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A B S T R A C T

In this paper we propose two non-intrusive methods for identifying hydro power plant dynamics using standard system identification techniques. The purpose of the
tests is to obtain transfer functions relevant for the frequency containment reserves delivered by hydro power plants. To validate the methods, we analytically
demonstrate under which conditions the methods will yield consistent results. Moreover, using a simulation example we discuss the validity of the methods when one
of the conditions is not met. Results using measurements from the control system of a power plant in the Nordic power system are also provided.

Our proposed methods also allow us to identify a transfer function that can be used to check new requirements developed by the Nordic TSOs. The transfer
functions obtained by our methods is compared with the transfer function obtained using the TSOs’ methods using Monte Carlo Simulation.

1. Introduction

Recent concerns for the frequency quality in the Nordic power
system [1] have led to an increased interest in the dynamic perfor-
mance of the frequency containment process (FCP). This process is re-
sponsible for containing frequency deviations and is provided by the
frequency containment reserves (FCR). The Nordic transmissions
system operators (TSOs) have therefore proposed new requirements for
the FCR [2] that include a series of sine tests for estimating the transfer
function of the FCR. These tests require disconnection of the plants and
may take up to two days. We have therefore investigated less time-
consuming and intrusive alternatives, and in this paper we propose two
experiments that may serve as non-intrusive alternatives to these tests.

1.1. Related work

Traditionally, requirements for hydro power plants are stated in
terms of time domain performance, such as in the network codes for
grid connection of generators [3]. Following this line of thought [4]
proposes a prototype transfer function for checking time domain re-
quirements for hydro power plants. A similar approach is taken in [5],
where system identification is used for checking the performance of a
steam turbine.

Tests similar to those proposed by the TSOs are often referred to as
field tests, which are tests performed while the plant is operating in an
open loop. In the paper [6] field tests are used to tune parameters in
simulation models based on load rejection tests and steady state

measurements. The paper [7] describes how a model of the turbine can
be obtained using a gradient-based non-linear search algorithm fitting
measured frequency responses from injection of sine and square waves
to the governor. A similar approach was used in [8], where the servo
and turbine dynamics were identified from testing at a power plant. For
the system identification they used different techniques such as visual
inspection grey box identification and analysis of the plant’s response in
the frequency domain. In addition it was demonstrated how the back-
lash, which can be found in some servos, can be identified.

In more recent research there has been an attempt to identify hydro
power plant dynamics using phasor measurement units (PMUs). These
approaches are promising, especially since they do not require the
disconnection of the power plant or any other disturbance to the op-
eration. However, as was shown in [9] the transfer function obtained
using these approaches are not exactly those needed for checking the
requirements. In [10,11] they use ARX and ARMAX model structures to
perform the identification, in [9,12,13] a box–Jenkins structure is used
and in [14] time domain vector fitting is used.

Another common method for identifying hydro power plant dy-
namics using PMU measurements is to use measurements from large
power system disturbances. This approach is used in the papers
[15–18]. In [15,18] an unscented Kalman filter is used for the identi-
fication and in [16] constrained optimisation is used for the identifi-
cation. An example of how to tune simulation models by comparing
simulation results with disturbance recordings can be found in [17]. An
obvious drawback of these approaches is that they rely on the occur-
rence of large disturbances. Moreover, these papers do not provide an
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analytical analysis of whether or not the methods will yield consistent
results.

1.2. Contributions and outline

To date, research has focused on how best to identify the dynamics
without disturbing the plant operation at all or on field tests. In this
paper we will contribute to methods for identifying hydro power plant
dynamics by:

1. Proposing two non-intrusive experiments for identifying hydro
power plant dynamics relevant for the FCR. The experiments use
different measurements available from the plant’s control system
while the plant is in normal operation with added non-intrusive
excitation. The amplitude of the added excitation is in the same
order of magnitude as the noise already present in the system and
does not require disconnection of the plant, and can thus be con-
sidered non-intrusive.

2. Demonstrating that our proposed methods also allow for estimating
the transfer function needed to test the new requirements proposed
by the Nordic TSOs.

3. Analysing whether or not consistent estimates of the relevant dy-
namics can be obtained using measurements available during
normal operation. Aside from [9], this analysis is lacking in the
others papers where closed-loop identification is attempted for
identifying hydro power plant dynamics. However, this analysis is
crucial for ensuring that the results obtained can be used for vali-
dating whether or not a hydro power plant complies with the re-
quirements. Moreover, the analysis allows for further analysing and
understanding factors that may negatively affect the results.

4. Discussing the effect of process noise on the consistency of the
identification. The discussion uses the analytical insights and is
backed up by Monte Carlo simulations.

5. Demonstrating that the PMU approach presented in [9] can be seen
as a special case of one of the experiments proposed in this paper
without added extra excitation.

The outline of the paper is as follows. In Section 2 the power plant
model assumed for the analysis is presented. The transfer functions
needed to check the requirements are presented in Section 3 and the
experiments for checking them are presented in Section 4. In Section 5
two technical theorems relevant for the two experiments we propose
are presented, and used in Section 6 for analysing the identifiability of
the different transfer functions using the different experiments. Readers
who are not interested in why the identification is possible can skip
directly to Section 7, which discusses the results from the analysis and
provides some simulation examples to illustrate the main points of the
analysis. The results from a real power plant are presented in Section 8.
Finally, concluding remarks and further work are outlined in Section 9.

2. The power plant model used in the paper

For analysing the identifiability of hydro power plant dynamics we
will use the model depicted in Fig. 1. Other models and structures are
possible, however, the same analysis performed in this paper could
easily be conducted for others structures as well. It is important to note
that in our analysis the plant is assumed to be operating within a
confined region, such that its behaviour can be described by linear
models.

In Fig. 1, we use classical notation. The Laplace transform of a
continuous-time signal x t( ) is denoted by x s( ) and the shift operator for
a discrete time signal x n[ ] is denoted by z (n is the sample number).

In Fig. 1, the (first-order) continuous-time transfer function G s( )J
represents the swing dynamics of the power plant. We will assume this
transfer function to be of the form:

H
=

+
G s

s K
( ) 1

2J
d (1)

where H is the inertia constant of the machine and Kd is the speed
damping. This transfer function is of crucial importance as it determines
the initial change in the electrical angular speed of the machine’s rotor

t( ) due to changes in the difference between the electric power P t( )e
and the mechanical power P t( )m . Further change in the speed of the
machine is contained by the controller Gc, which is responsible for
changing P t( )m to maintain the power balance. The controller Gc is
here assumed to be a digital PID controller and is therefore represented
by a discrete-time transfer function G z( )c . Since the controller is digital,
the continuous-time speed t( ) needs to be discretised via a sampling
mechanism preceded by an anti-aliasing filter F s( )aa . The corresponding
discrete-time signal is denoted y n[ ]. The signal r n[ ] is an excitation
signal that can be added for identification purposes; this signal is thus
equal to zero in normal operation. The discrete-time output c n[ ] of the
controller is transformed into a continuous-time signal via a zero-order
hold (ZOH) mechanism. The resulting continuous-time signal u t( )c is
applied to the servo G s( )s which changes the water flow to the turbine
G s( )t by changing the opening of the guide vanes g t( ). The parameter

in the model is referred to as the droop and determines the steady
state gain of the governor.

In Fig. 1, we also assume that we have a discrete-time measurement
u n[ ] of the (continuous-time) electric power P t( )e , obtained in a si-
milar manner as t( ).

In our modelling we assume the feedback to the controller to be the
rotor’s electrical angular speed. Other choices are possible and one
common choice is to use the power system’s electrical frequency as the
feedback signal. Since the machines are synchronous machines the
power system’s frequency will be very close to the rotor’s electrical
angular frequency. However, it may vary for faster dynamics and we
will therefore restrict our analysis to having the rotor’s electrical speed
as the feedback signal. The speed is measured by measuring how fast
the rotor is rotating and the relation between the rotor’s mechanical
speed and electrical speed is given by:

t p t( )
2

( )m (2)

where t( )m is the mechanical speed of the rotor and p is the number
of poles in the machine.

For the identification it is very important to know how the systems
we want to identify are excited. Since the plant is assumed to use the
rotor’s electrical angular speed as the feedback signal, the main external
excitation will be changes in the electric power at the bus bar. For the
active power at the bus bar of a synchronous machine we have the
following approximate expression [19]

=P t V t E t t
X

( ) 3 ( ) ( )sin ( )
e

t a Ev

s (3)

where V t( )t is the terminal voltage of the machine, is the internal vol-
tage, t( )EV is the angle between the internal voltage angle t( ) and the
terminal voltage angle t( )V , and Xs is the synchronous reactance. If we
linearise (3) we get the following equation

= + + +P t K V t K E t K t K t( ) ( ) ( ) ( ) ( )e t t E a v v 11 (4)

where K K K, ,t E v, and K11 are linearisation constants. For the identifi-
cation we need to determine whether or not there is external excitation
and if the system is operating in a loop. From (4) we see that P t( )e ,
which excites the plant is dependent on the rotor angle t( ) of the plant.
Moreover, the internal voltage E t( )a and the terminal voltage V t( )t are
dependent on the rotor angle through the excitation system and the
automatic voltage regulator of the plant. Several plants also have power
system stabilisers (PSS); these control systems change the electric
torque of the generator based on measurements of the plant’s speed
deviation. Based on the above considerations we will assume the fol-
lowing equation for the electrical power of the power plant.
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= + + + = +P s v s T s T s K
s

s v s T s s( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )e l v PSS l
11

(5)

where v s( )l represents the external excitation provided by random load
changes and other random switching events in the power system, T s( )v
is the transfer function from the angular speed of the rotor through the
excitation system and voltage regulator to the electrical power, and
T s( )PSS is the power system stabiliser. For brevity and since the exact
structure of T s( )v and T s( )PSS is not important for the analysis we will
use the transfer function T s( ). In Sections 5 and 6, where the iden-
tifiability is analysed, we need to know whether or not there is a time
delay between the rotor angle t( ) and the electrical power P t( )e , from
(4) we see that the fourth term K t( )11 represents a direct connection
without any time delay.

3. Requirements on hydro power plants

In [20] the theory and idea behind the draft requirements are pre-
sented. In short they assume that all power plant’s can be aggregated to
one plant and state stability and performance requirements for this
aggregated plant. To check if a plant can fulfill these requirements the
power plant owner has to identify the transfer function G s( )p , given in
(6), through a series of sine tests, that will be presented in Section 4.

=
+

G s G s G s G s
G s G s

( ) ( ) ( ) ( )
1 ( ) ( )p

c s t

c s (6)

where G s( )c denotes the continuous-time equivalent of the digital con-
trollerG z( )c . Based on the model of G s( )p , we can directly check the TSO
requirements (global/aggregated requirements). In this paper, we will
also pay attention to the local stability and performance of the hydro
power plant and propose local requirements. For this purpose, let us
define two important local transfer functions: the local sensitivity
function S s( ) and the local plant’s disturbance rejection function G s( )1 :

=
+

S s
G s G s

( ) 1
1 ( ) ( )p J (7)

=G s G s S s( ) ( ) ( )J1 (8)

The requirement for the local stability puts a limit on the allowed
upper bound Ms for the sensitivity function, that is:

<S j Mmax s
(9)

For the local performance requirements it is required to be able to reject
a disturbance with a power of j( )Pe such that the power of the rotor
speed is always below a value 2

req :

<G j jP1

2
2

e req (10)

Another important performance measure of the power plant is the

amount of reserves delivered by the plant. This amount is determined
by the droop setting of the plant. In case there is no speed damping
and ohmic losses in the turbine and generator, the steady state gain of
G s( )1 is given by the droop setting and speed damping of the plant. This
means that estimating G s( )1 also gives information on how much FCR a
plant can provide given its droop settings.

4. Experiments for checking the requirements

In this section we will present the open-loop experiment proposed
by the industry and the closed-loop experiments proposed in this paper.

4.1. Description of the industry-proposed experiment

In [2] they propose removing the feedback signal from y n[ ] to the
governor and to identify the transfer function G s( )req between r n[ ] and
u n[ ] at the frequencies given in Table 1 using (11).

F

F
=G j

u n
r n

( [ ])
( [ ])req p

p

p (11)

where denotes the value of the discrete Fourier at the frequency p.
By inspecting Fig. 1 we see that the transfer function G s( )req is given

by:

=
+

G s
G s G z T s

G s T s
( )

( ) ( ) ( )
1 ( ) ( )req

p J

J (12)

For slow dynamics we can neglect the effect of the exciter and voltage
regulator, moreover, the PSS is to be disconnected. Consequently,
T s K s( ) /11 . If we use this and (1) we can write (12) as

H
=

+ +
G s

G s K
K s K s

( )
( )

( 2 )req
p

d

11

11 (13)

The above equation implies that the experiment proposed in [2] iden-
tifies G s( )p through a low pass filter. However, for most practical pur-
poses this should be fine as only slow dynamics are investigated. The
time periods investigated are reported in Table 1 and an comparison of
G s( )req and G s( )p , using the values for the small power plant in Appendix
A, is provided in Fig. 2. In the figure the largest frequency from Table 1
is depicted as the black vertical line. For the power plant in Appendix
Appendix A, G s( )req is thus is close to G s( )p for all the sine tests. How-
ever, this cannot in general be guaranteed.

Remark 1. The open-loop experiment proposed by the industry to
estimate G s( )req will be consistent. For the theory behind open-loop
identification, please refer to e.g. [21]. However, it is important to note

Fig. 1. Block diagram of a hydro power plant in a power system.

Table 1
Frequencies of the simulated sine signals.

2
300

2
150

2
100

2
80

2
70

2
60

2
50

2
40

2
25

2
15

2
10
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that this open-loop experiment is intrusive and does not directly
identify the desired transfer function G s( )p .

In the sequel, we present two closed-loop identification approaches.
The first method directly yields a model of S s( ) and G s( )1 and, from
these models, we can derive a model of G s( )p . The second method
identifies intermediary models from which models of S s G s( ), ( )1 and
G s( )p can be deduced.

4.2. Experiments proposed in this paper

In this paper we propose using standard system identification
techniques for identifying the hydro power plant dynamics while the
plant is operating in a closed-loop operation. We will show that these
techniques will allow us to derive both a model of G s( )p (that can be
used to verify the industry requirements) and models of S s( ) and G s( )1
(that can be used to verify the local requirements discussed in Section
3). To identify these models, we use standard techniques described in
[21] and the functions provided by the system identification toolbox
available for MATLAB [22]. Since the identification of the transfer
functions is performed using a computer, the measured signals will
have to be sampled. We will therefore use the discrete version of the
signals and transfer functions from now on.

4.2.1. Description of the first closed-loop identification method
By inspecting Fig. 1, we observe that the discrete-time signals

r n u n[ ], [ ] and =n r n y n[ ] [ ] [ ] are related by discrete-time versions
S z( ) and G z( )1 of the continuous-time transfer functions S s( ) and G s( )1 :

= +n G z u n S z r n[ ] ( ) [ ] ( ) [ ]1 (14)

From this we conclude that if we have collected the dataset
= = …Z u n r n n n N{ [ ], [ ], [ ] 1 }ur

N we can identify S z( ) and G z( )1 if the
systems are identifiable using this dataset (the identifiability will be the
purpose of the next sections). The subscript ur in Zur denotes the input
signals to the multi input single output (MISO) system described by
(14). With the models of G s( )1 and S s( ), we can check the local re-
quirements of Section 3. From the models of G s( )1 and S s( ), we can also
deduce a model of G s( )p using the following relation:

=G z S z G z( ) (1 ( )) ( )p 1
1 (15)

With the model of G s( )p , we can check the TSO requirements.
Note that if we set =r n[ ] 0, we get the following relation

=n G z u n[ ] ( ) [ ]1 (16)

In this configuration, it will no longer be possible to identify S z( ) and
G z( )p . However, it could still be possible to identify G z( )1 using the

dataset = = …Z u n n n N{ [ ], [ ] 1 }u
N

4.2.2. Description of the second closed-loop identification method
We can observe in Fig. 1 that the signals c n u n[ ], [ ] and y n[ ] are

related as follows:

=y n G z c n G z u n[ ] ( ) [ ] ( ) [ ]Jp J (17)

where G z( )J is a discretised version of G s( )J and GJp is a discretised
version of the product G s G s G s( ) ( ) ( )s t J (combined with the ZOH and the
antia-aliasing filter). We therefore conclude that we could estimate
G z( )J and G z( )Jp using the dataset = = …Z c n u n y n n N{ [ ], [ ], [ ] 1 }cu

N if
the systems are identifiable using this dataset. To find G z( )p we also
need to know the transfer function of the servo G z( )s and of the con-
troller G z( )c . We will assume the controller to be known and we see that
the signals c n[ ] and a n[ ] are related by:

=a n G z c n[ ] ( ) [ ]s (18)

We therefore conclude that we could estimate G z( )s using the dataset
= = …Z c n a n n N{ [ ], [ ] 1 }c

N if the system is identifiable using this da-
taset. An estimate of G z( )p can then be deduced from the models of
G z G z( ), ( )J Jp , and G z( )s using the following relation:

=
+

G z
G z G z

G z G z G z
( )

( ) ( )
( )(1 ( ) ( ))p

Jp c

J c s (19)

The relation (19) allows for checking the TSO proposed requirements.
Moreover, we can use the estimates of G z( )p and G z( )J and the relations
(7) and (8) to derive models of S z( ) and G z( )1 . With these models, we
can check the local requirements of Section 3.

Remark 2. For the sequel, it is important to note that the transfer
functionG z( )Jp will generally contain a delay (due to the presence of the
ZOH) while the other transfer functions G z S z( ), ( )J and G z( )1 will
generally not contain any delay.

5. Technical theorems

To prove the identifiability of the systems presented in the previous
section we will present two technical theorems: One relevant for MISO
systems and one relevant for single input single output SISO systems. In
the next section we will then discuss the identifiability of the systems
using these theorems.

5.1. MISO theorem

We consider the dataset = = …Z u n u n y n n N{ [ ], [ ], [ ] 1 }miso
N

1 2 gen-
erated by:

Fig. 2. Comparison of G s( )p and G s( )req , the black vertical line corresponds to the largest frequency in Table 1.
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S = +G uy n z n v n: [ ] ( , ) [ ] [ ]miso 0 (20)

where =G z G z G z( , ) [ ( , ) ( , )]0 1 0 2 0 and =u u n u n[ [ ] [ ]]T
1 2 . The

term v n[ ] models process noise and is assumed to be generated by
=v n H z e n[ ] ( , ) [ ]0 , where H z( , )0 is assumed to be monic and e n[ ] is

white noise with variance e
2. As we can see in (20) the true systemSmiso

is parametrised by the parameter vector 0. In the sequel, we will
suppose that this parameter vector 0 is unknown, but that the model
structure M = G z G z H z{ ( , ), ( , ), ( , )}miso 1 2 is known. Consequently,
the identification boils down to the determination of a consistent esti-
mate of 0.

The input signals =u n u n u n[ ] [ [ ] [ ]]T
1 2 are assumed to be generated

with two external excitation signals w n[ ]1 and w n[ ]2 and may also be
influenced (via some feedback) by the noise e n[ ] generating v n[ ] in
(20):

= +u K wn z n z e n[ ] ( ) [ ] ( ) [ ] (21)

where =w n w n w n[ ] [ [ ] [ ]]T
1 2 and where K z( ) and z( ) are a matrix of

transfer functions and a vector of transfer functions, respectively. In this
paper, we only suppose knowledge of u n[ ]. Consequently, w Kn z[ ], ( )
and z( ) are not necessarily known quantities. Using prediction error
identification [21] and the dataset Zmiso

N an estimate N of 0 can be
deduced as follows:

=
=N

narg min 1 ,N
n

N

miso
1

2

(22)

with the prediction error defined as:

= G un H z y n z n[ , ] ( , )( [ ] ( , ) [ ])miso
1 (23)

In order to validate our identification setting it is important to verify
whether or not (22) and (23) will lead to a consistent estimate of 0
when u n[ ] is generated as in (21). Indeed, if (22) is a consistent esti-
mate of 0 and N is sufficiently large, the estimate (22) is normally
distributed around 0 [21]. The variance of this estimate is then the
only source of uncertainty and this variance can be estimated and de-
pends on the number of data N and the excitation signal u n[ ]. To ensure
the consistency, we need to verify that the true parameter vector 0 is
the unique solution to the asymptotic prediction criterion:

= E narg min ,miso
2

(24)

with

=
=

E n
N

E n, lim 1 ,miso
N n

N

miso
2

1

2

(25)

The operator E denotes the expectation operator.
Before we investigate whether or not the estimate (22) is consistent

we will make some assumptions.

Assumption A1. The external excitations w n[ ]1 and w n[ ]2 are assumed
to be uncorrelated white noises with variance 1

2 and 2
2 respectively.

Moreover, they are assumed to be uncorrelated to the white noise e n[ ].

Remark 3. Other w n[ ] than white noise could also work, such as
multisine and filtered white noise.

Assumption A2. The determinant K edet( ( ))j is nonzero for all .

In addition we have the following condition:

Condition C1. If we denote =z z z( ) [ ( ) ( )]T
1 2 , there must be a delay

in G z z( , ) ( )1 0 1 and in G z z( , ) ( )2 0 2 whenever these transfer functions
are nonzero.

The identifiability of the systemSmiso is now stated in the following
theorem.

Theorem 1. Consider the dataset = = …Z u n u n y n n N{ [ ], [ ], [ ] 1 }miso
N

1 2
where Zmiso

N is generated by (20) and (21). Moreover, consider Assumptions

A1 and A2 and Condition C1 Then the prediction error criterion (22) with
(23) yields a consistent estimate of 0.

5.2. SISO theorem

We now consider the dataset = = …Z u n y n n N{ [ ], [ ] 1 }siso
N generated

by:

S = +y n G z u n v n: [ ] ( , ) [ ] [ ]siso 0 (26)

where the term v n[ ] models process noise and is assumed to be gen-
erated by =v n H z e n[ ] ( , ) [ ]0 , where H z( , )0 is assumed to be monic
and e n[ ] is white noise with variance e

2 and the input signal u n[ ] is
given by:

= +
=

u n K z w n z e n[ ] ( ) [ ] ( ) [ ]
i

q

i i
1 (27)

where q is the number of external excitation signals = …w n i q[ ]( 1 )i . We
observe that u n[ ] may also be influenced by e n[ ] via some feedback. As
in the previous section, we do not suppose w n K z[ ], ( )i i = …i q( 1 ) and

z( ) to be known. We will nevertheless assume the following:

Assumption A3. The signals w n[ ]i = …i q( 1 ) and e n[ ] are all
uncorrelated white noise with variances = …i q( 1 )i

2 and e
2.

For this system the prediction error is given by:

=n H z y n G z u n[ , ] ( , )( [ ] ( , ) [ ])siso
1 (28)

In a similar manner to the MISO system we will verify whether or not
(28) in (22) can lead to a consistent estimate of 0, given the following
technical condition.

Condition C2. If this transfer function is nonzero, there is a delay in
G z z( , ) ( )0 .

Theorem 2. Consider the dataset = = …Z u n y n n N{ [ ], [ ] 1 }siso
N where Zsiso

N

is generated by (26) and (27) with q 1. Moreover, consider Assumption
A3 and Condition C2. Then the prediction error criterion (22) with (28)
yields a consistent estimate of 0.

Remark 4. For SISO identification, a single external excitation (i.e.
=q 1) will be sufficient to ensure the consistency. The advantage of

having multiple external excitation >q( 1) is the reduction of the
variance of the estimate .

6. Validation of the system identification experiments

6.1. Identifiability of S z( ) and G z( )1 using the dataset Zur
N

We will now proceed to investigate whether or not the sensitivity
function S z( ) and the disturbance rejection function G z( )1 can be
identified using the dataset = = …Z u n r n n n N{ [ ], [ ], [ ] 1 }ur

N . We as-
sume that the system can be parametrised by a parameter vector 0 in a
known model structure.

S = + +n G z u n S z r n v n: [ ] ( , ) [ ] ( , ) [ ] [ ]ur 1 0 0 (29)

where =v n H z e n e n[ ] ( , ) [ ], [ ]0 is white noise with variance e
2 and

H z( , )0 is assumed to be monic. The term v n[ ] represents process
noise. It is not included in Fig. 1, however, in general it is very unlikely
that n[ ] is perfectly described by (14).

We see that this situation corresponds to the one in Section 5.1
Indeed, by denoting = =u wn u n r n n e n r n[ ] [ [ ] [ ]], [ ] [ [ ] [ ]]T T

l and by
using Fig. 1, we can write the following for some transfer functions
K z K z( ), ( )11 12 and z( )1 :

= +

= +K w

u n
r n

K z K z e n
r n

z e n

z n z e n

[ ]
[ ]

( ) ( )
0 1

[ ]
[ ]

( )
0

[ ]

( ) [ ] ( ) [ ]

l11 12 1

(30)

S.H. Jakobsen, et al. Electrical Power and Energy Systems 122 (2020) 106180

5



We observe that, if we apply an excitation signal r n[ ], we have two
external excitation signals generating =u n u n r n[ ] [ [ ] [ ]]T (i.e. e n[ ]l
and r n[ ]). Consequently, using Theorem 1, the estimate of 0 obtained
with prediction error identification using the dataset Zur

N will be con-
sistent if Assumptions A1, A2 and Condition C1 are fulfilled. Let us
discuss this matter in the following remarks:

Remark 5. That Assumption A1 does not hold would imply that at least
two of the following signals, the aggregated stochastic load behaviour
e n[ ]l , the added perturbation r n[ ] and the process noise e n[ ] are
correlated. This is highly unlikely.

Remark 6. As shown in (30), it is clear that Assumption A2 will always
be respected in practice.

Remark 7. In this case, Condition C1 boils down to the presence of a
delay in G z z( , ) ( )1 0 1 . This delay condition does not cause any
problems when the feedback mechanism is realised via a digital
controller and a ZOH. However, in our case, the feedback mechanism
which is at stake in Theorem 1 is the one pertaining to the link between

t( ) and P t( )e . In general, there will be no delay in G z z( , ) ( )1 0 1 .
Consequently, we will not be able to guarantee the consistency, and the
estimate (22) will therefore be biased. However, the bias will remain
limited if the contribution of the process noise v n[ ] in u n[ ] is negligible.
Indeed, in this case, z( , ) in (B.4) reduces to H z H z( , )/ ( , ) and
(B.5) holds even if there is no delay in G z z( , ) ( )1 0 1 . That the
contribution of the process noise v n[ ] in u n[ ] is negligible should
normally be met in practice as we can expect the contribution of
random fluctuations in the rotor angle to influence the power at the bus
bar less than the contribution of all other random changes in the power
system.

6.2. Identifiability of G z( )Jp and G z( )J using the dataset Zcu
N

We will now investigate whether or not we can identify consistent
models of G z( )Jp and G z( )J using the dataset

= = …Z c n u n y n n N{ [ ], [ ], [ ] 1 }cu
N , as for the previous system we assume

that the system can be parametrised by a parameter vector 0 in a
known model structure:

S = +G uy n z n v n: [ ] ( , ) [ ] [ ]cu 0 1 (31)

where =G z G z G z( , ) [ ( , ) ( , )]Jp J0 0 0 . The term v n[ ]1 models pro-
cess noise and is assumed to be generated by =v n H z e n[ ] ( , ) [ ]1 1 0 ,
where H z( , )1 0 is assumed to be monic. Using Fig. 1, the input signal

=u n c n u n[ ] [ [ ] [ ]]T can thus be rewritten as:

= +

= +u K w

c n
u n

K z K z
K z K z

e n
r n

z
z

e n

n z n z e n

[ ]
[ ]

( ) ( )
( ) ( )

[ ]
[ ]

( )
( )

[ ]

[ ] ( ) [ ] ( ) [ ]

cl cr

ul ur

l ce

ue

(32)

If an external signal r n[ ] is applied to the system, we are thus here also
in a situation corresponding to Section 5.1 and, using Theorem 1, the
estimate of 0 obtained with the dataset Zcu

N will be consistent if
Assumption A1, A2 and Condition C1 are fulfilled. Assumption A1 and
A2 are generically fulfilled in this case too. However, we have a similar
problem with Condition C1, which requires a delay in both
G z ce z( , ) ( )Jp 0 and G z z( ) ( )J ue , as discussed in the following remark:

Remark 8. The delay condition will generally hold for G z z( , ) ( )Jp ce0
due to the presence of the ZOH (see Remark 2). However, for the same
reason as in Remark 7, this will not be the case for G z z( , ) ( )J ue0 . The
undesired bias will however be limited under the same condition as in
Remark 7.

6.3. Identifiability of G z( )1 without external excitation using dataset Zu
N

We will now investigate whether or not G z( )1 can be identified
without adding external excitation, i.e. =r n[ ] 0. This possibility was

mentioned in Section 4.2.1 (see (16)). Note that we analysed this par-
ticular case in a previous paper[9], but it will also be included here for
the sake of completeness with extra attention given to the delay con-
dition. As for the previous system we assume that G z( )1 can be para-
metrised by a parameter vector 0 in a known model structure. The
relevant dataset for this analysis is = = …Z u n n n N{ [ ], [ ] 1 }u

N , which
we suppose is generated by:

S = +n G z u n v n: [ ] ( , ) [ ] [ ]u 1 0 (33)

and using (30) with =r n[ ] 0. We are thus now in the situation de-
scribed in Section 5.2 with =q 1. Consequently, using Theorem 2, the
estimate of 0 obtained with the dataset Zu

N when =r n[ ] 0 will be
consistent if e n[ ]l is independent of e n[ ] (Assumption A3) and if Con-
dition C2 holds. This latter condition here entails the presence of a
delay in G z z( , ) ( )1 0 1 . As already mentioned in Remark 7, this will not
be the case in practice, but the bias will be limited under the same
condition as the one mentioned in Remark 7.

Remark 9. If we are only interested by G z( , )1 0 , it is thus not necessary
to add the external excitation r n[ ]. However, as pointed out in Remark
4 adding this external excitation r n[ ] and following the procedure in
Section 6.1 will generally yield an estimate with lower variance. The
addition of an external excitation r n[ ] will also make it more likely that
the contribution of v n[ ] in u n[ ] is negligible, reducing in this way the
bias due to the absence of delay in G z z( , ) ( )1 0 1 (see Remark 7).

6.4. Identifiability of G z( )s using the dataset Zc
N

We will now investigate whether or not we can identify G z( )s . For
this purpose, we assume that the system can be parametrised by a
parameter vector 0. The relevant dataset in this case

= = …Z c n a n n N{ [ ], [ ] 1 }c
N is supposed generated by:

S = +a n G z c n v n: [ ] ( , ) [ ] [ ]c s 0 2 (34)

v n[ ]2 models process noise and is assumed to be generated by
=v n H z e n[ ] ( , ) [ ]2 2 0 2 , where H z( , )2 0 is assumed to be monic. It is

arguable whether there will be significant process noise in the servo;
however, it is included for completeness and it will be supposed that
this signal v2 is uncorrelated with e n[ ]l and v n[ ]. The signal v n[ ]2 will
generally be negligible in practice with respect to e n[ ]l and v n[ ]. That is
the reason why it was not considered as an extra external excitation in
the previous subsection. The signal c n[ ] in (34) will be made up of a
contribution of the random load changes e n[ ]l , the process noise e n[ ]
and possibly of a contribution of the external excitation r n[ ].

This situation corresponds to the case discussed in Section 5.2.
Using Theorem 2, this identification will therefore yield a consistent
estimate since all conditions/assumptions are here respected. In parti-
cular, note that, here, Condition C2 will hold since the to be identified
transfer function G z( , )s 0 will generally contains a delay (due the
presence of the ZOH between c n[ ] and a n[ ]).

Note also that, due to the presence of e n[ ]l , we will necessarily have
q 1 and the external excitation r n[ ] is thus not required for the con-
sistency.

7. Simulation results and discussion

We will now proceed with a numerical example.

7.1. Simulation set up

For the simulations, the simple test system depicted in Fig. 3 was
implemented in Simulink. The power plants at bus 1 and 2 were
modeled using their synchronous reactance, the swing equation, the
non-linear model assuming a non-elastic water column described in
[23] for the turbine and governor. For the plant at bus 1 the governor
from [23] was replaced with a digital PI regulator. A DC power flow
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was used for modelling the power flow. The stochastic load at bus 5 was
modelled as white noise through an integrator. Its power was chosen
such that the power system frequency stayed within its allowed band of

Hz0.1 . Process noise was added to the angular speed n[ ] of the power
plant at bus 1. For a more detailed derivation of the test system please
refer to [24]. When =r n[ ] 0 the only external excitations are e n[ ] and
e n[ ]l , which means that no process noise is added to the power plant at
bus 2. In this section, the excitation signal r n[ ] will always be applied
and will be given by a white noise of standard deviation 0.1

50·3
. This

standard deviation was chosen to keep the per-unit value of r n[ ] within
Hz0.1[ ] with a 99.7% probability, where p u0.1/50[ . . ] is the allowed

band of the power system frequency in normal operation1.
To strengthen the conclusions from the simulations a Monte Carlo

Simulation (MCS) approach was used. The approach consisted of run-
ning the test system for a simulation time of s1800 to generate the dif-
ferent datasets. The transfer functions S z G z G z( , ), ( , ), ( , )N N p N1 and
G z( , )J N were then identified using these datasets and the functions
provided by the system identification MATLAB toolbox [22]. For the
SISO systems a box–Jenkins model structure was used and for the MISO
systems a high-order ARX model structure was preferred. These simu-
lations and identification were repeated a 1000 times, and stochasticity
was added by regenerating the process noise e n[ ], and the stochastic
load e n[ ]l after each simulation. Since r n[ ] is a signal generated for the
purpose of the identification it is only generated once.

As mentioned in Remarks 7–9, the absence of a delay in certain
transfer functions leads to a bias that will be smaller for larger values of
the signal to noise ratio (SNR) (by SNR, we here mean the ratio of the
contribution of e n[ ]l and r n[ ] to u n[ ]. To check this, we ran multiple
MCS for different values of the SNR. Different SNR values can be ob-
tained by changing the variance of e n[ ] in the process noise. The lowest
SNR we tried was dB0 , which means that random fluctuations in the
angular speed of the machine contributes equally to the measured
electric power as random power fluctuations due to load and other
switching events in the power system.

7.2. The influence of process noise on the identification using Zcu
N

Let us first consider the experiment of Section 4.2.2 and let us apply
this experiment 1000 times and for different values of the SNR to derive
models for G z( )p and G z( )J . These models of G z( )p and G z( )J can sub-
sequently be used to derive models for G z( )1 and S z( ) using (7) and (8).

In Fig. 4, we represent the means of the frequency responses of the
models G z( )p and G z( )J obtained in this way and we observe that the
bias remains limited. The same can also be said for the means of the
models for G z( )1 and S z( ) (see Figs. 5 and 6).

7.3. The influence of process noise on the identification using Zur
N

The procedure of Section 4.2.1 based on the dataset Zur
N has also

been tested using a MCS for different values of the SNR. This procedure
yields the mean values represented in blue in Figs. 5 and 6. We observe
a larger bias than in the case of the procedure in Section 4.2.2, espe-
cially for the low frequency range of S z( ). The procedure in Section
4.2.1 thus appears more sensitive (at least in this example) to the bias
introduced by the absence of delay. Note also that, since S z( ) is

identified directly in this procedure, the low gain in low frequencies is
more difficult to identify (see Fig. 5).

7.4. Checking the requirements using the different experiments

We will now proceed to compare which method is best for checking
the different parts of the local requirements described in Section 3. To
perform the comparison we will use a normalised root mean square
error (NRMSE) defined as follows:

= =NRMSE
L

a a

a
1

( )
i

L

i
1

0
2

0
2 (35)

where a0 is the true value of the quantity to be estimated, ai is the
estimate of a0 obtained at MCS iteration i, and L is the number of MCS
iterations.

In Fig. 7 the different identification methods that yield a model of
G z( )1 and that therefore allow us to check the local performance re-
quirement given in (10) are compared. In the comparison we look at the
peak and steady state gain of the estimated transfer function. The
steady state gain of G z( )1 is of interest since it is closely related to the
droop setting of the plant, which is how much FCR the plant is pro-
viding. It should be noted that checking the peak of G z( )1 is only suf-
ficient if P n[ ]e1 is white noise. However, since the true nature of P n[ ]e1
may vary from system to system we chose in this case to look at the
peak.

In Fig. 7a the NRMSE results for the different identification methods
(i.e. the ones using Zcu

N , and Zur
N) are presented for the case where a0 in

(35) is the true value of the steady state gain =G z( 1)1 of G z( )1 . Note
that this true value is = =G z( 1) 0.07941 . From this figure, it can be
concluded that the best experiment to use for our simulation setup is
the dataset Zcu

N .
In Fig. 7b the same datasets are used to compare which dataset is

best for estimating =G emax ( ) 1.01j
1 . The dataset Zcu

N clearly gives
best results and is less sensitive to the SNR change.

Let us now consider the second local performance requirement, i.e.
the one linked to S z( ). As shown in (9), we are here only interested in
the peak gain which, in our example, is equal to 1.29. The two methods
allowing us to identify S z( ) (i.e. the ones using Zur

N and Zcu
N ) are eval-

uated in Fig. 8 in their ability at estimating this peak gain. Just as with
the peak gain of G z( )1 the dataset Zcu

N provides the best results.

7.5. Comparison with industry-proposed experiment

We also tested the industry-proposed experiment using the de-
scribed MCS approach. To do this, let us consider the following NRMSE
that will be defined at all frequencies of Table 1:

= =NRMSE
L

G e G e

G e
( ) 1

( ) ( )

( )
i

L

p
j

i
j

p
j

1

2

2 (36)

where G e( )p
j is the frequency response at of G z( )p . For the closed-

loop method of this paper (we will here only consider the method using
Zcu

N ), G e( )i
j is directly the model of G e( )p

j obtained at MCS iteration i.
For the industry-proposed method, G e( )i

j is the estimate of G e( )req
j

obtained at MCS iteration i (see Section 4). In (36), x is the modulus of
the complex number x.

Fig. 9 gives the corresponding results. From the figure it can be seen
that the NRMSE increases for both experiments with increasing fre-
quencies. Our closed-loop approach performs similarly to the industry-
proposed approach. The industry-proposed approach seems less sensi-
tive to the noise in our setup. However, to determine which test is best
in practice, actual SNR levels from real power plants must be in-
vestigated.

Fig. 3. Small test system used for the simulations.

1 In practice the power system will sometimes leave this band.
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Fig. 9 (and the previous figures) has been obtained for a dataset of
length 30 min. For the industry method, since an experiment has to be
performed for every frequency in Table 1, this means that the total
experiment duration is 330 min. Consequently, the industry-proposed
experiment is very time-consuming with respect to the method pro-
posed in this paper for which the experiment duration is just 30 min. An
experiment duration of 330 min may be deemed too long for the in-
trusive industry method. Let us thus also evaluate its performance and
that of the closed-loop method for a dataset length of 10 min. In Fig. 10,
the different experiments with a dataset length of 10 min and varying
levels of SNR are depicted. In this case we see that our closed-loop
approach performs better for all considered SNR.

Until now, we have supposed that we have an exact measurement of
the electrical power u n[ ]. Since this quantity will be measured with a
sensor, a measurement error will nevertheless always be present. In the
industry-proposed method, u n[ ] is the output of the to-be-identified
system. Consequently, the measurement error will increase the variance
of the estimate. In our closed-loop apporaches, u n[ ] is considered as an
input of the to-be-identified system and the identification problem is
then a so-called error-in-the-variable problem [21], which could in
theory be more problematic. It is therefore important to investigate
what are the consequences of a reasonable measurement error on u n[ ]
for the industry-based method and for the prefered closed-loop method
(the one based on the data set Zcu

N ) when, in both approaches, we will

Fig. 4. The mean value of G z( , )p N and G z( , )J N calculated from the MCS. The solid lines are the analytical calculated versions and the dashed, loosely dashed, and
dotted lines represent an SNR of dB dB12 , 6 , and dB0 respectively.

Fig. 5. The mean value of S z( , )N calculated from the MCSwith different levels of SNR compared to the analytical calculated S z( ). The solid, dashed and dotted lines
represent an SNR of dB dB12 , 6 , and dB0 respectively.
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use the measured signal u n[ ] for the identification. In a power plant the
electric power used by the control system is obtained using voltage and
current measurement transformers. The maximum allowed measure-
ment error for the different accuracy classes for measurement trans-
formers defined in [25], close to rated power, are in the range 0.15% to
1.2%. In Fig. 11 we compare results obtained using the dataset Zcu

N and
the industry-proposed method with different levels of process noise and
a measurement noise level of 1%. When comparing Fig. 9 (obtained with
no measurement noise) and Fig. 11 (obtained with 1% measurement
noise), we can conclude that the measurement error that is typicalled
observed in practice hardly modifies the results in this example.

8. Results from a real power plant

In this section, the procedure discussed in Section 6.3 (i.e. a

procedure with =r n[ ] 0) will be used on real-life data. A test was
performed on a power plant in the Norwegian power system. For the
test the dataset Zu

N was collected with a small adjustment with respect
to Fig. 1: the plant was operating with the power system frequency as
the feedback signal. It would be possible to operate with the angular
speed of the rotor as the feedback signal. However, to change to this
operation the plant would have to be shut down. Since the difference
between these two signals is negligible for slow dynamics, we decided
not to change the feedback signal.

The results obtained from five different datasets are depicted in
Fig. 12. The identified transfer functions are plotted together with their
95% confidence interval, which is added to the figure as lines with some
opacity. The droop constant was chosen differently in each of these
datasets. Moreover, the proportional constant of the PID regulator was
changed from 2.5 to 5 for the datasets where the droop was below 6%.

Fig. 6. The mean value of G z( , )N1 calculated from the MCSwith different levels of SNR compared to the analytical calculated G z( )1 . The solid, dashed and dotted
lines represent an SNR of dB dB12 , 6 , and dB0 respectively.

Fig. 7. Comparison of different methods for checking the requirements for local performance.
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The parameters were changed at intervals of one hour and the datasets
were recorded in between, so the datasets are about an hour long. In the
figure it can clearly be seen that the static gain of the disturbance re-
jection is changed when the droop is changed. Similarly, a change in the
peak of the transfer function can clearly be seen when the proportional
constant of the PID regulator is changed. The legend of Fig. 12 shows
the value of the droop the plant owner used for the dataset.

To determine the accuracy of the obtained estimate, the droop

setting was compared with the one calculated from the steady state gain
of the estimated transfer function. The results are presented in Table 2.
As can be seen from the table there is a good correspondence even when
only a part of the full dataset (of 60 min) is used for the identification.

9. Concluding remarks and further work

The Nordic TSO have developed draft requirements for the FCR
providers that require open-loop testing of the plants. In this paper we
have proposed two non-intrusive alternative experiments. These ex-
periments have the added benefit of identifying the transfer functions
relevant for the local plant stability and performance.

We have shown that the dynamics relevant for the local stability and
performance of the FCP of a hydro power plant can be identified in
closed loop operation if extra excitation is added. Although, consistency
cannot in general be guaranteed, due to the lack of a time delay, we
expect potential bias due to the lack of time delay to be negligible. This
was demonstrated by testing the identification procedure with large
levels of process noise. Moreover, the local performance (G z( )1 ) can be
checked without adding extra excitation. The best results were obtained
by using the dataset Zcu

N ; That is to say, by measuring the output from
the PI controller, the electric power and angular speed of the rotor.

Our experiment using the dataset Zcu
N were also compared to the

experiment proposed by the TSOs. This comparison showed that the
experiment proposed by the TSOs were less sensitive to the levels of
process noise we tested with. However, our proposed experiment esti-
mated G z( )p better than the TSO propsed experiment for most of the
levels of the process noise, and our method was better with shorter
dataset lengths. With respect to measurement noise the dataset Zcu

N gave
similar results as the TSO proposed experient.

Fig. 8. NRMSE of S emax ( )j calculated from the MCS.

Fig. 9. NRMSE (36) with different levels of SNR with dataset lengths of 30 min. The solid, dashed and dotted lines represent an SNR of dB dB12 , 6 , and dB0
respectively.

Fig. 10. NRMSE (36) with different levels of SNR with dataset lenghts of 10 min. The solid, dashed and dotted lines represent an SNR of dB dB12 , 6 , and dB0
respectively.
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In addition to the analytical insight and the simulation examples,
some results from a real power plant were also presented. These results
were obtained without adding extra excitation and therefore could only
be used for identifying G z( )1 . The results were promising and we de-
monstrated that the method could estimate the droop setting of the
machine and detect changes in the PID parameters.

Although the presented results from a real power plant are pro-
mising, more tests should be conducted on real power plants. This paper
demonstrates that alternative experiments are possible; however, it still
remains to investigate whether or not the process noise will be a pro-
blem in real power plants and if it can be mitigated. It should also be
investigated for what types of power plants backlash is a problem and
how to mitigate it. In Pelton turbines there is normally no backlash;
however, it is a well-known fact that this may not be the case for high-
pressure Francis turbines and Kaplan turbines.

In conclusion we have shown both analytically and using simple
simulation examples that it is possible to check the new requirements
using non-intrusive experiments. Indeed, it is even possible to identify
the turbine and swing dynamics of the plant in addition to the FCP
dynamics using the non-intrusive experiments. We have also shown

that the results using our method were similar in accuracy to those of
the experiment proposed by the TSO, even with considerable levels of
process noise. Our method also only requires one dataset and works
well with short datasets. It should therefore be of interest as an alter-
native for the TSO-propsed method that requires 11 datasets. However,
to determine the most accurate and suitable method, more tests should
be conducted at actual power plants.

Fig. 11. NRMSE (36) with different levels of SNR with dataset lengths of 30 min and a measurement noise level of 1%. The solid, dashed and dotted lines represent an
SNR of dB dB12 , 6 , and dB0 respectively.

Fig. 12. Identification of G z( , )N1 with different droop.

Table 2
Droop setting and G zlim ( )z 1 1 .

Droop Dataset lenght

60 min 45 min 30 min 15 min

10% 9.5% 9.5% 9.5% 9.5%
6% 6.2% 6.0% 5.9% 6.1%
5% 4.9% 4.9% 5.0% 5.1%
3% 3.1% 3.1% 3.1% 2.9%
2% 2.0% 1.8% 1.8% 1.7%
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Appendix A. Simulation parameters

See Tables A.3–A.5.

Appendix B. Proof of the technical theorems

B.1. Proof of Theorem 1

Proof. We start by inserting (20) into (23) to obtain:

= + +un e n G z n H z e n
H z

, [ ] ( , ) [ ] ( , ) [ ]
( , )miso

(B.1)

with =G G Gz z z( , ) ( , ) ( , )0 and =H z H z H z( , ) ( , ) ( , )0 . We now insert (21) into (B.1).

Table A.3
The parameters used for Fig. 3.

Variable Explanation Value

S1 Machine 1 base power 300 MW -
S2 Machine 2 base power 3 GW -

Sbase System base power 3.3 GW -
Ubase Base voltage for the transmission system 400 kV -
UM base voltage for the machines 20 kV -
D Proportional load frequency dependency 50 Sbase
H1 Generator 1 inertia constant 3.5
H2 Generator 2 inertia constant 9.60 s
Kd1 Damping constant 0.1 -
kd2 Damping constant 0.1 -
x1 Reactance between bus 3 and 5 1 Sbase
x2 Reactance between bus 4 and 5 1 Sbase

xd1 Sub transient reactance generator 1 0.15 S1
xd2 Sub transient reactance generator 2 0.15 S2

Table A.4
Hydro turbine governor parameters plant 1.

Variable Explanation Value

Tf Low pass filter time constant 0.05 s
Kp PI proportional constant 1
Ti PI integral time 9.1 s

Droop 0.08
Tg Servo time constant 0.2 s
Tw Water starting time 1 s
qnl No load flow 0.1

hs Static head of water column 1
At Turbine gain 1

Table A.5
Hydro turbine governor parameters plant 2.

Variable Explanation Value

Tf Low pass filter time constant 0.05 s
Tr Droop time constant 5 s
r Temporary droop 0.3

Droop 0.08
Tg Servo time constant 0.2 s
Tw Water starting time 1 s
qnl No load flow 0.1

hs Static head of water column 1
At Turbine gain 1

S.H. Jakobsen, et al. Electrical Power and Energy Systems 122 (2020) 106180

12



= + + K wn e n z e n z z n[ , ] [ ] ( , ) [ ] ( , ) ( ) [ ]miso (B.2)

with

= Gz z
H z

, ( , )
( , ) (B.3)

and

= +z z
z
z

H z
H z

, ,
( )
( )

( , )
( , )

1

2 (B.4)

Due to the monicity of H z( , )0 and the combination of Assumption A1 and Condition C1, we have that:

=
+

+

E n
e e d

e e d

[ , ]
( , ) ( , )

( , ) ( ) ( , )Kw

miso e
j

e
j

j T j

2 2

1
2

2

1
2 (B.5)

with

= K Ke e( ) ( ) ( ) ( )Kw
j

w
T j (B.6)

where = diag( ) ( , )w 1
2

2
2 . Let us first observe that (B.6) is a strictly positive definite matrix at each by Assumption A2. To prove the consistency,

we will show that 0 is the unique minimszer of (B.5). That is to say, it is the unique parameter vector yielding =E n[ , ]miso e
2 2. Since (B.6) is

strictly positive definite, we observe that this only holds if = =( ) ( ) 0 for all . From (B.3) and (B.4), this implies that = =G H( ) ( ) 0
for all ; which in turn implies = 0. □

B.2. Proof of Theorem 2

Proof. We start by inserting (26) into (28) to obtain.

=
+ +

n e n[ , ] [ ]siso
G z u n H z e n

H z
( , ) [ ] ( , ) [ ]

( , ) (B.7)

with =G z G z G z( , ) ( , ) ( , )0 , and =H z H z H z( , ) ( , ) ( , )0
Due to the monicity of H z( , )0 combined with Assumption A3 and Condition C2,

= +

+
=

E n e e d

e e d

[ , ] ( , ) ( , )

, ,

siso e
j

e
j

i

q

i
j

i i
j

2 2 1
2

2

1
2

1

2

(B.8)

with

= +z G z z H z
H z

, ( , ) ( ) ( , )
( , ) (B.9)

and

=z G z
H z

K z, ( , )
( , )

( )i i
(B.10)

To prove the consistency, we will show that 0 is the unique minimiser of (B.8), that is it is the unique parameter vector yielding =E n[ , ]siso e
2 2.

We observe that this only holds if = = = …z z i q( , ) ( , ) 0( 1 )i . Since q 1 it follows from (B.9) and (B.10) that the latter statement implies that
= =G z H z( , ) ( , ) 0. This in turn implies = 0. □
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