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a b s t r a c t 

Nonlinear model predictive control (NMPC) is one of the few control methods that can handle multi- 

variable nonlinear control systems with constraints. Gaussian processes (GPs) present a powerful tool to 

identify the required plant model and quantify the residual uncertainty of the plant-model mismatch. It 

is crucial to consider this uncertainty, since it may lead to worse control performance and constraint vio- 

lations. In this paper we propose a new method to design a GP-based NMPC algorithm for finite horizon 

control problems. The method generates Monte Carlo samples of the GP offline for constraint tightening 

using back-offs. The tightened constraints then guarantee the satisfaction of chance constraints online. 

Advantages of our proposed approach over existing methods include fast online evaluation, considera- 

tion of closed-loop behaviour, and the possibility to alleviate conservativeness by considering both online 

learning and state dependency of the uncertainty. The algorithm is verified on a challenging semi-batch 

bioprocess case study. 

© 2020 The Authors. Published by Elsevier Ltd. 
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. Introduction 

Model predictive control (MPC) describes an advanced control

ethod that has found a wide range of applications in industry.

PC employs an explicit dynamic model of the plant to determine

 finite sequence of control actions to take at each sampling time.

he main advantage of MPC is its ability to deal with multivariate

lants and process constraints explicitly ( Maciejowski, 2002 ). Lin-

ar MPC is relatively mature and well-established in practice, how-

ver many systems display strong nonlinear behaviour motivating

he use of nonlinear MPC (NMPC) ( Allgöwer et al., 2004 ). NMPC

s becoming progressively more popular due to the advancement

f improved non-convex optimization algorithms ( Biegler, 2010 ), in

articular in chemical engineering ( Biegler and Rawlings, 1991 ). 

The performance of MPC is however greatly influenced by the

ccuracy of the plant model, which is one of the main reasons

hy MPC is not more widely used in industry ( Lucia, 2014 ).

he development of an accurate plant model has been cited to
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ake up to 80% of the MPC commissioning effort ( Sun et al.,

013 ). NMPC algorithms exploit various types of models, com-

only developed by first principles or based on process mecha-

isms ( Nagy et al., 2007b ). Many mechanistic and empirical models

re however often too complex to be used online and in addition

ave often high development costs. Alternatively, black-box identi-

cation models can be exploited instead, such as support vector

achines ( Xi et al., 2007 ), fuzzy models ( Kavsek-Biasizzo et al.,

997 ), neural networks (NNs) ( Piche et al., 20 0 0 ), or Gaussian

rocesses (GPs) ( Kocijan et al., 2004 ). For example, recently in

u et al. (2019c,b) recurrent NNs are utilised for an extensive

MPC approach with proofs on closed-loop state boundedness

nd convergence applied to a chemical reactor. In addition, in

u et al. (2019a) the approach was extended updating the recur-

ent NNs online to further improve the effectiveness. 

GPs are an interpolation technique developed by

rige (1951) that were popularized by the machine learning

ommunity ( Rasmussen and Williams, 2006 ). While GPs have

een predominantly used to model static nonlinearities, there are

everal works that apply GPs to model dynamic systems ( Girard

t al., 2003; Kocijan et al., 2005; Bradford et al., 2018b ). GP

redictions are given by a Gaussian distribution. The mean of this

istribution can be viewed as a deterministic prediction, while
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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the variance can be interpreted as a measure of uncertainty for

this deterministic prediction. This uncertainty measure is generally

difficult to obtain by nonlinear parametric models ( Kocijan et al.,

2004 ) and may in part explain the relative popularity of GPs. For

control applications this uncertainty measure can be utilized to ef-

ficiently learn a dynamic model by exploring unknown regions or

avoiding regions with too high uncertainty to improve robustness

( Berkenkamp and Schoellig, 2015 ). So far, GPs have been exploited

in a multitude of ways in the control community, including rein-

forcement learning ( Deisenroth and Rasmussen, 2011 ), designing

robust linear controllers ( Umlauft et al., 2017 ), or adaptive control

( Chowdhary et al., 2015 ). In particular, GPs have been shown to

be an efficient approach to attain approximate plant models for

NMPC. 

The use of GPs for NMPC was first proposed in Murray-

Smith et al. (2003) , which updates a GP model online for ref-

erence tracking without constraints. In Kocijan et al. (2004) ;

Kocijan and Murray-Smith (2005) the GP is instead identified of-

fline and utilized online, in which the variance is constrained to

prevent the NMPC from steering the dynamic system into regions

with high uncertainty. A GP plant model is updated online in

Klenske et al. (2016) and in Maciejowski and Yang (2013) to over-

come unmodeled periodic errors or changes to the dynamic sys-

tem after a fault has occurred respectively. GPs have been shown

in Wang et al. (2016) to be an efficient means for disturbance fore-

casting for a linear stochastic MPC approach applied to a drink-

ing water network. GPs have further been applied to approximate

the mean and variance required in stochastic NMPC ( Bradford and

Imsland, 2018b ). Grancharova et al. (2007) derived an explicit so-

lution for GP-based NMPC. In Cao et al. (2017) a GP dynamic

model is employed for the control of an unmanned quadrotor,

while in Likar and Kocijan (2007) a GP dynamic model is exploited

to control a gas-liquid separation process. While these and other

works show the feasibility of GP-based MPC, there is a lack of effi-

cient approaches to account for the uncertainty measure provided.

Model uncertainty can lead to constraint violations and worse per-

formance. To mitigate the effect of uncertainty on MPC, robust

MPC ( Bemporad and Morari, 1999 ) and stochastic MPC ( Mesbah,

2016; Heirung et al., 2018 ) methods have been developed. 

The majority of works for GP-based MPC indeed consider the

uncertainty measure provided, however most proposed algorithms

employ stochastic uncertainty propagation to achieve this, for ex-

ample ( Kocijan et al., 2004; Kocijan and Murray-Smith, 2005; Hew-

ing et al., 2018; Cao et al., 2017; Grancharova et al., 2007; Wang

et al., 2016 ). Hewing et al. (2019) give an overview of the various

stochastic propagation techniques available. These approaches have

some considerable disadvantages, which are: 

• No known methods to exactly propagate stochastic uncertain-

ties through GP models. Instead, only approximations are avail-

able relying on linearization or statistical moment-matching. 
• Increased computational time of GP-based MPC due to the

propagation approach itself. 
• Most works consider only open-loop propagation of uncertain-

ties, which is often prohibitively conservative due to open-loop

growth of uncertainties. 

Recently some papers have proposed different robust GP-based

MPC algorithms. In Koller et al. (2018b) a NMPC algorithm is in-

troduced based on propagating ellipsoidal sets using linearization,

that provides closed-loop stability guarantees. This approach may

however suffer from increased computational times, since the el-

lipsoidal sets are propagated online. Furthermore, the method may

be relatively conservative due to the use of Lipschitz constants.

Maiworm et al. (2018) propose the use of a robust MPC approach

by bounding the one-step ahead error, while the determination of

the required parameters seems to be relatively difficult. Soloperto
t al. (2018) suggest a robust control approach for linear systems,

n which the GP is used to represent unmodeled nonlinearities. The

pproach is shown to stabilize the linear system despite these un-

ertainties, which however may have no solution if the difference

etween the linearized system and the actual nonlinear system is

oo large. 

In this paper we extend an algorithm first introduced in

radford et al. (2019) , for which the following extensions were

ade: 

• Inclusion of uncertainty for the initial state. 
• Adding additive disturbance noise to the problem definition. 
• Accounting for state dependency on the GP noise. 
• Improved algorithm to obtain the required back-offs using root-

finding as opposed to the inverse CDF, which has superior con-

vergence and leads to improved satisfaction of the required

probability bounds. 

The aim of this approach is to take into account the uncer-

ainty given by a GP state space model for a NMPC finite-horizon

ontrol problem. Due to the issues using stochastic uncertainty

ropagation for the NMPC formulation as highlight previously, we

ase the NMPC only on cheap evaluations of the GP. This leads to

onsiderably faster evaluation times with little effect on the per-

ormance. The proposed method utilizes explicit back-offs, which

ere recently proposed in Koller et al. (2018a) ; Paulson and Mes-

ah (2018) to account for stochastic uncertainties in NMPC. These

ethods generally rely on generating closed-loop Monte Carlo

MC) samples offline from the plant to attain the required back-

ff values. To obtain exact MC samples of the GP dynamic models

e exploit results from Conti et al. (2009) ; Umlauft et al. (2018) .

here are several important advantages of this new method: 

• Back-offs are attained using closed-loop simulations, therefore

the issue of open-loop growth of uncertainties is avoided. 
• Required computations are carried out offline, such that the on-

line computational times are nearly unaffected. 
• Independence of samples allows some probabilistic guarantees

to be given. 
• Explicit consideration of online learning and state dependency

of the uncertainty to alleviate conservativeness. 

The proposed method is a data-driven NMPC approach relying

n black-box identification of a GP model from input/output data

airs. The required data may be obtained either by simulations

rom a high-fidelity model or by experiments using for example

tep tests. In the algorithm the state dependency of the uncertainty

s accounted for by introducing a penalty term on the variance

n the objective. This variance for GPs is a function of the states

nd hence leads to a trade-off between exploiting the GP model

o optimize the objective and avoiding uncertain regions to reduce

he spread of the trajectories. The algorithm proposed is aimed

t finite horizon control problems, for which batch processes are

 particularly important example. They are utilized in many differ-

nt chemical engineering sectors due to their inherent flexibility to

eal with variations in feedstock, product specifications, and mar-

et demand. Frequent highly nonlinear behaviour and unsteady-

tate operation of batch processes have led to the increased accep-

ance for advanced control solutions, such as NMPC ( Nagy et al.,

007a ). Works on batch process NMPC accounting for uncertain-

ies include an extended and Unscented Kalman filter based algo-

ithms for uncertainty propagation ( Nagy and Braatz, 2003; Brad-

ord and Imsland, 2018a ), a NMPC algorithm using min-max suc-

essive linearization ( Valappil and Georgakis, 2002 ), NMPC algo-

ithms that employ PCEs to account for possible parametric un-

ertainties ( Mesbah et al., 2014; Bradford and Imsland, 2019 ), and

ulti-stage NMPC ( Lucia et al., 2013 ). 
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The paper is comprised of the following sections. In

ection 2 the problem definition is given. In Section 3 a gen-

ral outline of GPs is given including the sampling procedure

sed. Section 4 shows how the GPs can be exploited to solve

he defined problem. In Section 5 the semi-batch bioprocess case

tudy is described, while in Section 6 the results and discussions

or this case study are given. Section 7 concludes the paper. 

otation 

N and R represent the sets of natural numbers and real num-

ers respectively. The variable δij denotes the Kronecker delta func-

ion, such that: 

i j := 

{
1 , if i = j 
0 , otherwise 

The notation diag (a 0 , a 1 , . . . , a n ) is used to represent the follow-

ng diagonal matrix: 

iag (a 0 , a 1 , . . . , a n ) := 

⎡ 

⎢ ⎢ ⎢ ⎣ 

a 0 0 . . . 0 

0 a 1 
. . . 

. . . 
. . . 

. . . 
. . . 0 

0 . . . 0 a n 

⎤ 

⎥ ⎥ ⎥ ⎦ 

We represent the Gaussian distribution with mean μ and co-

ariance � as N ( μ, �) . Further, φ ∼ N ( μ, �) denotes that the ran-

om variable φ follows a Gaussian distribution with mean μ and

ovariance �. 

The expected value of a random variable φ is denoted as: 

 [ φ] := 

∫ 
�
φdp φ

here p φ the probability density function of φ over the sample

pace �. 

Further, we define the indicator function and the probability

easure of random variable φ as follows: 

1 { C ≤ c} : = 

{
1 , if C ≤ c 
0 , otherwise 

 { φ ∈ A} : = 

∫ 
φ∈A 

φdp φ, P { φ ≤ c} := E [ 1 { φ ≤ c} ] 
here A is a set defining an event on φ and P { φ ≤ c} is the prob-

bility that φ is less than or equal to c . 

Lastly, we require the definition of the beta inverse cumulative

istribution function (cdf) for a random variable φ. This function

etainv( P, A, B ) returns a value C of φ following a beta distribution

ith parameters A, B that has a probability of P to be less than or

qual to C . The definition is as follows: 

etainv (P, A, B ) ∈ F −1 
φ

(P | A, B ) = { C : F φ(C| A, B ) = P ) } 

F φ(C| A, B ) : = 

1 

B(A, B ) 

∫ C 

0 

t A −1 (1 − t ) B −1 dt , 

B(A, B ) = 

∫ 1 

0 

t A −1 (1 − t) B −1 dt 

. Problem definition 

The dynamic system in this paper is given by a discrete-time

onlinear equation system with additive disturbance noise: 

 t+1 = f (x t , u t ) + ω t , x 0 ∼ N ( μx 0 
, �x 0 ) (1)

here t is the discrete time, x ∈ R 

n x is the state, u ∈ R 

n u are the

ontrol inputs, f : R 

n x × R 

n u → R 

n x are nonlinear equations, and

 represents Gaussian distributed additive disturbance noise with
ero mean and diagonal covariance matrix �ω 

. The initial condi-

ion x 0 is assumed to be Gaussian distributed with mean μx 0 
and

ovariance matrix �x 0 . 

We assume measurements of the states to be available with ad-

itive Gaussian noise expressed as: 

 = f (x , u ) + ν (2)

here y ∈ R 

n x is the measurement of f ( x, u ) perturbed by addi-

ive Gaussian noise ν ∼ N (0 , �ν) with zero mean and a diagonal

ovariance matrix �ν = diag (σ 2 
ν1 

, . . . , σ 2 
νn x 

) . 

The aim of the control problem is to minimize a finite-horizon

ost function: 

 T (x 0 , U ) = E 

[ 

T −1 ∑ 

t=0 

� (x t , u t ) + � f (x T ) 

] 

(3)

here T ∈ N is the time horizon, U = [ u 0 , . . . , u T −1 ] 
T ∈ R 

T ×n u is a

oint vector of T control inputs, � : R 

n x × R 

n u → R is the stage cost,

nd � f : R 

n x → R denotes the terminal cost. 

The control problem is subject to hard constraints on the in-

uts: 

 t ∈ U t ∀ t ∈ { 0 , . . . , T − 1 } (4)

The states are subject to a joint chance constraint that requires

he satisfaction of a nonlinear constraint set up to a certain proba-

ility, which can be stated as: 

 

{ 

T ⋂ 

t=0 

{ x t ∈ X t } 
} 

≥ 1 − ε (5a) 

here X t is defined as: 

 t = { x ∈ R 

n x | g (t) 
j 

(x ) ≤ 0 , j = 1 , . . . , n g } (5b) 

The joint chance constraints are formulated such that the joint

vent over all t ∈ { 0 , . . . , T } of all x t fulfilling the nonlinear con-

traint sets X t has a probability greater than 1 − ε. 

For convenience we define the tuple z = (x , u ) ∈ R 

n z with joint

imension n z = n x + n u . The dynamic system in Eq. (1) is assumed

o be unknown. Instead, we are only given a finite number of noisy

easurements according to Eq. (2) . The available data can then be

enoted by the following two matrices: 

 = [ z (1) , . . . , z (N) ] T ∈ R 

N×n z (6a)

 = [ y (1) , . . . , y (N) ] T ∈ R 

N×n x (6b)

here z ( i ) represents the input of the i -th data point with corre-

ponding noisy observation y ( i ) , N denotes the overall number of

raining data points, Z is a collection of input data, and the corre-

ponding noisy observations are collected in Y . 

It should be noted that the uncertainty in this problem arises

artially from the uncertain initial condition x 0 and the additive

isturbance noise ω . Most of the uncertainty however comes from

he fact that we do not know f ( x, u ) and are only given noisy ob-

ervations of f ( x, u ) instead. To solve this problem we train a GP

o approximate f ( · ) using the available data in Eq. (6). The GP

ethodology is introduced for this purpose in the next section.

his GP then represents a distribution over possible functions f ( · )

iven the available data, which can be exploited to attain stochastic

onstraint satisfaction of the closed-loop system. 

. Gaussian processes 

.1. Regression 

In this section we introduce the use of GPs to infer a la-

ent function f : R 

n z → R from noisy data. For a more complete
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overview refer to Rasmussen and Williams (2006) . Let the noisy

observations y of f ( · ) be given by: 

y = f (z ) + ν (7)

where z ∈ R 

n z is the argument of f ( · ) and y is a perturbed obser-

vation of f ( z ) with additive Gaussian noise ν ∼ N (0 , σ 2 
ν ) with zero

mean and variance σ 2 
ν . 

GPs can be considered a generalization of multivariate Gaussian

distributions to describe a distribution over functions. A GP is fully

specified by a mean function and a covariance function. The mean

function represents the ”average” shape of the function, while the

covariance function specifies the covariance between any two func-

tion values. We write that a function f ( · ) is distributed as a GP

with mean function m ( · ) and covariance function k ( · , · ) as: 

f (·) ∼ GP (m (·) , k (·, ·)) (8)

The prior GP distribution is defined by the choice of the mean

function and covariance function. In this study we apply a zero

mean function and the squared-exponential (SE) covariance func-

tion defined as: 

m (z ) := 0 (9)

k (z , z ′ ) := ζ 2 exp 

(
−1 

2 

(z − z ′ ) T �−2 
(z − z ′ ) 

)
(10)

where z , z ′ ∈ R 

n z are arbitrary inputs, ζ 2 denotes the covariance

magnitude, and �−2 
:= diag (λ−2 

1 
, . . . , λ−2 

n z ) is a scaling matrix. 

Remark (Prior assumptions) . Note the zero mean assumption can

be easily achieved by normalizing the data beforehand. The SE

covariance function is smooth and stationary, such that choosing

the SE covariance function assumes the latent function f ( · ) to

be smooth and stationary as well. The algorithm presented in this

work can be utilised using any covariance function. In the case of

highly non-stationary functions it may be necessary to use non-

stationary covariance functions ( Sampson and Guttorp, 1992 ). 

From the additive property of Gaussian distributions the mea-

surements of f ( · ) also follow a GP accounting for measurement

noise: 

y ∼ GP (m (z ) , k (z , z ′ ) + σ 2 
ν δzz ′ ) (11)

We denote the hyperparameters defining the prior jointly by

� := [ ζ , λ1 , . . . , λn z , σν ] T , in which the variance σν of the mea-

surement noise is included in case it is unknown. Commonly the

hyperparameters are unknown, such that they need to be inferred

from the available data using for example maximum likelihood es-

timation (MLE). 

Assume we are given N noisy function evaluations according to

Eq. (7) denoted by Y := [ y (1) , . . . , y (N) ] T ∈ R 

N as the result of the

inputs given in Z = [ z (1) , . . . , z (N) ] T ∈ R 

N×n z . According to the prior

GP assumption, the data follows a multivariate Gaussian distribu-

tion: 

Y ∼ N (0 , �Y ) (12)

where [ �Y ] i j = k (z (i ) , z ( j) ) + σ 2 
ν δi j for each pair (i, j) ∈ { 1 , . . . , N} 2 . 

The log-likelihood of the observations is consequently given by

(ignoring constant terms): 

L ( �) := −1 

2 

log ( det ( �Y )) − 1 

2 

Y 

T �−1 
Y Y (13)

The MLE estimate of the hyperparameters � is determined by

maximizing Eq. (13) . Once the hyperparameters are known, we

need to determine the posterior GP distribution of the latent func-

tion f ( · ). From the prior GP assumption we know that the training
ata and the value of f ( · ) at an arbitrary input z follow a joint

ultivariate normal distribution: 

Y 

f (z ) 

]
∼ N 

([
0 

0 

]
, 

[
�Y k 

T (z ) 
k (z ) k (z , z ′ ) 

])
(14)

here k (z ) := [ k (z , z (1) ) , . . . , k (z , z (N) )] T . 

The posterior Gaussian distribution of f ( z ) given the data ( Z, Y )

an then be found by using the conditional distribution rule for

ultivariate normal distributions based on the joint normal distri-

ution in Eq. (14) , which leads to: 

f (z ) |D ∼ N (μ f (z ;D) , σ f (z ;D)) (15a)

ith 

f (z ;D) := k 

T (z ) �−1 
Y Y (15b)

2 
f (z ;D) := ζ 2 − k 

T (z ) �−1 
Y k (z ) (15c)

here D = (Z , Y ) denotes the training data available to obtain the

osterior Gaussian distribution. The mean function μ f (z ;D) in this

ontext is the prediction of the GP at z , while the variance function
2 
f 
(z ;D) is a measure of uncertainty. 

In Fig. 1 we illustrate a prior GP in the top graph and the pos-

erior GP in the bottom graph. 

.2. Recursive update 

Often we are given a training dataset D initially to build a pos-

erior GP and then obtain data points individually afterwards. For

xample in GP-based MPC we may build an initial GP offline fol-

owing the procedure shown in Section 3.1 , and then also update

his model online as new data becomes available. In this work we

eep the hyperparameters constant but update the mean function

nd variance function in Eqs. 15b –15c recursively given the new

ata points. Furthermore, the approach used for MC sampling of

he GPs to be introduced in Section 3.4 requires recursive updates

f this form as well. 

Let the new dataset be given by D 

+ = (D, (z + , y + )) , where D
s the training data for the initial GP, while z + is the new input

nd y + the new corresponding output measurement. Then we will

efer to the updated mean function and variance function as: 

+ 
f 
(z ;D 

+ ) := k 

+ T (z ) �+ −1 
Y Y 

+ (16a)

2+ 
f 

(z ;D 

+ ) := ζ 2 − k 

+ T (z ) �+ −1 
Y k 

+ (z ) (16b)

The updated terms in Eqs. 16a –16b can be expressed as: 

 

+ (z ) = [ k 

T (z ) , k (z , z + )] T (17a)

 

+ = [ Y 

T , y + ] T , Z 

+ = [ Z 

T , z + ] T (17b)

+ −1 
Y = 

[
�Y k 

T (z + ) 
k (z + ) k (z + , z + )(+ σ 2 

ν ) 

]−1 

(17c)

here k ( z ), Z and Y refer to quantities of the initial GP. The noise

erm σ 2 
ν in the lower diagonal is shown in brackets, since the new

measurement” y + may be noiseless as is the case for GP MC sam-

les. In this case the noise term should not be added to the new

iagonal element. 

Note the updates k 

+ (z ) , Z 

+ , and Y 

+ are trivial, however the

pdate of the inverse covariance matrix �+ −1 
Y is more involved. In

ssence we require the inverse of the previous covariance matrix

fter adding a horizontal row and a vertical row to the covariance

atrix of the initial GP, see Eq. (17c) . For this process there are ef-

cient formula available, one of which is introduced in Appendix A .
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Fig. 1. Illustration of a GP of a 1-dimensional function perturbed by noise. On the top the prior of the GP is shown, while on the bottom the Gaussian process was fitted to 

several observations to obtain the posterior. 
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hese take advantage of the fact that we already know the inverse

ovariance matrix �−1 
Y of the initial GP. Once the update has been

arried out, these terms then define the new initial GP. This update

rocedure is then repeated for the next measurement. 

.3. State space model 

In this section we briefly show how the previously introduced

P methodology can be utilized to identify unknown state space

odels in the form of Eq. (1) based on the measurements (data)

ccording to Eq. (2) . GPs are commonly applied to model scalar

unctions with vector inputs as shown in Section 3.1 . To extend

his to the multi-input, multi-output case as required it is common

o build a separate independent GP for each output dimension, see

or example Deisenroth and Rasmussen (2011) . Let the function in

q. (1) be given by f (x , u ) := f (z ) := [ f 1 (z ) , . . . , f n x (z )] T . We aim

o build a separate GP for each function f i (z ) ∀ i ∈ { 1 , . . . , n x } ac-

ording to Section 3.1 . For this purpose we are given observa-

ions Y i = [ y (1) 
i 

, . . . , y (N) 
i 

] T ∀ i ∈ { 1 , . . . , n x } and corresponding inputs

 = [ z (1) , . . . , z (N) ] T , where y i refers to the i -th dimension of mea-

urements obtained according to Eq. (2) . Let Y = [ Y 1 , . . . , Y n x ] cor-

espond to the overall measurements available. The posterior Gaus-

ian distribution of f ( · ) at an arbitrary input z = (x , u ) is: 

 (z ) |D ∼ N ( μ f (z ;D) , � f (z ;D)) (18a) 

ith 

f (z ;D) = [ μ f (z ;D 1 ) , . . . , μ f (z ;D n x )] T (18b)

f (z ;D) = diag (σ 2 
f (z ;D 1 ) , . . . , σ

2 
f (z ;D n x )) + �ω 

(18c)

here μ f (z ;D i ) and σ 2 
f 
(z ;D i ) are the mean function and vari-

nce function built according to Section 3.1 with datasets D i =
(Z , Y i ) ∀ i ∈ { 1 , . . . , n x } with D = (Z , Y ) . 

emark (Additive disturbance noise) . Note the additive distur-

ance noise defined in Eq. (1) is simply added to the posterior co-

ariance matrix due to the additive property of multivariate Gaus-

ian distributions. 
In addition, given an initial GP state space model built with a

ataset D and a new data point (z + , y + ) , we can update it recur-

ively utilizing the method introduced in Section 3.2 : 

+ 
f 
(z ;D 

+ ) = [ μ+ 
f 
(z ;D 

+ 
1 ) , . . . , μ

+ 
f 
(z ;D 

+ 
n x 

)] T (19a)

+ 
f (z ;D 

+ ) = diag (σ 2+ 
f 

(z ;D 

+ 
1 ) , . . . , σ

2+ 
f 

(z ;D 

+ 
n x 

)) + �ω 

(19b)

here D 

+ 
i 

= (D i , (z + , y + 
i 
)) ∀ i ∈ { 1 , . . . , n x } and D 

+ = (D, (z + , y + )) 

.4. Monte carlo sampling 

GPs are distribution over functions and hence their realiza-

ions yield deterministic functions, see for example the GP sam-

les shown in Fig. 1 . In this section we show how to attain in-

ependent samples of GP state space models over a finite time

orizon. Generating a MC sample of a GP would require sam-

ling an infinite dimensional stochastic process, while there is no

nown method to achieve this. Instead, approximate approaches

ave been applied such as spectral sampling ( Bradford et al.,

018a; Quionero-Candela et al., 2010 ). Exact samples of GPs are

owever possible if the GP MC sample needs to be known at

nly a finite number of points, which is exactly the situation for

tate space models over a finite time horizon. This technique was

rst outlined in Conti et al. (2009) and has been employed in

mlauft et al. (2018) for the optimal design of linear controllers.

e next outline how to obtain an exact sample of a GP state space

odel over a finite time horizon for an arbitrary feedback control

olicy. 

Assume we are given a GP state space model as shown in

ection 3.3 from the input-output dataset D = (Z , Y ) . The initial

ondition x 0 is assumed to follow a known Gaussian distribution

s defined in Eq. (1) . A GP state space model represents a distri-

ution over possible plant models, for which each realization will

ead to a different state sequence. The aim of this section is there-

ore to show how to obtain a single independent sample of such

 state sequence, which can then be repeated to obtain multiple

ndependent MC samples of the GP. Let X 

(s ) = [ χ(s ) 
0 

, χ
(s ) 
1 

, . . . , χ
(s ) 
T 

] T 

enote such a state sequence, where s denotes a particular GP re-

lization and χ
(s ) 
i 

the realization of the state at discrete time i in
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Algorithm 1 Gaussian process trajectory sampling. 

Input : μx 0 
, �x 0 , μ f (z ;D) , � f (z ;D ) , D , T , κ(·) 

Initialize : Draw χ
(s ) 
0 

from x 0 ∼ N ( μx 0 
, �x 0 ) . 

for each sampling time t = 1 , 2 , . . . , T do 

1. Determine u (s ) 
t−1 

= κ( χ(s ) 
t−1 

, t − 1) 

2. Draw χ
(s ) 
t from x t ∼ N ( μ f ( Z 

(s ) 
t−1 

;D) , � f ( Z 

(s ) 
t−1 

;D)) , where Z 

(s ) 
t−1 

= ( χ(s ) 
t−1 

, u (s ) 
t−1 

) . 

3. Define D 

+ := (D, ( Z 

(s ) 
t−1 

, χ
(s ) 
t )) , where χ(s ) 

t can be viewed as noiseless ”measurements”. 

4. Update the dataset D := ([ Z 

T , Z 

(s ) T 
t−1 

] T , [ Y , χ
(s ) T 
t ] T ) . 

5. Recursively update the GP mean function μ f (z ;D) := μ+ 
f 
(z ;D 

+ ) using Equation 19a. 

6. Recursively update the GP covariance function � f (z ;D) := �+ 
f (z ;D 

+ ) using Equation 19b. 

end 

Output : State sequence X 

(s ) = [ χ(s ) 
0 

, χ
(s ) 
1 

, . . . , χ
(s ) 
T 

] T and control sequence U 

(s ) = [ u (s ) 
0 

, . . . , u (s ) 
T −1 

] T 
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the sequence of MC sample s . The control inputs at discrete time i

for MC sample s are denoted by u (s ) 
i 

. The corresponding joint input

of χ(s ) 
i 

is represented by Z 

(s ) 
i 

= ( χ(s ) 
i 

, u (s ) 
i 

) . We assume the control

inputs to be the result of a feedback control policy, which we rep-

resent as κ : R 

n x × R → R 

n u . The control actions u (s ) 
i 

are then given

as follows: 

u (s ) 
i 

= κ
(
χ

(s ) 
i 

, i 
)

(20)

where i is the current discrete time. Note the control policy de-

pends on the discrete time directly, since it is a finite horizon con-

trol policy. 

Consequently, the control actions over the finite time hori-

zon T are a function of X 

(s ) and denoted jointly as U (s ) =
[ u (s ) 

0 
, . . . , u (s ) 

T −1 
] T = [ κ( χ(s ) 

0 
, 0) , . . . , κ( χ(s ) 

T −1 
, T − 1)] T . Note these con-

trol inputs are different for each MC sample s due to feedback. 

We start by sampling the Gaussian distribution of the initial

state x 0 ∼ N ( μx 0 
, �x 0 ) to obtain the realization χ

(s ) 
0 

. The posterior

Gaussian distribution of the next state in the sequence x 1 is sub-

sequently given by the GP of f ( · ) as defined in Eq. (18) dependent

on χ
(s ) 
0 

: 

x 1 = f ( Z 0 ) ∼ N ( μ f ( Z 0 ;D) , � f ( Z 0 ;D)) (21)

The realization of x 1 is obtained by sampling the above nor-

mal distribution, which we will denote as χ(s ) 
1 

. To obtain the next

state in the sequence χ(s ) 
2 

we need to first condition on χ
(s ) 
1 

, since

this is part of this sampled function path. This requires to treat

χ
(s ) 
1 

similarly to a new training point, however without observation

noise (i.e. no σ 2 
ν is added to the kernel evaluation k ( Z 0 , Z 0 ) ) and

without changing the hyperparameters. Note that if the sampled

function were to return to the same input it would lead to the ex-

act same output, since it is conditioned on a noiseless output. This

shows that the sampled function is deterministic, since it is the

result of sampling. Next we draw χ
(s ) 
2 

according to the posterior

Gaussian distribution obtained from adding the previously sampled

data point to the training dataset D as a noiseless observation. This

sample is then again added to the training dataset as a noiseless

observation, from which the GP is updated and the next state is

drawn. This process is repeated until the required time horizon T

has been reached. In this paper we consider a finite time horizon

control problem and hence the GP state space model should for,

moderate time horizons, not become too computationally expen-

sive, since at most T new data-points are added. Nonetheless, for

large time horizons this could become a problem and approximate

sampling approaches, such as spectral sampling should then be

considered instead ( Bradford et al., 2018a; Quionero-Candela et al.,

2010 ). 

This sampling approach is summarized in Algorithm 1 below

and is illustrated in Fig. 2 . Each GP MC sample is defined by a state
nd corresponding control action sequence. Note that this gives us

 single MC sample and subsequently needs to be repeated multi-

le times to obtain multiple realizations. 

Lastly, we define a nominal trajectory by setting all samples

n Algorithm 1 to their mean values. Let X = [ χ0 , χ1 , . . . , χT ] 
T 

efer to this nominal state sequence and U = [ u 0 , . . . , u T −1 ] 
T to

he corresponding nominal control sequence, where χi and u i are

he values of the states and control inputs of the nominal tra-

ectory at discrete time i respectively. Therefore by definition,

0 = μx 0 
, u t−1 = κ( χt−1 , t − 1) , and χt = μ f ( Z t−1 ;D) , where Z t−1 =

( χt−1 , u t−1 ) . Note updating μ f (·;D) with mean values has no effect.

In Section 4 a NMPC formulation is introduced, which uses the

ean function of the GP as the prediction model. The control ac-

ions from this NMPC algorithm then define the control policy in

q. (20) , while the MC samples represent possible plant responses.

his is then exploited to tune the GP NMPC algorithm to attain the

esired behaviour. 

. Solution approach 

From the input-output dataset D = (Z , Y ) defined in Eq. (6), we

t a GP state space model as outlined in Section 3.3 . The aim

s to solve the problem defined in Section 2 based on this GP

tate space model. In this context the GP represents a distribu-

ion over possible plant models for the process given the avail-

ble dataset. In Section 3.4 we have shown how to create a sample

f this plant model over a finite time horizon T , which each lead

o different state sequences and corresponding control sequences

ased on a control policy. In this paper we aim to design a NMPC

lgorithm based on the GP that acts as this control policy. The

C samples are utilized to tune the NMPC formulation by adjust-

ng so-called back-offs to tighten the constraints and attain the

losed-loop probabilistic constraint satisfaction. We next state the

P NMPC formulation, which is based on the tightened constraint

et and predictions from the mean function μ f (·;D) and covari-

nce function � f (·;D) . 

.1. Finite-horizon gaussian process model predictive control 

ormulation 

In this section we define the NMPC OCP based on the GP nom-

nal model given the dataset D = (Z , Y ) . For the GP NMPC for-

ulation the initial state x at each sampling time is assumed

o be measured or estimated and propagated forward in time

xploiting the GP mean function. The predicted states are then

sed to optimize the objective subject to the tightened con-

traints. Let the corresponding optimization problem be denoted

s P T 
(
μ f (·;D) , � f (·;D) ; x , t 

)
for the current known state x at dis-

rete time t based on the mean function μ f (·;D) and covariance
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Fig. 2. Illustration of GP sampling scheme for a 1 dimensional function. 
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uncertainty. 
unction � f (·;D) : 

minimize 
ˆ U t: T−1 

ˆ V T (x , t, ˆ U t: T −1 ) 

= 

∑ T −1 
k = t+1 

[
� ( ̂ x k , ̂  u k ) + ηk tr 

(
� f ( ̂ x k ;D) 

)]
+ � f ( ̂ x T ) 

subject to: 
ˆ x k +1 = μ f ( ̂ z k ;D) , ˆ z k = ( ̂ x k , ̂  u k ) ∀ k ∈ { t, . . . , T − 1 } 
ˆ x k +1 ∈ X k +1 , ˆ u k ∈ U k ∀ k ∈ { t, . . . , T − 1 } 
ˆ x t = x 

(22) 

here ˆ x , ˆ u , and 

ˆ V T (·) refers to the states, control inputs, and

ontrol objective of the MPC formulation, ˆ U t: T −1 = [ ̂  u t , . . . , ̂  u T −1 ] 
T ,

k are weighting factors to penalize uncertainty, and X k is a

ightened constraint set denoted by: X k = { x ∈ R 

n x | g (k ) 
j 

(x ) + b (k ) 
j 

≤
 , j = 1 , . . . , n g } . The variables b (k ) 

j 
represent so-called back-offs,

hich tighten the original constraints X t defined in Eq. (5). 

emark (Objective in expectation) . It should be noted that the

bove objective in Eq. (22) does not exactly optimize the ob-

ective in Eq. (3) , since it is difficult to obtain the expectation

f a nonlinear function. Approximations of this can be found in

ewing et al. (2019) , however these generally are considerably

ore expensive and often only lead to marginally improved per-

ormance. 

emark (Scaling for state dependency factors) . Note we have

pted for scalar scaling factors ηk to account for state dependency.

or this to work reliably it is therefore necessary to normalize the

ata to ensure that all data has approximately the same magni-

ude, for example normalizing the data to have zero mean and unit

ariance. 

The NMPC algorithm solves P T 
(
μ f (·;D) , � f (·;D) ; x t , t 

)
at each

ampling time t given the current state x t to obtain an optimal

ontrol sequence: 

ˆ 
 

∗
t: T −1 

(
μ f (·;D) , � f (·;D) ; x t , t 

)
= 

[
ˆ u 

∗
t 

(
μ f (·;D) , � f (·;D) ; x t , t 

)
, 

. . . , ̂  u 

∗
T −1 

(
μ f (·;D) , � f (·;D) ; x t , t 

)]T 
(23) 

Only the first optimal control action is applied to the plant at

ime t before the same optimization problem is solved at time
 + 1 with a new state measurement x t+1 . This procedure implic-

tly defines the following feedback control law, which needs to be

epeatedly solved for each new measurement x t : 

( μ f (·;D) , � f (·;D) ; x t , t) = 

ˆ u 

∗
t 

(
μ f (·;D) , � f (·;D) ; x t , t 

)
(24) 

It is explicitly denoted that the control actions depend on the

P model used. There are several important variations of the GP

MPC control policy. Firstly, it may seem reasonable to update the

ean and covariance function using the previous state measure-

ent and corresponding input by applying the recursive update

ules introduced in Section 3.2 . We will refer to this as learning .

his may however lead to a more expensive and less reliable NMPC

lgorithm. 

Secondly, the algorithm may want to avoid regions in which

here is great uncertainty due to sparsity of data. This can be

chieved by assigning some of the ηk with non-zero values to

enalize the algorithm moving into these regions with high vari-

nce. This explicitly takes advantage of the state dependency of

he noise covariance function and is hence referred as state depen-

ent . It should be noted that evaluation of the covariance function

s computationally expensive. It was determined that setting only

t+1 to a non-zero value is often sufficient due to the continued

eedback update, i.e. penalizing only the variance for the one-step

head prediction at time t . These variations can be summarized as

ollows: 

• Learning : Update the mean and variance function of the GP

using the previous state measurement and the known corre-

sponding input. 
• State dependent : Set some ηk not equal to zero, which will lead

to the NMPC algorithm trying to find a path that has less vari-

ance and hence exploiting the state dependent nature of the

uncertainty. 
• Non learning : Keep the mean and variance function the same

throughout the run. 
• Non state dependent : Set all ηk to zero and hence ignoring the

possible state dependency of the uncertainty. 

emark (Full state feedback) . Note in the control algorithm we

ave assumed full state feedback, i.e. it is assumed that the full

tate can be measured without noise. This assumption can be

ropped if required by introducing a suitable observer and intro-

uced in the closed-loop simulations to account for this additional
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4.2. Probabilistic guarantees 

In this section we illustrate how to obtain probabilistic guar-

antees for the joint chance constraint introduced in Section 2 in

Eq. (5) based on independent samples of the GP plant model.

For convenience we define a single-variate random variable

C ( · ) representing the satisfaction of the joint chance constraint

( Curtis et al., 2018 ): 

(X ) = inf 
( j,t) ∈{ 1 , ... ,n g }×{ 0 , ... ,T } g 

(t) 
j 

(x t ) (25a)

P { C(X ) ≤ 0 } = P 

{ 

T ⋂ 

t=0 

{ x t ∈ X t } 
} 

(25b)

where X = [ x 0 , . . . , x T ] 
T defines a state sequence, and X t = { x ∈

R 

n x | g (t) 
j 

(x ) ≤ 0 , j = 1 , . . . , n g } . 
The probability in Eq. (25) is intractable, however a good non-

parametric approximation is often achieved utilizing the so-called

empirical cumulative distribution function (ecdf). We define the

cdf to be approximated as follows: 

F C(X ) (c) = P { C(X ) ≤ c} (26)

Assuming we are given S independent and identically dis-

tributed MC samples of X and hence of C ( X ), the ecdf estimate of

the true cdf in Eq. (26) is given by: 

F C(X ) (c) ≈ ˆ F C(X ) (c) = 

1 

S 

S ∑ 

s =1 

1 { C( X 

(s ) ) ≤ c} (27)

where X 

(s ) is the s -th MC sample and 

ˆ F C(X ) (c) is the ecdf approx-

imation of the true cdf F C ( X ) ( c ). 

The quality of the approximation in Eq. (27) strongly depends

on the number of samples used and it is therefore desirable to

quantify the residual uncertainty of the sample approximation.

This problem has been studied to a great extent in the statistics

literature ( Clopper and Pearson, 1934 ). In addition, there are sev-

eral works applying these results for chance constrained optimiza-

tion, see for example Alamo et al. (2015) . The main result applied

in this study is given below in Theorem 1 . 

Theorem 1 (Confidence interval for empirical cumulative distribu-

tion function) . Assume we are given a value of the ecdf, ˆ β = 

ˆ F C(X ) (c) ,

as defined in Eq. (27) based on S independent samples of C ( X ), then

the true value of the cdf, β = F C(X ) (c) , as defined in Eq. (26) has the

following lower and upper confidence bounds: 

P 

{ 

β ≥ ˆ βlb 

} 

≥ 1 − α, ˆ βlb = betainv 

(
α, S ̂  β, S − S ̂  β + 1 

)
, (28a)

P 

{ 

β ≤ ˆ βub 

} 

≥ 1 − α, ˆ βub = betainv 

(
1 − α, S ̂  β + 1 , S − S ̂  β

)
. 

(28b)

Proof. The proof uses standard results in statistics and can be

found in Clopper and Pearson (1934) ; Streif et al. (2014) . The proof

relies on the following observations. Firstly, 1 { C( X 

(s ) ) ≤ c} for a

fixed value of c describes a Bernoulli random variable, in which ei-

ther C( X 

(s ) ) exceeds c and takes the value 0 or otherwise takes

the value 1 with probability F C ( X ) ( c ). Secondly, the ecdf describes

the number of successes of S realizations of these Bernoulli ran-

dom variables divided by the total number of samples and hence

follows a binomial distribution, i.e. ˆ F C(X ) (c) ∼ 1 
N S 

Bin (S, F C(X ) (c)) .

The confidence bound for the ecdf can consequently be deter-

mined from the Binomial cdf. This method was first introduced by

Clopper and Pearson (1934) as ”exact confidence intervals ”. Due to
he close relationship between beta distributions and binomial dis-

ributions, a simplified expression can be obtained using beta dis-

ributions instead, which leads to the theorem shown ( Streif et al.,

014 ). �

In other words the probability of β exceeding the value ˆ βub has

 probability of α and the probability of β being less than or equal

o ˆ βlb has also a probability of α. In particular, ˆ βlb for small α rep-

esents a conservative lower bound on the true probability β . An

llustration of the confidence bound for the ecdf is shown in Fig. 3 .

n general more samples will lead to a tighter confidence bound as

xpected. The theorem provides a lower bound 

ˆ βlb that accounts

or the statistical error due to the finite sample estimate made, i.e.

t gives us a conservative value that is less than or equal to the

rue probability of feasibility with a confidence level of 1 − α. 

We assume we are given S independent samples of the trajec-

ory X generated according to Section 3.4 . Let the approximate ecdf

e given by ˆ β = 

ˆ F C(X ) (0) according to Eq. (27) , and 

ˆ βlb the cor-

esponding lower bound according to Theorem 1 with confidence

evel 1 − α. From this the following Corollary follows: 

orollary 1 (Feasibility probability) . Assuming the GP representation

f the plant model to be a correct description of the uncertainty of

he system and given a value of the ecdf ˆ β = 

ˆ F C(X ) (0) , as defined in

q. (27) based on S independent samples and a corresponding lower

ound ˆ βlb ≥ 1 − ε with a confidence level of 1 − α, then the original

hance constraint in Eq. (5) holds true with a probability of at least

 − α. 

roof. The GP MC sample described in Section 3.4 is exact and

herefore each sample of the GP plant state space model leads to

ndependent state trajectories X according to the GP distribution.

rom S such samples a valid lower bound 

ˆ βlb to the true cdf value

can be determined from Theorem 1 with a confidence level of

 − α. If ˆ βlb is greater than or equal to 1 − ε, then the following

robabilistic bound holds on the true cdf value β according to The-

rem 1: P 

{ 

β ≥ ˆ βlb ≥ 1 − ε
} 

≥ 1 − α, which in other words means

hat β = P { C(X ) ≤ 0 } ≥ 1 − ε with a probability of at least 1 − α. �

.3. Determining back-off constraints 

In this section we describe how to determine the required back-

ff values to tighten the constraints of the GP NMPC algorithm in

q. (22) . The aim is to choose these values to obtain probabilis-

ic guarantees for the state constraints defined in Eq. (5) despite

ot knowing the exact dynamics. The GP provides a nominal model

or the GP NMPC formulation in Eq. (22) using the mean function

nd a distribution of possible plant models given the initial dataset

n Eq. (6). This distribution is exploited to attain different possi-

le plant model realizations to simulate the closed-loop response

f the GP NMPC algorithm and then uses the response values to

ighten the constraints, such that the original constraint set is sat-

sfied with a high probability according to Eq. (5). 

We have shown how to obtain the closed-loop trajectory of a

ontrol policy according to the realization of a plant model GP

istribution in Section 3.4 . To this we apply the GP NMPC con-

rol policy defined in Eq. (24) . We propose to utilize S indepen-

ent MC samples of the GP distribution generated according to

ection 3.4 , which then in turn describe S different possible plant

odels with corresponding state and control trajectories. The goal

ow is to adjust the back-offs, such that the S different state tra-

ectories adhere the original constraint set for all but a few sam-

les to attain the required probability of constraint satisfaction. Let

 

(s ) = [ χ(s ) 
0 

, . . . , χ
(s ) 
T 

] T refer to the state trajectory of sample s . 

The update rule for adjusting the back-offs is based on two

teps: First, we define an approximate constraint set, which is then
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Fig. 3. Illustration of the cdf confidence bound of α = 0 . 01 for sample sizes of S = 50 (top) and S = 200 (bottom). 
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djusted by a constant factor to obtain the required constraint sat-

sfaction using the ecdf of the joint chance constraint in Eq. (30) .

he approximate constraint set in essence needs to reflect the dif-

erence in constraint values for the nominal model of the MPC and

he realizations of the GP plant model. We first set all the back-off

alues to zero and run S MC samples of the GP plant model. As

efined in Section 3.4 , let χt refer to the states according to the

ominal trajectory with the back-offs set to zero as well. Now as-

ume we aim to obtain back-off values that imply the satisfaction

f the following individual chance constraints: 

 

(t) 
j 

( χt ) + b (t) 
j 

= 0 ⇒ P 

{
g (t) 

j 
( χt ) ≤ 0 

}
≥ 1 − δ (29) 

here δ is a tuning parameter and should be set to a reasonably

ow value. 

The rule in other words aims to find approximate back-offs

or the nominal predictions χt utilized in the MPC formulation in

q. (22) , such that the chance constraints holds for any possible

P plant model MC sample with a probability of 1 − δ. The pa-

ameter δ in this case is a tuning parameter to obtain the initial

ack-off values. Note the considered individual chance constraint

n Eq. (29) is only there to obtain the initial constraint set and is

nrelated to the joint chance constraint in Eq. (5), which we ful-

l by adjusting this approximate constraint set using a root-finding

lgorithm. 

To accomplish this we define the following ecdf based on the S

C samples available: 

ˆ 
 

g (t) 
j 

(0) = 

1 

S 

S ∑ 

s =1 

1 { g (t) 
j 

( χ(s ) 
t ) ≤ 0 } (30) 

here ˆ F 
g 
(t) 
j 

(0) is a sample approximation of the chance constraint

iven in Eq. (29) on the RHS. 

In Paulson and Mesbah (2018) it is proposed to employ the

nverse ecdf to approximately fulfill the requirement given in

q. (29) using the S MC samples available. The back-offs can then

e stated as follows: 

˜ 
 

(t) 
j 

= 

ˆ F −1 

g (t) 
j 

(1 − δ) − g (t) 
j 

( χt ) ∀ ( j, t) ∈ { 1 , . . . , n 

(t) 
g } × { 1 , . . . , T } 

(31) 
here ˆ F −1 

g 
(t) 
j 

is the inverse of the ecdf defined in Eq. (30) and 

˜ b (t) 
j 

efers to these initial back-off values. Note the inverse of an ecdf is

iven by the quantile function of the discrete S values with proba-

ility δ. This gives us the initial back-off values as required for the

rst step. Note that both the nominal trajectory χt and the GP real-

zations depend on the back-off values, which is however ignored

ince we are only interested in obtaining some reasonable initial

alues. In the next step these back-off values are further adjusted

sing a constant back-off factor γ . The new back-offs are then de-

ned as: 

 

(t) 
j 

= γ ˜ b (t) 
j 

∀ ( j, t) ∈ { 1 , . . . , n 

(t) 
g } × { 1 , . . . , T } (32)

We aim to change γ until the lower bound of the ecdf ˆ βlb as

efined in the previous section for the joint chance constraint is

qual to 1 − ε in Eq. (5). This is a root finding problem, in which

is adjusted until ˆ βlb reaches the required value: 

 (γ ) = 

ˆ βlb (γ ) − (1 − ε) (33)

here the aim is to determine a value of γ , such that h ( γ ) is ap-

roximately zero. 

To attain the required γ we use the so-called bisection method

 Beers, 2007 ). This method determines the root of a function in an

nterval a γ and b γ , where h ( a γ ) and h ( b γ ) have opposite signs. In

ur case this is relatively easy. Setting the value of γ too low re-

urns generally a negative value of h ( γ ) due to the constraint viola-

ions using low back-offs, while setting it too high leads to positive

alues leading to a too conservative solution. Note we generally set

he initial a γ to zero since this corresponds to the S MC samples

sed to determine ˜ b (t) 
j 

. The bisection method consists of repeatably

isecting the interval, in which the root is contained. The overall

lgorithm to determine the required back-offs in n b back-off iter-

tions is summarized below as Algorithm 2 . The output of the al-

orithm are the required back-offs with the corresponding lower

ound on the probability of satisfying the state chance constraint.

ote for learning = true the mean and covariance function of the

P are recursively updated utilizing the same procedure as for the

pdate of the GP plant model MC sample. 

emark (Conservativeness of chance constraint) . Note to adjust

he back-offs we use the ecdf, which does account for the true
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Algorithm 2 Back-off iterative updates. 

Input : μx 0 
, �x 0 , μ f (z ;D) , � f (z ;D ) , D , T , V T (x , t, ̂  U t: T −1 ) , X t , U t , ε, α, δ, learning, S, n b 

Initialize : Set all b (t) 
j 

= 0 and δ to some reasonable value, set a γ = 0 and b γ to some reasonably high value, such that b γ − (1 − ε) has a 

positive sign. Define D 0 = D as the initial dataset. 

for n b back-off iterations do 

if n b > 0 then 

c γ := (a γ + b γ ) / 2 

b (t) 
j 

:= c γ ˜ b (t) 
j 

( j, t) ∈ { 1 , . . . , n (t) 
g } × { 1 , . . . , T } 

for each MC sample s = 1 , 2 , . . . , S do 

D := D 0 

Draw χ
(s ) 
0 

from x 0 ∼ N ( μx 0 
, �x 0 ) 

for each sampling time t = 1 , 2 , . . . , T do 

if lear ning = tr ue then 

1. Determine u (s ) 
t−1 

= κ( μ f (·;D) , � f (·;D) ; x t , t) . 

else 

1. Determine u (s ) 
t−1 

= κ( μ f (·;D 0 ) , � f (·;D 0 ) ; x t , t) . 

end 

2. Draw χ
(s ) 
t from x t ∼ N ( μ f ( Z 

(s ) 
t−1 

;D) , � f ( Z 

(s ) 
t−1 

;D)) , where Z 

(s ) 
t−1 

= ( χ(s ) 
t−1 

, u (s ) 
t−1 

) . 

3. Define D 

+ := (D, ( Z 

(s ) 
t−1 

, χ
(s ) 
t )) , where χ(s ) 

t can be viewed as noiseless ”measurements”. 

4. Update the dataset D := ([ Z 

T , Z 

(s ) T 
t−1 

] T , [ Y , χ
(s ) T 
t ] T ) . 

5. Recursively update the GP mean function μ f (z ;D) := μ+ 
f 
(z ;D 

+ ) using Equation 19a. 

6. Recursively update the GP covariance function � f (z ;D) := �+ 
f (z ;D 

+ ) using Equation 19b. 

7. Define X 

(s ) = [ χ(s ) 
0 

, χ
(s ) 
1 

, . . . , χ
(s ) 
T 

] T and U 

(s ) = [ u (s ) 
0 

, . . . , u (s ) 
T −1 

] T . 

end 

end 

ˆ β := 

ˆ F 
C( X (s ) ) 

(0) = 

1 
S 

∑ S 
s =1 1 { C( X 

(s ) ) ≤ 0 } 
ˆ βlb := 1 − betainv 

(
α, S + 1 − S ̂  β, S ̂  β

)
if nb = 0 then 

Let ˜ b (t) 
j 

= 

ˆ F −1 

g 
(t) 
j 

(δ) − g (t) 
j 

( χt ) ∀ ( j, t) ∈ { 1 , . . . , n (t) 
g } × { 1 , . . . , T } 

ˆ β
a γ
lb 

:= 

ˆ βlb − (1 − ε) 

else 
ˆ β

c γ
lb 

:= 

ˆ βlb − (1 − ε) 

if sign ( ̂  β
c γ
lb 

) = sign ( ̂  β
a γ
lb 

) then 

a γ := c γ
ˆ β

a γ
lb 

:= 

ˆ β
c γ
lb 

else 
b γ := c γ

end 

end 

end 

Output : b (t) 
j 

∀ ( j, t) ∈ { 1 , . . . , n (t) 
g } × { 1 , . . . , T } , ˆ βlb 
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shape of the underlying probability distribution. This avoids the

problem that is often faced in stochastic optimization utiliz-

ing Chebyshev’s inequality to robustly approximate chance con-

straints, which is often excessively conservative ( Paulson and Mes-

bah, 2019 ). 

4.4. Algorithm 

The overall algorithm proposed in this paper is summarized in

this section. Firstly, the problem to be solved needs to be defined

as outlined in Section 2 . Thereafter, it needs to be decided if the GP

NMPC should learn online or exploit the state dependency of the

uncertainty as shown in Section 4 . Once the GP NMPC has been

formulated the back-offs are determined by running closed-loop

simulations of the defined problem as shown in Section 4.3 . Lastly,

these back-offs then give us the tightened constraint set required

for the GP NMPC online . This GP NMPC is then run online solving
he problem initially outlined. An overall summary can be found in

lgorithm 3 . 

Note the back-offs could be also updated online making use of

he new initial conditions and updated prediction model in the

ase of ”learning”, which would lead to overall less conservative-

ess ( Paulson and Mesbah, 2018 ). This would however require to

arry-out the offline calculations online, which is expensive, and

ot computationally desirable. 

. Case study 

The case study utilized in this paper deals with the

hoto-production of phycocyanin synthesized by cyanobacterium

rthrospira platensis . Phycocyanin is a high-value bioproduct and

ts biological function is to enhance the photosynthetic efficiency

f cyanobacteria and red algae. It has been considered as a valu-

ble compound because of its applications as a natural colorant to
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Algorithm 3 Back-off GP NMPC. 

Offline Computations 

1. Build GP state-space model from data-set D = (Z , Y ) and additive disturbance �ω 

. 

2. Choose time horizon T , initial condition mean μx 0 
and covariance �x 0 , stage costs � and � f , state dependent factor ηt , constraint sets 

X t , U t ∀ t ∈ { 1 , . . . , T } , chance constraint probability ε, ecdf confidence α, tuning parameter δ, decide if learning should be carried out, 

the number of back-off iterations n b and the number of Monte Carlo simulations S to estimate the back-offs. 

3. Determine explicit back-off constraints using Algorithm 2. 

4. Check final probabilistic value ˆ βlb from Algorithm 2 if it is close enough to ε. 

Online Computations 

for t = 0 , . . . , T − 1 do 

1. Solve the MPC problem in Equation 22 with the tightened constraint set from the Offline Computations . 

2. Apply the first control input of the optimal solution to the real plant. 

3. Measure the state x t and update the GP plant model for learning GP NMPC. 

end 
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Table 1 

Parameter values for ordinary differential equation system 

in Eq. (34). 

Parameter Value Units 

u m 0.0572 h 
−1 

u d 0.0 h 
−1 

K N 393.1 mg.L −1 

Y N 
X 

504.5 mg.g −1 

k m 0.00016 mg.g −1 .h −1 

k d 0.281 h −1 

k s 178.9 μmol.m 

−2 
.s −1 

k i 447.1 μmol.m 

−2 
.s −1 

k sq 23.51 μmol.m 

−2 
.s −1 

k iq 800.0 μmol.m 

−2 
.s −1 

K Np 16.89 mg.L −g1 

d  

s  

T  

�

�

 

g

μ  

 

p  

t  

f
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w
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b

g  
eplace other toxic synthetic pigments in both food and cosmetic

roduction. Furthermore, it has shown great promise for the phar-

aceutical industry because of its unique antioxidant, neuropro-

ective, and anti-inflammatory properties. Using a simplified dy-

amic model we verify our GP NMPC algorithm by operating this

rocess using a limited dataset. The GP NMPC problem is formu-

ated with an economic objective aiming to directly maximize the

ioproduct concentration of the final batch subject to two path

onstraints and one terminal constraint. 

.1. Semi-batch bioreactor model 

The simplified dynamic system consists of three ODEs describ-

ng the evolution of the concentration of biomass, nitrate, and

ioproduct. The dynamic model is based on the Monod kinetics,

hich describes microorganism growth in nutrient sufficient cul-

ures, where intracellular nutrient concentration is kept constant

ecause of the rapid replenishment. We assume a fixed volume

ed-batch. Control inputs are given by the light intensity ( I ) in

mol.m 

−2 .s −1 and nitrate inflow rate ( F N ) in mg.L −1 .h 

−1 ( del Rio-

hanona et al., 2015 ). To capture the effects of light intensity on

icroalgae growth and bioproduction (photolimitation, photosat-

ration, and photoinhibition phenomena) the Aiba model is used

 Aiba, 1982 ). The balance equations are given as follows: 

dC X 
dt 

= u m 

· I 

I + k s + 

I 2 

k i 

· C X · C N 
C N + K N 

− u d · C X , C X (0) = C X 0 (34a)

dC N 
dt 

= −Y N 
X 

· u m 

· I 

I + k s + 

I 2 

k i 

· C X · C N 
C N + K N 

+ F N , C N (0) = C N 0 

(34b) 

dC q c 
dt 

= k m 

· I 

I + k sq + 

I 2 

k iq 

· C X −
k d C q c 

C N + K Np 

, C q c (0) = C q c 0 (34c)

here C X is the biomass concentration in g/L, C N is the ni-

rate concentration in mg/L, and C q c is the phycocyanin (bio-

roduct) concentration in the culture in mg/L. The correspond-

ng state vector and control vector are given by x = [ C X , C N , C q c ] 
T 

nd u = [ I, F N ] 
T respectively. The initial condition is denoted as

 0 = [ C X 0 , C N 0 , C q c 0 ] 
T . The missing parameter values can be found

n Table 1 . 

.2. Problem set-up 

The time horizon T was set to 12 with an overall batch time

f 240h, and consequently the sampling time is 20h. Based on the
ynamic system in Eq. (34) we define the objective and the con-

traints according to the general problem definition in Section 2 .

he measurement noise matrix �ν and disturbance noise matrix

ω 

were set to: 

�ν = diag (4 × 10 

−4 , 0 . 1 , 1 × 10 

−8 ) , 

ω 

= diag (4 × 10 

−4 , 0 . 1 , 1 × 10 

−8 ) (35) 

The mean μx 0 
and covariance �x 0 of the initial condition are

iven by: 

x 0 
= [1 ., 150 , 0 . ] T , �x 0 = diag (1 × 10 

−3 , 22 . 5 , 0) (36)

The control algorithm aims to maximize the amount of bio-

roduct produced C q c with a penalty on the change of control ac-

ions. The corresponding stage and terminal cost can be stated as

ollows: 

 (x t , u t ) = �T 
u t 

R �u t (37a)

 f (x T ) = −C q c T (37b) 

here �u t = u t − u t−1 and R = diag (3 . 125 × 10 −8 , 3 . 125 × 10 −6 ) .

he overall objective is then defined by Eq. (3) . 

For the case of state dependency we set all ηi to zero except η0 ,

ee Equation 22. The value of η0 was set to 15. Note that for these

actors to work properly it is important to normalize the data as

e did in this case study. 

There are two path constraints in the problem. The amount of

itrate is constrained to remain below 800 mg/L, while the ratio of

ioproduct to biomass may not exceed 11.0 mg/g for high density

iomass cultivation. These constraints can be stated as: 

 

(t) (x t ) = C N t − 800 ≤ 0 ∀ t ∈ { 0 , . . . , T } (38a)

1 
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Table 2 

The mean of the back-off values for the nitrate concentration constraints g 1 / g 3 
and the ratio of bioproduct to biomass constraint g 2 from the final back-off

iteration. 

Algorithm variation Mean back-off g 1 / g 3 
(mg/L) 

Mean back-off g 2 
(mg/L) 

GP NMPC 50 205.8 0.022 

GP NMPC 60 34.2 0.008 

GP NMPC 100 38.8 0.003 

GP NMPC learning 50 54.0 0.007 

GP NMPC 50 SD 23.3 0.002 

GP NMPC 50 NSD 36.2 0.004 
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g (t) 
2 

(x t ) = C q c t − 0 . 011 C X t ≤ 0 ∀ t ∈ { 0 , . . . , T } (38b)

Lastly, there is a terminal constraint on nitrate to reach a final

concentration of below 150 mg/L: 

g (T ) 
3 

(x T ) = C N T − 150 ≤ 0 , g (t) 
3 

(x T ) = 0 ∀ t ∈ { 0 , . . . , T − 1 } (39)

The maximum probability for violating the joint chance con-

straint was set to ε = 0 . 1 . The control inputs light intensity and

nitrate inflow rate are constrained as follows: 

120 ≤ I t ≤ 400 ∀ t ∈ { 0 , . . . , T } (40a)

0 ≤ F N t ≤ 40 ∀ t ∈ { 0 , . . . , T } (40b)

For the back-off iterations we employed S = 10 0 0 MC iterations

with the initial back-offs computed according to Eq. (31) with δ =
0 . 1 and α = 0 . 01 . The maximum number of back-off iterations for

the bisection algorithm was set to n b = 16 . 

5.3. Implementation details and initial dataset generation 

The optimization problem for the GP NMPC in Eq. (22) is solved

using Casadi ( Andersson et al., 2019 ) to obtain the gradients of the

problem using automatic differentiation in conjunction with IPOPT

( Wächter and Biegler, 2006 ). The ”real” plant model was simulated

using IDAS ( Hindmarsh et al., 2005 ). In the next section, differ-

ent variations of the proposed algorithm are presented, for which

two different type of datasets were collected. For the first type of

dataset we designed the entire input data matrix Z according to

a Sobol sequence ( Sobol, 2001 ) in the range z i ∈ [0, 20] × [50,

800] × [0, 0.18] × [120, 400] × [0, 40]. The ranges were chosen for

the data to cover the expected operating region. The corresponding

outputs Y were then obtained from the IDAS simulation of the sys-

tem perturbed by Gaussian noise as defined in the problem setup.

In the second approach only the control inputs were set accord-

ing to the Sobol sequence in the range u i ∈ [120, 400] × [0, 40]

and the corresponding states Y were obtained from the trajecto-

ries of the ”real” system perturbed by noise using samples of the

initial condition and the time horizon as defined in the problem

setup based on these control inputs. The system was simulated in
Table 3 

Lower bound on the probability of satisfying the joint c

bility from the final simulation ˆ β, average computationa

(OCP) for the GP NMPC, and the average computational 

Algorithm variation Probability 
ˆ βlb 

Probabilit
ˆ β

GP NMPC 50 0.99 1.00 

GP NMPC 60 0.89 0.91 

GP NMPC 100 0.91 0.93 

GP NMPC learning 50 0.91 0.93 

GP NMPC 50 SD 0.89 0.91 

GP NMPC 50 NSD 0.91 0.93 
open-loop” using these control actions, i.e. without any feedback

ontroller present. For both datasets the input data Z and output

ata Y are normalized to zero mean and a standard deviation of

ne. The reason we use two different types of datasets is to high-

ight the advantages of accounting for state dependency in two of

he algorithm variations. In the first dataset the data is relatively

venly distributed and hence considering the state dependency of

he uncertainty to avoid regions with high data sparsity has es-

entially no effect, while in the second approach there are clearly

efined trajectories that can be followed by accounting for state

ependency. 

. Results and discussions 

In this section we present and discuss the results from the case

tudy described in the previous section. For comparison purposes

e compare six different variations of the proposed GP NMPC ap-

roach, which are as follows: 

• GP NMPC 50, 60, 100: GP NMPC approach without learning and

without taking into account state dependency for dataset sizes

of 50, 60, and 100 points using the first type of dataset. 
• GP NMPC learning 50: GP NMPC approach with learning and

without state dependency for a dataset size of 50 points, which

will be compared to the above case of 50 data points without

learning. The first type dataset is utilized. 
• GP NMPC SD/NSD 50: GP NMPC approach with and without

accounting for the state dependency for a dataset size of 50

points employing the second type of dataset. 

In addition, we compare the approaches to a nominal NMPC al-

orithm based on the GP model to show the importance of em-

loying back-offs to prevent constraint violations, i.e. we run the

P NMPC on the ”real” plant model, while setting the back-offs to

ero. The results of the outlined runs are summarized in Figs. 6 –12 ,

nd in Tables 2 –3 . In Figs. 6 –7 we show the evolution of the back-

ff factor and the probability of constraint satisfaction 

ˆ βlb over the

6 back-off iterations from Algorithm 2. The next two Figs. 4 –5

how the 10 0 0 MC trajectories of the constraints with a line to

ighlight the nominal prediction of the GP NMPC. Next the GP

MPC was applied to the ”real” plant with back-offs from the fi-

al iteration and without back-offs referred to as nominal as shown

n Figs. 8 –9 . Fig. 10 shows the probability density function of the

bjective values obtained from the ”real” plant, where in the figure

arger objective values correspond to better objective values. Fig. 11

hows representative control trajectories for GP NMPC 50, 60, 100

ompared with the optimal trajectory obtained from solving the

CP of the ”real” plant ignoring uncertainties. Fig. 12 shows the

ack-off values for the nitrate constraints g 1 and g 2 for GP NMPC

0 and GP NMPC 50 learning. Lastly, Table 2 shows the mean val-

es for the back-offs averaged over time for the final back-off iter-

tion, while Table 3 shows the attained probability of satisfaction
ˆ together with the average computational times for solving a
lb 

onstraint ˆ βlb , the approximate satisfaction proba- 

l times to solve a single optimal control problem 

time required to complete one back-off iteration. 

y OCP time 

(ms) 

Back-off iteration 

time (s) 

65 782 

54 753 

135 1626 

69 825 

48 574 

49 584 
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Fig. 4. The 10 0 0 MC trajectories at the final back-off iteration of the nitrate concentration constraints g 1 and g 3 (LHS) and the ratio of bioproduct to biomass constraint g 2 
(RHS) for from top to bottom GP NMPC 50, 60, 100 and GP NMPC 50 learning. 

s  

c

 

 

 

 

 

 

 

ingle GP NMPC optimization problem. We can draw the following

onclusions from these results: 

• Figs. 6 –7 and Table 2 show that apart from GP NMPC 50 the

other variations reach the required 

ˆ βlb and hence successfully

converge to a reasonable back-off factor. For these, as expected,
a low back-off value leads to too low 

ˆ βlb values near zero, while

too high back-off values lead to too high 

ˆ βlb values. The value

of ˆ βlb does vary by ± 0.01 even on convergence, which is due

to the randomness of the MC samples. Nonetheless, since ˆ βlb 

is a sample robust value, it is high enough if at least 0.9 is
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Fig. 5. The 10 0 0 MC trajectories at the final back-off iteration of the nitrate concentration constraints g 1 and g 3 (LHS) and the ratio of bioproduct to biomass constraint g 2 
(RHS) for GP NMPC NSD 50 (top) and GP NMPC SD 50 (bottom). 

Fig. 6. Plots of evolution of the back-off factor and the probability of constraint satisfaction ˆ βlb over the 16 back-off iterations for GP NMPC 50, 60, 100, and GP NMPC 

learning 50. 

Fig. 7. Plots of evolution of the back-off factor and the probability of constraint satisfaction ˆ βlb over the 16 back-off iterations for GP NMPC SD 50 and GP NMPC NSD 50. 
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Fig. 8. Trajectories of the nitrate concentration constraints g 1 and g 3 (top) and the ratio of bioproduct to biomass constraint g 2 (bottom) for the GP NMPC 50, 60, 100, and 

GP NMPC 50 learning applied to the ”real” plant model with the final tightened constraint set on the LHS and with no back-off constraints on the RHS referred to as nominal . 

Fig. 9. Trajectories of the nitrate concentration constraints g 1 and g 3 (LHS) and the ratio of bioproduct to biomass constraint g 2 (RHS) for the GP NMPC 50, 60, 100, and GP 

NMPC 50 learning applied to the ”real” plant model with the final tightened constraint set and with no back-off constraints referred to as nominal . 

Fig. 10. Probability density function for the “real” plant objective values for all variations of the GP NMPC algorithm. 
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Fig. 11. Example control trajectories for the light intensity on the LHS and the nitrate flow rate on the RHS based on GP NMPC 50, 60, 100. The red line represents the 

optimal control trajectories ignoring the noise present in the process. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 12. Example back-off values for the nitrate concentration constraints g 1 and g 3 of GP NMPC 50 (LHS) and GP NMPC 50 learning (RHS). The lines are plotted over the 16 

back-off iterations, which are faded out towards earlier iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reached once over the 16 iterations, which is the case for all

of them. Note that GP NMPC 50 does not converge, since even

without back-offs the NMPC remains feasible for all MC trajec-

tories and hence the bisection procedure fails. The performance

of GP NMPC 50 is however also by far the worst. This is due

to insufficient amounts of data in crucial areas for the control

problem. 
• From GP NMPC 50, 60 to 100 the objective values steadily

increase and hence improve with increased number of data

points as shown in Fig. 10 . This is as expected, since more

data points should lead to a more accurate GP plant model and

hence more optimal control actions. Lastly, a more accurate GP

plant model should also require less conservative back-offs. For

the constraint g 2 the mean of the back-off values steadily de-

creases from 0.022 mg/L for GP NMPC 50 to 0.003 for GP NMPC

100 as shown in Table 2 . For the constraints g 1 / g 3 on the other

hand the mean of the back-offs decreases dramatically from GP

NMPC 50 with a value of 250mg/L to a value of 34.2mg/L for

GP NMPC 60, while slightly increasing again for GP NMPC 100

to 38.8 mg/L. This is further illustrated in Fig. 4 , for which the

spread of the trajectories decreases steadily from GP NMPC 50,

60 to 100. All in all, larger datasets lead to improved solutions. 
• The learning approach GP NMPC 50 learning leads to a reason-

able solution with an objective value that is on average higher

and therefore an improvement over GP NMPC 60 as can be seen

in Fig. 10 . Further, the sharper peak of the objective value sug-

gests a more reliable performance. In contrast, GP NMPC 50

without learning is unable to determine a good solution and
therefore has an objective value that is considerably worse than

the remaining scenarios with an objective value that is on av-

erage over 30% lower. GP NMPC 50 is also unable to reach a ˆ βlb

value of 0.9 and has instead a much higher value as shown in

Table 3 , but at the expense of performance. This is highlighted

in Fig. 11 in which the control trajectory of GP NMPC 50 de-

creases the nitrate flowrate early to satisfy the terminal con-

straint, which leads to a sub optimal solution. This is believed

to be due to the high uncertainty of the g 1 / g 2 / g 3 constraint tra-

jectories of GP NMPC 50, which can be seen by the large spread

of the trajectories in Fig. 4 . GP NMPC 50 learning on the other

hand has a spread of the constraints g 1 / g 2 / g 3 that is signifi-

cantly less than GP NMPC 50. This is further highlighted by the

considerably higher back-off values of GP NMPC 50 compared

to GP NMPC 50 learning as can be seen in Table 2 , where the

g 1 / g 3 back-off values are nearly 400% larger, while the g 2 back-

off values are over 300% larger. In conclusion, accounting for

online learning has lead to a significantly better solution, al-

though it should be noted that at larger datasets the effect is

nearly negligible. 
• GP NMPC 50 can be seen to be less erratic than GP NMPC 50

learning in Fig. 4 , which is however expected. GP NMPC 50 uses

the same prediction model throughout and hence the control

inputs are only influenced by changes in the initial condition.

For GP NMPC 50 learning on the other hand the prediction

model changes at each sampling point and hence this leads to

more irregular behaviour, which can be seen by the increased

oscillations. This then leads to overall improved control actions
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and performance due to exploiting the new data available, as

can be seen in Fig. 10 . 
• It can be seen in Fig. 5 that GP NMPC NSD 50 has a larger

spread of trajectories than GP NMPC SD 50. This is as expected,

since GP NMPC SD 50 aims directly in its objective to mini-

mize uncertainty. Consequently, the mean of the back-off values

of constraints g 1 / g 3 and g 2 in Table 2 are over 50% larger and

over 100% greater than those for GP NMPC SD 50, respectively.

Nonetheless, the attained average objective of GP NMPC SD 50

is marginally lower and hence worse as can be seen in Fig. 10 .

This is expected, since accounting for state dependency reduces

conservativeness, but may also lead to a sub optimal solution

due to conflicting objectives. 
• In Table 3 the average computational times of a single GP NMPC

evaluation are shown, which range from 135ms to 48ms. Over-

all, it can be seen that by far the largest computational times

are attributed to GP NMPC 100, which is reasonable since the

complexity of GP plant models grows exponentially with the

number of data points. GP NMPC 50 and GP NMPC 50 learn-

ing can be seen however to have higher computational times,

which is due to a more complex optimization problem from

the reduced amount of data. This is further highlighted by GP

NMPC 50 SD and GP NMPC 50 NSD attaining the lowest average

computational times due to the second type of dataset leading

to easier optimization solutions. In Table 3 we can further see

that the computational times required for a single back-off it-

eration is for all variations nearly solely determined by the GP

NMPC evaluation time. In addition, in Table 3 we show the ecdf

value ˆ β for the final back-off iteration. It can be seen that these

probabilities are substantially higher than the required proba-

bility of 0.9 ranging from 0.91 to 0.93 for the converged solu-

tions, which is due to the conservativeness of the probabilistic

lower bound used. This leads to higher back-off values than re-

quired and therefore worse objective values. This conservative-

ness can be reduced by setting α to a higher value. 
• Lastly, in Figs. 8 –9 trajectories of the constraints are shown by

applying the GP NMPC variants to the ”real” plant. It can be

seen that the nominal variations of GP NMPC 50, 60, 100, and

GP NMPC 50 learning with back-offs set to zero violate the

nitrate constraint g 1 to remain below 800mg/L by a substan-

tial amount of up to 50mg/L for GP NMPC 50 learning and GP

NMPC 60. With back-offs on the other hand the approaches re-

main feasible throughout the run, which illustrates the impor-

tance of employing back-offs. GP NMPC NSD 50 nominal can be

also seen to violate the nitrate constraint g 1 by 50mg/L, while

GP NMPC SD 50 nominal does not violate this constraint. This is

likely due to GP NMPC SD 50 nominal following a feasible tra-

jectory in the dataset. GP NMPC NSD 50 with back-offs remains

feasible. Overall, it can be seen that back-offs are important to

achieve feasibility given the presence of plant-model mismatch.

. Conclusions 

In conclusion, a new approach is proposed for finite-horizon

ontrol problems using NMPC in conjunction with GP state space

odels. The method utilizes the probabilistic nature of GPs to

ample deterministic functions of possible plant models. Tightened

onstraints using explicit back-offs are then determined, such that

he closed-loop simulations of these possible plant models are fea-

ible to a high probability. In addition, it is shown how proba-

ilistic guarantees can be derived based on the number of con-

traint violations from the simulations. Furthermore, it is shown

hat online learning and state dependency of the uncertainty can

e taken into account explicitly in this method, which leads to

verall less conservativeness. Moreover, the computational times

re shown to be relatively low, since constraint tightening is per-
ormed offline. Finally, through the comprehensive semi-batch bio-

rocess case study, the efficiency and potential of this method for

he optimisation of complex stochastic systems (e.g. biological pro-

esses) is well demonstrated. 
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ppendix A. Recursive inverse matrix update 

In this paper we are often concerned with inverting matrices as

hown in Section 3.2 in Eq. (17c) : 

+ −1 
Y = 

[
�Y k 

T (z + ) 
k (z + ) k (z + , z + )(+ σ 2 

ν ) 

]−1 

(A.1) 

This is an recursive update formula and hence �−1 
Y is known

 priori . In this Section we introduce a recursive formula to ex-

loit this fact to obtain �+ −1 
Y in a cheaper fashion taken from

trassen (1969) adjusted to our case. The following quantities need

o be computed to obtain �+ −1 
Y : 

 = k 

T (z + ) �−1 
Y (A.2a) 

I = k 

T (z + ) I T (A.2b) 

 12 = I T × II (A.2c) 

 11 = �−1 
Y − I T × C 

T 
12 (A.2d) 

 22 = −
(
II − k (z + , z + )(+ σ 2 

ν ) 
)−1 

(A.2e) 

T269 The inverted matrix is then given by: 

+ −1 
Y = 

[
C 11 C 12 

C 

T 
12 C 22 

]
(A.3) 
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