not
very willing to shift load between the mid-price and low-price periods,
much of the retailer’s advantage, and therefore his ability to squeeze
the opponent, disappears.
We have assumed that a single-period game of full information is being
played. This is, however, a simplification. In the real world, the game
would probably be dynamic, and the players would have to learn both
their own, the consumer’s and the opponent’s profit function before
the equilibrium is reached. The retailer would need to consider the
behaviour of other retailers as well. It might be that they do not
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even start playing at the same time. One of the players may identify
the opportunity to earn some extra profit by utilizing the consumer’s
flexibility and start offering incentives on his own. Then, after some
time, the opponent will realize that he also benefits from this and will
join the game. This could lead to a repeated game similar to the one
described in Section 4.3.

4 Solutions and parametric analysis

Using the parameter set A1 = 22, A2 = 10, B = 20, α12 = 10,
α13 = 10, α23 = 18, β12 = 20, β13 = 20 and β23 = 15 we get the
solution that will serve as the basis for our analysis. The values of
the parameters have been chosen partly by trial and failure, testing
different parameter sets to find one that gives sensible solutions, and
partly by requiring that the parameter values themselves should be
possible to relate, at least vaguely, to a real-world situation. As for
the latter point, the interpretation of A1, A2 and B is quite straight-
forward. A1 and A2 represent the retailer’s revenue from being able
to source cheaper power to his consumers, which means that these
parameters represent the difference in spot price between the peri-
ods. Here, the spot price in Period 1 is 0, 22NOK/kWh higher than
in Period 3, while the difference between Period 2 and Period 3 is
0, 10NOK/kWh. These values adequately reflect the intra-day spot
price variations in the Nordic marked on a winter day. The value
for B is a rough estimate of the network owner’s long term marginal
cost of grid expansions measured in NOK/kWh. Clearly, the network
owner’s long term marginal cost is load dependent, and not energy de-
pendent. However, his motive is to decrease the overall peak load and
not only the peak load at this single consumer. To achieve this, he
should offer an incentive based on energy, not on load. If there are
many customers, 1kWh moved by a single customer will on average
give a peak load reduction of 1/T [kW ] in that period, if T is the
number of hours within the period. Therefore, the parameter B is
measured in NOK/kWh.
The values of αij and βij are parameters in the consumer’s disutility
function, and they are more difficult to interpret directly. The value



120 Article 3, El. Market Game . . .Multiple Load Periods

of αij gives the vertical asymptote of the utility function, which means
that the consumer will never, no matter what incentive provided, move
more than αij units of load from period i to period j. At some point,
it will become practically impossible for the consumer to move more
load between any two periods, and αij reflects this. This is not, how-
ever, the theoretical maximum amount of energy consumption moved
between the periods. The theoretical maximum would be the total
amount of energy used within period i. From Period 1, for example,
α12 = 10 is not the total energy consumption in Period 1 since the
sum of consumption moved from Period 1 to Period 2 and Period 3,
x12 + x13, may very well be higher than α12.
All this tells us that finding reasonable values of α and β is more or
less a matter of trial and error. However, αij should have a reasonable
size to make it possible for the consumer to move a significant amount
of load between the periods. With the chosen parameter values, the
maximum possible total amount of consumption moved out of Period
1 is α12 + α13 = 20kWh per day and for Period 2 this amount is
α23 = 18kWh per day.
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Figure 2: The consumer’s disutility functions. The dashed line shows
f12 and f13, which are equal. The solid line shows f23.

Figure 2 shows the consumer’s disutility functions with the given para-
meters. The dashed line shows both f12 and f13, that is, the disutilities
of moving consumption out of Period 1. The solid line shows f23, the
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consumers disutility from moving load from Period 2 to Period 3.

Retailer’s incentive 1 s1 2.59øre/kWh
Retailer’s incentive 2 s2 2.75øre/kWh
Network’s incentive t 5.62øre/kWh
Retailer’s profit Πs 3.15NOK
Network’s profit Πt 2.00NOK
Consumer’s profit Πc 0.65NOK
Money paid to the consumer Πc +

P
ij fij 1.31NOK

Consumption moved 1→ 2 x12 6.34kWh
Consumption moved 1→ 3 x13 7.57kWh
Consumption moved 2→ 3 x23 12.55kWh
Disutility 1→ 2 f12 (x12) 0.20NOK
Disutility 1→ 3 f13 (x13) 0.28NOK
Disutility 2→ 3 f23 (x23) 0.18NOK

Table 1: The solutions obtained using the mentioned parameter set as
input. 100øre = 1NOK.

Table 1 shows the solution obtained by using the mentioned parameter
set as input. We observe that even though A1 > B, that is, the retailer
is more interested than the network owner in having consumption
moved out of Period 1, we get s1 < t. In the two period case (see [2]),
the retailer would choose a higher incentive than the network owner
in this situation. In this asymmetrical three-period case, however, the
opposite happens. The retailer has the chance to make a profit entirely
on his own by incentivising the consumer to shift load out of Period
2, and is therefore in a position to squeeze the network owner to carry
most of the burden in Period 1. In Section 4.1 we verify that this
solution is indeed a Nash equilibrium.
Furthermore, we observe that the retailer makes more money than
the network owner in this situation even though the retailer’s total
incentive payment is lower than that of his opponent. The retailer
makes 3.15NOK a day, while the network owner makes 2.00NOK a
day. If the game were played with the exactly same parameter values
every day, this would add up to 1, 150NOK a year and 730NOK a
year, respectively, from this single consumer. If they offered incentives
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to, say, 10, 000 similar consumers, they would make 11, 500, 000NOK
a year and 7, 300, 000NOK a year, respectively.
The consumer makes an economic profit of Πc = 0.65NOK this par-
ticular day. This is the income from the incentive payments minus the
disutility of moving consumption. The amount of money actually paid
to the consumer is 1.31NOK, and this is the value of the observable
effect on her electricity bill. She would receive 478NOK a year. To
receive this amount, the consumer each day moves 13.91kWh out of
Period 1, out of which 6.34kWh is moved into Period 2 and 7.57kWh
is moved into Period 3. A consumption of 12.55kWh is moved out of
Period 2.

4.1 Verifying Nash equilibrium

We will now verify that the above solution is a Nash equilibrium,
meaning that none of the players would be better off by choosing
different incentive payments. In Figure 3.3(a) and Figure 3.3(b) the
retailer’s profit is plotted versus s1 and s2, respectively, with all other
variables fixed to the values presented in Table 1. In Figure 3.3(c)
the network owner’s profit is plotted with respect to t with all other
variables fixed. We observe that the retailer’s profit peaks for s1 = 2.60
and s2 = 2.75, while the network owner’s profit peaks at t = 5.62. This
indicates that none of the players may do better by changing their
incentive payment(s), suggesting that the presented solution indeed is
a Nash equilibrium.

4.2 Collusion

If the players were allowed to collude, they would maximize the indus-
try profit. Then, they would agree on a joint incentive payment p to
be paid in Period 1. The retailer would still offer s2 in addition to his
share of p. The decision problem is then

max
p,s2

{A1 (x∗12 + x∗13) +A2 (x
∗
23 − x∗12)

− p (x∗12 + x∗13)− s2 (x
∗
23 − x∗12) +B (x∗12 + x∗13)}.
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Figure 3: Verifying Nash equilibrium.

Differentiating this with respect to the decision variables gives the
following first order conditions

∂ΠI

∂p
= (A1 −A2 +B − p+ s2)

∂x∗12
∂p

+ (A1 +B − p)
∂x∗13
∂p
− x∗12 − x∗13 = 0

∂ΠI

∂s2
= (A1 −A2 +B − p+ s2)

∂x∗12
∂s2

+ (A2 − s2)
dx∗23
ds2
− x∗23 + x∗12 = 0.
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Solving this gives

p = 10.11862

s2 = 2.7527

giving an industry profit of NOK 5.262. This is more than NOK
5.148 - the industry profit obtained when they operate in isolation.
The consumer makes a profit of .930, and is also better off under
collusion. Hence, in this case, allowing the players to collude would
give an increase in overall welfare. The result for the consumer does,
however, depend on the parameters in her disutility function. With
much higher or much lower values of βij, for instance (with αij held
constant), the consumer is worse off under collusion.
The joint incentive payment p can be divided by negotiation between
the retailer and the network operator to give higher profits for each
than those in the independent case. In this case, to make both players
better off, we must have 3.1792 < s1 < 3.9273 (with a corresponding
value of t between 6.93942 and 6.19132).
Observe, however, that this situation does not represent a Nash equi-
librium in the noncooperative game played by the network operator
and the retailer. Assume, for instance, that the players have nego-
tiated s1 = 3.3411 and t = 6.7775, giving profits of Πs = 3.238
and Πt = 2.024 for the retailer and the network owner, respectively.
The retailer could break the agreement and offer s1 = 1.61037 and
s2 = 2.75105, increasing his profit to Πs = 3.310. The network owner
would be left with a profit of Πt = 1.860.
The network owner, on his hand, could also break the deal and offer
t = 4.98342 increasing his profit to Πt = 2.104 and thereby reducing
the retailer’s profit to Πs = 3.059.
Hence, since the players could increase their profits by breaking the
treaty, the collusive solution is not a Nash equilibrium.

4.3 Repeated game

In this section we examine the case where the retailer and the network
operator do not know anything about each other, but have perfect
information about their own profit functions. The players alternate
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in offering incentives to the consumer and, at each offer, the offering
agent chooses the incentive(s) that maximize(s) his own profit given
the incentive(s) currently being offered by his opponent. Both players
will continue offering as long as it is possible to make a decision that
increases profit.
We assume that, at any stage of the game, neither player knows any-
thing about the opponent’s response function, apart from the oppo-
nent’s most recent offer. This means that players do not use previous
plays of the game to infer their opponent’s response function. They
simply consider the total incentive currently offered to the consumer,
and compute how they can change their contribution to this in order
to maximize profit. They do not really understand that the opponent
will respond by changing his incentive again.

Iteration s1 s2 t Retailer’s profit Network’s profit
1 0.000 0.000 6.325 2.325 1.870
2 1.996 2.751 6.325 3.247 1.915
3 1.996 2.751 6.128 3.218 1.916
4 2.163 2.751 6.128 3.219 1.939
5 2.163 2.751 5.986 3.199 1.940
6 2.283 2.751 5.986 3.199 1.956
...

...
...

...
...

...
48 2.593 2.752 5.620 3.148 1.999
49 2.594 2.752 5.620 3.148 1.999

Table 2: Repeated game with the network owner making the first
draw.

Table 2 shows how such a repeated game would evolve if the network
owner begins. In Iteration 1 the retailer free rides on the network
owner’s incentive, but he realizes that he could make substantially
more by offering incentives himself. Taking the network owner’s in-
centive into account he figures out his own profit maximizing bundle
of incentives. Now, in Iteration 3 the network owner reacts to the
changed framework and changes his incentive again to make some
more money. The game continues like this until equilibrium is reached
after forty-nine iterations.
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Observe that each change of incentive payment by the network owner
reduces the retailer’s profit. The retailer attempts to outweigh this
by increasing his own contribution, but he never manages to fully
compensate for the loss imposed on him by the opponent’s action.
The effect of this is that the retailer’s profit decreases as the game
evolves. Thus, if he knew how the game would progress, he should
stop playing after Iteration 3. The network owner’s profit, however,
increases with each iteration, and he would be interested in pushing
the game forward.
Table 3 shows how the game would progress if the retailer made the
first move. Again, we observe that the player starting the game in-
creases his profits as the game evolves, while the follower’s profit de-
creases. In this case, the network owner would be better off not making
any move at all if he knew what was going on, while in Table 2 the re-
tailer would have done best by stopping after Iteration 3. The reason
why the retailer should make a move even though he is the follower,
is that unless he makes a move, he will not get any revenue for load
shifts out of Period 2.

Iteration s1 s2 t Retailer’s profit Network’s profit
1 7.286 2.759 0.000 2.394 2.567
2 7.286 2.759 1.596 2.553 2.665
3 5.969 2.756 1.596 2.602 2.429
4 5.969 2.756 2.731 2.727 2.476
5 5.025 2.754 2.731 2.753 2.318
6 5.025 2.754 3.543 2.849 2.341
...

...
...

...
...

...
62 2.594 2.752 5.619 3.148 1.999
63 2.594 2.752 5.620 3.148 1.999

Table 3: Repeated game with the retailer making the first draw.

4.4 Parametric analysis

In this section we perform some parametric analysis to investigate how
the results in the non-cooperative one-shot game change as some of
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the parameters are changed.

Varying A1

Figure 4(a) shows how the players’ incentive payments change with
changes in A1, the retailer’s per unit benefit of load shifted out of
Period 1. As expected, the more the retailer gains from load shifts out
of Period 1, the more the retailer is willing to pay, while the network
owner pays less. As A1 decreases below about 17, s1 becomes negative.
This means that the retailer does not only free ride on the network
owner in Period 1, but he also charges the consumer some of her profit.
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(b) Load shifts wrt. A1.

Figure 4: Figure (a) shows how the players’ incentive payments change
with changes in A1. The payments are not linear wrt. A1. In the plot
they look linear due to scale. Figure (b) shows how the load shifts out
of Period 1 varies with changes in A1.

As A1 increases beyond about 34, t becomes negative. In the model
this is okay, but we do believe that the authorities would put the
foot down if the network owner used monopoly power this way. The
retailer’s incentive payment in Period 2 is almost not affected at all by
variations in A1. It increases very slowly as A1 increases, but clearly,
in this situation, the game is played in Period 1.
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Figure 4(b) shows how the consumer’s load shifts out of Period 1 are
affected by changes in A1. The load shift out of Period 2 is left out
since it changes only marginally, which was expected due to the rather
small changes in s2. Since B is held constant, increasing A1 means
that the players’ total gain from load shifts out of Period 1 increases.
Therefore the sum s1 + t increases, which in turn, as expected, in-
creases the amount of consumption moved out of this period. The
higher the total incentive payment, the more she will gain by moving
consumption. This effect is, however, counteracted by the increase in
marginal disutility.
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Figure 5: Profits with respect to A1. Figure (a) shows the players’
profits while Figure (b) shows the consumer’s profit.

We have plotted the players’ profits and the consumer’s profit in Figure
5(a) and Figure 5(b), respectively. As was seen in Figure 4(a), the
retailer pays more the higher A1 gets, but the load shifts increase,
making him better off with increasing A1. The network owner pays
a lower t, but more load is shifted out of the peak period, which
obviously makes him earn more. The consumer is also better off as
A1 increases. She shifts more load, which increases her disutility, but
this is outweighed by the increased total payment.
For changes in B, the network owner’s per unit benefit of load shifted
out of Period 1, t will increase and s1 will decrease with higher B. The



4 Solutions and parametric analysis 129

effects on load shifts and profits are more or less the same as those for
variations in A1.

Varying A2

Figure 6(a) shows how the incentive payments change when A2, the
retailer’s per unit benefit of load moved out of Period 2, changes.
While s2 was only very slightly affected by changes in A1 andB, we see
that changes in A2 have significant impact on the incentive payments
in Period 1. As A2 increases, the retailer gives Period 2 higher priority,
and therefore s1 is reduced. The network owner is then forced to take
a higher share of the burden in this period, so, t increases.
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(a) Incentive payments wrt. A2.
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(b) Load shifts wrt. A2.

Figure 6: Figure (a) shows how the players’ incentive payments change
with changes in A2. The payments are not linear wrt. A2. In the plot
they look linear due to scale. Figure (b) shows how the load shifts out
of Period 1 varies with changes in A2.

Figure 6(b) shows how the consumer’s load shifting changes with
changes in A2. As expected, higher A2 gives higher x23 due to the
increase in s2. Also, the total amount of load shifted out of Period
1, x12 + x13, decreases slightly. This is mainly due to a drop in x12,
which occures because s2 increases, making load shifts into Period 2
more costly. x13 increases slightly because as s2 increases, it becomes
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beneficial for the consumer to move a higher proportion of the load
shifted out of Period 1 into Period 3 instead of Period 2.
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(a) The players’ profits.
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(b) The consumer’s profit.

Figure 7: Profits with respect to A2. Figure (a) shows the players’
profits while Figure (b) shows the consumer’s profit.

In Section 3 we discussed how the retailer’s ability to squeeze the
network owner increased as A2 approaches A1 and this point is made
clear by Figure 7(a). The network owner must increase his incentive
payment in an effort to keep the load shifts out of Period 1 stable as
the retailer decreases s1, and therefore, the network owner makes less
money as A2 increases. The retailer, on his hand, is better off, and so
is the consumer.

Varying α23

We now let α23 vary to investigate how the players behave when the
consumer’s potential amount of load shifted from the medium load
period to the low load period changes. In Figure 8 we have plotted
how the incentives and the load shifts vary with α23. As one would
expect, the shift of load from Period 2 to Period 3 increases rapidly. In
Figure 8(a) we see that s2 decreases, making the shift x12 a bit more
attractive compared to x13, and therefore, slightly more of the load
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shifted out of Period 1 goes to Period 2 and slightly less to Period 3
as α23 increases.
In Figure 9 the profits are plotted. Observe that while the network
owner’s profit remains rather stable, the retailer’s profit increases sig-
nificantly as the consumer gets more willing to shift load between the
two periods in question. We also see how the consumer benefits from
becoming more flexible.
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(a) Incentive payments wrt. α23.
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(b) Load shifts wrt. α23.

Figure 8: Figure (a) shows how the incentive payments develop with
respect to α23 while (b) shows how the different load change when α23
changes.
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(a) The players’ profits.
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(b) The consumer’s profit.

Figure 9: Profits with respect to α23. The left figure shows the players’
profits while the right figure shows the consumer’s profit.

Varying β23

The parameter β23 affects the curvature of the consumer’s disutility
function f23 (x23). The lower the value of this parameter, the higher
the consumer’s flexibility. This is illustrated in Figure 10(b) where we
observe that the load shift x23 decreases rapidly with increasing values
of β23.
The retailer tries to outweigh the loss of flexibility by paying the con-
sumer more for the load shift x23, as seen in Figure 10(a). This, in
turn, makes it less attractive to the consumer to shift load from Pe-
riod 1 to Period 2, and therefore x12 decreases whith increasing β23.
The consumer compensates for this by increasing x13, giving an almost
negliable change in the sum x12 + x13, which is the total shift out of
Period 1.
As the consumer becomes less flexible, she is paid more, but shifts
less load, as is apparent from Figure 10. Hence, as is shown in Figure
11(a), both the retailer and the network owner make lower profits with
increasing β23.
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(a) Incentive payments wrt. β23.
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(b) Load shifts wrt. β23.

Figure 10: Figure (a) shows how the incentive payments develop with
respect to β23 while (b) shows how the different load shifts change
when β23 changes.
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(a) The players’ profits.
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(b) The consumer’s profit.

Figure 11: Profits with respect to β23. The left figure shows the
players’ profits while the right figure shows the consumer’s profit.
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Interestingly, however, the consumer is better and better off the less
flexible she becomes, as shown in Figure 11(b). So far, we have as-
sumed that the consumer’s cost function f (x) is known to the retailer
and the network owner. In the two load period version we analysed
a situation in which this function was deduced by the retailer and
network owner from observing behaviour of the consumer to the in-
centives offered by each. This raised the possibility of the consumer
misrepresenting her true costs to these parties, and it was shown that,
in that situation, the consumer would have incentives to pretend hav-
ing a higher β than she really had. The result pictured in Figure 11(b)
indicates that this might be case also for multiple load periods.

Varying α13

Figure 12(a) shows how the incentives change with changes in α13. It
seems logical that s1 and t decrease as α13 increases, since the players
can achieve the same load reduction in Period 1 with lower incentive
payments. Also, s2 decreases with higher values of α13. This happens
because the consumer chooses to move a higher proportion of the load
moved out of Period 1 into Period 3 instead of Period 2.
In Figure 12(b) we see that x13 increases rapidly as α13 increases, while
x12 and x23 slowly decrease. The relationship between the increase in
x13 and the decrease in x12 is rather obvious. The consumer chooses
to move more of the load shifted out of Period 1 into Period 3 rather
than Period 2 because moving into Period 3 becomes relatively more
attractive. Also, the decrease in s1 induces a lower x12. The reduction
in x23 is a result of the reduced s2.
In Figure 13 we see that all market participants are better off with
increasing α13.
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(a) Incentive payments wrt. α13.
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(b) Load shifts wrt. α13.

Figure 12: Figure (a) shows how the incentive payments develop with
respect to α13 while (b) shows how the different load shifts change
when α13 changes.
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(a) The players’ profits.
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Figure 13: Profits with respect to α13. The figure to the left shows
the players’ profits while the figure to the right shows the consumer’s
profit.
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Varying β13

As β13 increases, the load shift x13 becomes less attractive, ceteris
paribus, and, as visualized by Figure 14(b), x13 decreases rapidly for
increasing β13. The reduced x13 reduces the players’ profits. The
retailer tries to compensate for this by increasing s2, as shown in
Figure 14(a), to thereby get higher revenues from the increased amount
of load shifted out of Period 2. This, however, makes the load shift
x12 less attractive to the consumer, and to compensate for this, the
retailer also increases s1. The network owner takes some advantage of
this by slightly reducing his payment, and as can be studied in Figure
15(a), he suffers a lower profit reduction than the retailer.
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(a) Incentive payments wrt. β13.
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(b) Load shifts wrt. β13.

Figure 14: Figure (a) shows how the incentive payments develop with
respect to β13 while (b) shows how the different load shifts change
when β13 changes.

Previously, we saw how the increase in β23 made the consumer better
off. This is, however, not the case for increasing β13. As we see in
Figure 15(b), the consumer gets paid more, but this is outweighed by
the increased disutility from shifting load from Period 1 to Period 3.
As a result, the consumer gets worse off as β13 increases.
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(a) The players’ profits.
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Figure 15: Profits with respect to β13. The figure to the left shows
the players’ profits while the figure to the right shows the consumer’s
profit.

5 Conclusion

As an increasing number of households get their electricity consump-
tion metered by the hour and get charged according to time-of-day
tariffs, both the consumers and the utilities serving them will face
new opportunities and challenges. The consumers may utilize the new
tariffs to save money by altering their load profiles. Their challenge is
then to find ways to do so that make the economic savings worth the
potential loss of comfort.
The utilities would get the opportunity to make more money by design-
ing price profiles that provide the consumers with incentives to change
their daily habits with respect to electricity consumption. By doing
so, the firms may gain some indirect control over their customers’ con-
sumption patterns. Their challenge is to design pricing schemes that
add value to both the consumers and themselves.
One of the issues to be considered by the utilities, is that there are
two firms who may be interested in controlling consumption patterns
of end-users: the retailer and the network operator. In this paper we
have developed a game model to investigate how they would interact
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in a situation where both firms are interested in offering incentives
to make the consumer shift load. The model is based on [2], where
a similar situation with two load periods is studied. In the current
paper, we have increased the number of load periods to assess how
the differences between the firms’ cost structures may influence the
results.
We find that the structure of the game does indeed change when there
are three instead of two load periods. The retailer gets more flexible
as he chooses a bundle of incentive payments, while the network owner
chooses only one. The difference enables the retailer to squeeze the net-
work owner, so that the latter covers a disproportionally high share of
the costs in the peak period. The magnitude of this effect depends on
the structure of the intra-day price movements in the wholesale mar-
ket, and on the consumer’s price elasticity of demand in the medium
load period. The higher the difference between the wholesale price in
the medium load period and in the low load period, the higher the re-
tailer’s advantage. Also, his advantage increases when the consumer’s
price elasticity in the medium load period increases.
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Abstract

We consider a purchaser of electricity, bidding into a whole-
sale electricity pool market that operates a day ahead of
dispatch. The purchaser must arrange purchase for an un-
certain demand that occurs the following day. Deviations
from the day-ahead purchase are bought in a secondary
market. We study conditions under which the retailer
should bid their expected demand, and derive conditions
on the optimal demand curve that they should bid if the
behaviour of the other participants is unknown, but can
be modelled by a market distribution function.

1 Introduction

There has been much attention paid in recent years to optimizing the
policies of generators who sell electricity in wholesale electricity pool
markets. Much of this attention has focussed on equilibrium analyses
that endeavour to quantify the extent of the market power generators
might have (see e.g. [2], [3]). Although the effects of demand elas-
ticity on the exercise of market power is well documented in Cournot
models of electricity markets (see e.g. [2]), comparatively little at-
tention has been paid to the effect of strategic demand bidding on
market outcomes. An exception is the recent paper by Rassenti et al
[6] who report on the results of demand behaviour in a set of market
simulation experiments.
In this paper we use some simple optimization models to study the
strategic behaviour of a large purchaser of electricity in a particular
form of wholesale market, namely one in which the purchaser makes
a day-ahead purchase bid, which is cleared against supply offers. The
dispatch of power is then balanced in real time in a secondary regu-
lating market on the day of dispatch.
An example of such a market is the Nord Pool in Scandinavia encom-
passing Norway, Denmark, Sweden and Finland. By noon each day, all
generators and purchasers in the Nord Pool submit respective supply
and demand curves giving production and purchase of electricity for
the next day. Based on these bids, the spot prices for each hour of the
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next day are derived. The regulating market is somewhat different for
each of the countries in the region.
In this paper we focus on the particular form of the Norwegian regu-
lating market, in which generators submit bids to increase or decrease
the production level compared with their day-ahead market dispatch.
If the market demand at the time of physical dispatch turns out to
be higher than the quantity purchased in the day-ahead market, the
market is said to be up-regulated. Thus, some generators must in-
crease production so the demand can be met. In this case the market
clearing model successively dispatches increases in generation from the
offers with the lowest price. In the event of up-regulation, the regu-
lating price is, by market design, always higher than the price in the
day-ahead market.
On the other hand, if the market demand at the time of physical dis-
patch turns out to be lower than the quantity purchased in the day-
ahead market, then the market is said to be down-regulated. In this
case, some generators will have to reduce production, so effectively
they buy back electricity to maintain the physical balance, and the
market clearing model successively sells back generation to the gener-
ators offering the highest price. When the market is down regulated,
the regulating price is always lower than the day-ahead price.
It is important to notice that even though the market as a whole might
be down-regulated, an individual purchaser might be up-regulated.
This situation, which we call bidding against the market, would occur if
a purchaser bid for less power than he actually needed in the day-ahead
market, while the market as a whole bought too much. Then, since
the regulating price is lower than the day-ahead price, this purchaser
would get to buy his excess demand at a lower price than if he had
ordered the correct amount in the day-ahead market. Further details
of the Norwegian regulating market can be found in Skytte [12].
A central theme of this paper is studying circumstances under which
a purchaser ought to bid for his expected demand in the day-ahead
market. We first examine a simple fixed-price model to see that bid-
ding expected demand is not always optimal even in this case. In a
more realistic non-cooperative equilibrium model we find in fact that
purchasers should bid for less than their expected demand. This is
because the regulating price is centred around the clearing price of
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the day-ahead market, and by making this value small (by underbid-
ding) the purchasers can effectively pay a smaller marginal price on
each of two segments of their load. This underbidding can be seen in
a more sophisticated model with uncertain demand, where an opti-
mal demand curve to bid can be computed using market distribution
functions.
The paper is laid out as follows. In the next section we look at a model
for a single purchaser. We first prove a result that gives conditions
under which the purchaser should bid their expected load when there
is a fixed price in the day-ahead market. We then consider the case
where the purchaser can influence the day-ahead price by bidding for
supply from a known industry supply function. In this case it is opti-
mal to buy less than the expected demand in the day-ahead market.
In section 3 we extend the model of section 2 to n purchasers and
construct a Nash equilibrium a la Cournot. In section 4, we present
our most realistic model of participant behaviour. In this model the
offers and bids of the other agents are assumed to be unknown, but
can be represented by a market distribution function of a similar form
to that introduced in [1]. This allows the optimality conditions for
generators to be applied to a purchaser, to yield an optimal bid curve
for the day-ahead market. We illustrate the procedure with a simple
example.

2 A single purchaser model

We first consider the case where all generators offer at the same price p
in the day-ahead market, and the market has a single purchaser who is
to choose an amount x to order in the day-ahead market at this price.
Following this, a random demand H is observed, and the purchaser
must purchase the extra energy (or sell it back to the market) at the
regulating price.
The regulating market price is determined by offers of generators into
the regulating market. These take the form of non-decreasing supply
functions passing through the point (p, x). The clearing price is deter-
mined by the inverse τ(·) of the aggregate regulating supply function.
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Since τ(x) = p, we may represent τ by

τ(h) = p+ δ (h− x)

where H is the (random) quantity dispatched (i.e. a demand reali-
sation), and δ (·) denotes the difference between the regulating price
and the day-ahead price. Since H is a random variable, the regulating
price will also be a random variable.
The purchaser now faces the problem of minimizing the cost of meeting
this random demand. His optimization problem is then

P: min
x
{px+E [(p+ δ (H − x)) (H − x)]} .

Observe that this is equivalent to

P: min
x
{pE[H] +E [δ (H − x) (H − x)]} ,

so the purchaser should seek x∗ to solve

P̄: min
x
{E [(H − x) δ (H − x)]} .

It is easy to see that when δ (y) = ay for some a ≥ 0 we have

E [(H − x) δ (H − x)] = aE
£
(H − x)2

¤
and so the optimal choice of x is E[H]. To obtain this optimal policy
for more general forms of the regulating market, we must place some
conditions on the probability distribution of demand as shown by the
following proposition.

Proposition 1 Suppose δ(y) is an odd increasing function with yδ (y)
convex, and H has a symmetric probability distribution around E[H].
Then the optimal solution to P is x∗ = E[H].

Proof. Define h̄ = E[H], g(y) = yδ (y), and suppose the probability
distribution of H is defined by measure µ. Then the objective function
of P̄ becomes

φ(x) = E [(H − x) δ (H − x)]

=

Z +∞

−∞
g (h− x) dµ(h).
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Since g(y) is convex (with left and right derivatives denoted by g0−(y)
and g0+(y) respectively) by virtue of Proposition 4 in [5] we may com-
pute the left and right derivatives of φ,

φ0+(x) =

Z +∞

−∞
−g0− (h− x) dµ(h)

φ0−(x) =

Z +∞

−∞
−g0+ (h− x) dµ(h).

A change of variable yields

φ0+(x) =
Z 0

−∞
−g0−

¡
u+ h̄− x

¢
dµ(u+ h̄)

+

Z +∞

0

−g0−
¡
u+ h̄− x

¢
dµ(u+ h̄)

=

Z +∞

−∞
−g0−

¡
u+ h̄− x

¢
dµ(u+ h̄),

whence

φ0+(h̄) =
Z 0

−∞
−g0− (u) dµ(u+ h̄) +

Z +∞

0

−g0− (u) dµ(u+ h̄).

Now since δ (·) is an odd function, g is even, and since µ(u + h̄) is
symmetric about u = 0,Z 0

−∞
−g0− (u) dµ(u+ h̄) =

Z +∞

0

g0+ (u) dµ(u+ h̄)

giving

φ0+(h̄) =

Z +∞

0

g0+ (u) dµ(u+ h̄) +

Z +∞

0

−g0− (u) dµ(u+ h̄)

=

Z +∞

0

¡
g0+ (u)− g0− (u)

¢
dµ(u+ h̄)

≥ 0
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by the convexity of g. Similarly

φ0−(h̄) =

Z 0

−∞
−g0+ (u) dµ(u+ h̄) +

Z +∞

0

−g0+ (u) dµ(u+ h̄)

=

Z 0

−∞
−g0+ (u) dµ(u+ h̄)−

Z 0

−∞
−g0− (u) dµ(u+ h̄)

≤ 0,

demonstrating that h̄ is a local minimizer of φ.
Furthermore, if x > h̄, then by convexity g0−

¡
u+ h̄− x

¢
≤ g0− (u), so

φ0+(x) = −
Z +∞

−∞
g0−
¡
u+ h̄− x

¢
dµ(u+ h̄)

≥ −
Z +∞

−∞
g0− (u) dµ(u+ h̄)

= φ0+(h̄),

and if x < h̄, then g0+
¡
u+ h̄− x

¢
≥ g0+ (u), so

φ0−(x) = −
Z +∞

−∞
g0+
¡
u+ h̄− x

¢
dµ(u+ h̄)

≤ −
Z +∞

−∞
g0+ (u) dµ(u+ h̄)

= φ0−(h̄),

which shows that h̄ gives a global minimum.

The convexity of yδ (y) is needed in this result as shown by the fol-
lowing example.

Example 1
Suppose the price in the regulating market is determined by

δ(y) =

½
−1 + e3y y ≤ 0
1− e−3y y > 0

so

g(y) =

½
−y + ye3y y ≤ 0
y − ye−3y y > 0

.
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It is easy to verify that g(y) is not convex. Let µ be a discrete measure
with weight of 1

2
located at h = 1

2
and h = 7

2
. Then

E [(H − x) δ (H − x)] =
1

2
g(
1

2
− x) +

1

2
g(
7

2
− x)

for which x = E[H] = 2 is a local maximum (not a minimum) as
shown in Figure 1.
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Figure 1: Plot of E[(H − x)δ(H − x)] for different bids x.

The symmetry of µ is also needed as shown by the following example.

Example 2
Suppose µ is a discrete measure with µ(0) = 0.1 and µ(1) = 0.9. Now
let the price in the regulating market be determined by

δ (y) = y3.

We thus seek to minimizeZ ∞

−∞
(h− x)4 dµ(h) = 0.1x4 + 0.9(1− x)4

which has a minimum at x = 0.67533 rather than x = E[H] = 0.9.
We conclude this section by considering the case where the demand
side of the market consists of a single purchaser who is bidding into
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the day-ahead market. This market is supplied by n generators who
offer supply functions, where we denote by Si (p) the quantity offered
at price p in the day-ahead market by generator i. The purchaser will
face a random market demand H the following day. If the amount
bought on the day-ahead market is different from H, the difference
must be offset on the regulating market. We assume in this section
that the aggregate supply function (although perhaps not each Si) is
known to the purchaser, and is strictly increasing.
We observe that there is no advantage in the purchaser offering a
demand curve. With perfect knowledge of S (·) =

P
i Si (·) he can de-

cide on a price p and choose any decreasing curve that passes through
(p, S(p)). Equivalently, he can determine an optimum quantity x to
buy, for which he will pay p = S−1(x). (In this model we assume that
the generators do not game their offers in response to the purchaser’s
bids.)
For convenience let T (·) = S−1 (·). If the purchaser selects x to buy
in the day-ahead market then he will pay Cs = xT (x). In addition
he will face a cost in the regulating market, Cr = (H − x) τ (H − x),
where τ (·) is the regulating market price at demand H and day-ahead
dispatch volume x.
The purchaser should choose x to solve

P: min
x
{xT (x) +E [(H − x) τ (H − x)]} ,

so setting
τ (H − x) = T (x) + δ (H − x)

gives
P: min

x

©
hT (x) +E [(H − x) δ (H − x)]

ª
where h = E [H].
It is interesting to observe that in contrast to the situation in which
the day-ahead price is a known constant, the optimal offer is no longer
h even if τ (·) is linear. To see this suppose δ (y) = ay, for a > 0.
Then

E [(H − x) δ (H − x)] = aE
£
(H − x)2

¤
= aE

£
H2
¤
− 2ahx+ ax2
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Now, the purchaser solves

min
x

©
hT (x)− 2ahx+ ax2

ª
Differentiating gives hT 0 (x)− 2ah+ 2ax = 0, whereby

x∗ +
h

2a
T 0 (x∗) = h (1)

The purchaser therefore should purchase less than h in the day-ahead
market. (The solution h for a constant price is recovered by setting
T 0 (x∗) = 0.)

3 Many purchasers

In the previous section we looked at the behaviour of a single pur-
chaser. In this section we use a similar framework to calculate the
market outcomes in a market with n purchasers having random de-
mands Hi, i = 1, . . . , n. We assume Cournot conjectural variations,
namely that each purchaser i bids xi in the day-ahead market assum-
ing that xj, j 6= i is fixed. We will assume that T (x) = bx and the
price in the regulating market to be

bx+ a (H − x) ,

where x =
Pn

i=1 xi and H =
Pn

i=1Hi.
In a Nash equilibrium each purchaser i chooses a quantity xi to solve

P(n) : min
xi

xibx+E[(Hi − xi) (bx+ a (H − x))]. (2)

The objective function of P(n) can be written

fi(x) = xibx+E[HiT (x) +HiaH −Hiax− xibx− xiaH + xiax]

= hibx+ aE[HiH]− hiax− xiah+ xiax,

where we let E [Hi] = hi, E [H] = h. The optimal bid for each pur-
chaser will satisfy

∂fi
∂xi

= hib− ahi − ah+ axi + ax = 0,
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which is guaranteed to be a minimum because

∂2fi
∂x2i

= 2a > 0.

Now
Pn

i=1 hi = h, so summing over i gives

hb− ah− anh+ ax+ nax = 0.

Thus

x = h(1− b

a (1 + n)
)

and so the optimal bid for purchaser i is

xi = hi +
b

(n+ 1) a
(h− (n+ 1)hi)

= (1− b

a
)hi +

b

a

h

(n+ 1)
.

Recall that for a single purchaser that the optimal bid x∗ in the day-
ahead market satisfies

x∗ = h− h

2a
T 0 (x∗) = h

µ
1− b

2a

¶
.

For n purchasers, the total amount bid in equilibrium isX
xi = h+

b

(n+ 1) a
(nh− (n+ 1)h)

= h(1− b

(n+ 1) a
).

So in aggregate, more demand will be bid for in the day-ahead market
as the number of purchasers increases, and as n → ∞, the limiting
optimal bid for each purchaser is to bid their expected demand.
Observe that in this model the amount bid into the day-ahead market
by each player depends only on the expected demand of each player.
There is no dependence on the correlation between Hi and H. As
a consequence of the linearity of the regulating market, this corre-
lation appears only in the constant term aE[HiH] in the objective
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function. A negative correlation means that purchaser i is likely to
be down-regulated when the market as a whole is up-regulated, and
up-regulated when the market is down-regulated. However, although
he makes a windfall profit from such a market, his bidding strategy in
the day-ahead market is independent of this correlation.
The model in this section also allows us to investigate a strategy of
individual purchasers bidding against the market. Suppose we fix xj,
j 6= i, and assume for simplicity that b = 0. Then the optimal choice
of xi is given by

2xi = (h−
X
j 6=i

xj) + hi(1−
b

a
)

so
xi = hi +

1

2
(
X
j 6=i

hj −
X
j 6=i

xj).

Thus if the purchasers apart from i bid less than their expected de-
mand, then purchaser i should bid against the market (by bidding
more than their expected demand). Of course in equilibrium, it is
easy to see for this example that each purchaser will bid their ex-
pected demand, so bidding against the market is not an equilibrium
strategy.
Finally, the degree to which purchasers reduce their bids depends upon
the relative magnitudes of a and b. If b > a then the variation in
price with quantity is less dramatic in the regulating market, and so
purchasers would want to purchase more at the margin in this market.
On the other hand if a > b, then purchasers will tend to bid for
relatively more in the day-ahead market.

4 Optimal bidding with a market distri-
bution

In the model of the previous section, we assumed that the purchasers
have perfect knowledge of the generator’s supply functions in the day-
ahead market, and constructed a Nash equilibrium in the single-shot
game played against other purchasers. In practice the supply func-
tion offers of the generators will be chosen at the same time as the



154Article 4, Optimizing demand-side bids in day-ahead . . .

purchaser’s bids, and so one might seek a supply-function equilibrium
for their offers. The game being played by generators is actually more
complicated than this as generators choose both a day-ahead offer and
an offer to the regulating market.
A less complicated analysis seeks an optimal bid curves from a single
purchasers under the assumption that the generators’ supply curves
and the other purchasers’ bid curves are not chosen strategically but
are random. A single purchaser (say purchaser 1) then might seek a bid
curve to offer that will yield a (random) day-ahead purchase outcome
that in expectation minimizes his costs of purchasing to meet his next
day’s demand.
To model this situation we follow the approach of [1] and define a
market distribution function φ, where φ (r, p) denotes the probability
of the demand of purchaser 1 being fully met if he requests a quantity r
at price p from the day-ahead pool. The probability φ (·) is decreasing
in r and increasing in p. Suppose now that the purchaser is to submit
some demand curve s = {(r (t) , p (t)) , 0 ≤ t ≤ T} to the day-ahead
market. The component r (t), which is monotonic decreasing, traces
the quantity component of the demand curve, while p (t), which is
monotonic increasing, traces the price component, as shown by the
solid curve in Figure 2. The dashed line to the right shows all points
for which φ (r, p) = φ0 = 0. The dashed line to the left shows all points
for which φ (r, p) = φ1 = 1. From this, we observe that between φ1
and φ0 there is a probability measure that lies on s that defines the
probability of the purchaser being sold quantity r at price p.
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φ=1

φ=0
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Figure 2: The solid line is the demand curve. The dotted line to
the right corresponds to φ (·) = 0, while the dotted line to the left
corresponds to φ (·) = 1.

Now, purchaser 1 seeks to minimize his total cost of purchasing elec-
tricity. The total cost is the sum of the cost in the day-ahead market
and the cost in the regulating market. The optimal bidding curve will
be the solution to

min
s

Z
s

[rp+ C (r, p)] dφ (r, p) (3)

subject to

s = {(r (t) , p (t)) , 0 ≤ t ≤ T}
dr

dt
≤ 0 (r (·) non-increasing)

dp

dt
≥ 0 (p (·) non-decreasing)

0 ≤ r (t) ≤ qM

where C (r, p) is the regulating cost and qM is an upper bound on r.
The market distribution function φ is different from the standard mar-
ket distribution function introduced in Anderson and Philpott [1], but
we can make use of their framework. To do so, we may relate φ to
a standard market distribution function by a simple transformation.
To do this we let q = qM − r. The parameter qM is an upper bound
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on both r and q. Also, we define ψ (q, p) = φ (qM − q, p). This corre-
sponds to reversing the graphs in Figure 2 giving the graph in Figure
3.

p

q

ψ =1

ψ =0

t=T

t=0

p

q

ψ =1

ψ =0

t=T

t=0

Figure 3: The plots in Figure 2 reversed. The dashed line to the right
corresponds to ψ = 1, and the dashed line to the left corresponds to
ψ = 0.

Observe that on the curve s in Figure 2 the measure dφ (r, p) is the
same as dψ (qM − r, p) on the curve s0 depicted by the solid line in
Figure 3. The objective function (3) is then equivalent to

min
s0

Z
s0
[(qM − q) p+ C (qM − q, p)] dψ (q, p) . (4)

Now we rewrite the expression (4) and get the following problem

max
s0

Z
s0
{− (qM − q) p− C (qM − q, p)}dψ (q, p) (5)

subject to

s0 = {q (t) , p (t) , 0 ≤ t ≤ T}
dq

dt
,
dp

dt
> 0 (q and p non-decreasing)

0 ≤ q (t) ≤ qM .

We observe that this is equivalent to the problem of a generator max-
imizing the profit from an offer stack, where q is the quantity offered



4 Optimal bidding with a market distribution 157

into the pool by the generator at price p as described in [1]. The mar-
ket distribution function ψ (q, p) denotes the probability of a generator
not being fully dispatched at the price-quantity pair (p, q). We denote
by B (q, p) the integrand in the objective function (5). It is shown
in [1] that the optimal solution to this problem must satisfy the first
order condition

Z(q, p) =
∂B

∂q

∂ψ

∂p
− ∂B

∂p

∂ψ

∂q
= 0. (6)

Computing the regulating cost in (3) is not entirely straightforward
as the regulating price depends on the clearing price p in the day-
ahead market and the amount of demand cleared in the day-ahead
market. We shall denote by C (r, p) the expected regulating cost for
purchaser 1 conditional on its being dispatched r at clearing price p in
the day-ahead market. To evaluate C (r, p) we take expectations with
respect to the conditional probability distribution of dispatch of the
other purchasers.
To do this let δ (·) be the difference between the regulating market
price and the day-ahead price as a function of regulating market dis-
patch. Then the regulating price is p+ δ (H − U(p)− r), where H is
the total (random) demand of all purchasers, U(p) is the total (ran-
dom) day-ahead demand dispatched at price p to the other purchasers,
and r is the amount of day-ahead demand that purchaser 1 is cleared
at price p. The amount that purchaser 1 buys in the regulating market
is H1 − r, where H1 is the (random) demand of purchaser 1.
Using this notation we obtain

C (r, p) = EH,H1,U [(p+ δ (H − U(p)− r)) (H1 − r) | (r, p)]

We then compute an offer curve s0 that solves

max
s0

Z
s0
{− (qM − q) p− C (qM − q, p)}dψ (q, p) .

The optimal bid curve will then be defined by (r, p) = (qM − q, p).
As an illustration of how one might compute an optimal demand curve
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to offer in the day-ahead market, suppose δ (y) = y. Then

C (r, p) = EH,H1,U [(p+ (H − U(p)− r)) (H1 − r) | (r, p)]
= pE[H1]− pr +E[HH1|(r, p)]−E [H] r

−E[U (p)H1|(r, p)] +E[U (p) |(r, p)]r − rE[H1] + r2.

To simplify this expression we now assume that both H and H1 are
statistically independent of p, r, and U(p), but H and H1 may be
correlated. This independence is quite a restrictive assumption. Al-
though the assumption allows the total amount U(p) bid by other
purchasers in the day-ahead market to depend on E[H], a single other
purchaser might well base their contribution to U(p) on the current
day’s observed demand level which will typically be correlated with
H.
Under the independence assumption the function C(r, p) simplifies to

C (r, p) = r2 + (−p− h+E[U (p) |(r, p)]− h1) r

+ ph1 + E [HH1]− h1E[U (p) |(r, p)]
= r2 + (−p− h+ u(p)− h1) r + ph1 +E [HH1]− h1u(p),

where we denote E[U (p) |(r, p)] by u(p), E[H] by h, and E[H1] by h1.

Example 3 (Single purchaser)
To illustrate how to derive an optimal bid in a particular case, we
assume a single purchaser in a day-ahead market with ψ (q, p) = qp

4
.

For one purchaser, we have H1 = H, and u(p) = 0. Now the integrand
− (qM − q) p− C (qM − q, p) becomes

− (qM − q) p− {(qM − q)2 + (−p− h+ u(p)− h1) (qM − q)

+ ph1 +E [HH1]− h1u(p)}
= − (qM − q)2 + 2h (qM − q)− ph−E

£
H2
¤

so we seek

max
s0

Z
s0

¡
− (qM − q)2 + 2h (qM − q)− ph−E

£
H2
¤¢
d
³qp
4

´
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As above

Z(q, p) = Bqψp −Bpψq

= (−2h+ 2qM − 2q)
1

4
q +

1

4
hp.

Now suppose E[H] = 1, E[H2] = 2, and qM = 2. Then

Z(q, p) =
1

4
(2− 2q) q + 1

4
p.

The curve Z(q, p) = 0 is plotted below in Figure 4, where Z > 0
above the curve. This curve does not completely specify the optimal
solution to the problem with objective (5) as the optimal curve must
be non-decreasing.
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Figure 4: The curve Z(q, p) = 0.

However since ψ (p, q) = 0 for p ≤ 0, the differential dψ = 0 in this
area, so the purchaser may choose any non-decreasing curve for p ≤ 0,
which corresponds to q ≤ 1. The same argument goes for the area
where ψ (p, q) = 1, which corresponds to q ≥ 1.6956 and p ≥ 2.359.
Then, an optimal bidding curve would be

p (q) =

 0, q ≤ 1,
2q2 − 2q, 1 < q ≤ 1.6956,
2.359, q > 1.6956.

The optimal objective value of p(q) is
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Z
s0

¡
− (qM − q)2 + 2h (qM − q)− ph−E

£
H2
¤¢
dψ (q, p)

=

Z q=1.6956

q=1

{−p(q)− 2q − (2− q)2 + 2}d
µ
qp(q)

4

¶
=

1

4

Z 1.6956

1

(−(2q2 − 2q)− 2q − (2− q)2 + 2)(6q2 − 4q)dq

= −2.5323.

This gives the following optimal bid curve for the purchaser:

b(r) =

 2.359, r < 0.3043,
4− 6r + 2r2, 0.3043 ≤ r < 1,
0, r ≥ 1,

which is plotted in Figure 5. The cost of this policy is 2.5323 (minus
the objective function value that we maximized).
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Figure 5: Optimal demand bid curve.

We can compare this policy with several other candidates. A potential
strategy for the purchaser may be to bid the expected demand, r =
h = 1, in the day-ahead market. This is defined by the offer curve
q = qM − r = 1. The objective value of this curve is
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Z
s0
{−ph− 2qh− (qM − q)2 +K}dψ (q, p)

=

Z p=4

p=0

{−p− 2− (2− 1)2 + 2}d
³p
4

´
=

1

4

Z 4

0

(−p− 1) dp

= −3.0,

giving an expected cost of 3.0 for the purchaser. Similarly if the pur-
chaser chooses to buy the entire demand in the regulating market,
then he would order r = 0 (or q = 2) in the day-ahead market. The
objective value of this curve is also −3.0 giving a cost of 3.0. Bidding
r = 0.5, in the day-ahead market, for example, gives an expected cost
of 2.58.

5 Conclusions

In this paper we have seen that in most realistic circumstances a pur-
chaser for electricity ought to bid for less than their expected demand
in the day-ahead market. The central reason underlying this is that
even with perfect knowledge of their demand, purchasers are likely to
be better off buying their electricity in two marginally-priced tranches,
rather than making a single bid. This behaviour is confirmed in both
the equilibrium model and the model with uncertainty modelled using
a market distribution function.
Note that we have ignored the risk attitude of purchasers in our mod-
els. Because the regulating market is typically more volatile than
the day-ahead market (being susceptible to constraints and outages)
purchasers might be unwilling to rely too heavily on sourcing their
electricity from this market, and so in practice one might observe pur-
chasers bids to be closer to their expected demand than we predict.
It is interesting to speculate on whether purchasers bidding only a pro-
portion of expected demand in a day-ahead market poses problems for
market designers. In addition to the market for physical delivery, Nord
Pool serves as a transparent exchange place for electricity derivatives.
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The derivatives are written on the day-ahead price, and not on the
regulating price. Thus, to maintain an efficient market for electricity
derivatives, the prices and volumes dispatched in the day-ahead mar-
ket should as far as possible reflect the true conditions of the power
system. Due to this, the Norwegian system operator, Statnett, pro-
hibits demand-side speculation in the regulating market, and requires
that the purchasers bid for their expected demand in the day-ahead
market. At the time of bidding, the actual consumption is however
random, and it may be rather difficult for Statnett to assess whether
or not a retailer has submitted an inaccurate bid on purpose. If con-
sumers become more price-flexible in the short run, e.g. due to hourly
metering getting more common (see e.g. [4]), such a judgement may
be even more difficult to make.
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Abstract

We propose a stochastic linear programming model for con-
structing piecewise linear bidding curves to be submitted
to Nord Pool, the Nordic power exchange. We consider
the case of a price-taking power marketer who supplies
electricity to price-sensitive end users. The objective is
to minimize the expected cost of purchasing power from
the day-ahead energy market and the short term balanc-
ing market. The model is illustrated using a case study
with data from Norway.

1 Introduction

The Nordic electricity market, comprising Denmark, Finland, Norway
and Sweden has several hundred retailers, competing to serve a pop-
ulation of about 24 million. This amounts to 385 TWh of electricity
per year1 at an average price of 163 NOK/MWh2. The Scandinavian
market for retail electricity is very competitive. Retailers get their
margins from buying wholesale and selling to end-users. Retail elec-
tricity is a higly standardized and homogenous good, and both retail
and wholesale prices are transparent, with different websites keeping
track of around 100 retail companies’ prices. The difference between
the cheapest and most expensive is low, considering the uncertainty in
input and competitors’ prices, and menu costs associated with chang-
ing prices. Keeping the costs low is essential for long-term survival as
a retailer, and our model should be able to contribute to that goal, by
aiming at the lowest level of balancing costs over time.
Although some consolidation is likely to occur, the industry is ex-
pected to stay reasonably competitive for many years. Another ex-
pected development in this industry is the degree to which two-way
communication technology will be adopted. This involves hourly me-
tering of each subscriber and some form of letting the end user know

1Figures from 2000. Source: [14].
2Average wholesale spot price in Trondheim region, 10 March 1997 - 16 De-

cember 2003.
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the current price of power. Over time, given large price differences
over the course of a day, and occurrences of price spikes, such a devel-
opment will induce households to become more price responsive than
today. In anticipation of this, we propose an optimization model for a
price-taking retailer with end users who will reduce load if prices are
high, and increase load if prices are low.
Bidding in electricity markets has been studied by [1], [7] and others,
for players with market power. Bidding for price-taking producers has
been studied by, e.g. [5] and [3]. We study bidding for a retailer, and
in contrast to previous studies, we use piecewise linear bids. An more
general assessment of how a retailer with market power should behave
in an electricity pool market with a day-ahead structure is found in
[11].
Today, retailers usually submit price insensitive bids to the spot mar-
ket at Nord Pool. This is due to the fact that consumers are not
exposed to short term price fluctuations, with monthly (or less often)
metering being the norm. The bids are more or less close to expected
demand, which is estimated by statistical techniques. Demand esti-
mation takes into account factors such as past demand and forecasted
temperature, which is important since more than 50% of electricity
use in the Norwegian households is for heating. See [2] for a load
forecasting model.
Some managers are speculating in the balancing price becoming either
higher or lower than the spot price. If a manager is able to guess
correctly on e.g. the balancing price becoming being larger than the
spot price, he will benefit from submitting a curve that asks for a
quantity larger than expected load. However, it is the policy of the
system operator, Statnett, to require all participants to submit bids
in accordance with the load each participant expects. If e.g. a retailer
is discovered to deviate from this rule, he will receive a formal request
to change bidding practices. This has happened in the past. Exactly
how and when the retailer continuing to break Statnett’s policy will
be penalized, is not known.
Although this research is motivated by the needs of a Norwegian elec-
tricity retailer, we believe that the bidding model also can be applied
by power marketers elsewhere, given a pool accepting piecewise linear
bids, and where there is a short term balancing market whose prices
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affect the retailer costs whenever he experiences an imbalance between
the load planned day-ahead and the realized load.
In Section 2 we expain the market rules relevant for demand side
bidding in the Norwegian market. In Section 3 we specify a stochastic
linear program to be solved by the retailer to obtain a bidding curve
that gives an optimal combination of expected cost and risk, according
to the retailer’s preferences. In Section 4 we describe our data set and
explain how we generated scenarios, while we present and discuss some
solutions to our model in Section 5. In Section 6 a brief conclusion is
given.

2 The bidding process

For a Norwegian retailer, there are two important markets for physical
exchange of electricity: the day-ahead market at Nord Pool, “elspot”,
and the regulating market organized by Statnett, the independent
system operator. In the day-ahead market, producers and retailers
submit price-quantity bids for buying and selling electricity every day
before noon. The bids are specified for each of the next 12—36 hours,
and Nord Pool subsequently collects all bids and calculates market
clearing prices for each hour and each price area. Each country in the
region constitutes a price area, with Norway divided further into two
or three areas, and Denmark divided into two areas. A retailer only
submits bids for areas where he has customers.
The regulating market is used by the system operator to ensure real-
time balance between supply and demand. Only producers with an
ability to ramp up or down significantly on a 15 minute notice are
allowed to participate3. Whenever there is a load greater than was
committed in the day-ahead market, there is a need for up-regulation,
and vice versa. Statnett has collected bids for such up- and down-
regulations for each participant and chooses to use the cheapest feasi-
ble source for such ramping.
When submitting an up-regulation bid, the producer obliges himself

3Retailers that are able to cut of some of their customers on a 15 minutes
notice, may also participate in the regulating market. Demand-side bidding in the
regulating market is still rather immature, however, so we leave that out for now.
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to increase production by certain amounts at certain prices on a 15
minute notice. Up-regulating power must be offered at a higher price
than the spot price. This implies that in an hour of up-regulation, the
price in the regulating market will be higher than the spot price. Sub-
mitting down-regulation bids, means that the producer agrees to de-
crease production by certain amounts at certain prices on a 15 minute
notice. Down-regulating power must be offered at a lower price than
the spot price, which implies that in an hour of down-regulation, the
price in the regulating market will be lower than the spot price.
If the actual consumption within a price area is equal to, or very close
to the volume dispatched in the spot market for that region, there is
no need for regulation. The price in the regulating market then equals
the spot price.
Now, assume that the market is being up-regulated. We have ex-
plained that during an hour of up-regulation the regulating market
price is higher than the spot price. Since there are many retailers
operating within a price area, however, there is a chance that not all
retailers are regulated in the same direction.
A retailer whose customers have used less electricity than the volume
that particular retailer was dispatched at in the spot market, will be
down-regulated. This retailer will have to sell some power back to
the regulating market at the regulating price, which is higher than
the spot price. In other words, that retailer has in this case actually
made a profit by ordering more electricity in the spot market than his
customers actually needed, and then selling it back to the market at
a higher price.
Other retailers in the same area may be up-regulated, however, if they
have ordered less electricity in the spot market than their customers
actually consumes. They will have to purchase the excess demand in
the regulating market at a price that is higher than the spot price.
These retailers would have been better off if they had been dispatched
at a higher volume in the spot market.
A similar argument may be used to explain how a retailer that is up-
regulated individually would find it benefitial if the market is down-
regulated. Also, a down-regulated market would disbenefit retailers
that are down-regulated individually. In other words, it is advanta-
geous for a retailer to be regulated in the opposite direction of the
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market.
The Norwegian approach to handling imbalances between the spot
market volumes and the actual consumption is different from the ap-
proach used in Denmark, Finland and Sweden.

3 Model specification

We define β and π to be the regulating market price and the day-
ahead price, respectively. Based on the brief explanation of the reg-
ulating market design given in the introduction, we see that during
up-regulation β − π > 0, during down regulation β − π < 0 and when
there is no regulation, β − π = 0.
The retailer’s cost of purchasing electricity may be written as

C = Cd + Cr (1)

where Cd is the amount paid in the day-ahead market and Cr is the
amount paid in the regulating market. They can be expressed as

Cd = πy (2a)

Cr = (λ− y)β (2b)

where λ is the demand and y is the volume knocked down in the
day-ahead market. Observe that the regulating cost Cr is negative if
(λ− y) < 0. One may consider including benefit from selling elec-
tricity to end users here. However, the benefit is the result of two
exogenous variables: end user price and load. Bidding does not in-
fluence the benefit of selling electricity, therefore this benefit is not
included.
Now, we combine the equations (2) and get the following cost

C = πy + (λ− y)β = λβ − yδ

where δ = β−π is the difference between the regulating price and the
spot price.
The first term, λβ does not include any decision variables. Hence, the
retailer should seek to

min {−yδ}
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which is equivalent to minimizing the regulating market loss, γ =
(λ− y) δ. This relation denotes the money lost by purchasing the
excess demand in the regulating market instead of in the spot market.
Note that γ may well be negative, implying that the retailer may make
extra profits in the regulating market.
Since the expected cost turns out to be negative in the case study, we
have chosen to turn this around, so that the retailer’s objective is to
maximize the regulating market profit, or

max yδ. (3)

The expression (3) is the main part of the objective function in our
optimization model.

3.1 Bidpoints

To obtain a piecewise linear strictly decreasing curve for the day-
ahead auction, which is consistent with the bidding rules on the Nord
Pool day-ahead market, the retailer submits n price-volume pairs
(P0, x0) , (P1, x1) , . . . , (Pn, xn), where P0 ≤ P1 ≤ · · · ≤ Pn and x0 ≥
x1 ≥ · · · ≥ xn to the pool. A linear interpolation between the pairs
(Pi, xi) and (Pi+1, xi+1), i = 1, . . . , n− 1 gives the resulting n− 1 line
segments that decide at what price π and volume y the retailer is dis-
patched. Figure 1 shows an example of such a bidding curve with three
line segments. If the day-ahead price is π∗, the retailer is dispatched
at the volume y∗.
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Figure 1: A possible bidding curve with three line segments. The re-
tailer submits the points (xi, Pi), i = 0, . . . , 3 to the pool and the bid-
ding curve emerges from a linear interpolation between those points.

The bidding curve is described by the following relation

π =



P1 +
P0−P1
x0−x1 (y − x1) if x1 < y ≤ x0

P2 +
P1−P2
x1−x2 (y − x2) if x2 < y ≤ x1

...
...

Pn−1 +
Pn−2−Pn−1
xn−2−Pn−1 (y − xn−1) if xn−1 < y ≤ xn−2

Pn +
Pn−1−Pn
xn−1−xn (y − xn) if xn ≤ y ≤ xn−1

(4)

Assuming that the retailer is a price taker, the relevant decision prob-
lem for him is to select volumes at which to be dispatched at at the
different prices. As is apparent from the relation (4), the problem of
selecting values of both Pi and xi, i = 1, . . . , n is nonlinear.
To ease the solving of the problem, we make the model linear by fixing
the price points P0, . . . , Pn in advance. One plausible way of deciding
pre-determined values of the price points is to require that

Pr {Pi ≤ π∗ ≤ Pi+1 ∪ xi+1 ≤ y∗ ≤ xi} =
1

n− 1 ∀ i ∈ I. (5)

Hence, the probability of being dispatched on any of the n − 1 line
segments is the same. This may be done by sorting the scenarios
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generated by price, πs, s ∈ S, where S is the set of scenarios, and
fix the values of Pi such that the number of scenarios between any
price-volume pair is the same.
Since our problem is to select the volumes xi corresponding to Pi, we
rewrite the relation (4) to make it linear in x:

ys =



³
1− πs

P1−P0 +
P0

P1−P0

´
x0 +

³
πs

P1−P0 −
P0

P1−P0

´
x1

if P0 ≤ πs < P1³
1− πs

P2−P1 +
P1

P2−P1

´
x1 +

³
πs

P2−P1 −
P1

P2−P1

´
x2

if P1 ≤ πs < P2
...³

1− πs
Pn−Pn−1 +

Pn−1
Pn−Pn−1

´
xn−1 +

³
πs

Pn−Pn−1 −
Pn−1

Pn−Pn−1

´
xn

if Pn−1 ≤ πs ≤ Pn

(6)
In the relation (6) we have included the subscripts s to point out that y
and π are scenario dependent. As indicated, we will generate scenarios
for the spot price π.
For each scenario the day-ahead price, πs, will lie between two certain
price-points Pi and Pi+1. All the other n−2 price points are irrelevant
for computing the knocked down volume ys for that scenario. Let i(s)
denote the largest i for which Pi < πs : i (s) = supi∈I {i|Pi < πs}.
Hence, the point of dispatch, (ys, πs), will lie on a line segment on the
bidding curve that is succinctly described by the linear interpolation
between the price-volume pairs

¡
Pi(s), xi(s)

¢
and

¡
Pi(s)+1, xi(s)+1

¢
. The

relation (6) can now be written as

ys =

µ
1− πs

Pi(s)+1 − Pi(s)

+
Pi(s)

Pi(s)+1 − Pi(s)

¶
xi(s)

+

µ
πs

Pi(s)+1 − Pi(s)

− Pi(s)

Pi(s)+1 − Pi(s)

¶
xi(s)+1

The corresponding volume ys dispatched in each scenario s ∈ S is then
derived by relation (6).
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3.2 Consumption

As explained in the introduction, the goal of this paper is to present a
model for a retailer whose customers’ demand, λ, is price-flexible. A
commonly used demand curve in the economics literature is a constant
elasticity curve. Assume that for some price π0, the customers have an
expected demand E [λ] = λ0, given the expected weather conditions.
Then, the expected demand at price π is derived by

E [λ] = λ0

µ
π

π0

¶η

where η is the price-elasticity.
Since the bidding curve for a certain hour is submitted to the pool
between twelve to thirty-six hours ahead of the physical dispatch, the
actual consumption is random. For example, the weather conditions
may change, and even if they do not, the customers’ behaviour will
be stochastic4. We derive the consumption in each scenario by adding
a prediction error term, εs, for which we generate scenarios. The
consumption, λs, is then derived by the relation

λs = λ0

µ
πs
π0

¶η

+ εs. (7)

The volume deviation in scenario s is then given by λs − ys.

3.3 Risk

The retailer will be subject to two different risk factors which may
influence his behaviour in the day-ahead market.
The first risk factor is the profit risk, which is simply the risk of mak-
ing less money than desired on the end user sales. If both the volume
deviation and δ are large and have the same sign, the retailer may
lose a considerable amount of money during one single hour, poten-
tially causing liquidity problems. However, the balance settlements

4The firm which supplies the most commonly used model for predicting con-
sumption in Norway, asserts that the model has an average error of 2% when the
weather conditions are known.
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are made a few weeks after the physical dispatch, and then the regu-
lating costs are charged for one full week. Hence, the actual invoice
(or credit memo) from the system operator will include the regulating
costs for 168 hours. If we assume that our model gives results that
are optimal in the long run, we find it fair to assume that this risk is
rather irrelevant. In the model presented here, we have assumed the
retailer to be risk neutral. Later in this section, however, we suggest
how to include this risk if so desired.
The second risk factor is the volume deviation risk. Since all deriva-
tives are quoted with respect to the day-ahead price, the system op-
erator wants the day-ahead market to reflect the physical conditions.
In short; they do not like demand-side speculation in the regulating
market. Therefore, they are inclined to take measures towards retail-
ers that are suspected of bidding too high or too low volumes in the
day-ahead market on purpose.
According to our data, E [δ] < 0, which implies that the market is
down-regulated on expectation. If it were not for the volume deviation
risk, a risk neutral retailer would therefore order nothing in the day-
ahead market and purchase the entire demand in the regulating market
at a price that is likely to be lower than the day-ahead price. Hence,
without possible volume deviation punishment, the day-ahead market
would be rendered obsolete if the retailers are risk neutral.
An alternative way of modeling risk is by using shortfall costs, as e.g.
in [6]. This may be done by defining variables, w+1s, w

+
2s, . . . , w

+
ms and

w−1s, w
−
2s, . . . , w

−
ms. When the retailer is up-regulated,

P
m∈Mw+ms =

λs − ys, and when he is down-regulated,
P

m∈Mw−ms = ys − λs. Now,
we let T+m > 0 and T−m > 0 denote the marginal cost of piece m on
the volume deviation risk function for positive and negative deviations,
respectively. Then, we may penalize volume deviations in the objective
function by adding the term

−V
X
m∈M

¡
T+mw

+
ms + T−mw

−
ms

¢
where V quantifies the retailer’s aversion to the volume deviation risk.
This term will penalize volume deviations more the higher they get,
and if we define T±1 < T±2 < · · · < T±m , the marginal penalty will
increase with increasing deviations. Also, this would require the fol-
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lowing constraintsX
m∈M

w+ms + ys ≥ λs ∀ s (8a)X
m∈M

w−ms − ys ≥ −λs ∀ s. (8b)

0 ≤ w±ms ≤Wm ∀ m, s (8c)

By using shortfall costs, the profit risk could also be plausibly modeled.
We define the variables u1s, u2s, . . . , uks, with the constraintX

k∈K
uks ≥ B − (ys − λs) δs

0 ≤ uks ≤ Uk ∀ m, s

where B defines a target for the regulating market profit in each hour.
If the regulating profit exceeds the budget, the constraint is not active.
Next, we let Ck denote the marginal cost of piece k on the profit risk
function. Then the term

−R
X
k∈K

Ckuks,

where R denotes the retailer’s aversion to profit risk, is added to the
objective function.
As mentioned, losses incurred during one hour is unlikely to be a big
issue to the retailer. A loss in one hour may be levelled by a gain
the next hour, and therefore, it may seem a bit irrelevant to impose
an hour by hour budget. Nevertheless, big losses may be unpleasant
even in just a single hour. Also, if the company has suffered heavy
regulating market losses recently, it may want to take back lost ground.
The retailer would perhaps want to change B on a regular basis, e.g.
each day, based on previous performance.

3.4 Full model

Now, using the standard deviation approach to risk, the full model
looks as follows.

max
X
s∈S

ρs

(
ysδs − V

X
m∈M

¡
T+mw

+
ms + T−mw

−
ms

¢)
(9)



178 Article 5, Constructing bidding curves . . .

subject to

ys =

µ
1− πs

Pi(s)+1 − Pi(s)
+

Pi(s)

Pi(s)+1 − Pi(s)

¶
xi(s)

+

µ
πs

Pi(s)+1 − Pi(s)

− Pi(s)

Pi(s)+1 − Pi(s)

¶
xi(s)+1 ∀ s (10a)X

m∈M
w+ms + ys ≥ λs ∀ s (10b)X

m∈M
w−ms − ys ≥ −λs ∀ s. (10c)

0 ≤ w±ms ≤Wm ∀ m, s (10d)

xi ≥ xi+1 ∀ i ∈ I (10e)

xi ≥ 0 ∀ i ∈ I (10f)

where we have the following indices and sets
s, S count the scenarios
i, I count the price-volume pairs,
the following stochastic parameters
π is the spot price
λ is the load over the retailer’s customers
δ is the difference between the regulating market price and the spot
price
ρ is the probability of scenario s,
the following deterministic parameters
Pi are the price points on the price grid, Pi < Pi+1,
V is the weight on volume deviation risk in the objective function
Wm is the size of segment m on the piecewise linear volume deviation
cost function the following variables
xi is the volume corresponding to Pi, xi ≥ xi+1
y is the volume dispatched in the day-ahead market.

4 Scenario generation

We have generated scenarios for spot price, π, volume deviation, ε,
and for the difference between the regulating market price and the
spot price, δ.



4 Scenario generation 179

For π and δ, we have used hourly spot prices and regulating prices for
Trondheim region in the period 10 March 1997 - 16 December 2003.
From these data we have removed the prices in weekends and holidays,
in addition to the prices between 24:00 hrs and 07:00 hrs. We removed
the mentioned data, because we would like to consider bidding for a
normal day-time hour. We were then left with 25 500 entries for π
and δ.
For volume deviation, ε, we have used measured and estimated con-
sumption for the concession area of Trondheim Energiverk Nett AS5

(TEV) for every hour during the period 1 October 2002 - 31 March
2003. We subtracted estimated consumption frommeasured consump-
tion to obtain ε, so that ε > 0 means that the retailer has been up-
regulated, while the retailer has been down-regulated if ε < 0. As this
is a rather short time series compared to those for π and δ, we have
chosen not to remove any data. This leaves us with 4 367 entries for
ε. If we assume that our model is for a retailer serving the entire TEV
consession area, this retailer was regulated in the opposite direction of
the market in 1 518 of the hours, while he was regulated in the same
direction in 1 983 of the hours. In 866 there was no regulation (δ = 0).
Some descriptive statistics of the data set are shown in Table 1. Prices
are listed in NOK/MWh, while volume deviations are listed in MWh.

π δ ε

Number of entries 25500 25500 4376
Highest entry 3840.6 1193.9 58.52
Lowest entry 17.5 −3740.6 −70.86
Mean 178.5 −4.13 −1.34
Std. dev. 106.15 57.48 16.33

Table 1: Some descriptive statistics of the data set.

According to [12] the regulating price strongly depends on the level
of the spot price. Also, with such a huge data set, we find it natural
to divide the data into subsets so that we may get a more robust

5Trondheim Energiverk Nett AS is the network operator serving Trondheim
and Klæbu municipals, an area with 157 887 inhabitants as per 1 January 2003.
Source: [13].
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treatment of data that are in the outer edges of our sample. Therefore,
we have divided the price data, π and δ, into three sets with respect
to π. The first set is made up by the 15% lowest values of π together
with their corresponding values of δ. The second set is made up by
the middle 70% values of π together with the corresponding values
of δ, while the remaining highest 15% of the values of π with their
corresponding values of δ form the third set. We denote these sets T1,
T2 and T3, respectively.
To generate scenarios, we need to estimate the first four moments of
the variables’ distributions. However, in about 21% of the 25 500
hours for which we have price data, there was no regulation, implying
δ = 0. This would significantly bias the estimates of the moments for
δ, and therefore, we need to treat hours with no regulation separately.
When there is regulation, that is δ 6= 0, it is the absolute value of δ
that counts towards the retailer’s regulating cost. Hence, estimating
moments for all δ 6= 0 together, would give a mean which is too close to
zero. One way of dealing with this could be to estimate moments based
on |δ|. However, both [12] and our own analysis indicate that that the
characteristics of |δ| is influenced by the direction of regulation.
Due to the above mentioned reasons we divided each of the sets T1,
T2 and T3 into three subsets according to the direction of the regu-
lating price. That is, we divided each set into one subset for δ < 0
(down-regulation), one subset for δ > 0 (up-regulation) and one set
for δ = 0 (no regulation). We denote these subsets Tl,h, for h = a, b, c,
respectively,with l = 1, 2, 3. Hence, the subset T1,a includes the price
pairs for down-regulation among the 15% lowest spot prices.
As mentioned, our time series for ε is not large enough to get one ε
for each pair of π and δ. Therefore, we have estimated only one set
of moments for ε, which has been added to the nine series with pairs
of π and δ. Since we are dealing with a price-taking retailer, we may
assume that the volume deviation of this particular retailer has no
influence on the prices. Hence, the fact that our volume data are a bit
more sparesome than the price data should not disturb our analysis
significantly, even though it would have been preferable to have equal
time series of data for all three variables.
In Table 2 we have listed the number of entries in each subset. The
table also shows some probabilities. The column Pr {h|Tl} lists the
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probability of the market being regulated in direction h, h = a, b, c
for set Tl, l = 1, 2, 3. We see that the probability of down-regulation
is significantly higher for the lowest 15% of spot prices, that is the
set T1. The probability of up-regulation is significantly higher for the
highest spot prices than for the lowest spot prices. The probability of
no regulation seems quite stable.
The column Pr {Tl,h} lists the probability of a randomly selected pair
of price data, π and δ, belonging to the subset Tl,h, l = 1, 2, 3 and h =
a, b, c. This statistic is calculated as Pr {Tl,h} = Pr {h|Tl}Pr {Tl}, l =
1, 2, 3 and h = a, b, c, where Pr {T1} = Pr {T3} = .15 and Pr {T2} = .7.

Number of
Subset entries Pr {h|Tl} Pr {Tl,h}
T1,a 1729 0.452 0.0678
T1,b 1185 0.310 0.0464
T1,c 911 0.238 0.0357
T2,a 7234 0.405 0.284
T2,b 6885 0.388 0.270
T2,c 3730 0.209 0.146
T3,a 1347 0.352 0.0528
T3,b 1666 0.435 0.0653
T3,c 813 0.212 0.0319

Table 2: The number of entries in each subset, and probabilities.

Table 3 shows descriptive statistics for the variable δ. We observe that
the mean δ at down-regulation is much lower when the spot price is
high (T3,a) than otherwise. Also, the absolute value of the mean of δ
is a bit higher for down-regulation than for up-regulation in all sets.
The means are listed in NOK/MWh. Furthermore, we observe very
high kurtosis for T2,b and T3,a, which is due to some extreme events in
these subsets. For the lowest spot prices, δ seems to be quite stable
with all four moments relatively low. Obviously, all moments equal
zero when there is no regulation.
Table 4 shows descriptive statistics for π. We observe that the vari-
ability of π seems to show of some more variation in for the set of
high spot prices, T3. The high positive skewness and the high kurtosis
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Subset Mean Std. dev. Skewness Kurtosis
T1,a −28.8 13.0 −0.400 2.99
T1,b 23.2 18.1 1.77 7.51
T1,c 0 0 0 0
T2,a −31.0 16.9 −2.05 12.9
T2,b 25.8 41.2 17.3 429
T2,c 0 0 0 0
T3,a −76.5 187 −13.3 216
T3,b 38.2 68.0 6.50 56.1
T3,c 0 0 0 0

Table 3: Descriptive statistics for δ.

in this set indicates that some of the spot prices in this set are sig-
nificantly higher than the mean. The mean spot prices are listed in
NOK/MWh.

Subset Mean St. dev. Skewness Kurtosis
T1,a 83.8 21.1 −0.700 2.49
T1,b 83.1 22.0 −0.634 2.51
T1,c 82.6 23.3 −0.770 2.68
T2,a 158 35.7 0.955 3.24
T2,b 161 37.6 0.940 3.12
T2,c 161 37.6 0.798 2.89
T3,a 390 200 8.22 111
T3,b 363 129 3.22 18.8
T3,c 376 155 3.38 17.8

Table 4: Descriptive statistics for π.

Table 5 shows descriptive statistics for ε. The mean prediction error
is measured in MWh.
To generate scenarios, we also need the correlations between the vari-
ables. In subset T2,a, the correlation between π and δ was estimated
to −.435. Apart from that, the correlations were all rather low. We
have chosen not to include the correlation matrices in the text.
Based on the descriptive statistics presented in tables 3, 4 and 5 we
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Mean St. dev. Skewness Kurtosis
All subsets −1.34 16.3 1.87 ∗ 10−4 4.12 ∗ 10−3

Table 5: Descriptive statistics for �.

generated scenarios for each subset by using the method described in
[8]. The advantage of this method is that it is quite simple since one
only needs the first four moments of each variable, plus the correla-
tions. This requires, however, that the distributions and the relation-
ships between them may be succinctly described by those statistics.
For most sets we generated 100 scenarios. For the sets T2,b and T3,a,
however, the algorithm used did not converge for 100 scenarios, possi-
bly due to their relatively extreme skewnesses and kurtosis. For those,
we generated 600 and 300 scenarios, respectively.

5 Solution

The specification of the volume deviation penalty function is neces-
sarily ad hoc. We chose to work with the piecewise linear penalty
function as shown in Figure 2.
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Figure 2: Volume deviation penalty function.
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If the realized load is larger than one standard deviation from its
expected value, one starts penalizing using a marginal penalty of 22.9,
equal to the expected spot price. This holds for deviations up to
two standard deviations. From two standard deviations and up, the
marginal penalty is increased by a factor of ten.
We modelled and solved the linear program using XPRESS [4]. A
typical problem was compiled and solved in about 16 seconds on a
1 GHz Pentium PC with 524 MB RAM. No special effort was made
to make the code efficient with respect to solution time, as only a
fraction of the time mentioned (ca. 0.5 s) is used in the dual simplex
algorithm. This problem is a simple recourse problem for which there
exists special purpose algorithms, see e.g. [9]. Such algorithms may
become useful if the model is expanded.
An example of an optimal bidding curve is shown in Figure 3. This
curve has 7 line-pieces. Also shown is the expected load curve and the
load-price scenarios.
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Figure 3: Example of optimal bid curve, expected load curve and load
scenarios.

As mentioned, since E [δ] < 0 in our data, the optimal curve asks for
less power than the end users are expected to consume.
Using the data described in the previous section we selected n = 64
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price points (63 line pieces) according to equation (bottom page 3). We
do not know what the price elasticity of demand will be in a future with
two-way communication. Thus we have constructed bidding curves
with a range of elasticities from η = −0.6 to η = 0. See Figure 4:
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Figure 4: Bidding curves with varying price elasticity of demand.

Using a price elasticity of demand of η = −0.3, we show the effect of
varying the number of fixed price points. See Figure 5:
If the number of price points is decreased, the result is a more crude
bidding curve. Notice also that the bidding curves are cruder at prices
that are less likely, e.g. above 500 NOK/MWh. This is reasonable and
is due to equation (5).
Figure 6 shows the cumulative profit distribution, and illustrates the
risk associated with bidding in this particular case. The expected
profit is 212 NOK, a small amount. The risk is also relatively small,
with a one-day 95% VaR of -1313 NOK.



186 Article 5, Constructing bidding curves . . .

50

100

150

200

250

300

350

400

450

500

200 250 300 350 400 450 500 550

Load [MW]

Pr
ic

e 
[N

O
K

/M
W

h]

n = 8
n = 21
n = 61
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Next we show the effect of varying the weight parameter V in the
objective function, and also varying the number of fixed price points.
See Figure 7:
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Figure 7: Tradeoff between expected profit and volume deviation risk.

Volume deviation risk is measured as the expected volume deviation
penalty,P

s∈S ρs
P

m∈M (T
+
mw

+
ms + T−mw

−
ms) .We see that there is a tradeoff be-

tween expected profit and the expected penalty of the difference be-
tween volume bid and realized load. If the decision maker wants high
expected profit, he has to submit a bid that deviates from the expected
load. The larger the volume deviation, the higher the expected profit.
From the figure we can also see that the retailer is better off by using
many price points, and that the marginal benefit of increasing the
number of price points is a decreasing function.

6 Conclusions and future research

In sum, we have suggested a model supporting the construction of a
bidding curve that fits the rules of the Nord Pool day ahead market.
The intended user is a retailer having end-users with price-sensitive
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demand. The case study indicates that the model is able to construct
plausible bidding curves, and that there is a tradeoff between expected
cost of purchasing electricity and risk of getting penalized from the
system operator because bids deviate from expected load.
Model validation is left for future work. There is a growing number of
tests one can make in order to learn about the quality of the model, e.g.
regarding the generation of scenarios as explained by Kaut & Wallace
(2003).
The model should be extended to support bidding for 24 hours simul-
taneously. A number of different issues will then emerge, for example
how to account for possible dependency between stochastic variables
across different hours.
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