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Chapter 1

Introduction

This thesis presents different optimization models for the natural gas value chain.
It focuses on the new challenges faced by the participants in the value chain for
Norwegian gas after the liberalization of the European gas markets. Most of
the models have a producer perspective and are designed to help analyze the
value chain for natural gas and give decision support for the gas producers. The
modelling framework in this thesis consists of linear programming, mixed inte-
ger programming, quadratic programming, stochastic programming and mixed
complementarity problems. The thesis consists of this introductionary summary
and four papers. Some of the work in this thesis has been sponsored by the
VENOGA and the RAMONA project. VENOGA is a project involving Statoil,
the Research Council of Norway, NTNU and SINTEF. The goal of the project
is to build decision support models and competence for efficient operation and
coordination in value chains where Norwegian gas is central. The RAMONA
project involves the University in Stavanger, the University in Bergen, NTNU,
SINTEF, Statoil, Gassco and CognIT. The intention with the project is to de-
velop methods to optimize regularity and security of supply for the Norwegian
gas production- and transportation system.

Part 1 of the thesis consists five sections. In this first section a short intro-
duction to the thesis is given, in section 2 the background for the thesis as well
as a presentation of the natural gas value chain is presented. Section 3 gives
an introduction to the model types I have worked within. In section 4, relevant
literature is presented and I indicate where the papers in this thesis extend the
existing literature. Lastly, in section 5, a summary of the papers included in this
thesis is given.
Part 2 consists of the four papers included in this thesis. The first paper, ‘Opti-

mization Models for the Natural Gas Value Chain’, gives a thorough introduction
to the natural gas value chain, and modeling techniques for the different parts of
the value chain. The paper is meant as a tutorial on modeling natural gas value
chains.
In the second paper, ‘Modeling optimal economic dispatch and flow exter-

nalities in natural gas networks’, a model for economic analysis in natural gas
transportation networks is presented. The model includes a presentation of the
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Chapter 1 Introduction

pressure constraints and system effects in natural gas networks; in addition it
uses economic objective functions (such as maximization of social surplus).
The third paper is ‘An operational portfolio optimization model for a natural

gas producer’. The model presented here has a system perspective, where we
assume that all decisions in the value chain is made by a central planner. The
value of actively using the pipelines in the network as storage (line-pack) to
maximize profits is examined using a stochastic model and real market data from
three European market hubs.
The last paper, ‘Capacity booking in a Transportation Network with stochas-

tic demand and a secondary market for Transportation Capacity’, provides an
equilibrium model of the booking system in the North Sea. The effects of differ-
ent objective functions for the network operator are discussed. In addition, the
importance of system effects and stochasticity is analyzed.

1.1 The natural gas value chain
In this section I describe the background for the papers in this thesis and give an
introduction to the natural gas value chain. The focus will be on the North Sea,
and especially on the Norwegian interests.
In 2006, the petroleum industry accounted for approximately 36 % of the total

income for the Norwegian economy. Natural gas is increasing in importance in the
petroleum industry, and the production of natural gas is expected to reach 42%
of total petroleum production in Norway by 2010. In a European context, the
Norwegian production of natural gas is significant and accounts for approximately
15% of the natural gas consumption. Most of the gas is transported to Germany
and France, where Norwegian gas accounts for approximately 30% of the total
consumption.

The liberalization process

An important part of the background for this thesis is the liberalization process
in the natural gas industry in Europe. The process has been ongoing for more
than twenty years, starting in Great Britain. Great Britain is also today the
country that is most advanced in the liberalization process, measured by market
opening and liquidity in the short-term markets. For a discussion of the lib-
eralization process in Great Britain, see Roeber (1996) and Weir (1999). Also
in other landing points for natural gas in Europe, such as Zeebrugge and the
TTF, short-term markets have emerged. Financial markets with natural gas as
the underlying commodity is developing in these market hubs. This indicates a
growing trust in the liquidity of the spot markets. Neumann et al. (2006) gives
an example of econometric analysis of the convergence of European spot market
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1.1 The natural gas value chain

prices for natural gas. The paper shows that the Interconnector (a pipeline which
connects the market hubs in NBP and Zeebrugge) has led to almost perfect price
convergence between the NBP (National Balancing Point in Great-Britain) and
Zeebrugge in the time period considered in the paper.

The liberalization process has to a large degree been driven by the European
Union. This is in contrast to the process in the US and UK which were mainly
market driven. The European Union has decided on two gas directives that
specifies the development of one internal European market (European Union
1998, 2003, European Commission & Transport 2002). The most important part
of the directives is the decision to open transportation infrastructure for third
party access.

Implications for the value chain in the North Sea

The supply side in the North Sea is dominated by large companies. Before the
liberalization process, coordination of production and transportation on the Nor-
wegian continental shelf was accomplished through inter company groups like the
Gas Supply Committee (Forsyningsutvalget, FU) and the Gas Negotiating Com-
mittee (Gassforhandlingsutvalget, GFU). In 2001 the GFU was abandoned and
replaced by individual company sales. The large production companies also own
the transportation infrastructure. After the liberalization process, the ownership
of the infrastructure was given to a newly formed company: Gassled (owned by
the original owners of the infrastructure). Gassled has ownership of all infrastruc-
ture open for third party access. New infrastructure facilities will be incorporated
in Gassled when used by a third party.
The routing in the network in the North Sea is the responsibility of Gassco.

Gassco is an independent company responsible for ensuring nondiscriminatory
access to the infrastructure owned by Gassled. The tariffs in the network are
regulated by the ministry of petroleum and energy. The intention is to ensure that
the profits are generated in the production fields and not in the transportation
network. The access to the network is decided by allocation rules (Ability to
Use and Capacity Allocation Key). For more information on the tariff system,
see Gassco (2006). For details on the liberalization process in Norway, see Austvik
(2003) and Dahl (2001).

Elements in the natural gas value chain

Natural gas is formed naturally from organic material: plant and animal remains.
Subjected to high pressure and temperature over millions of years, the organic
material changed into coal, oil and natural gas. Natural gas is a mixture of
hydrocarbon and non-hydrocarbon gases (such as helium, hydrogen sulfide, and

3



Chapter 1 Introduction

nitrogen). The gases are found in porous geological formations (reservoirs) be-
neath the earth’s surface. In these reservoirs, the gas can be in gaseous phase or
in solution with crude oil. Unlike other fossil energy sources, the natural gas is
a relatively clean fuel, meaning that it emits lower levels of harmful byproducts
when burnt than for instance oil and coal. Useful sites for information on natural
gas are NGSA (2007), Gassco (2006) and EIA (2006).
A simplified picture of the offshore natural gas value-chain in the North Sea

is shown in Figure 1.1. The gas is transported from the production fields to
processing plants, or directly to the market hubs in Europe. There are storage
possibilities along the transportation route. In addition, the transportation net-
work itself can be considered as a storage facility since there are large volumes
of gas contained in the pipelines at all times. In the following I will go shortly
through some of the important characteristics of the natural gas value chain.

Figure 1.1: Illustration of the natural gas value chain.

Exploration

Before any gas is produced, the gas must be located and wells must be drilled.
A common method for exploration on the North-Continental shelf is seismology.
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1.1 The natural gas value chain

The methods have been developed from simple two-dimensional seismology in the
early 1970s to the latest technology where four dimensions are being recorded
(the fourth being shear waves). In addition to seismology, methods such as
magnetometers and gravimeters can also be used. The magnetometers measures
small differences in the Earth’s magnetic field, while the gravimeters measure
the Earth’s gravitational field. In addition, mathematical models are used to
predict the underground geological structures and conditions. The models give a
hypothetical picture of the subsurface.

The procedures developed so far can only indicate where the gas deposits are
located. Exploratory wells must be drilled in order to prove the existence and
actual characteristics of the deposits. The cost of drilling such exploratory wells
is high, and the location of these wells is important for further development of
the fields. After a well is drilled, new information is available to the developers.
The new information will influence the optimal total allocation of wells on the
field.

Production and processing

The gas is produced from the reservoirs. The driving forces are pressure from
the expanding gas as well as water which causes the gas to flow into the well.
The gas production depends on the pressure in the reservoirs. High pressure in
the reservoir gives a high production rate. In order to increase the pressure in
the reservoir, and thus increase production capacity, compressors are sometimes
used.
The natural gas sold to Europe consists mainly of methane (dry gas). The gas

produced at the fields can however contain other components with market value,
such as associated hydrocarbons (for instance ethane, propane and butane). Gas
containing both dry gas and associated hydrocarbons is called rich gas. The
rich gas is transported to processing plants where the dry gas and wet gas (the
associated hydrocarbons) are separated. The wet gas is then heated in order to
separate the different components, which in turn is sold in component markets.
Modeling of processing plants is not within the scope of this thesis, but the
interested reader can consult Bullin (1999) for examples.
Figure 1.2 illustrates the production of gas in Norway and in the world in

total. As we can see from this figure, the Norwegian production has increased
drastically the last ten years.

Transportation

In the North Sea, the gas is transported from the production fields offshore to
processing plants on the Norwegian mainland or to market hubs on the European
mainland and in Britain through long, sub sea pipelines operated at high pressure
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Chapter 1 Introduction

Figure 1.2: The development of gas production in Norway and in the world in
total.

levels. The gas molecules flow in the pipeline from high pressure points to low
pressure points. At the production fields, pressure is increased with compressors
in order to create a pressure difference that is sufficient for the gas to flow to the
landing points. With the completion of Langeled (pipeline), the network consists
of 7800 km of pipelines. For details on the infrastructure and topology in the
North Sea, see OED (2006).
Natural gas flow is a multi-commodity flow, where the different components

have different market value. The components give the gas flow different proper-
ties, and factors such as calorific value and corrosion of pipelines depend on the
mixture of components in the flow.

Storage

The demand for natural gas shows strong seasonal patterns and large short-term
volatility (day-to-day variation in the prices). Both these factors give a large value
to optimal storage utilization. Since the sale of natural gas is limited both by
production capacity in the fields and the transportation network connecting the
fields to the market nodes, there is a large value in storing gas close to the market
nodes in the summer (when demand is low) in order to sell more gas in winter
(when demand is high). In the same manner, gas can be injected to the storages
during days with low price / low demand and extracted from the storage when
the price is favorable. There are many different forms of storages that are used
for storing natural gas: abandoned oil- and gas fields, aquifers, LNG-storages and
salt caverns. The storages are different with respect to capacity, injection- and
extraction capabilities and cost of operating. For more information on storages,
see EIA (2002). In addition, the pipeline network can also be used as storage
(line-pack). This is due to the fact that there are large volumes of natural gas
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1.2 Operations research modeling framework

contained in the pipelines. This volume is needed for gas to flow in the pipelines.
By injecting more gas into the network than is extracted in a given time period,
the line-pack is increased. If however more gas is extracted than injected, the
line-pack is decreased.

Markets

Traditionally, the gas from the North Sea has been sold in long-term take-or-
pay contracts (TOP). In the TOP-contracts, the price is determined based on a
formula which main components are the prices of competing fuels (for instance
oil). A yearly volume is decided, and then the buyers have flexibility with respect
to nomination on shorter time-periods (within certain limits). If the total volume
during a year is lower than the agreed upon volume, the buyers still pays for the
agreed volume. Originally, these contracts where established for field and market
combinations. This means that it was determined which field should deliver in
which contract. After the liberalization process in Norway, this has changed, and
the companies are now free to deliver the contracted volumes from the field of
their choice.

In the market hubs, short-term markets have emerged. The price in the short-
term markets is volatile. The markets have so far had low liquidity, but the
situation is improving. The increasing liquidity in the markets is indicated by the
development of forward and future contracts with natural gas as the underlying
commodity. For a discussion of the development of the spot market for natural gas
in the UK, see Roeber (1996). For a discussion of price models for commodities,
see for instance Schwarz (1997).

Remaining reserves

No one knows exactly how much gas is left in the ground for us to use, but we
do have some estimates. The volume of proved reserves has increased over the
years. Today the reserves are sufficient for approximately 65 years (given that
today’s production level is kept constant). If we look at Norway, the reserves
to production ratio is approximately 30 (see Figure 1.3). All data used in this
section is provided by BP (2006).

1.2 Operations research modeling framework

This thesis is within the field of operations research (OR). Operations research
can be defined as an interdisciplinary science which uses quantitative methods
to support decision making. In this thesis the main focus is on mathematical
programming, which can be defined as the study of problems where one seeks to

7
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Figure 1.3: Reserves to production ratio for Norway.

maximize or minimize a real function by choosing the values of real or integer
variables from an allowed set.
In the following I will give a short introduction to the model types that I have

worked with in this thesis. The overview is meant for the non-expert reader and
it does not give a comprehensive introduction to the model types. References to
literature where more information can be found is given for each model type.
An introduction to the field of operations research can be found in textbooks

such as, for instance Hillier & Lieberman (2001). Webpages, such as the home-
page of the Institute for Operations Research and the Management Sciences (IN-
FORMS 2007), provides information and overviews of available resources in the
field of operations research.

Linear programming (LP)
In linear programming, a linear objective function is optimized (maximized or
minimized) over a convex polyhedron specified by linear and non-negativity con-
straints. George B. Dantzig is often considered as the founder of LP (Dantzig
1949, Wood & Dantzig 1949). Other important contributors are, for instance,
John von Neumann and Leonid Kantorovich. For a nice overview of the history
of the development of Linear Programming, see Dantzig (1991).
The general LP problem can be formulated in the following way:

max cTx (1.1)
s.t. Ax ≤ b (1.2)

x ≥ 0 (1.3)

The decision variables in the problem is given by x. cT, A and b are parameters.
Equation (1.1) is the objective function, while Equation (1.2) gives the constraint
on the decision variables x. Equation (1.3) is the non-negativity constraints on
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1.2 Operations research modeling framework

x. Equations (1.2) and (1.3) define the feasible set for x. The x variables could
also have been unrestricted in sign.

Mixed integer programming (MIP)
When some of the variables in the optimization problem are required to take
an integer value, the model type is called Mixed Integer Programming. If all
variables in the problem are restricted to be integer, the model type is called
Integer Programming (IP). IP and MIP problems are by definition non-convex
problems. The simplex method can not be used directly on this problem class.
A nice introduction to integer programming is given in Wolsey (1998).
An example of a MIP problem is given by:

max cTx+ dTy (1.4)
s.t. Ax+Dy ≤ b (1.5)

x ≥ 0 (1.6)
y integer (1.7)

The decision variables are given as x and y, where y is required to be integer. cT,
dT, A, D and b are parameters. The objective function is given by Equation (1.4).
Equation (1.5) is a constraint in the problem, and Equations (1.6) and (1.7) gives,
respectively, the non-negativity constraint on x and the integer constraint for y.
Equations (1.5)-(1.7) define the feasible set for x and y.

Quadratic programming (QP)
Quadratic programming is a special case of non-linear programming, where the
objective function is quadratic while the constraint set consists of linear equa-
tions. Since the quadratic programs have much in common with the LP programs,
powerful dual and complementarity slackness properties allow specialized algo-
rithms for many cases. Examples of textbooks with more information on QP
are Bazaraa et al. (1993) and Hillier & Lieberman (2001).
An example of a QP problem is given by:

max cTx+ xTQx (1.8)
s.t. Ax ≤ b (1.9)

x ≥ 0 (1.10)

The decision variables are given by x, while cT, Q, A and b are parameters.
Equation (1.8) gives the objective function for the problem, while Equations (1.9)

9



Chapter 1 Introduction

and (1.10) define the feasible set for x. The second paper in this thesis use
quadratic programming to represent economic objective functions (social surplus,
producer surplus and consumer surplus) in situations where there are supply and
demand curves present in, respectively, production nodes and market nodes.

Stochastic programming (SP)

In many situations uncertainty is an important characteristic of the problem we
try to model. Examples are uncertainty in prices and demand for a commodity.
Stochastic programming is a problem class that allows the modeler to take the
uncertainty into account when building the model. This way, the model will put a
value on flexibility in decisions. When everything is known for certain, flexibility
is of no value (you do not have to change decisions since you know what will
happen).
The first papers on SP were Dantzig (1955) and Beale (1955). Examples of

textbooks that give a thorough introduction to the field of stochastic program-
ming are Kall & Wallace (1994) and Birge & Loveaux (1997). In addition Higle
(2005) gives a nice tutorial on the field. The home page of the Stochastic Pro-
gramming Community (COSP 2007) has a lot of resources available within the
field of SP.
An often used approach to represent the uncertainty in the model is a scenario

tree, see for example (Birge & Loveaux 1997). In the scenario tree, a discrete
representation of the uncertainty is created. There are many different ways of
obtaining this representation, for a nice discussion, see Kaut & Wallace (2007).
Figure 1.4 shows an example of a scenario tree. In each leaf node in the tree there
is a realization of the stochastic parameter (for instance price). In addition, there
is a set of decision variables in each node of the scenario tree. The decisions in the
root node are the same for all scenarios, and are called the first-stage decisions.
In the second stage, the decisions will depend on the realization of the stochastic
parameters.
An example of a SP problem is given by:

max cTx+
∑
s∈S

psd
T
s ys (1.11)

s.t. Ax = b (1.12)
Tsx+Wsys = hs, s ∈ S (1.13)
x ≥ 0 (1.14)
ys ≥ 0, s ∈ S (1.15)

The first stage decision variables are given by x. In each scenario s in the set
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1.2 Operations research modeling framework

Figure 1.4: An example of a scenario tree.

of scenarios S there is a decision variable ys. The objective function, in Equa-
tion 1.11, gives the profit from the first stage decisions and the expected profits
for the second stage decisions. The probability for each scenario is given by ps.
The feasible set for the problem is defined by Equations (1.12)-(1.15).

Mixed complementarity problems (MCP)

Mixed complementarity problems refer to a wide range of problems where the
defining equations consist of both complementarity conditions and equality con-
straints. For a nice introduction to complementarity problems, see Billups &
Murty (2000) and Cottle et al. (1992). In the last paper in this thesis we present
a linear mixed complementarity problem.
An example of a linear mixed complementarity problem is given by:

a+Au+ Cv = 0 (1.16)
b+Du+Bv ≥ 0 (1.17)
v ≥ 0 (1.18)

vT (b+Du+Bv) = 0. (1.19)

The decision variables are given by u and v. A, C, b, D and B are parameters.
Equation (1.19) is the complementarity condition in this problem. The product
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Chapter 1 Introduction

of variable v and the left hand side in constraint (1.17) must be zero. Equa-
tions (1.17), (1.18) and (1.19) gives a linear complementarity problem (LCP).
By including variable u and constraint (1.16) we get a mixed complementarity
problem.
The KKT-conditions of an optimization problem can be formulated as a mixed

complementarity problem. By aggregating the KKT-conditions of several players
(several optimization problems) in a multiplayer game, equilibrium problems can
be solved. The MCPs can be used to find Nash equilibria (Nash 1950), and
Generalized Nash Equilibria (Debreu 1952, Arrow & Debreu 1954). In a Nash
Equilibrium no player has incentive to deviate from his decisions given that the
other players do not deviate. Generalized Nash Equilibria is found in the situation
where the players can influence the feasible region of each others’ optimization
problems.

1.3 Existing literature and research contribution
In the following I will give a short introduction to the literature on different
aspects of the natural gas, and in addition indicate where this thesis extends the
existing literature.
The petroleum industry has been a pioneer in the application of operations re-

search, and the literature is therefore extensive. In Bodington & Baker (1990), an
interesting overview of the history of mathematical programming in the petroleum
industry is given.

Investment models

In this model class, the goal is to give decision support for strategic decisions such
as field investments and sequencing of investments. There are a large number of
publications within this field. This is not surprising given the large risks and
costs associated with offshore investments.
There exist a number of deterministic investment models. Sullivan (1988)

presents some applications of Mathematical Programming methods to invest-
ment problems in the petroleum industry. A new MIP model with a detailed
description of reservoir production is also presented in the paper. In Haugland
et al. (1988) existing models for early evaluations of petroleum fields are pre-
sented. The paper also presents a MIP model which proposes platform capacity,
where and when wells should be drilled and production from the wells. Nygreen
et al. (1998) presents a MIP model used by The Norwegian Petroleum Direc-
torate. The model is a multiperiod model and is used for investment planning
for fields in the North Sea which contain a mixture of oil and gas. In van den
Heever & Grossmann (2001) a model for design and planning of offshore field
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1.3 Existing literature and research contribution

infrastructures is presented. The model is a multiperiod mixed-integer nonlinear
programming model and incorporates complex fiscal rules, such as tariff, tax and
royalty calculations. The net present value of projects is discussed in light of the
fiscal rules.

There are also some models which incorporate uncertainty. Jørnsten (1992)
presents an integer model for sequencing offshore oil and gas fields, where the
objective is to maximize total economic benefit. In addition to the deterministic
model, a stochastic version with uncertainty in future demand for natural gas
is presented. In Haugen (1996) a stochastic dynamic programming model is
constructed to analyze a supplier’s problem of scheduling fields and pipelines in
order to be able to meet contractual agreements. The uncertainty in the model
is in the resources (production profiles). In Jonsbraten (1998) a stochastic MIP
model for optimal development of an oil field is presented. The objective of
the model is to maximize the expected net present value of the oil field given
uncertain future oil prices. Goel & Grossmann (2004) presents a stochastic MIP
model for planning of offshore gas field developments. The expected net present
value is maximized under uncertainty in reserves.

Value chain models

The upstream value chain of natural gas consists of several components, such
as production, transportation, processing, storage and markets. Because of the
special properties of the transportation network a value chain approach to op-
timizing the system is important. In the value chain approach, the complete
network is considered and optimized simultaneously. The value chain approach
has become even more valuable after the liberalization process, which meant an
increase in flexibility for the participants in the value chain.
In Ulstein et al. (2007) planning of offshore petroleum production is studied on

a tactical level. The model has a value chain approach where production plans,
network routing, processing of natural gas and sales in the markets is considered.
In addition, multi-commodity flows and quality restrictions in the markets are
considered. The pressure constraints in the network is however not included in
the model. The non-linear splitting for chemical processing is linearized with
binary variables. The resulting model is mixed integer programming model.
Selot et al. (2007) presents an operational model for production and routing

planning in the natural gas value chain. The model combines a detailed infras-
tructure model with a complex contractual model. There is no market for natural
gas included in the model. The infrastructure model includes non-linear equa-
tions for relating pressure and flow in wells and pipelines, multi-commodity flows
and contractual agreements in the market nodes (delivery pressure and quality of
the gas). The contractual model is based on a set of logical conditions for produc-
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tion sharing and customer requirements. The combined model is a mixed integer
nonlinear programming model (MINLP). In addition, the model is non-convex
due to the pressure-flow relationship and the modeling of multi-commodity flows.
In the first paper in this thesis, we present a tutorial for modeling of the natural

gas value chain. This is the first publication (to our knowledge) which presents
a portfolio optimization model with markets, contracts, production planning,
multi-commodity flow and handling of the pressure constraints in the transporta-
tion network. The framework for analysis presented in this model is primarily
aimed at a tactical level. In the third paper in this thesis, we present an opera-
tional stochastic model for portfolio optimization. In this paper we include the
storage in the pipelines in the transportation network (line-pack) in the analysis.
By using real market data from three European hubs, we give an estimate of the
value of actively using the line-pack to maximize profits for the value-chain.

Transportation models

The transportation of natural gas is one of the key elements when studying the
natural gas industry. Because of the interdependence between flows in pipelines,
it is important to find a tradeoff between accurately describing the properties
of the transportation network, and being able to solve the model. A simplified
representation leads to an inaccurate model of the transportation (and may lead
to wrong conclusions), while a too detailed presentation makes the model non-
linear and non-convex. In the following some examples of steady-state models,
as well as more technical models and simplified economical models are given.
De Wolf & Smeers (2000) presents a model for optimizing gas flow through a

network, with cost minimization. The flow in the network is steady-state, and
the resulting problem is solved by an extension to the simplex algorithm. Also
in O’Neill et al. (1979) a steady-state representation of the gas flow is used in a
model for allocation of natural gas. Westphalen (2004) gives a nice presentation
of stochastic optimization in gas transportation. The model presented in Selot
et al. (2007) provides an accurate description of the steady-state flow using a non-
convex MINLP model. In the first paper in this thesis we present a linearization of
the Weymouth equation which enables analysis of large networks and stochastic
problems.
There are a large number of publications with a technical approach to gas

transportation. The models are detailed and accurate in their description of
the physics of gas transportation, such as transient flow and interaction with
compressors. A discussion of transient flows is given in Kelling et al. (2000),
while the homepage of the Pipeline Simulation Interest Group (2007) gives a
comprehensive overview on modeling, simulation and optimization of natural gas
flows. In Ehrhardt & Steinbach (2005) a model for operational planning in natural
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gas networks is presented. A transient flow model is used to control the network
load distribution for the next 24 to 48 hours. Martin et al. (2006) presents a model
to optimize flow in a network, and minimize the costs of the compressors in the
network. The model gives a detailed representation of the physical properties
of natural gas transportation, and offers linearization techniques for the non-
linearities in the model. Nowak & Westphalen (2003) presents a linear model for
transient flow modeling.

There also exist some economical models with a simplified representation of
the transportation networks. In these models, the capacities in the pipelines is
normally represented with a fixed, static capacity limit. Examples of such models
are Cremer & Laffont (2002) and Cremer et al. (2003). With the simplified
representation of the transportation network, the system effects of natural gas
transportation are neglected.
In the second paper in this thesis, we show that it is difficult, if not impos-

sible, to determine appropriate static capacities in a natural gas network. We
discuss the system effects in natural gas networks and provide a framework for
economic analysis in natural gas networks. The paper uses the linearization of
the Weymouth equation presented in paper one, and in addition it uses economic
objective functions such as maximization of social surplus. This is the first ex-
ample of economic analysis in a gas transportation network where the flows are
determined based on pressure constraints. The discussion of system effects is
similar to the discussion of externalities in the electricity networks. For a nice
discussion of externalities in electricity networks, see Wu et al. (1996).

Equilibrium models

Equilibrium models are used to study situations where more than one player acts
strategically. The models are formulated as complementarity problems. A nice
overview of complementarity problems in natural gas markets is given in Gabriel
& Smeers (2005). The paper both gives a survey of some of the existing models,
as well as develops relevant models for the restructured natural gas markets.
In Wolf & Smeers (1997) a stochastic version of the Stackelberg-Nash-Cournot

model is presented. A market leader is deciding on his production level under
uncertainty in demand, the followers then reacts to the production level after the
uncertainty is resolved. The model is used on the European natural gas market.
In Boots et al. (2004) the downstream market for natural gas in Europe is studied
in a successive oligopoly approach. The players in the network include upstream
producers and downstream traders. A mixed nonlinear complementarity prob-
lem (NCP) to study natural gas markets is presented in Gabriel et al. (2005).
The model includes producers, storage reservoir operators, peak gas operators,
pipeline operators and consumers. The KKT conditions are used to formulate the

15



Chapter 1 Introduction

NCP model. Zhuang & Gabriel (2006) presents a stochastic equilibrium model
for deregulated natural gas markets. The first stage decisions in the MCP model
are commitments in long-term contracts, while the second-stage decisions are
spot market activities.
In the last paper in this thesis, we examine the booking procedure in the

North Sea as a stochastic mixed complementarity problem. We formulate the
problem as a Generalized Nash game and we then use theory from variational
inequality to show existence of solution and to solve our problem. This is the
first study of a booking system similar to the one implemented in the North Sea
and, to our knowledge, also the first study of a booking system in a natural gas
transportation network. It is also one of few examples of applications of stochastic
mixed complementarity problems.
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1.4 Papers

In the following I will give a short presentation of the papers, as well as a de-
scription of my contribution on each of them.

Paper 1: Optimization Models for the Natural Gas Value
Chain

The paper gives an overview of the modeling of a natural gas value chain, and
is meant to be a tutorial on the subject. The importance of the value chain
perspective as well as the portfolio perspective is discussed in the paper. The
model includes spot markets, forward markets, long-term contracts, production
plans, storage utilization, pressure constraints, compressors and multi-commodity
flows. A linearization of the Weymouth equation, which allows studies of large
scale networks, is presented. No numerical examples are presented in the paper.
The content is based on the experience from work done in SINTEF and NTNU.

The modeling and analysis in the paper has been done on SINTEF and NTNU.
My contribution is in structuring and writing large parts of the paper.

The paper is published in G. Hasle, K.-A. Lie, E. Quak (eds.): Geometric Mod-
elling, Numerical Simulation and Optimization, Springer Verlag, 2007. Minor
changes in the references have been made in the version included in this thesis.

Co-authors: Senior Researcher at SINTEF, Frode Rømo, Researcher at SINTEF,
Marte Fodstad and my supervisor, Associate Professor Asgeir Tomasgard.

Paper 2: Modeling optimal economic dispatch and flow
externalities in natural gas networks

In this paper we combine the modeling framework developed in paper 1 with eco-
nomic analysis. In the existing literature there are a number of economic models
that disregard the system effects in natural gas transportation networks. Also,
there exist a number of more technical models without economic analysis. In this
paper we combine the two approaches, and provide a framework for economic
analysis in natural gas transportation networks. We also examine the effects of
ignoring the system effects when doing economic analysis.

I have done the implementation of the model. In addition, I have had an equal
part in modeling, the analysis and in writing the paper.
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The paper is submitted to an international journal.

Co-authors: co-supervisor, Associate Professor Mette Bjørndal and my super-
visor, Associate Professor Asgeir Tomasgard.

Paper 3: An operational portfolio optimization model for a
natural gas producer

In this paper we present an operational optimization model for a natural gas
producer. The model has a system perspective. We use the modeling framework
presented in paper 1, and extends the model with pipeline storage (line-pack).
To our knowledge, this is the first study of an operational stochastic portfolio
optimization model for natural gas production and sales. We provide numerical
examples based on real market data from three European hubs. Especially, we
evaluate the commercial value of actively using the line-pack in the pipelines to
maximize profits for the producers. We also examine the value of using a stochas-
tic model compared to a deterministic model.

I have done the implementation of the model. In addition, I have had an equal
part in modeling, the analysis and in writing the paper.

The paper is submitted to an international journal.

Co-authors: Post doc. Matthias P. Nowak and my supervisor, Associate Pro-
fessor Asgeir Tomasgard.

Paper 4: Capacity booking in a Transportation Network with
Stochastic Demand and a Secondary Market for
Transportation Capacity

In this paper we study allocation of transportation capacity in a system that re-
sembles the one implemented in the North Sea. In papers 1, 2 and 3 we have used
a system perspective on the value chain, but now we study the situation when
more than one player is making decisions in the value chain. We look at different
objective functions for the network operator, discuss the importance of modeling
the pressure constraints in the network, and look at the effects stochasticity has
on the solutions. The model is formulated as a Generalized Nash game. To our
knowledge, this is the first time a booking system in a natural gas transportation
network is studied using this approach.

I have done the implementation of the model. In addition, I have had an equal
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part in modeling, the analysis and in writing the paper.

Co-authors: co-supervisor, Associate Professor Mette Bjørndal, Professor Yves
Smeers and my supervisor, Associate Professor Asgeir Tomasgard.
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Chapter 2

Optimization Models for the Natural Gas
Value Chain

2.1 Introduction

The models in this chapter are based on the authors experience from making
decision support tools for the Norwegian gas industry. Our focus is on describ-
ing modeling techniques and important technological issues, rather than a very
detailed representation needed for commercial models. We study the natural gas
value chain seen from the point of view of an upstream company with a portfolio
of production fields. Such a company should plan its operations considering long
term contract obligations, the short term markets and transportation capacity
booking. In particular we describe how the operations and planning are influ-
enced by the existence of spot markets and forward markets. For the models to
make sense it is also critical to include the technological characteristics of natural
gas transportation and processing. We therefore give a set of models where the
interplay between the technological characteristics of natural gas and the markets
are highlighted. In these models the economical content and the understanding
of gas markets is essential.

We structure the paper by gradually introducing the different levels of the
supply chain. We start by describing the most important components of the
natural gas value chain in Section 2. Then in Section 3 we focus on how to
model natural gas transportation in a steady-state situation. This is the type
of transportation models suitable for planning problems with time resolution
weeks, months or years. In Section 4 we introduce gas storages and in Section 5
we describe a portfolio perspective and start investigating the integrated supply
chain view. Here we introduce short term markets. In Section 6 we see how
the spot-markets can be used to price natural gas storage capacity and indicate
how to estimate the terminal value of natural gas still in storages or in reservoirs
at the end of the planning horizon using the concept of an Expected Gas Value
Function. An appendix describing all notation used in the paper is included at
the end. All together these sections will give a supply chain optimization model
with an integrated view of the value chain, from production, via transportation
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Figure 2.1: Important objects in the natural gas value chain

and processing to contract management and gas sales.

2.2 The Natural Gas Value Chain

Here we give a brief description of the different elements of the natural gas value
chain on the Norwegian continental shelf: production, transportation, processing,
contract management and sales. The first action is to transport the natural gas
from production fields to processing plants or transportation hubs where gas
from different fields is mixed. Rich gas components are extracted and sold in
separate markets. The remaining dry gas is transported to the import terminals
in UK or on the European continent. In these hubs bilateral contracts and spot-
trades are settled. Also upstream markets exist, where the gas is sold before it is
transported to the import terminals. We focus on the value chain of a producing
company, hence the issues of transmission and distribution to end customers are
not considered.
In Figure 2.1 we show the main components of the natural gas export value

chain. Before we go in detail on these we give a short summary of the main
effects of liberalization and regulation in the European gas market.
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Production

Production of natural gas takes place in production fields. Often these fields
have several owners, and each owner has production rights that are regulated by
lifting agreements. Typically a producer’s rights allow him to produce between
a minimum level of production and a maximum level of production within a set
of time periods of different length. This production band may be flexible so that
gas can be transferred between periods within predefined limits. Normally such
production intervals are defined for single days, for years, and for intermediate
periods in between like weeks and months.

Much of the natural gas produced is traditionally committed to take-or pay
contracts where the buyer has agreed to take a volume in a given import terminal
for a sequence of years. Again there is flexibility on when to take the gas within a
year (or other time periods) and typically the daily offtake is within a minimum
and maximum level. The customer nominates volumes within the take-or-pay
agreements, and the producer has to deliver. These nominations are often done
weekly, with final nomination the day before production. In take-or-pay contracts
the price is usually indexed to other commodities like oil, to temperature and
several other parameters.

Transportation and Processing

Natural gas is transported in pipelines by using compressors to create a higher
pressure in the originating end of a pipeline, so that molecules will flow towards
the end. Several pipelines may meet in a node in the transportation network.
They may have different pressure at the end of the pipeline, but the input pres-
sure of all pipelines going out of a transportation node must be smaller than
the smallest end pressure of pipelines coming into the node, unless there is a
compressor in the node.
An example of an export network for natural gas is the one you find at the

Norwegian continental shelf which consist of 6600 km of pipelines. Here natural
gas from different fields have different quality, in terms of energy content and
its chemical composition (methane, ethane, propane and several more). Hence
when natural gas from different fields is blended in the transportation network,
it is critical to either keep track of the energy content of the blend or the total
content of each natural gas component.
Some of the components can be extracted from the rich gas in processing

plants. Processing facilities separate the rich gas into its various components.
The components are liquefied petroleum gases like ethane, propane and butanes,
which are exported by ship to separate commodity markets. The remaining dry
gas (methane and some ethane) is transported in pipelines to import terminals
in the UK, France, Belgium and Germany.
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The organization of transportation markets varies a lot from region to region.
One will often find that existing transportation rights already accounts for much
of the available transportation capacity in the network. The Gas directive (Euro-
pean Union 1998) enforces undiscriminating third party access to the remaining
capacity (see Section 2.2 for a discussion of The Gas directive). One way of re-
solving this is to introduce primary markets for transportation capacity where
capacity can be booked. In some cases a fixed tariff is used for zones or for
pipelines, in other cases bids are given for capacity and the market settled by
some auction mechanism. In all cases the market is cleared and capacity is al-
located by given transparent rules. In a secondary market with shorter time
horizons transportation capacity is balanced with transportation needs for the
different shippers.
In this paper we will only focus on the utilization of transportation capacity,

while the capacity allocation regime and tariff regime is not discussed. For a
further discussion on these topics see Dahl et al. (2003).

Storage

There exist several types of natural gas storages. Abandoned oil and gas fields
have high capacity and thereby a cost advantage. They also have low risk as geo-
logical data are known. In aquifers water is replaced with gas. They have higher
risk as seismic investigation is necessary. Salt caverns are underground storage
tanks washed out from salt layers. They typically have high costs. Injection
rates, capacities, withdrawal rates and characteristics depending on filling rate
vary between the types. Storages are important in planning models because they
allow us to store natural gas close to the market and thereby use them to exploit
spot-market variations. They also allow producers to produce in time periods
where demand is low and to thereby utilize the available transportation capac-
ity. Also they can be used as seasonal storages to smooth out seasonal effects.
Whether storage is used as to avoid bottlenecks in the system in high demand
periods or to utilize market possibilities, today’s storage capacity is very limited
when compared to the total production volumes.

Import Terminals and Markets

The import terminals are landing facilities for natural gas where the export
pipelines end. Natural gas is delivered here according to specification on mini-
mum and maximum pressure and energy content. These characteristics are often
specified by the contracts as terms of delivery. Further transportation from the
import terminals are taken on by the buyer using a transmission network to
distribute the gas to the end customers.
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Originally these terminals were the points of deliverance for the many take-or-
pay contracts. Recently these terminals have also been the location of the growing
spot markets for natural gas and for financial derivatives on the spot market. The
leading European hubs in terms of liquidity are the National Balancing Point in
Great Britain, TTF in the Netherlands and Zeebrugge in Belgium.
A different type of markets is also emerging upstream in the pipeline network.

The main idea here is to have standardized trading mechanisms for natural gas
at some important locations in the network to be able to provide an additional
flexibility for the producers. Upstream markets are used to perform trades of
natural gas before transportation takes place. They are useful because there is
a need for having standardized mechanisms to exchange gas between producers.
They include additional flexibility for producers in terms of being able to stay
within the limits of their own lifting agreements, transportation capacities and
contract commitments in case of unexpected events or in case overselling or un-
derselling of natural gas has occurred. The buyer of gas upstream also has the
responsibility to transport the gas to downstream markets. Upstream markets
are not as well developed as the other markets. Still the idea is old and the former
variant was the less standardized bilateral long term swing agreements between
different producers, allowing fields with little flexibility an option to draw gas
from fields with more flexibility in volumes.

Liberalization and Regulation

The European natural gas industry has developed rapidly over the past thirty
years. The European Commission has worked toward strengthening the compe-
tition within the complete gas- and energy value chain. A breakthrough in this
process came on the 22nd of June 1998 when the gas directive was passed in the
European Commission (European Commission & Transport 2002). In the direc-
tive a stepwise liberalization of the European gas market is described. The key
components of the gas directive are third party access to all transportation in-
stallations, division of activities within the firms in the value chain (physically or
by accounting) and the possibility for certain consumers to obtain their gas from
the supplier of their choice. The directive was followed by a second gas directive
in 2003 (European Union 2003) which moved another step towards liberalization.
Another implication of the gas directive and of EU competition laws was the

2002 closing down of the Gas Negotiation Committee (GFU), the forum for co-
ordinated gas sales from the Norwegian continental shelf. The GFU formerly
coordinated the supply of Norwegian natural gas producers Statoil and Hydro.
Now the sales are company based and rarely linked to a specific production field.
An expected result from these changes is that short-term markets will evolve for

natural gas. Though liquidity is still low, there are already clear signs indicating
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that short-term contracts and spot-trades will play an important role in the
future. The prior market structure is dominated by long-term agreements and
thus minimizes the uncertainty for the participants. In practice the producers
take the price risk, as prices are fixed towards various indexes, while the buyers
take the volume risks by going into long term agreements. The new markets will
include short-term bilateral contracts, spot markets and financial markets. The
introduction of short-term markets will most likely also lead to higher volatility
and thus higher uncertainty.
Abolishment of the GFU-system and the introduction of a system where the

individual companies are responsible for disposal of their own gas reserves called
for a new access and tariff regime in the transportation network. The first step in
the Norwegian transportation system was taken with the creation of Gassco AS in
May 2001 under the provisions of a Norwegian White Paper. Gassco is assigned
all the operator’s responsibilities warranted in the Norwegian Petroleum Law
and related Regulations. As a State owned company, Gassco AS should operate
independently and impartially and offer equal services to all shippers. Systems
operated by Gassco are the rich and dry gas systems previously operated by
Statoil, Norsk Hydro and TotalFinaElf.
The models presented in this paper are simplified variants of models developed

in co-operation with Gassco and Statoil to deal with the changes mentioned
above.

2.3 A Natural Gas Transportation Model
When modeling natural gas pipeline flow it is important to have a conscious
view on how time and the dynamics of gas flow should be handled. The model-
ing of natural gas flow in continuous time has clear links to the process control
paradigm (Hofsten 2000). Within this paradigm one normally uses active control,
to operate the system according to a predetermined load and supply, finding a
sequence of control actions which leads the system to a target state. The control
regime often focuses on single processes or single components in the network.
For our purpose we need to model a system of pipelines with a set of production
fields, processing plants and markets. The natural choice is to look at mixed
integer programming models from the modeling paradigm of mathematical pro-
gramming. Here time is discretized. If the resolution of time periods is minutes
or hours there is a need to model the transient behavior of natural gas. Some at-
tempts on optimizing the transient behavior of a system of natural gas pipelines
are Westphalen (2004) and Nowak & Westphalen (2003), but only systems of
limited size and complexity can be handled. To be able to handle the complexity
needed for our models, we leave the concept of modeling the transient behavior
of natural gas and approximate the time dimension by discrete time periods of
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such length that steady-state descriptions of the flow will be adequate. When
the time resolution of the model are months, weeks, and maybe days, rather than
minutes and hours, we can assume that the system is in a steady-state in each
time period. The mathematical optimization models used to describe natural gas
flow in the case of steady-state models are typical non-linear and non-convex. An
approach using a non-linear formulation of the mathematical models is illustrated
in De Wolf & Smeers (2000). We present here a linearized model based on mixed
integer programming to optimize routing of natural gas in pipeline networks. We
base our presentation on work done on linearization from Rømo, Tomasgard &
Nowak (2004). Several examples on linearization of natural gas flow exist in the
literature. For a recent PhD thesis on linearization of natural gas flow see Van der
Hoeven (2004).

In this paper we describe the essential constraints needed to model the tech-
nological characteristics of natural gas flow in a steady-state setting. Issues like
pressure, gas quality and gas components are dealt with from a pipeline trans-
portation perspective. More detailed models very similar to the one we present
here are today in use by Statoil and Gassco in the software package GassOpt
developed by SINTEF. GassOpt is mainly used by the operator of the gas trans-
portation system in the Norwegian sector of the North Sea. They are obliged to
verify the delivery capabilities and robustness of the pipeline system transporting
natural gas to European markets.
In the model presented in this section, we will focus on the transportation alone

with the main purpose to meet demand for transportation generated by planned
production profiles for the different fields. This typically represents the situation
facing the neutral operator. The pipeline system is a natural monopoly, and is
controlled by the authorities. This verification is also of strategic importance
for the independent producers and customers in Germany, Belgium and France.
The security of supply will influence the price possible to achieve for long term
contracts, and contribute to infrastructure investment decisions, and GassOpt is
one of the tools used to ensure maximum utilization of the infrastructure.
GassOpt itself focuses on analyzes of transportation possibilities. It can be

used for optimal routing decisions from a flow maximization perspective. Also it
is used to reroute natural gas when unexpected incidents lead to reduced capacity
(in production units or pipeline). Thirdly, it can be applied at more tactical/op-
erational level by a commercial player in capacity planning and capacity booking.
In this section we present a static model of one period. Demand for natural

gas in the import terminal is assumed to be aggregated over the contracts in the
terminals and planned production volumes given as constants to represent the
license holders’ production plans. So the main task of this model is to operate the
transportation network to make sure demand is met by the planned production.
In Section 4 we extend the model with several time periods and storage capabil-
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Figure 2.2: Network presentation in GassOpt

ities. In Section 5 we include contracts, markets and a portfolio perspective on
managing the natural gas supply chain with stochastic prices and demand.

The GassOpt Modeling Interface

In GassOpt, the underlying physical network is represented in a graphical mod-
eling environment with nodes and arcs. The modeling tool is hierarchical and
applies to general network-configurations. Figure 2.2 indicates the network com-
plexity for the North Sea network. The squared nodes contain subsystems with
further nodes and pipelines. When modeling the North Sea system we need
approximately 75 nodes and 100 arcs to represent the network.
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The GassOpt Mathematical Model
This network model includes flow balances, blending of different gas qualities
from different fields, processing nodes for extracting components of the natural
gas, compressor nodes, node pressures and the nonlinear nature of pressure drop
in pipelines. The model describes a steady-state situation where the network
is in equilibrium in terms of pressures and natural gas mix. It is typically the
kind of model used to model situations where flows are aggregated over a given
time period. When the time period gets short enough, for example hours or
minutes, this steady-state description will not be good enough because of the
need to describe the transient behavior of natural gas flow. The objective for the
optimization model is to ensure optimal routing and mixing of natural gas.

The model should make sure the nominated volumes are delivered to the import
terminals within a time period. This objective can be achieved in several ways.
Penalties are introduced in the objective function to influence the impact of the
following goals:

1. Maintain planned production from the producers, where this is physically
possible.

2. Deliver natural gas which meets quality requirements in terms of energy
content.

3. Deliver within the pressure requirements in the contracts.

4. Minimize the use of energy needed in order to deliver the natural gas to the
customers by minimizing the pressure variables.

A typical optimization case describes a specified state of the network, includ-
ing expected production and demand (characterized by volume and quality),
shutdown situations and turn-up capacity (additional available but unplanned
production capacity) from production fields. In a normal situation, there will
be several possible strategies to deliver the maximum amount of gas to the cus-
tomers. To make the model generate and report these realistic flows, we have
introduced penalty costs in the objective function on deviation from planned pro-
duction, quality requirements, pressure agreements and the energy use. These
penalty costs can of course theoretically interfere with and prevent us to achieve
the main goal, to deliver in accordance with the demand of the customers. The
tests we have performed on the full North Sea network, show that this ‘multi-
criteria’ aspect does not sacrifice much of the maximal flow potential, but is
rather used to choose between alternative solutions with about the same flow.
In a fault situation, for example if a field or pipeline is down, the model will
prioritize to deliver the nominated volumes in the import terminals. For more
information about multi-criteria decision making, see for instance Rardin (1998).
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Seen from an operator’s point of view the model tries to meet the customer’s
requirements for a given state of the network: either by optimal routing of gas or
by turning up production in fields with flexibility on the production side. In the
last case we say that we use turn-up capacity, which is available in some fields
with flexible production characteristics.

Sets

Below the sets used in the mathematical description of the model is presented.

N The set of all nodes in the network.
B The set of nodes where gas flows are splitted into two or more

pipelines.
M Nodes with buyers of natural gas: typically import terminals.
I(n) The set of nodes with pipelines going into node n.
O(n) The set of nodes with pipelines going out of node n.
R The set of nodes with processing capabilities.
S The set of nodes with storage facilities.
K(b) The set of contracts in node b ∈ B.
C The set of components defining the chemical content of the

natural gas.
T The set of time periods included in the model.
L The set of breakpoints used to linearize the Weymouth equation.
Z The set of split percentages used to discretize possible split

fractions in split-nodes of the network.
Y The number of discretized storage and injection rate levels used to

linearize storage characteristics.

Objective Function

Our goal is to route the gas flow through the network, in order to meet demand
in accordance with contractual obligations (volume, quality and pressure). In
the formulation given below, variable fim is the flow of gas from node i into
market node m, pinij is the pressure into the pipeline going from node i to j, ε+m
and ε−m is the positive and negative deviation from the contracted pressure level
respectively, ∆+

g and ∆−g represents underproduction and the use of turn-up in
relation to the planned production in field g, δl−m is the negative deviation from
the lower quality level limit, and δu+

m is the positive deviation from the upper
quality level limit in market node. The value of the flow to the customer nodes is
given by the constant ω. Furthermore, κ is the penalty cost for pressure level, $
is the penalty cost for deviation from contracted pressure level, χ is the penalty
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cost for deviation from contracted quality to customers and ι for use of turn-up.

maxZ =
∑

i∈I(m)

∑
m∈M

ωmfim −
∑
i∈N

∑
j∈N

κpinij −
∑
m∈M

$
(
ε+m + ε−m

)
−
∑
g∈G

ι
(
∆+
g + ∆−g

)
−
∑
m∈M

χ
(
δl−m + δu+

m

) (2.1)

Energy consumption for transporting the natural gas is minimized through
making the penalty cost (κ) insignificant in size as compared to the value of the
natural gas transported. This contributes to reduce the necessary build up of
pressure to a minimum, without interfering with the correct volume, quality and
pressure to the customer terminals. The penalty on using turn-up capacity will
make sure that planned production in the fields is prioritized first, as long as
it does not influence the throughput of the pipeline system. For most practical
cases the contracted pressure level is not a soft constraint, and will then rather
be put into a hard constraint instead of being penalized in the objective function.

Constraints
Production capacity The following constraint says that the total flow out of
a production node g cannot exceed the planned production of the field in that
node. Here fgj is the flow from production field g to node j:∑

j∈O(g)

fgj ≤ Gg, g ∈ G. (2.2)

Demand This constraint says that the total flow into a node with customers
for natural gas must not exceed the demand of that node:∑

j∈I(m)

fjm ≤ Dm, m ∈M. (2.3)

Mass balance for node j The following constraint ensures the mass balance in
the transportation network. What flows into node j must also flow out of node
j: ∑

i∈I(j)

fij =
∑

n∈O(j)

fjn, j ∈ N . (2.4)

Pressure constraints for pipelines Offshore transportation networks often con-
sist of very long pipelines without compression, where it is crucial to describe
the pressure drops in the pipeline system. We use the Weymouth equation to
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describe the flow in a pipeline as a function of input and output pressure. The
Weymouth equation is described in e.g., Campbell (1992). In the Weymouth
equation Wij(pinij , p

out
ij ) is the flow through a pipeline going from node i to node

j as a consequence of the pressure difference between pinij and poutij :

Wij(pinij , p
out
ij ) = KW

ij

√
pinij

2 − poutij
2
, j ∈ N , i ∈ I(j). (2.5)

Here KW
ij is the Weymouth constant for the pipeline going from i to j. This

constant depends among others on the pipelines length and its diameter and is
used to relate the correct theoretical flow to the characteristics of the specific
pipeline. Figure 2.3 illustrates the Weymouth equation. The figure shows that
the function in the interesting area (positive pressure levels) is one fourth of a
cone. The cone starts in origo, and is limited by the inlet pressure axis, and the
45◦ line between the inlet pressure and outlet pressure axes.
Through Taylor series expansion it is possible to linearize Equation (2.5) around

a point (PI, PO) representing fixed pressure into the pipeline and fixed pressure
out of the pipeline respectively:

Wij(pinij , p
out
ij ) ≤Wij(PI, PO) +

∂Wij

∂pinij
(pinij − PI)

+
∂Wij

∂poutij

(poutij − PO), j ∈ N , i ∈ I(j).
(2.6)

We introduce a set of points to linearize this expression, (PIl, POl), where
l = 1, . . . , L. Then we replace for each pipeline the nonlinear function (2.5) with
L linear constraints of the type:

fij ≤KW
ij

PIl√
PI2

l − PO2
l

pinij

−KW
ij

POl√
PI2

l − PO2
l

poutij , j ∈ N , i ∈ I(j), l = 1, . . . , L.
(2.7)

For any given pipeline flow, only one of these L constraints will be binding,
namely the one that approximates the flow best. The planes described in (2.7)
will be tangent to the cone at the line where the ratio between pressure in and
out of the pipeline is equal to the ratio between PIl and POl. Together the
planes give an outer approximation of the cone. This approximation will consist
of triangular shapes defined by these planes.

Pipelines without pressure drop For physical pipelines between nodes where
the distances are very limited it is not necessary to model pressure drops by the
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Figure 2.3: A three-dimensional illustration of how the Weymouth relates pres-
sure at the inlet and outlet points to the capacity in the pipeline.
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Weymouth equation. In this case a simple maxflow restriction is:

fij ≤ Fij , j ∈ N , i ∈ I(j), (2.8)

where Fij is the capacity. In this case there is no pressure drop, so:

poutij = pinij , j ∈ N , i ∈ I(j). (2.9)

Relationship between pressures into a node and out of a node To achieve a
relevant flow pattern, it is sometimes preferable to model the pressure out of all
the pipelines going into the same node homogenously:

poutin = poutjn , n ∈ N , i ∈ I(n), j ∈ I(n). (2.10)

Another important issue is the relationship between pressure in ingoing pipelines
and the outgoing. In general for a node n the input pressure of all pipelines going
out of n must be lower than the lowest pressure out of any pipeline going into
node n, see Figure 2.4. There is one exception, and that is the case where a
pipeline into the node has 0 flow. The end pressure of this arc is neglected. In
the Equation (2.11) the variable ρij is 0 for pipelines without flow and 1 for the
others. M is a number which is large enough to not restrict the pressures when
the flows are 0. Then the following constraints make sure that the input pressure
of a pipeline leaving n is less than the output pressure of a pipeline ending in n
as long as both pipelines have a flow larger than 0.

pinnj − poutin +M(ρnj + ρin − 1) ≤M, n ∈ N , i ∈ I(n), j ∈ O(n) (2.11)

fnj ≤Mρnj , n ∈ N , j ∈ O(n) (2.12)

ρnj =

{
i if flow from node n to node j
0 otherwise.

(2.13)

The Weymouth equation used gives an upper bound on the flow in a pipeline.
This means that even if there is a pressure difference in a pipeline the flow can
be zero. Because of this property it is not necessary to explicitly model the
possibility of shutting down a pipeline. The model can simply put the flow to
zero, and still keep the desired pressure. If omitting the constraints presented
above one has to be aware of this when interpreting the results from the model.

Modeling bidirectional pipelines For pipelines designed to handle flows in both
directions, the ρij variable defined in the previous paragraph is used to determine
the direction of flow. Equations (2.14) and (2.15) make sure that there only flows
gas in one direction in the pipeline.

fij ≤Mρij , i ∈ N , j ∈ O(i), (2.14)
ρjn = 1− ρnj , n ∈ I(j), j ∈ I(n). (2.15)

42



2.3 A Natural Gas Transportation Model

Node n

Node i1 Node iN

Node j1 Node jN

Figure 2.4: Example of a split node with the possibility to shut down operation
of one of the pipelines. The upper nodes, i, have pipelines going to
node n. The lower nodes, j, have pipelines coming from node n. The
index on i and j goes from 1 to N , where N is the total amount of
nodes.

Nodes with compression or pressure drop In some cases we allow the pressure
to increase in a node by using a compressor, or we force a pressure drop in the
node. We here present a simplified formulation for modeling compression nodes
where pressure can be build up or forced down. The compressor characteristics
includes a compressor factor Γ used to limit how much the gas can be compressed
in a node. If there is no compressor, this factor is 1. If there is a compressor,
this Γ is a function of the flow fn =

∑
j∈I(n) fjn into the node:

Γn(fn) =
(
Wmaxη(Ka − 1)

100Kafn
+ 1
) Ka
Ka−1

, n ∈ N (2.16)

In this expression, the parameter Ka is the adiabatic constant for a certain gas
type, Wmax is the power output capacity of the compressor, and η is the com-
pressor efficiency, (Campbell 1992). Here we simplify this by using a constant
compression factor independent of the flow. Then the pressure out of the com-
pressor node n is limited by the compressor factor times the pressure into the
node n:

Γnpoutjn ≥ pinni, n ∈ N , j ∈ I(n), i ∈ O(n). (2.17)
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Pressure drop is modeled in the same way, but with a reduction factor Θn instead
of a compressor factor:

Θnp
out
jn ≥ pinni, n ∈ N , j ∈ I(n), i ∈ O(n). (2.18)

Here Θn and Γn are constants, where 0 < Θn ≤ 1 and 1 ≤ Γn. The formulation
is only meaningfull if at most one of the factors is different from 1 in a node.

Contracted pressure It may be necessary to model the contracted pressure in
nodes with customers. Most import terminals have a limited range around a
target pressure Pm which they accept for incoming gas:

poutim + ε−m − ε+m = Pm, m ∈M, i ∈ I(m). (2.19)

Here ε−m and ε+m are negative and positive deviations from the target pressure.
These deviations are penalized in the objective at a level reflecting how hard the
pressure constraint is in practice.
It is also possible to specify restrictions for each pipeline for example for the

pressure into and out of a given pipeline. Pressure restrictions often apply to
nodes with compression or nodes where processing of the gas is being performed.
These constraints are called technical pressure constraints. Examples are min-
imum and maximum pressure out of pipeline (represented by (2.20) and (2.21)
respectively).

poutij ≥ Pminij , j ∈ N , i ∈ I(j). (2.20)

pinij ≤ Pmaxij , j ∈ N , i ∈ I(j). (2.21)

Gas quality and energy content In this model, gas quality can be specified
in two different ways, focusing on combustion value (GCV) of the natural gas,
or the content of CO2. These properties are both technically and economically
important for the customer. When dealing with CO2, the customer accept a
maximum content in terms of [mol %]. This is typically due to environmental
taxes or to requirements related to avoiding corrosion in pipelines. If we focus
on GCV, the customer accepts deliveries between a minimum and maximum
combustion value. High GCV is in itself tractable as the energy content is higher,
but in practice the plants using the natural gas are technically calibrated for a
certain GCV-range. The quality is then measured in [MJ/Sm3]. Here we only
give the formulation for GCV:

Qminm ≤ qim ≤ Qmaxm , m ∈M, i ∈ I(m), (2.22)

where qim is gas quality (GCV ) in a pipeline going from node i to market
node m. In practice we need more flexibility in the model by allowing reduced
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quality in order to increase the flow. Modeling this as hard constraints could lead
to situations where unexpected shutdowns of production fields or pipelines may
lead to a complete stop in deliveries to a customer due to the contractual quality.
If it is an alternative to get some deliverances, outside the contracted limits, but
within what is technically acceptable the latter will be chosen. This tradeoff will
be valued in economical terms as reduction in the customer price. We need the
variables δl+m and δl−m to indicate the positive and negative deviation from the
lower quality limit Qminm of customer node m. Likewise we need δu+

m and δu−m to
indicate the positive and negative deviation from the upper quality limit Qmaxm :

qim + δl−m − δl+m = Qminm , m ∈M, i ∈ I(m), (2.23)

qim + δu−m − δu+
m = Qmaxm , m ∈M, i ∈ I(m). (2.24)

Gas quality and blending Gas quality is a complicating element because we have
to keep track of the quality in every node and pipeline, and this depends on the
flow. Where two flows meet, the gas quality out of the node to the downstream
pipelines depends on flow and quality from all the pipelines going into the node.
The flow in each pipeline is a decision variable in the model, and so is the quality
out of each node. We assume that the resulting blending quality is common for
all the downstream pipelines being connected to a node, and that it is decided
by the convex combination of inflow qualities to the node:

qij =
∑
n∈N qnifni∑
n∈N fni

, i ∈ N , j ∈ O(i), (2.25)

or:
qij
∑
n∈N

fni −
∑
n∈N

qnifni = 0, i ∈ N , j ∈ O(i). (2.26)

This equation has two quadratic terms on the form qnifni. These terms can
easily be reformulated in the following way: Define α = qni−fni and β = qni+fni.
Then qnifni = 1/4(α2 − β2). Linearizing α2 and β2 is straightforward using
Special Ordered Sets of type 2 (SOS2, see for instance Williams (1999)). In the
SOS2 set at most two variables can be non-zero, and the two variables must
be adjacent. Still this means that we need to move into solution techniques
from integer programming, in particular branch and bound, so solution time will
increase exponentially with the numbers of SOS2 sets needed.

Modeling multi component flows If we model the flow of C components of the
natural gas we require that the split fractions of the components going into the
different pipelines out of the node n is equal for all components. For simplicity
let us assume we always have only two pipelines out of a split node n ∈ N going
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Node n

Node j2Node j1

Figure 2.5: The flow is split in node n to node j1 and j2.

to node j1 and j2 (see Figure 2.5). Let us also denote the first component in the
set C of components for c1. All components are indexed from c1, . . . , cC . Then
the relation of the volume split between j1 and j2 is equal for all components:

f c1nj1
f c1nj2

=
f cnj1
f cnj2

, n ∈ N , c ∈ C. (2.27)

This is a quadratic expression, and we reformulate it using the equations (2.28)
to (2.32). We need a set of binary variables ϑnz where z = 1, . . . , Z, each repre-
senting the choice of a split percentage for the share of natural gas going to node
j1. The ϑnz variable is modeled as a special ordered set of type 1 (SOS1), where
only one variable can be non-zero (Williams 1999). For each ϑnz we define a
constant Ez giving the percentage related to the z. We also define a new variable
enz representing the flow through node n of component c if ϑnz = 1.

The first constraint says that the flow from n to j1 of component c equals the
percentage Ez multiplied with the total flow through node n of the component c.

f cnj1 =
Z∑
z=1

Eze
c
nz, n ∈ B. (2.28)

The set B consists of all split nodes in the network. Then we need to restrict the
formulation so that only one ϑnz is positive for each node:

Z∑
z=1

ϑnz = 1, z ∈ {1, . . . , Z}, n ∈ B. (2.29)

The ecnz variables giving the flow through the node of each component is con-
strained by the capacity of the node, corresponding to the active ϑnz.∑

c∈C
ecnz ≤ Fnϑnz, z ∈ {1, . . . , Z}, n ∈ B. (2.30)
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We also require that what flows through the node of each component either goes
to node j1 or to node j2:

Z∑
z=1

ecnz = f cnj1 + f cnj2 , n ∈ B, c ∈ C. (2.31)

And to make sure that there does not flow more out of the node of each component
than what comes in:

f cnj1 + f cnj2 =
∑
i∈N

f cin, c ∈ C, n ∈ B. (2.32)

Processing plants Some of the gas components are extracted and sold in sep-
arate component markets. The extraction is handled in processing plants in the
network. In the modeling of this process it is assumed that the volume of each
component extracted is a constant fraction of the total volume of that component
in a processing plant (Acr). Hence, no decision on the configuration of the pro-
cessing plant is made, but pressures and gas flows through a processing plant can
be modeled by several processing nodes in sequence or parallel. This is expressed
in equation (2.33). The mass balance for the processing plant nodes can then be
formulated as in equation (2.34). The variable acr is used to keep track of how
much of component c is extracted from the flow in processing plant r.

acr = Acr
∑
i∈N

f cir, c ∈ C, r ∈ R (2.33)

∑
i∈N

f cir =
∑
j∈N

f crj + acr (2.34)

Modeling turn-up: flexibility in the production fields Turn-up is an expression
used for the flexibility present in some production fields. For example reduced
transport capacity due to a shutdown in one part of the network may be com-
pensated by turning up the planned production from other gas fields not directly
affected by the reduced capacity. When modeling this turn-up capacity it is im-
portant to keep in mind that even if one are free to utilize this flexibility, it is
not acceptable from a practical point of view that the model presents a flow al-
location where fields with significant turn-up capacity will take over production
from minor fields, which basically is not affected by the shutdown. The turn-up is
only used to take over production from fields that for some reason are prevented
to deliver. Hence, our first priority is to meet demand in the network and our
second priority is to produce in accordance with the planned production at the
fields.
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We model this by adding a penalty cost for using turn-up in the objective
to avoid turn-up to be used at the expense of normal production capacity in
other fields. This works because not delivering gas to customers would generate
a loss which is considerably higher than the small penalty put on using turn-up
capacity.
The variables ∆−g and ∆+

g represent underproduction and the use of turn-up
in relation to the planned production of Gg for field g. As before fgj is the flow
from g to j: ∑

j∈O(g)

fgj + ∆−g −∆+
g = Gg, g ∈ G (2.35)

2.4 Management of Natural Gas Storages
As a consequence of the liberalization process in the natural gas industry, the
natural gas markets have become more dynamic. The spot markets and the
possibility to trade gas in forward markets have increased the importance of gas
storages. In this section we discuss models for gas storage operations in a market
with uncertain demand.
In order to discuss the management of natural gas storages, a couple of terms

need to be established (see Figure 2.6 for an illustration of the terms):

Storage capacity gives the maximal volume of natural gas in the storages facility.
The storages capacity is limited by the physical properties of the storage.

Volume of natural gas in the storage is the total volume of natural gas in a
given storage at a given time.

Cushion gas is the amount of gas needed to create necessary pressure in order
to lift gas from the storage. The amount of cushion gas needed varies with
the type of storage and the geological conditions at the storage location.
For some types of storages the cushion gas requirement is as high as 80%
of the total gas volume in the storage.

Working gas is the gas volume available during normal operation of the storage.
This corresponds to the total amount of gas in the storage subtracted the
cushion gas.

Storage Facilities
The most common storage facilities are abandoned oil- and gas reservoirs, aquifers,
salt caverns and LNG-storages. In the following, a short overview of advantages
and disadvantages of these possibilities will be given. For further discussion of
storage facilities, see EIA (2002).
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Cushion gas

Working gas

Storage 
capacity

Injection
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Figure 2.6: The complete square is the total storage capacity. The lower part
of the figure is the cushion gas needed for operation of the storage,
and the upper part of the figure is the gas currently available for
extraction from the storage.
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Abandoned oil- and gas reservoirs are the most common storage facility. One
reason for this is the relatively low startup costs. The storage facility is
already in place, and so is most of the surface installations needed. Another
advantage of this type of storage is the fact that infrastructure is normally
already in place. One major drawback is the amount of cushion gas needed
for operation.

Aquifer is a porous, underground water-bearing layer which can be transformed
into a storage facility by replacing the water with natural gas. When using
abandoned oil- and gas reservoirs the geological properties are known, this
is not the case when using aquifers. This adds risk to the development
of this type of storages. Cushion gas in the amount of 80 to 90 % is
needed for operation, and the development takes time and is costly. These
storages are normally only used in locations where no oil- and gas reservoirs
are available. One advantage of this type of storage is the relatively high
delivery rate.

Caverns are created from underground salt or rock formations. In the salt cav-
erns, water is used to dissolve halite and to shape cavities in natural salt
formations. These cavities have the properties of a high-pressure gas con-
tainer, with impenetrable walls. The storages have a high delivery capacity,
and a cushion gas requirement of only approximately 25 %. The process
of dissolving halite and shaping the cavities makes this alternative more
expensive than the previous two alternatives.

LNG-storages are, in contrast to the previously presented alternatives, above-
ground facilities. These storages consist of tanks containing liquefied natu-
ral gas (LNG) or liquefied petroleum gas (LPG). The capacity of these tanks
is normally very limited compared to the other alternatives presented.

Motivation for Utilization of Storages
The possibility of storing natural gas gives the participants increased flexibility
with regards to production and transportation decisions. One important use of
natural gas storages is to take advantage of the strong seasonal pattern in prices.
Since the primary use of natural gas is for heating and production of electricity,
the fundamental price determinant in the markets is the weather conditions. The
demand is normally higher in winter than in summer, and the production capac-
ity is also lower than the peak demand. This means that the monthly demand for
natural gas may be much higher than the possible changes in production level can
satisfy. The difference between production capacity and peak demand can to a
certain degree be satisfied through utilization of storages. The use of storages can
substitute for investments in new production fields and transportation capacity.
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Figure 2.7: Illustration of the linearization of the injection rate of a storage.

Traditionally the storages have been used in order to ensure a high security of
supply. When problems occurred either in the production or transportation facili-
ties, storages could be used to supply the downstream participants. The storages
operate as a security buffer in this case. With the development of short-term
markets and volatile spot prices, the storages will be important for participants
wanting to utilize the price fluctuations. Especially for gas producers not having
a reservoir close to the market this will be important. It can take several days
before a decision to change production level at the field will result in increased
delivery in the market.

Modeling Storages

The maximum in- and outflow rates of the storage varies with the current storage
level. The maximal injection rate is a strictly decreasing convex function of the
storage level. Likewise the outflow rate can be given as a strictly increasing
convex function of the storage level. To be able to realistically represent the in-
and outflow rates, the use of special ordered sets of type 2 is chosen (Williams
1999). An illustration of the implementation of the SOS2 is shown in Figure 2.7
for the injection rate. The storage levels are discretized by a set of constants
X1, . . . , XY , the corresponding injection rates are H1, . . . ,HY and the variables
ν1, . . . , νY are used to give a convex combination of two of the points. This means
that if νy has a value different from 0, then only one additional variable can be
non-zero. The only two candidates in this case are νy−1 or νy+1. The storage
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level at a given time t is represented by xts.

∑
i

f tis ≤
Y∑
y=1

νtysHys, s ∈ S, (2.36)

Y∑
y=1

νtys = 1, SOS2, s ∈ S, (2.37)

xts =
Y∑
y=1

νtysXy, s ∈ S, (2.38)

xts = xt−1
s +

∑
i∈I(s)

f tis −
∑
i∈O(s)

f tsi, s ∈ S. (2.39)

The maximum and minimum levels of storage are modeled implicitly with
the representation given. The maximal level (equal to the total capacity of the
storage) is restricted by the inflow function. When the storage reaches the upper
capacity level, the associated inflow rate is equal to zero. The minimum level
(coming from the requirement of a certain level of cushion gas in the storage)
is handled in a similar way: when the minimum storage level is reached, the
associated outflow rate will be equal to zero.

2.5 Value Chain Optimization and Portfolio
Management

We will here give a short description on how to include markets and portfolio
optimization in the natural gas value chain. For more advanced models on port-
folio optimization in the natural gas value chain see Rømo, Tomasgard, Fodstad
& Midthun (2004) from which most of the ideas presented here originate. Other
relevant references are Nygreen et al. (1998) which considers portfolio optimiza-
tion for oil and gas fields in a strategic horizon and Ulstein et al. (2004) which
considers tactical value chain coordination, but without stochasticity and without
pressure constraints in the transportatin network.

Different Levels of Portfolio and Value Chain Integration
The models presented here have both a portfolio and a value chain perspective.
These are important properties of a natural gas optimization model. The impor-
tance of these perspectives can be realized when considering the complexity of
the transportation system. Due to the technical nature of the gas network, sev-
eral physical and technical threshold-values exist. If such values are trespassed,

52



2.5 Value Chain Optimization and Portfolio Management

only minor incremental deliveries in one part can cause significant unintended
reductions elsewhere. The bottlenecks in the transportation system make the
flexibility incorporated in a system perspective valuable. We will not give all
the previous formulations of the transportation network again, but each time pe-
riod t in a value chain model will include transportation network constraints and
variables like the ones from Section 3 with an additional index t on all variables.
The motivation behind the portfolio and value chain perspectives can be sum-

marized by considering four levels of planning:

1. Traditional production planning: In this first level the model ensures bal-
ancing of the production portfolio with the contract portfolio. Stochastic
demands and prices that are not perfectly correlated motivate a portfolio
perspective on the planning, as the portfolio variation will be lower than
the variation of the stochastic parameters of separate fields or contracts.

2. Production and market optimization: At this level markets are used to
supplement the physical production in order to gain more from the physical
production capabilities. The market can be used to resolve bottlenecks in
the transportation network or on the production side. The purpose is to
maximize the profit from production and contract obligations using also
spot markets. At this level geographical swaps and time swaps of gas can be
performed using the market, and they are used to fully utilize the flexibility
in the system.

3. Trading: At this level contracts and financial instruments are traded in-
dependently of the physical production and contract obligations based on
market opportunities. The trading is similar to the previous level in terms
of using the spot market and financial instruments like futures and options,
but the motivation is now speculation, not solving bottleneck problems.
These trades are in no way connected to the physical production and con-
tract obligations, unless the producer has market power.

4. Risk management: So far we have assumed the producer is risk neutral and
tries to maximize expected profit. In that case it is enough to supplement
physical production with trades in the spot market at level 2. If the pro-
ducer is risk averse hedging the portfolio outcome using futures, forwards
or options may be optimal.

The distinction between level 2 and 3 is clear in theory, but in practice the
transition will be gradual.
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Figure 2.8: Example of a natural gas network

Utilization of Short-Term Markets in Value Chain
Optimization

The use of short-term markets allows for considerable flexibility in the system.
Consider the network in Figure 2.8. In a situation where field B needs to produce
and the company has an obligation to deliver in a bilateral contract in Emden
several possibilities exist:

• Field A supplies Emden, while field B sells spot in Zeebrugge

• The company may buy spot in Emden and the procution from field B can
be sold in the spot market in Zeebrugge.

• The company buys spot in Emden, while it sells the production from B
spot in the upstream market.

• Storage might be used to supply Emden, while the production from field B
is sold elsewhere.

These simple geographical swaps makes the system more flexible and gives the
company the possibility to maximize the flow of natural gas (and the value of
their production) beyond what traditional transportation planning would have
done. For example bottlenecks in the production or in the transportation may
be resolved or moved using the markets actively.
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A different reason to use the markets is time swaps. Consider Figure 2.8 again.
This time field B needs to produce in time 1, and the company has an obligation
to deliver in time 2. Several options are then available to the company:

• In period 1 field B may supply storage, and in period 2 the storage supplies
Emden.

• In period 1 field B can sell spot in Zeebrugge, and in period 2 either use a
forward contract or buy spot in Emden.

• In period 1 field B can sell spot upstream, and then use either a forward
contract or the spot market to supply Emden

This is just some of many possibilities that exist for geographical swaps and
time swaps. The network considered is also very small. When expanding the
network to, for instance, 20 fields, 80 pipelines and 10 markets, the number of
possible routing decisions gets very large and the flexibility increases. It is this
flexibility we try to capture when modeling the portfolios of production fields
and contracts. The flexibility further increases when perfect spot markets are
added. The need for flexibility comes from the fact that demands and prices
are stochastic. The gain from portfolio thinking increases because they are not
perfectly correlated. We assume the company is a price taker. For simplicity of
notation, we assume there is only one company in the markets. If not, we would
also need to model the other companies’ transportation needs.

Including Markets and Contracts
In Section 3 only aggregated deliveries to take-or-pay contracts in the different
customer nodes m ∈M were considered. When including market transactions in
the model a representation of the uncertainty in the price process is important.
Based on this representation scenarios describing the uncertainty can be gener-
ated and optimal decisions in the interaction between the physical system and the
market can be made. In this description some simplifications have been made.
Only one company is considered, so no upstream market exists, the possibility
of delaying production through lifting agreements will be disregarded, and only
trades in the spot market will be considered. The possibility of trading forward
contracts is only interesting for a risk adverse company. This will be discussed
shortly at the end of this section.
Figure 2.9 illustrates how the market nodes are included in the model. The

arrows show that gas might flow from the transportation network to the market.
There is no flow from the market to the network (as would be the case for an
upstream market). In addition, transactions within the market node can be
performed. In the spot market the company can purchase or sell volumes of
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Natural gas network

Bilateral

contracts
Spot

Market Forward

Figure 2.9: The market node
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natural gas. Obligations in the take-or-pay contracts can be fulfilled either by
flow from the network to the market node, or by transactions within the market
node.

Modeling Stochasticity

We use the modeling paradigm of stochastic programming to represent uncer-
tainty in the models, see for example Kall & Wallace (1994). Uncertainty is then
represented in a scenario tree, see Figure 2.10. The nodes in the scenario tree
represent decision points, and uncertainty is resolved along the arcs going out
of a node with several branches. In practice decisions are only made when new
information becomes known. A stage is the set of time periods elapsing between
each time information is learned by the decision maker. Each stage in the tree
typically consists of several time periods, but only nodes after a branching are
decision points, as they are the only time periods when new information about
the future is resolved. Still, decision variables are present in time periods where
information is not resolved, hence the time periodization using time periods t
reflect in which time period the decision has effect. In Figure 2.10 there are 3
time periods. Time periods 1 and 2 are in stage 1, starting with the decision in
node 0 and ending just before the new decisions at stage 2 (in nodes 2, 6 and 10).
In a two-stage stochastic programming model we define a set of time periods t ∈
T1 = {t1, . . . , T1} belonging to the first stage where information is deterministic,
and a set of time periods t ∈ T2 = {T1 + 1, . . . , T2} where some parameters
are stochastic (as seen from t ∈ T1). When time passes on and one enters the
first t ∈ T2, uncertainty is resolved and also the remaining time periods can be
considered deterministic.
In the model presented here we use a two-stage formulation for ease of notation.

Several parameters are stochastic in reality. We will consider stochasticity in:
contractual demands, contract prices and spot prices. We denote the stochastic
contract price for contract k in customer node m at time period t ∈ T2 as φ̃tmk.
Stochastic demand for contract k in customer node m at time period t is µ̃tmk.
The stochastic spot price is represented with ψ̃tm. The vector of all stochastic
variables in time period t is ξ̃ = (ψ̃t, φ̃t, µ̃t).
We use a tilde over the variable to reflect that it is stochastic (as seen from

t ∈ T1) and remove the tilde when the variable is deterministic. We then get the
following:

ξ̃tm Stochastic variables for customer node m in time period t ∈ T2 seen from a
point in time t′ ∈ T1.

ξtm Deterministic parameters for customer node m in t ∈ T1, or t ∈ T2 after
uncertainty is resolved (Seen from a point in time t′ where t′ ∈ T2 ).
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Figure 2.10: An example of a scenario tree

A scenario tree can be constructed for example using price processes for natural
gas or descriptions of the dynamic aspects of stochastic demand. We will not go in
detail on how to do this here, but assume the scenario tree exists in the remaining
part of this paper.

The Objective

We describe the supply chain portfolio optimization model as a two-stage stochas-
tic program with relatively complete recourse (Kall & Wallace 1994). The only
stochasticity that is present is in the right hand side and in the objective. The
typical length of a time period for a tactical planning model is one month, and
the planning horizon would typically be 12 months, where for example the first 6
months would belong to T1 and the last 6 months to T2 in a two-stage formula-
tion. The objective is to maximize expected profit taken into consideration cash
flows and shortfall costs. Hence the objective can be described by summarizing
the expected cash flow of the time periods. The cash flow of each time period
t can be described as a function Πt(xt−1; ξt) (or ξ̃t if stochastic) where xt−1 is
the storage level in the start of the time period. The decision variables and con-
straints are equal in all time periods, except for initialization in time period 0
where only initial storage levels are defined x0

ns and for the terminal conditions
at the end of the model horizon. We use the vector x0 to denote the initial level
of all storages and xt to denote the level of all storages in time period t. The
profit function for time period t ∈ T1 ∪ T2 can be formulated as:

Πt(xt−1; ξt) =
∑
m∈M

∑
k∈K

φtmkµ
t
mk +

∑
m∈M

ψtm(ζt−m − ζt+m ), (2.40)
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where the first term is the income from delivery in contract k in market m at
time t and the second term gives the profit from trading in the spot market in
node m in time period t.
The two-stage stochastic program with fixed relatively complete recourse is:

max
∑
t∈T1

Πt(xt−1) +Q(xT1), (2.41)

where
Q(xT1) = maxEξ̃[

∑
t∈T2

Πt(xt−1; ξ̃t) + EGV
(
xT2
)
], (2.42)

subject to a set of constrains representing transportation, production and mar-
kets. These constraints are mainly the constraints descried earlier in this paper,
but we will look closer at the ones changing because of the introduction of markets
and contracts. The constraint sets are identical for all time periods t ∈ T1 ∪ T2.
For the last time period the objective includes the terminal value of the natural
gas in storages expressed by the Expected Gas Value function, EGV(xT2). This
function is described in more detail in Section 6.
The solution resulting from maximizing expected profits will normally be differ-

ent from the solution reached with the objective function presented in Section 2.3.
This means that the solution does not necessaritly maximize the throughput in
the network, or minimize the cost of achiving a given throughput. The solution
will however show how the network should be managed in order to achieve the
highest possible expected profit.

Constraints Including Markets and Contracts

The mass balance in the market node for each time period and each scenario is
expressed as:∑

i∈I(m)

f tim + ζt+m = ζt−m +
∑

k∈K(m)

µtmk, ∀m ∈M, ∀t ∈ T . (2.43)

In (2.43), ζtm represent transactions in the spot market in nodem in time period
t. The + sign indicates purchases of natural gas whilst the − sign indicates sales.
Delivery in contract type k in the node m in time period t are included in µtmk.
The mass balance equation illustrates the flexibility gained by including markets
in the model. It is no longer necessary to ship the gas to the market node in
order to fulfill the contractual agreements, since the spot market can be utilized
for this. This means that geographical and time swaps are now available to the
company.
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Risk Aversion

In the discussion so far only the possibility for trading natural gas through the
spot market has been discussed. For a risk neutral company that is maximizing
expected profits this is an adequate approach. Since the forward price is a good
predictor of the expected future spot price, trading in the forward market would
on average be approximately equal to trading on the spot market (this is based
on a simple arbitrage argument, see for instance Hull (2003). The fact that
natural gas is a commodity makes the argument less obvious, but under some
assumptions still valid. In the case where the company is risk averse however the
situation changes and some tools to handle risk management are needed. The
inclusion of a forward market then gives the company the possibility to hedge,
that is: to reduce the risk of their position. By trading forward contracts a given
price can be locked in on advance.
In this case the company will no longer maximize expected profits from their

operations, but rather maximize a utility function that incorporates the risk
aversion of the company. Another way of doing this is to introduce a penalty
function that will put extra cost in the objective function on deviations from
some target profit value. In addition to the change in the objective function, the
mass balance in the market node (see (2.43)) will be changed to incorporate the
possibility to trade in the forward market.

Solution Times

The complexity of the models introduced in this paper to a large extent depends
on the modeling of the gas components. The inclusion of gas components adds
a large number of integer variables to the problem. When excluding the gas
components, a stochastic model with a network consisting of approximately 80
nodes and 1000 scenarios, can be solved within an hour. This problem will have
approximately one million rows, one and a half million columns, four million
non-zero elements and fourteen thousand binary variables. When including gas
components the solution time increase significantly, and it is difficult to find
an optimal solution. For a physical system similar to the one above, with 100
scenarios and 10 breakpoints (see Section 2.3), a solution with an integrality
gap of 4% to 5 % typically can be reached within 12 hours. If the objective
is only to maximize flow in a static model, solution times are within minutes
when components are omitted and increases correspondingly when components
are added.
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2.6 The Expected Gas Value Function (EGV )
So far no considerations have been made with respect to how the final period in
the planning horizon will be handled. The model presented so far will most likely
end up with a very low storage level, and the production might also be higher
than optimal when considering a longer horizon (since the value of the gas still
contained in the reservoirs is neglected).
In order to handle the end-of-horizon problem, several possibilities exist. One

way of handling the storage problem is to set a target value for the storage level
at the end-of-horizon, for instance the starting level.

xTs ≥ x0
s (2.44)

This level might also be made dependent on various factors, such as the season in
which the end-of-period belongs. This way of modeling the end-of-period however
allows for limited flexibility and also neglects the true value of the gas contained
in the storage. A way of determining the optimal level for the storages in the last
period is by using the expected gas value function.
The Expected Gas Value function (EGV ) gives an estimate of the value of

a unit of gas in storage at some point in time t, based on expectations for the
future development of the spot price of natural gas. When the EGV is used as
a boundary value, the alternative value of the natural gas in storage is thereby
included. This alternative value comes from the opportunities present after the
end of the model horizon. Hence for each end-of-horizon storage level, the EGV
must reflect the value of an optimal out-of-horizon strategy for injecting gas in
the storage and selling gas from the storage.
If high prices are expected in the future, the EGV will encourage a high storage

level in final time period T2, whilst if lower prices are expected the optimal level
in period T2 may be lower. Figure 2.11 illustrates how the EGV is included in
the existing optimization model. As the figure shows, the estimation of EGV is
performed independently from the value chain model and the purpose is to give
a boundary condition for the value of gas.
An important element in the model used to estimate EGV is the development

of the natural gas spot price represented through spot price curves. These can
be modeled using stochastic processes. Several versions of such models exist,
for an overview of some of them, see Schwarz (1997). Based on the chosen price
model, scenarios describing possible future outcomes can be constructed (see Fig-
ure 2.12). Hence, for any given initial storage level a strategy is found for injection
and withdrawal of natural gas based on a stochastic process for the gas price. In
practice this is a real-options approach used to value the value of gas in the
storage. The option value in gas storages comes from the operational flexibility.
The company can switch between injection, withdrawal or idle modes, depending
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Figure 2.11: The estimation of the EGV is performed in a stochastic optimiza-
tion model that is independent of the existing optimization model.
The EGV is then used in the value-chain model as a boundary value
on the gas in storage and reservoirs.
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on the price development. For references on real-options, see for instance Hull
(2003). It is possible to do this estimation both for individual storages, and also
for the combination of all or some of the storages in the network. In the latter
case a more complicated model is needed for estimation of the EGV.
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Figure 2.12: Representation of the development of the spot price of natural gas.
In this case a recombining trinomial tree. The arcs in the figure
represent price movements, while the nodes represent different price
scenarios.

In the following, an example of how the EGV can be calculated is given.
The procedure is based on Scott et al. (2000) and Manoliu (2004), and use a
stochastic dynamic programming framework. For references to similar work in
hydro power, see for instance Pereira et al. (1999), Pereira & Pinto (1991). After
choosing a stochastic model to represent the price of natural gas, a discrete
approximation of the storage facility state space is made. A tree similar to the
one constructed for the spot price (Figure 2.12) can be constructed also for the
storage level. In this case the nodes represent different storage levels, while the
arcs represent injection and withdrawal of natural gas in the storage. A multilevel
tree representing the spot price and the amount in storage is then created. The
valuation is performed by backward induction through the tree. The option value
is calculated in each node by taking the maximum of the decision values of hold,
injection and withdrawal. The hold decision value is equal to the expectation of
the option value of the next steps, when storage level is unaltered. The injection
value is the negative value of gas injected in this period, plus the expected value
of increased storage level in future nodes. The withdrawal value is then the value
of releasing gas in this period, plus the expectation of option values of decreased
storage levels in coming nodes. This can be illustrated by (2.45), which shows
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the value in a given node in the tree:

It(τ t) = πt
(
ϕt
)

+ It+1
(
τ t+1

)
. (2.45)

It(τ t) is the value of storage level τ in time period t in the node considered.
This is determined by the value of flow πt (ϕt), (where ϕt is the volume injected
or withdrawn in period t) in the node in period t plus value of the storage level
τ t+1 in the next time period (in nodes following the considered one). The storage
level is updated according to (2.46):

τ t+1 = τ t + ϕt. (2.46)

An illustration of a gas value function is given in Figure 2.13. The challenge is
in finding the appropriate total value for each level of storage, as well as finding
the breakpoints.
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Figure 2.13: An example of an expected gas value function. The MVs shows the
expected marginal value of gas for various levels of storage. This is
the additional value of one more unit of natural gas in the storage.

Even though short-term markets for natural gas are developing in Europe,
the liquidity in these markets is still very limited. This lack of liquidity makes
estimation of the spot-price process difficult, and therefore also estimation of the
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EGV difficult. Given that a spot-price model can be modeled for any given time
horizon, a time-horizon of a couple of years may be appropriate for estimating
the EGV. As the time-horizon for estimation is increased, the discount rate will
make the gas value in the last periods decrease strongly.

2.7 Conclusions
In this paper we have gradually introduced the complexity of a stochastic op-
timization model for the natural gas value chain. We focus on coordination of
the different levels of the chain and on a portfolio perspective. We started out
by defining necessary constraints for a steady-state formulation of the underlying
transportation network, supporting multi commodity flows and pressures. Next
we introduced the time aspect and the use of storages. Thereafter we introduced
stochasticity in demands and prices and gave a stochastic programming formula-
tion for a portfolio optimization model. Natural extensions of this model would
be contract selection and more advanced modeling of the production flexibility
reflected by lifting agreements. Finally we defined the Expected Gas Value func-
tion and explained its use for giving the terminal value of stored natural gas and
indicated how to calculate it.

Most of the model formulations presented here are simplified variants of models
that are implemented for commercial use on the Norwegian continental shelf. In
this paper we have taken the position of a large producer, but many of the
formulations would be relevant for more general models focusing on other parts
of the natural gas value chain.
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Appendix

2.A Notation and Definitions

Sets

N The set of all nodes in the network.
G The set of nodes in the network with production fields .
B The set of nodes where gas flows are splitted into

two or more pieplines.
M Nodes with buyers of natural gas: typically import terminals.
I(n) The set of nodes with pipelines going into node n.
O(n) The set of nodes with pipelines going out of node n.
R The set of nodes with processing capabilities.
S The set of nodes with storage facilities.
K(b) The set of contracts in node b ∈ B.
C The set of components defining the chemical content of the natural

gas.
T The set of time periods included in the model.
L The set of breakpoints used to linearize the Weymouth equation.
Z The set of split percentages used to discretize possible split fraction

in split-node of the network.
Y The number of discretized storage and injection rate levels used to

linearize storage characteristics.

Indexes

n Used for nodes in general. n ∈ N . When more indexes are needed,
i and j will be used.

g Used for nodes with production fields, g ∈ G.
b Split nodes, m ∈M.
m Customer nodes b ∈ B.
r Used for nodes with processing plants.
s Storage facility s ∈ S.
k Contract k ∈ K.
c Component c ∈ C.
t Time period t ∈ T .
l Breakpoits in linearized Weymouth restrictions.
z Breakpoints in linearization of split percentages in split nodes.
y Breakpoints for linearization of injection rate levels in storages.
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Constants

Gg Planned production [Sm3/|t|] in field g ∈ G.
Fij Upper limit for flow through the pipeline from

node i ∈ N to node j ∈ N .
Fn Upper limit for flow through node n ∈ N .
Pmaxn Max pressure [bar]into a node n ∈ N .
Pmaxij Max pressure [bar] into the pipeline from

node i ∈ N to node j ∈ N .
Pminij Min pressure [bar] out of the pipeline from

node i ∈ N to node j ∈ N .
Pb Target pressure [bar] for deliverances to a customer node b ∈ B.
Qmaxn Max energy content requirement for gas deliverances to node n ∈ N .

Energy quality is given by (GCV or CO2) or
[MJ/Sm3]

[mol%] , where GCV
is the (Gross Caloric Value).

Qminn Min energy content requirement for gas deliverances to node n ∈ N .
Db Demand in standard cubic meter pr time unit [Sm3/|t|] for natural

gas in node b ∈ N .
Sl Storage capacity [Sm3/|t|]in node s ∈ S.
KW
ij The Weymouth constant is used as a constant in an empirical

expression for linking flow and pressure in pipelines.
Acr Fraction of component c in processing plant r that is extracted

from the flow.
PI Fixed point for pressure into a pipeline.
PO Fixed point for pressure out of a pipeline.
Γn Compressor factor in node n ∈ N .
Θn Pressure reduction factor in node n ∈ N .
η Compressor efficiency.
Ka Adiabatic constant for a certain gas type.
Wmax Power output capacity of the compressor.
ωb Value of gas to customer b.
κ Penalty cost for pressure level.
$ Penalty cost for deviation from contracted pressure level.
ι Penalty cost for use of turn-up.
χ Penalty cost for deviation from contracted quality to customers.
Ez Gives the split percentage related to a given z in linearization of

split nodes.
Xy Discrete representations of storage level in linearization of storages.
Hy Discrete representations of injection rates in storages.
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Decision Variables
f cij Flow from node i ∈ N to node j ∈ N of component c.

In some cases index c is omitted when we do not consider
multi commodity flow.

fn Total flow into node n.
enz Flow through node n of component c used for linearization in

splitting nodes m ∈M.
pinij Pressure [bar] into the pipeline going from node i to node j.
poutij Pressure [bar] out of the pipeline going from node i to node j.
qij Gas quality (GCV or CO2) in pipeline going from node i to node j.
νy Give convex combinations of Xy and Hy.
σin Equal to 1 if flow from i to n, otherwise 0.
ϑnz Binary variable representing split percentage in node n.
acr Amount extracted of component c in plant r.
ρij Equal to 1 if flow goes from i to j, otherwise 0.
ζt−m Volume sold in spot market m in time period t.
ζt+m Volume bought in spot market m in time period t.
δl+b Positive deviation from the lower quality limit Qminb of customer

node b.
δl−b Negative deviation from the lower quality limit Qminb of customer

node b.
δu+
b Positive deviation from the upper quality limit Qmaxb of customer

node b.
δu−b Negative deviation from the upper quality limit Qmaxb of customer

node b.
xts The storage level at a given time t in a storage s ∈ S.
ε+b Positive deviation from the contracted pressure to customer b.
ε−b Negative deviation from the contracted pressure to customer b.
∆+
g Positive deviation from the planned production in field g.

∆−g Negative deviation from the planned production in field g.

Functions
EGVt(xs) Expected gas value in time period t as a function of the

storage level in storage s.
Wij(PI, PO) Flow resulting from pressure difference between Pressure in,

PI and
pressure out, PO, of a pipeline according to the
Weymouth equation.

Γ(fn) Compressor factor as a function of flow fn into the
node n ∈ N .
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Stochastic Variables
φ̃tbk Contract price for contract k in customer node b in time period t.
µ̃tbk Demand for contract k in customer node b in time period t.
ψ̃tm The spot price in market m in time period t.
ξ̃t The vector of all stochastic variables φ̃t, µ̃t and ψ̃t.

In time periods where these parameters are not stochastic or where uncertainty
is resolved, the tilde is dropped in the variable name.
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Chapter 3

Modeling optimal economic dispatch and
flow externalities in natural gas networks

Abstract:
We present a combined framework for modelling the technological issues of
gas transportation and analysis of natural gas markets. In our framework we
model the optimal dispatch of supply and demand in natural gas networks,
with different objective functions, i.e., maximization of flow, and different
economic surpluses. The models take into account the physical structure of
the transportation network, and examine the implications it has for economic
analysis. More specifically there are externalities in pipeline networks due
to pressure constraints and system effects. Incremental increase in produc-
tion in one part of the network may cause significant reductions elsewhere.
The proposed network flow model for natural gas takes into account pres-
sure drops and system effects when representing network flows. Pressure
drops are modelled by the Weymouth equation. The Weymouth equation
is linearized such that it is possible to perform economic analysis in large
networks within our framework. The importance of combining economics
with a model for pressure drops and system effects is illustrated by small
examples.

3.1 Introduction

In this paper, we present a model for analyzing the optimal economic dispatch
of natural gas in pipeline networks. Our approach combines a framework for
modeling the technological characteristics of natural gas flows with optimization
modeling of markets. The economic objectives include maximization of social
surplus, consumer surplus and producer surplus. During the last years, the liber-
alization process in Europe and other places in the world, has led to an increased
interest in such market-oriented models, including the spatial demand and sup-
ply for the commodity in the optimization of the transportation system. In the
existing literature, we have found no approach that combines the modeling of
the technology of natural gas flows with economic analysis of the transportation
system.

In our paper, we show that it is important to represent the underlying phys-
ical properties, like the relation between flow and pressure, pressure drops and
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resulting system effects, in the economic dispatch models. The inclusion of the
technology leads to interesting, and in some cases, surprising results when op-
timizing the operation of the network. We show examples of the errors that
will be made if the technology is not modeled, and we illustrate and discuss the
externalities that arise from system effects in the network. The linearization
of the gas flow equations will make it computationally feasible to analyze even
large-scale networks. However, in this paper we focus on the qualitative effects
of including the physical properties of natural gas flows, and illustrate the effects
in a small network example with two production nodes, two market nodes and a
single transportation node.
Some examples of existing models with focus on flow maximization and natural

gas transportation physics are Ehrhardt & Steinbach (2004, 2005), Martin et al.
(2006), Westphalen (2004) and De Wolf & Smeers (2000). A recent PhD thesis on
the linearization of natural gas flows is Van der Hoeven (2004). In An et al. (2003)
a non-linear model for optimization of the combined natural gas and electricity
power flow is presented. The linearization that we use in our modeling framework
is based on Rømo et al. (2004).
When it comes to papers with focus on the economics of natural gas transporta-

tion, the studies we have found have a straightforward representation of gas flows,
without considering the special physical properties of the network flows. Some
examples are for instance Cremer et al. (2003) and Cremer & Laffont (2002),
where the optimal allocation of resources has been discussed, and the social wel-
fare maximizing solution is derived in a simplified setting, where flow externalities
are not taken into account. In Cremer & Laffont (2002) the possibility of a par-
ticipant with market power is also considered. Examples of economic equilibrium
models are given in Gabriel & Smeers (2006), Gabriel et al. (2005) and Gabriel
et al. (2001). These models focus mainly on the economic issues and do not
give a detailed description of the engineering aspects underlying transportation
networks.
In the electricity sector on the other hand, the effects on the physical power

flows are typically taken into account when allocating capacity and dispatching
units. Due to Kirchhoffs’ laws in meshed electricity networks, there are severe
externalities that complicate the pricing procedures. Combining the physics and
the economics in models and analysis has for years been the standard way of an-
alyzing electricity transportation and markets. A key ingredient of an electricity
market design is the management of congestion or bottlenecks in the transmission
network through locational prices or similar measures. Schweppe et al. (1988)
formulated the optimal economic dispatch problem for electricity markets, and
introduced the concept of optimal nodal prices. Chao & Peck (1996) present a
consistent system of flow gate prices, and Hogan (1993) describes a hedging sys-
tem for locational prices, through transmission congestion contracts. In Wu et al.
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(1996), some effects of the externalities in electricity networks are investigated.
Common assertions about general network performance and characteristics are
scrutinized, and in some cases, counter examples are given. A thorough discus-
sion of the interaction between the transmission network and the energy markets
is given in Bjørndal (2000).

Developments during the last ten years have made it more important than ever
to better understand the integration of technology and economics in the natural
gas markets. In Europe, the European Commission passed the gas directive in
1998 (European Union 1998, European Commission & Transport 2002), followed
by a second gas directive in 2003 (European Union 2003). The key components of
the gas directive are third party access to all transportation installations, division
of activities within the firms’ value chain, i.e., vertical separation, and the possi-
bility for certain consumers to obtain their gas from the supplier of their choice.
A consequence of the gas market liberalization is that we may expect to see less
emphasis on long-term sales contracts, emerging short-term contract markets,
and more spot sales. Thus, central coordination of production and infrastructure
utilization may be replaced by market prices as the coordinating mechanism. In
order to achieve an efficient market, it is vital that the prices provide the correct
signals of the value of the commodity to the market participants.
The purpose of this paper is to provide a framework for modeling natural

gas markets that will enable future analysis to capture the technical as well as
economic issues, in the same manner as the models we have seen for the liberalized
electricity markets. We apply a linearized model for the technology, while the
economic models may lead to non-linearities in the objective functions. In Section
2, we describe network flow models for natural gas pipelines, showing both a non-
linear model, using the Weymouth equation, and a linearized approximation of it.
In Section 3, network externalities are discussed under the traditional objective
function, maximizing flow or throughput. In Section 4, the analysis is extended
to alternative objective functions, maximizing social surplus, producer surplus
or consumer surplus. For this, we utilize price responsive supply and demand
curves. In Section 5, two numerical examples are given to illustrate the discussion
in Section 4. Some final conclusions are provided in Section 6.

3.2 Natural gas flows
In our presentation, we will use production nodes, transportation nodes and
market nodes, as well as pipelines, to describe a natural gas system. The trans-
portation system for natural gas in the North Sea is chosen as a motivating case
for our work. It is the largest existing offshore network, and consists of long
pipelines, where the modeling of pressure drops along the pipelines is important.
For simplicity, we assume that there is one production field in each production
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node. In the production nodes, we also assume that there are compressors. Thus,
from these nodes, gas may be sent into the system at a pressure level that can
be chosen within certain limits, depending on the compressor unit characteristics
and pipeline design.
Natural gas is a mix of different hydrocarbons and other gas components like

ethane, methane, butane, carbon dioxide and several others. The gas quality
in terms of its chemical composition and energy content will vary from produc-
tion field to production field. In our approach, we will not model the natural
gas components, but rather assume that all the gas in the system is equal and
may be viewed as one commodity. Our discussion will not be influenced by this
assumption, but in reality modeling gas components may introduce even more
externalities into the system.
Usually, several pipelines meet at transportation nodes in the network. The

natural gas is mixed, and a homogeneous gas leaves the transportation node
through one or several other pipelines. We will assume that it is not possible
to increase pressure in the transportation nodes, i.e., there are no compressors
available in the transportation nodes. This reflects the present system of the
North Sea, where transportation nodes usually lack compressors due to the high
installation and maintenance cost of such sub-sea installations.
In the market nodes, where the gas is traded, we have only incoming pipelines.

Also in the market nodes, there may be limitations on pressure levels, for instance
due to contractual agreements, which typically take the form of minimum and
maximum pressure requirements.
In the natural gas flow model we present here, we will first show how to model

pressure and flow in a single pipeline, thereafter; we will discuss the system effects
of pressure, and then give a full mathematical model.

Flow in a single pipeline

The Weymouth Equation

We model the pressure drops in pipelines based on the Weymouth equation,
which describes the relationship between inlet pressure, outlet pressure and the
amount of gas flowing in a pipeline. The flow through the pipeline is driven by
the pressure difference between the inlet and the outlet of the pipeline, and the
larger the difference, the more gas molecules will flow between the two points in
a given period of time (see illustration in Figure 3.1). The Weymouth equation
is given by:

Q =
Tπ

8P
1, 44× 10−3

((
r2
i − r2

j

)
d5R

MTsZLF

)0.5

(3.1)
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Figure 3.1: A three-dimensional illustration of how the Weymouth equation re-
lates pressure at the inlet and outlet points to the capacity in the
pipeline.
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For details on this empirical equation, see for example Campbell (1992). The
volume of natural gas is given in standard cubic meters (Sm3). The standard cu-
bic meter refers to one cubic meter of gas under normal conditions, where normal
conditions are defined to be 1 atmospheric pressure (1.01325 bar) and 15℃. The
parameters and variables in Equation (3.1) have the following interpretations:

Q The throughput (or flow rate), [MSm3/day],
ri Inlet pressure in the pipeline, [bar ],
rj Outlet pressure in the pipeline, [bar ],
d The pipeline diameter, [m],
L The pipeline length, [m],
M The molecular weight of the gas, [kg/kmol],
TS The ambient temperature of gas, [K],
T The temperature at standard conditions, [K],
P The pressure at standard conditions, [bar],
R The gas constant, [J/(kmol ×K)],
Z The average compressibility factor of the gas,
F The friction factor of the pipeline.

We often aggregate the constants of the Weymouth equation into a Weymouth
constant KW

ij for the pipeline going from network node i to node j. The Wey-
mouth equation can then be expressed as in Equation (3.2), where Wij (ri, rj) is
the flow through a pipeline going from node i to node j as a consequence of the
pressures ri and rj :

Wij (ri, rj) = KW
ij

√
r2
i − r2

j . (3.2)

If there are limitations on the pressure level in the nodes, the flow through the
pipeline will be constrained by these limits, since the flow must be less than or
equal to the flow that may be obtained if the inlet pressure is at maximum level,
Ri, and the outlet pressure is at minimum level, Rj . Consequently,

Wij (ri, rj) ≤ KW
ij

√
Ri

2 −Rj2. (3.3)

There may be other capacity constraints limiting flow, due to for instance
pipeline design parameters or capacity limitations in nodes. However, in this
paper, we focus on capacity constraints following from restrictions on pressure
levels only.

Linearization of the Weymouth Equation

Through Taylor series expansion it is possible to linearize Equation (3.2) around
a point (RIi, ROj), representing fixed pressures into and out of the pipeline:
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Wij (ri, rj) ≤Wij (RIi, ROj) +
∂Wij

∂ri
(ri −RIi) +

∂Wij

∂rj
(rj −ROj) .

After some calculations, the Taylor expansion around (RIi, ROj) will take the
following form for a pipeline between nodes i and j (for a detailed description,
see Appendix A):

fij ≤ KW
ij

RIi√
RI2

i −ROj
2 ri −K

W
ij

ROj√
RI2

i −RO2
j

rj , (3.4)

where fij is the flow variable. When we use the linearization to compute flow
for each pipeline, around 20 of these constraints are added to the problem, rep-
resenting different pairs of RIij and ROij (where RIij is larger than ROij).

Network flows and system effects
In a natural gas network, the practical capacities that can be utilized in one part
of the network depend on the pressures and flows elsewhere in the system. For
a node with more than one pipeline connected, the chosen pressure level in the
node influences the capacity in all pipelines connected to the node. There are
two alternative ways of modeling the system effects of pressure.
First, we can choose to model the situation, where in a network node, the

outlet pressure in all incoming pipelines and inlet pressure of all outgoing arcs,
are equal. Under this assumption, the Weymouth equation must be modeled as
an equality, as presented in its original non-linear form in Equation (3.1). The
linearization in Equation (3.4) is not valid, as modeling flow using an inequality
in this constraint, basically corresponds to allowing a pressure drop at the inlet
of the pipelines.
Alternatively, we can model a more advanced node with valve arrangements,

that makes it possible to reduce the inlet pressure in some of the outgoing
pipelines. In practice, this corresponds to modeling the pipeline capacity as
an inequality, allowing the flow in the pipeline to be lower than the flow following
from a given node pressure. In this case, the linearization in Equation (3.4) may
be used.
The linearized variant is used in models developed for the system operator in

the North Sea for analyzing network flow. The main reason is that it better
reflects the typical situation of many real transportation networks, including the
one in the North Sea. Another reason is that the formulation using Equation (3.1)
leads to a non-convex problem, limiting the size of problems that may be ana-
lyzed. One should note that the externalities due to system effects, that we will

81



Chapter 3 Modeling optimal economic dispatch and flow externalities

describe in the following sections, will be present also in the first case, when an
equality is used in Equation (3.1), as it gives an even stronger link between the
different pipeline flows.
In the following, we will illustrate the system effects of pressure with the ex-

ample network in Figure 3.2. There are two production nodes (A and B), two
market nodes (D and E) and a transportation node (C). The maximum pres-
sure in production node A is assumed to be larger than in production node B.
Assuming similar design parameters and similar lengths for the two pipelines AC
and BC, this gives the pipeline from A to C larger capacity than the pipeline
going from B to C. In this example, we will assume that any pressure limits
in node C are not restrictive. There are also minimum pressure requirements in
the market nodes D and E. Since the minimum pressure in node E is assumed
to be lower than the corresponding figure for node D, the capacity of pipeline
CE is larger than the capacity of CD, assuming the two pipelines are otherwise
equal. The pipeline flows depend on the Weymouth constants of the correspond-
ing pipelines, and the pressure differences along the pipelines, as given by the
Weymouth equation.
The relationship between the pressure levels in the pipeline system is illustrated

in Figure 3.3. The x-axis represents the location of the nodes, while the y-axis
represents the pressure. Maximum and minimum pressure requirements in the
nodes are given by horizontal lines in the figure. The downward sloping lines
connecting two nodes represent a pipeline and show the inlet and outlet pressures
and the pressure drop along the pipeline. To increase the flow in a pipeline, either
the outlet pressure needs to be reduced, or the inlet pressure must increase, or
in other words, the absolute value of the slope of the corresponding line in the
figure must increase.

A B

C

D E

Figure 3.2: Example of a transportation network consisting of two production
nodes, a transportation node and two market nodes.
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In the upper part of Figure 3.3, we have assumed that the pressure in node B
is at the upper limit, while it is still possible to increase the pressure in node A.
Moreover, the pressure in node E is at the lower limit.
Consider now a situation where production field A is offered a new contract

for delivery to market E. To accommodate this increase in flow from A to E,
the pressure in node A must be increased relative to the pressure in node C.
Besides, the pressure difference between node C and E must increase in order
to increase the flow through this pipeline. Since the pressure in node E is at
its lower limit, in practice, this means that the pressure in node C has to be
increased, and since there are no compressors in node C, it means that pressure
must increase in the production field to accommodate this. The new situation
is shown in the lower part of Figure 3.3. More gas flows from A to E (the line
joining A and E has become steeper), but less gas now flows from B to D (the
line joining B and D is flatter) because of the higher pressure in node C, and the
fact that pressure in node B cannot increase. In the new situation, more capacity
is available from node C to the markets, but less capacity is available from the
production nodes to node C. The available transportation capacity from node B
has been reduced as a consequence of the increased transportation from node A.
The fact that there are no compressors to increase pressure in the transportation
node, introduce externalities, and there is a trade-off between the capacity of the
upper pipelines (before the transportation node) and lower pipelines (after the
transportation node).

A natural gas network model

In the following, we present a linear programming model for physical flow max-
imization in the transportation network, based on work at SINTEF and NTNU
Rømo et al. (2006), and in Section 3.4 we will extend this model to include
economic objectives.

Sets

N The set of all nodes in the network.
G The set of nodes in the network with production fields.
M The set of market nodes.
T The set of transportation nodes.
I(n) The set of nodes with pipelines going into node n.
O(n) The set of nodes with pipelines coming from node n.
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Figure 3.3: The top figure shows the original state of the network, while the
lower figure shows the state of the network after the flow from A to
E is increased.
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Constants

Ri Max pressure [bar] in node i ∈ N .
Ri Min pressure [bar] in node i ∈ N .

Decision variables

kg Production in field g ∈ G.
fij Flow from node i ∈ N to node j ∈ O(i).
ri Pressure [bar] in node i.
qm Volume of natural gas in market m ∈M.
pdm Price of natural gas in market m ∈M.
psg Price of natural gas in production node g ∈ G.

Objective function

The mathematical formulation for maximizing flow is straightforward:

max
∑

i∈I(m)

∑
m∈M

fim , (3.5)

where fim is the flow from node i to market node m,M is the set of all market
nodes and I(m) is the set of all nodes with pipelines going into m.

Constraints

The first set of constraints ensures that mass is conserved in the network. Pro-
duction kg in node g ∈ G must equal the amount of gas fgj transported from the
production node g into nodes j in its set of downstream nodes O(g) :∑

j∈O(g)

fgj = kg, g ∈ G. (3.6)

For the transportation nodes, the amount of gas that flows into node j must
also flow out of node j: ∑

i∈I(j)

fij =
∑

n∈O(j)

fjn , j ∈ T . (3.7)

In the market node m we need to make sure that the quantity of gas available
in the market, qm, is equal to the sum of the gas flowing into the market:
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∑
j∈I(m)

fjm = qm, m ∈M. (3.8)

Moreover, we need to make sure that the maximum and minimum requirements
for the pressure in the nodes are satisfied:

ri ≥ Ri, i ∈ N . (3.9)

ri ≤ Ri, i ∈ N . (3.10)

We will present two alternatives for modeling pipeline capacity constraints
due to pressure limitations. The first is the one that we advocate, where pres-
sure and system effects are modeled properly, based on the Weymouth equation.
The linear constraint in (3.4) corresponds to an outer linearization of the Wey-
mouth equation for the pipeline flow. A more precise approximation is obtained
by using a set of linearizations around the pairs of inlet and outlet pressures
(RIl, ROl), l = 1, . . . , L, for each pipeline. We denote this constraint set the
Weymouth formulation (WF). The second alternative is the formulation usually
found in economic models of gas systems, like Cremer et al. (2003) and Cremer &
Laffont (2002), which we will denote Independent Static Flow constraints (ISF).
When we discuss the economic modeling of gas networks, we will compare the
ISF formulation with the WF formulation that we suggest should be used.
The Weymouth formulation is given by:

fij ≤ KW
ij

RIil√
RI2

il −RO2
jl

ri −KW
ij

ROjl√
RI2

il −RO2
jl

rj ,

i ∈ N , j ∈ O(i), l = 1, ..., L,

(3.11)

where we use L linear constraints for each pipeline. The system effects of pressure
are implicitly modeled by the nodal pressure variables. If the pressure in a node
must be uniform for all connected pipelines, the inlet pressure of a pipeline out
of transportation node n is equal to the outlet pressure in a pipeline going into
the node. Thus, the capacity of the pipelines connected to the node is dependent
on the nodal pressure, and therefore also dependent on one another. With the
linearization of the Weymouth equation, the nodal pressure formulation ensures
that pressure is not built up at nodes without compressors, but allows for pressure
drops, thus reducing flow in a given pipeline relative to its pressure potential.
Still, pressure levels in one part of the network will depend on the chosen pressure
values in other parts of the network.
The alternative model for pipeline capacities, is the ISF-formulation,
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fij ≤ Cij , i ∈ N , j ∈ O(i), (3.12)

where Cij is the static flow-independent capacity for the pipeline connecting
nodes i and j. Note that in this case, the system effects disappear from the
model, as the flow capacity of one pipeline is not influenced by other pipelines’
flows. When replacing the Weymouth constraints with ISF constraints, it is an
open question how to determine pipeline capacities. One possibility is to use the
maximum pressure difference for the pipeline to determine its static capacity:

Cij = KW
ij

√
Ri

2 −Rj2. (3.13)

In this case, the system effect is not properly modeled, and the capacity is set
at its best possible value, which can be achieved in theory, but not necessarily
in practice. In the next section, we will illustrate the difference in two numerical
examples.

3.3 Max flow and network externalities - two
numerical examples

In this section, we present two examples that illustrate the importance of includ-
ing pressure drops in the modeling of natural gas flows. Network externalities
are present both in operational max flow problems and in long-term investment
problems. In Section 3.4 we extend the analysis to situations with alternative
economic objectives.

Example 1: Externalities from network operations

Returning to the example network in Figure 3.2, Section 3.2, let us investigate
how an increase in flow from node A to node E can influence the total through-
put. We analyze the network using pressure constraints and pressure drops and
compare it to an approach with ISF capacities.
The design parameters in Table 3.1 will be used. The pressure constraints of the

pipelines are due to the design parameters in the network, as well as compressor
capacities at the production nodes, and specifications in the delivery contracts.
The Weymouth constants are chosen such that they resemble pipelines in real
installations in the North Sea. Maximization of throughput in this system, gives
a flow from A to E of 36.99 MSm3/d , and 31.17 MSm3/d from B to D, i.e., a
total flow to the market nodes of 68.16 MSm3/d .
Now, consider a situation where the producer in node A wants to deliver

41 MSm3/d to the market in node E. How will this influence the flow from
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A to C B to C C to D C to E
Max pressure into pipeline, [bar] 200 150 140 140
Min pressure out of pipeline, [bar] 120 120 100 70
Weymouth-constant 0,63 0,41 0,38 0,34

Table 3.1: Design parameters

B to D? Imposing this new constraint and maximizing throughput using the
model from Section 3.2 gives the following result: flow from A to E is, as desired,
41 MSm3/d , while the flow from B to D is reduced to 22.68 MSm3/d . Thus,
when the flow from A to E increases by 4 MSm3/d , the flow from B to D is
reduced by more than 8 MSm3/d . The pressure in node C has increased from
129 bar to 139 bar , and this change has decreased the transportation capacity
from the production nodes to node C. The results are illustrated in Figure 3.4.
It is evident that the relationship between flows in the network is far from lin-
ear, and that rather small changes in one part of the network can have a large
influence on other parts.

Figure 3.4: Example of a transportation network consisting of two production
nodes, a transportation node and two market nodes. The figure to
the left gives the original solution, and the figure to the right the flow
when the flow from A to E is increased.

Using Equation (3.13) to compute ISF capacity constraints on the pipeline
flows, based on specified max and min pressures, gives the following flow con-
straints: CAC = 100.8 MSm3/d , CBC = 36.9 MSm3/d , CCD = 37.23 MSm3/d ,
and CCE = 41.22 MSm3/d . The maximal throughput is then equal to min(100.8+
36.9, 37.23 + 41.22) MSm3/d = 78.45 MSm3/d , while if we consider the contrac-
tual paths, assuming production node A trades with market E and production
node B with D, the capacities for trades are CAE = min(100.8, 41.22) MSm3/d
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and CBD = min(36.9, 37.22) MSm3/d . The capacities are illustrated in Fig-
ure 3.5.

Figure 3.5: The figure on the left shows the pipeline network with ISF con-
straints. The figure on the right shows the ISF capacities of contract
paths.

Using any of these capacities either fails to recognize the dependency of flows
completely (the contractual capacities), or exhibit a linear relationship between
flows, where, for instance, reducing flow from node A to any of the market nodes
by one unit, makes it possible to increase the flow from node B by one unit.
Another issue is that the ISF constraints calculated from Equation (3.13), based
on maximum and minimum pressure limits, grossly overestimates the practical
capacities of the pipeline network, with a max flow of 78.45 MSm3/d as compared
to the 68.16 MSm3/d if pressure levels and limits are taken into account.

Example 2: Externalities and investment decisions

Understanding the physics of the network system is important in order to make
good infrastructure and capacity decisions. In the following, we show an example
of network externalities due to investment decisions. Assume that we have a
simple basis network to start with, consisting of production node A, market node
D and two intermediate nodes CP1 and CP2. The network is illustrated in
Figure 3.6.
A single producer in node A is transporting gas to the market node D through

a single pipeline. However, a small field is under development (node B). The
field in node B will deliver its production to a new market in node E. Instead of
building a new pipeline going from B to E, the nodes can be connected to the
existing pipeline from A to D. By using the pipeline from A to D, the additional
pipelines are shorter than if a completely new pipeline should cover the whole
distance. Assume that the pipeline going to market node E can be connected at
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Figure 3.6: The original network with the two potential junction points.

one of two intermediate positions on the existing pipeline from A to D: CP1 or
CP2. The investment possibilities are illustrated in Figure 3.7. This is a typical
realistic investment situation on the Norwegian continental shelf.

Figure 3.7: Two different junction points.

Assuming that A is responsible for delivering to node D and that B is respon-
sible for the volume going to node E, we solve the max flow problems for the
two cases using the model in Section 3.2. The design parameters are given in
Table 3.2, and we assume that the pipeline from B to A is not a bottleneck in
the system, and does not influence the pressure at node A.

With these values, the flow capacity of the pipeline between A and D is
51.3 MSm3/d , before any investments are done. After investment, the two al-
ternative junction points lead to different transportation capacities between A
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Max pressure into pipeline from A 160 bar
Min pressure out of pipeline into D 80 bar
Min pressure out of pipeline into E 70 bar
Weymouth-constant from A to D 0.37
Weymouth-constant from A to CP1 0.44
Weymouth-constant from A to CP2 0.62
Weymouth-constant from CP1 to D 0.69
Weymouth-constant from CP1 to E 0.62
Weymouth-constant from CP2 to D 0.46
Weymouth-constant from CP2 to E 0.52

Table 3.2: Design parameters

and D. We assume in both cases that the volume between B and E is fixed to
10 MSm3/d , and then maximize the throughput between A and D. The result
of the numerical example is illustrated in Figure 3.8. The graph on the top left
hand shows the original situation with volumes and pressures. The graph on the
top right hand shows the solution if CP1 is chosen, and the one underneath is
the solution when using CP2 as a junction point. With CP1, the capacity CAD
is 44.1 MSm3/d , and with CP2, the capacity is 47.5 MSm3/d . The reduction
in capacity between A and D is 7.2 MSm3/d and 3.8 MSm3/d respectively, so
there is a daily difference of 3.4 MSm3/d between the two alternatives.
Comparing the solution for the extended network with the original network, we

see that the pressures in the nodes CP1 and CP2 have decreased. This decrease
is due to the need for higher delivery between A and the junction point. Since
the pressure in node A was at the maximum level in the original solution, this
increase can only be obtained by reducing the pressure in the junction points.
The difference in the solutions for the two alternative junction points, can be ex-
plained by looking at the Weymouth equation: when the length of the pipeline is
increased, the Weymouth constant decreases (see Equation (3.1)), and therefore,
less gas is transported for a given pressure difference1.
Another aspect to take into consideration is the investment cost of the new

pipelines. In the alternatives presented here, the pipeline from CP2 to E is
approximately 40 % longer than the pipeline from CP1 to E.
If the pressure constraints had not been included in the model, the location of

the junction point would not have influenced the capacity between A and D. The

1The lengths used in this example is 840 km between A and D, 600 km from A to CP1, 240
km from CP1 to D and 300 km to E, 300 km from A to CP2, 540 km from CP2 to D
and 424 km to E. The Weymouth-constant is dependent on the square of the length of the
pipeline (see Equation (3.1)), and therefore the difference between the constants may be
non-intuitive.
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Figure 3.8: Flow and pressure values for the original network and for the two
investment possibilities.
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example shows that there are several considerations that need to be accounted
for when we are looking at expanding a natural gas network. The owners of
field A must be compensated somehow for the loss of capacity after the new
investments. Moreover, there is a trade-off between the additional investment
costs of building a longer pipeline and the possibility to get more capacity in the
network. The optimal solution will depend on several factors, such as investment
costs, ownership in the fields and in the network, regulation of the network and
market conditions (supply and demand).

3.4 Optimal dispatch with economic objective
functions

Incorporating pressure constraints and pressure drops when modeling natural
gas flows, will influence the solutions also when using different economic objec-
tive functions. From the max flow examples, we saw that the externalities in
natural gas flows influence the practical capacities of the pipeline networks. By
introducing economic objectives, we will investigate the validity of economic rea-
soning based on simple ISF constraints as opposed to the more detailed modeling
of the network in our approach.

In the following, we assume that there exist supply functions in the field nodes
and demand functions in the market nodes, representing marginal production
cost and marginal benefits from consumption, respectively. We focus on the
short-term optimal operation of the natural gas system, given the existing in-
frastructure, with production, transportation and market nodes, pipelines, and
compressors with predetermined properties. We will assume that all the relevant
short-term costs are reflected in the supply functions. This is a simplification, as
there may be some flow dependent and pressure dependent costs associated with
for instance using gas for building up pressure. Flow dependent or pressure de-
pendent costs could be taken into account by adding corresponding cost terms in
the objective function, however, as we want to focus on the effect of the capacity
constraints following from pressure limitations, we have not considered these cost
terms. Our approach follows along the same lines as the analyses of congestion in
electricity markets, where congestion management is frequently studied assuming
lossless approximations of power flows.
We start by defining different economic objectives, before we summarize well-

known results for the single pipeline case, and finally move on to our contribu-
tion in the analysis of economic objectives in a pipeline system. We consider
the maximization of the following objectives: social surplus, consumer surplus
and producer surplus. In our presentation, we use linear demand and supply
functions. With the linearized Weymouth equations to model pipeline flows, the
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resulting optimization problems are quadratic optimization problems with linear
constraints.

Economic dispatch in a single pipeline
Consider the situation in Figure 3.9, with a system consisting of a production
node, a market node, and a single pipeline connecting the two nodes. The trans-
portation capacity is restricted by the design parameters of the pipeline. Clearly,
in this case, there is no pipeline system to interact with, so an ISF constraint for
the pipeline flow, such as Equation (3.13), is sufficient to represent the maximum
amount of gas possible to transport. Overviews of existing theory for analyzing
single transportation links with capacity constraints exist, for example in Tirole
(1988). For completeness, we give a short introduction here (for more details, see
also Appendix 3.B)).

Figure 3.9: Example of a transportation network consisting of a single pipeline.

With a congested pipeline with capacity fcap < func , as in Figure 3.10, max-
imizing social surplus corresponds to maximizing the trapezoid limited by the
supply function, the demand function and the capacity constraint, i.e., the sum of
the areas CS , PS and A. We call this solution the constrained optimal economic
dispatch. At quantity fcap the two nodes will have different marginal values, and
one possibility is that a system operator can bring along the equilibrium by giving
the producer a price of ps and charging a price of pd from the market. The income
to the system operator would then be equal to the area A in Figure 3.10. Note
that there may be other ways to implement the optimal solution, for instance
by managing capacity limitations through redispatching in secondary markets,
or through various two-part tariffs. These different alternatives for dealing with
transmission constraints will typically result in different allocations of total sur-
plus between suppliers, consumers and a possible system operator. We will not
discuss these issues further in this paper, however, independent of how capacity
constraints are managed, in the optimal solution, maximizing social surplus, the
marginal values should be consistent with the prices ps and pd.
In the unconstrained solution, maximizing social surplus gives an optimal gas

flow, f∗, equal to func. When maximizing producer or consumer surplus, the
optimal unconstrained quantity f∗ is usually less than func (refer Appendix 3.B).
Since the optimization problems have concave objective functions and convex
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Figure 3.10: Situation when pipeline capacity is restricting the solution.

feasible regions, the pipeline will be used to the capacity limit in the constrained
cases where fcap < f∗, i.e., the optimal quantity produced and transported over
the pipeline is equal tomin(fcap, f∗). This means that for sufficiently constrained
networks, the optimal solution will be identical and equal to fcap for all three
objective function alternatives. For details on the single pipeline optimization
see Appendix 3.B. In the following, we will assume that when maximizing either
consumer surplus or producer surplus, the consumer or producer respectively,
will take all the profit in area A. This means that maximizing consumer surplus
is done by maximizing the area CS +A. Likewise, maximizing producer surplus
is the same as maximizing the area PS+A. An interpretation of this assumption
is that when maximizing consumer or producer surplus, we assume either the
consumer or production side to be in control of the pipeline system, and the
network operator function.

Economic dispatch in a pipeline system
In this section we formulate the optimal economic dispatch in a network of
pipelines, with several production and market nodes. We focus on the differ-
ence between using the modeling framework described in Section 3.2 as opposed
to applying ISF capacities throughout the network.
Supply and demand functions for the production and market nodes are assumed
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to be deterministic and linear. Thus, the demand function in market nodem ∈M
is given by:

pdm = αdm − βdmqm, (3.14)

where pdm is the price, depending on volume qm, and αdm and βdm are positive
constants. For simplicity, we assume that the supply functions go through the
origin, such that supply in production node g ∈ G is given by:

psg = βsgkg, (3.15)

where psg is the price in production node g, kg is the volume produced, and βsg is
a positive constant.
The objective functions then, have the following formulations, and are gener-

alizations of the two-node situation, which is illustrated in Figure 3.10:

• Max social surplus:

max
∑
m∈M

(
αdmqm −

1
2
βdmq

2
m

)
−
∑
g∈G

1
2
βsgk

2
g . (3.16)

• Max consumer surplus (monopsony):

max
∑
m∈M

(
αdmqm −

1
2
βdmq

2
m

)
−
∑
g∈G

βsgk
2
g , (3.17)

• Max producer surplus (monopoly):

max
∑
m∈M

(
αdmqm − βdmq2

m

)
−
∑
g∈G

1
2
βsgk

2
g . (3.18)

When comparing models with the Weymouth formulation to models with ISF
capacities, we analyze all the different objective function variants; maximization
of social surplus, consumer surplus and producer surplus. Hence, we will compare
the results obtained from two classes of optimization models, using:

1. WF pressure constraints: {max (3.16) or (3.17) or (3.18) s.t. (3.6)-(3.11)}

2. ISF capacity constraints: {max (3.16) or (3.17) or (3.18) s.t. (3.6)-(3.8)
and (3.13)}
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3.5 Optimal economic dispatch - two numerical
examples

In this section, we provide numerical examples illustrating the effects that pres-
sure constraints have on optimal economic dispatch in a natural gas network.
We start with a moderately constrained network that illustrates the difficulties
in finding ISF capacities. Thereafter, we move on to a strongly constrained net-
work. This example shows that even in a highly constrained network, where all
objective function alternatives give the same solution with ISF constraints, the
solutions are different for the alternative objectives when including WF pres-
sure constraints. This is due to the fact that modeling pressure in a network,
introduces some flexibility that is not incorporated with the ISF capacities.

Example 3: Optimal dispatch and ISF capacities

This example illustrates how the ISF capacities introduced in Equation (3.13)
overestimates the true capacity in the network. If this approach is used to model
flow constraints due to pressure limits throughout a network, we obtain a re-
laxation of the optimal dispatch problem, where flow and flow constraints are
modeled by means of the Weymouth equations. This is evident from noting that
Equation (3.13) gives the highest possible flow between two nodes i and j with
pressure limits Ri and Rj , but that Equation (3.13) fails to recognize the depen-
dencies between pipeline pressures. In a network, it will not normally be possible
to run every pipeline with maximum pressure difference between the connected
nodes. If this is possible, the optimal solution is equal to the solution from the
ISF capacities model, if not, the ISF formulation based on capacity constraints
(3.13) is a relaxation of the true model.
In the following, consider a network with the same configuration as in Fig-

ure 3.2. The design parameters are shown in Table 3.3, while the ISF capacities
are calculated from Equation (3.13) and displayed in Table 3.4.

A to C B to C C to D C to E
Maximum pressure into pipeline 160 180 150 150
Minimum pressure out of pipeline 125 125 90 75
Weymouth-constant 0.40 0.45 0.30 0.35

Table 3.3: Design parameters

We then use the supply and demand functions in Table 3.5 to compute the
optimal dispatch under the three different objective functions. As can be seen
from the flows in Figure 3.11 and the prices (or marginal values) in Table 3.11,
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Capacity from A to C 42.33
Capacity from B to C 60.37
Capacity from C to D 39.69
Capacity from C to E 41.57

Table 3.4: ISF capacities in the network

the results depend a great deal on which model is used to represent network flows.
As expected, we see that the solutions for the ISF capacities give higher total flow
for all the objective functions. The objective function value is also increased for
all the objective functions under the ISF capacities. However, the flow pattern
given by the model with ISF constraints is naturally not necessarily feasible for
the pressure constraint (WF) model.

Supply from node A ps1 = k1

Supply from node B ps2 = 3k2

Demand in node D pd1 = 200− 2q1

Demand in node E pd2 = 200− 3q2

Table 3.5: Supply and demand functions.

Objective
Social Consumer Producer
surplus surplus surplus

WF ISF WF ISF WF ISF
Price in node A 34.6 42.3 38.7 42.3 35.5 42.3
Price in node B 83.7 96 54.6 62.1 54.6 54.6
Price in node D 140 120.6 145.8 124.4 141 127.4
Price in node E 102.5 96.2 110.6 124.4 127.4 127.4
Objective value 8255.21 9058.9 6820.88 7145.03 6115 6316.57

Table 3.6: Prices and objective function values.

It may be argued that it is unrealistic to apply the capacities from Equa-
tion (3.13) directly, but rather make some reductions to allow for the system ef-
fects of the pressure constraints. However, it is an open question how this should
be accomplished, as the necessary capacity adjustments will depend on supply
and demand parameters as well as the design parameters of the transportation
network.
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Figure 3.11: Solution with pressure constraints (on the left) and ISF constraints
(on the right).
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Example 4: Optimal dispatch in a strongly constrained
network
We continue to use the example network in Figure 3.2, and the same supply and
demand functions as in the previous example (see Table 3.5). First, note that
in the unconstrained case, the competitive solution, maximizing social surplus,
would have resulted in a price of 76.9 in every node in the network, and the
total production (and consumption) would be 102.5 MSm3/d . As expected, the
production is highest in node A while sales are highest in node D. The solutions
maximizing consumer surplus and producer surplus both give lower production
volumes. When maximizing consumer surplus, the market price is 111.1 and the
total production is 74 MSm3/d . Maximizing producer surplus gives a market
price of 123.8 and a total production of 63.5 MSm3/d . The size of the CS, A,
and PS areas in Figure 3.10) are given in the ISF column in Table 3.10 and are
equal independent of which objective is used (CS +A, PS +A or CS +A+PS.
In order to analyze a strongly constrained network, we choose design parame-

ters such that none of the flows from the unconstrained solutions are feasible. The
design parameters are displayed in Table 3.7, and the ISF capacities calculated
by Equation (3.13) are shown in Table 3.8.
When maximizing the three different surpluses in this constrained network, the

ISF network model gives the same value for the decision variables, independent
of the objective function. The resulting flow pattern is illustrated in Figure 3.12,
showing the production in the field nodes and the volumes consumed in the
market nodes. The identical results for the three objectives, using the ISF for-
mulation, is similar to the single pipeline case in Section 3.4. Since the optimal
unconstrained solution for every objective function is beyond the capacity of the
network, the network will be used to the capacity limit, which is here equal to
min(39.4 + 12.7, 21.2 + 21.2) = 42.4.

A to C B to C C to D C to E
Maximum pressure into pipeline 172 135 135 135
Minimum pressure out of pipeline 130 130 115 115
Weymouth-constant 0.35 0.35 0.30 0.30

Table 3.7: Design parameters

For the network model with WF pressure constraints and pressure drops, how-
ever, the optimal flow patterns are no longer identical for the different objective
functions. I.e., even in this very strongly constrained network, the dependencies
between flow in different parts of the system, influence the solutions. The flow
patterns are illustrated in Figure 3.13, and Table 3.10 displays the allocation of
surpluses between consumers (CS), producers (PS), grid revenue (A) and the
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Figure 3.12: The solution when maximizing social surplus, consumer surplus and
producer surplus with ISF capacities.

Capacity from A to C 39.4
Capacity from B to C 12.7
Capacity from C to D 21.2
Capacity from C to E 21.2

Table 3.8: The ISF capacities.
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total social surplus CS + A+ PS) for the different objective functions (see Fig-
ure 3.10). This is contrasted with the allocation of surplus in the ISF model. The
total surplus in the ISF model is higher; however, this is once more due to the
fact that the ISF solution is not feasible when we take into account the pressure
limits and the externalities in the network.
Consider now the WF solutions. In the monopsony case, maximizing consumer

surplus (CS + A), we note that compared to the solution with maximal social
surplus, some of the production has been switched from production node A to
production node B . This reduces the size of the traditional consumer surplus CS,
however, the resulting increase in A is larger, such that total monopsony surplus
(CS + A) increases. This result is due to two factors: the capacity constraints
on the network, and the special properties of the pressure constraints. With
the pressure constraints, the effective capacity of each pipeline is determined by
the operation of the other pipelines in the system. This adds flexibility to the
operator of the system, and gives possibilities of moving and creating bottlenecks
in the system. In this example, the monopsony has decreased the pressure in node
C, and therefore increased the capacity from node B to node C at the expense
of the capacity from node C to nodes D and E.

Objective
Social Consumer Producer
surplus surplus surplus

Production in node A 37.56 34.7 37.17
Production in node B 4.3 6.3 4.56
Sale in node D 20.93 20.5 20.87
Sale in node E 20.93 20.5 20.87

Table 3.9: Result from optimization.

Objective
Social Consumer Producer Surplus
surplus surplus surplus with ISF

CS 1095.1 1053.5 1089.2 1123.6
PS 733.1 663.6 722.1 674.16
A 4715.4 4777.2 4726.6 4884.48
CS + PS +A 6543.6 6494.3 6537.9 6682.24

Table 3.10: Results from the optimization. See Figure 3.10 for definition of the
areas A, CS and PS.

To summarize the results, we start by noting that in the unconstrained case,
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Figure 3.13: The solution when maximizing social surplus, consumer surplus and
producer surplus with pressure constraints.
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the three objective functions will in general lead to different flow patterns in the
system. When modeling the physical properties of the network using only ISF
capacity limits to restrict the solutions, the different objectives will give identical
solutions in terms of flow when the network is sufficiently constrained. For the
very constrained network, this means that when using the ISF formulation, the
monopsony/monopoly cannot do better than the social surplus solution in terms
of changing the size of the areas CS, A and PS. Only the wealth distribution
changes with the objective in this case, due to different assumptions on who is to
receive the grid revenue A. On the other hand, when modeling the network flows
with pressure limits and pressure drops, the solutions may differ with different
objectives. The possibility of moving bottlenecks in the system when modeling
pressure and system effects, allows the monopsony or monopoly to get a higher
surplus than they would in the solution with maximal social surplus, and at the
expense of the other party.

3.6 Conclusions
Due to the physical properties of natural gas transportation networks, there exist
severe externalities in the operation and development of these networks. Flows
are constrained by pressure limits and driven by pressure drops. This means that
changes in one part of the system will influence capacities and performance in
other parts of the system. An analysis of bottlenecks and threshold values in
the transportation network therefore must have a system perspective rather than
a pipeline perspective. Thus, in order to analyze a natural gas transportation
system, it is necessary to take into consideration the entire network.
In this paper, we provide a modeling framework that takes into account these

externalities. A linearization of the Weymouth equation, that describes flow in a
pipeline, is proposed in order to allow for analysis of flows and economic surpluses
even in large networks. The effects of the network externalities are investigated
by means of numerical examples in a small network consisting of two production
nodes, two market nodes and an intermediate transportation node.
From these simple examples, it is demonstrated that the relation between flows

in the system is highly non-linear and non-additive. The network externalities
may influence to a large extent effective capacities, optimal flow patterns and
marginal values or prices. Moreover, it is shown that flexibility in operations
arise from these system and pressure effects, in the sense that it is possible to
move bottlenecks in the system with a profit for either producers or consumers.
The externalities arising from system effects and pressure constraints thus influ-
ence even the more qualitative aspects of the solutions, such as the effects from
different assumptions on the market design, and the competitive structure of the
markets.
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3.6 Conclusions

Thus, we argue that modeling the physical properties of natural gas networks,
taking into account the technology in terms of physics and system effects, is
important for economic analysis in natural gas networks.
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Appendix

3.A Linearization of the Weymouth equation
The Weymouth equation is given by:

Wij = K
√
r2
i − r2

j . (3.19)

By using a first order Taylor series expansion around a fixed point RI , RO ,
this can be expressed as:

Wij (ri, rj) ≤Wij(RI ,RO) +
δW

δri
(ri − RI ) +

δW

δrj
(rj − RO) . (3.20)

We start by finding the partial derivatives:

δW

δri
=

2Kri

2
√
r2
i − r2

j

, (3.21)

δW

δrj
= − 2Krj

2
√
r2
i − r2

j

. (3.22)

Putting these expressions into Equation (3.20) and using the fixed point RI ,
RO we obtain the following result:

Wij(RI ,RO) =K
√

RI 2 − RO2 +
KRI√

RI 2 − RO2
(ri − RI ) (3.23)

− KRO√
RI 2 − RO2

(rj − RO) .

This can be written as:

Wij(RI ,RO) =K

(√
RI 2 − RO2 − RI 2 − RO2√

RI 2 − RO2
+

RI√
RI 2 − RO2

ri

)
(3.24)

−K

(
RO√

RI 2 − RO2
rj

)
.

which finally translates into the following approximation for the flow through
a pipeline with pressure difference ri − rj :
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Wij(RI ,RO) = K

(
RI√

RI 2 − RO2
ri −

RO√
RI 2 − RO2

rj

)
. (3.25)

The flow surface given by equation 3.19 is the upper quarter of a cone starting
in the origin. The linearization constraints are planes passing through the origin.
Each such plane linearized around (RI,RO) is tangent to the cone in all points
where ri

rj
= RI

RO . For more details, see Westphalen (2004).

3.B Unconstrained equilibrium
Consider a single pipeline where the capacity of the pipeline is not binding. Also
assume demand and supply functions are known and linear. For a more details
regarding these calculations, see for instance Tirole (1988):

Demand: pd = αd − βdkg, (3.26)

Supply: ps = αs + βsqm. (3.27)

When looking at a system with a single pipeline the production, kg, and sold
volume, qm, are identical and equal to the flow in the pipeline, f . The highest
possible social surplus is achieved for the system in a competitive market, where
the prices are pd∗ and ps∗, and the traded quantity is f∗ corresponding to the
intersection between the supply- and demand curves:

f∗ =
αd − αs

βs + βd
⇒ pd∗ = ps∗ =

αdβs + αsβd

βs + βd
. (3.28)

Maximization of producer surplus can be done by implementing the monopoly
solution. In order to find the monopoly price and quantity, the intersection
between marginal revenue and marginal cost is found. This gives the following
solution:

MC = αs + βdf, (3.29)

MR = αd − 2βdf, (3.30)

MC = MR ⇒ f∗ =
αd − αs

βs + 2βd
⇒pd∗ =

αdβs + αdβd − αsβd

βs + 2βd
,

ps∗ =
2αsβd + αdβs

βs + 2βd
. (3.31)
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The social surplus is reduced since the traded quantity in this solution is dif-
ferent from the competitive markets’ solution. In this case the surplus of the
producers’ is maximized.
In the opposite case, total consumer surplus is maximized through the monop-

sony solution. In order to find the monopsony solution, first the marginal expen-
diture curve (ME ) must be found. The marginal expenditure curve is equal to
the derivative of the cost function (C) for the monopsony:

C = αsf + βsf2, (3.32)

ME = αs + 2βsf, (3.33)

The optimal solution is found at the intersection of this curve and the marginal
revenue product (MRP) curve (assumed equal to the demand curve):

ME = MRP ⇒ f∗ =
αd − αs

2βs + βd
⇒pd∗ =

2αdβs + αsβd

βd + 2βs
,

ps∗ =
αsβd + αsβs + αdβs

βd + 2βs
. (3.34)
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Chapter 4

An operational portfolio optimization
model for a natural gas producer

Abstract:
We present a short-term portfolio optimization model for a large natural
gas producer. The time horizon in the model is one week with daily reso-
lution. In this time-span the model includes spot market sales, production
plans, storage management and fulfillment of long-term contracts. The pa-
per discusses the value of actively using the storage capacity provided by
the line-pack of the pipelines to maximize profit for the producer. We also
study the value of using a stochastic model as compared to a deterministic
model. The model is tested over two 60-days periods using real market data
and realistic production and transportation capacities.

4.1 Introduction

We present an operational portfolio planning model for a large offshore producer
of natural gas. The objective for the producer is to maximize the value of the
produced natural gas within a week. The production targets are given as daily
and weekly volumes that must meet upper and lower production requirements
for each field.

The entities that we model in the natural gas networks are: production fields
present in production nodes, pipelines between nodes, junction nodes where
pipelines meet and gas is blended, compressors used to lift the pressure in the
network at given nodes, and market nodes at which gas is sold through take-or-
pay contracts or at the spot market. In addition we look at storage in the pipeline
system. The producer strives to send more gas to the market on days with high
prices and less on days with low prices, while the overall produced volume does
not change within the week. When maximizing the value of production, the gas
producer must consider both physical limitations as well as guidelines from tac-
tical/ strategic models and field lifting agreements (e.g. production limits). The
portfolio planning covers coordination of production in a set of fields, transporta-
tion in pipelines, management of storage and sales through contracts and spot
markets.
To our knowledge this is the first study of a stochastic portfolio optimization
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Chapter 4 An operational portfolio optimization model...

model for natural gas production and sales. We examine the value of using a
stochastic model, as compared to a deterministic approach. In addition, we eval-
uate the commercial value of actively using the storage (line-pack) present in the
export pipelines in order to increase the average price of the sold gas. Any other
storage capacity with close proximity to the market hubs like aquifers, caverns,
LNG-storages and abandoned oil- and gas reservoirs, can easily be included in
the model as well. The modelling of pipelines as storages and the interaction
with compressors to achieve this is non-trivial and our approach goes beyond the
methods reported in the current literature. Our analysis is motivated by the gas
production on the Norwegian continental shelf. The analysis is also relevant for
other regions where contract markets and spot-markets exist together and where
storage of gas may be used to increase the profit.
Our model is a continuation of the work presented in Tomasgard et al. (2007)

that gives an introduction to modelling the value chain for natural gas covering
both system effects, multi-commodity aspects of natural gas flow and portfolio
optimization. That model is at a tactical level with a monthly resolution, no com-
putational results are presented, no price model is given and storage in pipelines
is not included. In related literature Nygreen et al. (1998) considers deterministic
investment optimization for oil and gas fields in a strategic horizon with focus
on how to develop fields and build pipelines. In Iyer et al. (1998) a multi-period
mixed-integer linear programming model for scheduling investment and opera-
tion in offshore oil field facilities is presented. Stochastic models for planning
offshore gas field developments under uncertainty in reserves is presented in Goel
& Grossmann (2004) and in Haugen (1996). Ulstein et al. (2007) give a model
for deterministic tactical value chain coordination including the multi-commodity
aspects of natural gas. That approach does not include a physical model for the
natural gas flow and thereby neglects the important system effects in the trans-
portation networks (Midthun et al. 2006) and also does not allow the modelling
of storage in pipelines. In Selot et al. (2007) a MINLP model for operational
planning for upstream natural gas production systems is presented. The model
gives a detailed description of the physical properties of natural gas production
and transportation.
In Thompson et al. (2003) an algorithm for the valuation and optimal operation

of a single natural gas storage facility is presented, and Byers (2006) present a
valuation methodology for commodity storage facilities.
In our test case we use real market prices from 3 European hubs and realistic

production and transportation capacities from the Norwegian continental shelf.
This is the world’s largest offshore pipeline network for natural gas and produces
about 15 % of the European consumption of natural gas. We simplify the analysis
by assuming that one player can control both all production fields and the trans-
portation network. Our analysis here is on the value of portfolio optimization,
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coordination and storage, not on how the profit should be shared between play-
ers or how the market should be organized. For analysis of the organization of
multi player behavior in the transportation market, see Gabriel & Smeers (2005)
and Midthun et al. (2007). Examples of computational equilibrium models for
natural gas markets are Gabriel et al. (2005) and Zhuang & Gabriel (2006).

We build on a linear steady-state model for the transportation network based
on Tomasgard et al. (2007). An alternative mixed integer approach is presented
in Martin et al. (2006). An overview of linearization of natural gas flow is given
in Van der Hoeven (2004). All papers mentioned so far are steady-state models.
Work has also been done on modeling of the transient behavior of gas flow. An
overview can be found in Kelling et al. (2000). In Westphalen (2004) and Nowak
& Westphalen (2003) models for transient flow in a system of gas transportation
pipelines are presented. A deterministic version of the model in Nowak & West-
phalen (2003) is implemented in Nørstebø (2004). Here the time resolution is
in hours. Our work on modelling storage in pipelines builds on and extends the
approaches in Westphalen (2004) and Kelling et al. (2000).
In Section 4.2 we discuss important aspects of natural gas transportation. A

mathematical formulation is given in Section 4.3. In Section 4.4 we present the
market models and more details of the computational cases. We then present the
results in Section 4.5 and concludes.

4.2 Modeling natural gas networks
An important implication of the liberalization process of the European gas in-
dustry is the development of short-term markets in Europe. Now the producers
of natural gas have the possibility to sell their gas through, for instance, week-
ahead, day-ahead and within-day contracts, in addition to long-term contracts.
The majority of produced gas is still sold through long-term take-or-pay con-
tracts (TOP) where the producer has little opportunity to increase profitability.
The structure of the take-or-pay contracts calls for careful planning. The buyer
in the take-or-pay contracts has flexibility with respect to the weekly, as well as
daily, nominated volume. Consequently, volumes sold in the short-term markets
are the only factor the producer may influence, and these deliveries will never be
prioritized above the TOP-contracts. Spot markets therefore represent an im-
portant opportunity for increased profit as an increase of the average spot price
achieved will be reflected directly in the company’s profit, but also a challenge in
terms of the security of supply for TOP contracts. This means that the planning
decisions have to be flexible and able to meet varying demands.
We here discuss how to model pressure constraints, and move on to discuss the

importance of transient behavior of the gas versus steady-state modelling. Then
we discuss the representation of line-pack as storage in the portfolio optimization
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Figure 4.1: The Weymouth equation.

together with the representation of compressors used to control this storage.

Modelling pressure and system effects

In a natural gas transportation network the capacity in a pipeline depends on
the design parameters of the pipeline (such as length and diameter), as well as on
the pressure at the inlet and the pressure at the outlet. The Weymouth-equation
is often used to describe flow in a pipeline as a function of the inlet and outlet
pressure as well as design parameters (see Figure 4.1). For more details on the
Weymouth-equation, see for instance Campbell (1992). Fij(pi, pj) approximates
the flow through a pipeline going from node i to node j as a function of the input
pressure pi and output pressure pj :

Fij(pi, pj) = KW
ij

√
pi2 − pj2, j ∈ N , i ∈ I(j). (4.1)

KW
ij is the Weymouth constant for the pipeline going from i to j. This con-

stant depends on the pipelines length, its diameter and other pipeline specific
parameters.
Consider the network in Figure 4.2. The flow in the pipeline AC from A to C

depends on the pressure level in node A and C. The pressure in node C influences
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A B

C
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Figure 4.2: Example of a transportation network consisting of two production
nodes, a transportation node and two market nodes.

the flow both in AC and CD. If the pressure in node C increases, the flow from A
to C decreases while the flow from C to D increases. Flow in one pipeline in the
network influences the potential flow in the rest of the network. If fixed capacities
are used for the pipelines instead of pressure constraints, the system effects are
neglected. For a more detailed motivation for our steady state linearization and
discussion of system effects we refer to Midthun et al. (2006).

Transient natural gas flow and pipelines as storage

Steady-state models assume that inflow and outflow of gas is equal within a
period. However, long transportation pipelines may also be used as storages.
The line-pack in a pipeline is the gas contained in the pipeline. In the graph
to the left in Figure 4.3 a possible use of line-pack is shown for a case where
the pipeline is 90% full and a given price development. In the graph to the
right we see the development when the pipeline is already filled to max capacity
(Figure 4.3). The line-pack can be increased when prices are expected to increase
and decreased when prices are favorable.
Often, in order to model time and storage capacity, the pipeline is divided into

several segments with steady-state conditions in each segment. Applying well
known time-length criteria to long sub sea pipelines will result in a high number
of segments (Osiadacz 1983, Streeter & Wylie 1970). In an operational model
with daily resolution and routing flexibility we need to check whether a simple
steady-state formulation will still be meaningful, or whether we need to use one of
the more complicated models partitioning the pipelines into a set of steady-state
segments.
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Figure 4.3: Line-pack: The horizontal line shows the starting level of line-pack,
the dotted line shows the level of line-pack and the full line shows
the price development.

When the amount of gas taken out of the pipeline is less than the amount of gas
sent into it (in practice additional gas is being pushed in) the pressure and density
at the inlet is rising. A sudden increase of inflow will cause a pressure wave that
goes through the pipeline at the speed of sound. The intensity of the pressure
wave is decreasing since the energy is used to push gas particles toward the outlet,
causing both a slight increase of velocity and density also there. This effect is
shown in Figures 4.4 to Figure 4.5. We use Matlab to simulate the development
of velocity and density of the gas molecules in a gas pipeline for given input and
output profiles. The simulation is performed in the same manner as described
in Nowak & Westphalen (2003), where differential equations are used to describe
the transient gas flow in a pipeline. An increase in the outflow will lead to a similar
pressure wave, this time going from the outlet toward the inlet and sucking gas
out of the whole pipeline. At each point in time the pressure decreases along
the pipeline, while the velocity increases, since the energy for the gas transport
is stored in the compression. The figures illustrate that short term variations in
input and outtake have little impact on both velocity and density in the middle
of the pipeline or the other end of the pipeline.
We then look at a situation where we use a time resolution of 24-hours (the flow

rate is constant within each 24-hour period, but in the simulation we show hourly
effect on pressure and velocity). The chosen input/output-pattern, as well as the
resulting inlet and outlet pressure is illustrated in Figure 4.6. The figure shows
that the inlet and outlet pressure in the pipeline is an approximately piecewise
linear function. The figure also illustrates that there is transient behavior in the
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pipeline in the first hours after a change in input and/or output in the pipeline.
This can be seen from the non-linear behavior of the inlet and outlet pressure in
the hours after a changed flow pattern. With a time-resolution of less than an
hour, this non-linear behavior will be important. We argue however, that with a
time-resolution of 24-hours, a modified steady-state approach is sufficient.
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Figure 4.6: Resulting inlet and outlet pressure from given input/output data.

The modified steady-state approach is based on steady-state equations, but
allows for different in- and outflow quantities in the pipelines. We extend this
formulation with a storage model that depends on a weighted average of the
pressures at the inlet and outlet points of the pipeline. In Westphalen (2004) the
line-pack is calculated as a function of average pressure in the pipeline (pavgij =
1
2 (pi + pj), where pi is the pressure at the inlet and pj is the pressure at the
outlet). We have used a formula that in addition considers the shape of the
pressure drop in the pipeline (Kelling et al. 2000):

pavgij =
2
3

(
pi + pj −

pipj
pi + pj

)
. (4.2)

This expression can be linearized in the following way (by using a first-order
Taylor expansion):

120



4.2 Modeling natural gas networks

pavgij =
2
3

(
pi + pj −

P avg
i P avg

j

P avg
i + P avg

j

−
P avg
j (pi − P avg

i )
P avg
i + P avg

j

−
P avg
i

(
pj − P avg

j

)
P avg
i + P avg

j

)
,

(4.3)
where P avg

i and P avg
j are constants, representing the approximated average inlet

and outlet pressure in the pipeline. In addition, we need an Equation of State
in order to relate the average pressure in the pipeline to the average density in
the pipeline. For a discussion on different versions of the Equation of State,
see Modisette (2000). We use the following form:

p = ρ
R

m
Tz (p, T ) , (4.4)

where ρ is the density in the pipeline, R is the Gas constant, m is the molec-
ular weight and z (p, T ) is the compressibility factor as a function of pressure p
and temperature T . The value of z is chosen to be 0.7 in this paper based on
experience from the pipelines at the Norwegian continental shelf (Dahl 2001).
For a constant temperature T , z is still varying in pressure, but for our relevant
pressure levels the variations are small.
When using this Equation of State, we can find the density in the pipeline

as a function of the average pressure in the pipeline. We can then estimate the
line-pack by multiplying the density with the volume of the pipeline:

LP ij =
m

RTz
pavgij AijLij , (4.5)

where LP ij is the line-pack in the pipeline between i and j, Aij is the area of a
cross-section of the pipeline and Lij is the length of the pipeline. The complete
formulation is given in Section 4.3, Equations (4.16)-(4.18).

Compressor modeling
For production fields we do not consider the physics in the reservoirs. The model-
ing starts when gas enters the compressors that build up pressure for the pipeline
transportation. The cost of running a compressor depends on the inlet and outlet
pressure, and the gas flow. The compressor work, as an isentropic process is given
by (Katz & Lee 1990):

W = Aq

[(
P out

P in

) χ
χ−1

− 1

]
, (4.6)

where W is the work of the compressor, P in is the pressure of the gas entering
the compressor and P out is the gas leaving the compressor (corresponds to the
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inlet pressure at the connected pipeline). Here χ is the adiabatic constant and A
represents the aggregation of various constants in the equation. In the following,
the compressor work will be replaced with the cost of running the compressor
assuming a constant energy price.
The function is neither strictly convex nor concave. This makes it difficult

to represent the function in an optimization model. Including the original com-
pressor cost function leads to a non-convex problem. One approach is presented
in Nowak (2006). This method works well for a deterministic model (Nørstebø
2004), and gives a very good approximation of the actual compressor costs. How-
ever, the method is not efficient enough to be used for the model sizes that we are
considering. The solution times for stochastic network models with 3-5 stages,
and from 500 to 1000 scenarios will be too high for practical use. Therefore, to
simplify Equation (4.6) we assume constant input pressure to the compressor.
The compressor cost is linearized with the following constraints:

cgts ≥ a1 + b1
(
dgts − dg

)
+ c1

(
pgts − pg

)
, g ∈ G, t ∈ T , s ∈ S, (4.7)

cgts ≥ a2 − b2
(
d− dgts

)
− c2

(
pg − pgts

)
, g ∈ G, t ∈ T , s ∈ S, (4.8)

cgts ≥ a3 + b3
(
dgts − dg

)
− c3

(
pg − pgts

)
, g ∈ G, t ∈ T , s ∈ S, (4.9)

cgts ≥ a4 − b4
(
dg − dgts

)
+ c4

(
pgts − pg

)
, g ∈ G, t ∈ T , s ∈ S, (4.10)

Here dgts and pgts is the production and outlet pressure in field g at time t
in scenario s and the overlined and underlined values give the maximum and
minimum values of the variables, respectively. Then cg is the approximated
compressor cost at production field g. Constants a, b, c are positive and describe
the plane used for approximation.

4.3 The portfolio optimization model
We model the uncertainty in prices and volumes using scenario trees in a 3-stage
stochastic program (see e.g. Kall & Wallace (1994)). It has seven time periods
and daily resolution. We start here with the description of the scenario trees and
the time structure of the model and then give the mathematical formulation.

Scenario structure and rolling horizon
Assume that our model starts on a Monday. The model horizon then comprises
the weekdays from Monday to Sunday. We implement the first stage decisions
(the decisions for Monday) and run the model again on Tuesday (with the week-
days from Tuesday to next Monday). The parameters regarding production levels
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for each field, remaining production limits for the week and line-pack levels are
updated between the runs. Also the scenario tree structure depends on which
weekday the model is run, see Figure 4.7. The reason for this is the special
structure of the weekend where all markets for Friday, Saturday and Sunday are
cleared on Friday.

Figure 4.7: The different scenario trees

Notation
Sets

N The set of all nodes in the network.
G The set of production nodes in the network.
B The set of junction nodes in the network.
M The set of market nodes in the network.
I(n) The set of originating nodes with pipelines going into node n.
O(n) The set of end nodes for pipelines going out of node n.
T The set of time periods.
S The set of scenarios.
Z The set of constraints used to linearize the Weymouth equation.

Indexes

n Index used for nodes in general. When more indexes are needed,
i and j will be used.

g Index for production nodes.
b Index for junction nodes.
m Index for market nodes.
t Time period index.
s Scenario index.
z Index for linearized Weymouth constraints.
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Constants

Gg The maximum daily production level in field g.
Gg The minimum daily production level.
Hg The maximum weekly production level.
Hg The minimum weekly production level.
Pn The maximum pressure in node n.
Pn The minimum pressure in node n.
Kij The Weymouth constant for the pipeline going from i to j.
PI z Fixed point for pressure into a pipeline.
POz Fixed point for pressure out of a pipeline.
A Constant in the compressor work function.
χ Adiabatic constant.
Rm Price in the take or pay contract in market m.
Bg Constant to convert compressor work to compressor cost.
P avg
i Approximated average pressure into the pipelines in node i.
P avg
j Approximated average pressure in the pipelines entering node j.

Decision variables

dg Production in field g.
qm Spot sale in market m.
vm Delivery in take or pay contract in market m.
fij The flow between node i and j.
pn The pressure in node n.
pavgij The average pressure in the pipeline going from node i to j.
LPij Line-pack in the pipeline going from i to j.
cg Cost of compressor in field g.
qinij Volume inserted to the pipeline going from i to j.
qoutij Volume extracted from the pipeline going from i to j.

Stochastic variables and probabilities

vm Nomination in long-term contracts in market m.
rm Spot price in market m.
π Probability of a given scenario.

Functions

F (pi, pj) Flow in a pipeline with inlet pressure pi and
outlet pressure pj .

W (q, Pin , Pout) Work of a compressor.
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4.3 The portfolio optimization model

The mathematical model

The model maximizes expected income from sales in the spot market and de-
liveries in long-term contracts minus the costs of using the network. The costs
incorporate the compressor costs and production costs:

Π =
∑

s∈S,t∈T
πts

 ∑
m∈M

(rmtsqmts +Rmvmts)−
∑
g∈G

(cgts + κgdgts)

 . (4.11)

Here πts is the probability of scenario s in time t, qmts is the volume of gas sold
in market m, while rmts is the price obtained for this gas in market m. The
second term gives the revenues from the long-term contracts: vmts is the volume
delivered in long-term contracts in market m while Rm is the price obtained.
The last term gives the cost of the compressors and the production cost. The
parameter κg is the cost per unit of production dgts, in field g, and cgts is the cost
of the compressor in field g. The compressor cost is modeled with constraints (4.7)
to (4.10).
At each field there is a minimum and a maximum volume that can be produced

by the company. These limitations are due to both the properties of the field and
the guidelines from a tactical plan. The limits are given both on a daily and a
weekly level. The total production should be within a given interval. The daily
limits are given by:

Gg ≤ dgts ≤ Gg, g ∈ G, t ∈ T , s ∈ S, (4.12)

where Gg is the lower production limit, G is the upper limit and dgts is the
production in the field. The weekly limits are formulated as:

Hg ≤
∑
t∈T

dgts ≤ Hg, g ∈ G, s ∈ S, (4.13)

where Hg is the lower limit on weekly production and Hg is the upper limit on
weekly production.
As discussed in Section 4.2, we model the transportation system as a steady-

state system. The Weymouth-equation is used to relate the pressure difference
and design parameters of the pipelines to the flow in the pipeline. In order to get a
linear model, we use the same linearization as Tomasgard et al. (2007) and Rømo
et al. (2007). This gives the following constraints for the model without line-pack:
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fijts ≤ KW
ij

PIz√
PI2

iz − PO2
jz

pits

− KW
ij

POz√
PI2

iz − PO2
jz

pjts, j ∈ N , i ∈ I(j), z = 1, ..., Z,
(4.14)

where (PIz, POz) are break-points for the linearization representing pressure at
both ends of the pipeline. We use Z such constraints to linearize the Weymouth
equation, each with a different ratio PIz

POz
, see Tomasgard et al. (2007). The

inlet pressure in the pipeline is given by pits, the outlet pressure is pjts and the
resulting flow is fijts. KW

ij is the Weymouth constant for the pipeline going from
i to j.
For the model with line-pack it is the net daily change of the volume in the

pipeline that matters, hence we substitute the variable fij with two new variables:
qinij and qoutij , representing input and output. The Weymouth-equation can then
be written as:

1
2
(
qinijts + qoutijts

)
≤ KW

ij

PIz√
PI2

iz − PO2
jz

pits

− KW
ij

POz√
PI2

iz − PO2
jz

pjts, j ∈ N , i ∈ I(j), z = 1, ..., Z.

(4.15)
As discussed in Section 4.2 the line-pack in a pipeline is found by multiplying

the approximated density with the volume of the pipeline.

LP ijts =
m

RTz
pavgijtsAijLij , i ∈ N , j ∈ O(i), t ∈ T , s ∈ S, (4.16)

where LP ij is the line-pack in the pipeline between i and j, Aij is the area of a
cross-section of the pipeline and Lij is the length of the pipeline. The line-pack
inventory is given by:

LP ij,t+1,s = LP ijts + qinijts − qoutijts, i ∈ N , j ∈ O(i), t ∈ T \{T}, s ∈ S. (4.17)

As a business constraint we require that the level of line-pack at the end of
horizon is equal to the starting level. This is in order to not deplete the line-pack
which is also used as a buffer in order to secure supply:

LP ij,T,s + qinijTs − qoutijTs = LP ij1s, i ∈ N , j ∈ O(i), s ∈ S, (4.18)
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4.3 The portfolio optimization model

where T is the last time period. Constraint (4.18) is necessary to take care of
end-of-horizon effects. If the constraint had not been included, the line-pack
level would have been reduced to a minimum in period T . Alternative ways
of formulating this constraint is to include a value of the gas in period T (for
instance based on an Expected Gas Value Function, as presented in Tomasgard
et al. (2007)).
The pressure in the nodes needs to be within maximum and minimum require-

ments. These requirements come from compressor capacities, design parameters
of the network and contractual agreements:

Pi ≤ pits ≤ Pi, i ∈ N , t ∈ T , s ∈ S. (4.19)

In the production nodes we must make sure that the produced quantity, dgts,
of gas is flowing into the connected pipelines, fgits. The formulation without
line-pack is:

dgts =
∑

i∈O(g)

fgits, g ∈ G, t ∈ T , s ∈ S, (4.20)

and with line-pack it is:

dgts =
∑

i∈O(g)

qingits, g ∈ G, t ∈ T , s ∈ S. (4.21)

In the junction nodes, the amount of gas that enters the node must be equal
to the amount leaving the node. The formulation without line-pack is:∑

i∈I(k)

fikts =
∑

j∈O(k)

fkjts, k ∈ B, t ∈ T , s ∈ S, (4.22)

and with line-pack it is:∑
i∈I(k)

qoutikts =
∑

j∈O(k)

qinkjts, k ∈ B, t ∈ T , s ∈ S. (4.23)

B is the set of junction nodes in the network.
In the market nodes the company sell qmts in the spot market. Additionally, the

company must deliver long-term contracted volumes (vmts). The mass balance
equation for the market nodes for the formulation without line-pack is:

qmts =
∑

i∈I(m)

fimts − vmts, m ∈M, t ∈ T , s ∈ S, (4.24)

and with line-pack it is:
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qmts =
∑

i∈I(m)

qoutimts − vmts, m ∈M, t ∈ T , s ∈ S. (4.25)

Since it is assumed that the company cannot influence the prices in the market
nodes, there are no restrictions on how much the company can buy or sell in the
market. The demand is assumed to be completely inelastic, or alternatively the
volumes that the company is buying/ selling are not large enough to influence
the market price.
In each event node z where uncertainty is resolved in the scenario tree, we

need to add non-anticipativity constraints (Rockafellar & Wets 1991). Let the
scenarios passing through node z be given by S(z) and let T (z) be the time period
of node z. Then we have the following constraints:

1
|S(z)|

∑
s′∈S(z)

(dgts′ , qmts′ , fijts′ , pits′ , cgts′ , p
avg
ijts′ , LPijts′ , q

in
ijts′) = (4.26)

(dgts, qmts, fijts, pits, cgts, p
avg
ijts, LPijts, q

in
ijts), z ∈ Z, s ∈ S(z), t ∈ T (z).

The two models then consist of:

1. Model without line-pack: max (4.11) s.t. (4.7)-(4.14), (4.19)-(4.20), (4.22),
(4.24), (4.26)

2. Model with line-pack: max (4.11) s.t. (4.7)-(4.13), (4.15)-(4.19), (4.21),
(4.23), (4.17), (4.25)-(4.26).

4.4 Test case from the Norwegian continental
shelf

The network chosen as a test case is shown in Figure 4.16. In the network there
are three fields, two junction points and three market nodes. The transportation
capacity of the pipelines is comparable to the dry-gas transportation system in the
North-Sea, but the structure is simpler. The demand in the take-or-pay volumes
are chosen to reflect the dominant position of these contracts in the North-Sea.
The chosen market hubs are large hubs in Europe (Zeebrugge, NBP and TTF).
In reality the Title Transfer Facility (TTF) hub is however not connected to the
transportation system from the North-Sea. This market hub is included because
of the liquidity of the market and the availability of price data as a substitute for
less liquid spot markets in the Emden, Dornum and Dunkerque hubs.
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4.4 Test case from the Norwegian continental shelf

The spot markets
The price scenarios are generated based on time-series of historical observations.
The price data was supplied by the Heren Energy Ltd. The price tends to be
higher during winter than during summer. In addition to the seasonal variations,
there are large upwards peaks in the time series. Being able to deliver extra
quantities of gas when such a peak occurs is advantageous.

N
O

K
/S

m
3

Figure 4.8: Prices at the three hubs in the winter period 2005.

In this article we focus on the winter season, which we define to be from
October 1st to March 31st. The price series are illustrated in Figure 4.8. During
the winter period, the prices are high and the flexibility in the network is low.
During the summer season, the nominated quantities of the long-term contracts
are lower and thus the flexibility is larger. The winter period thus requires careful
planning, and the gain from good planning may be substantial. Figure 4.9 shows
the weekly variation over 7 days, and illustrates that the price volatility within
a week can be large.
Before constructing the prediction models for the time-series, the price peaks

(defined as deviations of more than 50% of the average value) are considered as
outliers and are therefore removed and replaced with the average value of the
price on the same weekday in the previous and coming week.

Forecasting and scenario generation
In each node in the scenario-tree, there is a spot price and a take-or-pay volume
for each of the market hubs (the method to construct scenarios for the take-or-
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Figure 4.9: Illustration of the weekly variations in the last week of February 2005.

pay volumes is given in the next section). We use AR(2)-models to predict the
spot price in all market nodes (see Figure 4.10).

historical
data

predicted
data

xt−2 xt−1 xt x̂t+1 x̂t+2 x̂t+3 x̂t+4 x̂t+5 x̂t+6
x̂t+j =

{ α+
∑2

i=1 βixt+j−i

α+ β1x̂t+j−1 + β2xt+j−2

α+
∑2

i=1 βix̂t+j−i

if j = 1
if j = 2
if j > 2

Figure 4.10: The AR(2) prediction model.

An example of how one of the AR(2)-models fits the real data is shown in Fig-
ure 4.11. The models seem to represent the time-series development reasonably
good and are unbiased. This is important for the scenario generation method
we have chosen. Such price models will in general track the real data process
by following it closely but in general lag a bit behind downward and upward
movements. The AR(2) model is parameterized so that the expected error is 0,
and then the scenarios are there to describe the historical deviations from the
forecast.
We estimate the first four moments (expectation, variance, skewness and kur-

tosis) and correlation of the prediction error distributions for the markets based
on the historical data. We then use a moment matching procedure that was de-
veloped in Høyland et al. (2003) to generate our scenarios. Figure 4.12 shows an
example of a scenario tree for the prediction error. The indexes f1 and f2 give
the number of branches in the first and second stage, respectively. The value of
εstage, branch
t is zero in all nodes in the scenario tree, except for the nodes in the
first period in a new stage (corresponding to period t+1 and t+6 in Figure 4.12).
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4.4 Test case from the Norwegian continental shelf

Figure 4.11: Real prices and values obtained from the prediction model (here
illustrated for the NBP).

We generate S multivariate scenarios for the prediction error with the correct cor-
relation between the markets and with correct moments for the individual error
terms.

ε11t+1

ε
(1,f1)
t+1

ε21t+6

ε
(2,f2)
t+6

ε
(2,S−f2)
t+6

ε
(2,S)
t+6

Figure 4.12: The scenario tree for the prediction errors.

Finally, we combine the AR(2) prediction model with the scenario tree for the
prediction errors to one scenario tree. Each scenario presents a path from the
root node to the leaf node (there are S unique paths through the tree). This
is illustrated in Figure 4.13. The predicted values, x̂t+j can depend on both
historical data and predicted data (x̂t+2 for instance depends on both xt and
x̂t+1) (see Figure 4.10). The value in each node in a path through the scenario
tree can then easily be found by the formula shown in the figure. Hence we use
the forecasting method to predict the expected price, and scenario generation to
describe the variation (error) around this price.
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An important issue in stochastic models is the information structure. The
nonanticipativity constraints make sure that decisions at time t can only depend
on information available at this time, see for example Ruszczyński (1997). We
have implemented the nonanticipativity constraints in Equation (4.26). In Fig-
ure 4.13 the nonanticipativity constraints are represented by the ellipsoids.

x̂s
t+j =

{ α+
∑2

i=1 βix
s
t+j−i + εst+j

α+ β1x̂
s
t+j−1 + β2x

s
t+j−2 + εst+j

α+
∑2

i=1 βix̂
s
t+j−i + εst+j

if j = 1
if j = 2
if j > 2

t t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6

Figure 4.13: All paths through the scenario tree. The ellipsoids represent the
nonanticipativity equations.

Take-or-pay volumes

For the take-or-pay contracts, we assume that the company’s customers can be
divided into two groups: Group 1 comprises gas purchasers with large delivery
commitments in Europe. Group 2 contains purchasers that have more flexibility
to utilize the TOP-contract as a call option.
The Group 2 customers will nominate the maximum amount given that the

spot price exceeds the TOP-price (plus the transaction costs), and the minimal
amount when the spot price is lower than the TOP-price.
For Group 1 we assume that the nominated volume is a linear function of the

spot price within a certain range. This means that they will nominate a high
volume given that the spot-price is high, and nominate a low volume in case of a
low spot-price. The fluctuations in nomination is however less extreme than for
Group 2. This is illustrated in figure 4.14.
A large percentage of the gas in the North-Sea is still sold through long-term

contracts. We have reflected this in the model by choosing the expected demand
in the take-or-pay contracts to be a large percentage of the total production
capacity in the fields.
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4.4 Test case from the Norwegian continental shelf

Figure 4.14: The two different customer types.

The supply side

Most gas fields in the North-Sea produce both oil and gas. There are however
eight pure gas fields. The total export of natural gas from Norway to Europe
in 2005 were 82.5 billion Sm3. In our model, we have included approximately
60% of this volume in a simplified network structure. The transportation network
consists of long, subsea pipelines that are operated at high pressure. An overview
of the production capacities and pipelines characteristics in the North-Sea can be
found in OED (2006). Currently, as much as 90% of the gas is sold through long-
term contracts. It is however expected that this amount will decrease, and that
the trade in short-term markets will increase. In our case study the TOP-volume
is in average 60% of the total production.
When running the model on a rolling horizon and implementing the first stage

decisions (decisions for the first day), the model with line-pack may end with a
line-pack inventory that is lower or higher than the starting level. In order to
compare the models with and without line-pack, one has to assign a value to this
line-pack difference. One option would be to use the price of gas at the last day
in the test period for which the model is run, but since the prices are volatile
this is an unstable method. Changes of one day in the length of the test period
may have substantial effect on the overall return both in positive and negative
direction in this case. Instead, we use the average price in the test period. We use
two measures when comparing the results from the models: profit from the spot
market (after the inventory value adjustment) and the average obtained price in
the spot market. In the following, all gas volumes are given in million standard
cubic meters and the profits are given in million Norwegian kroner (NOK).
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Price Model 1 (PM1) Price Model 2 (PM2)
Rolling horizon T T + 1 T T + 1
AR(2)-parameters T − 3 T − 3, T − 2 T − 1 T
Prediction errors T − 2, T − 1 T − 1, T T − 1 T

Table 4.1: Time periods used to estimate AR(2)-parameters and the prediction
errors for our two price models.

Test instances

We have tested the model on real price data, with a rolling horizon over 60 plan-
ning days (72 calendar days). Figure 4.15 shows the two different time periods
considered in this paper: October 3rd 2005 - December 24th 2005 (period T ) and
January 2nd 2006 - March 25th 2006 (period T + 1). We have used two differ-
ent approaches for parameterizations of the price models. In PM1 we use two
different time periods for the parameterization of the AR-model and for finding
the error distribution. See Table 4.1 for an overview. In PM2 we use as recent
data as possible and the same data for both the parameterization and the error
estimation. In order to capture the effect of price peaks, we have in some of the
cases introduced extreme scenarios: one scenario where the price is doubled and
one scenario where the price is halved for the entire week. In addition, shorter
fluctuations are added to some scenarios (doubling or halving of the price for one
or more time periods). We have also tested the effect of updating the prediction
errors on a monthly basis.

Figure 4.15: The time periods considered in this article.

4.5 Computational results and discussion

In order to ensure feasibility for all daily runs on the rolling-horizon, we introduce
a penalty cost for not meeting the take-or-pay requirements on a given day, as well
as for not being able to meet the line-pack-requirements. These penalty costs are
necessary for the deterministic model; otherwise commitments from previous runs
on the rolling horizon can lead to infeasible problems. The stochastic versions
will most often have taken the possibility of a price increase into consideration.
When comparing the results from the models, the penalty costs are not included.
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Figure 4.16: The network considered in this paper.

Perfect information

We start the analysis by looking at a situation where the producer knows the exact
values for the price and TOP-volumes for the next seven days. The solution with
this input data gives insight to the value of line-pack, as well as how the solution
of the model depends on the starting level of the line-pack. This solution also
gives a benchmark to compare the results of our model run with stochastic prices.
The results are presented in Table 4.2 (the models with line-pack are started

with the pipelines filled to the capacity limit). As we can see from these results,
the value of line-pack depends on which period we look at. For autumn 2005,
T , the difference is 1.72%. For spring 2006 however, the difference is 13.97%.
The price data for spring 2006 are much more volatile than for autumn 2005.
As expected, the added volatility in the spot prices increases the value of the
inherent flexibility in the line-pack.
We then look at the importance of the starting level of the line-pack in the

system. In Figure 4.17 we have looked at a situation where we initiate the model
with a line-pack level of 90%. In the figure, the resulting line-pack utilization is
compared with a model where the starting level is at 100%.
As expected, both models show the same behavior: the line-pack increase in

periods with low price and decrease in periods with high prices. The results from
optimizing with the two different starting levels are shown in Table 4.3. In our
test-case, the model with a starting line-pack level of 90% of total capacity has
higher profits. The reason is that this model has higher flexibility with respect
to storage utilization (the target level for line-pack at the end of the week is at
least 90% which is a weaker requirement). We get an improved income from the
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Case 1 Case 2
Time period T T
Model type With line-pack Without line-pack
Spot market income 14573.94 14205.71
Average price 2.388 2.388
Average obtained price 2.927 2.833
Adjusted with average price 14450.40 14205.71

Case 3 Case 4
Time period T + 1 T + 1
Model type With line-pack Without line-pack
Spot market income 18806.26 15994.74
Average price 2.927 2.927
Average obtained price 3.777 3.344
Adjusted with average price 18228.61 15994.74

Table 4.2: Spot market income for the optimization model run with perfect
information.

Figure 4.17: Utilization of line-pack in the network for the model with perfect
information (spring 2006).
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spot market of 4.0%.
Generally, we can conclude that on a fixed horizon it is beneficial to start

with a high level of line-pack and have a low target level at the end-of-horizon.
When the start- and target-level are the same, a high inventory requirement is
not necessarily beneficial.

Case 5 Case 6
Time period T + 1 T + 1
Line-pack start level 100% 90%
Spot market income 18806.26 18816.68
Average price 2.927 2.927
Average obtained price 3.777 3.978
Adjusted with average price 18228.61 18968.62

Table 4.3: Results when running the model with different starting line-pack lev-
els.

Stochastic versus deterministic models
In the following we compare the results of the stochastic model based on fore-
casting and scenario generation with the deterministic model based on forecasting
alone. We use the perfect information case as a benchmark. The stochastic ver-
sion uses 900 scenarios to describe price uncertainty in the 3 markets for the
next 7 days. We tested the different combinations of parameter estimations and
error estimations described in Section 4.4. For each of the instances, we present
aggregated profit from both time periods. The results for PM1 are shown in Ta-
ble 4.4. The largest difference between the stochastic and deterministic version
is found for the model including line-pack. The difference is here 4.64%, while
the difference is 0.41% for the model without line-pack. The difference up to
the benchmarks for these models are however large (11.12% and 5.72% for the
stochastic models).
We then added extreme scenarios to the stochastic model, as well as the option

to update the distribution of prediction errors on a monthly basis. The best result
for the model with line-pack was achieved when only adding outliers, the distance
to the benchmark was 7.94% and the value was 7.05% larger than the result for
the deterministic model. For the model without line-pack, the best combination
turned out to be using both outliers and monthly update of the prediction error.
The distance to the benchmark for this result was 4.76%, and the result was
2.34% larger than the deterministic model.
Further, we estimated the AR(2)-models and prediction errors on the winter

period most recent to the rolling horizon using PM2. The results are given in
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Case 7 Case 8
Price model PM1 PM1
Model type With line-pack With line-pack
Uncertainty Stochastic Deterministic
Spot market income 30317.06 30199.84
Average obtained price 3.022 2.882
Average price 2.658 2.658
Adjusted with average price 29408.23 28104.57

Case 9 Case 10
Price model PM1 PM1
Model type Without line-pack Without line-pack
Uncertainty Stochastic Deterministic
Spot market income 28566.24 28450.87
Average obtained price 2.946 2.934

Table 4.4: Comparison of the deterministic and stochastic model with and with-
out line-pack. The results are aggregated for T and T + 1.

Table 4.5. As we can see from these tables, the stochastic models still give better
results than the deterministic models, but the difference has decreased. For the
model with line-pack, the difference is now 0.52%, while for the model without
line-pack the difference is almost zero (0.013%). The distance to the benchmark
is now, respectively, 7.1% and 5.5%. We see that the distance to the benchmark
has decreased for the model with line-pack, but actually increased for the model
without line-pack.
Again, we introduce outliers as well as monthly updates of the prediction error.

For the model with line-pack, the best result is obtained when the prediction
error is updated monthly. The change is however quite small - the distance to
the benchmark solution is 7.07% and the distance to the deterministic solution
is 0.56%. For the model without line-pack, the best solution was also achieved
when the prediction error was updated monthly. The distance to the benchmark
solution was now 5.36% and the distance to the deterministic solution was 0.21%.
The difference between the models with and without line-pack is quite clear

in all our results. If we compare the best models with line-pack (PM2, monthly
updated error distribution) with the best model without line-pack (PM1, extreme
scenarios and monthly updated error distributions) we get an advantage of 5.6%,
or 1607 million NOK. For the benchmark models, the same comparison gave a
difference of 8.21%.
The difference between the stochastic models and the deterministic version is

less clear. Still, the stochastic version is consistently outperforming the deter-
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Case 11 Case 12
Price model PM2 PM2
Model type With line-pack With line-pack
Uncertainty Stochastic Deterministic
Spot market income 30934.25 30795.71
Average obtained price 3.126 3.108
Average price 2.658 2.658
Adjusted with average price 30355.84 30199.84

Case 13 Case 14
Price model PM2 PM2
Model type Without line-pack Without line-pack
Uncertainty Stochastic Deterministic
Spot market income 28525.01 28521.45
Average obtained price 2.942 2.941

Table 4.5: Comparison of the deterministic and stochastic model with and with-
out line-pack. The results are aggregated for T and T + 1.

ministic version. For some combinations of parameter and error estimation we
gain a lot from using the stochastic model. The largest difference is found for
Price Model 1 in spring 2006, the stochastic solution is 12.84% larger than the
deterministic solution in this case. The stochastic model seems to be more ro-
bust than the deterministic model when it comes to choice of parameters and
time period for error estimation. Also we observed that the deterministic model
has positive values for the penalty functions in some cases, indicating that the
line-pack end-of-horizon constraints were violated. This did not happen for any
of the stochastic models.
When we initiated the system with 90% line-pack level, the results were clearly

inferior to the models started with 100% line-pack level. This result indicates that
the price models are not accurate enough to utilize the added flexibility from the
reduced target storage.

4.6 Conclusions

We present a stochastic portfolio optimization model for operational planning in
natural gas value chains. We compare the results from the model both with and
without storage in the pipelines and with and without stochasticity (prices and
TOP-quantity). We have used real market prices, and tested the model on two
time periods: fall 2005 and spring 2006.
The results show that modelling storage in the model can increase the prof-

139



Chapter 4 An operational portfolio optimization model...

itability of the system substantially when operated optimally. With perfect infor-
mation, the added profits were as high as 13.97% for the 60-day period in spring
2006. This indicates a large commercial value of actively using the storage inherit
in the pipelines (line-pack) to maximize profits.
We have also seen that taking into account the stochasticity in the problem

can, in some instances, lead to large gains in the objective function value. In
addition, the deterministic model was infeasible for some days on the rolling-
horizon (not able to deliver in TOP-contracts and/or not able to meet the target
level for line-pack) for some of the tests we did. We also found that the results
from the deterministic model were more sensitive to the value of the parameters
in the prediction model than the results from the stochastic model.
There are many possible extensions of this work. Firstly, it would be interest-

ing to compare the results from this model with a transient flow model. With
a transient flow model, also shorter time periods (such as hours) could be con-
sidered. Secondly, market power in some, or all, hubs could be introduced (with
uncertainty in the price elasticity in the markets). Thirdly, we can relax the
system perspective on the value-chain, and see how the inclusion of one or more
producers would influence the results.
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Chapter 5

Capacity booking in a Transportation
Network with stochastic demand and a
secondary market for Transportation
Capacity

Abstract:
We present an equilibrium model for transport booking in a gas transporta-
tion network. The booking regime is similar to the regime implemented in
the North-Sea. The model looks at the challenges faced by the network op-
erator in regulating such a system. There are some privileged players in the
network, with access to a primary market for transportation capacity. The
demand for capacity is stochastic when the booking in the primary market
is done. There is also an open secondary market for transportation capacity
where all players participate including a competitive fringe. We consider
different objective functions for the network operator, and the difference
between setting fixed capacities and modeling the pressure constraints in a
sub-sea pipeline-network. This is modelled as a Generalized Nash Equilib-
rium using a stochastic complementarity problem.

5.1 Introduction

We study booking of transportation capacity in a natural gas network with sev-
eral large players and a competitive fringe. The offshore pipeline system in the
North-Sea provides a case for our analysis, but the model and results are interest-
ing for natural gas transportation in general. There are two booking stages in the
transport capacity market. In the first stage the large producers book capacity
within their predefined capacity rights. In the second stage there is a redistri-
bution of capacity in a bilateral secondary market, where also the competitive
fringe participates. Here the network operator can sell remaining capacity in the
system, and capacity bought in the first-stage primary market can be sold by the
producers.

The purpose of the paper is to develop a model that can be used to analyze
how different objective functions for the system operator affect the efficiency of
the transportation system. We also investigate the effect of using different model
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representations of the physical properties of the transport network. Another
interesting topic is how stochasticity in the price for natural gas influences our
results. The model is based on Generalized Nash Equilibrium and is represented
as a stochastic complementarity problem. To our knowledge this is the first time
the booking system for natural gas transportation is studied using this approach.

The network operator influences the efficiency in the network through the rout-
ing. The routing decisions will also determine the capacity sold in the secondary
market. This is different from the role of the network operator compared to the
articles studying electricity networks, by for instance Yao et al. (2004) and Hu
et al. (2004) where the network operator choose the production from each pro-
ducer in order to maximize social surplus. In the North-Sea, the network operator
acts as a neutral third party.

We formulate the model as a mixed complementarity problem, see for exam-
ple Ferris & Pang (1997) and Facchinei & Pang (2003). A path-breaking paper for
the use of complementarity problems modelling economic equilibrium was Lemke
& Howson (1964). In the energy sector there are numerous examples of papers
using complementarity problems to model and solve economic equilibria. Gabriel,
Zhuang & Kiet (2005) presents a linear complementarity equilibrium model for
the North American natural gas market. Gabriel, Kiet & Zhuang (2005) presents
a multi-seasonal, multiyear mixed nonlinear complementarity problem of natu-
ral gas markets. Smeers (2003a) and Smeers (2003b) discuss the deregulation of
the electricity markets and the organization of regional electricity transmission.
In Jing-Yuan & Smeers (1999) spatial oligopolistic electricity models are given
and Generalized Nash Equilibria are found in a system with Cournot generators
and regulated transmission prices. Yao et al. (2006) presents a model of two-
settlement electricity markets using an Equilibrium Problems with Equilibrium
Constraints (EPEC). Hu et al. (2004) model strategic bidding by generators to an
ISO that is maximizing social surplus. The loop flow is taken into consideration
and shown to be important for the results. The model is an EPEC solved as an
All-KKT system in PATH. Hobbs (2001) presents Cournot models of bilateral
power markets.

In Section 5.2 we discuss the background for this article, as well as the as-
sumptions we have made. The model formulation as a stochastic Mixed Com-
plementarity Problem is presented in Section 5.3. A more detailed description of
the equilibrium conditions is given in Appendix 5.A. The properties of the model
are discussed in Section 5.4. We then move on to some numerical examples in
Section 5.5. Finally, the conclusions are given in Section 5.6.
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5.2 Problem description and assumptions

We present here the ideas and motivation for our case analysis, the assumptions
we have made and the reason for introducing them.

System in the North-Sea

We study a system with field nodes, each with a set of large producers in addition
to a competitive fridge. The producers deliver natural gas into a transportation
network passing through junction nodes and ending in market nodes. The market
for capacity in this network is managed by an independent system operator (ISO)
named Gassco. The producers book transport capacity from field to market and
can not determine the actual routing of the gas through the network. The routing
is the responsibility of the ISO. The image on the left in Figure 5.1 illustrates
the point-to-point perspective of the producers. The transportation network can
be considered as a black box for the producers. The system operator operate
the network taking into account the details in the network, as illustrated in the
image on the right in Figure 5.1.

At the Norwegian Continental Shelf (NCS) capacity distribution is done in
a primary market, and the remaining capacity after this initial distribution is
handled through a secondary market. In the secondary market, both transactions
of capacity facilitated by the ISO and bilateral transactions between shippers are
included. The secondary market is open to all qualified shippers. Only the large
producers book capacity in the primary market limited by predefined capacity
rights. This booking right depends on their need to transport induced by the
TOP contracts. The actual demand for capacity due to the TOP contracts is
uncertain until delivery. In sum, the available capacity in the primary market is
actually larger than the total capacity in the network. If a conflict arises with
respect to over-booking, a capacity allocation key is used to resolve these matters.
We have not explicitly modeled this rule in this paper.
In addition to the long term contracts for gas in the markets nodes, there are

short-term markets where gas may be sold. In this article we have assumed that
the producers may act strategically in the transport capacity market, but that
they are price-takers in the spot markets in the market nodes. This is reasonable
as Norway’s overall production is around 15% of the European consumption of
natural gas. The main market hubs are in UK, Germany, France and Belgium.
In the market hubs there are large buyers of natural gas who distribute the gas
further to either the suppliers or end-customers. In our model, the analysis ends
at the market hubs. For details regarding the liberalization of the European gas
market see European Union (1998) and European Union (2003), and for details
on the Norwegian case, see Austvik (2003).
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The purpose of our model is mainly to analyze the effect different objectives
of the ISO will have on the operation of the system. The price the ISO can
take is regulated and fixed both in the primary and in the secondary market,
so its decision variables are only routing and secondary market sales of available
capacity. If we represent the ISO with a feasibility problem, the corresponding
game will have an infinite amount of equilibria. For each choice of secondary
market sales from the ISO, a solution satisfying the large producers’ equilibrium
conditions can be found. Hence we focus on the following alternatives: max flow,
max value of flow and max social surplus. In the following we assume that the
ISO does not have economic interests in the routing, and acts as a benevolent
central planner.
We also investigate how the representation of the physical networks as well

as the booking rights in the primary markets will influence the efficiency of the
network.

Figure 5.1: The field nodes are denoted by g, junction nodes by j and market
nodes by m. The gas flows from top to bottom.

Second-stage decision structure

Our model is a one level game where each of the producers decison problem
is a stochastic two-stage program with recourse (Kall & Wallace 1994). The
stochastic elements are the spot price in the markets and the quantity in the
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TOP-contracts. The uncertainty is modeled with scenarios (see Figure 5.3). The
decisions in the two stages are illustrated in Figure 5.2.

In the secondary market (in the second stage) we assume that the large produc-
ers and the competitive fringe make simultaneous volume decisions in a Cournot
manner. Each of the large producers recognizes that they will influence the price
for transportation capacity, but make independent volume decisions. The players
in the competitive fringe are price takers in the capacity market. Their reaction
function is expressed as their demand for transportation capacity at a given trans-
portation price. This demand is positive as long as the market price for natural
gas in a market hub is higher than the marginal production cost for the compet-
itive fringe in a field node plus the transportation price from that node to the
market.
Further, we assume that the ISO’s decisions are made simultaneously with the

producers. Hence, the ISO is a Cournot player whose volume decisions cannot
be manipulated by other players strategically. An alternative would be to model
this as a multi-leader one-follower Stackelberg game (Yao 2006) with the ISO as
a follower. A common way of modeling this follower situation, when the ISO has
a convex optimization problem, is by including the KKT-conditions for the ISO’s
routing and capacity release in the other players’ optimization problem. They
will then act strategically because they anticipate the ISO’s reaction to their own
volume decisions. In this case each player solves a mathematical program with
equilibrium constraints (MPEC, Luo et al. (1996)) and the resulting game over
all the players become an EPEC. In our approach we stay within the framework
of Mixed Complementarity Problems as all decisions are simultaneous, and a
common way of modeling this is to merge all the players KKT-conditions into
a large complementarity system. We think that the setting with simultaneous
decisions is closer to the reality of the Norwegian continental shelf. Firstly, the
players are not supposed to act strategically, for example in terms of influencing
the ISO in the transportation market. Secondly, the other players never know or
get information about the ISO’s routing decisions. This is confidential informa-
tion, and so are the booking requests, sales and production volumes of the other
players.

First-stage decision structure

In the first stage each of the large producers decides on a booking volume. This
booking decision is based on maximizing the excepted revenue for the second
stage where production and transportation strategies are made as well as trades
in the secondary market for transportation capacity.
We assume that each player makes his first-stage decisions and his second-stage

decisions simultaneously. In practice this means that the second-stage decisions
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will depend on the outcomes of the stochastic variables, but the contingent strat-
egy covering all possible outcomes is made before the player observes the other
players booking. Each producer’s optimization problem is then a stochastic two-
stage program with recourse, given the other players fixed decisions. The overall
problem is still a Mixed Complementarity Problem, often called a Stochastic
Mixed Complementarity Problem because of the stochastic variables and two-
stage structure.
If, on the other hand the booking decisions had been used strategically by the

players, we would need to include the second-stage equilibrium over all the players
as a part of the booking problem in the first stage for each player. Normally this is
done by including the KKT-conditions from the second stage equilibrium in each
player’s first-stage optimization problem. In such a setting each player’s problem
would be a stochastic MPEC, where the second-stage equilibrium conditions for
each scenario is part of the first-stage optimization problem and parameterized
on the first stage decisions (Patriksson & Wynter 1999).
When the first- and second-stage decisions are made simultaneously we model

the situation where either a player does not know the other players’ booking
decisions when he makes his second-stage decisions, or he has this booking infor-
mation but does not let it influence his second stage decisions. In the Norwegian
regime with a confidential booking process, we feel that this is a sound model.
Then the only information revealed (or acted on) between the first and second
stage is the uncertainty that is resolved. This is a one level game as the scenarios
are independent of the first-stage decisions.

Figure 5.2: The sequencing of decisions.
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Figure 5.3: The scenario structure in the large producers’ decision problem
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5.3 Model

We start by introducing the notation. We then move on to a discussion of the price
of transportation capacity in the secondary market. The networks we present are
connected graphs.

Notation

Sets

N The set of all nodes in the network.
G The set of field nodes in the network.
J The set of junction nodes in the network.
M The set of market nodes in the network.
I(n) The set of nodes with pipelines going into node n

(predecessor nodes).
O(n) The set of nodes with pipelines going out of node n

(successor nodes).
L The set of large producers in the network.
L̃g The set of all producers in field g (including the

competitive fringe).
S The set of scenarios.

Indexes

n Used for nodes in general.
g Index for field nodes.
j Index for junction nodes.
m Index for market nodes.
s Scenario index.
l The index used for producers.
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Constants

Rn The maximum pressure in node n.
Rn The minimum pressure in node n.
Kij The Weymouth constant for the pipeline going from i to j.
Blgm Booking limit for producer l from field g to market m.
Plm Price in the long term contracts for producer l in market m.
Tgm Per unit tariff for transportation between field g and market m.
MC g Aggregated marginal cost parameter in field g.
Cni Capacity in the pipeline between node n and i.
cg Parameter in the cost function for the competitive fringe in field g.
clg Parameter in the cost function for producer l in field g.

Decision variables

blgm Booking in the primary market by producer l between field g and
market m.

dlgs Production in field g by producer l in scenario s.
qlms Spot sale in market m by producer l in scenario s.
hlgms Capacity between g and m traded by producer l in the

secondary market in scenario s.
fnis The flow between node n and i in scenario s.
rns The pressure in node n in scenario s.
zgms Capacity sold by the ISO in the secondary market between field g

and market m in scenario s.
tgms Price of transportation capacity between field g and market m

in scenarios s.
xgms Quantity produced in field g and sold in market m in scenario s

by the competitive fringe.

Stochastic variables and probabilities

vlms Nomination in long-term contracts in market m.
pms Spot price in market m.
φs Probability of a given scenario.

Functions

Clg (d) The cost function for producer l in field g.
Wg (y) Cost function for the competitive fringe in field g.
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Price of capacity in the secondary market
The price in the secondary market in a node is given by a demand function from
the competitive fringe in that node. We assume that the competitive fringes
in the different field nodes are independent. The competitive fringe’s demand
function for transportation capacity between field g and market m in scenario s
is then found from the profit maximization problem for the competitive fringe in
field g:

Πgs = max
∑
m∈M

(pms · xgms − tgms · xgms)−Wg

( ∑
m∈M

xgms

)
, (5.1)

where xgms is the quantity traded in spot market m by the competitive fringe in
field g in scenario s, tgms is the price of transportation capacity between g and m
in the secondary market in scenario s. Wg is the cost function in field g. In order
to find the demand function for the competitive fringe, the first order condition
for optimality is used:

∂Πgs

∂xgms
= pms − tgms −

∂Wg

(∑
m∈M xgms

)
∂xgms

= 0, g ∈ G, m ∈M, s ∈ S. (5.2)

In this article, we assume that Wg is a quadratic function. For ease of presen-
tation, we will in the following assume that the cost function for the competitive
fringe is:

Wg

( ∑
m∈M

xgms

)
=

1
2
cg ·

( ∑
m∈M

xgms

)2

(5.3)

where cg is the cost parameter for the competitive fringe in field g. Nevertheless,
all results are valid for general quadratic cost functions (and most for a general
cost function).
We model this implicitly in the large producers’ problem as an elastic demand

function. The inverse demand function is given as:

tgms = pms − cg ·
∑
m′∈M

xgm′s, g ∈ G, m ∈M, s ∈ S. (5.4)

The volume bought by the competitive fringe, xgms is given as the sum of
capacities sold by the ISO, zgms, and the large producers, hlgms. The hlgms
variable is positive when the large producers sell capacity, and negative if the
large producers buy capacity. We then have the following relation between xgms,
zgms and hlgms:
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xgms = zgms +
∑
l∈L

hlgms, g ∈ G, m ∈M, s ∈ S, (5.5)

which leads to the following expression for the price in the secondary market:

tgms = pms− cg ·

( ∑
m′∈M

(
zgm′s +

∑
l∈L

hlgm′s

))
, g ∈ G, m ∈M, s ∈ S. (5.6)

Since we only allow flow in one direction in our network, we need to make sure
that xgms cannot be negative.

zgms +
∑
l∈L

hlgms ≥ 0, g ∈ G, m ∈M, s ∈ S, (5.7)

where hlgms is the secondary market trades of producer l of capacity from g to m.
The inclusion of this constraint means that the decision space for each producer
depends on the other participants decisions (the other producers and the ISO).

The large producers

The income for the large producers (L) in the network comes from deliveries in
the long term contracts, sales in the spot markets and sales in the secondary
market for transportation capacity. The cost for the producers come from the
per unit tariff paid in the primary market for transportation capacity (which we
assume is independent of the large producers’ decisions), the cost of production
and from purchasing additional transportation capacity in the secondary market.
The objective function for producer l can be formulated as:

Πl = max−
∑
g∈G

∑
m∈M

Tgmblgm +
∑
s∈S

φs

[ ∑
m∈M

(pmsqlms + Plmvlms)

]

+
∑
s∈S

φs

∑
g∈G

∑
m∈M

hlgms ·

(
pms − cg ·

( ∑
m′∈M

(
zgm′s +

∑
l′∈L

hl′gm′s

)))
−
∑
s∈S

φs

∑
g∈G

Clg(dlgs)

 , (5.8)

where blgm is the booking in the primary market, Tgm is the tariff in the primary
market, φs is the probability of scenario s, pms is price in the spot market, qlms
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is volume sold in the spot market, Plm is the price in the take-or-pay contracts,
vlms is the volume in the take-or-pay contracts, hlgms is the capacity traded in
the secondary market (positive when the producer sell capacity, negative when
he buys), the price in the secondary market is given by (5.6), Clg is the cost
function for the producer and dlgs is the production. zgms is the capacity sold
by the ISO in the secondary market.
The booking constraint in the primary market is given as:

blgm ≤ Blgm, g ∈ G, m ∈M, (5.9)

where Blgm is the fixed upper limit on booking for the producer. For the second
stage the following constraints are needed:

dlgs =
∑
m∈M

(blgm − hlgms) , g ∈ G, s ∈ S, (5.10)

qlms + vlms =
∑
g∈G

(blgm − hlgms) , m ∈M, s ∈ S, (5.11)

hlgms ≤ blgm, g ∈ G, m ∈M, s ∈ S, (5.12)

zgms +
∑
l∈L

hlgms ≥ 0, g ∈ G, m ∈M, s ∈ S. (5.13)

Constraint (5.10) make sure that the producer has booked enough capacity
for the production in field g. Constraint (5.11) make sure that the producer has
booked enough capacity for the total sale in market m. The two constraints also
make sure that the producer utilizes all the booked capacity. Constraint (5.12)
makes sure that the producer cannot sell more capacity than he has booked in
the primary market, and constraint (5.13) ensures that the producers cannot buy
more capacity than the ISO sells.

Independent system operator
We present three different objective function alternatives for the ISO:

• maximize flow (MF):

ΠMF
s = max

∑
m∈M

∑
i∈I(m)

fims, (5.14)

The network operator will always choose zgms in order to maximize the flow
under the constraint that all prices (for field-market combinations) must be pos-
itive (see Equation (5.26)). With this objective, the system operator will be
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indifferent with regards to prices in the market nodes and cost functions in the
field nodes.

• maximize value of flow (MVF):

ΠMVF
s = max

∑
m∈M

∑
i∈I(m)

pms ·

(
fims −

∑
l∈L

vlms

)
, (5.15)

The strength of this formulation, MVF, compared with the MF formulation is
that the ISO now routes the gas according to value. The weakness is that he has
no incentive to route according to marginal cost in the fields.
If we assume that the network operator has full information regarding the

cost functions of the participants, the ISO can take both value of flow and cost
structure in the fields into account by maximizing social surplus.

• maximize social surplus (MSS):

ΠMSS
s = max

∑
m∈M

∑
i∈I(m)

pms ·

(
fims −

∑
l∈L

vlms

)
+
∑
m∈M

∑
l∈L

Plmvlms

− 1
2

∑
g∈G

MC g ·

 ∑
i∈O(g)

fgi

2

. (5.16)

MC g is the slope of the linear aggregated supply function for field g:

MC g ·
∑

i∈O(g)

fgi. (5.17)

The supply function is found by assuming that all producers have a cost function
of the form:

Wg = clgd
2
lg, (5.18)

and that no production capacities exist. Under these assumptions, the aggregate
supply function is linear. MC g is found in the following manner:

MC g =
1∑

l∈L̃g
1

2clg

, (5.19)
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where L̃g is the set of producers L and the competitive fringe in field node g. The
aggregated supply function is found by horizontal summation of the individual
supply functions.
Between the production facilities and the market-hubs there is a transporta-

tion network. The gas molecules are transported from nodes with high pressure
to nodes with lower pressure through pipelines. The design parameters of the
pipelines (length, diameter, roughness) as well as external variables (tempera-
ture) decide how much gas is transported for a given pressure difference. The
relation between pressure in the nodes and flow in the pipelines are determined
based on the Weymouth equation, see for instance Menon (2005). For a discus-
sion of system effects on capacity related to pressure constraints see Midthun
et al. (2006).We have chosen to linearize this expression with the formulation
used in Tomasgard et al. (2007):

fij ≤ Kij
RIi√

RI2
i −ROj

2 ri −Kij
ROj√

RI2
i −RO2

j

rj . (5.20)

About 20 of these constraints that are approximating the Weymouth constraint
are used for each pipeline in order to linearize the flow around pairs of pressure
in, RIi, and pressure out, ROj . Here fij is the flow from node i to j and rn is
the pressure in node n.
In addition, constraints on the pressure level in each node must satisfied:

Rn ≤ rns ≤ Rn n ∈ N , s ∈ S, (5.21)

where Rn is the smallest allowed pressure in node n, and Rn is the largest
allowed pressure in node n.
In the numerical analysis, we will also look at an alternative formulation with

fixed capacities. In this case the pressure constraints and the Weymouth equation
are replaced with the following formulation:

fnis ≤ Cni, n ∈ N , i ∈ O(n). (5.22)

In the following we will refer to this formulation as Independent Static Flow
(ISF), while the Weymouth formulation is referred to as WF. It is non-trivial to
determine appropriate values for the ISF capacities. See Midthun et al. (2006) for
a discussion. In this paper we solve an optimization model (with WF formulation)
where the objective is to maximize the throughput in the network. The ISF
capacities are then set equal to the resulting flow pattern in this model. The
WF formulation is a relaxation of this ISF formulation, but it also represents the
real system more precisely as it includes the flexibility of moving bottlenecks by
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adjusting pressures. The ISF formulation is more restricted but any increase in
its capacities will allow a solution which is infeasible in the WF formulation.

The system operator must make sure that the mass is conserved in the network.
We assume that each field is connected to a junction node, and that each market
is connected to a junction node. In addition for ease of notation, we assume that
no junction nodes are connected to each other. The mass balance equations are
given as:

∑
j∈O(g)

fgjs =
∑
m∈M

(
zgms +

∑
l∈L

blgm

)
, g ∈ G, s ∈ S, (5.23)

where O(g) is the set of nodes connected to a pipeline leaving from field g. In
the junction nodes, the mass balance can be formulated as:∑

g∈I(j)

fgjs =
∑

m∈O(j)

fjms, j ∈ J , s ∈ S, (5.24)

where I(j) is the set of nodes connected to a pipeline entering node j. Finally,
a constraint for the mass conservation in the market nodes must be included:

∑
n∈I(m)

fnms =
∑
g∈G

(
zgms +

∑
l∈L

blgm

)
, m ∈M, s ∈ S. (5.25)

The following constraint is included in the model with maximum flow and
maximum value in order to ensure that the price in the secondary market is
positive:

pm − cg ·

( ∑
m′∈M′

(
zgm′s +

∑
l∈L

hlgm′s

))
≥ 0, g ∈ G, m ∈M. (5.26)

Alternatively, we could have introduced a constraint that ensured that the ISO
income was positive in total (or for all field-market combinations).

Benchmark
In Chapter 5.5 we benchmark our solutions with an optimization model where an
independent operator schedules production, routing and sale in order to maximize
the social surplus of all the players in the network. The closer the equilibrium in
our game gets to the benchmark solution, the better the strategy is with respect to
maximizing the social surplus. The mathematical formulation of the benchmark
model is given below.
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ΠBM
s = max

∑
m∈M

∑
l∈L̃

(pmsqlms + Plmsvlms)−
∑
g∈G

∑
l∈L̃

1
2
MC lgd

2
lgs, (5.27)

where MC lg is the slope of the linear supply function of producer l in field g.
In addition, we need constraints (5.20) and (5.21) from the network operator

problem presented in section 5.3. The mass balance is taken care of by:

∑
l∈L̃

dlgs =
∑

j∈O(g)

fgjs, g ∈ G, s ∈ S, (5.28)

∑
g∈G

fgjs =
∑
m∈M

fjms, j ∈ J , s ∈ S (5.29)

∑
l∈L̃

(qlms + vlms) =
∑

j∈I(m)

fjms, m ∈M, s ∈ S. (5.30)

5.4 Model properties
Our model is a General Nash Equilibrium game where the feasible regions of the
players depend on the other players’ decisions. Let Xl ∈ Rα be the strategy set
of player l with decision variables xl = (xl1, . . . , xlα) . We have |L| producers
and 1 ISO, constituting the set of players, L̄. Define β = |L| + 1. The set
X =

∏
l∈L̄Xl is the full Cartesian product of the strategy sets of individual

players and x = (xT1 , . . . , x
T
β )T (in the case that no common constraints existed,

it would be the strategy set of the game). Also define the vector x−l of all players’
decisions except player l’s and correspondingly X−l =

∏
j∈L̄|j 6=lXj .

We will define more formally the dependence between the players through
the common constraints and define the point to set mapping Kl : X−l ⇒ Xl

representing player l’s feasible region, given the actions of the other players.
Kl(x−l) ⊆ Xl, x ∈ X.
Then a generalized Nash equilibrium (GNE) is defined as a point x∗ ∈ X that

simultaneously optimizes all the players individual decision problems so that:
x∗l ∈ Kl(x∗−l), l ∈ L̄ and Πl(x∗) ≥ Πl(xl, x∗−l), xl ∈ Kl(x∗−l), l ∈ L̄ where
Π : Rαβ → R is the objective function of player l. That is, the Generalized Nash
Equilibrium is reached when no player has incentive to change his strategy given
that the other players do not change their strategy.
Pioneering results on the existence of GNE are presented in the papers of De-

breu (1952) (social equilibrium) and Arrow & Debreu (1954) (abstract economy)
that generalized the results of Nash (1950). Rosen (1965) is an early paper con-
cerning not only existence but also investigating uniqueness of solutions for a
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restricted class of problems. lchiishi (1983) gave more general results concerning
the existence of such GNE.

It is well known that Nash equilibria (with independent player strategy sets)
can be viewed as Variational Inequalities (VI), see Lions & Stampacchia (1967)
for a nice overview. An early reference formulating the generalized Nash equilib-
rium as a Quasi Variational Inequality (QVI) is Bensoussan (1974). See for exam-
ple Ferris & Pang (1997) or Facchinei & Pang (2003) for more on the relationships
between complementarity problems and Variational Inequalities. This means that
in addition to existence and uniqueness proofs following the Arrow/Debreu/Rosen
tradition, also the theory of VI may be used to analyze this, see Harker & Pang
(1990), Harker (1991) and Pang & Fukushima (2005) for good overviews of this
direction of analysis.
Following the lines of the discussion in Harker (1991), we define Fl(x∗) =
∇xlΠl(x∗l , x

∗
−l) and F (x∗) = (F0(x∗)T , . . . , F|L|(x∗)T )T Then the GNE may be

expressed as the Quasi Variational Inequality QV I(F,K(x)) :

F (x∗)T (x− x∗) ≥ 0, x ∈ K(x∗), (5.31)

where K(x) =
∏
l∈L̄Kl(x−l).

It may here be noted that a standard Nash equilibrium may be expressed as a
VI(F,K):

F (x∗)T (x− x∗) ≥ 0, x ∈ X. (5.32)
In our case, the x vector consist of the following variables: x = (b, h, d, q, f, r, z).
Theorem 5.2 from Chan & Pang (1982) (Theorem 2 in Harker (1991)) give con-
ditions for existence of a solution. We use notation in accordance with what we
defined above:

Theorem 5.4.1. Let F and K be a point-to-point mapping and point-to-set map-
ping respectively from Rαβ into itself. Suppose that there exists a nonempty com-
pact set X such that

1. K(x) ⊆ X, x ∈ X,

2. F is continuous on X,

3. K is a nonempty, continuous, closed and convex valued mapping on X.

Then there exists at least one solution to the QV I(F,K(x)) in (5.31).

For our problem this is satisfied by the definitions of F and K. F consists
of continuous, linear expressions since our objective functions are quadratic (see
Equations (5.8) and (5.14)-(5.16)). The mapping in our model is defined by
Equations (5.13), (5.23) and (5.25)-(5.26). Since all these equations are linear,
the conditions in Theorem 5.4.1 are satisfied. We then know that our Generalized
Nash Game has at least one solution.
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Common constraints
We define common constraints as constraints where decision variables for more
than one player appear. In our model, all the common constraints are continuous,
linear functions (see Equations (5.33)-(5.36)) and satisfy the necessary constraint
qualifications (LICQ). We can therefore apply Theorems 4-6 from Harker (1991)
directly. These theorems state that if F is a continuous function in the VI (F,X)
then the VI solutions are the only points in the solution set of the QVI (F,K(x))
at which the optimal dual variables λ∗ ∈ Rpβ for the common constraints are such
that λ∗0 = λ∗j , j ∈ L. The theorems also state that any strictly interior solution
(for the common constraints) of the QVI (F,K(x)) is a solution to the VI (F,X)
as described in (5.32). In general there will be several GNE in the game, but
only the VI solutions will have a common positive value of an additional unit
of a common resource (if the resource is depleted), or a zero value of a common
resource for all players (if not used in full). Further, if F is strictly monotone
there is a unique solution to the VI over X, Facchinei & Pang (2003), Theorem
2.3.3. This means that if an interior x∗ is known, the only other GNE may be
found at the boundary of the common constraints, and they will not have equal
λ’s for the common constraints.
We have focused on the VI solution in this article. A discussion of the common

constraints and the implication of requiring equal shadow prices are given in the
next sections. In our model we have the following common constraints (dual
variables belonging to each constraint are given to the right):

zgms +
∑
l∈L

hlgms ≥ 0 τgms, (5.33)

∑
j∈O(g)

fgjs =
∑
m∈M

(
zgms +

∑
l∈L

blgm

)
, ugs, (5.34)

∑
n∈I(m)

fnms =
∑
g∈G

(
zgms +

∑
l∈L

blgm

)
, ums, (5.35)

pm − cg ·

( ∑
m′∈M′

(
zgm′s +

∑
l∈L

hlgm′s

))
≥ 0, χgms. (5.36)

Constraint (5.33) gives the balance between capacity sold by the system oper-
ator and capacity traded by the large producers. If this constraint is not binding,
the large producers buy less capacity than the ISO sells. If the constraint is
binding, the large producers are buying all capacity sold by the ISO. For the
producers, the shadow price τgms then gives the value of an additional unit of
capacity bought. For the ISO, the shadow price gives the value of selling one
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additional unit of capacity and thus increasing the flow in the network with one
unit. Constraints (5.34) and (5.35) specify that the booked capacity in the net-
work must be equal to the actual flow in the pipelines. Constraint (5.34) gives
the balance for each field node, and constraint (5.35) gives the balance for each
market node. For the producers, the shadow price ugs gives the value of booking
one additional unit of capacity out of field g in the primary market. For the ISO,
the shadow price gives the value of increasing the difference between the flow
out of field g and the capacity sold, zgms. Since the flow variable is part of the
objective function for the ISO, the shadow price gives the value for the ISO of
increasing the flow out of the field. The same argument is valid for the shadow
price ums. Constraint (5.36) ensures that the price in the secondary market is
positive. The price depends on the volumes sold by the ISO and the large pro-
ducers. For both the producers and the ISO, the shadow price χgms gives the
value of selling one additional unit of transportation capacity.
For the MVF and MSS formulation, we advocate that the VI solution to the

GNE game is the important one. In this case the ISO will have made routing
decisions which make sure that all players’ marginal value of an additional trans-
portation unit is equal. In the system we have described, the tariff is fixed and
may not be changed in order to give specific incentives to the players. Hence it is
clear that the ISO has a lot of influence through the routing decisions, and such a
fair routing policy is preferable. For the MF formulation however, the VI solution
depends on the conversion of 1 Sm3 to NOK, since we relate objective functions
that are not commensurable with respect to the units. Since the marginal values
are given in different units, it may not make sense to require equality in the equi-
librium solution. The equilibrium solution will change if we change the currency
(from NOK to for instance Dollars or Euros).
We have not been able to prove that the F function is strictly monotone,

and the equilibriums we present in the numerical examples may therefore not be
unique.

5.5 Numerical examples
We consider the network illustrated in Figure 5.4. There are two large producers,
each present in both g1 and g2. In addition, there is a competitive fringe in g1

and g2.
In the following sections, we use our model to analyze several cases. We start

with a deterministic setting in which we look at the different ISO objective func-
tion alternatives and the difference between the WF formulation and the ISF
formulation. We then introduce stochasticity to our model to see how it influ-
ences the efficiency in the network.
Our model is designed for a situation where both a primary market and a
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Figure 5.4: The network used in the numerical examples.

secondary market is used to allocate capacity in the network. The ISO influences
the efficiency of the network through routing decisions and capacity distribution
in the secondary market, while the large producers influence the efficiency by
booking in the primary market and trading in the secondary market. In the
North-Sea today, the booking in the primary market is limited by predefined
booking limits and in case of overbooking a capacity allocation key is used to
distribute the scarce capacity. In our model we resemble this capacity allocation
key by requiring equal marginal value for all players in our common constraints.
Because of this allocation rule, we can use unlimited booking rights in the primary
market. In reality, the total booking rights in the North-Sea is twice the real
capacity.

In each case we solve the stochastic MPC by formulating the equilibrium con-
ditions for the problem. The equilibrium conditions consist of the aggregated
KKT-conditions for all players (see Appendix 5.A). In order to find an equi-
librium, we enter the KKT-conditions to the complementarity problem solver
PATH (Dirkse & Ferris 1995). As we discussed in Section 5.4, we focus on the
VI solution to the problem. All prices and costs are given in 1

100NOK . Since
we have inelastic demand functions in the market nodes, the social surplus will
be identical with the producer surplus in our network (which is an interesting
setting from a Norwegian perspective).
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Node/pipeline R R Kij Cij
g1 180 170
g2 185 170
j1 170 130
m1 130 115
m2 130 100
g1-j1 0.5 38.39
g2-j1 0.6 52.71
j1-m1 0.4 46.11
j1-m2 0.35 44.99

Table 5.1: The design parameters for the network

Case 1: The different ISO objective function alternatives (WF
formulation)

We start by illustrating the difference in the objective function alternatives we
have presented for the ISO. The parameters in the cost functions for the large
producers (see Equation (5.18)) are given as clg: c11 = 5

2 , c12 = 6, c21 = 3, c22 = 5,
and for the competitive fringe in field g (see Equation (5.3)): c1 = 10, c2 = 12.
The network parameters are given in Table 5.1. The prices in the two markets
are given as: pm1 = 130 and pm2 = 160. The tariff in the primary market is 10
for each field market combination.
When we solve the benchmark model (see Section 5.3), we get a total surplus for

all the players of 7220.43. This corresponds to the maximal achievable surplus in
the network. The results from the optimization with the three different objective
functions for the ISO is given in Table 5.2.
As we can see from the results, the model version where the ISO maximizes

social surplus (MSS) gives the highest total surplus in the network. The total
surplus is only 0.8% lower than the benchmark solution. The total social surplus
obtained in the MVF and MF models are, respectively, 9.41% and 1.59% smaller
than the benchmark solution. We also see that the value of flow is largest in
the MVF formulation, while the social surplus has decreased. The reason for the
decrease in social surplus is that the production costs have increased more than
the income from the spot market. The reason is that the VI solution requires
equal marginal values for all players in the common constraints. Since the ISO
only considers the income from the flow in the network (and not the production
costs), the ISO has a large marginal value of flow and therefore forces inefficient
production decisions from the producers.
The equilibrium for the MF model is, as discussed in Section 5.4, difficult to
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Max social Max value Max flow
surplus (MVF) (MF)
(MSS)

Competitive fringe g1 (NOK ) 258.49 194.79 222.22
Competitive fringe g2 (NOK ) 704.17 704.17 704.17
Producer 1 (NOK ) 3085.89 2595.33 3129.77
Producer 2 (NOK ) 2435.35 2282.92 2410.73
ISO profit (NOK ) 678.15 763.51 638.5
Social surplus (NOK ) 7162.05 6540.72 7105.39
Flow (Sm3) 80.32 88.85 76.35
Value of flow (NOK ) 11668.39 12870.88 11207.20

Table 5.2: Results from the different ISO objective functions. WF formulation.

interpret since the units are different in the objective functions for the ISO and
the large producers. If we change the currency (corresponds to changing the
weighting of the flow for the ISO), the equilibrium also changes. By using a
currency of 1

100NOK we put the emphasis on the large producers, and since the
social surplus corresponds to producer surplus in our models, we get a solution
close to the benchmark. In Table 5.3 we see the results from changing the currency
from 1

100NOK to EUR (this is done by changing the weighting of the flow for the
ISO, so the units are comparable with the results in Table 5.2). While the flow
in the MF formulation was the lowest among the three alternatives in Table 5.2,
it has increased to the maximum possible flow in the network in Table 5.3.
In the MSS and the MVF formulation, the change of currency will not affect

the solutions, and in the remaining examples we will therefore focus on the MSS
and the MVF formulations.

Case 2: ISF versus WF formulation

In this example we look at the difference between using the WF formulation
and the ISF formulation (see Section 5.3 for a discussion of how the ISF capac-
ities are determined). We use the same parameters as in the previous example
(Section 5.5). Every flow pattern obtained with the ISF formulation is feasible
within the WF formulation. In the ISF formulation the capacity in the network
is therefore more restricted than in the WF formulation (the reason for including
the ISF formulation is that it is a common approach for economic analysis in gas
networks).
The results from this optimization is shown in Table 5.4. We see the same

pattern in these results as we saw for the WF formulation: the MSS formulation
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Max flow
(MF)

Competitive fringe g1 (NOK ) 174.18
Competitive fringe g2 (NOK ) 704.17
Producer 1 (NOK ) 2328.40
Producer 2 (NOK ) 2097.78
ISO profit (NOK ) 785.86
Social surplus (NOK ) 6090.39
Flow (Sm3) 91.09
Value of flow (NOK ) 13191.20

Table 5.3: Results from the MF formulation with a larger weight on the ISO
objective function.

gives the highest social surplus in the network. Compared with the WF formula-
tion, the total surplus is reduced with 2.58% for the MSS formulation and 6.85%
for the MVF formulation.
The importance of using the WF formulation depends on the network structure,

the uncertainty in prices and the volume uncertainty in the TOP-contracts. Large
fluctuations (as is common in natural gas prices) give more value to flexibility
and therefore the WF formulation will improve the efficiency in the network. The
correlation between prices is also important. High correlation may result in less
difference between the ISF and the WF formulation (since the flexibility in the
network is less important in this case).

Max social Max value
surplus

Competitive fringe g1 (NOK ) 174.42 174.42
Competitive fringe g2 (NOK ) 707.18 707.18
Producer 1 (NOK ) 2599.82 2329.55
Producer 2 (NOK ) 2904.06 2098.80
ISO profit (NOK ) 591.71 782.96
Social surplus (NOK ) 6977.19 6092.91
Flow (Sm3) 71.97 91.10
Value of flow (NOK ) 10705.93 13192.28

Table 5.4: Results from the different ISO objective functions. ISF formulation.
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Node/pipeline R R Kij

g1 190 170
g2 185 170
j1 170 130
m1 130 100
m2 130 90
g1-j1 0.5
g2-j1 0.6
j1-m1 0.4
j1-m2 0.35

Table 5.5: The design parameters for the network

Case 3: The effect of stochasticity

In this example we look at the effect of stochasticity in our model. We use the
network parameters in Table 5.5, and the following cost parameters for the large
producers clg: c11 = 3, c12 = 4, c21 = 4, c22 = 7

2 , and for the competitive fringe
in field g: c1 = 9, c2 = 9. The tariffs in the primary market are put at 10 for all
field-market combinations.
The effects of stochasticity are largest when the price is volatile, and the cor-

relation between the market prices is low, or negative. If volatility is low, or
correlation is very high, the optimal booking in the first stage varies less be-
tween the scenarios. When the optimal booking in the first stage is similar in all
scenarios, the effect of stochasticity is reduced.
We have chosen to use negative correlation and uniformly distributed prices

between 75 and 225. Table 5.6 shows the results from the optimization. The
benchmark solution in this case is 9008.59. We see that the total expected social
surplus in the network has been reduced with 3.68% and 5.92% for the MSS and
MV formulation, respectively, compared to the benchmark solution. The reason
for these results is the capacity allocation we have chosen (focus on the VI solu-
tion), and the fact that all booked capacity must be used. In a stochastic setting,
the capacity allocation in the primary market is done such that the marginal unit
goes to the player that has the largest expected marginal value. When prices are
very volatile, this means that the large producers in some scenarios have more
capacity than they ideally would have wanted to have.
We have also looked at the wait-and-see solution (Madansky 1960) and ex-

pected result of using the expected value solution (Birge & Loveaux 1997). In
the wait-and-see solution (WSS), the 15 scenarios are solved independently and
we then find the expected value over the 15 scenarios. That is, we assume that
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Booking limit = +∞ Wait-and-see solution
Max social Max value Max social Max value
surplus surplus

Competitive fringe g1 441.91 420.63 453.98 581.19
Competitive fringe g2 621.50 637.82 726.52 786.71
Producer 1 (NOK ) 3180.73 3275.30 3666.62 3462.53
Producer 2 (NOK ) 2927.52 2985.92 3303.10 3124.28
ISO profit (NOK ) 1505.52 1155.55 758.84 765.28
Social surplus (NOK ) 8677.18 8475.30 8909.06 8719.99
Flow (Sm3) 94.43 99.84 84.93 96.89
Value of flow (NOK ) 14522.37 15040.02 13660.29 14830.25

Table 5.6: Results from the model with stochasticity. Columns 2-3 shows the
result with unlimited booking for each producer, and each field-market
combination, and columns 4-5 shows the wait-and-see solution with
unlimited booking.

the large producers somehow get perfect information of the future before they
make their decisions in the first stage. The difference between the WSS solution
and the solution from the stochastic model is the expected value of perfect in-
formation (EVPI). EVPI tells us how much each player would have been willing
to pay for knowing the outcome in the second stage. The results from this test
(columns 4-5 in Table 5.6) shows that the total surplus in the network has in-
creased drastically in the WSS solution. The total expected social surplus is now
only 1.1% lower than the benchmark solution for the MSS formulation, and 3.2%
for the MVF formulation.
In order to find the the expected result of using the expected value solution

(EEV), we first solve a deterministic problem where the stochastic variables are
represented with their expected values (EVP). We then use the booking decisions
from the EVP in the stochastic problem. The results from the EEV formulation is
shown in Table 5.7. For the MSS formulation, we see that the stochastic solution
is 1.77% higher than the EEV solution. The differences are small for the MVF
formulation.

The situation without a primary market

We have also tested the model without a primary market (booking limits equal
to zero), and found that the pricing mechanism in the secondary market was
inefficient in this case. Since the price of capacity is based only on one producer’s
marginal cost (the competitive fringe), we found equilibria with a large distance
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Max social Max value
surplus

Competitive fringe g1 (NOK ) 420.73 420.63
Competitive fringe g2 (NOK ) 613.84 696.77
Producer 1 (NOK ) 3262.36 3216.85
Producer 2 (NOK ) 2994.11 2892.63
ISO profit (NOK ) 1235.14 1236.56
Social surplus (NOK ) 8526.18 8463.44
Flow (Sm3) 95.84 99.84
Value of flow (NOK ) 14587.55 15040.02

Table 5.7: Results form the EEV formulation.

to the benchmark solution. For each of the large producers, a decision to increase
production will lead to an increase in production cost in addition to an increase
in price of transportation capacity (when hlgms is increased, the price of capac-
ity increase). It may therefore be beneficial for the large producer to decrease
the production even if the marginal production cost is lower than the marginal
revenue.
In order to represent a situation without a primary market, a different market

clearing mechanism in the secondary market is needed. As illustrated in the
numerical examples in this section, the market clearing mechanism we have chosen
works well in the presence of a primary market. The design and tests of new
clearing mechanisms is an interesting topic for future research.

5.6 Conclusions

We have presented a stochastic MCP model based on Generalized Nash Equilib-
rium for analyzing a capacity distribution system with two stages: a primary
market where only privileged players can participate and an open secondary
market. This system is based on the existing capacity distribution system in
the North-Sea. We have compared the results from our model with a benchmark
model where a central planner with full information maximizes social surplus in
the network. We have shown that there exists at least one equilibrium solution
(the VI solution) to our models.
We found that the MSS formulation for the ISO lead to a higher total social

surplus in the network than the alternatives. In the deterministic setting we found
a difference of 0.8% between the benchmark solution and the MSS solution. The
formulation requires that the system operator has full information regarding the
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cost structure of the producers in the fields.
An alternative that we have considered in this paper is to maximize value of

flow to the market nodes. In this case we only need to assume that the ISO
knows the market prices of natural gas. In the deterministic case, the distance to
the benchmark solution was 9.41% for the MVF formulation. The social surplus
for the MVF formulation was 8.6% lower than the social surplus in the MSS
formulation for the deterministic case, and 2.3% lower in the stochastic case. The
results from the WF formulation were highly dependent on the chosen weighting
in the objective functions.
Secondly, we found that stochasticity is important for our results. The book-

ing rights lead to suboptimal solutions in some of the scenarios when prices are
uncertain. The WSS solution indicated a high value of perfect information (so-
cial surplus increased with 2.67% for the MSS formulation). The EEV solution
illustrated that there was a value of solving the stochastic problem (social surplus
increased with 1.77% for the MSS formulation).
Finally we found that modelling the pressure constraints in the network is

important. In this article we have set the fixed capacities such that the total
throughput of the system is maximized. We still found that the flexibility in the
WF formulation was valuable. In our example, we found that the WF formulation
gave an increase of 2.65 % for the MSS formulation.
Given that the value of the flow in the pipelines in the North-Sea in 2006 was

approximately 130 billion NOK, the relatively low percentage differences we have
shown in this paper still amounts to a substantial amount of money.
Possible future extensions of the model are other market clearing mechanisms

in the secondary market, inclusion of elastic demand functions in the spot markets
for natural gas, the possibility for the large producers to hold back capacity in
the secondary market and strategic behavior in the primary market.
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Appendix

5.A The equilibrium conditions

In this section we give the equilibrium conditions for our model. Shadow prices
for constraints are introduced directly in the Lagrangian function. The matching
of shadow prices with constraints can also be seen from the KKT-conditions. We
distinguish two types of shadow prices: those that are unrestricted in sign (URS)
and those that are restricted in sign. For the shadow prices that are restricted in
sign, we use the following notation for the complementarity condition with the
belonging constraint: G(x) − a ≤ 0 ⊥ $ ≥ 0. The complementarity condition
states that either G(x)− a or $ must be equal to zero.

The large producers

The KKT-conditions for producer l is found through the Lagrangian function:
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5.A The equilibrium conditions

Ll =−
∑
g∈G

∑
m∈M

Tgmblgm + γlgm (Blgm − blgm)

+
∑
s∈S

φs

[ ∑
m∈M

(pmsqlms + Plmvlms)

]

+
∑
s∈S

φs

∑
g∈G

∑
m∈M

hlgms

(
pms − cg

( ∑
m′∈M

(
zgm′s +

∑
l′∈L

hl′gm′s

)))
−
∑
s∈S

φs

∑
g∈G

Clg(dlgs)


+
∑
s∈S

φs

[
µ1lgs

( ∑
m∈M

(blgm − hlgms)− dlgs

)]

+
∑
s∈S

φs

µ2lms

∑
g∈G

(blgm − hlgms)− qlms − vlms


+
∑
s∈S

φs [αlgms (blgm − hlgms)]

+
∑
s∈S

φs

[
τgms

(
zgms +

∑
l∈L

hlgms

)]

+
∑
s∈S

φs

ugs
 ∑
m∈M

(∑
l∈L

blgm + zgms

)
−
∑

j∈O(g)

fgjs


+
∑
s∈S

φs

ums
∑
g∈G

(∑
l∈L

blgm + zgms

)
−

∑
j∈I(m)

fjms


+
∑
s∈S

φs

[
χgms

(
pm − cg

( ∑
m′∈M

(
zgm′s +

∑
l∈L

hlgm′s

)))]
.

Finding the derivative of the Lagrangian function with respect to the decision
variables we get the KKT-conditions for optimality:
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∂Ll
∂blgm

= −Tgm − γlgm

+
∑
s∈S

φs (µ1lgs + µ2lms + αlgms + ugs + ums) ≤ 0 ⊥ blgm ≥ 0, (5.37)

∂Ll
∂γlgm

= Blgm − blgm ≥ 0 ⊥ γlgm ≥ 0, (5.38)

∂Ll
∂qlms

= pms − µ2lms ≤ 0 ⊥ qlms ≥ 0, (5.39)

∂Ll
∂dlgs

= − ∂Clg
∂dlgs

− µ1lgs ≤ 0 ⊥ dlgs ≥ 0, (5.40)

∂Ll
∂hlgms

= pms − cg
∑
m′∈M

zgm′s − cg
∑
l′∈L

∑
m′∈M

hl′gm′s − cg
∑
m′∈M

hlgm′s

− cg
∑

m′∈M′
χgm′s − µ1lgs − µ2lms − αlgms + τgms = 0, hlgms URS , (5.41)

∂Ll
∂µ1lgs

=
∑
m∈M

(blgm − hlgms)− dlgs = 0, µ1lgs URS , (5.42)

∂Ll
∂µ2lms

=
∑
g∈G

(blgm − hlgms)− qlms − vlms = 0, µ2lms URS , (5.43)

∂Ll
∂αlgms

= blgm − hlgms ≥ 0, ⊥ αlgms ≥ 0, (5.44)

∂Ll
∂τgms

= zgms +
∑
l∈L

hlgms ≥ 0, ⊥ τgms ≥ 0, (5.45)

∂L

∂ugs
=
∑
m∈M

(∑
l∈L

blgm + zgms

)
−
∑

j∈O(g)

fgjs = 0, ugs URS , (5.46)

∂L

∂ums
=
∑
g∈G

(∑
l∈L

blgm + zgms

)
−

∑
j∈I(m)

fjms = 0, ums URS , (5.47)

∂L

∂χgms
= pm − cg

( ∑
m′∈M

(
zgm′s +

∑
l∈L

hlgm′s

))
≥ 0, ⊥ χgms ≥ 0. (5.48)

The network operator
For the network operator, we present the KKT-conditions for the three different
objective function alternatives. First the maximize flow objective.
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5.A The equilibrium conditions

Maximize flow The Lagrangian function for the system operator can be formu-
lated as 1:

Ls =
∑
s∈S

φs

 ∑
m∈M

∑
i∈I(m)

fims + ηnils
(
K1
nilrns −K2

nilris − fnis
)

+
∑
s∈S

φs

ugs
 ∑
m∈M

(∑
l∈L

blgm + zgms

)
−
∑

j∈O(g)

fgjs


+
∑
s∈S

φs

[
χgms

(
pm − cg

( ∑
m′∈M

(
zgm′s +

∑
l∈L

hlgm′s

)))]

+
∑
s∈S

φs

ujs
 ∑
m∈O(j)

fjms −
∑
g∈I(j)

fgjs


+
∑
s∈S

φs

ums
∑
g∈G

(∑
l∈L

blgm + zgms

)
−

∑
j∈I(m)

fjms


+
∑
s∈S

φs
[
ω1ns

(
Rn − rns

)
+ ω2ns (rns −Rn)

]
+
∑
s∈S

φs

[
τgms

(
zgms +

∑
l∈L

hlgms

)]
.

KKT-conditions The KKT-conditions:

1We have simplified the Weymouth equation such that K1
nil and K2

nil represents the constants
in the expression
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∂L

∂fgjs
= −ηgjs − ugs − ujs ≤ 0 ⊥ fgjs ≥ 0, (5.49)

∂L

∂fjms
= 1− ηjms + ujs − ums ≤ 0 ⊥ fjms ≥ 0, (5.50)

∂L

∂zgms
= −cg

∑
m′inM′

χgm′s + ugs + ums + τgms ≤ 0 ⊥ zgms ≥ 0, (5.51)

∂L

∂rgs
=

∑
j∈O(g)

(∑
l∈L

ηgjlsrgsK
1
gjl

)
− ω1gs + ω2gs ≤ 0 ⊥ rgs ≥ 0, (5.52)

∂L

∂rms
=

∑
j∈I(m)

(
−
∑
l∈L

ηjmlsrmsK
2
jml

)
− ω1ms + ω2ms ≤ 0 ⊥ rms ≥ 0, (5.53)

∂L

∂rjs
=
∑
g∈I(j)

(
−
∑
l∈L

ηgjlsrjsK
1
gjl

)

+
∑

m∈O(j)

(∑
l∈L

ηjmlsrjsK
2
jml

)
− ω1js + ω2js ≤ 0 ⊥ rjs ≥ 0, (5.54)

∂L

∂ugs
=
∑
m∈M

(∑
l∈L

blgm + zgms

)
−
∑

j∈O(g)

fgjs = 0, ugs URS , (5.55)

∂L

∂ujs
=

∑
m∈O(j)

fjms −
∑
g∈I(j)

fgjs = 0, ujs URS , (5.56)

∂L

∂ums
=
∑
g∈G

(∑
l∈L

blgm + zgms

)
−

∑
j∈I(m)

fjms = 0, ums URS , (5.57)

∂L

∂χgms
= pm − cg

( ∑
m′∈M

(
zgm′s +

∑
l∈L

hlgm′s

))
≥ 0, ⊥ χgms ≥ 0 (5.58)

∂L

∂ω1ns
= Rn − rns ≥ 0 ⊥ ω1ns ≥ 0, (5.59)

∂L

∂ω2ns
= rns −Rn ≥ 0 ⊥ ω2ns ≥ 0, (5.60)

∂L

∂ηnis
= Kni

√
r2
ns − r2

is − fnis ≥ 0 ηnis ≥ 0, (5.61)

∂Ll
∂τgms

= zgms +
∑
l∈L

hlgms ≥ 0, ⊥τgms ≥ 0. (5.62)
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5.A The equilibrium conditions

Maximize value The Lagrangian function for the system operator can be for-
mulated as:

L =
∑
s∈S

φs

 ∑
m∈M

∑
i∈I(m)

pms

(
fims −

∑
l∈L

vlms

)
+ ηnils

(
K1
nilrns −K2

nilris − fnis
)

+
∑
s∈S

φs

ugs
 ∑
m∈M

(∑
l∈L

blgm + zgms

)
−
∑

j∈O(g)

fgjs


+
∑
s∈S

φs

[
χgms

(
pm − cg

( ∑
m′∈M

(
zgm′s +

∑
l∈L

hlgm′s

)))]

+
∑
s∈S

φs

ujs
 ∑
m∈O(j)

fjms −
∑
g∈I(j)

fgjs


+
∑
s∈S

φs

ums
∑
g∈G

(∑
l∈L

blgm + zgms

)
−

∑
j∈I(m)

fjms


+
∑
s∈S

φs
[
ω1ns

(
Rn − rns

)
+ ω2ns (rns −Rn)

]
+
∑
s∈S

φs

[
τgms

(
zgms +

∑
l∈L

hlgms

)]
.

KKT-conditions The KKT-conditions:
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∂L

∂fgjs
= −ηgjs − ugs − ujs ≤ 0 ⊥ fgjs ≥ 0, (5.63)

∂L

∂fjms
= pms − ηjms + ujs − ums ≤ 0 ⊥ fjms ≥ 0, (5.64)

∂L

∂zgms
= −cg

∑
m′∈M′

χgms + ugs + ums + τgms ≤ 0 ⊥ zgms ≥ 0, (5.65)

∂L

∂rgs
=

∑
j∈O(g)

(∑
l∈L

ηgjlsrgsK
1
gjl

)
− ω1gs + ω2gs ≤ 0 ⊥ rgs ≥ 0, (5.66)

∂L

∂rms
=

∑
j∈I(m)

(
−
∑
l∈L

ηjmlsrmsK
2
jml

)
− ω1ms + ω2ms ≤ 0 ⊥ rms ≥ 0,

(5.67)

∂L

∂rjs
=
∑
g∈I(j)

(
−
∑
l∈L

ηgjlsrjsK
1
gjl

)

+
∑

m∈O(j)

(∑
l∈L

ηjmlsrjsK
2
jml

)
− ω1js + ω2js ≤ 0, ⊥ rjs ≥ 0, (5.68)

∂L

∂ugs
=
∑
m∈M

(∑
l∈L

blgm + zgms

)
−
∑

j∈O(g)

fgjs = 0 ugs URS , (5.69)

∂L

∂ujs
=

∑
m∈O(j)

fjms −
∑
g∈I(j)

fgjs = 0, ujs URS , (5.70)

∂L

∂ums
=
∑
g∈G

(∑
l∈L

blgm + zgms

)
−

∑
j∈I(m)

fjms = 0 ums URS , (5.71)

∂L

∂χgms
= pm − cg

( ∑
m′∈M

(
zgm′s +

∑
l∈L

hlgm′s

))
≥ 0, ⊥ χgms ≥ 0 (5.72)

∂L

∂ω1ns
= Rn − rns ≥ 0 ⊥ ω1ns ≥ 0, (5.73)

∂L

∂ω2ns
= rns −Rn ≥ 0 ⊥ ω2ns ≥ 0, (5.74)

∂L

∂ηnis
= Kni

√
r2
ns − r2

is − fnis ≥ 0 ηnis ≥ 0, (5.75)

∂Ll
∂τgms

= zgms +
∑
l∈L

hlgms ≥ 0, ⊥τgms ≥ 0. (5.76)
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5.A The equilibrium conditions

Maximize social surplus The Lagrangian function for the system operator can
be formulated as:

L =
∑
s∈S

φs

 ∑
m∈M

∑
i∈I(m)

pms

(
fims −

∑
l∈L

vlms

)
+
∑
m∈M

∑
l∈L

Plmvlms


−
∑
s∈S

φs

∑
g∈G

1
2
MC g

 ∑
j∈O(g)

fgjs

2


+
∑
s∈S

φs
[
ηnils

(
K1
nilrns −K2

nilris − fnis
)]

+
∑
s∈S

φs

ugs
 ∑
m∈M

(∑
l∈L

blgm + zgms

)
−
∑
j∈O

(g)fgjs


+
∑
s∈S

φs

[
χgms

(
pm − cg

( ∑
m′∈M

(
zgm′s +

∑
l∈L

hlgm′s

)))]

+
∑
s∈S

φs

ujs
 ∑
m∈O(j)

fjms −
∑
g∈I(j)

fgjs


+
∑
s∈S

φs

ums
∑
g∈G

(∑
l∈L

blgm + zgms

)
−

∑
j∈I(m)

fjms


+
∑
s∈S

φs
[
ω1ns

(
Rn − rns

)
+ ω2ns (rns −Rn)

]
+
∑
s∈S

φs

[
τgms

(
zgms +

∑
l∈L

hlgms

)]
.
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∂L

∂fgjs
= −MC g

∑
j′∈O(g)

fgjs + ηgjs − ugs − ujs ≤ 0 ⊥ fgjs ≥ 0, (5.77)

∂L

∂fjms
= pms − ηjms + ujs − ums + τgms ≤ 0 ⊥ fjms ≥ 0, (5.78)

∂L

∂zgms
= −cg

∑
m′∈M′

χgms + ugs + ums ≤ 0 ⊥ zgms ≥ 0, (5.79)

∂L

∂rgs
=

∑
j∈O(g)

(∑
l∈L

ηgjlsrgsK
1
gjl

)
− ω1gs + ω2gs ≤ 0 ⊥ rgs ≥ 0, (5.80)

∂L

∂rms
=

∑
j∈I(m)

(
−
∑
l∈L

ηjmlsrmsK
2
jml

)
− ω1ms + ω2ms ≤ 0 ⊥ rms ≥ 0, (5.81)

∂L

∂rjs
=
∑
g∈I(j)

(
−
∑
l∈L

ηgjlsrjsK
1
gjl

)

+
∑

m∈O(j)

(∑
l∈L

ηjmlsrjsK
2
jml

)
− ω1js + ω2js ≤ 0, ⊥ rjs ≥ 0, (5.82)

∂L

∂ugs
=
∑
m∈M

(∑
l∈L

blgm + zgms

)
−
∑

j∈O(g)

fgjs = 0 ugs URS , (5.83)

∂L

∂ujs
=

∑
m∈O(j)

fjms −
∑
g∈I(j)

fgjs = 0, ujs URS , (5.84)

∂L

∂ums
=
∑
g∈G

(∑
l∈L

blgm + zgms

)
−

∑
j∈I(m)

fjms = 0 ums URS , (5.85)

∂L

∂χgms
= pm − cg

( ∑
m′∈M

(
zgm′s +

∑
l∈L

hlgm′s

))
≥ 0, ⊥ χgms ≥ 0 (5.86)

∂L

∂ω1ns
= Rn − rns ≥ 0 ⊥ ω1ns ≥ 0, (5.87)

∂L

∂ω2ns
= rns −Rn ≥ 0 ⊥ ω2ns ≥ 0, (5.88)

∂L

∂ηnis
= Kni

√
r2
ns − r2

is − fnis ≥ 0 ηnis ≥ 0, (5.89)

∂Ll
∂τgms

= zgms +
∑
l∈L

hlgms ≥ 0, ⊥τgms ≥ 0. (5.90)

182



Bibliography

Arrow, K. J. & Debreu, G. (1954), ‘Existence of an equilibrium for a competitive
economy’, Econometrica 22, 265–291.

Austvik, O. G. (2003), Norwegian Natural Gas. Liberalization of the European
Gas Market, Europa-programmet, Oslo, Norway.

Bensoussan, A. (1974), ‘Points de nash dans le cas de fonctionnelles quadratiques
et jeux diffdrentiels lindaires a N personnes’, SIAM Journal on Control and
Optimization 12.

Birge, J. R. & Loveaux, F. V. (1997), Introduction to Stochastic Programming,
Springer.

Chan, D. & Pang, J. (1982), ‘The generalized quasi-variational inequality prob-
lem’, Mathematics of Operations Research 7, 211–222.

Debreu, G. (1952), A social equilibrium existence theorem, in ‘Proceedings of the
National Academy of Sciences’.

Dirkse, S. P. & Ferris, M. C. (1995), ‘The PATH solver: A non-monotone stabi-
lization scheme for mixed complementarity problems’, Optimization Methods
and Software 5, 123–156.

European Union (1998), ‘Directive 98/30/EC of the european parliament and of
the council’.

European Union (2003), ‘Directive 2003/55/EC of the european parliament and
of the council’.

Facchinei, F. & Pang, J. (2003), Finite-Dimensional Variational Inequalities and
Complementarity Problems: Volume I, Springer series of operations research,
New York.

Ferris, M. C. & Pang, J. S. (1997), ‘Engineering and economic applications of
complementarity problems’, SIREV 39, 669–713.

Gabriel, S. A., Zhuang, J. & Kiet, S. (2005), ‘A large-scale complementarity
model of the North American natural gas market’, Energy Economics 27, 639–
665.

183



Bibliography

Gabriel, S., Kiet, S. & Zhuang, J. (2005), ‘A mixed complementarity-based equi-
librium model of natural gas markets’, Operations Research 53(5), 799–818.

Harker, P. T. (1991), ‘Generalized nash games and quasivariational inequalities’,
European Journal of Operational Research 54, 81–94.

Harker, P. T. & Pang, J. S. (1990), ‘Finite-dimensional variational inequality
and nonlinear complementarity problems: a survey of theory, algorithms and
applications’, Mathematical Programming 48, 161–220.

Hobbs, B. F. (2001), ‘Linear complementarity models of nash cournot competition
in bilateral and poolco power markets’, IEEE Transaction on Power Systems
16(2).

Hu, X., Ralph, D., Ralph, E. K., Bardsley, P. & Ferris, M. C. (2004), Elec-
tricity generation with looped transmission networks: Bidding to an iso,
Technical report, CMI EP Working Paper No. 65. Available at SSRN:
http://ssrn.com/abstract=556809.

Jing-Yuan, W. & Smeers, Y. (1999), ‘Spatial oligopolistic electricity models with
cournot generators and regulated transmission prices’, Operations Research
47(1), 102–112.

Kall, P. & Wallace, S. W. (1994), Stochastic Programming, John Wiley & Sons,
Chichester.

lchiishi, T. (1983), Game Theory for Economic Analysis, Academic Press, New
York.

Lemke, C. E. & Howson, J. T. J. (1964), ‘Equilibrium points of bimatrix games’,
Journal of the Society for Industrial and Applied Mathematics 12, 413–423.

Lions, J. & Stampacchia, G. (1967), ‘Variational inequalities’, Communications
on Pure and Applied Mathematics 20, 493–519.

Luo, Z.-Q., Pang, J.-S. & Ralph, D. (1996), Mathematical programs with equilib-
rium constraints, Cambridge University Press.

Madansky, A. (1960), ‘Inequalities for stochastic linear programming problems’,
Management Science 6, 197–204.

Menon, S. E. (2005), Gas pipeline hydraulics, CRC Press, Boca Raton, USA.

Midthun, K. T., Bjørndal, M. & Tomasgard, A. (2006), Modeling optimal eco-
nomic dispatch and flow externalities in natural gas networks. Working paper,
NTNU, Trondheim, Norway. Submitted to international journal.

184



Bibliography

Nash, J. (1950), Equilibrium points in n-person games, in ‘Proceedings of the
national academy of sciences’.

Pang, J. S. & Fukushima, M. (2005), ‘Quasi-variational inequalities, generalized
nash equilibria, and multi-leader-follower games’, Computational management
science 2.

Patriksson, M. & Wynter, L. (1999), ‘Stochastic mathematical programs with
equilibrium constraints’, Operations Research Letters 25, 159–167.

Rosen, B. (1965), ‘Existence and uniqueness of equilibrium points for concave
n-person games’, Econometrica 33, 520–534.

Smeers, Y. (2003a), ‘Market incompleteness in regional electricity transmission.
Part I: The forward market’, Networks and Spatial Economics 3, 151–174.

Smeers, Y. (2003b), ‘Market incompleteness in regional electricity transmission.
Part II: The forward and real time markets’, Networks and Spatial Economics
3, 175–196.

Tomasgard, A., Rømo, F., Fodstad, M. & Midthun, K. (2007), Optimization
models for the natural gas value chain, in G. Hasle, K.-A. Lie & E. Quak,
eds, ‘Geometric Modelling, Numerical Simulation, and Optimization: Applied
Mathematics at SINTEF’, Springer, chapter Optimization Models for the Nat-
ural Gas Value Chain.

Yao, J. (2006), Cournot Equilibrium in Two-Settlement Electricity Markets: For-
mulation and Computation, PhD thesis, University of California, Berkeley,
USA.

Yao, J., Adler, I. & Oren, S. (2006), Modeling and computing two-settlement
oligopolistic equilibrium in a congested electricity network. Working paper,
UCEI.

Yao, J., Oren, S. S. & Adler, I. (2004), Computing cournot equilibria in two
settlement electricity markets with transmission constraints, in ‘Proceedings
of the 37th Hawaii International Conference on System Sciences’.

185




